初三数学上学期第三次月考试卷

合集下载

长郡双语实验中学2023-2024学年九年级上学期第三次月考数学试题(答案)

长郡双语实验中学2023-2024学年九年级上学期第三次月考数学试题(答案)

初三数学作业精选练习参考答案题号 1 2 3 4 5 6 7 8 9 10 答案 C C B B A D D A B C二.填空题(共6小题)11. 0.35 12. (﹣3,2) 13. 114. 80 15. 4 16. 9三.解答题(共8小题)17.解:√8+|√2−1|−ππ0+(12)−1=2√2+√2−1−1+2……………………4分=3√2.……………………6分18.解:原式=x2﹣4xy+4y2+x2﹣4y2﹣2x2+2xy=﹣2xy.……………………4分当xx=−38,y=4时,原式=−2×(−38)×4=3.……………………6分19.解:(1)在Rt△ABC中,∠C=90°,∠BAC=40°,∴∠ABC=50°,∵将△ABC绕着点B逆时针旋转得到△FBE,∴∠EBF=∠ABC=50°,AB=BF,∴∠BAF=∠BF A=12(180°﹣50°)=65°,故答案为:65°;……………………3分(2)∵∠C=90°,AC=8,BC=6,∴AB=10,∵将△ABC绕着点B逆时针旋转得到△FBE,∴BE=BC=6,EF=AC=8,∴AE=AB﹣BE=10﹣6=4,∴AF=√AAEE2+EEFF2=4√5.……………………6分20.解:(1)由统计图可得,这次抽样调查共抽取:16÷32%=50(人),m=50×14%=7,故答案为:50,7;……………………2分(2)由(1)知,m=7,等级为A的有:50﹣16﹣15﹣7=12(人),补充完整的条形统计图如图所示,C等所在扇形圆心角的度数为:360°×1550=108°;……………………4分(3)树状图如下所示:由上可得,一共存在12种等可能性,其中抽出的两名学生恰好是甲和丁的可能性有2种,∴抽出的两名学生恰好是甲和丁的概率为212=16.……………………8分21.解:(1)∵点A(1,4)在函数yy1=kk xx的图象上,∴k=1×4=4,∴反比例函数解析式为:y1=4xx,∵B(m,﹣2)在反比例函数图象上,∴m=4−2=−2,∴B(﹣2,﹣2),∵点A(1,4),B(﹣2,﹣2)在一次函数y2=ax+b图象上,∴�aa+bb=4−2aa+bb=−2,解得�aa=2bb=2,∴直线AB的解析式y2=2x+2.令x=0,y=2,∴D(0,2),即OD=2,∴S△AOB=S△AOD+S△BOD=12×2×2+12×2×1=3.……………………5分(2)y1>y2成立的自变量x的取值范围为:0<x<1或x<﹣2;………………8分22.解:(1)设A型与B型汽车每辆的进价分别是x万元、y万元,�2xx+3yy=1408xx+14yy=620解得�xx=25yy=30,∴A型与B型汽车每辆的进价分别是25万元、30万元;答:A型与B型汽车每辆的进价分别是25万元、30万元;……………………4分(2)设购进A型汽车a辆,则购进B型汽车(10﹣a)辆,�aa<10−aa25aa+30(10−aa)≤290,解得:2≤a<5,又a为正整数,所以a取2、3、4,∴购进A型汽车2辆,则购进B型汽车8辆;购进A型汽车3辆,则购进B型汽车7辆;购进A型汽车4辆,则购进B型汽车6辆.……………………9分23.(1)证明:如图,连接BD,∵AB是直径,∴∠ADB=90°,∵AB=BC,∴∠ABD=∠CBD,�=AAEE�,∴AAAA∴AD=DE;……………………3分(2)解:①∵AB=BC,∠ADB=90°,∴AD=CD=3,∵AD=DE,∴CD=DE=3,∴∠C=∠CED=∠BAC,∴△BAC∽△DCE,∴AAAA AAAA=AACC AACC,∴62rr=xx3,∴r=9xx;……………………6分②当x=r时,则x=r=3,连接OD,OE,则△AOD、△DOE是等边三角形,∴∠AOD=∠DOE=60°,∴∠BOE=60°,∴△BOE是等边三角形,∴阴影部分的面积为S扇形OBE﹣S△OBE=60ππ×32360−�34×32=3ππ2−9�34.…………9分24.解:(1)y =﹣x 图象上的点(x ,﹣x )和y =2x 图象上的点(x ,2x )关于(x ,x )成中心对称, ∴y =﹣x 和y =2x 是“友好函数”;y =x +3图象上的点(x ,x +3)和y =x ﹣3图象上的点(x ,x ﹣3)关于(x ,x )成中心对称, ∴y =x +3和y =x ﹣3是“友好函数”;y =x 2+1图象上的点(x ,x 2+1)和y =x 2﹣1图象上的点(x ,x 2﹣1)不关于(x ,x )成中心对称, ∴不是“友好函数”;∴互为“友好函数”的是①②,故答案为:①②; ……………………3分 (2)①根据“友好函数”的定义得:,∴,∴y 2=﹣x +4,即函数y =2x ﹣4的“友好函数”解析式为y =﹣x +4,∵反比例函数 的图象与直线y =﹣x +4在第一象限内有两个交点,∴方程有两个不相等的实数根,且两根均为正数,整理得:x 2﹣4x +m =0,∴Δ=(﹣4)2﹣4m >0且m >0,解得:0<m <4; ……………………5分 ②如图,设C ,D 的坐标分别为 ),,(2211),(y x y x ∴x 1,x 2 是方程 x 2﹣4x +m =0 的两根,∴x 1+x 2=4,x 1•x 2=m ,且44882121=−=+−=+)(x x y y244-1624)(2)(2)(2121221121221==−+=−=−+=∴∆m x x x x x x x x y y S COD )(28416==−∴m m ,故 ……………………7分(3)由=x 得:y 2=ax 2+bx +c ,∴y =﹣ax 2+(1﹣b )x ﹣c (a ≠0)的“友好函数”解析式为 y =ax 2+bx +c , ∵M (1,m ),N (3,n )在函数 y =ax 2+bx +c 的上, ∴m =a +b +c ,n =9a +3b +c , ∵m <n <c ,∴a +b +c <9a +3b +c <c , ∴a +b <9a +3b <0, ∵a >0, ∴3<﹣<4,∵点M (1.m ),P (t ,m )的纵坐标相等, ∴抛物线对称轴为直线x =,即,∴﹣=t +1, ∴3<t +1<4, 解得:2<t <3,设h =﹣t 2﹣t +2=﹣(t +2)2+3, 当t =2时,h =﹣1; 当t =3时,h =﹣;∴﹣<h <﹣1,∵2412+−−>t t w 恒成立, ∴w ≥﹣1, ……………………10分25.解:(1)∠DAC=60° ……………………3分 (2)证明:连接BG ,∵AD 为⊙O 的直径,CG ⊥AD ,∴AAAA�=AAAA �, ∴∠AGF =∠ABG , ∵∠GAF =∠BAG , ∴△AGF ∽△ABG , ∴AG :AB =AF :AG , ∴AF •AB=AG 2=25法2:证明△ACF ∽△ABC 可得AF •AB=AG 2=25 ……………………6分 (3)解:AC AG x由△ACF ∽△ABC 可得AC AF CFAB AC BC∴22,101010x x AF BF ,=10CF AC x BC AB 由△AEF ∽△ABD 得2x AF AB AD AE =×=×或:由△ACE ∽△ADC 得22x AC AD AE ==×由△ACF ∽△ABC 可得)(10102x x FB AG FG CB −=×=× 2022221197220252++−=+×+×××=∴x x BC CF AD AE FG CB y对称轴为直线=2x05x所以当=2x 时,max 2024y ……………………10分(每写出一个相似给1分)。

