三角形相似模型总结
相似三角形经典模型总结及例题分类
相似三角形经典模型总结经典模型【精选例题】 “平行型”【例 1】 如图,EEJ / FFJ / MM 1,若 AE=EF=FM=MB ,贝V S.A E ® : S 四边形EE 1F 1F : S 四边形FF 1M 1M : S 四边形MM QB 二翻折180°翻折180°V平行型斜交型斜交型平行型斜交型双垂直双垂直特殊平移翻折180°一般平移旋转180°一般一般特殊特殊C1[例2】如图,AD// EF M/N BC若AD =9 , BC =18 , AE :EM :MB = 2:3: 4,则EF = _____ , MN = ______长线,AB的延长线分别相交于点E,F,G,H求证:PE PH PF 一PG【例3】已知, P为平行四边形ABCD对角线,AC上一点,过点P的直线与AD , BC , CD的延【例4】已知:在ABC中,D为AB中点, 求目匸的值EF E为AC上一点,且Ah2,BE、CD相交于点F ,NCWORD整理版1 1【例引已知:在ABC中,AD AB,延长BC到F,使CF BC ,连接FD交AC于点E2 3AE =2CE求证: ① DE 二EF ②【例6】已知:D , E为三角形ABC中AB、BC边上的点,连接DE并延长交AC的延长线于点F , BD: DE 二AB:AC求证::CEF为等腰三角形【例7】如图,已知AB//EF / /CD,若AB =a,CD = b,EF = c,求证:1 =——cab【例8】如图,找出S.ABD、S BED、S.BCD之间的关系,并证明你的结论【例9】如图,四边形ABCD中,B=/D =90,M是AC上一点,ME _ AD于点E , MF _ BC于占JF 求证: MF ME ,1AB CDC【例10】如图,在ABC中,D是AC边的中点,过D作直线EF交AB于E,交BC的延长线于F 求证:AE BF 二BE CF【例11】如图,在线段AB上,取一点C,以AC,CB为底在AB同侧作两个顶角相等的等腰三角形ADC和CEB,AE交CD于点P,BD交CE于点Q,求证:CP =CQ【例12】阅读并解答问题.在给定的锐角三角形ABC中,求作一个正方形DEFG,使D,E落在BC边上,F , G分别落在AC , AB边上,作法如下:第一步:画一个有三个顶点落在ABC两边上的正方形D'E'F'G'如图,第二步:连接BF'并延长交AC于点F第三步:过F点作FE _ BC ,垂足为点E 第四步:过F点作FG // BC交AB于点G 第五步:过G点作GD _ BC,垂足为点D 四边形DEFG即为所求作的正方形问题:⑴证明上述所作的四边形DEFG为正方形⑵在ABC中,如果BC =6「3 , ABC =45 , • BAC = 75 ,求上述正方形DEFG的边长B D' E' D E C“平行旋转型”图形梳理:C , E', F'共线【例13】已知梯形ABCD , AD // BC,对角线AC、BD互相垂直,则①证明:AD2 BC2二AB2 CD2色AEF旋转到公AE 一AEF旋转到一AE ' F' AAEF旋转到至AE ''二AEF旋转到二AE 'F' △AEF旋转至U色AE ' F'△AEF旋转至U色AE ' F' △AEF旋转至U色AE ' F'【例14】当 MOD ,以点O 为旋转中心,逆时针旋转 日度(0£日<90),问上面的结论是否成立,请 说明理由D【例15】(全国初中数学联赛武汉选拔赛试题)如图,四边形AG : DF : CE = ___________ .“斜交型”【例16】如图,.:ABC 中,D 在AB 上,且DE // BC 交AC 于E , F 在AD 上,且AD^AF AB , 求证:AEF L ACD【例17】如图,等边三角形 ABC 中,D , E 分别在BC , AB 上,且CE 二BE , AD , CE 相交于M , 求证:EAM L ECAABCD 和BEFG 均为正方形,求GFBEDCD【例18】如图,四边形 ABCD 的对角线相交于点 O , . BAC — CDB ,求证:.DAC = . CBDAB BC CA【例佃】如图,设伴二CA ,则.仁.2吗?AD DE EA等于18和2,DE =2,求AC 边上的高BD 1【例21】如图,在等边 ABC 的边BC 上取点D ,使 ,作CH _AD ,H 为垂足,连结BH 。
相似三角形题型归纳总结非常全面
相似三角形题型归纳一、比例的性质:二、成比例线段的概念: 1.比例的项:在比例式::a b c d =(即a cb d =)中,a ,d 称为比例外项,b ,c 称为比例内项.特别地,在比例式::a b b c =(即a bb c=)中,b 称为a ,c 的比例中项,满足b ac 2=.2.成比例线段:四条线段a ,b ,c ,d 中,如果a 和b 的比等于c 和d 的比,即a cb d=,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段.3.黄金分割:如图,若线段AB 上一点C ,把线段AB 分成两条线段AC 和BC (AC BC >),且使AC 是AB 和BC 的比例中项(即AC AB BC 2=⋅),则称线段AB 被点C 黄金分割,点C 叫线段AB 的黄金分割点,其中.AC AB AB ≈0618,BC AB =.AB ≈0382,AC 与AB 的比叫做黄金比.(注意:对于线段AB 而言,黄金分割点有两个.)三、平行线分线段成比例定理 1.平行线分线段成比例定理A两条直线被三条平行线所截,所得的对应线段成比例,简称为平行线分线段成比例定理.如图:如果123////l l l ,则AB DE BC EF =,AB DE AC DF =,BC EFAC DF=.AD BE CF1l 2l 3lA D BE CF 1l 2l 3l【小结】若将所截出的小线段位置靠上的(如AB )称为上,位置靠下的称为下,两条线段合成的线段称为全,则可以形象的表示为=上上下下,=上上全全,=下下全全.2.平行线分线段成比例定理的推论平行于三角形一边的直线,截其它两边(或两边的延长线),所得的对应线段成比例.如图:如果EF//BC ,则AE AF EB FC =,AE AF AB AC =,BE CFAB AC=. ABC E FFEC BA平行线分线段成比例定理的推论的逆定理 若AE AF EB FC =或AE AF AB AC =或BE CF AB AC=,则有EF//BC . 【注意】对于一般形式的平行线分线段成比例的逆定理不成立,反例:任意四边形中一对对边的中点的连线与剩下两条边,这三条直线满足分线段成比例,但是它们并不平行.【小结】推论也简称“A ”和“8”,逆定理的证明可以通过同一法,做'//EF BC 交AC 于'F 点,再证明'F 与F 重合即可.四、相似三角形的定义、性质和判定 1.相似图形①定义:对应角相等,对应边成比例的图形叫做相似图形.对应边的比例叫做相似比.相似图形是形状相同,大小不一定相同.相似图形间的互相变换称为相似变换.②性质:两个相似图形的对应角相等,对应边成比例.2.相似三角形的定义3.相似三角形的性质 ①相似三角形的对应角相等. 如图,∽△△ABC A B C ''',则有 A A '∠=∠,B B C C ''∠=∠∠=∠,.②相似三角形的对应边成比例. 如图,∽△△ABC A B C ''',则有AB BC ACk A B B C A C ===''''''(k 为相似比). ③相似三角形的对应边上的中线,高线和对应角的平分线成比例,都等于相似比.如图,△ABC ∽△A B C ''',AM AH 、和AD 是△ABC 中BC 边上的中线、高线和角平分线,A M ''、A H ''和A D ''是△ABC '''中B C ''边上的中线、高线和角平分线,则有AB BC AC AM AH ADk A B B C A C A M A H A D ======''''''''''''④相似三角形周长的比等于相似比. 如图,△ABC ∽△A B C ''',则有AB BC AC AB BC ACk A B B C A C A B B C A C ++====''''''''''''++. ⑤相似三角形面积的比等于相似比的平方. 如图,△ABC ∽△A B C ''',则有 △△ABC A B C BC AHS BC AH k S B C A H B C A H 2'''1⋅⋅2==⋅=1''''''''⋅⋅24.相似三角形的判定判定定理判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似. 简称为两角对应相等,两个三角形相似. 如图,如果'A A ∠=∠,'B B ∠=∠,则△∽△ABC A B C '''.判定定理2:如果两个三角形的三组对应边成比例,那么这两个三角形相似.简称为三边对应成比例,两个三角形相似.如图,如果AB BC ACA B B C A C =='''''',则 △∽△ABC A B C '''.判定定理3:如果两个三角形的两组对应边成比例,并且对应的夹角相等,那么这两个三角形相似. 简称为两边对应成比例且夹角相等,两个三角形相似.如图,如果AB ACA B A C ='''','A A ∠=∠,则△∽△ABC A B C '''.五、“A ”字和“8”字模型六、与内接矩形的有关的相似问题如图,已知四边形DEFG 是△ABC 的内接矩形,E 、F 在BC 边上,D 、G 分别在AB 、AC 边上,则有:△∽△ADG ABC ,DG ANBC AM=. 特别地,当BAC ∠=90︒时,有△∽△∽△∽△ADG EBD FGC ABC .NM GFE DCB AGFEDCBA七、“A ”字和“8”字模型的构造“A ”字和“8”字模型的构造常常作平行线,常见的作平行线的方法:G EDCAGFEDCBA G FE DC B ADEFCBAGA HDFBECAGDF BEC八、斜“8”模型九、斜“A”模型十、射影定理十一、三平行模型十一二、三垂直模型十三、角平分线定理十四、线束模型题型一 比例的性质和成比例线段的概念例题1 (1)已知::::x y z =135,则x y zx y z+3--3+的值是_______.(2)若x y z 234==.则x y z x y-+3=3-_______. (3)若a b c 2=3=4,且abc ≠0,则a bc b+-2的值是_______. 解析(1)设x k =,y k =3,z k =5.∴x y z k k k x y z k k k +3-+9-55==--3+-9-53;(2)113;(3)-2 巩固1: (1)如果:2:3x y =,则下列各式不成立的是( ) A .53x y y += B .13y x y -= C .123x y = D .1314x y +=+ (2)已知:23a c e b d f ===,求值:①a cb d++;②2323a c e b d f -+-+. (3)已知b c a c a b a b c a b c +-+-+-==,求()()()a b b c a c abc+++的值. 解析:(1)A 为合比性质,B 为分比性质,C 显然正确,D 错误,由于11x y ≠,不能用等比定理.故答案为D .(2)由等比性质直接可以得到23a c b d +=+;232233a c eb d f -+=-+. (3)当0a bc ++≠时,()()()b c a c a b a b c b c a c a b a b c a b c a b c+-+-+-+-++-++-====1++ 于是:2,2,2b c a a c b a b c +=+=+=,()()()a b b c a c abc+++=8.当0a b c ++=时,()()()()()()a b b c a c c a b abc abc+++-⋅-⋅-==-1.本题答案为1-或8.题型二 平行线分线段成比例定理 例题2(1)如图2-1,已知∥∥l l l 123,用面积法证明:AB DEBC EF=. (2)如图2-2,∥∥AD BE CF ,若AB =4,AC =10,DE =5,则DF =______. (3)如图2-3,∥∥l l l 123,AB =3,BC =5,DF =12,则_______DE =,______EF =.A D BECF l 12l 3lAD B ECFA DBECF l 12l l 3图2-1 图2-2 图2-3(1)如图所示,连接AE ,BD ,BF ,CE .△△ABECBES AB BC S =∴. ∥AD BE ∵,∥BE CF ,△△ABE DEB S S =∴,△△CBE FEB S S =.△△△△ABE EDB CBE EFB S S AB DEBC S S EF===∴. (2)252; (3)92,152. 巩固2: (1)如图2-1,直线∥∥l l l 123,已知.cm AG =06,.cm BG =12,.cm CD =15,CH =_____.(2)如图2-2,在△ABC 中,D 、E 分别为AB 、AC 边上的点,若AD BD 2=3,AE =3,则AC =______(3)如图2-3,AB ∥DE ,AE 与DB 交于C ,AC =3,BD =3,CD =2,则CE =______A CH GDBl 1l 2l 3B ADEABC图2-1 图2-2 图2-3解析:(1)0.5cm ;(2)152;(3)6 题型三 相似三角形的定义、性质和判定 例题3如图,直角梯形ABCD 中,∠ADC =90︒,∥AD BC ,点E 在BC 上,点F 在AC上,∠∠DFC AEB =.(1)求证:△∽△ADF CAE .(2)当AD =8,DC =6,点E 、F 分别是BC 、AC 的中点时,求直角梯形ABCD 的面积.解析:(1)∵∥AD BC ,∴∠∠DAF ACE =,∵∠∠DFC AEB =,∴DFA AEC ∠=∠,∴△∽△ADF CAE(2)∵AD =8,DC =6,∴AC =10,又∵F 是AC 的中点,∴AF =5 ∵△∽△ADF CAE ,∴AD AF CA CE =,∴CE 85=10,∴CE 25=4,∵E 是BC 的中点, ∴BC 25=2,∴直角梯形ABCD 的面积125123⎛⎫=⨯+8⨯6= ⎪222⎝⎭A D BECF l 12l 3l F EDCBA巩固3: (1)下列所给条件中,可以判断△ABC 与△DEF 相似的是( ) A .90A ∠=︒,90F ∠=︒,5AC =,13BC =,10DF =,26EF = B .85C ∠=︒,85E ∠=︒,AC DEBC DF=C .1AB =, 1.5AC =,2BC =,8EF =,10DE =,16FD = D .46A ∠=︒,80B ∠=︒,45E ∠=︒,80F ∠=︒(2)如图1,在△ABC 中,点D 是BC 边上的中点,且AD AC =,DE BC ⊥,交BA 于点E ,EC 与AD 相交于点F .求证:△∽△ABC FCD .(3)如图2,△ABC 为等腰直角三角形,BD CE BC 21⋅=2,求证:△∽△ACE DBA .AEF DADB CE图1 图2解析:(1)D ; (2)AD AC =∵,FDC ACB ∠=∠∴;DE ∵垂直平分BC ,EB EC =∴, ∴ABC FCD ∠=∠,△∽△ABC FCD ∴.(3)由等腰直角三角形得到BC =条件变为BD CE AB AB AC 2221⋅=⋅2==2,条件变为比例形式:BD BAAC CE=,由于DBA ACE ∠=180︒-45︒=∠,∴△∽△ACE DBA .题型四 “A ”字和“8”字模型例题4 (1)如图4-1,已知□ABCD 中,过点B 的直线顺次与AC 、AD 及CD 的延长线相交于点E 、F 、G ,若BE =5,EF =2,则FG 的长为____________.(2)如图4-2,已知在□ABCD 中,M 、N 为AB 的三等分点,DM 、DN 分别交AC 于P 、Q 两点,则AP:PQ:QC =____________.G BAF DC EC AD M N PQ图4-1 图4-2解析:(1)∵四边形ABCD 为平行四边形,∴//AD BC ∴△∽△AEF CEB ,△∽△GFD GBC ,∴AF EF CB EB 2==5,∴DF AD AF CB CB -3==5∴FG DF BG CB 3==5,即FG FG 3=+75.得.FG =105. (2)由DC ∥AB ,得AP AM PC AB 1==3,AP AC 1=4,同理AQ AC 2=5,PQ AC 2=51-4AC =AC 320,QC =AC 35,故1::::::4AP PQ QC 33==5312205.巩固4: (1)如图4-1,在ABC △中,M 、E 把AC 边三等分,MN//EF//BC ,MN 、EF 把ABC △分成三部分,则自上而下部分的面积比为 .(2)如图4-2,AB 、CD 、EF 都与BD 垂直,垂足分别是B 、D 、F ,且1AB =,3CD =,则:EF CD 的值为__________.(3)如图4-3,已知在平行四边形ABCD 中,M 为AB 的中点,DM ,DB 分别交AC 于P ,Q 两点,则::AP PQ QC =___________.NM FE C BAAB CEF DA CBQPD图4-1 图4-2 图4-3解析:(1)1:3:5;(2)14;(3)AQ CQ AC 1==2∵,又AP AM PC CD 1==2,AP AC 1=3∴ PQ AC AC 111⎛⎫=1--= ⎪236⎝⎭∴,::::AP PQ QC =213∴.题型五 与内接矩形有关的相似问题 例题5(1)如图5-1,△ABC 中,正方形EFGH 的两个顶点E 、F 在BC 上,另两个顶点G 、H 分别在AC 、AB 上,BC =15,BC 边上的高AD =10,求正方形EFGH S .(2)如图5-2,已知△ABC 中,四边形DEGF 为正方形,D ,E 在线段AC ,BC 上,F ,G 在AB 上,如果ADF CDE S S ∆∆==1,BEG S ∆=3,求△ABC 的面积.HAB C D E FGACDEGB图5-1 图5-2解析:(1)设正方形EFGH 的边长为x ,AD 、HG 的交点为M , 则有AM HG AD BC =,即x x10-=1015,解得,x =6,故EFGH S 2=6=36正方形(2)设正方形边长为x ,则AF x 2=,CI x 2=,BG x6=. 由△∽△CDE CAB ,得CI DE CH AB =,∴xxx x x x2=28++,解得x =2, ∴AB =6,CH =3,∴ABC S AB CH ∆1=⋅=92巩固5: 如图,已知ABC △中,AC =3,BC =4,C ∠=90︒,四边形DEGF 为正方形,其中D 、E 在边AC 、BC 上,F 、G 在AB 上,求正方形的边长.GF EDC B A H IDC EGF ABGFED CBA H MACDEG BIHHPED CB A解析:法一:由勾股定理可求得AB =5,由AB CH AC BC ⋅=⋅可得.CH =24. 由CDE CAB △∽△可得DE CI AB CH =,设正方形的边长为x ,则..x x 24-=524,解得x 60=37. 法二:设CE k =4,则DE k =5,∴GE k =5,BE k 25=3. ∴CE BE +=4,即k k 254+=43,解得k 12=37,∴DE k 60=5=37.题型六 “A 字和“8”字模型的构造 例题6如图,ABC △中,D 为BC 边的中点,延长AD 至E ,延长AB 交CE 的延长线于P .若AD DE =2,求证:3AP AB =.