中职数学基础模块上册《集合》ppt课件
合集下载
语文版中职数学基础模块上册1.1《集合》ppt课件1
同时,大家要开动脑筋,思考老师是怎样提出问题、分析问题、解决问题的,要边听边想。为讲明一个定理,推出一个公式,老师讲解顺序是怎样的, 为什么这么安排?两个例题之间又有什么相同点和不同之处?特别要从中学习理科思维的方法,如观察、比较、分析、综合、归纳、演绎等。 • 作为实验科学的物理、化学和生物,就要特别重视实验和观察,并在获得感性知识的基础上,进一步通过思考来掌握科学的概念和规律,等等。 • 二、听文科课要注重在理解中记忆 • 文科多以记忆为主,比如政治,要注意哪些是观点,哪些是事例,哪些是用观点解释社会现象。听历史课时,首先要弄清楚本节教材的主要观点,然 后,弄清教材为了说明这一观点引用了哪些史实,这些史料涉及的时间、地点、人物、事件。最后,也是关键的一环,看你是否真正弄懂观点与史料间 的关系。最好还能进一步思索:这些史料能不能充分说明观点?是否还可以补充新的史料?有无相反的史料证明原观点不正确。 • 三、听英语课要注重实践 • 英语课老师往往讲得不太多,在大部分的时间里,进行的师生之间、学生之间的大量语言实践练习。因此,要上好英语课,就应积极参加语言实践活 动,珍惜课堂上的每一个练习机会。
数学的怎样学
学习目标
合作的意识 积极主动的表现力 勇于探索的精神和求知欲
学习数学的乐趣和信心、相关生活经验
开始学习啦!
岱岳职教
第一章 集 合
1.1 集合的概念
岱岳职教
创设情景 兴趣导入
问题 某商店进了一批货,包括:面包、饼干、汉堡、彩笔、 水笔、橡皮、果冻、薯片、裁纸刀、尺子.
那么如何将这些商品放在指定的篮筐里:
2019/7/31
最新中小学教学课件
16
thank
you!
2019/7/31
最新中小学教学课件
数学的怎样学
学习目标
合作的意识 积极主动的表现力 勇于探索的精神和求知欲
学习数学的乐趣和信心、相关生活经验
开始学习啦!
岱岳职教
第一章 集 合
1.1 集合的概念
岱岳职教
创设情景 兴趣导入
问题 某商店进了一批货,包括:面包、饼干、汉堡、彩笔、 水笔、橡皮、果冻、薯片、裁纸刀、尺子.
那么如何将这些商品放在指定的篮筐里:
2019/7/31
最新中小学教学课件
16
thank
you!
2019/7/31
最新中小学教学课件
中职教育-数学(基础模块)上册课件:第一章.ppt
2.真子集 如果集合B是集合A的子集,并且A中至少有一个元素不属 于B,那么集合B称为集合A的真子集,记作B A(或 A B ), 读作“B真包含于A”(或“A真包含B”). 易知,空集是任何非空集合的真子集.
当集合B是集合A的真 子集时,可用图1-1直观地 表示.两条封闭曲线的内 部分别表示集合A、B.
自然数集
正整数集 常
用 数
整数集
集
有理数集
实数集
所有自然数组成的集合称为自然数集,记作N; 所有正整数组成的集合称为正整数集,记作 N ; 所有整数组成的集合称为整数集,记作Z; 所有有理数组成的集合称为有理数集,记作Q; 所有实数组成的集合称为实数集,记作R.
给定一个集合A,如果a是集合A的元素,就说a属于A,记 作a A ;如果a不是集合A的元素,就说a不属于A,记作a A .
一个集合可以包含有限个元素,也可以包含无限个元素.我 们把含有有限个元素的集合称为有限集,如方程x2 9 0 的解 集;含有无限个元素的集合称为无限集,如N,N, Z,Q,R等.
特别地,不含任何元素的集合称为空集,记作 .例如, 方程 x2 1 0 在实数范围内的解集就是空集.
例1 下列对象能否组成一个集合? (1)所有短发的女生; (2)小于10的正奇数; (3)方程x2-9=0的所有解; (4)不等式x-7>0的所有解.
所以这个集合可以表示为
x | x 3,且x 2k 1,k Z .
(2)解不等式3x 1 0 得 x 1 ,所以该不等式的解
3
集为
x | x
.1
3
(3)平面直角坐标系中的点可表示为(x ,y) ,因此直线 y 2x 1上的点组成的集合为
(x ,y) | y 2x 1.