九年级数学第三次月考试卷【含答案】

九年级数学第三次月考试卷【含答案】

九年级数学第三次月考试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()。

A. a√2B. a/2C. a√3D. 2a2. 下列函数中,哪一个不是二次函数?()A. y = 2x^2 + 3x + 1B. y = x^2 4x + 4C. y = 3/xD. y = x^2 5x + 63. 若等差数列{an}中,a1 = 3,d = 2,则a5 = ()。

A. 11B. 13C. 15D. 174. 下列哪个图形不是中心对称图形?()A. 正方形B. 矩形C. 圆D. 正三角形5. 若一个等腰三角形的底边长为8,腰长为10,则该三角形的面积是()。

A. 24B. 32C. 40D. 48二、判断题(每题1分,共5分)6. 两个等腰三角形的底边长相等,则这两个三角形全等。

()7. 两个角的和为180°,则这两个角互补。

()8. 一元二次方程ax^2 + bx + c = 0(a ≠ 0)的判别式Δ = b^2 4ac,当Δ > 0时,方程有两个实数根。

()9. 函数y = kx(k为常数)是正比例函数。

()10. 任何有理数都可以表示为分数的形式。

()三、填空题(每题1分,共5分)11. 若等差数列{an}中,a1 = 1,d = 3,则a10 = ________。

12. 若一个圆的半径为r,则它的周长为 ________。

13. 若两个角互为补角,且一个角为60°,则另一个角为________°。

14. 若函数y = 2x + 3的图像是一条直线,则它的斜率为 ________。

15. 若一个正方体的体积为V,则它的表面积为 ________。

四、简答题(每题2分,共10分)16. 简述等差数列的定义及通项公式。

17. 解释二次函数图像的开口方向与系数a的关系。

18. 什么是勾股定理?请给出一个具体的例子。

人教版2022-2023学年第一学期九年级数学第三次月考测试题(附答案)

人教版2022-2023学年第一学期九年级数学第三次月考测试题(附答案)