解析:如图,过点D 作PC 的平行线,交AB 于点H . ∵HD PC ∥,AH ADAD DE AH PH PH DE=2⇒==2⇒=2, HD PC ∥,BH BDBD CD BH PH PH CD=⇒==1⇒=, ∴AP AH PH PH =+=3,AH BH AB PH BH =+=2=2, ∴AB BH PH ==,∴AP PH AB =3=3. 还可用如下辅助线来证此题:A BCD EKPABCDEK P PKED CBA巩固6: 如图,已知线段AB ∥CD ,AD 与BC 相交于点K ,E 是线段AD 上一动点. (1)若BK KC 5=2,求CDAB的值; (2)连接BE ,若BE 平分∠ABC ,则当AE AD 1=2时,猜想线段AB 、BC 、CD 三者之间有怎样等量关系?请写出你的结论并予以证明.再探究:当AE AD n1=()n >2,而其余条件不变时,线段AB 、BC 、CD 三者之间又有怎样的等量关系?请直接写出你的结论,不必证明.解析:(1)∵BK KC 5=2,∴CK BK 2=5,又∵CD ∥AB ,∴KCD KBA △∽△,∴CD CK AB BK 2==5(2)当BE 平分ABC ∠,AE AD 1=2时,AB BC CD =+;证明:取BD 的中点为F ,连接EF 交BC 于G 点,由中位线定理,得EF//AB//CD ,∴G 为BC 的中点,GEB EBA ∠=∠,又∵EBA GBE ∠=∠,∴GEB GBE ∠=∠,∴EG BG BC 1==2,ABDECC DEKBA而GF CD 1=2,EF AB 1=2,EF EG GF =+,即:AB BC CD 111=+222;AB BC CD ∴=+;当AE AD n1=(n >2)时,(1)BC CD n AB +=-. 题型七 斜“A ”和斜“8”模型 例题7如图,在ABC △中,AD BC ⊥于D ,CE AB ⊥于E ,ABC △的面积是BDE △面积的4倍,6AC =,求DE 的长.解析:∵AD BC ⊥,CE AB ⊥,ABD CBE ∠=∠, ∴ABD CBE △∽△, ∴BE BCBD AB =,∵EBD CBA ∠=∠,∴BED BCA △∽△,∴11322DEDE AC AC===⇒==.巩固7: (1)如图,ABC △是等边三角形,点D ,E 分别在BC ,AC 上,且BD CE =,AD 与BE 相交于点F .求证:①BD AD DF 2=⋅;②AF AD AE AC ⋅=⋅;③BF BE BD BC ⋅=⋅. (2)如图,四边形ABCD 是菱形,AF AD ⊥交BD 于E ,交BC 于F .求证:AD DE DB 21=⋅2.FECDBAA DEF C解析:(1)∵等边ABC △,∴AB BC =,ABC ACB BAC ∠=∠=∠=60︒ ∵BD CE = ∴ABD BCE △≌△.∴BAD CBE ∠=∠,∴BFD BAD ABE CBE ABE ABC ∠=∠+∠=∠+∠=∠ ∴ABD BFD △∽△ ∴BD DFAD BD=,∴BD AD DF 2=⋅. ②证明AFE ACD △∽△即可. ③证明BFD BCE △∽△即可.(2)方法一:取DE 中点M ,连接AM , ∵AF AD ⊥,M 为DE 中点∴MA MD DE 1==2,∴∠1=∠2,又∵AB AC =,∴∠2=∠3,∴∠1=∠3,∴DAM DBA △∽△,∴DA DM DB 2=⋅,∴AD DE DB 21=⋅2. 方法二:取BD 中点N ,连接AN .由等腰三角形的性质可知:AN BD ⊥, 又∵EAD ∠=90︒,∴AND EAD △∽△,∴AD DN DE 2=⋅, 又∵DN BD 1=2,∴AD DE BD 21=⋅2. 总结:考查斜“A ”和斜“8”常见结论,看到比例乘积想到斜“A ”和斜“8”,也要会找ADEF CM123ED CAB巩固8: 在等边ABC △中,点D 为AC 上一点,连结BD ,直线l 与AB ,BD ,BC 分别相交于点E 、P 、F ,且BPF ∠=60︒.(1)如图8-1,写出图中所有与BPF △相似的三角形,并选择其中一对给予证明. (2)若直线l 向右平移到图8-2、图8-3的位置时(其它条件不变),(1)中的结论是否仍然成立?若成立,请写出来(不证明),若不成立,请说明理由.(3)探究:如图8-1,当BD 满足什么条件时(其它条件不变),PF PE 1=2?请写出探究结果,并说明理由.(说明:结论中不得含有未标识的字母)图3图2图1lP FEDCB AFP EDC BAlFPEDCBA 图3图2l P F E D CB A l FPEDC BA图3lPFED CB A 图8-1 图8-2 图8-3 解析:(1)BPF EBF △∽△与BPF BCD △∽△,以BPF EBF △∽△为例,证明如下: ∵BPF EBF ∠=∠=60,BFP BFE ∠=∠,∴BPF EBF △∽△. (2)均成立,均为BPF EBF △∽△,BPF BCD △∽△.(3)BD 平分ABC ∠时,PF PE 1=2.证明:∵BD 平分ABC ∠,∴ABP PBF ∠=∠=30∵BPF ∠=60,∴BFP ∠=90,∴PF PB 1=2,又BEF ABP ∠=60-30=30=∠,∴BP EP =,∴PF PE 1=2.题型八 射影定理 例题8如图,已知AD 、CF 是ABC △的两条高,EF AC ⊥与E ,交CB 延长线于G ,交AD 于H ,求证:EF EH EG 2=⋅.解析:∵CF AB ⊥,EF AC ⊥,∴EF AE CE 2=⋅, 又由AD BC ⊥可知,AEH CEG ∠=∠=90︒,EAH EGC ∠=∠,∴AEH GEC △∽△,∴EH EAEC EG=, ∴EH EG EA EC ⋅=⋅,∴EF EH EG 2=⋅.巩固9: (1)如图9-1,在ABC △中,CD AB ⊥于D ,DE AC ⊥于E ,DF BC ⊥于F .求证:CEF CBA △∽△.(2)如图9-2,在Rt ABC △中,AD 是斜边BC 上的高,DE AC ⊥于E ,DF AB ⊥于F ,求证:AB FB FD AC EC ED44⋅=⋅. GHFED CB ACAEFDBBAEDC F图9-1 图9-2解析:(1)分别在ADC △与CDB △中由射影定理得到:2CD CE CA =⋅,2CD CF CB =⋅, CE CA CF CB ⋅=⋅∴,即CE CFCB CA=,ECF BCA ∠=∠∵,ECF BCA ∴△∽△. (2)由射影定理可以依次得到422422AB BD BC BF ABAC DC BC EC AC⋅⋅==⋅⋅, 于是仅需证明AB FDAC ED=, 由于BDA ADC △∽△,DF DE 、分别是AB 与AC 上的高,所以有AB DFAC DE=,得证. 题型九 三垂直模型 例题9如图,M 为线段AB 的中点,AE 与BD 交于点C ,DME A B α∠=∠=∠=,且DM交AC 于F ,ME 交BC 于G . (1)求证:AMF BGM △∽△.(2)连接FG ,如果45α=︒,42AB =,3AF =,求FG 的长.解析:(1)由题意得,DME A B α∠=∠=∠=, ∴180AMF BMG α∠+∠=︒-,180AMF AFM α∠+∠=︒-,∴BMG AFM ∠=∠, 又E A B α∠=∠=∠=,∴△AMF ∽△BGM .(2)∵AMF BGM △∽△,∴AM AF BG BM =∴,∵M 为AB 的中点,∴12AM BM AB ==∴, ∵42AB =,3AF =,∴83BG =∴, ∵45α=︒∵,∴90ACB ∠=︒∴,4AC BC ==,∴1CF AC AF =-=∴,43CG BC BG =-=, ∴2253FG CF CG =+=.巩固10: (1)如图10-1,矩形ABCD 中,由8个面积均为1的小正方形组成的L 型模板如图放置,则矩形ABCD 的周长为____________.(2)如图10-2,在直角坐标系中,矩形ABCO 的边OA 在x 轴上,边OC 在y 轴上,点B 的坐标为(1,3),将矩形沿对角线AC 翻折,使得B 点落在D 点的位置,且AD 交y 轴于点E ,则D 点坐标为___________.GFE DCB AByD E OAxC图10-1 图10-2EDCG FBM A解析:(1)ABE ECF FDG △∽△∽△,2AB AEFD FG==, ∴2AB DF =,∴2AB CF =,1AB AE BEEC EF CF===, ∴AB CE =,BE CF =,∴2CE CF =, 又∵4EF =,∴CE =,CF =BC,AB , ∴矩形ABCD的周长为(2)过D 点做DF x ⊥轴于F 点,BC 与FD 的延长线交于G 点 则CGD DFA △∽△,∴13CG GD CD DF AF AD ===, 设CG x =,则3DF x =,1AF x =+,33GD x =-, 由于3AF GD =,列得方程:()1333x x +=-, 解得45x =,故45CG =,125DF =,求得D 点坐标为41255⎛⎫- ⎪⎝⎭,.巩固11: 如图11-1,ABC △和DEF △是两个全等的等腰直角三角形,90BAC EDF ∠=∠=︒,DEF △的顶点E 与ABC △的斜边BC 的中点重合.将DEF △绕点E 旋转到如图11-2,线段DE 与线段AB 相交于点P ,线段EF 与线段CA 的延长线相交于点Q . (1)求证:BPE CEQ △∽△.(2)已知BP a =,92CQ a =,求P 、Q 两点间的距离(用含a 的代数式表示).B DFA PQECBDFAP Q图11-1 图11-2解析:(1)∵ABC △和DEF △是两个全等的等腰直角三角形,∴45B C DEF ∠=∠=∠=︒, ∴135BEP CEQ ∠+∠=︒,135CQE CEQ ∠+∠=︒,∴BEP CQE ∠=∠, 又∵45B C ∠=∠=︒,∴BPE CEQ △∽△. (2)连接PQ ,∵BPE CEQ △∽△,∴BP BECE CQ=, ∵BP a =,92CQ a =,BE CE =,∴BE CE ==,∴BC =,∴3AB AC a ==,∴32AQ a =,2PAa =,在Rt APQ △中,52PQ a =.题型十 三平行模型例题10 已知:如图,在梯形ABCD 中,AB//CD ,M 是AB 的中点,分别连接AC 、BD 、MD 、MC ,且AC 与MD 交于点E ,DB 与MC 交于F . (1)求证:EF//CD ;(2)若AB a =,CD b =,求EF 的长.DFAPQFEMDCBA解析:(1)∵AB CD ∥,∴ME AM ED CD =,MF BMFC CD=, ∵AM BM =,∴AM BM CD CD =(中间过渡量),∴ME MF EF CD ED FC=⇒∥. (2)∵AM EF CD ∥∥,∴111EF AM CD =+,∴2abEF a b=+. 巩固12: 如图所示,在ABC △中,120BAC ∠=︒,AD 平分BAC ∠交BC 于点D .求证:111AD AB AC=+.ABDABCEF解析:分别过B 、C 两点做AD 的平行线,分别交CA 、BA 的延长线于E 、F 两点. 由于EB//AD//FC ,有111AD BE FC=+;由于60EBA BAD ∠=∠=︒,18060EAB BAC ∠=︒-∠=︒所以EAB △为正三角形,同理FAC △亦为正三角形.BE AB =∴,FC AC =.故111AD AB AC=+. 题型十一角平分线定理例题11 在ABC △中,B ∠的平分线交AC 于D ,C ∠的平分线交AB 于E ,且BE CD =.求证:AB AC =.解析:由角平分线定理得到AB AD BC DC =,AC AEBC BE=, ∵BE CD =∵,∴AD DC BE AE AB BC BC AC===∴ 即AD AEAB AC=,∴AD AC CD =-∴,AE AB BE =- ∴()()AC AC CD AB AB CD -=-,整理得到()()0AC AB AC AB CD -+-= 明显0AC AB CD +-≠,故AC AB =.巩固13: (1)如图13-1,在ABC △中,C ∠=90︒,CA =3,CB =4,且CD 是C ∠的平分线.则AD 的长为__________.(2)如图13-2,I 是ABC △内角平分线的交点,AI 交对应边于D 点,求证:AI AB ACID BC+=.CADBIAD B C图13-1 图13-2解析:(1)由角平分线定理34AD ACDB BC ==,由于5AB ==,31577AD AB ==∴ B AED(2)由角平分线定理得到AI AB AC ID BD CD ==,由等比性质得到:AI AB AC AB AC ID BD CD BC++==+. 巩固14: 若AP PB =,2APB ACB ∠=∠,AC 与PB 相交于点D ,且4PB =,3PD =.求AD DC ⋅的值.P DCBAEA BCDP解析:过P 点做APB ∠的角平分线PE ,交AD 于E 点.∵EPD APE C ∠=∠=∠∵,且PDE CDB ∠=∠,∴PDE CDB ∴△∽△,∴3ED DC PD DB ⋅=⋅=∴, 又由于PE 是角平分线,∴PA AE PD ED =∴,∵4PA PB ==∵,∴43AE ED =∴,∴73AD ED =∴, 773AD DC ED DC ⋅=⋅=∴. 题型十二 线束模型例题12 如图,M 、N 为ABC △边BC 上的两点,且满足BM MN NC ==,一条平行于AC 的直线分别交AB 、AM 和AN 的延长线于点D 、E 和F .求证:3EF DE =. 法一:如下左图,过D 作DG BC ∥交AC 于G ,交AM 、AN 于P 、Q , 由线束定理可知DP PQ QG ==,∵DF AC ∥,∴DE DP AG PG 1==2,DF DQ AG QG ==2, ∴DE DF 1=4,∴EF DE =3.过E 点或F 点作BC 的平行线也可得到类似的证法. 法二:如下右图,过M 作PQ DF ∥,交AB 于P , 交AF 延长线于Q ,则有AC DF PQ ∥∥, ∴PM BM AC BC 1==3,QM MNAC NC==1, ∴PM QM 1=3,由线束定理可知DE PM EF QM 1==3, 即EF DE =3.过B 点或N 点作DF 的平行线也可得到类似的证法.QPABCMN DEFQP GABCMNDEF巩固15: (1)如图15-1,AB ∥CD ,AD 与BC 交于点P ,过P 点的直线与AB 、CD 分别交于E ,F .求证:AE DFBE CF=. FED NMCBA(2)如图15-2,AB ∥CD ,AD 与BC 交于点P ,连接CA 、DB 并延长相交于O ,连接OP 并延长交CD 于M ,求证:点M 为CD 的中点.(3)如图15-3,在图15-2中,若点G 从D 点向左移动(不与C 点重合),AG 与BC 交于点P ,连OP 并延长交CD 于M ,直接写出MC 、MG 、MD 之间的关系式.AC FDE B POABCM D POAB CM D P G图15-1 图15-2 图15-3解析:(1)证明:如图1,∵AB //CD ,AD 与BC 交于点P , ∴AEP DFP △∽△,BFP CFP △∽△, ∴AE EP DF FP =,BE EP CF FP =,∴AE BE DF CF =,∴AE DFBE CF=; (2)证明:如图2,设OM 交AB 于点N .∵AB //CD ,∴AON COM △∽△,BON DOM △∽△,AOB COD △∽△, ∴OA AN OC CM =,OB BN OD DM =,OA OB OC OD =,∴AN BNCM DM=①, ∵ANP DMP △∽△,BNP CMP △∽△,APB DPC △∽△, ∴AN AP DM DP =,DN BP CM CP =,AP BP DP CP =,∴AN BNDM CM=②, ①÷②,DM CMCM DM=,∴CM =DM ,即点M 为CD 的中点; (3)解:MC 2=MG •MD ,理由如下:如图3,设OM 交AB 于点N . ∵AB //CD ,∴MCP NBP △∽△,NAP MGP △∽△,∴MC MP NB NP =①,NA NPMG MP=②, ①×②,得MC NA MP NP NB MG NP MP ⨯=⨯=1,∴MC NB MG NA=. ∵AON COM △∽△,BON DOM △∽△,∴NA ON MC OM =,NB ONMD OM=, ∴NA NB MC MD =,∴MD NB MC NA =,∴MC MDMG MC=,∴MC MG MD 2=⋅. 题型十三相似综合例题13 如图,点A 的坐标为(2,2),点C 是线段OA 上的一个动点(不与O 、A 两点重合),过点C 作CDx 轴,垂足为D ,以CD 为边在右侧作正方形CDEF .连接AF 并延长交x轴的正半轴于点B ,连接OF .若以B 、E 、F 为顶点的三角形与OFE △相似,则点B 的坐标是 .解析:要使BEF △与OFE △相似, ∵FEO FEB ∠=∠=90︒ ∴只要OE EF EB EF =或OE EF EF EB =,即BE t =2或EB t 1=2. ② 当BE t =2时,BO t =4, ∴t t t 2=42-,∴t =0(舍去)或t 3=2,∴(,)B 60. ②当EB t 1=2时,(i )当B 在E 的左侧时,OB OE EB t 3=-=2,∴tt t23=2-2,∴t=0(舍去)或t2=3,∴(,)B10.(ii)当B在E的右侧时,OB OE EB t5=+=2,∴ttt25=2-2,∴t=0(舍去)或t6=5,∴(,)B30.巩固16:如图,Rt ABC△中,ACB∠=90︒,CD AB⊥于D,过点D作DE BC⊥,BDE△边DE上的中线BF延长线交AC于点G.(1)求证:AD BD CE CB⋅=⋅;(2)若AG FG=,求:BF GF;(3)在(2)的条件下,若BC=62BD的长度.AFECDGAFECDG P解析:(1)证明:∵CD AB⊥,∴BCD△是直角三角形.∵DE BC⊥,∴CD CE CB2=⋅.∵ABC△是直角三角形,CD AB⊥,∴CD AD BD2=⋅,∴AD BD CE CB⋅=⋅;(2)解:过G作GP DF⊥交DF于P,连结DG,∵AC BC⊥,DE BC⊥,GF DE⊥,∴四边形CEPG是矩形,∴CG EP=在Rt ADC△中,∵G是边AC中点,∴AG DG CG==.又∵AG FG=,∴DG FG=,∴GFD△是等腰三角形.∴GP是FD的中线,DP FP=,即FP DF EF1=1=22.∵CG EP=,FP EF=12,∴::PF CG=13,∴::PF FG=13.∵PFG EFB CGB△△△∽∽,∴::::CG BG EF BF PF GF===13,∴::FG BG=13,::BF GF=21;(3)解:∵BC=62:::CE BE GF BF==12,∴CE=22,BE=42∵::EF BF=13,设EF x=,则BF x=3,∴()x x222+2=9,解得x=2,∴BF=6,GF=3,AC=6,∴()AB AC BC2222+6+6263BD=43。
相似三角形常见模型(总结材料)
第一部分 相似三角形模型分析一、相似三角形判定的基本模型认识(一)A 字型、反A 字型(斜A 字型)ABCDE(平行)CBA DE(不平行)(二)8字型、反8字型J OADBCAB CD(蝴蝶型)(平行) (不平行) (三)母子型ABCDCAD(四)一线三等角型:三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景(五)一线三直角型:(六)双垂型:CAD二、相似三角形判定的变化模型旋转型:由A 字型旋转得到。