高教版中职数学(基础模块)上册1.1《集合的概念》ppt课件1
遍自己写的笔记,既可以起到复习的作用,又可以检查笔记中的遗漏和错误。遗漏之处要补全,错别字要纠正,过于潦草的字要写清楚。同时,将自己 对讲课内容的理解、自己的收获和感想,用自己的话写在笔记本的空白处。这样,可以使笔记变的更加完整、充实。 • 三、课后“静思2分钟”大有学问 • 我们还要注意课后的及时思考。利用课间休息时间,在心中快速把刚才上课时刚讲过的一些关键思路理一遍,把老师讲解的题目从题意到解答整个过 程详细审视一遍,这样,不仅可以加深知识的理解和记忆,还可以轻而易举地掌握一些关键的解题技巧。所以,2分钟的课后静思等于同一学科知识的 课后复习30分钟。
读作:a属于A
如果a不是集A的元素,记作: a A
读作:a不属于A
例如,用A表示“ 1~20以内所有的质数”组成
的集合,则有3__∊_A,4__∉_A,等等。
元素与集合的关系
练习:1 ∈N,-5 ∈Z, Q
1.5 N, 1.5 ∈R,
1.5 Q, ∈ 1.5 Z
例例32:、已知1、x、x 2三个实数构成一个集合, 求x应满足的条件
• 一、释疑难 • 对课堂上老师讲到的内容自己想不通卡壳的问题,应该在课堂上标出来,下课时,在老师还未离开教室的时候,要主动请老师讲解清楚。如果老师已
经离开教室,也可以向同学请教,及时消除疑难问题。做到当堂知识,当堂解决。 • 二、补笔记 • 上课时,如果有些东西没有记下来,不要因为惦记着漏了的笔记而影响记下面的内容,可以在笔记本上留下一定的空间。下课后,再从头到尾阅读一
合作探究:
(1)世界上最高的山能不能构成集合?
确定性
(2)世界上的高山能不能构成集合?
(3)由实数1、2、3、1组成的集合有几个元素?
互异性
(4)由实数1、2、3组成的集合记为A,
读作:a属于A
如果a不是集A的元素,记作: a A
读作:a不属于A
例如,用A表示“ 1~20以内所有的质数”组成
的集合,则有3__∊_A,4__∉_A,等等。
元素与集合的关系
练习:1 ∈N,-5 ∈Z, Q
1.5 N, 1.5 ∈R,
1.5 Q, ∈ 1.5 Z
例例32:、已知1、x、x 2三个实数构成一个集合, 求x应满足的条件
• 一、释疑难 • 对课堂上老师讲到的内容自己想不通卡壳的问题,应该在课堂上标出来,下课时,在老师还未离开教室的时候,要主动请老师讲解清楚。如果老师已
经离开教室,也可以向同学请教,及时消除疑难问题。做到当堂知识,当堂解决。 • 二、补笔记 • 上课时,如果有些东西没有记下来,不要因为惦记着漏了的笔记而影响记下面的内容,可以在笔记本上留下一定的空间。下课后,再从头到尾阅读一
合作探究:
(1)世界上最高的山能不能构成集合?
确定性
(2)世界上的高山能不能构成集合?
(3)由实数1、2、3、1组成的集合有几个元素?
互异性
(4)由实数1、2、3组成的集合记为A,
中职数学基础模块(上册)《集合》课件
函数。
函数的图像
01
函数图像的概念
函数图像是将定义域中的每一个x值对应的y值在坐标系中描绘出来形成
的图形。
02
绘制函数图像的步骤
首先确定定义域和值域,然后根据函数的表达式在坐标系中描点,最后
连接这些点形成的图形就是函数的图像。
03
函数图像的性质
函数的图像具有连续性和单调性等性质。连续性是指函数图像上的任意
结合律
若A、B、C是三个集合,则(A并 B)并C等于A并(B并C)。
分配律
若A、B、C是三个集合,则A并 (B交C)等于(A并B)交(A并C)。
集合的基本运算的应用
解决实际问题的应用
例如,在解决几何问题时,可以运用交集、并集和补集的概念, 帮助确定点、线、面的位置关系。
数学推理的应用
在数学推理中,交集、并集和补集的运算可以帮助推导出一些重要 的数学结论。
中职数学基础模块(上册)《 集合》课件
汇报人: 2023-12-11
目录
• 集合的概述 • 集合的基本运算 • 集合的函数特性 • 集合的实际应用 • 复习与巩固
01
集合的概述
集合的定义
集合
由具有某种特定性质的个体组成 的整体,这些个体称为集合的元 素。
元素
构成集合的个体,称为集合的元 素。
集合的表示方法
THANK YOU
集合在数学中的应用
描述几何图形中的点
01
在几何图形中,所有的点可以构成一个集合。
描述函数定义域
02
函数的定义域可以看作一个集合,每个使函数有定义的x值都是
集合中的一个元素。
描述概率事件
03
在概率论中,所有的可能事件可以构成一个集合,每个事件是
函数的图像
01
函数图像的概念
函数图像是将定义域中的每一个x值对应的y值在坐标系中描绘出来形成
的图形。
02
绘制函数图像的步骤
首先确定定义域和值域,然后根据函数的表达式在坐标系中描点,最后
连接这些点形成的图形就是函数的图像。