2022-2023学年第一学期九年级数学第三次月考测试题(附答案)一、单项选择题(共18分)1.下列图形中,不是中心对称图形的是()A.B.C.D.2.在平面直角坐标系中,点(2,﹣1)关于原点对称的点的坐标是()A.(2,1)B.(﹣2,1)C.(﹣1,2)D.(﹣2,﹣1)3.⊙O的半径为3,点P在⊙O外,点P到圆心的距离为d,则d需要满足的条件()A.d>3B.d=3C.0<d<3D.无法确定4.将一元二次方程x2+6x+3=0化为(x+h)2=k的形式,则k的值为()A.3B.6C.9D.125.关于二次函数y=﹣(x+1)2+3的图象,下列说法错误的是()A.开口向下B.对称轴为直线x=﹣1C.当x<﹣1时,y随x的增大而增大D.当x=﹣1时,函数有最小值,最小值为y=36.如图,AB为⊙O的直径,过圆上一点C作⊙O的切线,交直径AB的延长线于点D,若∠A=22.5°,⊙O的半径为2,则BD的长为()A.1B.2C.2﹣2D.3﹣2二、填空题(共18分)7.已知x=﹣1是方程x2﹣ax+1=0的一个根,则a的值为.8.一个不透明的盒子里,装有除颜色外无其他差别的白珠子2颗和黑珠子若干颗,每次随机摸出一颗珠子,放回摇匀后再摸,通过多次试验发现摸到白珠子的频率稳定在0.2左右,则盒子中黑珠子可能有颗.9.一个圆锥的母线长为5,侧面展开图的面积是20π,则该圆锥的底面半径为.10.如图,紫荆花图案旋转一定角度后能与自身重合,则旋转的角度至少为°.11.东汉时期的数学家赵爽在注解《周髀算经》时,给出的“赵爽弦图”是我国古代数学的瑰宝,如图1,四个直角三角形是全等的,且直角三角形的长直角边与短直角边之比为2:1,现连接四条线段得到图2的新的图案.若随机向该图形内掷一枚针,则针尖落在图2中阴影区域的概率为.12.如图,已知点A从原点O出发,以每秒2个单位长度的速度沿着x轴的正方向运动,经过t(t≥1.5)秒后,以O,A为顶点作菱形OABC,使点B,C都在第一象限内,且∠AOC=60°.若以点P(0,2)为圆心,PC为半径的圆恰好与菱形OABC某一条边所在的直线相切,则t的值为.三、解答题(共84分)13.(1)解方程:x2﹣4x+1=0.(2)如图,E是正方形ABCD的边DC上一点,把△ADE绕点A旋转一定角度后与△ABF重合.若四边形AECF的面积为16,求AD的长.14.如图,抛物线y=ax2+x+c与x轴交于点A(﹣1,0),且对称轴为直线x=1.求抛物线的解析式.15.已知AB是⊙O的直径,DE与⊙O相切于点D,且DE⊥BE,设BE交⊙O于点C,请仅用无刻度直尺按下列要求作图(保留作图痕迹).(1)在图1中,作∠ABC的平分线.(2)在图2中,找出BC边上的中点G.16.已知关于x的一元二次方程x2﹣(m+1)x+m=0.(1)求证:无论m为何值,方程总有实数根.(2)设方程的两根均为等腰△ABC的边长,且△ABC的周长为5,求m的值.17.如图,已知△ABC是⊙O的内接三角形,AD是⊙O的直径,连接BD.(1)若∠BAD=20°,求∠ACB的度数.(2)若BC平分∠ABD,AD=2,求AC的长.18.江西可谓物华天宝,山清水秀.寒假期间小尹打算去领略江西四大名山的风采,分别为A.明月山;B.武功山;C.庐山;D.三清山.由于时间原因,只能选择其中两个景点,于是小尹决定通过抽签的方式选择,将四张小纸条分别写上四个景点的名字,做出四个签(外表完全相同),然后从中随机抽出两张,每张签抽到的机会均等.(1)抽到“明月山”是事件,抽到“井冈山”是事件(填“不可能”或“必然”或“随机”).(2)请你用列表法或画树状图法表示出这次抽签所有可能的结果,并求“小尹抽到明月山和庐山”的概率.19.如图,△ABC的顶点坐标分别为A(﹣3,5),B(﹣4,2),C(2,3).(1)画出△ABC关于点O中心对称的△A1B1C1.(2)画出△ABC绕点C顺时针旋转90°后的△A2B2C,当点A旋转到A2时,求点A所经过的路径长.20.桑葚被称为“民间圣果”,其营养价值是苹果的5~6倍,是葡萄的4倍,具有降压降脂,健脾养胃等功效.今年某采摘园喜获丰收,经市场调研发现,当桑葚的售价为30元/千克时,每天可销售200千克,若单价每降价1元,销售量可增加50千克.已知该品种的桑葚成本价为15元/千克.(1)若该采摘园每天获利3500元,且尽量增加销售量,桑葚售价应降低多少元?(2)设桑葚售价降低a元,当a为何值时,该采摘园每天的利润最大.21.如图,以△ABC的边BC上一点O为圆心,OB为半径的圆,经过点A,且与边BC交于点E,D为⊙O上一点,连接AE,AD,其中∠CAE=∠ABC.(1)求证:AC是⊙O的切线.(2)若∠ADB=60°,⊙O的半径为3,求阴影部分的面积.(结果保留根号)22.函数图象在探究函数的性质时有非常重要的作用,某同学根据学习函数的经验,探究了函数y=x2﹣2|x|+1的图形和性质.(1)如表给出了部分x,y的取值:x…﹣3﹣2﹣10123…y…m10n014…则m=,n=.(2)在如图所示的平面直角坐标系中画出函数y=x2﹣2|x|+1的图象.(3)根据画出的函数图象,写出该函数的一条性质.(4)若点M(m,y1)在图象上,且y1≤1,若点N(m+k,y2)也在图象上,且满足y2≥4恒成立,请直接写出k的取值范围.23.【操作发现】如图1,在等边△ABC中,点B,C在直线MN上,E为BC边上的一点,连接AE,并把线段AE绕点E顺时针旋转60°得到线段EF,连接CF,则线段CF与BE 的数量关系是,线段CF与直线MN所夹锐角的度数是.【类比探究】如图2,在等边△ABC中,点B,C在直线MN上,若E为BC延长线上的一点,连接AE,并把线段AE绕点E顺时针旋转60°得到线段EF,连接CF,上述两个结论还成立吗?请说明理由.【拓展应用】如图3,在正方形ABCD中,点B,C在直线MN上,E为直线MN上的任意一点,连接AE,并把线段AE绕点E顺时针旋转90°得到线段EF,连接CF.(1)试探究线段BE与CF的数量关系及线段CF与直线MN所夹锐角的度数,并说明理由.(2)若正方形的边长为2,连接DF,当DF=时,求线段BE的长.参考答案一、单项选择题(共18分)1.解:A、不是中心对称图形,故此选项符合题意;B、是中心对称图形,故此选项不合题意;C、是中心对称图形,故此选项不合题意;D、是中心对称图形,故此选项不合题意;故选:A.2.解:点(2,﹣1)关于原点对称的点的坐标是(﹣2,1),故选:B.3.解:∵点P在⊙O外,∴d>3.故选:A.4.解:方程x2+6x+3=0,移项得:x2+6x=﹣3,配方得:x2+6x+9=6,即(x+3)2=6,则k=6,故选:B.5.解:∵二次函数y=﹣(x+1)2+3,∴a=﹣1<0,函数的图象开口向下,故选项A正确,不符合题意;对称轴是直线x=﹣1,故选项B正确,不符合题意;当x<﹣1时,y随x的增大而增大,故选项C正确,不符合题意;当x=﹣1时,函数有最大值y=3,故选项D错误,符合题意;故选:D.6.解:连接OC,∵∠A=22.5°,∴∠COD=2∠A=45°,∵CD是⊙O的切线,∴∠OCD=90°,∴△OCD是等腰直角三角形,∵OC=2,∴OD=,∴BD=OD﹣OB=2﹣2,故选:C.