8字型拓展CB EDA共享性GABCEF一线三等角的变形一线三直角的变形第二部分 相似三角形典型例题讲解母子型相似三角形例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ⋅=2.例2:已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠.求证:(1)DA DE DB ⋅=2; (2)DAC DCE ∠=∠.例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F . 求证:EG EF BE ⋅=2.相关练习:1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ⋅=2.AC D E B2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延长线交于一点N 。
求证:(1)△AME ∽△NMD; (2)ND 2=NC ·NB3、已知:如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,E 是AC 上一点,CF ⊥BE 于F 。
求证:EB ·DF=AE ·DB4.在∆ABC 中,AB=AC ,高AD 与BE 交于H ,EF BC ⊥,垂足为F ,延长AD 到G ,使DG=EF ,M 是AH 的中点。
初中数学重难点易错专题 相似三角形中的“8”字模型(3种题型)(解析版)
相似三角形中的“8”字模型(3种题型)一、【知识梳理】8字_平行型条件:CD∥AB,结论:ΔPAB∼ΔPCD(上下相似);左右不一定相似,不一定全等,但面积相等;四边形ABCD为一般梯形.条件:CD∥AB,PD=PC.结论:ΔPAB∼ΔPCD∼ΔPDC(上下相似)ΔPAD≅ΔPBC左右全等;四边形ABCD为等腰梯形;8字_不平行型条件:∠CDP=∠BAP.结论:ΔAPB∼ΔDPC(上下相似);ΔAPD∼ΔBPC(左右相似);二、【考点剖析】8字-平行型1.直接利用“8”字型解题1如图,在平行四边形ABCD 中,点E 在边DC 上,若DE :EC =1:2,则BF :BE =.【答案】3:5.【解析】DE :EC =1:2,可知CE CD =CE AB =23,由CE ⎳AB ,可知BF EF =AB CE=32,故BF :BE =3:5.【总结】初步认识相似三角形中的“8”字型.2如图,P 为▱ABCD 对角线BD 上任意一点.求证:PQ ∙PI =PR ∙PS .【解析】证明:∵四边形ABCD 为平行四边形,∴AB ⎳CD ,AD ⎳BC ,∴RB ⎳DI ,SD ⎳BQ .根据三角形一边平行线的性质定理,则有PI PR =PD PB =PS PQ,∴PQ ⋅PI =PR ⋅PS .【总结】初步认识相似三角形中的“8”字型,一个图形中存在往往不只一个,可用来进行等比例转化.3如图,在平行四边形ABCD 中,CD 的延长线上有一点E ,BE 交AC 于点F ,交AD 于点G .求证:BF 2=FG ∙EF .【解析】证明:∵四边形ABCD 为平行四边形,∴AB ⎳CD ,AD ⎳BC ,∴AB ⎳CE ,AG ⎳BC .根据三角形一边平行线的性质定理,则有:EF BF =CF AF=BF FG ,∴BF 2=FG ∙EF .【总结】初步认识相似三角形中的“8”字型,一个图形中存在往往不只一个,可用来进行等比例转化.4如图,点C 在线段AB 上,ΔAMC 和ΔCBN 都是等边三角形.求证:(1)MD DC =AM CN;(2)MD ∙EB =ME ∙DC .【解析】证明:(1)∵ΔAMC 和ΔCBN 是等边三角形,∴∠ACM =∠NCB =∠AMC =60°.∵点C 在线段AB 上,∴∠MCN =180°-∠ACM -∠NCB =60°=∠AMC .∴AM ⎳CN ,∴MD DC =AM CN.(2)同(1)易证得CM ⎳BN ,则有ME EB =MC NB.∵ΔAMC 和ΔCBN 是等边三角形,∴MC =AM ,NB =CN ,∴MD DC=ME EB ,∴MD ∙EB =ME ∙DC .【总结】初步认识相似三角形中的“8”字型,一个图形中存在往往不只一个,可用来进行等比例转化.5如图,已知AB ⎳CD ⎳EF .AB =m ,CD =n ,求EF 的长.(用m 、n 的代数式表示).【答案】mn m +n .【解析】由AB ⎳CD ⎳EF ,则有EF AB =CF BC ,EF CD =BF BC ,即EF m +EF n =1,得EF =mn m +n.【总结】考查相似三角形中“8”字型的综合应用,得到比例关系.6如图,E 为平行四边形ABCD 的对角线AC 上一点,AE EC=13,BE 的延长线交CD 的延长线于点G ,交AD 于点F ,求BF :FG 的值.【答案】1:2.【解析】由AF ⎳BC ,可得AF BC =AE EC =13,即AF AD=13,故AF FD =12,由AB ⎳DG ,可得:BF :FG =AF :FD =1:2.【总结】考查相似三角形中“8”字型的综合应用,得到比例关系.7如图,l 1⎳l 2,AF :FB =2:5,BC :CD =4:1,求AE :EC 的值.【答案】2:1.【解析】由l 1⎳l 2,得:AG BD =AF FB =25,又BC :CD =4:1,可得AG CD=21,故AE :EC =AG :CD =2:1.【总结】考查相似三角形中“8”字型的综合应用,得到比例关系.2.添加辅助线构造“8”字模型解题8过ΔABC 的顶点C 任作一直线,与边AB 及中线AD 分别交于点F 、E .求证:AE ED =2AF FB.【解析】过点D 作DG ⎳AB 交CF 于点G .∵DG ⎳AB ∴AE ED =AF GD ,DG BF =CD CB ;∵AD 是中线, ∴BC =2CD , ∴DG BF =12;∴AE ED =2AF BF.【总结】题考查三角形一边的平行线知识,要学会构造平行基本模型.9如图,AD 是ΔABC 的内角平分线.求证:AB AC=BD DC .【解析】过点C作CM⎳AB交AD的延长线于点M.∵CM⎳AB ∴AB CM=BDDC,∠BAD=∠M∵AD是角平分线∴∠BAD=∠DAC;∴∠M=∠DAC∴AC=CM∴AB AC=BD DC.【总结】本题考查了三角形一边的平行线、角平分线及等腰三角形的相关知识.8字-不平行型1如图,∠BEC=∠CDB,下列结论正确的是()A.EF•BF=DF•CFB.BE•CD=BF•CFC.AE•AB=AD•ACD.AE•BE=AD•DC【分析】结合图形利用8字模型相似三角形证明△EFB∽△DFC,然后利用等角的补角相等得出∠AEC=∠ADB,最后证明△ABD∽△ACE,利用相似三角形的对应边成比例逐一判断即可.【解答】解:∵∠BEC=∠CDB,∠EFB=∠DFC,∴△EFB∽△DFC,∴EF DF=FB FC,∴EF•FC=DF•FB,故A不符合题意:∵△EFB∽△DFC,∴BE CD=BF FC,∴BE•CF=CD•BF,故B不符合题意;∵∠BEC=∠CDB,∠BEC+∠AEC=180°,∠BDC+∠ADB=180°,∴∠AEC=∠ADB,∴△ABD∽△ACE,∴AB AC=AD AE,∴AB•AE=AD•AC,故C符合题意;因为:AE,BE,AD,CD组不成三角形,也不存在比例关系,故D不符合题意;故选:C.【点评】本题考查了相似三角形的判定与性质,根据题目的已知条件并结合图形分析是解题的关键.1.【过关检测】一、选择题(共3小题)1(2023•静安区校级一模)如图,在△ABC中,中线AD与中线BE相交于点G,联结DE.下列结论成立的是()A. B. C. D.【分析】由AD,BE是△ABC的中线,得到DE是△ABC的中位线,推出△DEG∽△ABG,△CDE∽△CBA,由相似三角形的性质即可解决问题.【解答】解:AD,BE是△ABC的中线,∴DE是△ABC的中位线,∴DE∥AB,DE=AB,∴△DEG∽△ABG,∴DG:AG=DE:AB=1:2,BG:EG=AB:DE,==,∴DG=AG,∵BG:EG=AB:DE=2:1,∴GB:BE=2:3,∴S△AGB:S△AEB=2:3,∵AE=EC,∴S△AEB=S△ABC,∴S△AGB=S△ABC,∵△CDE∽△CBA,∴==,∴S △CDE =S △ABC ,∴=,结论成立的是=,故选:C .【点评】本题考查相似三角形的判定和性质,关键是掌握相似三角形的性质.2(2023•徐汇区一模)如图,点D 在△ABC 边AB 上,∠ACD =∠B ,点F 是△ABC 的角平分线AE 与CD 的交点,且AF =2EF ,则下列选项中不正确的是()A. B. C. D.【分析】过C 作CG ∥AB 交AE 延长线于G ,由条件可以证明△ACF ≌△GCE (ASA ),得到AF =EG ,CF =CE ,由△ADF ∽△GCF ,再由平行线分线段成比例,即可解决问题.【解答】解:过C 作CG ∥AB 交AE 延长线于G ,∴∠G =∠BAE ,∵AE 平分∠BAC ,∴∠BAE =∠CAE ,∴∠G =∠CAE ,∴CG =CA ,∵∠ACD =∠B ,∠ECG =∠B ,∴∠ACF =∠ECG ,∴△ACF ≌△GCE (ASA ),∴CF =CE ,AF =EG ,∵AF =2FE ,∴EG =2FE ,令EF =k ,则AF =EG =2k ,AE =GF =3k ,∵△ADF∽△GCF,∴AD:CG=AF:FG=2k:(3k)=2:3,∴=,故A正确.∵AB∥CG,∴CE:BE=GE:AE=2k:(3k)=2:3,∴=,故B正确.∵∠ACD=∠B,∠DAC=∠BAC,∴△ACD∽△ABC,∴==,故C正确.∵=,AC和BD不一定相等,∴不一定等于.故选:D.【点评】本题考查角的平分线,相似三角形的判定和性质,关键是通过辅助线构造相似三角形.3(2022秋•闵行区期末)如图,某零件的外径为10cm,用一个交叉卡钳(两条尺长AC和BD相等)可测量零件的内孔直径AB.如果==3,且量得CD=4cm,则零件的厚度x为()A.2cmB.1.5cmC.0.5cmD.1cm【分析】根据相似三角形的判定和性质,可以求得AB的长,再根据某零件的外径为10cm,即可求得x的值.【解答】解:∵==3,∠COD=∠AOB,∴△COD∽△AOB,∴AB:CD=2,∵CD=4cm.∴AB=8cm.∵某零件的外径为10cm,∴零件的厚度x为:(10-8)÷2=1(cm),故选:D.【点评】本题考查相似三角形的应用,解答本题的关键是求出AB的值.二、填空题(共8小题)4(2022秋•奉贤区期中)如图,已知点D为△ABC中AC边的中点,AE∥BC,ED交AB于点G,交BC的延长线于点F,若,BC=8,则AE的长为4.【分析】由AE∥BC,可得△AEG∽△BFG,△AED∽△CFD推出==,又有BC的值,再由==1,得出AE=CF,代入即可求解AE的长.【解答】解:∵AE∥BC,∴△AEG∽△BFG,△AED∽△CFD,∴==,==1,即AE=CF,又BC=8,∴=AE=4.故答案为:4.【点评】本题主要考查了平行线分线段成比例的性质问题,应熟练掌握.5(2022•浦东新区校级模拟)如图,已知点D、E分别在△ABC的边CA、BA的延长线上,DE∥BC.DE:BC=2:3,设=,试用向量表示向量,=- .【分析】由DE∥BC可得△ADE∽△ACB,由DE:BC=2:3,可得DA=CD,即可表示,从而得出答案.【解答】解:∵DE∥BC,∴△ADE∽△ACB,∵DE:BC=2:3,∴DA:CA=DE:BC=2:3,∵CD=DA+CA,∴DA=CD,∵=,∴=,∴=-,故答案为:-.【点评】本题考查向量的运算,相似三角形的判定与性质,熟练掌握相似三角形的性质和向量的运算的解题的关键.6(2022•静安区二模)如图,在梯形ABCD中,AD∥BC,对角线AC、BD相交于点O,点E、F分别是边AB、CD的中点,AO:OC=1:4,设=,那么= .(用含向量的式子表示)【分析】由相似三角形性质可得=4=4,再根据梯形中位线定理即可求得答案.【解答】解:∵AD∥BC,∴△AOD∽△COB,∴==,∴=4=4,∵点E、F分别是边AB、CD的中点,∴=(+)=(+4)=,故答案为:.【点评】本题考查了相似三角形的判定和性质,梯形中位线定理,平面向量等,熟练掌握相似三角形的判定和性质是解题关键.7(2023•静安区校级一模)在矩形ABCD内作正方形AEFD(如图所示),矩形的对角线AC交正方形的边EF于点P.如果点F恰好是边CD的黄金分割点(DF>FC),且PE=2,那么PF= -1.【分析】先根据黄金分割的定义可得=,再利用正方形的性质可得:DF∥AE,DF=AE,从而可得=,然后证明8字模型相似三角形△CFP∽△AEP,从而利用相似三角形的性质进行计算即可解答.【解答】解:∵点F恰好是边CD的黄金分割点(DF>FC),∴==,∵四边形AEFD是正方形,∴DF∥AE,DF=AE,∴=,∵DC∥AB,∴∠FCP=∠PAE,∠CFP=∠AEP,∴△CFP∽△AEP,∴==,∵PE=2,∴PF=-1,故答案为:-1.【点评】本题考查了相似三角形的判定与性质,矩形的性质,正方形的性质,黄金分割,熟练掌握8字模型相似三角形是解题的关键.8(2022春•浦东新区校级期中)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于点O,如果△BCD的面积是△ABD面积的2倍,那么△BOC与△BDC的面积之比是2:3.【分析】过点D作DM⊥BC,垂足为M,过点B作BN⊥AD,交DA的延长线于点N,根据已知易得DM=BN,再根据S△BCD=2S△ABD,从而可得BC=2AD,然后再证明8字模型相似三角形△AOD∽△COB,利用相似三角形的性质可得==,从而可得=,最后根据△BOC与△BDC 的高相等,即可解答.【解答】解:过点D作DM⊥BC,垂足为M,过点B作BN⊥AD,交DA的延长线于点N,∵AD∥BC,∴BN=DM,∵S△BCD=2S△ABD,∴BC•DM=2×AD•BN,∴BC=2AD,∵AD∥BC,∴∠ADB=∠DBC,∠DAC=∠ACB,∴△AOD∽△COB,∴==,∴=,∵△BOC与△BDC的高相等,∴==,故答案为:2:3.【点评】本题考查了平行线间的距离,相似三角形的判定与性质,梯形,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.9(2022秋•虹口区校级月考)如图,梯形ABCD中,AD∥BC,,点E为边BC的中点,点F在边CD上且3CF=CD,EF交对角线AC于点G,则AG:GC=7:2.【分析】如图,连接DE,交AC于M,过M作MH∥EF交CD于H,首先利用AD∥BC,,点E 为边BC的中点,可以得到AD:EC=AM:CM=DM:ME=3:2,然后利用MH∥EF,DH:HF= DM:ME=3:2=6:4,最后利用又3CF=CD即可求解.【解答】解:如图,连接DE,交AC于M,过M作MH∥EF交CD于H,∵AD∥BC,,点E为边BC的中点,∴△ADM∽△CME,∴AD:EC=AM:CM=DM:ME=3:2,∵MH∥EF,∴DH:HF=DM:ME=3:2=6:4,又3CF=CD,∴DF=2CF,∴CF:HF=5:4,∴CG:MG=5:4,∴CG=CM,MG=CM,而AM:CM=3:2,∴AM=CM,∴AG=AM+MG=CM,∴AG:GC=CM:CM=7:2.故答案为:7:2.【点评】此题主要考查了相似三角形的性质于判定,同时也利用了平行线的性质,解题的关键是会进行比例线段的转换,有一定的难度.10(2022秋•黄浦区期末)如图是一个零件的剖面图,已知零件的外径为10cm,为求出它的厚度x,现用一个交叉卡钳(AC和BD的长相等)去测量零件的内孔直径AB.如果==,且量得CD的长是3cm,那么零件的厚度x是0.5cm.的值.【解答】解:∵==,∠COD=∠AOB,∴△COD∽△AOB,∴AB:CD=3,∵CD=3cm.∴AB=9cm.∵某零件的外径为10cm,∴零件的厚度x为:(10-9)÷2=0.5(cm),故答案为:0.5.【点评】本题考查相似三角形的应用,解答本题的关键是求出AB的值.11(2022春•闵行区校级月考)如图,梯形ABCD中,∠D=90°,AB∥CD,将线段CB绕着点B按顺时针方向旋转,使点C落在CD延长线上的点E处.联结AE、BE,设BE与边AD交于点F,如果AB=4,且=,那么梯形ABCD的中位线等于7.【分析】过点B作BG⊥EC,利用同高的两个三角形的面积的比先求出EF:BF,再利用相似三角形的性质求出ED、EG,最后利用梯形中位线与上下底的关系得结论.【解答】解过点B作BG⊥EC,垂足为G∵=,∴=.∵AB∥CD,∴△EDF∽△BAF.∴==,∴ED=2,=.∵AD∥BG,∴=.∴EG=6.∵CB绕着点B按顺时针方向旋转,点C落在CD延长线上的点E处,∴BE=BC.∵BG⊥EC,∴EG=GC=6.∴DC=DG+CG=4+6=10.∴梯形ABCD的中位线=(AB+CD)=(4+10)=7.故答案为:7.【点评】本题主要考查了相似三角形的性质和判定,掌握等腰三角形的三线合一、等高的两个三角形的面积比等于底边的比、梯形的中位线等于上下底的和的一半是解决本题的关键.三、解答题(共12小题)1(2023•普陀区一模)如图,已知梯形ABCD中,AD∥BC,E是BC上一点,AE∥CD,AE、BD相交于点F,EF:CD=1:3.(1)求的值;(2)联结FC,设,,那么= ,= .(用向量、表示)【分析】(1)根据题意可证明四边形AECD为平行四边形,得到AE=CD,则EF:AE=1:3,EF:AF=1:2,易证明△BEF∽△DAF,由相似三角形的性质即可求解;(2)由AF=2EF得,,由三角形法则求出和,再求出,最后利用三角形法则即可求出.【解答】解:∵AD∥BC,AE∥CD,∴四边形AECD为平行四边形,∴AE=CD,∵EF:CD=1:3,∴EF:AE=1:3,EF:AF=1:2,∵AD∥BC,∴△BEF∽△DAF,∴;(2)联结FC,如图,由(1)可得AF=2EF,∵,∴,,∴=,=,∵,AD=EC,∴,∴==,∴==.故答案为:,.【点评】本题主要考查平行四边形的判定与性质、相似三角形的判定与性质、平面向量,熟练三角形法则是解题关键.2(2023•奉贤区一模)已知:如图,在梯形ABCD中,AD∥BC,点E在对角线BD上,∠EAD=∠BDC.(1)求证:AE•BD=AD•DC;(2)如果点F在边DC上,且,求证:EF∥BC.【分析】(1)利用平行线的性质证明∠ADB=∠DBC,然后利用已知条件可以证明△ADE∽△DBC,由此即可解决问题;(2)利用(1)的结论和已知条件可以证明△DEF∽△DBC,接着利用相似三角形的在即可求解.【解答】证明:(1)∵AD∥BC,∴∠ADB=∠DBC,又∵∠EAD=∠BDC,∴△ADE∽△DBC,∴AE:AD=DC:BD,∴AE•BD=AD•DC;(2)∵AE:AD=DC:BD,且,∴=,而∠EDF=∠BDC,∴△DEF∽△DBC,∴∠DEF=∠DBC,∴EF∥BC.【点评】此题主要考查了相似三角形的性质与判定,同时也利用了平行线的性质,比例的基本性质,有一定的综合性.3(2023•青浦区一模)如图,在平行四边形ABCD中,点F在边AD上,射线BA、CF相交于点E,DF=2AF.(1)求EA:AB的值;(2)如果,,试用、表示向量.【分析】(1)根据平行四边形的性质可得AB∥CD,AB=CD,易证△AEF∽△DCF,则=,由DF=2AF即可求解;(2)先算出,再根据即可求解.【解答】解:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴△AEF∽△DCF,∴,∴,∵DF=2AF,∴,∴;(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵DF=2AF,∴,∵,,∴,,∴.