03
函数图像的性质
函数的图像具有连续性和单调性等性质。连续性是指函数图像上的任意
结合律
若A、B、C是三个集合,则(A并 B)并C等于A并(B并C)。
分配律
若A、B、C是三个集合,则A并 (B交C)等于(A并B)交(A并C)。
集合的基本运算的应用
解决实际问题的应用
例如,在解决几何问题时,可以运用交集、并集和补集的概念, 帮助确定点、线、面的位置关系。
数学推理的应用
在数学推理中,交集、并集和补集的运算可以帮助推导出一些重要 的数学结论。
中职数学基础模块(上册)《 集合》课件
汇报人: 2023-12-11
目录
• 集合的概述 • 集合的基本运算 • 集合的函数特性 • 集合的实际应用 • 复习与巩固
01
集合的概述
集合的定义
集合
由具有某种特定性质的个体组成 的整体,这些个体称为集合的元 素。
元素
构成集合的个体,称为集合的元 素。
集合的表示方法
THANK YOU
集合在数学中的应用
描述几何图形中的点
01
在几何图形中,所有的点可以构成一个集合。
描述函数定义域
02
函数的定义域可以看作一个集合,每个使函数有定义的x值都是
集合中的一个元素。
描述概率事件
03
在概率论中,所有的可能事件可以构成一个集合,每个事件是
中职数学基础模块上册《集合之间的关系》课件
离散概率论
离散概率论是研究离散随机事件的数学分支,集合之间的关系在其中扮演着重要的角色。 例如,在计算各种离散随机事件的概率时,我们需要用到集合之间的关系。
在其他学科中的应用
物理学
在物理学中,集合之间的关系可以帮助我们理解物理现象和规律。例如,在研究物体的运动轨迹时, 我们可以将物体的位置和速度看作是两个集合,通过研究它们之间的关系来理解物体的运动轨迹。
交集
两个集合A和B的交集是由所有同 时属于A和B的元素组成的集合。
差集
集合A与集合B的差集是由属于A但 不属于B的元素组成的集合。
CHAPTER 03
集合之间的关系的应用
在日常生活中的应用
01
分类问题
在日常生活中,我们经常需要对事物进行分类,这实际上就是运用了集
合之间的关系。例如,将水果、蔬菜、肉类等物品分类放置,便于管理
中职数学基础模块上 册《集合之间的关系 》ppt课件
目录
• 集合的基本概念 • 集合之间的关系 • 集合之间的关系的应用 • 集合之间的关系的深入理解
CHAPTER 01
集合的基本概念
集合的定义
总结词
集合是由确定的、不同的元素所组成的总体。
详细描述
集合是数学中一个基本概念,它是由一组确定的、不同的元素所组成的总体。 这些元素可以是数字、字母、图形等,它们在集合中具有共同的特征或属性。
计算机科学
在计算机科学中,集合之间的关系可以帮助我们理解数据结构和算法。例如,在研究各种排序算法时 ,我们需要用到集合之间的关系来分析算法的时间复杂度和空间复杂度。
CHAPTER 04
集合之间的关系的深入理解
集合的势
总结词
集合的势描述了集合中元素的数量, 是集合之间关系的重要概念。
离散概率论是研究离散随机事件的数学分支,集合之间的关系在其中扮演着重要的角色。 例如,在计算各种离散随机事件的概率时,我们需要用到集合之间的关系。
在其他学科中的应用
物理学
在物理学中,集合之间的关系可以帮助我们理解物理现象和规律。例如,在研究物体的运动轨迹时, 我们可以将物体的位置和速度看作是两个集合,通过研究它们之间的关系来理解物体的运动轨迹。
交集
两个集合A和B的交集是由所有同 时属于A和B的元素组成的集合。
差集
集合A与集合B的差集是由属于A但 不属于B的元素组成的集合。
CHAPTER 03
集合之间的关系的应用
在日常生活中的应用
01
分类问题
在日常生活中,我们经常需要对事物进行分类,这实际上就是运用了集
合之间的关系。例如,将水果、蔬菜、肉类等物品分类放置,便于管理
中职数学基础模块上 册《集合之间的关系 》ppt课件
目录
• 集合的基本概念 • 集合之间的关系 • 集合之间的关系的应用 • 集合之间的关系的深入理解
CHAPTER 01
集合的基本概念
集合的定义
总结词
集合是由确定的、不同的元素所组成的总体。
详细描述
集合是数学中一个基本概念,它是由一组确定的、不同的元素所组成的总体。 这些元素可以是数字、字母、图形等,它们在集合中具有共同的特征或属性。
计算机科学
在计算机科学中,集合之间的关系可以帮助我们理解数据结构和算法。例如,在研究各种排序算法时 ,我们需要用到集合之间的关系来分析算法的时间复杂度和空间复杂度。
CHAPTER 04
集合之间的关系的深入理解
集合的势
总结词
集合的势描述了集合中元素的数量, 是集合之间关系的重要概念。
北师大版中职数学基础模块上册:1.1.2常见集合课件(共14张PPT)
这样元素个数无限的集合,称为无限集.