二、填空题(共18分)7.解:由题意得:把x=﹣1代入方程x2﹣ax+1=0中,则(﹣1)2﹣a•(﹣1)+1=0,∴1+a+1=0,∴a=﹣2,故答案为:﹣2.8.解:设有黑色珠子n颗,由题意可得,,解得n=8.故估计盒子中黑珠子大约有8个.故答案为:8.9.解:设底面半径为R,则底面周长=2πR,圆锥的侧面展开图的面积=×2πR×5=20π,∴R=4.故答案为:4.10.解:紫荆花图案可以被中心发出的射线分成5个全等的部分,则旋转的角度至少为360÷5=72度,故答案为:72.11.解:如图2,设直角三角形的长直角边与短直角边分别为2x和x,则AC=x,BD=x,AB=CD,△ABD是直角三角形,则大正方形面积=AC2=5x2,△ADC面积=•x•x=x2,阴影部分的面积S=5x2﹣4×x2=3x2,∴针尖落在阴影区域的概率为=.故答案为:.12.解:∵已知A点从(0,0)点出发,以每秒2个单位长的速度沿着x轴的正方向运动,∴经过t秒后,∴OA=2t,∵四边形OABC是菱形,∴OC=2t,当⊙P与OA,即与x轴相切时,如图所示,则切点为O,此时PC=OP,过P作PE⊥OC,∴OE=CE=OC,∴OE=t,∵∠AOC=60°,∴∠POC=30°,∵A(0,2),∴PE=,∴OE==6,∴t=6.故答案为:6.三、解答题(共84分)13.解:(1)∵x2﹣4x+1=0,∴(x﹣2)2=3,∴x﹣2=±,∴x1=+2,x2=﹣+2;(2)∵把△ADE绕点A旋转一定角度后与△ABF重合,∴△ADE≌△ABF,∴S△ADE=S△ABF,∴四边形AECF的面积等于正方形的面积,∴AD2=16,∴AD=4.14.解:由已知可得:,解得,∴抛物线解析式为y=﹣x2+x+.15.解:(1)如图1,BD为所作;(2)如图2,点G为所作.16.(1)证明:∵a=1,b=﹣(m+1),c=m,∴Δ=b2﹣4ac=[﹣(m+1)]2﹣4×1×m=m2+2m+1﹣4m=m2﹣2m+1=(m﹣1)2≥0,∴无论m为何值,方程总有实数根;(2)解:∵x2﹣(m+1)x+m=0,即(x﹣1)(x﹣m)=0,解得:x1=1,x2=m.当关于x的一元二次方程x2﹣(m+1)x+m=0有两个相等的实数根时,m=1,∴△ABC的三条边长分别为1,1,3,∵1+1=2<3,∴1,1,3不能组成三角形,∴m=1不符合题意,舍去;当关于x的一元二次方程x2﹣(m+1)x+m=0有两个不相等的实数根时,m==2,∴△ABC的三条边长分别为1,2,2,∵1+2=3>2,∴1,2,2能组成三角形.∴m的值为2.17.解:(1)∵AD是⊙O的直径,∴∠ABD=90°,∵∠BAD=20°,∴∠D=90°﹣20°=70°,∴∠ACB=∠D=70°;(2)连接OC,∵BC平分∠ABD,∴∠ABC=ABD=45°,∴∠AOC=2∠ABC=90°,∵AD=2,∴AO=1,∴AC=AO=.18.解:(1)抽到“明月山”是随机事件,抽到“井冈山”是不可能事件,故答案为:随机,不可能;(2)画树状图如下:这次抽签所有等可能的结果共有12种,其中“小尹抽到明月山和庐山”的结果有2种,即AC、CA,∴“小尹抽到明月山和庐山”的概率为=.19.解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C即为所求,∵AC==,∴弧长AA2==.20.解:设桑葚售价应降低x元,则每天可售出(200+50x)千克,由题意得,(30﹣15﹣x)(200+50x)=3500,解得x1=1,x2=10,∵采摘园尽量增加销售量,∴x=10,答:桑葚售价应降低10元;(2)设采摘园每天的利润为w元,根据题意得:w=(30﹣15﹣a)(200+50a)=﹣50a2+550a+3000=﹣50(a﹣)2+4512,∵﹣50<0,∴当a=时,w有最大值,最大值为4512.5,答:当a=时,该采摘园每天的利润最大.21.(1)证明:如图,连接OA,∵BE是⊙O的直径,∴∠BAE=90°,∴∠OAB+∠OAE=90°,∵OA=OB,∴∠OBA=∠OAB,∵∠CAE=∠ABC,∴∠CAE=∠OAB,∴∠CAE+∠OAE=90°,∴OA⊥AC,∵OA是⊙O的半径,∴AC是⊙O的切线;(2)解:∵∠ADB=60°,∴∠AEB=∠ADB=60°,∵OA=OE,∴△OAE为等边三角形,∴∠AOC=60°,∴AC=OA=3,∴S阴影部分=S△OAC﹣S扇形AOE=×3×3﹣=﹣π.22.解:(1)将x=﹣3,x=0分别代入函数y=x2﹣2|x|+1,得m=9﹣6+1=4,n=1,故答案为:4,1;(2)画出函数图象如图:(3)该函数的一条性质:函数图象关于y轴对称;(4)由图象得,若点M(m,y1)在图象上,且y1≤1,则﹣1≤m≤1,若点N(m+k,y2)也在图象上,且满足y2≥4恒成立,则m+k≤﹣3或m+k≥3,∴k≤﹣3﹣m或k≥3﹣m,∴k的取值范围为k≤﹣4或k≥4.23.解:【操作发现】如图1中,过点E作EK∥AC交AB于点K.∵△ABC是等边三角形,∴∠ACB=∠CAB=∠ABC=60°,AB=BC,∵EK∥AC,∴∠BEK=∠ACB=60°,∠BKE=∠CAB=60°,∴△BEK是等边三角形,∴BK=BE,∴AK=EC,∵∠AEC=∠AEF+∠FEC=∠ABC+∠EAK,∠AEF=∠ABC=60°,∴∠EAK=∠FEC,在△EAK和△FEC中,,∴△EAK≌△FEC(SAS),∴EK=CF,∠AKE=∠ECF=120°,∵BE=EK,∴CF=BE,∠FCN=60°,故答案为:CF=BE,60°;【类比探究】如图2中,结论成立.理由:过点E作EK∥AC交BA的延长线于点K.∵△ABC是等边三角形,∴∠ACB=∠CAB=∠ABC=60°,AB=BC,∵EK∥AC,∴∠BEK=∠ACB=60°,∠BKE=∠CAB=60°,∴△BEK是等边三角形,∴BK=BE,∴AK=EC,∵∠AEN=∠AEF+∠FEN=∠ABC+∠EAK,∠AEF=∠ABC=60°,∴∠EAB=∠FEN,∴∠EAK=∠FEC,在△EAK和△FEC中,,∴△EAK≌△FEC(SAS),∴EK=CF,∠AKE=∠FCE=60°,∵BE=EK,∴CF=BE;【拓展应用】(1)结论:CF=BE,线段CF与直线MN所夹锐角的度数为45°.理由:在BA上取一点K,使得BK=BE.∵四边形ABCD是正方形,∴∠ABC=90°,∵BK=BE,∴∠BKE=∠BEK=45°,∴∠AKE=135°,∵∠AEN=∠AEF+∠FEC=∠ABC+∠EAK,∠AEF=∠ABC=90°,∴∠EAB=∠FEN,在△EAK和△FEC中,,∴△EAK≌△FEC(SAS),∴EK=CF,∠AKE=∠FCE=135°,∴∠FCN=180°﹣135°=45°;(2)如图4﹣1中,过点D作DH⊥CF于点H.当点F在点H上方时,∵△DCH是等腰直角三角形,CD=2,∴CH=DH=,∵DF=,∴FH===2,∴CF=BE=3.如图4﹣2中,当点F在点H的下方时,同法可得FH=2,∴CF=BE=FH﹣CH=,综上所述,BE的长为或3.。