【点评】本题主要考查相似三角形的判定与性质、平行四边形的性质、平面向量,熟练掌握平面向量的运算法则是解题关键.4(2022秋•金山区校级期末)已知:如图,在△ABC中,点D在边BC上,AE∥BC,BE与AD、AC 分别相交于点F、G,AF2=FG•FE.(1)求证:△CAD∽△CBG;(2)联结DG,求证:DG•AE=AB•AG.【分析】(1)通过证明△FAG∽△FEA,可得∠FAG=∠E,由平行线的性质可得∠E=∠EBC=∠FAG,且∠ACD=∠BCG,可证△CAD∽△CBG;(2)由相似三角形的性质可得=,且∠DCG=∠ACB,可证△CDG∽△CAB,可得=,由平行线分线段成比例可得=,可得结论.【解答】证明:(1)∵AF2=FG⋅FE.∴=,∵∠AFG=∠EFA,∴△FAG∽△FEA,∴∠FAG=∠E,∵AE∥BC,∴∠E=∠EBC,∴∠EBC=∠FAG,∵∠ACD=∠BCG,∴△CAD∽△CBG;(2)∵△CAD∽△CBG,∴=,∵∠DCG=∠ACB,∴△CDG∽△CAB,∴=,∵AE∥BC,∴=,∴=,∴=,∴DG•AE=AB•AG.【点评】本题考查了相似三角形的判定和性质,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.5(2022•松江区二模)已知:如图,两个△DAB和△EBC中,DA=DB,EB=EC,∠ADB=∠BEC,且点A、B、C在一条直线上,联结AE、ED,AE与BD交于点F.(1)求证:;(2)如果BE2=BF•BD,求证:DF=BE.【分析】(1)根据已知易证△DAB∽△EBC,然后利用相似三角形的性质可得∠DAB=∠EBC,=,从而可得AD∥EB,进而证明8字模型相似三角形△ADF∽△EBF,最后利用相似三角形的性质可得=,即可解答;(2)根据已知易证△BFE ∽△BED ,从而利用相似三角形的性质可得∠BEF =∠BDE ,进而可得∠DAF =∠BDE ,然后利用(1)的结论可证△ADF ≌△DBE ,再利用全等三角形的性质即可解答.【解答】证明:(1)∵DA =DB ,EB =EC ,∴=,∵∠ADB =∠BEC ,∴△DAB ∽△EBC ,∴∠DAB =∠EBC ,=,∴AD ∥EB ,∴∠DAF =∠AEB ,∠ADF =∠DBE ,∴△ADF ∽△EBF ,∴=,∴;(2)∵BE 2=BF •BD ,∴=,∵∠DBE =∠EBF ,∴△BFE ∽△BED ,∴∠BEF =∠BDE ,∵∠DAF =∠AEB ,∴∠DAF =∠BDE ,∵∠ADF =∠DBE ,AD =DB ,∴△ADF ≌△DBE (ASA ),∴DF =BE .【点评】本题考查了全等三角形的判定与性质,相似三角形的判定与性质,熟练掌握全等三角形的判定与性质,以及相似三角形的判定与性质是解题的关键.6(2023•宝山区二模)如图,四边形ABCD 中,AD ∥BC ,AC 、BD 交于点O ,OB =OC .(1)求证:AB =CD ;(2)E 是边BC 上一点,联结DE 交AC 于点F ,如果AO 2=OF •OC ,求证:四边形ABED 是平行四边形.【分析】(1)由等腰三角形的性质和判定及平行线的性质,说明△AOB 和△DOC 全等,利用全等三角形的性质得结论;(2)先说明△AOB∽△FOD,再说明AB∥DE,结合已知由平行四边形的判定可得结论.【解答】证明:(1)∵OB=OC,∴∠DBC=∠ACB.∵AD∥BC,∴∠DAC=∠ACB,∠ADB=∠DBC.∴∠DAC=∠ADB.∴OA=DO.在△AOB和△DOC中,,∴△AOB≌△DOC(SAS).∴AB=CD.(2)∵AO2=OF•OC,OA=OD,OC=OB,∴AO•OD=OF•OB,即.∵∠AOB=∠DOC,∴△AOB∽△FOD.∴∠BAO=∠DFO.∴AB∥DE.又∵AD∥BC,∴四边形ABED是平行四边形.【点评】本题主要考查了三角形全等和相似,掌握全等三角形的性质和判定、相似三角形的判定和性质、平行线的性质、等腰三角形的判定和性质及平行四边形的判定是解决本题的关键.7(2022秋•徐汇区期中)如图,在四边形ABCD中,对角线AC与BD交于点E,DB平分∠ADC,且AB2=BE•BD.(1)求证:△ABE∽△DCE;(2)AE•CD=BC•ED.【分析】(1)根据相似三角形的判定可得△ABE∽△DBA;所以∠BAC=∠BDC,由此可得出△ABE ∽△DCE;(2)由(1)中的相似可得出AE:DE=BE:CE,再由∠BEC=∠AED可得△ADE∽△BCE,所以∠EAD=∠EBC,∠ADE=∠BDC=∠BCE,可得△BCD∽△ADE,进而可得结论.【解答】证明:(1)∵AB2=BE•BD,∴AB:BE=BD:AB,∵∠ABE=∠DBA,∴△ABE∽△DBA,∴∠BAC=∠BDC,∵BD平分∠ADC,∴∠ADB=∠BDC=∠BAC,∴△ABE∽△DCE;(2)由(1)中相似可得,AE:DE=BE:CE,∵∠BEC=∠AED,∴△ADE∽△BCE,∴∠EAD=∠EBC,∠ADE=∠BDC=∠BCE,∴△BCD∽△AED,∴BC:AE=CD:ED,AE•CD=BC•ED.【点评】本题主要考查相似三角形的性质与安定,涉及A字型相似,8字型相似等相关内容,熟练掌握相关判定是解题关键.8(2022春•杨浦区校级期中)如图1,在△ABC中,点E在AC的延长线上,且∠E=∠ABC.(1)求证:AB2=AC•AE;(2)如图2,D在BC上且BD=3CD,延长AD交BE于F,若=,求的值.【分析】(1)利用两角相等的两个三角形相似,证明△ABC∽△AEB,然后利用相似三角形的性质即可解答;(2)过点E作EH∥CB,交AF的延长线于点H,利用(1)的结论可得===,先AC=2a,AB=3a,从而求出AE的长,进而求出的值,再根据已知设CD=m,BD=3m,从而求出BC,BE的长,然后证明A字模型相似三角形△ACD∽△AEH,利用相似三角形的性质可得EH=m,再证明8字模型相似三角形△BDF∽△EHF,利用相似三角形的性质可得=,从而求出EF的长,进行计算即可解答.【解答】(1)证明:∵∠E=∠ABC,∠A=∠A,∴△ABC∽△AEB,∴=,∴AB 2=AC •AE ;(2)解:过点E 作EH ∥CB ,交AF 的延长线于点H ,∵△ABC ∽△AEB ,∴===,∴设AC =2a ,AB =3a ,∴=,∴AE =a ,∴==,∵BD =3CD ,∴设CD =m ,则BD =3m ,∴BC =CD +BD =4m ,∴=,∴EB =6m ,∵EH ∥CD ,∴∠ACD =∠AEH ,∠ADC =∠AHE ,∴△ACD ∽△AEH ,∴==,∴EH =m ,∵EH ∥BD ,∴∠BDF =∠DHE ,∠DBF =∠FEH ,∴△BDF ∽△EHF ,∴===,∴EF =BE =m ,∴==,∴的值为.【点评】本题考查了相似三角形的判定与性质,平行线分线段成比例,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.9(2023•崇明区二模)已知:如图,在平行四边形ABCD中,对角线AC、BD交于E,M是边DC延长线上的一点,联结AM,与边BC交于F,与对角线BD交于点G.(1)求证:AG2=GF•GM;(2)联结CG,如果∠BAG=∠BCG,求证:平行四边形ABCD是菱形.【分析】(1)由平行线的性质和相似三角形的平行判定法,可得到△ABG∽△MDG、△ADG∽△FBG,再利用相似三角形的性质得结论;(2)利用“两角对应相等”先说明△GCF∽△GMC,再利用等腰三角形的三线合一说明BD⊥AC,最后利用菱形的判定方法得结论.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB∥DM,AD∥BC.∴△ABG∽△MDG,△ADG∽△FBG.∴=,=.∴=.∴AG2=GF•GM.(2)∵AB∥DM,∴∠BAG=∠M.∵∠BAG=∠BCG,∴∠M=∠BCG.∵∠MGC=∠FGC,∴△GCF∽△GMC.∴=,即CG2=GF•GM.∵AG2=GF•GM,∴CG2=AG2.∴CG =AG .∵四边形ABCD 是平行四边形,∴AE =CE .∴GE ⊥AC ,即BD ⊥AC .∴平行四边形ABCD 是菱形.【点评】本题主要考查了相似三角形的性质和判定,掌握相似三角形的判定和性质、平行四边形的性质、菱形的判定方法、等腰三角形的判定和性质等知识点是解决本题的关键.10(2021秋•虹口区期末)如图,在梯形ABCD 中,∠ABC =90°,AD ∥BC ,BC =2AD ,对角线AC 与BD 交于点E .点F 是线段EC 上一点,且∠BDF =∠BAC .(1)求证:EB 2=EF •EC ;(2)如果BC =6,sin ∠BAC =,求FC 的长.【分析】(1)先由AD ∥BC 得到△EAD ∽△ECB ,从而得到,然后由∠BDF =∠BAC 、∠AEB =∠DEF 得证△EAB ∽△EDF ,进而得到,最后得到结果;(2)先利用条件得到AC 、AB 的长,然后利用BC =2AD 得到AD 、BD 的长,再结合相似三角形的性质得到EB 、EC 的长,进而得到EF 的长和FC 的长.【解答】(1)证明:∵AD ∥BC ,∴△EAD ∽△ECB ,∴,即,∵∠BDF =∠BAC ,∠AEB =∠DEF ,∴△EAB ∽△EDF ,∴,∴,∴EB2=EF•EC.(2)解:∵BC=6,sin∠BAC==,BC=2AD∴AC=9,AD=3,∵∠ABC=90°,AD∥BC,∴∠BAD=90°,∴AB===3,∴BD===3,∵△EAD∽△ECB,∴,∴EC=AC=×9=6,EB=BD=×3=2,∵EB2=EF•EC,即(2)2=6EF,∴EF=4,∴FC=EC-EF=6-4=2.【点评】本题考查了直角梯形的性质、相似三角形的判定与性质、勾股定理,解题的关键是熟知“8”字模型相似三角形的判定与性质.11(2021秋•嘉定区期末)如图,在梯形ABCD中,AD∥BC,点E在线段AD上,CE与BD相交于点H,CE与BA的延长线相交于点G,已知DE:AE=2:3,BC=4DE,CE=10.求EH、GE的长.【分析】根据题目的已知并结合图形分析8字型模型相似三角形和A字型模型相似三角形,然后进行计算即可解答.【解答】解:∵AD∥BC,∴∠ADB=∠DBC,∠DEC=∠ECB,∴△DEH∽△BCH,∴,∵BC=4DE,∴,∵CE=10,∴HC=10-EH,∴,∴EH=2,∵BC=4DE,DE:AE=2:3,∴,∵AD∥BC,∴∠GAE=∠GBC,∠GEA=∠GCB,∴△GAE∽△GBC,∴,∵CE=10,∴GC=10+GE,∴,∴GE=6.【点评】本题考查了相似三角形的判定与性质,梯形,熟练掌握8字型模型相似三角形和A字型模型相似三角形是解题的关键.12(2021秋•杨浦区期末)如图,已知在Rt△ABC中,∠ACB=90°,AC=BC=5,点D为射线AB上一动点,且BD<AD,点B关于直线CD的对称点为点E,射线AE与射线CD交于点F.(1)当点D在边AB上时,①求证:∠AFC=45°;②延长AF与边CB的延长线相交于点G,如果△EBG与△BDC相似,求线段BD的长;(2)联结CE、BE,如果S△ACE=12,求S△ABE的值.【分析】(1)①如图1,连接CE,根据轴对称的性质可得:EC=BC,∠ECF=∠BCF,设∠ECF=∠BCF=α,则∠BCE=2α,∠ACE=90°-2α,再利用等腰三角形性质即可证得结论;②如图2,连接BE,CE,由△EBG∽△BDC,可得出∠G=∠BCD=22.5°,过点D作DH⊥AB交BC于点H,则△BDH是等腰直角三角形,推出CH=DH=BD,再根据CH+BH=BC=5,建立方程求解即可;(2)分两种情况:Ⅰ.当点D在AB上时,如图3,过点C作CM⊥AE于点M,连接BF,利用勾股定理、三角形面积建立方程求解即可;Ⅱ.当点D在AB的延长线上时,如图4,过点C作CM⊥AE于点M,连接BF,利用勾股定理、三角形面积建立方程求解即可.【解答】解:(1)①证明:如图1,连接CE,∵点B关于直线CD的对称点为点E,∴EC=BC,∠ECF=∠BCF,设∠ECF=∠BCF=α,则∠BCE=2α,∴∠ACE=90°-2α,∵AC=BC,∴AC=EC,∴∠AEC=∠EAC=[180°-(90°-2α)]=45°+α,∵∠AEC=∠AFC+∠ECF=∠AFC+α,∴∠AFC=45°;②如图2,连接BE,CE,∵B、E关于直线CF对称,∴CF垂直平分BE,由(1)知:∠AFC=45°,∴∠BEF=45°,∵△EBG与△BDC相似,∠BEG=∠DBC=45°,∵∠EBG与∠BDC均为钝角,∴△EBG∽△BDC,∴∠G=∠BCD=∠BAG,∵∠G+∠BAG=∠ABC=45°,∴∠G=∠BCD=22.5°,过点D作DH⊥AB交BC于点H,则△BDH是等腰直角三角形,∴DH=BD,BH=BD,∠BHD=45°,∵∠CDH=∠BHD-∠BCD=45°-22.5°=22.5°=∠BCD,∴CH=DH=BD,∵CH+BH=BC=5,∴BD+BD=5,∴BD==5-5,∴线段BD的长为5-5;(2)Ⅰ.当点D在AB上时,如图3,过点C作CM⊥AE于点M,连接BF,∵AC=EC=BC=5,∴AM=EM=AE,∴①AM2+CM2=AC2=25,∵S△ACE=AE•CM=12,∴②AM•CM=12,①+②×2,得:(AM+CM)2=49③,①-②×2,得:(AM-CM)2=49③,∵CM>AM>0,∴AM=3,CM=4,∴AE=6,由(1)知:∠AFC=45°,BE⊥CF,∴∠BEF=45°,∵∠AFC=∠ABC=45°,∴A、C、B、F四点共圆,∴∠AFB+∠ACB=180°,∴∠AFB=90°,∴△BEF是等腰直角三角形,∴EF=BF,设EF=BF=x,则AE=x+6,在Rt△ABF中,AF2+BF2=AB2,∴(x+6)2+x2=50,解得:x=1或x=-7(舍去),∴BF=1,∴S△ABE=AE•BF=×6×1=3;Ⅱ.当点D在AB的延长线上时,如图4,过点C作CM⊥AE于点M,连接BF,由(1)知:∠AFC=45°,CF垂直平分BE,∴∠BEF=45°,BF=EF,∴∠EBF=∠BEF=45°,∴∠BFE=90°,∵AC=EC=BC=5,∴AM=EM=AE,与Ⅰ同理可得:AM=EM=4,CM=3,AE=8,设BF=EF=y,则AF=8-y,在Rt△ABF中,AF2+BF2=AB2,∴(8-y)2+y2=50,解得:y=1或y=7(舍去),∴BF=1,∴S△ABE=AE•BF=×8×1=4;综上,S△ABE的值为3或4.【点评】本题考查了三角形面积,等腰直角三角形性质和判定,相似三角形的判定和性质,轴对称变换的性质,勾股定理等,解题关键是添加辅助线构造直角三角形,运用分类讨论思想和方程思想解决问题.。
相似三角形常见模型(总结)
第一部分 相似三角形模型分析一、相似三角形判定的基本模型认识(一)A 字型、反A 字型(斜A 字型)B(平行)B(不平行)(二)8字型、反8字型(五)一线三直角型:(六)双垂型:CAD二、相似三角形判定的变化模型旋转型:由A 字型旋转得到。
8字型拓展CB EDA共享性GABCEF一线三等角的变形一线三直角的变形第二部分 相似三角形典型例题讲解母子型相似三角形例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ⋅=2.例2:已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠.求证:(1)DA DE DB ⋅=2; (2)DAC DCE ∠=∠.例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F . 求证:EG EF BE ⋅=2.相关练习:1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ⋅=2.A C D E B2、已知:AD是Rt△ABC中∠A的平分线,∠C=90°,EF是AD的垂直平分线交AD于M,EF、BC的延长线交于一点N。
求证:(1)△AME∽△NMD; (2)ND2=NC·NB3、已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于D,E是AC上一点,CF⊥BE于F。
求证:EB·DF=AE·DB4.在∆ABC中,AB=AC,高AD与BE交于H,EF BC⊥,垂足为F,延长AD到G,使DG=EF,M是AH的中点。
求证:∠=︒GBM905.(本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分)已知:如图,在Rt△ABC中,∠C=90°,BC=2,AC=4,P是斜边AB上的一个动点,PD⊥AB,交边AC于点D(点D与点A、C都不重合),E是射线DC上一点,且∠EPD=∠A.设A、P两点的距离为x,△BEP的面积为y.(1)求证:AE=2PE;(2)求y关于x的函数解析式,并写出它的定义域;(3)当△BEP与△ABC相似时,求△BEP的面积.A CBPD E(第25题图)GMFEHDCBA双垂型1、如图,在△ABC 中,∠A=60°,BD 、CE 分别是AC、AB 上的高 求证:(1)△ABD ∽△ACE ;(2)△ADE ∽△ABC ;(3)BC=2ED2、如图,已知锐角△ABC ,AD 、CE 分别是BC 、AB 边上的高,△ABC 和△BDE 求:点B 到直线AC 的距离。
全等三角形经典模型总结解析