调动思维,探究新知 在活初动中2,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
还有一种集合,它不含任何元素.例如,方程x2+1=0 的实数解组成的集合,因为方程x2+1=0在实数范围内无 解,因此,这个集合中没有任何元素,这样的集合叫作 空集,记作 ∅. 合作交流
知识回顾 有理数:整数和分数的统称;无理数;无限不循环
小数;实数:有理数和无理数的统称. 如果集合中的元素是数,那么这样的集合称为数集
, 在数学中,常用的数集有规定的记号.
调动思维,探究新知 在活初动中4,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
全体自然数组成的集合,记作N,称为自然数集; 全体正整数组成的集合,记作N*或N+,称为正整 数集; 全体整数组成的集合,记作Z,称为整数集; 全体有理数组成的集合,记作Q,称为有理数集; 全体实数组成的集合,记作R,称为实数集.
活动 5 巩固练习,提升素养 例2 .用符号“∈”或“∉”填空.
(1)1 N+;(2) 3 Q;(3) 1 Z.
2
活动 5 巩固练习,提升素养
解 (1)1是正整数,所以填“∈”;
(2) 3 是无理数,不是有理数,所以填“∉”;
1
(3)
ቤተ መጻሕፍቲ ባይዱ
不是整数,所以填“∉”.
2
课堂小结
1.1.2
/作业布置/
P6,练习1./2./3.
由数字0组成的集合与空集 ∅有区别吗?与同学交 流讨论.
活动 3 巩固练习,提升素养
例1 .请指出下列对象中,哪些是有限集,哪些是无 限集.
调动思维,探究新知 在活初动中2,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
还有一种集合,它不含任何元素.例如,方程x2+1=0 的实数解组成的集合,因为方程x2+1=0在实数范围内无 解,因此,这个集合中没有任何元素,这样的集合叫作 空集,记作 ∅. 合作交流
知识回顾 有理数:整数和分数的统称;无理数;无限不循环
小数;实数:有理数和无理数的统称. 如果集合中的元素是数,那么这样的集合称为数集
, 在数学中,常用的数集有规定的记号.
调动思维,探究新知 在活初动中4,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
全体自然数组成的集合,记作N,称为自然数集; 全体正整数组成的集合,记作N*或N+,称为正整 数集; 全体整数组成的集合,记作Z,称为整数集; 全体有理数组成的集合,记作Q,称为有理数集; 全体实数组成的集合,记作R,称为实数集.
活动 5 巩固练习,提升素养 例2 .用符号“∈”或“∉”填空.
(1)1 N+;(2) 3 Q;(3) 1 Z.
2
活动 5 巩固练习,提升素养
解 (1)1是正整数,所以填“∈”;
(2) 3 是无理数,不是有理数,所以填“∉”;
1
(3)
ቤተ መጻሕፍቲ ባይዱ
不是整数,所以填“∉”.
2
课堂小结
1.1.2
/作业布置/
P6,练习1./2./3.
由数字0组成的集合与空集 ∅有区别吗?与同学交 流讨论.
活动 3 巩固练习,提升素养
例1 .请指出下列对象中,哪些是有限集,哪些是无 限集.
中职数学基础模块上册《集合的运算》pptPPT课件
教材 P 16 ,练习A 组第 1~4 题.
A
茄子 虾 土豆 芹菜
B
观察得出:集合 C 是由既属于集合 A,又属于集合 B 的所有 公 共 元素组成的.
集合的交
交集:给定两个集合 A,B,由既属于 A 又属 于B 的所 有公共元素构成的集合,叫做 A,B 的交集.
记作 A ∩ B , 读作 “ A 交 B ”.