九年级第一学期第三次月考数学试卷(附带有答案)

九年级第一学期第三次月考数学试卷(附带有答案)

九年级第一学期第三次月考数学试卷(附带有答案)本试题分选择题和非选择题两部分。

本试题共6页,满分为150分,考试时间为120分钟。

注意事项:第1卷(选择题共40分)一.选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一元二次方程x2-x=0的根是()A.x1=0,x2=1B.x1=0,x2=-1C.x=-1D.x=02.下列几何体的左视图为()A. B. C. D.3.已知反比例函数y=﹣2x,下列各点中,在此函数图象上的点的是()A.(一1,1)B.(2,-1)C.(1,2)D.(2,2)4.在一个不透明的盒子中装有n个除颜色外完全相同的球,其中有4个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子,通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则n的值大约为()A.16B.18C.20D.245.若两个相似三角形的对应中线比是1:3,则它们的周长比是()A.1:2B.1:3C.1:6D.1:96.矩形具有而菱形不一定具有的性质是()A.对角线相等B.对角线互相平分C.邻边相等D.对角线互相垂直7.如图,在Rt△ABC中,AC=4,BC=3,∠C=90°,则cosA的值为( )A.34B.54C.35D.45(第7题图)(第8题图)8.如图,在平面直角坐标系中,一块污渍遮挡了横轴的位置,只有部分纵轴和部分矩形网格,已知每个小正方形的边长都是1个单位长度,反比例函数y=k x (k ≠0,x >0)的图象恰好经过2个格点A 、B ,则k 的值是( )A.3B.4C.6D.89.如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,若⊙O 的半径为32,AC=2,则sinB 的值是( )A.23B.32C.34D.43(第9题图) (第10题图)10.已知二次函数y=ax 2+bx+c 的图象如图所示,有以下结论:①a+b+c<0;②abc>0:③a -b+c>1:④4a -2b+c<0.正确结论的个数是( )A.1B.2C.3D.4第II 卷(非选择题 共110分)二.填空题:(本大题共6个小题,每小题4分,共24分)11.若a b =53,则aa -b = .12.若反比例函数y=m -1x 的图象在一、三象限,则m 的取值范围为 .13.将抛物线y=x 2+3x -2向右平移3个单位后,再向上平移4个单位,得到新的抛物线 的解析式为 .14.如图,△ABC 与△A'B'C'是位似图形,则△ABC 与△A'B'C'的位似比为 .(第14题图) (第15题图) (第16题图)15.如图,A、B、C是⊙O上的三个点,∠ABC=25°,则∠OAC的度数是.16.如图,已知正方形ABCD的边长为12,BE=EC,将正方形CD边沿DE折叠到DF,延长EF 交AB于G,连接DG、BF,现有如下4个结论:①△ADG≌△FDG;②GB=2AG;③△GDE∽△BEF;④S△BEF =725,在以上结论中,正确的是.(填写序号)三.解答题:(本大题共10个小题,共86分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分6分)计算:√3tan60°-2cos30°+4sin30°.18.(本小题满分6分)解方程:x2-5x+6=0.19.(本小题满分6分)如图,在菱形ABCD中,CE=CF.求证:AE=AF.20.(本小题满分8分)一个不透明的口袋中有3个质地和大小相同的小球,球面上分别写有数字1、2、3,从袋中随机地摸出一个小球,记录下数字后放回,再随机地摸出一个小球。