全等三角形相關模型總結一、角平分線模型(一)角平分線の性質模型輔助線:過點G作GE⊥射線ACA、例題1、如圖,在△ABC中,∠C=90°,AD平分∠CAB,BC=6cm,BD=4cm,那麼點D到直線AB の距離是cm.2、如圖,已知,∠1=∠2,∠3=∠4,求證:AP平分∠BAC.B、模型鞏固1、如圖,在四邊形ABCD中,BC>AB,AD=CD,BD平分∠ABC,求證:∠A+∠C=180°.(二)角平分線+垂線,等腰三角形必呈現A、例題輔助線:延長ED交射線OB於F 輔助線:過點E作EF∥射線OB 例1、如圖,在△ABC中,∠ABC=3∠C,AD是∠BACの平分線,BE⊥AD於F .求證:1()2BE AC AB=-.例2、如圖,在△ABC中,∠BACの角平分線AD交BC於點D,且AB=AD,作CM⊥AD交ADの延長線於M. 求證:1()2AM AB AC=+.(三)角分線,分兩邊,對稱全等要記全兩個圖形飛輔助線都是在射線ON上取點B,使OB=OA,從而使△OAC≌△OBC .A、例題1、如圖,在△ABC中,∠BAC=60°,∠C=40°,AP平分∠BAC交BC於P,BQ平分∠ABC 交AC於Q,求證:AB+BP=BQ+AQ .2、如圖,在△ABC中,AD是∠BACの外角平分線,P是AD上異於點Aの任意一點,試比較PB+PC與AB+ACの大小,並說明理由.B、模型鞏固1、在△ABC中,AB>AC,AD是∠BACの平分線,P是線段AD上任意一點(不與A重合).求證:AB-AC>PB-PC .2、如圖,△ABC中,AB=AC,∠A=100°,∠Bの平分線交AC於D,求證:AD+BD=BC .3、如圖,△ABC中,BC=AC,∠C=90°,∠Aの平分線交BC於D,求證:AC+CD=AB .二、等腰直角三角形模型(一)旋轉中心為直角頂點,在斜邊上任取一點の旋轉全等:操作過程:(1)將△ABD逆時針旋轉90°,得△ACM ≌△ABD,從而推出△ADM為等腰直角三角形.(2)輔助線作法:過點C作MC⊥BC,使CM=BD,連結AM.(二)旋轉中心為斜邊中點,動點在兩直角邊上滾動の旋轉全等:操作過程:連結AD.(1)使BF=AE(或AF=CE),導出△BDF ≌△ADE.(2)使∠EDF+∠BAC=180°,導出△BDF ≌△ADE.A、例題1、如圖,在等腰直角△ABC中,∠BAC=90°,點M、N在斜邊BC上滑動,且∠MAN=45°,試探究BM、MN、CN之間の數量關係.2、兩個全等の含有30°,60°角の直角三角板ADE和ABC,按如圖所示放置,E、A、C三點在一條直線上,連接BD,取BDの中點M,連接ME、MC.試判斷△EMCの形狀,並證明你の結論.B、模型鞏固1、已知,如圖所示,Rt△ABC中,AB=AC,∠BAC=90°,O為BC中點,若M、N分別線上段AC、AB上移動,且在移動中保持AN=CM.(1)試判斷△OMNの形狀,並證明你の結論.(2)當M、N分別線上段AC、AB上移動時,四邊形AMONの面積如何變化?2、在正方形ABCD中,BE=3,EF=5,DF=4,求∠BAE+∠DCF為多少度.(三)構造等腰直角三角形(1)利用以上(一)和(二)都可以構造等腰直角三角形(略);(2)利用平移、對稱和絃圖也可以構造等腰直角三角形.(四)將等腰直角三角形補全為正方形,如下圖:A、例題應用1、如圖,在等腰直角△ABC中,AC=BC,∠ACB=90°,P為三角形ABC內部一點,滿足PB=PC,AP=AC,求證:∠BCP=15°.三、三垂直模型(弦圖模型)A、例題已知:如圖所示,在△ABC中,AB=AC,∠BAC=90°,D為AC中點,AF⊥BD於點E,交BC於F,連接DF .求證:∠ADB=∠CDF .變式1、已知:如圖所示,在△ABC中,AB=AC,AM=CN,AF⊥BM於E,交BC於F,連接NF .求證:(1)∠AMB=∠CNF;(2)BM=AF+FN .變式2、在變式1の基礎上,其他條件不變,只是將BM和FN分別延長交於點P,求證:(1)PM=PN;(2)PB=PF+AF .Fpg四、手拉手模型1、△ABE和△ACF均為等邊三角形結論:(1)△ABF≌△AEC .(2)∠BOE=∠BAE=60°.(3)OA平分∠EOF .(四點共圓證)拓展:△ABC和△CDE均為等邊三角形結論:(1)AD=BE;(2)∠ACB=∠AOB;(3)△PCQ為等邊三角形;(4)PQ∥AE;(5)AP=BQ;(6)CO平分∠AOE;(四點共圓證)(7)OA=OB+OC;(8)OE=OC+OD .((7),(8)需構造等邊三角形證明)Fpg 例、如圖①,點M為銳角三角形ABC內任意一點,連接AM、BM、CM.以AB為一邊向外作等邊三角形△ABE,將BM繞點B逆時針旋轉60°得到BN,連接EN.(1)求證:△AMB≌△ENB;(2)若AM+BM+CMの值最小,則稱點M為△ABCの費爾馬點.若點M為△ABCの費爾馬點,試求此時∠AMB、∠BMC、∠CMAの度數;(3)小翔受以上啟發,得到一個作銳角三角形費爾馬點の簡便方法:如圖②,分別以△ABC のAB、AC為一邊向外作等邊△ABE和等邊△ACF,連接CE、BF,設交點為M,則點M 即為△ABCの費爾馬點.試說明這種作法の依據.2、△ABD 和△ACE 均為等腰直角三角形結論:(1)BE =CD ;(2)BE ⊥CD .3、四邊形ABEF 和四邊形ACHD 均為正方形結論:(1)BD =CF ;(2)BD ⊥CF .變式1、四邊形ABEF 和四邊形ACHD 均為正方形,AS ⊥BC 交FD 於T ,求證:(1)T 為FD 中點;(2)ABC ADF SS .變式2、四邊形ABEF和四邊形ACHD均為正方形,T為FD中點,TA交BC於S,求證:AS⊥BC .4、如圖,以△ABCの邊AB、AC為邊構造正多邊形時,總有:360 12180n︒∠=∠=︒-五、半角模型條件:1,+=1802αββθβ=︒且,兩邊相等.思路:1、旋轉輔助線:①延長CD到E,使ED=BM,連AE或延長CB到F,使FB=DN,連AF②將△ADN繞點A順時針旋轉90°得△ABF,注意:旋轉需證F、B、M三點共線結論:(1)MN=BM+DN;(2)=2CMNC AB;(3)AM、AN分別平分∠BMN、∠MND .2、翻折(對稱)輔助線:①作AP⊥MN交MN於點P②將△ADN、△ABM分別沿AN、AM翻折,但一定要證明M、P、N三點共線 .A、例題例1、在正方形ABCD中,若M、N分別在邊BC、CD上移動,且滿足MN=BM+DN,求證:(1)∠MAN=45°;C AB;(2)=2CMN(3)AM、AN分別平分∠BMN和∠DNM .變式:在正方形ABCD中,已知∠MAN=45°,若M、N分別在邊CB、DCの延長線上移動,AH⊥MN,垂足為H,(1)試探究線段MN、BM、DN之間の數量關係;(2)求證:AB=AH例2、在四邊形ABCD中,∠B+∠D=180°,AB=AD,若E、F分別為邊BC、CD上の點,且滿足EF=BE+DF,求證:12EAF BAD ∠=∠.變式:在四邊形ABCD中,∠B=90°,∠D=90°,AB=AD,若E、F分別為邊BC、CD上の點,且12EAF BAD∠=∠,求證:EF=BE+DF .。
(完整版)全等三角形经典模型总结
全等三角形相关模型总结一、角均分线模型(一)角均分线的性质模型辅助线:过点G 作 GE⊥射线 ACA、例题1、如图,在△ ABC中,∠ C=90°, AD 均分∠ CAB,BC=6cm,BD=4cm,那么点 D 到直线 AB 的距离是cm.2、如图,已知,∠1=∠ 2,∠ 3=∠ 4,求证: AP 均分∠ BAC.B、模型牢固1、如图,在四边形ABCD中, BC> AB,AD= CD,BD 均分∠ ABC,求证:∠ A+∠ C= 180° .(二)角均分线+垂线,等腰三角形必表现A、例题辅助线:延长ED 交射线 OB 于 F辅助线:过点 E 作 EF∥射线 OB例 1、如图,在△ABC中,∠ ABC= 3∠ C, AD 是∠ BAC的均分线, BE⊥ AD 于 F .1求证: BE( AC AB) .例 2、如图,在△ ABC中,∠ BAC的角均分线 AD 交 BC 于点 D,且 AB= AD,作 CM⊥ AD 交1AD 的延长线于M. 求证:AM( AB AC) .2(三)角分线,分两边,对称全等要记全两个图形飞辅助线都是在射线ON 上取点 B,使 OB= OA,从而使△ OAC≌△ OBC .A、例题1、如图,在△ ABC 中,∠ BAC=60°,∠ C=40°, AP 均分∠ BAC交 BC 于 P, BQ 均分∠ ABC 交AC 于 Q,求证: AB+ BP= BQ+ AQ .2、如图,在△ ABC 中, AD 是∠ BAC的外角均分线, P 是 AD 上异于点 A 的任意一点,试比较PB+ PC与 AB+ AC的大小,并说明原由 .B、模型牢固1、在△ ABC中, AB> AC, AD 是∠ BAC的均分线, P 是线段 AD 上任意一点(不与 A 重合) . 求证: AB-AC> PB- PC .2、如图,△ ABC中, AB= AC,∠ A= 100°,∠ B 的均分线交 AC 于 D,求证: AD+BD=BC .3、如图,△ ABC中, BC=AC,∠ C= 90°,∠ A 的均分线交 BC 于 D,求证: AC+ CD= AB .二、等腰直角三角形模型(一)旋转中心为直角极点,在斜边上任取一点的旋转全等:操作过程:(1)将△ ABD 逆时针旋转 90°,得△ ACM ≌ △ ABD,从而推出△ ADM 为等腰直角三角形 .(2)辅助线作法:过点 C 作 MC⊥ BC,使 CM= BD,连接 AM.(二)旋转中心为斜边中点,动点在两直角边上转动的旋转全等:操作过程:连接AD.(1)使 BF=AE(或 AF= CE),导出△ BDF ≌ △ADE.(2)使∠ EDF+∠ BAC= 180°,导出△ BDF ≌ △ ADE.A、例题1、如图,在等腰直角△ ABC中,∠BAC= 90°,点 M 、N 在斜边 BC上滑动,且∠ MAN =45°,试试究 BM、 MN 、 CN 之间的数量关系 .2、两个全等的含有 30°, 60°角的直角三角板 ADE 和 ABC,按以以下图放置, E、A、 C 三点在一条直线上,连接 BD,取 BD 的中点 M ,连接 ME、 MC.试判断△ EMC 的形状,并证明你的结论.B、模型牢固1、已知,以以下图,Rt△ABC中, AB= AC,∠ BAC=90°, O 为 BC中点,若 M 、N 分别在线段 AC、 AB 上搬动,且在搬动中保持AN= CM.(1)试判断△ OMN 的形状,并证明你的结论.(2)当 M、 N 分别在线段AC、 AB 上搬动时,四边形AMON 的面积如何变化?2、在正方形ABCD中, BE= 3,EF= 5, DF=4,求∠ BAE+∠ DCF为多少度 .(三)构造等腰直角三角形(1)利用以上(一)和(二)都可以构造等腰直角三角形(略);(2)利用平移、对称和弦图也可以构造等腰直角三角形.(四)将等腰直角三角形补全为正方形,以以下图:A、例题应用1、如图,在等腰直角△ABC 中, AC= BC,∠ ACB= 90°, P 为三角形ABC内部一点,满足 PB= PC, AP= AC,求证:∠ BCP= 15° .三、三垂直模型(弦图模型)A、例题已知:以以下图,在△ ABC中, AB= AC,∠ BAC= 90°, D 为 AC 中点, AF⊥ BD 于点 E,交 BC 于 F,连接 DF .求证:∠ ADB=∠ CDF .变式 1、已知:以以下图,在△ABC中, AB= AC,AM = CN, AF⊥ BM 于 E,交 BC 于 F,连接NF .求证:( 1)∠ AMB=∠ CNF;(2) BM= AF+ FN .变式 2、在变式 1 的基础上,其他条件不变,可是将BM 和 FN 分别延长交于点P,求证:( 1) PM= PN;( 2) PB= PF+ AF .四、手拉手模型1、△ ABE和△ ACF均为等边三角形结论:( 1)△ ABF≌△ AEC .(2)∠ BOE=∠ BAE=60° .(3) OA 均分∠ EOF .(四点共圆证)拓展:△ ABC和△ CDE均为等边三角形结论:( 1) AD= BE;(2)∠ ACB=∠ AOB;(3)△ PCQ为等边三角形;(4) PQ∥ AE;(5) AP=BQ;(6) CO均分∠ AOE;(四点共圆证)(7) OA= OB+OC;(8) OE=OC+ OD .((7),( 8)需构造等边三角形证明)例、如图①,点 M为锐角三角形 ABC内任意一点,连接 AM、BM、 CM.以 AB为一边向外作等边三角形△ ABE,将 BM绕点 B 逆时针旋转 60°获取 BN,连接 EN.(1)求证:△ AMB≌△ ENB;(2)若 AM+BM+CM的值最小,则称点 M为△ ABC的费尔马点.若点 M为△ ABC的费尔马点,试求此时∠ AMB、∠ BMC、∠ CMA的度数;(3)小翔受以上启示,获取一个作锐角三角形费尔马点的简略方法:如图②,分别以△ABC 的 AB、 AC 为一边向外作等边△ABE和等边△ ACF,连接CE、BF,设交点为M,则点M 即为△ ABC的费尔马点.试说明这种作法的依据.2、△ ABD 和△ ACE均为等腰直角三角形结论:( 1) BE= CD;(2) BE⊥ CD .3、四边形ABEF和四边形ACHD均为正方形结论:( 1) BD= CF;( 2)BD⊥ CF .变式 1、四边形 ABEF和四边形 ACHD均为正方形, AS⊥ BC 交 FD 于 T,求证:( 1) T 为 FD 中点;( 2)SV ABC SV ADF .变式 2、四边形 ABEF和四边形 ACHD均为正方形, T 为 FD 中点, TA 交 BC于 S,求证: AS⊥ BC .360 4、如图,以△ ABC的边 AB、 AC为边构造正多边形时,总有:1 2 180n五、半角模型条件: 1 , 且 + =180 ,两边相等.2思路: 1、旋转辅助线:①延长CD到 E,使 ED=BM,连 AE 或延长 CB到 F,使 FB=DN,连 AF②将△ ADN绕点 A 顺时针旋转 90°得△ ABF,注意:旋转需证F、 B、 M三点共线结论:( 1) MN = BM+ DN;(2)CV CMN=2 AB;(3) AM、 AN 分别均分∠ BMN 、∠ MND .2、翻折(对称)辅助线:①作AP⊥ MN 交 MN 于点 P②将△ ADN、△ ABM分别沿 AN、 AM翻折,但必然要证明M、P、 N 三点共线 .A、例题例1、在正方形 ABCD中,若 M、 N 分别在边 BC、 CD 上搬动,且满足 MN = BM+DN,求证:( 1)∠ MAN = 45°;(2)CV CMN=2 AB;(3) AM、 AN 分别均分∠ BMN 和∠ DNM .变式:在正方形 ABCD中,已知∠ MAN =45°,若 M 、N 分别在边 CB、DC 的延长线上搬动,AH⊥MN ,垂足为 H,(1)试试究线段 MN 、BM、 DN 之间的数量关系;(2)求证: AB= AH例 2、在四边形 ABCD 中,∠ B +∠ D = 180°, AB = AD ,若 E 、 F 分别为边 BC 、 CD 上的点,且满足 EF =BE + DF ,求证: EAF 1BAD .2变式:在四边形 ABCD 中,∠ B = 90°,∠ D = 90°, AB = AD ,若 E 、 F 分别为边 BC 、CD 上的点,且 EAF1 BAD ,求证: EF = BE +DF .2。
一线三角相似模型总结
稿子一:嘿,亲!今天咱们来唠唠“一线三角相似模型”哈!你知道不,这模型可神奇啦!就那么一条线,三个角,就能找出相似来。
先说说啥是“一线三角”哈。
其实就是在一条直线上,有三个顶点,然后这三个顶点分别和另外一个点连线,形成的三个角。
这三个角要是有相等的,那对应的三角形就相似啦!比如说,在一个图形里,有一条直线上依次有 A、B、C 三个点,另外有一个点D,连接 DA、DB、DC,如果角 ADB 和角 BDC 相等,那三角形 ADB 和三角形 BDC 就相似。
这个模型用处可大了!在解决几何问题的时候,能帮咱们快速找到相似三角形,然后通过相似比算出边的长度啊,角度大小啥的。
比如说,给了咱们一个三角形,里面有这么个“一线三角”的情况,还知道一些边的长度,那咱们就能通过相似比,算出其他边的长度,是不是很妙?而且哦,多做几道这种题,你就会发现,其实它经常出现在各种考试里,像是平时的小测验,还有期中期末考。
所以呀,一定要把这个模型弄明白,这样做题的时候才能又快又准,轻松拿高分!怎么样,是不是觉得这个“一线三角相似模型”挺有意思的?稿子二:哈喽呀!今天咱们来好好聊聊“一线三角相似模型”哟!亲,你可别小看这个模型,它可厉害着呢!想象一下,一条线上排着三个点,就像排排坐吃果果似的,然后再加上另外一个点和它们连线,这就构成了“一线三角”。
比如说哈,在一个图形里,直线上的三个点是 E、F、G,另外一个点是 H,连接起来,要是发现角 EHF 和角 FHG 相等,那对应的三角形 EHF 和三角形 FHG 就相似啦。
这个模型在解题的时候,那可真是个宝贝!有时候题目看起来很复杂,但是只要咱们找到了这个“一线三角”,瞬间就柳暗花明又一村啦!它能帮咱们快速找到解题的关键,算出各种边和角的关系。
比如说,知道了其中两个相似三角形的对应边的比例,就能求出其他边的长度啦。
我跟你讲哦,我之前做过好多这样的题,一开始也觉得有点难,但是多练了几次,就发现它其实有规律可循的。
相似三角形的性质及判定知识点总结经典题型总结
一、相似的有关概念1.相似形具有一样形状的图形叫做相似形.相似形仅是形状一样,大小不一定一样.相似图形之间的互相变换称为相似变换. 2.相似图形的特性两个相似图形的对应边成比例,对应角相等. 3.相似比两个相似图形的对应角相等,对应边成比例.二、相似三角形的概念1.相似三角形的定义对应角相等,对应边成比例的三角形叫做相似三角形.如图,ABC △与A B C '''△相似,记作ABC A B C '''△∽△,符号∽读作“相似于〞.中考要求知识点睛相似三角形的性质及判定2.相似比相似三角形对应边的比叫做相似比.全等三角形的相似比是1.“全等三角形〞一定是“相似形〞,“相似形〞不一定是“全等形〞.三、相似三角形的性质1.相似三角形的对应角相等如图,ABC △与A B C '''△相似,那么有A A B B C C '''∠=∠∠=∠∠=∠,,.2.相似三角形的对应边成比例ABC △与A B C '''△相似,那么有AB BC ACk A B B C A C===''''''〔k 为相似比〕.3.相似三角形的对应边上的中线,高线和对应角的平分线成比例,都等于相似比.如图1,ABC △与A B C '''△相似,AM 是ABC △中BC 边上的中线,A M ''是A B C '''△中B C ''边上的中线,那么有AB BC AC AMk A B B C A C A M ====''''''''〔k 为相似比〕.图1如图2,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,那么有AB BC AC AHk A B B C A C A H ====''''''''〔k 为相似比〕.A 'B 'C 'CBAA 'B 'C 'CB AM 'MA 'B 'C 'C BA图2如图3,ABC △与A B C '''△相似,AD 是ABC △中BAC ∠的角平分线,A D ''是A B C '''△中B A C '''∠的角平分线,那么有AB BC AC AD k A B B C A C A D ====''''''''〔k 为相似比〕.图34.相似三角形周长的比等于相似比. 如图4,ABC △与A B C '''△相似,那么有AB BC ACk A B B C A C ===''''''〔k 为相似比〕.应用比例的等比性质有AB BC AC AB BC ACk A B B C A C A B B C A C++====''''''''''''++. 图45.相似三角形面积的比等于相似比的平方.如图5,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,那么有AB BC AC AHk A B B C A C A H ====''''''''〔k 为相似比〕.进而可得21212ABCA B C BC AHS BC AH k S B C A H B C A H '''⋅⋅==⋅=''''''''⋅⋅△△.图5H 'H AB C C 'B 'A'D 'D A 'B C 'C BAA 'B 'C 'CB AH 'H AB C C 'B 'A '四、相似三角形的判定1.平行于三角形一边的直线和其他两边〔或两边的延长线〕相交,所构成的三角形与原三角形相似.2.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.可简单说成:两角对应相等,两个三角形相似. 3.如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似.4.如果一个三角形的三条边与另一个三角形的你对应成比例,那么这两个三角形相似.可简单地说成:三边对应成比例,两个三角形相似. 5.如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.6.直角三角形被斜边上的高分成的两个直角三角形相似〔常用但要证明〕 7.如果一个等腰三角形和另一个等腰三角形的顶角相等或一对底角相等,那么这两个等腰三角形相似;如果它们的腰和底对应成比例,那么这两个等腰三角形也相似.五、相似证明中的比例式或等积式、比例中项式、倒数式、复合式证明比例式或等积式的主要方法有“三点定形法〞. 1.横向定型法欲证AB BC BEBF=,横向观察,比例式中的分子的两条线段是AB 和BC ,三个字母A B C ,,恰为ABC △的顶点;分母的两条线段是BE 和BF ,三个字母B E F ,,恰为BEF △的三个顶点.因此只需证ABC EBF △∽△. 2.纵向定型法欲证AB DE BCEF=,纵向观察,比例式左边的比AB 和BC 中的三个字母A B C ,,恰为ABC △的顶点;右边的比两条线段是DE 和EF 中的三个字母D E F ,,恰为DEF △的三个顶点.因此只需证ABC DEF △∽△. 3.中间比法由于运用三点定形法时常会碰到三点共线或四点中没有一样点的情况,此时可考虑运用等线,等比或等积进展变换后,再考虑运用三点定形法寻找相似三角形.这种方法就是等量代换法.在证明比例式时,常用到中间比.比例中项式的证明,通常涉及到与公共边有关的相似问题。