请用阴影表示出 “ A∩B ”
AB
BA
A (B)
AB
集合的交
根据交集的定义和图示,填写交集的性质. (1) A ∩ B = B ∩ A ; (2) ( A ∩ B )∩ C = A ∩( B ∩ C ); (3) A ∩ A = A ; (4) A ∩ = ∩ A = ;
想一想: 如果 A B ,那么 A ∩ B = A .
AB
AB
A
A(B)
3.并集的性质
集合的并
(1) A ∪ B = B ∪ A ;
(2) ( A ∪ B ) ∪ C = A ∪( B ∪ C );
(3) A ∪ A = A ;
(4) A ∪ = ∪ A = A .
想一想: 如果 A B ,那么 A ∪ B = B .
例2 (2) 已知 A = {x | x 是奇数}, B = {x | x 是偶数}, Z = {x | x 是整数},
求 A ∩ B.
解:A∩B = {(x,y) | 4 x+y = 6 }
∩{(x,y) | 3 x+2 y = 7 }
=+2 y = 7
= {(1,2)}.
(1,2)
O
x
3 x+2 y = 7
4 x+y = 6
1. 学生读书、反思. 2. 教师点评,学生填表:
中职数学基础模块上册《集合的表示法》ppt课件.ppt
(1){0,1,2,3,4}; (2){0,1} 思考3:这种表示集合的方法叫什么名称?
列举法 思考4:列举法表示集合的基本模式是什么?
把集合的元素一一列举出来,并用大括号“{ }” 括起来,即{a,b,c,…}
1.1.2 集合的表示法
例1(1) 用列举法表示下列集合。
大于5小于15的偶数集; {6,8,10,12,14} 方程x2-3x+2=0的解集。 {1,2} (2) 用列举法表示下列集合。
(2)抛物线y=x2-2x-1上所有点的集合;
{(x, y) | y x2 2x 1}
1.1.2 集合的表示法
练习1: 用列举法表示下列集合。
大于5小于10的整数集; 方程x2-25=0的解集。
{6,7,8,9} {-5,5}
练习2: 用描述法表示下列集合。
不小于59的全体实数构成的集合;{x|x59}
本校所有的毕业生构成的集合;{本校毕业生}
※抛物线y=x2+3上点的集合. {(x,y)|y=x2+3}
集合的表示法
小结:
列举法--把元素一一列出并用“,”分隔放在
大
括号内。
言
不含“所有”、“全体”、“集合”的语
描述法
{元素属性(满足的条件)}
所有的集合都能用描述法表示,只有部分集合
{x| x2-6x+5=0 }
全体三角形构成的集合.
{x|x是三角形}
{三角形}
在不引起混淆的情况下,用描述法表示集合时,有 些集合也可省去竖线及其左边的部分。
又如,由所有小于6的正整数组成的集合可表示为: {小于6的正整数}
知识深入
例3 分别用列举法与描述法表示下列集合: (1)x2-1=0的实数解组成的集合;
列举法 思考4:列举法表示集合的基本模式是什么?
把集合的元素一一列举出来,并用大括号“{ }” 括起来,即{a,b,c,…}
1.1.2 集合的表示法
例1(1) 用列举法表示下列集合。
大于5小于15的偶数集; {6,8,10,12,14} 方程x2-3x+2=0的解集。 {1,2} (2) 用列举法表示下列集合。
(2)抛物线y=x2-2x-1上所有点的集合;
{(x, y) | y x2 2x 1}
1.1.2 集合的表示法
练习1: 用列举法表示下列集合。
大于5小于10的整数集; 方程x2-25=0的解集。
{6,7,8,9} {-5,5}
练习2: 用描述法表示下列集合。
不小于59的全体实数构成的集合;{x|x59}
本校所有的毕业生构成的集合;{本校毕业生}
※抛物线y=x2+3上点的集合. {(x,y)|y=x2+3}
集合的表示法
小结:
列举法--把元素一一列出并用“,”分隔放在
大
括号内。
言
不含“所有”、“全体”、“集合”的语
描述法
{元素属性(满足的条件)}
所有的集合都能用描述法表示,只有部分集合
{x| x2-6x+5=0 }
全体三角形构成的集合.
{x|x是三角形}
{三角形}
在不引起混淆的情况下,用描述法表示集合时,有 些集合也可省去竖线及其左边的部分。
又如,由所有小于6的正整数组成的集合可表示为: {小于6的正整数}
知识深入
例3 分别用列举法与描述法表示下列集合: (1)x2-1=0的实数解组成的集合;
中职数学基础模块(上册)全套教学PPT课件
中职数学基础模块(上册) 全套教学
目录
第1章 集合
第3章 函数
第5章 三角函数
2022/1/12
第2章 不等式
第4章
指数函数与 对数函数
第1章 集合
1.1 集合的概念及表示方法 1.2 集合之间的关系 1.3 集合的运算 1.4 充要条件
学习目标: 理解集合的有关概念,并掌握集合的表示方法, 掌握集合之间的关系和集合的运算,了解充要 条件.