北师大版九年级上册数学第三次月考试题含答案详解

北师大版九年级上册数学第三次月考试题含答案详解

北师大版九年级上册数学第三次月考试卷一、选择题。

(每小题只有一个正确答案)1.若34yx=,则x yx+的值为()A.1B.47C.54D.742.下列函数中,反比例函数是()A.x(y+1)=1B.11yx=+C.21yx=D.13yx=3.若函数y=4x2+1的函数值为5,则自变量x的值应为()A.1B.-1C.±1D.32 24.在同一坐标系中,抛物线y=4x2,y=14x2,y=-14x2的共同特点是()A.关于y轴对称,开口向上B.关于y轴对称,y随x的增大而增大C.关于y轴对称,y随x的增大而减小D.关于y轴对称,顶点是原点5.已知二次函数y=a(x﹣h)2+k(a>0),其图象过点A(0,2),B(8,3),则h的值可以是()A.6B.5C.4D.36.下列各问题中,两个变量之间的关系不是反比例函数的是A.小明完成100m赛跑时,时间t(s)与跑步的平均速度v(m/s)之间的关系.B.菱形的面积为48cm2,它的两条对角线的长为y(cm)与x(cm)的关系.C.一个玻璃容器的体积为30L时,所盛液体的质量m与所盛液体的体积V之间的关系. D.压力为600N时,压强p与受力面积S之间的关系.7.如图,AB、CD相交于点O,AD∥CB,若AO=2,BO=3,CD=6,则CO等于()A.2.4B.3C.3.6D.48.如图,平面直角坐标系中,点M是直线2y=与x轴之间的一个动点,且点M是抛物线212y x bx c =++的顶点,则方程2112x bx c ++=的解的个数是()A .0或2B .0或1C .1或2D .0,1或29.如图,已知点C 是线段AB 的黄金分割点(其中AC >BC ),则下列结论正确的是()A .512BC AC -=B .512AC BC -=C .AB 2=AC 2+BC 2D .BC 2=AC•BA10.如图,已知四边形OABC 是菱形,CD ⊥x 轴,垂足为D ,函数4y x=的图象经过点C ,且与AB 交于点E .若OD=2,则△OCE 的面积为()A .2B .4C .D .二、填空题11.在比例尺为1:5000的地图上,量得甲、乙两地的距离为25cm ,则甲、乙两地间的实际距离是_____km.12.如图,圆O 的半径为2.C 1是函数y=x 2的图象,C 2是函数y=−x 2的图象,则阴影部分的面积是___.13.已知实数x ,y ,z 满足x +y +z =0,3x ﹣y ﹣2z =0,则x :y :z =_____.14.如图,在正方形ABCD 中, BPC 是等边三角形,BP ,CP 的延长线分别交AD 于点E ,F ,连接BD ,DP ,BD 与CF 相交于点H .给出以下结论:①AF =DE ;②∠ADP =15°;③13PF PC =;④PD 2=PH •PB ,其中正确的是_____.(填写正确结论的序号)三、解答题15.已知a 、b 、c 为三角形ABC 的三边长,且36a b c ++=,345a b c==,求三角形ABC 三边的长.16.已知二次函数的顶点坐标为(1,4),且其图象经过点(﹣2,﹣5),求此二次函数的解析式.17.新冠疫情暴发后,口罩的需求量增大.某口罩加工厂承揽生产1600万个口罩的任务,计划用t 天完成.(1)写出每天生产口罩w (万个)与生产时间t (天)(t >4)之间的函数表达式;(2)由于国外的疫情形势严峻,卫生管理部门要求厂家提前4天交货,那么加工厂每天要多做多少万个口罩才能完成任务?(用含t 的代数式表示)18.如图,D 、E 分别是 ABC 的边AB 、BC 上的点,DE ∥AC ,若:BDE CDE S S △△=1:3,求DOE AOC S S △△:的值.19.抛物线y =mx 2﹣4m (m >0)与x 轴交于A ,B 两点(A 点在B 点左边),与y 轴交于C 点,已知OC =2OA .求:(1)A ,B 两点的坐标;(2)抛物线的解析式.20.如图,点P是菱形ABCD的对角线AC上一点,连接DP并延长,交AB于点F,交CB的延长线于点E.求证:(1) APB≌ APD;(2)PD2=PE•PF.21.如图,在平面直角坐标系中有抛物线c:y=x2+m和直线l:y=﹣2x﹣2,直线l与x轴的交点为B,与y轴的交点为A.(1)求m取何值时,抛物线c与直线l没有公共点;(2)向下平移抛物线c,当抛物线c的顶点与点A重合时,试判断点B是否在平移后的抛物线上.22.反比例函数y=kx(k≠0,x>0)的图象与直线y=3x相交于点C,过直线上点A(1,3)作AB⊥x轴于点B,交反比例函数图象于点D,且AB=3BD.(1)求k的值;(2)在y轴上确定一点M,使点M到A,B两点距离之和d=MA+MB最小,求点M的坐标.23.在 ABC中,∠C=90°,AC=BC,点M,N分别在AC,BC上,将 ABC沿MN折叠,顶点C恰好落在斜边的P点上.(1)如图1,若点N为BC中点时,求证:MN∥AB;(2)如图2,当MN与AB不平行时,求证:PA CM PB CN=;(3)如图3,当AC≠BC且MN与AB不平行时,(2)中的等式还成立吗?请直接写出结论.参考答案与详解1.D【详解】∵34 yx=,∴x yx+=434+=74,故选D2.D【分析】判断一个函数是否是反比例函数,首先看看两个变量是否具有反比例关系,然后根据反比例函数的意义去判断,其形式为y=kx(k为常数,k≠0)或y=kx﹣1(k为常数,k≠0).【详解】解:A、不是反比例函数,故A选项不合题意;B、不是反比例函数,故B选项不合题意;C、不是反比例函数,故C选项不合题意;D、是反比例函数,故D选项符合题意.故选:D.【点睛】此题主要考查了反比例函数的定义,解题的关键是牢记反比例函数的形式然后判断.3.C【分析】根据题意,把函数的值代入函数表达式,然后解方程即可.【详解】解:根据题意,得4x2+1=5,x2=1,解得x=-1或1.故选C.【点睛】本题考查给出二次函数的值去求函数自变量的值.代入转化为求一元二次方程的解.4.D【详解】解:因为抛物线y=4x2,y=14x2,y=-14x2都符合抛物线的最简形式y=ax2,其对称轴是y轴,顶点是原点.故选D.【点睛】本题考查二次函数的图象性质.5.D【详解】解:根据题意可得当0<x<8时,其中有一个x的值满足y=2,则对称轴所在的位置为0<h<4故选:D【点睛】本题考查二次函数的性质,利用数形结合思想解题是关键.6.C此题可先对各选项列出函数关系式,再根据反比例函数的定义进行判断.【详解】A、根据速度和时间的关系式得,t=100 v;B、因为菱形的对角线互相垂直平分,所以12xy=48,即y=96x;C、根据题意得,m=ρV;D、根据压强公式,p=600s;可见,m=ρV中,m和V不是反比例关系.故选C.【点睛】本题主要考查了反比例函数的定义,正确表示出各量之间的函数关系是解决本题的关键.7.C【分析】由平行线分线段成比例定理,得到CO BODO AO=;利用AO、BO、CD的长度,求出CO的长度,即可解决问题.【详解】如图,∵AD∥CB,∴CO BO DO AO=;∵AO=2,BO=3,CD=6,∴362COCO=-,解得:CO=3.6,故选C.【点睛】本题考查了平行线分线段成比例定理及其应用问题.掌握平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例是解题的关键..8.D【分析】分三种情况:点M的纵坐标小于1;点M的纵坐标等于1;点M的纵坐标大于1;进行讨论即可得到方程12x2+bx+c=1的解的个数.解:点M 的纵坐标小于1,方程2112x bx c ++=的解是2个不相等的实数根;点M 的纵坐标等于1,方程2112x bx c ++=的解是2个相等的实数根;点M 的纵坐标大于1,方程2112x bx c ++=的解的个数是0.故方程2112x bx c ++=的解的个数是0,1或2.故选D .【点睛】本题考查了二次函数的性质,本题涉及分类思想和方程思想的应用.9.A 【分析】根据黄金分割的定义得出512BC AC AC AB -==,从而判断各选项.【详解】解:∵点C 是线段AB 的黄金分割点,且AC >BC ,∴512BC AC AC AB -==,∴选项A 符合题意,2AC BC AB =⋅,∴选项D 不符合题意;∵12AC BC +==,∴选项B 不符合题意;∵222AB AC BC ≠+,∴选项C 不符合题意;故选:A .【点睛】本题主要考查了黄金分割,熟练掌握黄金分割的定义是解题关键.10.C如图:连接AC ,∵OD=2,CD ⊥x 轴,∴OD×CD=xy=4,解得CD=2,由勾股定理,得OC ==由菱形的性质,可知OA=OC ,∵△OCE 与△OAC 同底等高,∴S △OCE =S △OAC =12×OA×CD=12.故选C .11.1.25【分析】根据比例尺=图上距离:实际距离,列比例式直接求得甲、乙两地间的实际距离.【详解】设甲、乙两地间的实际距离为xcm ,则:1255000x=,解得:x =125000.125000cm =1.25km .故答案为:1.25.【点睛】本题考查了比例尺的概念、比例的性质;根据比例尺进行计算,注意单位的转换问题.12.2π【分析】根据圆和二次函数图象的对称性,用割补法和圆的面积公式,即可求解.把x 轴下方阴影部分关于x 轴对称后,原图形阴影部分的面积和,变为一个半圆的面积,即2222ππ⋅=【点睛】利用图形的对称性,把不规则的阴影部分,补成规则的图形,再用圆的面积公式求解.13.1:(﹣5):4【分析】通过解方程组,用x 分别表示出y 与z ,然后求x :y :z 的值.【详解】解:x +y +z =0①,3x ﹣y ﹣2z =0②,①+②得4x ﹣z =0,则z =4x ,把z =4x 代入①得x +y +4x =0,则y =﹣5x ,所以x :y :z =x :(﹣5x ):4x =1:(﹣5):4.故答案为1:(﹣5):4.【点睛】本题考查了比例的性质:熟练掌握比例的性质(内项之积等于外项之积、合比性质、分比性质、合分比性质、等比性质)是解决此类问题的关键.14.