模型总结: 相似三角形模型解析及辅助线作法梳理
相似三角形(模型-辅助线)一、本章概述相似作为几何学习的一个重要内容,大量的出现在中考试卷中,它与勾股定理和锐角三角形函数并列为初中几何计算三大工具。
本章重点讲解相似的几个模型,如A字形,8字形,一线三等角等模型。
二、知识回顾1、图形的相似(1)相似图形:形状相同的图形叫做相似图形(2)相似多边形:对应角相等,对应边的比相等。
相似多边形对应边的比为相似比。
2.相似三角形(3)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段的比相等。
(4)相似三角形的判定①预备定理:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段的比相等。
②判定定理:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。
如果两个三角形的三组对应边的比相等,那么这两个三角形相似。
如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。
③传递性定理:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
(5)相似三角形的性质①相似三角形的对应角相等,对应边成比例②相似三角形的周长的比等于相似比;对应线段的比等于相似比;面积比等于相似比的平方。
3.位似(6)多边形不仅相似,而且对应顶点的连线相交于一点,对应边互相平行,像这样的两个图形叫做位似图形,这个点叫做位似中心。
(7)在平面直角坐标系中,如果位似是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k。
1.相似基本模型一、本节概述本节重点讲解“A”字形和“8”字形的应用和构造方法,这两个模型是相似三角形中最为基础的两个模型,但应用十分广泛。
1.“A”字形相似2. ”8”字形相似二、典例精析能力目标:1.熟练掌握正A型相似和正8型相似模型:2.借助平行线构造正A型相似和正8型相似模型解决相关问题。
【例1】已知:图下图,AD(1)若E为AD的中点,射线CE交AB于F,则(2)若E为AD上一点,且,射线CE交AB于F,则思维探究:方法一:通过平行线构造相似解析:过A点作A P//BC交CF于点P,“8”字模型A P CD方法二:过A作A H//CF交BC延长线于H,则方法三:作DK//CF交AB于K,则方法四:作DM//AB交CF于M,则AF=DM,( 2 ) 构造平行线,通过线段比解决问题作B P//AD交CF于点P,大家可尝试过其他点作平行线,解答中用了A点和D点,其它的同学们自己尝试。
相似三角形的基本模型归纳总结
相似三角形的基本模型归纳总结
相似三角形是指拥有相似的形状但大小不同的三角形。
在相似三角形中,对应角度相等,而对应边长之间存在比例关系。
以下是一些基本的相似三角形模型:
1. 比例模型:在两个相似三角形中,对应边长之比相等。
例如,若∆ABC与∆DEF相似,则有AB/DE = BC/EF = AC/DF。
2. 三角形高度模型:在两个相似三角形中,对应高度之比等于对应边长之比。
例如,若∆ABC与∆DEF相似,则有h_1/h_2 = AB/DE = BC/EF = AC/DF,其中h_1和h_2分别为∆ABC和
∆DEF的高度。
3. 角平分线模型:在两个相似三角形中,对应角的平分线所延伸的比例相等。
例如,若∆ABC与∆DEF相似,角A和角D相等,则有BD/CE = AB/DE = AC/DF。
4. 底角模型:在两个相似三角形中,底角对应相等。
例如,若∆ABC与∆DEF相似,并且∠A = ∠D,则有∠B = ∠E和∠C
= ∠F。
5. 周长模型:在两个相似三角形中,对应边长之比等于相似三角形的周长比。
例如,若∆ABC与∆DEF相似,则有
(A+B+C)/(D+E+F) = AB/DE = BC/EF = AC/DF。
这些是常见的相似三角形模型,可以根据具体问题选择适合的模型进行求解。
但需要注意的是,在相似三角形中,只有形状
相似,而边长比例相等,因此,对于三角形中角度的求解通常更加重要。
相似三角形题型归纳总结非常全面
相似三角形题型归纳一、比例的性质:二、成比例线段的概念:1.比例的项:在比例式cr.b = c:d(即纟=上)中,a, d称为比例外项,b, c称为比例内项.特别地,h d在比例式a\b = b.c(即上=?)中,b称为a, c的比例中项,满足b2=ac・b c2.成比例线段:四条线段6 b, G d中,如果Q和b的比等于C和d的比,即- = 那么这四条线b d段a, b, c, d叫做成比例线段,简称比例线段.3.黄金分割:如图,若线段M上一点C,把线段朋分成两条线段AC和BC (AC >BC),且使AC是和BC的比例中项(即AC2 =AB BC),则称线段AB被点C黄金分割,点C叫线段&8 的黄金分割点,其中AC = ^1AB^Q.61SAB , = Q0.382AB, AC AB2 2的比叫做黄金比.(注意:对于线段A3而言,黄金分割点有两个.)•••A C B4三.平行线分线段成比例定理1.平行线分线段成比例定理两条直线被三条平行线所截.所得的对应线段成比例.简称为平行线分线段成比例立【小结】若将所截出的小线段位置靠上的(如&B )称为上,位置靠下的称为下,两条线段合成的线段称为全,则可以形象的表示为二=二,空=刍 r r 全全2.平行线分线段成比例定理的推论平行于三角形一边的直线,截其它两边(或两边的延长线),所得的对应线段成比例.如AE AF AE EF --- = ---- ----△ABCsMBC ZB = ZB', ZC = ZC rZA = ZA\AB _ BC _ AC A^ = WC = A^CAB DEBC EF如AF BEAC ABAE _AF AE _AF EB^FC AB^AC—=SL EFT/BC & FAA'EB FC ABAABC △A'B'C' AM、AH AD AABC BC A!M f A!H rA!D9AA0C B f C AB _ BC _ AC AM _ AH _ AD 7^ = ^C = A^C= =A^r = A7T=WD;AABC /\A!B f C AB BC AC AB + BC + AC ;而一而一而一A® + B'C' + AC 一△ △>△ = Z4‘ ZZ? = ZZT AABC s MBC砂B'C' A'C'SC S MBCAB ACA® AC ZA_ZA△ABCs/WBC4DE // BC oHADE sAABC o A° - AE - DE AB AC BCA BA AB 〃CD o'AOB s HCOD O 竺=竺=竺CD OC ODDG _ AN△ABC AADG S^ABC BC ZBAC = 90° /\ADGsHEBDs&GCsMBCE MF CAE4A A A A3/AABD ^ACADZB = ZCADZC = ZBADAB 2 =AD 2+BD 2 AC 2 = AD 2 + CD 2 BC 2 ==AB 2 + AC 2C CE//AD BAE CE//AD Z1 = Z£ Z2 = Z3 AD ZBAC Z1 =Z2AE = ACCE 〃AD^ =竺竺=竺AE CD AC CDAB1.BDAABC S MDEAB DE = BC CDED 丄 BD AC 丄 ECBDAABC s*DE s AACEZABC = ZCDE = ZACE Z^ABC sMDE AB DE = BC CDAB BC AC CD^^DE^CE CBDAABC s*DE s AACEAD ACMBCMCDE & =忑 C BD BJCDAB ACZABC = ZACEAABC ZA4CAB BD AC = CDEAB BCAD C3/A F;VEAw/nBMCBMCEN BM .EN BM EF // BCEF // BC 一NF MC NF MCAABC ABACAB BD AC = CD条件变为比例形式: 走気,由于妙心180。
相似三角形常见模型(总结)1
相似三角形第一部分 相似三角形模型分析一、相似三角形判定的基本模型认识(一)A 字型、反A 字型(斜A 字型)BDE(平行)BDE(不平行)(二)8字型、反8字型J OADBCAB CD(蝴蝶型)(平行) (不平行) (三)母子型BDD(四)一线三等角型:三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景(五)一线三直角型:(六)双垂型:ADC 二、相似三角形判定的变化模型旋转型:由A字型旋转得到。
8字型拓展CB EDA共享性GABEF一线三等角的变形一线三直角的变形第二部分相似三角形典型例题讲解母子型相似三角形例1:如图,梯形ABCD中,AD∥BC,对角线AC、BD交于点O,BE∥CD交CA延长线于E.求证:OEOAOC⋅=2.例2:已知:如图,△ABC中,点E在中线AD上, ABCDEB∠=∠.求证:(1)DADEDB⋅=2;(2)DACDCE∠=∠.例3:已知:如图,等腰△ABC中,AB=AC,AD⊥BC于D,CG∥AB,BG分别交AD、AC于E、F.求证:EGEFBE⋅=2.相关练习:1、如图,已知AD为△ABC的角平分线,EF为AD的垂直平分线.求证:FCFBFD⋅=2.A CDEBGMF EHDCBA2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延长线交于一点N 。
求证:(1)△AME ∽△NMD; (2)ND 2=NC ·NB3、已知:如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,E 是AC 上一点,CF ⊥BE 于F 。
求证:EB ·DF=AE ·DB4.在∆ABC 中,AB=AC ,高AD 与BE 交于H ,EF BC ⊥,垂足为F ,延长AD 到G ,使DG=EF ,M 是AH 的中点。
求证:∠=︒GBM 905.(本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分)已知:如图,在Rt △ABC 中,∠C =90°,BC =2,AC =4,P 是斜边AB 上的一个动点,PD ⊥AB ,交边AC 于点D (点D 与点A 、C 都不重合),E 是射线DC 上一点,且∠EPD =∠A .设A 、P 两点的距离为x ,△BEP 的面积为y .(1)求证:AE =2PE ;(2)求y 关于x 的函数解析式,并写出它的定义域; (3)当△BEP 与△ABC 相似时,求△BEP 的面积.双垂型1、如图,在△ABC 中,∠A=60°,BD 、CE 分别是AC 、AB 上的高 求证:(1)△ABD ∽△ACE ;(2)△ADE ∽△ABC ;(3)BC=2ED2、如图,已知锐角△ABC ,AD 、CE 分别是BC 、AB 边上的高,△ABC 和△BDE 的面积分别是27和3,DE=62,求:点B 到直线AC 的距离。
相似三角形中的“8”字模型(3种题型)(解析版)--中考物理数学专项训练
相似三角形中的“8”字模型(3种题型)一、【知识梳理】8字_平行型条件:CD∥AB,结论:ΔPAB∼ΔPCD(上下相似);左右不一定相似,不一定全等,但面积相等;四边形ABCD为一般梯形.条件:CD∥AB,PD=PC.结论:ΔPAB∼ΔPCD∼ΔPDC(上下相似)ΔPAD≅ΔPBC左右全等;四边形ABCD为等腰梯形;8字_不平行型条件:∠CDP=∠BAP.结论:ΔAPB∼ΔDPC(上下相似);ΔAPD∼ΔBPC(左右相似);二、【考点剖析】8字-平行型1.直接利用“8”字型解题1如图,在平行四边形ABCD 中,点E 在边DC 上,若DE :EC =1:2,则BF :BE =.【答案】3:5.【解析】DE :EC =1:2,可知CE CD =CE AB =23,由CE ⎳AB ,可知BF EF =AB CE=32,故BF :BE =3:5.【总结】初步认识相似三角形中的“8”字型.2如图,P 为▱ABCD 对角线BD 上任意一点.求证:PQ ∙PI =PR ∙PS .【解析】证明:∵四边形ABCD 为平行四边形,∴AB ⎳CD ,AD ⎳BC ,∴RB ⎳DI ,SD ⎳BQ .根据三角形一边平行线的性质定理,则有PI PR =PD PB =PS PQ,∴PQ ⋅PI =PR ⋅PS .【总结】初步认识相似三角形中的“8”字型,一个图形中存在往往不只一个,可用来进行等比例转化.3如图,在平行四边形ABCD 中,CD 的延长线上有一点E ,BE 交AC 于点F ,交AD 于点G .求证:BF 2=FG ∙EF .【解析】证明:∵四边形ABCD 为平行四边形,∴AB ⎳CD ,AD ⎳BC ,∴AB ⎳CE ,AG ⎳BC .根据三角形一边平行线的性质定理,则有:EF BF =CF AF=BF FG ,∴BF 2=FG ∙EF .【总结】初步认识相似三角形中的“8”字型,一个图形中存在往往不只一个,可用来进行等比例转化.4如图,点C 在线段AB 上,ΔAMC 和ΔCBN 都是等边三角形.求证:(1)MD DC =AM CN;(2)MD ∙EB =ME ∙DC .【解析】证明:(1)∵ΔAMC 和ΔCBN 是等边三角形,∴∠ACM =∠NCB =∠AMC =60°.∵点C 在线段AB 上,∴∠MCN =180°-∠ACM -∠NCB =60°=∠AMC .∴AM ⎳CN ,∴MD DC =AM CN.(2)同(1)易证得CM ⎳BN ,则有ME EB =MC NB.∵ΔAMC 和ΔCBN 是等边三角形,∴MC =AM ,NB =CN ,∴MD DC=ME EB ,∴MD ∙EB =ME ∙DC .【总结】初步认识相似三角形中的“8”字型,一个图形中存在往往不只一个,可用来进行等比例转化.5如图,已知AB ⎳CD ⎳EF .AB =m ,CD =n ,求EF 的长.(用m 、n 的代数式表示).【答案】mn m +n .【解析】由AB ⎳CD ⎳EF ,则有EF AB =CF BC ,EF CD =BF BC ,即EF m +EF n =1,得EF =mn m +n.【总结】考查相似三角形中“8”字型的综合应用,得到比例关系.6如图,E 为平行四边形ABCD 的对角线AC 上一点,AE EC=13,BE 的延长线交CD 的延长线于点G ,交AD 于点F ,求BF :FG 的值.【答案】1:2.【解析】由AF ⎳BC ,可得AF BC =AE EC =13,即AF AD=13,故AF FD =12,由AB ⎳DG ,可得:BF :FG =AF :FD =1:2.【总结】考查相似三角形中“8”字型的综合应用,得到比例关系.7如图,l 1⎳l 2,AF :FB =2:5,BC :CD =4:1,求AE :EC 的值.【答案】2:1.【解析】由l 1⎳l 2,得:AG BD =AF FB =25,又BC :CD =4:1,可得AG CD=21,故AE :EC =AG :CD =2:1.【总结】考查相似三角形中“8”字型的综合应用,得到比例关系.2.添加辅助线构造“8”字模型解题8过ΔABC 的顶点C 任作一直线,与边AB 及中线AD 分别交于点F 、E .求证:AE ED =2AF FB.【解析】过点D 作DG ⎳AB 交CF 于点G .∵DG ⎳AB ∴AE ED =AF GD ,DG BF =CD CB ;∵AD 是中线, ∴BC =2CD , ∴DG BF =12;∴AE ED =2AF BF.【总结】题考查三角形一边的平行线知识,要学会构造平行基本模型.9如图,AD 是ΔABC 的内角平分线.求证:AB AC=BD DC .【解析】过点C作CM⎳AB交AD的延长线于点M.∵CM⎳AB ∴AB CM=BDDC,∠BAD=∠M∵AD是角平分线∴∠BAD=∠DAC;∴∠M=∠DAC∴AC=CM∴AB AC=BD DC.【总结】本题考查了三角形一边的平行线、角平分线及等腰三角形的相关知识.8字-不平行型1如图,∠BEC=∠CDB,下列结论正确的是()A.EF•BF=DF•CFB.BE•CD=BF•CFC.AE•AB=AD•ACD.AE•BE=AD•DC【分析】结合图形利用8字模型相似三角形证明△EFB∽△DFC,然后利用等角的补角相等得出∠AEC=∠ADB,最后证明△ABD∽△ACE,利用相似三角形的对应边成比例逐一判断即可.【解答】解:∵∠BEC=∠CDB,∠EFB=∠DFC,∴△EFB∽△DFC,∴EF DF=FB FC,∴EF•FC=DF•FB,故A不符合题意:∵△EFB∽△DFC,∴BE CD=BF FC,∴BE•CF=CD•BF,故B不符合题意;∵∠BEC=∠CDB,∠BEC+∠AEC=180°,∠BDC+∠ADB=180°,∴∠AEC=∠ADB,∴△ABD∽△ACE,∴AB AC=AD AE,∴AB•AE=AD•AC,故C符合题意;因为:AE,BE,AD,CD组不成三角形,也不存在比例关系,故D不符合题意;故选:C.【点评】本题考查了相似三角形的判定与性质,根据题目的已知条件并结合图形分析是解题的关键.1.【过关检测】一、选择题(共3小题)1(2023•静安区校级一模)如图,在△ABC中,中线AD与中线BE相交于点G,联结DE.下列结论成立的是()A. B. C. D.【分析】由AD,BE是△ABC的中线,得到DE是△ABC的中位线,推出△DEG∽△ABG,△CDE∽△CBA,由相似三角形的性质即可解决问题.【解答】解:AD,BE是△ABC的中线,∴DE是△ABC的中位线,∴DE∥AB,DE=AB,∴△DEG∽△ABG,∴DG:AG=DE:AB=1:2,BG:EG=AB:DE,==,∴DG=AG,∵BG:EG=AB:DE=2:1,∴GB:BE=2:3,∴S△AGB:S△AEB=2:3,∵AE=EC,∴S△AEB=S△ABC,∴S△AGB=S△ABC,∵△CDE∽△CBA,∴==,∴S △CDE =S △ABC ,∴=,结论成立的是=,故选:C .【点评】本题考查相似三角形的判定和性质,关键是掌握相似三角形的性质.2(2023•徐汇区一模)如图,点D 在△ABC 边AB 上,∠ACD =∠B ,点F 是△ABC 的角平分线AE 与CD 的交点,且AF =2EF ,则下列选项中不正确的是()A. B. C. D.【分析】过C 作CG ∥AB 交AE 延长线于G ,由条件可以证明△ACF ≌△GCE (ASA ),得到AF =EG ,CF =CE ,由△ADF ∽△GCF ,再由平行线分线段成比例,即可解决问题.【解答】解:过C 作CG ∥AB 交AE 延长线于G ,∴∠G =∠BAE ,∵AE 平分∠BAC ,∴∠BAE =∠CAE ,∴∠G =∠CAE ,∴CG =CA ,∵∠ACD =∠B ,∠ECG =∠B ,∴∠ACF =∠ECG ,∴△ACF ≌△GCE (ASA ),∴CF =CE ,AF =EG ,∵AF =2FE ,∴EG =2FE ,令EF =k ,则AF =EG =2k ,AE =GF =3k ,∵△ADF∽△GCF,∴AD:CG=AF:FG=2k:(3k)=2:3,∴=,故A正确.∵AB∥CG,∴CE:BE=GE:AE=2k:(3k)=2:3,∴=,故B正确.∵∠ACD=∠B,∠DAC=∠BAC,∴△ACD∽△ABC,∴==,故C正确.∵=,AC和BD不一定相等,∴不一定等于.故选:D.