内容简介:本章主要讲述集合的有关概念及集合 的表示方法、集合之间的关系、集合的运算、充 要条件,主要通过集合语言的学习与运用,培养 学生的数学思维能力.
2022/1/12
1.1 集合的概念及表示方法
1.1.1 集合的概念
概念
由某些指定的对象集在一起所组成的整体就叫做集合,简 称集.组成集合的每个对象称为元素.
是结论 p q
pq
的必要条件,记作“ p q (或
pq
)”.
(3) 如果
,且
,那么 是 的充分且
必要条件,
简称充要条件,记作“
”.
2022/1/12
返回
第2章 不等式
2.1 不等式的基本性质 2.2 区间 2.3 一元二次不等式及其解法 2.4 含绝对值的不等式
2022/1/12
内容简介:本章主要讲述了不等式的基本性质, 并对其进行了证明;然后结合数轴图形来阐述了 区间的概念及表示方法;又结合一元二次方程和 一元二次函数图象来讲述了一元二次不等式及其 解法,并穿插了用几何画板来绘制函数图像的软 件练习,以拓展学生的视野并激发其学习兴趣; 最后介绍了含绝对值的一元一次不等式及其解法.
所有正整数所组成的集合叫做正整数集,记作 ;
目录
第1章 集合
第3章 函数
第5章 三角函数
2022/1/12
第2章 不等式
第4章
指数函数与 对数函数
第1章 集合
1.1 集合的概念及表示方法 1.2 集合之间的关系 1.3 集合的运算 1.4 充要条件
学习目标: 理解集合的有关概念,并掌握集合的表示方法, 掌握集合之间的关系和集合的运算,了解充要 条件.
内容简介:本章主要讲述集合的有关概念及集合 的表示方法、集合之间的关系、集合的运算、充 要条件,主要通过集合语言的学习与运用,培养 学生的数学思维能力.
2022/1/12
1.1 集合的概念及表示方法
1.1.1 集合的概念
概念
由某些指定的对象集在一起所组成的整体就叫做集合,简 称集.组成集合的每个对象称为元素.
是结论 p q
pq
的必要条件,记作“ p q (或
pq
)”.
(3) 如果
,且
,那么 是 的充分且
必要条件,
简称充要条件,记作“
”.
2022/1/12
返回
第2章 不等式
2.1 不等式的基本性质 2.2 区间 2.3 一元二次不等式及其解法 2.4 含绝对值的不等式
2022/1/12
内容简介:本章主要讲述了不等式的基本性质, 并对其进行了证明;然后结合数轴图形来阐述了 区间的概念及表示方法;又结合一元二次方程和 一元二次函数图象来讲述了一元二次不等式及其 解法,并穿插了用几何画板来绘制函数图像的软 件练习,以拓展学生的视野并激发其学习兴趣; 最后介绍了含绝对值的一元一次不等式及其解法.
所有正整数所组成的集合叫做正整数集,记作 ;
中职数学集合ppt课件
在概率论中的应用
概率论的概述
概率论是研究随机现象的数学分支,主要研究随机事件、随机变量、随机过程等 概念,以及它们之间的相互关系和数学模型。概率论的基本概念包括概率、随机 变量、分布函数、期望值、方差等。
Hale Waihona Puke 在概率论中的应用01
利用集合表示随机事件
在概率论中,随机事件通常可以用集合来表示。例如,掷一枚骰子出现
集合的表示方法
总结词
集合可以用大括号、列举法、描述法等方式来表示。
详细描述
大括号表示法,如A={1,2,3},表示集合A包含元素1、2、3。列举法,如 B={a,b,c},表示集合B包含元素a、b、c。描述法,如C={x|x>3},表示集合C包 含所有大于3的元素x。
集合的分类
总结词
根据不同的分类标准,集合可以分为不同的类型。
在函数中的应用
函数的概述
函数是数学中的基本概念之一,它描述了两个数集之间的一种对应关系。函数f的定义为:对于数集A中的每一个x,按照某种 对应关系f,数集B中唯一确定的一个数y与之对应。函数的表示方法有多种,如解析式法、表格法和图象法。
在函数中的应用
利用集合表示函数的定义域和值 域
函数的定义域和值域都可以看作是某个集合。例如,函 数y=f(x)的定义域可以表示为某个实数集A,值域可以表 示为另一个实数集B。
详细描述
根据元素个数是否有限,集合可以分为有限集和无限集。有限集包含有限个元素,无限 集包含无限个元素。根据元素是否互异,集合可以分为离散集和连续集。离散集的元素 是互异的,连续集的元素可以重复。根据元素的确定性,集合可以分为确定性集和随机
集。确定性集的元素是确定的,随机集的元素是随机的。
中职数学基础模块(上册)全套教学PPT课件
集合的性质:
归 (1)集合的元素具有确定性; 纳 (2)集合的元素具有互异性.