①②④【分析】先判断出BP =PC =BC ,∠PBC =∠PCB =∠BPC =60°,再判断出AB =BC =CD ,∠A =∠ADC =∠BCD =90°,进而得出∠ABE =∠DCF =30°,即可判断出△ABE ≌△DCF (ASA ),即可得出结论;由等腰三角形的性质得出∠PDC =75°,则可得出答案;证明△FPE ∽△CPB ,得出PF EF PC BC =,设PF =x ,PC =y ,则DC =y ,得出y =32(x +y ),则可求出答案;先判断出∠DPH =∠DPC ,进而判断出△DPH ∽△CPD ,即可得出结论.【详解】解:∵△BPC 是等边三角形,∴BP =PC =BC ,∠PBC =∠PCB =∠BPC =60°,在正方形ABCD 中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°,∴∠ABE=∠DCF=30°,∴△ABE≌△DCF(ASA),∴AE=DF,∴AE﹣EF=DF﹣EF,∴AF=DE;故①正确;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠ADP=∠ADC﹣∠PDC=90°﹣75°=15°.故②正确;∵∠FPE=∠PFE=60°,∴△FEP是等边三角形,∴△FPE∽△CPB,∴PF EF PC BC=,设PF=x,PC=y,则DC=y,∵∠FCD=30°,∴y=32(x+y),整理得:(1﹣32)y=32x,解得:2333xy=,则2333PFPC=,故③错误;∵PC=CD,∠DCF=30°,∴∠PDC=75°,∵∠BDC=45°,∴∠PDH =∠PCD =30°,∵∠DPH =∠DPC ,∴△DPH ∽△CPD ,∴PD PH PC PD=,∴PD 2=PH •CP ,∵PB =PC ,∴PD 2=PH •PB ;故④正确.故答案为:①②④.【点睛】本题考查的正方形的性质,等边三角形的性质以及相似三角形的判定和性质,解答此题的关键是熟练掌握性质和定理.15.9a =,12b =,15c =【分析】根据比例的性质,可得a 、b 、c 的关系,根据a 、b 、c 的关系,可得一元一次方程,根据解方程,可得答案.【详解】解:由345a b c ==,得35a c =,45b c =,把35a c =,45b c =代入36a b c ++=,得343655c c c ++=,解得15c =,395a c ==,4125b c ==,所以三角形ABC 三边的长为:9a =,12b =,15c =.【点睛】本题考查了比例的性质,利用了比例的性质.利用等式的性质得出35a c =,45b c =是解题关键.16.()214y x =--+【分析】设顶点式()214y a x =-+,然后把(﹣2,﹣5)代入求出a 的值即可.【详解】解:设抛物线解析式为()214y a x =-+,把(﹣2,﹣5)代入得()22145a --+=-,解得:a =﹣1,所以抛物线解析式为:()214y x =--+.【点睛】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数解析式时,要根据题目给定的条件,选择恰当的方法设出解析式,从而代入数值求解.17.(1)w =1600t (t >4);(2)每天要多做264004t t -(t >4)万个口罩才能完成任务【分析】(1)根据每天生产口罩w (万个)、生产时间t (天)(t >4)、生产总量之间的关系可直接列出函数表达式;(2)用提前4天交货的情况下每天生产的口罩数量减去计划每天生产的口罩数量即可得到结论.【详解】解:(1)由题意可得,函数表达式为:w =1600t(t >4);(2)由题意得:()()2160016004160016006400444t t t t t tt t ---==---(万个),答:每天要多做264004t t-(t >4)万个口罩才能完成任务.【点睛】本题主要考查了列反比例函数关系式,了解每天生产口罩w (万个)、生产时间t (天)(t >4)、生产总量之间的关系是解决问题的关键.18.1:16【分析】由已知得出BE:BC=1:4;证明△DOE∽△AOC,得到14DEAC=,由相似三角形的性质即可解决问题.【详解】解:∵S△BDE:S△CDE=1:3,∴BE:EC=1:3;∴BE:BC=1:4;∵DE∥AC,∴△DOE∽△AOC,∴1=4 DE BEAC BC=,∴S△DOE:S△AOC=1:16.【点睛】本题主要考查了相似三角形的判定及其性质的应用问题;熟练掌握相似三角形的判定与性质,证出BE:BC=1:4是解决问题的关键解题的关键.19.(1)A(﹣2,0),B(2,0);(2)y=x2﹣4【分析】(1)通过解方程mx²﹣4m=0可得A、B点的坐标;(2)先利用OA=2得到OC=4,所以|﹣4m|=4,然后求出满足条件的m的值,从而得到抛物线解析式.【详解】解:(1)当y=0时,mx2﹣4m=0,即x2﹣4=0,解得x1=2,x2=﹣2,∴A(﹣2,0),B(2,0);(2)当x=0时,y=mx2﹣4m=﹣4m,∴C(0,﹣4m),∵OA=2,∴OC=2OA=4,∴|﹣4m|=4,解得m=1或m=﹣1,∵m>0,∴m =1,∴抛物线解析式为y =x 2﹣4.【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质.20.(1)见解析;(2)见解析【分析】(1)由菱形的性质可得AB =AD ,∠BAC =∠DAC ,由“SAS”可证△ABP ≌△ADP ;(2)由全等三角形的性质可得PB =PD ,∠ADP =∠ABP ,通过证明△EPB ∽△BPF ,可得BP PE PF PB=,可得结论.【详解】证明:(1)∵四边形ABCD 是菱形,∴AB =AD ,∠BAC =∠DAC ,在△ABP 和△ADP 中,AD AB BAP DAP AP AP =⎧⎪∠=∠⎨⎪=⎩,∴△ABP ≌△ADP (SAS );(2)∵△ABP ≌△ADP ,∴PB =PD ,∠ADP =∠ABP ,∵AD //BC ,∴∠ADP =∠E ,∴∠E =∠ABP ,又∵∠FPB =∠EPB ,∴△EPB ∽△BPF ,∴BP PE PF PB=,∴PB 2=PE•PF ,∴PD 2=PE•PF .【点睛】本题考查了菱形的性质,三角形全等的判定与性质,三角形相似的判定与性质,解题的关键是熟练掌握三角形全等与相似的判定方法.21.(1)m>﹣1时,抛物线c与直线l没有公共点;(2)点B不在平移后的抛物线上,见解析【分析】(1)令x2+m=﹣2x﹣2,整理得x2+2x+m+2=0,根据判别式的意义得到△=22﹣4(m+2)<0,则抛物线c与直线l没有公共点;(2)先利用一次函数解析式确定A(0,﹣2),B(﹣1,0),再写顶点在A点的抛物线解析式为y=x2﹣2,然后根据二次函数图象上点的坐标特征进行判断.【详解】解:(1)根据题意得x2+m=﹣2x﹣2,整理得x2+2x+m+2=0,∵抛物线c与直线l没有公共点,∴△=22﹣4(m+2)<0,解得m>﹣1,∴m>﹣1时,抛物线c与直线l没有公共点;(2)当x=0时,y=﹣2x﹣2=﹣2,∴A(0,﹣2),当y=0时,﹣2x﹣2=0,解得x=﹣1,∴B(﹣1,0),∵抛物线c的顶点与点A重合,∴平移后的抛物线解析式为y=x2﹣2,当x=﹣1时,y=x2﹣2=﹣1,∴点B不在平移后的抛物线上.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x 轴的交点坐标问题转化为解关于x的一元二次方程,把抛物线与一次函数的交点问题转化为一元二次方程根的问题.也考查了二次函数的几何变换.22.(1)k=1;(2)M(0,3 2)【分析】(1)A(1,3),则AB=3,OB=1,而AB=3BD,故BD=1,则D(1,1),将D坐标代入反比例解析式得:k=1;(2)作点B(1,0)关于y轴的对称点E(﹣1,0),连接AE交y轴于点M,则点M为所求点,即可求解.【详解】解:(1)∵A(1,3),AB⊥x轴,∴AB=3,OB=1,∵AB=3BD,∴BD=1,∴D(1,1),将D坐标代入反比例解析式得:k=1;(2)作点B(1,0)关于y轴的对称点E(﹣1,0),连接AE交y轴于点M,则点M为所求点,理由:d=MA+MB=MA+ME=AE为最小,设直线AE的表达式为y=mx+b,则3m bm b=+⎧⎨=-+⎩,解得3232mb⎧=⎪⎪⎨⎪=⎪⎩,故AE的表达式为y=32x+32,当x=0时,y=3 2,故点M的坐标为(0,3 2).【点睛】本题为反比例函数的综合应用,涉及待定系数法、函数图象的交点、轴对称的性质等知识,本题考查知识点较多,综合性较强,难度适中.23.(1)见解析;(2)见解析;(3)不成立【分析】(1)根据折叠的性质得到∠CNM=∠PNM,CN=PN,得到PN=BN,根据等腰直角三角形的性质、平行线的判定定理证明结论;(2)过点M作ME⊥AB于E,过点N作NF⊥AB于F,证明△MEP∽△PFN,根据相似三角形的性质得到MPPN=MEPF=EPFN,根据等腰直角三角形的性质得到ME=AE,PN=BF,根据比例的性质计算,证明结论;(3)仿照(2)的证明方法可以判断(2)中的等式不成立.【详解】解:(1)∵∠C=90°,AC=BC,∴∠B=∠A=45°,∵点N为BC中点,∴CN=BN,由折叠的性质可知,∠CNM=∠PNM,CN=PN,∴PN=BN,∴∠NPB=∠B=45°,∴∠BNP=90°,∴∠CNM=45°,∴∠CNM=∠B,∴MN∥AB;(2)证明:如图2,过点M作ME⊥AB于E,过点N作NF⊥AB于F,由折叠的性质可知,MP=MC,NP=NC,∠MPN=∠C=90°,∴∠MPE+∠NPF=90°,∵∠PNF+∠NPF=90°,∴∠MPE=∠PNF,∵∠MEP=∠PFN=90°,∠MPE=∠PNF,∴△MEP∽△PFN,∴MPPN=MEPF=EPFN,∵ME⊥AB,NF⊥AB,∠B=∠A=45°,∴ME=AE,PN=BF,∴MPPN=MEPF=EPFN=ME PEPF FN++=AE PEPF FB++=APBP,∴MPPN=APBP;(3)解:不成立,理由如下:过点M作MG⊥AB于G,过点N作NH⊥AB于H,∵∠C=90°,AC≠BC,不妨设AC<BC,则∠A<45°,∠B>45°,∴MG<AG,NH>BH,由(2)的证明方法可知:MPPN≠APBP.【点睛】本题考查的是相似三角形的判定和性质、翻转变换的性质、比例的性质,掌握相似三角形的判定定理和性质定理是解题的关键.。