【点评】本题考查角的平分线,相似三角形的判定和性质,关键是通过辅助线构造相似三角形.3(2022秋•闵行区期末)如图,某零件的外径为10cm,用一个交叉卡钳(两条尺长AC和BD相等)可测量零件的内孔直径AB.如果==3,且量得CD=4cm,则零件的厚度x为()A.2cmB.1.5cmC.0.5cmD.1cm【分析】根据相似三角形的判定和性质,可以求得AB的长,再根据某零件的外径为10cm,即可求得x的值.【解答】解:∵==3,∠COD=∠AOB,∴△COD∽△AOB,∴AB:CD=2,∵CD=4cm.∴AB=8cm.∵某零件的外径为10cm,∴零件的厚度x为:(10-8)÷2=1(cm),故选:D.【点评】本题考查相似三角形的应用,解答本题的关键是求出AB的值.二、填空题(共8小题)4(2022秋•奉贤区期中)如图,已知点D为△ABC中AC边的中点,AE∥BC,ED交AB于点G,交BC的延长线于点F,若,BC=8,则AE的长为4.【分析】由AE∥BC,可得△AEG∽△BFG,△AED∽△CFD推出==,又有BC的值,再由==1,得出AE=CF,代入即可求解AE的长.【解答】解:∵AE∥BC,∴△AEG∽△BFG,△AED∽△CFD,∴==,==1,即AE=CF,又BC=8,∴=AE=4.故答案为:4.【点评】本题主要考查了平行线分线段成比例的性质问题,应熟练掌握.5(2022•浦东新区校级模拟)如图,已知点D、E分别在△ABC的边CA、BA的延长线上,DE∥BC.DE:BC=2:3,设=,试用向量表示向量,=- .【分析】由DE∥BC可得△ADE∽△ACB,由DE:BC=2:3,可得DA=CD,即可表示,从而得出答案.【解答】解:∵DE∥BC,∴△ADE∽△ACB,∵DE:BC=2:3,∴DA:CA=DE:BC=2:3,∵CD=DA+CA,∴DA=CD,∵=,∴=,∴=-,故答案为:-.【点评】本题考查向量的运算,相似三角形的判定与性质,熟练掌握相似三角形的性质和向量的运算的解题的关键.6(2022•静安区二模)如图,在梯形ABCD中,AD∥BC,对角线AC、BD相交于点O,点E、F分别是边AB、CD的中点,AO:OC=1:4,设=,那么= .(用含向量的式子表示)【分析】由相似三角形性质可得=4=4,再根据梯形中位线定理即可求得答案.【解答】解:∵AD∥BC,∴△AOD∽△COB,∴==,∴=4=4,∵点E、F分别是边AB、CD的中点,∴=(+)=(+4)=,故答案为:.【点评】本题考查了相似三角形的判定和性质,梯形中位线定理,平面向量等,熟练掌握相似三角形的判定和性质是解题关键.7(2023•静安区校级一模)在矩形ABCD内作正方形AEFD(如图所示),矩形的对角线AC交正方形的边EF于点P.如果点F恰好是边CD的黄金分割点(DF>FC),且PE=2,那么PF= -1.【分析】先根据黄金分割的定义可得=,再利用正方形的性质可得:DF∥AE,DF=AE,从而可得=,然后证明8字模型相似三角形△CFP∽△AEP,从而利用相似三角形的性质进行计算即可解答.【解答】解:∵点F恰好是边CD的黄金分割点(DF>FC),∴==,∵四边形AEFD是正方形,∴DF∥AE,DF=AE,∴=,∵DC∥AB,∴∠FCP=∠PAE,∠CFP=∠AEP,∴△CFP∽△AEP,∴==,∵PE=2,∴PF=-1,故答案为:-1.【点评】本题考查了相似三角形的判定与性质,矩形的性质,正方形的性质,黄金分割,熟练掌握8字模型相似三角形是解题的关键.8(2022春•浦东新区校级期中)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于点O,如果△BCD的面积是△ABD面积的2倍,那么△BOC与△BDC的面积之比是2:3.【分析】过点D作DM⊥BC,垂足为M,过点B作BN⊥AD,交DA的延长线于点N,根据已知易得DM=BN,再根据S△BCD=2S△ABD,从而可得BC=2AD,然后再证明8字模型相似三角形△AOD∽△COB,利用相似三角形的性质可得==,从而可得=,最后根据△BOC与△BDC 的高相等,即可解答.【解答】解:过点D作DM⊥BC,垂足为M,过点B作BN⊥AD,交DA的延长线于点N,∵AD∥BC,∴BN=DM,∵S△BCD=2S△ABD,∴BC•DM=2×AD•BN,∴BC=2AD,∵AD∥BC,∴∠ADB=∠DBC,∠DAC=∠ACB,∴△AOD∽△COB,∴==,∴=,∵△BOC与△BDC的高相等,∴==,故答案为:2:3.【点评】本题考查了平行线间的距离,相似三角形的判定与性质,梯形,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.9(2022秋•虹口区校级月考)如图,梯形ABCD中,AD∥BC,,点E为边BC的中点,点F在边CD上且3CF=CD,EF交对角线AC于点G,则AG:GC=7:2.【分析】如图,连接DE,交AC于M,过M作MH∥EF交CD于H,首先利用AD∥BC,,点E 为边BC的中点,可以得到AD:EC=AM:CM=DM:ME=3:2,然后利用MH∥EF,DH:HF= DM:ME=3:2=6:4,最后利用又3CF=CD即可求解.【解答】解:如图,连接DE,交AC于M,过M作MH∥EF交CD于H,∵AD∥BC,,点E为边BC的中点,∴△ADM∽△CME,∴AD:EC=AM:CM=DM:ME=3:2,∵MH∥EF,∴DH:HF=DM:ME=3:2=6:4,又3CF=CD,∴DF=2CF,∴CF:HF=5:4,∴CG:MG=5:4,∴CG=CM,MG=CM,而AM:CM=3:2,∴AM=CM,∴AG=AM+MG=CM,∴AG:GC=CM:CM=7:2.故答案为:7:2.【点评】此题主要考查了相似三角形的性质于判定,同时也利用了平行线的性质,解题的关键是会进行比例线段的转换,有一定的难度.10(2022秋•黄浦区期末)如图是一个零件的剖面图,已知零件的外径为10cm,为求出它的厚度x,现用一个交叉卡钳(AC和BD的长相等)去测量零件的内孔直径AB.如果==,且量得CD的长是3cm,那么零件的厚度x是0.5cm.的值.【解答】解:∵==,∠COD=∠AOB,∴△COD∽△AOB,∴AB:CD=3,∵CD=3cm.∴AB=9cm.∵某零件的外径为10cm,∴零件的厚度x为:(10-9)÷2=0.5(cm),故答案为:0.5.【点评】本题考查相似三角形的应用,解答本题的关键是求出AB的值.11(2022春•闵行区校级月考)如图,梯形ABCD中,∠D=90°,AB∥CD,将线段CB绕着点B按顺时针方向旋转,使点C落在CD延长线上的点E处.联结AE、BE,设BE与边AD交于点F,如果AB=4,且=,那么梯形ABCD的中位线等于7.【分析】过点B作BG⊥EC,利用同高的两个三角形的面积的比先求出EF:BF,再利用相似三角形的性质求出ED、EG,最后利用梯形中位线与上下底的关系得结论.【解答】解过点B作BG⊥EC,垂足为G∵=,∴=.∵AB∥CD,∴△EDF∽△BAF.∴==,∴ED=2,=.∵AD∥BG,∴=.∴EG=6.∵CB绕着点B按顺时针方向旋转,点C落在CD延长线上的点E处,∴BE=BC.∵BG⊥EC,∴EG=GC=6.∴DC=DG+CG=4+6=10.∴梯形ABCD的中位线=(AB+CD)=(4+10)=7.故答案为:7.【点评】本题主要考查了相似三角形的性质和判定,掌握等腰三角形的三线合一、等高的两个三角形的面积比等于底边的比、梯形的中位线等于上下底的和的一半是解决本题的关键.三、解答题(共12小题)1(2023•普陀区一模)如图,已知梯形ABCD中,AD∥BC,E是BC上一点,AE∥CD,AE、BD相交于点F,EF:CD=1:3.(1)求的值;(2)联结FC,设,,那么= ,= .(用向量、表示)【分析】(1)根据题意可证明四边形AECD为平行四边形,得到AE=CD,则EF:AE=1:3,EF:AF=1:2,易证明△BEF∽△DAF,由相似三角形的性质即可求解;(2)由AF=2EF得,,由三角形法则求出和,再求出,最后利用三角形法则即可求出.【解答】解:∵AD∥BC,AE∥CD,∴四边形AECD为平行四边形,∴AE=CD,∵EF:CD=1:3,∴EF:AE=1:3,EF:AF=1:2,∵AD∥BC,∴△BEF∽△DAF,∴;(2)联结FC,如图,由(1)可得AF=2EF,∵,∴,,∴=,=,∵,AD=EC,∴,∴==,∴==.故答案为:,.【点评】本题主要考查平行四边形的判定与性质、相似三角形的判定与性质、平面向量,熟练三角形法则是解题关键.2(2023•奉贤区一模)已知:如图,在梯形ABCD中,AD∥BC,点E在对角线BD上,∠EAD=∠BDC.(1)求证:AE•BD=AD•DC;(2)如果点F在边DC上,且,求证:EF∥BC.【分析】(1)利用平行线的性质证明∠ADB=∠DBC,然后利用已知条件可以证明△ADE∽△DBC,由此即可解决问题;(2)利用(1)的结论和已知条件可以证明△DEF∽△DBC,接着利用相似三角形的在即可求解.【解答】证明:(1)∵AD∥BC,∴∠ADB=∠DBC,又∵∠EAD=∠BDC,∴△ADE∽△DBC,∴AE:AD=DC:BD,∴AE•BD=AD•DC;(2)∵AE:AD=DC:BD,且,∴=,而∠EDF=∠BDC,∴△DEF∽△DBC,∴∠DEF=∠DBC,∴EF∥BC.【点评】此题主要考查了相似三角形的性质与判定,同时也利用了平行线的性质,比例的基本性质,有一定的综合性.3(2023•青浦区一模)如图,在平行四边形ABCD中,点F在边AD上,射线BA、CF相交于点E,DF=2AF.(1)求EA:AB的值;(2)如果,,试用、表示向量.【分析】(1)根据平行四边形的性质可得AB∥CD,AB=CD,易证△AEF∽△DCF,则=,由DF=2AF即可求解;(2)先算出,再根据即可求解.【解答】解:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴△AEF∽△DCF,∴,∴,∵DF=2AF,∴,∴;(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵DF=2AF,∴,∵,,∴,,∴.【点评】本题主要考查相似三角形的判定与性质、平行四边形的性质、平面向量,熟练掌握平面向量的运算法则是解题关键.4(2022秋•金山区校级期末)已知:如图,在△ABC中,点D在边BC上,AE∥BC,BE与AD、AC 分别相交于点F、G,AF2=FG•FE.(1)求证:△CAD∽△CBG;(2)联结DG,求证:DG•AE=AB•AG.【分析】(1)通过证明△FAG∽△FEA,可得∠FAG=∠E,由平行线的性质可得∠E=∠EBC=∠FAG,且∠ACD=∠BCG,可证△CAD∽△CBG;(2)由相似三角形的性质可得=,且∠DCG=∠ACB,可证△CDG∽△CAB,可得=,由平行线分线段成比例可得=,可得结论.【解答】证明:(1)∵AF2=FG⋅FE.∴=,∵∠AFG=∠EFA,∴△FAG∽△FEA,∴∠FAG=∠E,∵AE∥BC,∴∠E=∠EBC,∴∠EBC=∠FAG,∵∠ACD=∠BCG,∴△CAD∽△CBG;(2)∵△CAD∽△CBG,∴=,∵∠DCG=∠ACB,∴△CDG∽△CAB,∴=,∵AE∥BC,∴=,∴=,∴=,∴DG•AE=AB•AG.【点评】本题考查了相似三角形的判定和性质,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.5(2022•松江区二模)已知:如图,两个△DAB和△EBC中,DA=DB,EB=EC,∠ADB=∠BEC,且点A、B、C在一条直线上,联结AE、ED,AE与BD交于点F.(1)求证:;(2)如果BE2=BF•BD,求证:DF=BE.【分析】(1)根据已知易证△DAB∽△EBC,然后利用相似三角形的性质可得∠DAB=∠EBC,=,从而可得AD∥EB,进而证明8字模型相似三角形△ADF∽△EBF,最后利用相似三角形的性质可得=,即可解答;(2)根据已知易证△BFE ∽△BED ,从而利用相似三角形的性质可得∠BEF =∠BDE ,进而可得∠DAF =∠BDE ,然后利用(1)的结论可证△ADF ≌△DBE ,再利用全等三角形的性质即可解答.【解答】证明:(1)∵DA =DB ,EB =EC ,∴=,∵∠ADB =∠BEC ,∴△DAB ∽△EBC ,∴∠DAB =∠EBC ,=,∴AD ∥EB ,∴∠DAF =∠AEB ,∠ADF =∠DBE ,∴△ADF ∽△EBF ,∴=,∴;(2)∵BE 2=BF •BD ,∴=,∵∠DBE =∠EBF ,∴△BFE ∽△BED ,∴∠BEF =∠BDE ,∵∠DAF =∠AEB ,∴∠DAF =∠BDE ,∵∠ADF =∠DBE ,AD =DB ,∴△ADF ≌△DBE (ASA ),∴DF =BE .【点评】本题考查了全等三角形的判定与性质,相似三角形的判定与性质,熟练掌握全等三角形的判定与性质,以及相似三角形的判定与性质是解题的关键.6(2023•宝山区二模)如图,四边形ABCD 中,AD ∥BC ,AC 、BD 交于点O ,OB =OC .(1)求证:AB =CD ;(2)E 是边BC 上一点,联结DE 交AC 于点F ,如果AO 2=OF •OC ,求证:四边形ABED 是平行四边形.【分析】(1)由等腰三角形的性质和判定及平行线的性质,说明△AOB 和△DOC 全等,利用全等三角形的性质得结论;(2)先说明△AOB∽△FOD,再说明AB∥DE,结合已知由平行四边形的判定可得结论.【解答】证明:(1)∵OB=OC,∴∠DBC=∠ACB.∵AD∥BC,∴∠DAC=∠ACB,∠ADB=∠DBC.∴∠DAC=∠ADB.∴OA=DO.在△AOB和△DOC中,,∴△AOB≌△DOC(SAS).∴AB=CD.(2)∵AO2=OF•OC,OA=OD,OC=OB,∴AO•OD=OF•OB,即.∵∠AOB=∠DOC,∴△AOB∽△FOD.∴∠BAO=∠DFO.∴AB∥DE.又∵AD∥BC,∴四边形ABED是平行四边形.【点评】本题主要考查了三角形全等和相似,掌握全等三角形的性质和判定、相似三角形的判定和性质、平行线的性质、等腰三角形的判定和性质及平行四边形的判定是解决本题的关键.7(2022秋•徐汇区期中)如图,在四边形ABCD中,对角线AC与BD交于点E,DB平分∠ADC,且AB2=BE•BD.(1)求证:△ABE∽△DCE;(2)AE•CD=BC•ED.【分析】(1)根据相似三角形的判定可得△ABE∽△DBA;所以∠BAC=∠BDC,由此可得出△ABE ∽△DCE;(2)由(1)中的相似可得出AE:DE=BE:CE,再由∠BEC=∠AED可得△ADE∽△BCE,所以∠EAD=∠EBC,∠ADE=∠BDC=∠BCE,可得△BCD∽△ADE,进而可得结论.【解答】证明:(1)∵AB2=BE•BD,∴AB:BE=BD:AB,∵∠ABE=∠DBA,∴△ABE∽△DBA,∴∠BAC=∠BDC,∵BD平分∠ADC,∴∠ADB=∠BDC=∠BAC,∴△ABE∽△DCE;(2)由(1)中相似可得,AE:DE=BE:CE,∵∠BEC=∠AED,∴△ADE∽△BCE,∴∠EAD=∠EBC,∠ADE=∠BDC=∠BCE,∴△BCD∽△AED,∴BC:AE=CD:ED,AE•CD=BC•ED.【点评】本题主要考查相似三角形的性质与安定,涉及A字型相似,8字型相似等相关内容,熟练掌握相关判定是解题关键.8(2022春•杨浦区校级期中)如图1,在△ABC中,点E在AC的延长线上,且∠E=∠ABC.(1)求证:AB2=AC•AE;(2)如图2,D在BC上且BD=3CD,延长AD交BE于F,若=,求的值.【分析】(1)利用两角相等的两个三角形相似,证明△ABC∽△AEB,然后利用相似三角形的性质即可解答;(2)过点E作EH∥CB,交AF的延长线于点H,利用(1)的结论可得===,先AC=2a,AB=3a,从而求出AE的长,进而求出的值,再根据已知设CD=m,BD=3m,从而求出BC,BE的长,然后证明A字模型相似三角形△ACD∽△AEH,利用相似三角形的性质可得EH=m,再证明8字模型相似三角形△BDF∽△EHF,利用相似三角形的性质可得=,从而求出EF的长,进行计算即可解答.【解答】(1)证明:∵∠E=∠ABC,∠A=∠A,∴△ABC∽△AEB,∴=,∴AB 2=AC •AE ;(2)解:过点E 作EH ∥CB ,交AF 的延长线于点H ,∵△ABC ∽△AEB ,∴===,∴设AC =2a ,AB =3a ,∴=,∴AE =a ,∴==,∵BD =3CD ,∴设CD =m ,则BD =3m ,∴BC =CD +BD =4m ,∴=,∴EB =6m ,∵EH ∥CD ,∴∠ACD =∠AEH ,∠ADC =∠AHE ,∴△ACD ∽△AEH ,∴==,∴EH =m ,∵EH ∥BD ,∴∠BDF =∠DHE ,∠DBF =∠FEH ,∴△BDF ∽△EHF ,∴===,∴EF =BE =m ,∴==,∴的值为.【点评】本题考查了相似三角形的判定与性质,平行线分线段成比例,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.9(2023•崇明区二模)已知:如图,在平行四边形ABCD中,对角线AC、BD交于E,M是边DC延长线上的一点,联结AM,与边BC交于F,与对角线BD交于点G.(1)求证:AG2=GF•GM;(2)联结CG,如果∠BAG=∠BCG,求证:平行四边形ABCD是菱形.【分析】(1)由平行线的性质和相似三角形的平行判定法,可得到△ABG∽△MDG、△ADG∽△FBG,再利用相似三角形的性质得结论;(2)利用“两角对应相等”先说明△GCF∽△GMC,再利用等腰三角形的三线合一说明BD⊥AC,最后利用菱形的判定方法得结论.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB∥DM,AD∥BC.∴△ABG∽△MDG,△ADG∽△FBG.∴=,=.∴=.∴AG2=GF•GM.(2)∵AB∥DM,∴∠BAG=∠M.∵∠BAG=∠BCG,∴∠M=∠BCG.∵∠MGC=∠FGC,∴△GCF∽△GMC.∴=,即CG2=GF•GM.∵AG2=GF•GM,∴CG2=AG2.∴CG =AG .∵四边形ABCD 是平行四边形,∴AE =CE .∴GE ⊥AC ,即BD ⊥AC .∴平行四边形ABCD 是菱形.【点评】本题主要考查了相似三角形的性质和判定,掌握相似三角形的判定和性质、平行四边形的性质、菱形的判定方法、等腰三角形的判定和性质等知识点是解决本题的关键.10(2021秋•虹口区期末)如图,在梯形ABCD 中,∠ABC =90°,AD ∥BC ,BC =2AD ,对角线AC 与BD 交于点E .点F 是线段EC 上一点,且∠BDF =∠BAC .(1)求证:EB 2=EF •EC ;(2)如果BC =6,sin ∠BAC =,求FC 的长.【分析】(1)先由AD ∥BC 得到△EAD ∽△ECB ,从而得到,然后由∠BDF =∠BAC 、∠AEB =∠DEF 得证△EAB ∽△EDF ,进而得到,最后得到结果;(2)先利用条件得到AC 、AB 的长,然后利用BC =2AD 得到AD 、BD 的长,再结合相似三角形的性质得到EB 、EC 的长,进而得到EF 的长和FC 的长.【解答】(1)证明:∵AD ∥BC ,∴△EAD ∽△ECB ,∴,即,∵∠BDF =∠BAC ,∠AEB =∠DEF ,∴△EAB ∽△EDF ,∴,∴,∴EB2=EF•EC.(2)解:∵BC=6,sin∠BAC==,BC=2AD∴AC=9,AD=3,∵∠ABC=90°,AD∥BC,∴∠BAD=90°,∴AB===3,∴BD===3,∵△EAD∽△ECB,∴,∴EC=AC=×9=6,EB=BD=×3=2,∵EB2=EF•EC,即(2)2=6EF,∴EF=4,∴FC=EC-EF=6-4=2.