由数所组成的集合称作数集.我们用某些特定的大写英文字母表示常
用的一些数集:
所有非负整数所组成的集合叫做自然数集,记作N ; 所有正整数所组成的集合叫做正整数集,记作N ;
所有整数组成的集合叫做整数集,记作 Z ;
所有有理数组成的集合叫做有理数集,记作 Q ;
自然数集 N 为无限集,用列举法表示为:
{0,1, 2,3, , n, }.
2.描述法 把描述集合元素的特征性质或表示集合中元素的规律写在
花括号内用来表示集合的方法叫做描述法. 例如,由大于 2 的所有实数所组成的集合用描述法表示为: {x | x 2, x R}
花括号内竖线左侧的 x 表示这个集合中的任何一个元素,元素 x 从实数 R 中取值,竖线的右侧写出的是元素的特征性质.
A B 或 B A, 读作“A 真包含于 B”或“B 真包含 A”,可用下图直观地表示.
返回
1.2.3 集合的相等 一般地,如果集合 A 的每一个元素都是集
合 B 的元素,或者集合 B 的每一个元素都是 集合 A 的元素,那么就说集合 A 等于集合 B.
返回
1.3 集合的运算
1.3.1 交集
概念
所有实数组成的集合叫做实数集,记作 R; ;
不含任何元素的集合叫做空集,记作∅.
1.1.2 集合的表示方法
1.列举法 把集合的元素一一列举出来,元素中间用逗号隔开,写在花括
号“{}”中用来表示集合,这种方法即为列举法. 例如,由小于5的自然数所组成的集ቤተ መጻሕፍቲ ባይዱ用列举法表示为:
{0,1, 2,3, 4};
学习目标:理解集合的有关概念,并掌握集合的表示方法,
人教版中职数学基础模块上册《集合的概念》课件
互异性 一个给定的 集合中的元素都 是互不相同的.
案例讲解
不能确定的对象,不能组成集合
例1 判断下列语句能否构成一个集 合,并说明理由. (1) 小于 10 的自然数的全体; (2) 某校高一(2)班所有性格开朗的男 生; (3) 英文的 26 个大写字母; (4) 非常接近 1 的实数.
解: (1) 由于小于10的自然数 包括0、1、2、3、4、5、6、7、 8、9十个数,它们是确定的对象, 所以它们可以组成集合.
数学课程
知识点1 集合的概念
第一章 集 合
1.1.1 集合的概念
教学情景创设
哪些是食品? 哪些是物品?
我们看出所有食品的全体组成了一个整体, 所有物品的全体组成了一个整体.
食
品
物
品
问题情境创设
问题1 新学期我们结识了很多新同学,大家想一想你的寝室都有哪
些同学呢?班级的所有女同学有多少人,她们分别是…..?
N,
0.5
N,
(2)1.5
Z,
−5 Z,
3 N; 3 Z;
(3)−0.2
Q, π
Q,
7.21
Q;
(4)1.5
R,
−1.2
R,
π R.
2.下列语句能否确定一个集合? (1)大于10的自然数的全体
能
(2)某学校高一园能林班性格开朗的男生全体 不能
(3)质数的全体 (4)与5接近的实数的全体
字母 N
ZQ
R
例2 用符号“ ”或“ ”填空:
(1) 1 N,0 N,-4 N,0.3 N; (2) 1 Z,0 Z,-4 Z,0.3 Z;
(3) 1 Q,0 Q,-4 Q,0.3 Q;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高教社
踏实努力的行动、科学认真的方法、及时真诚的交流
学习目标
合作的意识
积极主动的表现力
勇于探索的精神和求知欲
学习数学的乐趣和信心、相关生活经验
高教社
开始学习啦!
第一章 集 合
1.1 集合的概念
涪陵第一职业中学校:陈平
高教社
创设情景
问题
兴趣导入
某商店进了一批货,包括:面包、饼干、汉堡、彩笔、
水笔、橡皮、果冻、薯片、裁纸刀、尺子. 那么如何将这些商品放在指定的篮筐里: 食品篮筐
面包、饼干、汉堡、果冻、薯片 .
文具篮筐 彩笔、水笔、橡皮、裁纸刀、尺子 .
高教社
动脑思考
集合与元素的定义
探索新知
通常把由某些确定的对象组成的整体叫做集合(简称集). 组成集合的对象叫做这个集合的元素.
观察你的文具盒,什么是集合?什么是元素 ?
.
一般表示方法:一般采用大写英文字母A,B,C,…表示 集合,小写英文字母a,b,c,… 表示集合的元素.
讨论1 下列对象能构成集合吗?为什么? 1、 著名的科学家; 2、 1,2,2,3这四个数字; 3、 高一年级学习好的学生; 4、 大于5小于20的偶数; 讨论2 集合{a,b,c,d }与{b,c,d,a}是同一个 集合吗?
高教社
再 见
高教社
人生新阶段
高教社
1、学习——旅程 这段旅程可以从任何时候开始!未来的成功在现在脚下! 2、老师——导游 一起分享学习中的快乐、一起体会成长与进步的滋味! 3、目的——运用 应用数学来解决问题,形成数学的自信 每个人都可以根据自己的能力和实际需要学好自己的数学! 4、准备——必需品 轻松愉快的心情、热情饱满的精神、全力以赴的态度、
素都是互不 相同的
定的
序
高教社
巩固知识 典型例题
不能确定的对象,不能组成集合
例1 判断下列对象是否可以组成集合: (1) 小于10的自然数;
(2)某班个子高的同学;
(3) 方程x2-1=0的解;
(4)不等式x-2>0的解.
高教社
归纳小结 强化思想
元素集合
概念特点
关系
表示方法
高教社
巩固知识
课堂作业
高教社
动脑思考
元素与集合的关系
探索新知
元素与集合
元素a是集合A 的元素, . 记作a∈A, 读作a属于A.
元素a不是集合A 的元素,
记作a
A,
读作a不属于A.
高教社
动脑思考
集合的特征
探索新知
确定性
无序性
互异性
一个给定的 集合中的元 . 素必须是确
一个给定的
集合中的元 素排列无顺
一个给定的
集合中的元
踏实努力的行动、科学认真的方法、及时真诚的交流
学习目标
合作的意识
积极主动的表现力
勇于探索的精神和求知欲
学习数学的乐趣和信心、相关生活经验
高教社
开始学习啦!
第一章 集 合
1.1 集合的概念
涪陵第一职业中学校:陈平
高教社
创设情景
问题
兴趣导入
某商店进了一批货,包括:面包、饼干、汉堡、彩笔、
水笔、橡皮、果冻、薯片、裁纸刀、尺子. 那么如何将这些商品放在指定的篮筐里: 食品篮筐
面包、饼干、汉堡、果冻、薯片 .
文具篮筐 彩笔、水笔、橡皮、裁纸刀、尺子 .
高教社
动脑思考
集合与元素的定义
探索新知
通常把由某些确定的对象组成的整体叫做集合(简称集). 组成集合的对象叫做这个集合的元素.
观察你的文具盒,什么是集合?什么是元素 ?
.
一般表示方法:一般采用大写英文字母A,B,C,…表示 集合,小写英文字母a,b,c,… 表示集合的元素.
讨论1 下列对象能构成集合吗?为什么? 1、 著名的科学家; 2、 1,2,2,3这四个数字; 3、 高一年级学习好的学生; 4、 大于5小于20的偶数; 讨论2 集合{a,b,c,d }与{b,c,d,a}是同一个 集合吗?
高教社
再 见
高教社
人生新阶段
高教社
1、学习——旅程 这段旅程可以从任何时候开始!未来的成功在现在脚下! 2、老师——导游 一起分享学习中的快乐、一起体会成长与进步的滋味! 3、目的——运用 应用数学来解决问题,形成数学的自信 每个人都可以根据自己的能力和实际需要学好自己的数学! 4、准备——必需品 轻松愉快的心情、热情饱满的精神、全力以赴的态度、
素都是互不 相同的
定的
序
高教社
巩固知识 典型例题
不能确定的对象,不能组成集合
例1 判断下列对象是否可以组成集合: (1) 小于10的自然数;
(2)某班个子高的同学;
(3) 方程x2-1=0的解;
(4)不等式x-2>0的解.
高教社
归纳小结 强化思想
元素集合
概念特点
关系
表示方法
高教社
巩固知识
课堂作业
高教社
动脑思考
元素与集合的关系
探索新知
元素与集合
元素a是集合A 的元素, . 记作a∈A, 读作a属于A.
元素a不是集合A 的元素,
记作a
A,
读作a不属于A.
高教社
动脑思考
集合的特征
探索新知
确定性
无序性
互异性
一个给定的 集合中的元 . 素必须是确
一个给定的
集合中的元 素排列无顺
一个给定的
集合中的元