【点评】本题考查了直角梯形的性质、相似三角形的判定与性质、勾股定理,解题的关键是熟知“8”字模型相似三角形的判定与性质.11(2021秋•嘉定区期末)如图,在梯形ABCD中,AD∥BC,点E在线段AD上,CE与BD相交于点H,CE与BA的延长线相交于点G,已知DE:AE=2:3,BC=4DE,CE=10.求EH、GE的长.【分析】根据题目的已知并结合图形分析8字型模型相似三角形和A字型模型相似三角形,然后进行计算即可解答.【解答】解:∵AD∥BC,∴∠ADB=∠DBC,∠DEC=∠ECB,∴△DEH∽△BCH,∴,∵BC=4DE,∴,∵CE=10,∴HC=10-EH,∴,∴EH=2,∵BC=4DE,DE:AE=2:3,∴,∵AD∥BC,∴∠GAE=∠GBC,∠GEA=∠GCB,∴△GAE∽△GBC,∴,∵CE=10,∴GC=10+GE,∴,∴GE=6.【点评】本题考查了相似三角形的判定与性质,梯形,熟练掌握8字型模型相似三角形和A字型模型相似三角形是解题的关键.12(2021秋•杨浦区期末)如图,已知在Rt△ABC中,∠ACB=90°,AC=BC=5,点D为射线AB上一动点,且BD<AD,点B关于直线CD的对称点为点E,射线AE与射线CD交于点F.(1)当点D在边AB上时,①求证:∠AFC=45°;②延长AF与边CB的延长线相交于点G,如果△EBG与△BDC相似,求线段BD的长;(2)联结CE、BE,如果S△ACE=12,求S△ABE的值.【分析】(1)①如图1,连接CE,根据轴对称的性质可得:EC=BC,∠ECF=∠BCF,设∠ECF=∠BCF=α,则∠BCE=2α,∠ACE=90°-2α,再利用等腰三角形性质即可证得结论;②如图2,连接BE,CE,由△EBG∽△BDC,可得出∠G=∠BCD=22.5°,过点D作DH⊥AB交BC于点H,则△BDH是等腰直角三角形,推出CH=DH=BD,再根据CH+BH=BC=5,建立方程求解即可;(2)分两种情况:Ⅰ.当点D在AB上时,如图3,过点C作CM⊥AE于点M,连接BF,利用勾股定理、三角形面积建立方程求解即可;Ⅱ.当点D在AB的延长线上时,如图4,过点C作CM⊥AE于点M,连接BF,利用勾股定理、三角形面积建立方程求解即可.【解答】解:(1)①证明:如图1,连接CE,∵点B关于直线CD的对称点为点E,∴EC=BC,∠ECF=∠BCF,设∠ECF=∠BCF=α,则∠BCE=2α,∴∠ACE=90°-2α,∵AC=BC,∴AC=EC,∴∠AEC=∠EAC=[180°-(90°-2α)]=45°+α,∵∠AEC=∠AFC+∠ECF=∠AFC+α,∴∠AFC=45°;②如图2,连接BE,CE,∵B、E关于直线CF对称,∴CF垂直平分BE,由(1)知:∠AFC=45°,∴∠BEF=45°,∵△EBG与△BDC相似,∠BEG=∠DBC=45°,∵∠EBG与∠BDC均为钝角,∴△EBG∽△BDC,∴∠G=∠BCD=∠BAG,∵∠G+∠BAG=∠ABC=45°,∴∠G=∠BCD=22.5°,过点D作DH⊥AB交BC于点H,则△BDH是等腰直角三角形,∴DH=BD,BH=BD,∠BHD=45°,∵∠CDH=∠BHD-∠BCD=45°-22.5°=22.5°=∠BCD,∴CH=DH=BD,∵CH+BH=BC=5,∴BD+BD=5,∴BD==5-5,∴线段BD的长为5-5;(2)Ⅰ.当点D在AB上时,如图3,过点C作CM⊥AE于点M,连接BF,∵AC=EC=BC=5,∴AM=EM=AE,∴①AM2+CM2=AC2=25,∵S△ACE=AE•CM=12,∴②AM•CM=12,①+②×2,得:(AM+CM)2=49③,①-②×2,得:(AM-CM)2=49③,∵CM>AM>0,∴AM=3,CM=4,∴AE=6,由(1)知:∠AFC=45°,BE⊥CF,∴∠BEF=45°,∵∠AFC=∠ABC=45°,∴A、C、B、F四点共圆,∴∠AFB+∠ACB=180°,∴∠AFB=90°,∴△BEF是等腰直角三角形,∴EF=BF,设EF=BF=x,则AE=x+6,在Rt△ABF中,AF2+BF2=AB2,∴(x+6)2+x2=50,解得:x=1或x=-7(舍去),∴BF=1,∴S△ABE=AE•BF=×6×1=3;Ⅱ.当点D在AB的延长线上时,如图4,过点C作CM⊥AE于点M,连接BF,由(1)知:∠AFC=45°,CF垂直平分BE,∴∠BEF=45°,BF=EF,∴∠EBF=∠BEF=45°,∴∠BFE=90°,∵AC=EC=BC=5,∴AM=EM=AE,与Ⅰ同理可得:AM=EM=4,CM=3,AE=8,设BF=EF=y,则AF=8-y,在Rt△ABF中,AF2+BF2=AB2,∴(8-y)2+y2=50,解得:y=1或y=7(舍去),∴BF=1,∴S△ABE=AE•BF=×8×1=4;综上,S△ABE的值为3或4.【点评】本题考查了三角形面积,等腰直角三角形性质和判定,相似三角形的判定和性质,轴对称变换的性质,勾股定理等,解题关键是添加辅助线构造直角三角形,运用分类讨论思想和方程思想解决问题.。
初中数学知识归纳相似三角形的性质与计算
初中数学知识归纳相似三角形的性质与计算相似三角形是初中数学中的重要概念之一,它在几何学中具有很大的应用价值。
了解相似三角形的性质和计算方法,对于解决各种几何问题以及日常生活中的实际问题都有一定的帮助。
本文将对初中数学中与相似三角形相关的知识进行归纳总结,包括相似三角形的性质、相似三角形的判定、相似三角形的计算方法等。
一、相似三角形的性质相似三角形的性质主要包括比例关系和角度关系两个方面。
1.1 比例关系设两个三角形ABC和A'B'C'相似,对应边的比例关系为:AB/A'B' = BC/B'C' = AC/A'C'其中,AB与A'B'、BC与B'C'、AC与A'C'的比值相等。
根据比例关系,我们可以得出以下结论:1)相似三角形的对应边成比例;2)相似三角形的对应线段中点连线与其余两边也成比例。
1.2 角度关系相似三角形的对应角相等,即∠A = ∠A',∠B = ∠B',∠C = ∠C'。
根据角度关系,我们可以得出以下结论:1)相似三角形的对应角以及对应角的余角相等;2)相似三角形的对应边与其对应角的正弦、余弦、正切等三角函数值相等。
二、相似三角形的判定判定两个三角形是否相似,一般需要满足以下条件之一:2.1 AAA判定法则如果两个三角形的对应角相等,则这两个三角形相似。
2.2 AA判定法则如果两个三角形的两对对应角相等,则这两个三角形相似。
2.3 SAS判定法则如果两个三角形的一对对应边成比例,且这两对对应边所夹的角相等,则这两个三角形相似。
2.4 SSS判定法则如果两个三角形的三对对应边成比例,则这两个三角形相似。
三、相似三角形的计算方法在解决相似三角形问题时,我们常常需要运用比例关系进行计算。
以下是一些常见的计算方法:3.1 求相似三角形的边长比例已知两个相似三角形的一个对应边的长度比例,可以通过设置比例等式求解另一个对应边的长度比例。
最新相似三角形-经典模型总结与例题分类
相似三角形经典模型总结经典模型【精选例题】 “平行型”【例1】 如图,111EE FF MM ∥∥,若AE EF FM MB ===,则111111:::_________AEE EE F F FF M M MM CB S S S S ∆=四边形四边形四边形M 1F 1E 1M E F A BC【例2】 如图,AD EF MN BC ∥∥∥,若9AD =,18BC =,::2:3:4AE EM MB =,则_____EF =,_____MN =M N A BCD E F【例3】 已知,P 为平行四边形ABCD 对角线,AC 上一点,过点P 的直线与AD ,BC ,CD 的延长线,AB 的延长线分别相交于点E ,F ,G ,H求证:PE PHPF PG=PHGFEDCBA【例4】 已知:在ABC ∆中,D 为AB 中点,E 为AC 上一点,且2AEEC=,BE 、CD 相交于点F ,求BFEF的值【例5】 已知:在ABC ∆中,12AD AB =,延长BC 到F ,使13CF BC =,连接FD 交AC 于点E 求证:①DE EF = ②2AE CE =ABCDFEFE DCBA【例6】 已知:D ,E 为三角形ABC 中AB 、BC 边上的点,连接DE 并延长交AC 的延长线于点F ,::BD DE AB AC =求证:CEF ∆为等腰三角形FEDCBA【例7】 如图,已知////AB EF CD ,若AB a =,CD b =,EF c =,求证:111c a b=+.FE DCBA【例8】 如图,找出ABD S ∆、BED S ∆、BCD S ∆之间的关系,并证明你的结论.FE DCBA【例9】 如图,四边形ABCD 中,90B D ∠=∠=︒,M 是AC 上一点,ME AD ⊥于点E ,MF BC⊥于点F求证:1MF MEAB CD+= ABCDEF M【例10】 如图,在ABC ∆中,D 是AC 边的中点,过D 作直线EF 交AB 于E ,交BC 的延长线于F求证:AE BF BE CF ⋅=⋅FEDC BA【例11】 如图,在线段AB 上,取一点C ,以AC ,CB 为底在AB 同侧作两个顶角相等的等腰三角形ADC ∆和CEB ∆,AE 交CD 于点P ,BD 交CE 于点Q ,求证:CP CQ =QPEDC BA【例12】 阅读并解答问题.在给定的锐角三角形ABC 中,求作一个正方形DEFG ,使D ,E 落在BC 边上,F ,G 分别落在AC ,AB 边上,作法如下:第一步:画一个有三个顶点落在ABC ∆两边上的正方形''''D E F G 如图, 第二步:连接'BF 并延长交AC 于点F 第三步:过F 点作FE BC ⊥,垂足为点E 第四步:过F 点作FG BC ∥交AB 于点G 第五步:过G 点作GD BC ⊥,垂足为点D 四边形DEFG 即为所求作的正方形问题:⑴证明上述所作的四边形DEFG 为正方形⑵在ABC ∆中,如果6BC =+45ABC ∠=︒,75BAC ∠=︒,求上述正方形DEFG 的边长G'F'E'D'ABCDEFG“平行旋转型”图形梳理:AEF 旋转到AE‘F’CBAAEF 旋转到AE‘F’CBBCAEF 旋转到AE‘F’ABCAEF 旋转到AE‘F’特殊情况:B 、'E 、'F 共线AEF 旋转到AE‘F’CBAAB CEF E'F'AEF 旋转到AE‘F’C ,'E ,'F 共线AEF 旋转到AE‘F’CBAAEF 旋转到AE‘F’CBA【例13】 已知梯形ABCD ,AD BC ∥,对角线AC 、BD 互相垂直,则①证明:2222AD BC AB CD +=+OAB CD【例14】 当AOD ∆,以点O 为旋转中心,逆时针旋转θ度(090θ<<),问上面的结论是否成立,请说明理由DCB AO【例15】 (全国初中数学联赛武汉选拔赛试题)如图,四边形ABCD 和BEFG 均为正方形,求::AG DF CE =_________.ABEF GGFEDCBA“斜交型”【例16】 如图,ABC ∆中,D 在AB 上,且DE BC ∥交AC 于E ,F 在AD 上,且2AD AF AB =⋅,求证:AEF ACD ∆∆:F ED CBA【例17】 如图,等边三角形ABC 中,D ,E 分别在BC ,AB 上,且CE BE =,AD ,CE 相交于M ,求证:EAM ECA ∆∆:M E D C B A【例18】 如图,四边形ABCD 的对角线相交于点O ,BAC CDB ∠=∠,求证:DAC CBD ∠=∠ODCBA【例19】 如图,设AB BC CAAD DE EA==,则12∠=∠吗? 21ABCDE【例20】 在锐角三角形ABC 中,AD ,CE 分别为BC ,AB 边上的高,ABC ∆和BDE ∆的面积分别等于18和2,2DE =,求AC 边上的高ABCDE【例21】 如图,在等边ABC ∆的边BC 上取点D ,使21=CD BD ,作CH AD ⊥,H 为垂足,连结BH 。
相似三角形的性质及判定知识点总结+经典题型总结
一、相似的有关概念1.相似形具有相同形状的图形叫做相似形.相似形仅是形状相同,大小不一定相同.相似图形之间的互相变换称为相似变换. 2.相似图形的特性两个相似图形的对应边成比例,对应角相等. 3.相似比两个相似图形的对应角相等,对应边成比例.二、相似三角形的概念1.相似三角形的定义对应角相等,对应边成比例的三角形叫做相似三角形.如图,ABC △与A B C '''△相似,记作ABC A B C '''△∽△,符号∽读作“相似于”.2.相似比相似三角形对应边的比叫做相似比.全等三角形的相似比是1.“全等三角形”一定是“相似形”,“相似形”不一定是“全等形”.三、相似三角形的性质知识点睛 中考要求 相似三角形的性质及判定1.相似三角形的对应角相等如图,ABC △与A B C '''△相似,则有A A B B C C '''∠=∠∠=∠∠=∠,,.2.相似三角形的对应边成比例ABC △与A B C '''△相似,则有AB BC ACk A B B C A C===''''''(k 为相似比).3.相似三角形的对应边上的中线,高线和对应角的平分线成比例,都等于相似比.如图1,ABC △与A B C '''△相似,AM 是ABC △中BC 边上的中线,A M ''是A B C '''△中B C ''边上的中线,则有AB BC AC AMk A B B C A C A M ====''''''''(k 为相似比).图1如图2,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,则有AB BC AC AHk A B B C A C A H====''''''''(k 为相似比).图2如图3,ABC △与A B C '''△相似,AD 是ABC △中BAC ∠的角平分线,A D ''是A B C '''△中B A C '''∠的角平分线,则有AB BC AC ADk A B B C A C A D====''''''''(k 为相似比).图34.相似三角形周长的比等于相似比. 如图4,ABC △与A B C '''△相似,则有AB BC ACk A B B C A C ===''''''(k 为相似比).应用比例的等比性质有AB BC AC AB BC ACk A B B C A C A B B C A C++====''''''''''''++. 图45.相似三角形面积的比等于相似比的平方.如图5,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,则有AB BC AC AHk A B B C A C A H ====''''''''(k 为相似比).进而可得21212ABC A B C BC AHS BC AH k S B C A H B C A H '''⋅⋅==⋅=''''''''⋅⋅△△.图5四、相似三角形的判定1.平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似. 2.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.可简单说成:两角对应相等,两个三角形相似.3.如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似. 4.如果一个三角形的三条边与另一个三角形的你对应成比例,那么这两个三角形相似.可简单地说成:三边对应成比例,两个三角形相似.5.如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.6.直角三角形被斜边上的高分成的两个直角三角形相似(常用但要证明)7.如果一个等腰三角形和另一个等腰三角形的顶角相等或一对底角相等,那么这两个等腰三角形相似;如果它们的腰和底对应成比例,那么这两个等腰三角形也相似.五、相似证明中的比例式或等积式、比例中项式、倒数式、复合式证明比例式或等积式的主要方法有“三点定形法”. 1.横向定型法 欲证AB BCBE BF=,横向观察,比例式中的分子的两条线段是AB 和BC ,三个字母A B C ,,恰为ABC △的顶点;分母的两条线段是BE 和BF ,三个字母B E F ,,恰为BEF △的三个顶点.因此只需证ABC EBF △∽△. 2.纵向定型法 欲证AB DEBC EF=,纵向观察,比例式左边的比AB 和BC 中的三个字母A B C ,,恰为ABC △的顶点;右边的比两条线段是DE 和EF 中的三个字母D E F ,,恰为DEF △的三个顶点.因此只需证ABC DEF △∽△. 3.中间比法由于运用三点定形法时常会碰到三点共线或四点中没有相同点的情况,此时可考虑运用等线,等比或等积进行变换后,再考虑运用三点定形法寻找相似三角形.这种方法就是等量代换法.在证明比例式时,常用到中间比.比例中项式的证明,通常涉及到与公共边有关的相似问题。
初中几何模型及常见结论的总结归纳
初中几何模型及常见结论的总结归纳一、引言在初中数学学习中,几何是一个重要的部分,它不仅涉及到图形的性质和特点,还涉及到一些基本的几何模型和常见结论。
掌握这些模型和结论,有助于更好地理解和应用几何知识,提高解题能力和数学素养。
二、初中几何模型总结1. 全等三角形模型:两个三角形全等,则它们的边相等或角相等。
2. 相似三角形模型:两个三角形相似,则它们的对应边成比例。
3. 直角三角形模型:直角三角形的两个锐角互余。
4. 平行线模型:两直线平行,同位角相等,内错角相等,同旁内角互补。
5. 三角形内角和定理:三角形内角和为180度。
6. 多边形内角和定理:n边形内角和等于(n-2) × 180度。
7. 三角形重心性质模型:三角形的重心是三边中线的交点,重心到顶点的距离是它到对边中点距离的2倍。
三、常见结论归纳1. 等腰三角形的特点:等腰三角形两底角相等,顶角平分线垂直平分底边。
2. 直角三角形的特点:直角三角形斜边上的中线等于斜边的一半;勾股定理的逆定理适用;两个锐角互余。
3. 平行线的判定和性质:平行线的判定主要是依据平行线的定义和两直线夹角相等;平行线的性质主要有两直线平行,同位角相等;三角形内角和定理的推论等。
4. 辅助线常见位置和方法:在添加辅助线时,常常用到截长补短、垂直平分线、对顶角相等、平行线的性质等。
四、应用举例1. 利用全等三角形模型解决实际问题:例如测量旗杆高度或河流宽度等问题,需要用到全等三角形的性质。
2. 利用相似三角形模型解决实际问题:例如测量河对岸的建筑物高度或篮球架高度等问题,需要用到相似三角形的性质。
3. 利用平行线模型解决实际问题:例如求两直线的距离问题,需要用到平行线的判定和性质。
4. 利用勾股定理解决实际问题:例如求斜坡的长度等问题,需要用到勾股定理的性质。
五、总结通过总结归纳初中几何模型和常见结论,可以更好地理解和应用几何知识,提高解题能力和数学素养。
在应用时,需要根据具体情况选择合适的几何模型和结论,并结合辅助线等方法解决问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形相似模型总结
三角形相似是初中数学里非常重要的知识点,是中考中一定会涉及的考点之一。
三角形相似的判定和应用题型千变万化,但“万变不离其宗”,常用的一共有以下8种模型。
1、8字形模型
2、反8字形模型
3、A字形模型
4、反A字形模型
5、共边反A字形模型
6、剪刀反A字形模型
7、一线三等角模型
8、一线三垂直模型
【应用举例】
通常来讲,题目中遇到线段成某个比例的已知条件,往往会和三角形相似结合起来。
因为三角形相似就能利用线段的比例。
本题中,△CEF和△EFD是对折关系,所以∠EDF=∠C=60度。
进而得到∠A=∠B=∠EDF=60度,一线三等角模型太明显不过了。
因此:△AED ∽△DBF。