人教版九年级上学期数学第三次月考试卷及答案

人教版九年级上学期数学第三次月考试卷及答案

人教版九年级上学期数学第三次月考试卷及答案一、选择题(本大题共10小题,每小题3分,共30分)1.若x=2是方程x2-x+a=0的一个根,则( )A. a=1B. a=2C. a=-1D. a=-22.若双曲线y= k−1x位于第二、四象限,则k的取值范围是( )A. k<1B. k≥1C. k>1D. k≠13.如果两个相似三角形对应边的比为2:3,那么这两个相似三角形面积的比是()A. 2:3B. √2:√3C. 4:9D. 8:274.下列事件是必然事件的是( )A. 明天太阳从西边升起B. 掷出一枚硬币,正面朝上C. 打开电视机,正在播放世界杯足球赛D. 任意画一个三角形,它的内角和为180°5.若点A(3,-4)、B(-2,m)在同一个反比例函数的图象上,则m的值为( )A. 12B. -12C. 6D. -66.如图,在半径为5cm的⊙O中,弦AB=6cm,OC⊥AB于点C,则OC=()A. 3cmB. 4cmC. 5cmD. 6cm7.如图,已知DE∥BC,EF∥AB,则下列比例式中错误的是( )A. ADAB =AEACB. CECF=EAFBC. DEBC=ADBDD. EFAB=CFCB8.如图,一块含有30°角的直角三角形ABC,在水平桌面上绕点C按顺时针方向旋转到A'、B'、C的位置。

若BC 的长为7.5cm,那么顶点A从开始到结束所经过的路径长为( )A. 10πcmB. 10 √3πcmC. 15πcmD. 20π9.已知等边三角形的外接圆半径为2,则该等边三角形的边长是( )A. 2B. 4C. √3D. 2 √310.二次函数y=ax2+bx+c的图象如图所示,反比例函数y= a与正比例函数y=cx在同一坐标系内的大致图象是( )xA. B. C. D.二、填空题(本大题共7小题,每小题4分,共28分)11.已知y=(a-1)x a-2是反比例函数,则a的值是________。

九年级(上)第三次月考数学试卷(带答案)

九年级(上)第三次月考数学试卷(带答案)

九年级(上)第三次月考数学试卷一、选择题(每小题3分,共30分)1.(3分)若x:y=1:3,2y=3z,则的值是()A.﹣5B.﹣C.D.52.(3分)如图,直线l1∥l2∥l3,另两条直线分别交l1、l2、l3于点A、B、C及点D、E、F,且AB=3,DE=4,EF=2,则()A.BC:DE=1:2B.BC:DE=2:3C.BC•DE=8D.BC•DE=6 3.(3分)(易错题)如图,▱ABCD中,E是AD延长线上一点,BE交AC于点F,交DC于点G,则下列结论中错误的是()A.△ABE∽△DGE B.△CGB∽△DGE C.△BCF∽△EAF D.△ACD∽△GCF 4.(3分)“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为()A.1.25尺B.57.5尺C.6.25尺D.56.5尺5.(3分)如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B.C.D.6.(3分)如图,已知△ABC和△DEF,点E在BC边上,点A在DE边上,边EF 和边AC相交于点G.如果AE=EC,∠AEG=∠B,那么添加下列一个条件后,仍无法判定△DEF与△ABC一定相似的是()A.=B.=C.=D.=7.(3分)如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E.若AB=12,BM=5,则DE的长为()A.18B.C.D.8.(3分)在平行四边形ABCD中,点E在AD上,且AE:ED=3:1,CE的延长线与BA的延长线交于点F,则S△AFE :S四边形ABCE为()A.3:4B.4:3C.7:9D.9:79.(3分)如图,在正方形网格中,△ABC和△DEF相似,则关于位似中心与相似比叙述正确的是()A.位似中心是点B,相似比是2:1B.位似中心是点D,相似比是2:1C.位似中心在点G,H之间,相似比为2:1D.位似中心在点G,H之间,相似比为1:210.(3分)如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,∠BAC,∠ACB的平分线相交于点E,过点E作EF∥BC交AC于点F,则EF的长为()A.B.C.D.二、填空题(每小题3分,共12分)11.(3分)有一块多边形草坪,在设计图纸上的面积为300cm2,其中一条边的长度为5cm,经测量,这条边的实际长度为15m,则这块草坪的实际面积是.12.(3分)在△ABC中,AB=6,AC=5,点D在边AB上,且AD=2,点E在边AC 上,当AE=时,以A、D、E为顶点的三角形与△ABC相似.13.(3分)如图,在五角星中,AD=BC,且C、D两点都是AB的黄金分割点,CD=1,则AB的长是.14.(3分)如图,三个正方形的边长分别为2,6,8;则图中阴影部分的面积为.三、解答题(共78分)15.(12分)解下列方程:(1)3x2﹣5x﹣2=0(2)x2﹣1=2(x+1)(3)4x2+4x+1=3(3﹣x)2(4)(2x+8)(x﹣2)=x2+2x﹣1716.(6分)如图,在△ABC中,∠C=90°,点D是AB边上的一点,DM⊥AB,交AC于F点,过点M作ME∥BC,交AB于点E.求证:△ABC∽△MED.17.(6分)如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N 两点之间的直线距离.18.(6分)我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度18℃的时间有多少小时?(2)求k的值;(3)当x=16时,大棚内的温度约为多少度?19.(6分)关于x的方程(a2﹣4a+5)x2+2ax+4=0:(1)试证明无论a取何实数这个方程都是一元二次方程;(2)当a=2时,解这个方程.20.(8分)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?21.(8分)如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.(1)求证:四边形BEDF是平行四边形;(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.22.(8分)如图,在△ABC中,AB=AC,点E在边BC上移动(点E不与点B,C 重合),满足∠DEF=∠B,且点D、F分别在边AB、AC上.(1)求证:△BDE∽△CEF;(2)当点E移动到BC的中点时,求证:FE平分∠DFC.23.(8分)如图,有四张背面完全相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图,这四张纸牌背面朝上洗匀.(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率.(2)小明和小亮约定做一个游戏,其规则如下:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形,则小明获胜,否则小亮获胜,这个游戏公平吗?请用列表或画树状图的方法说明.(纸牌用A、B、C、D)24.(10分)某兴趣小组开展课外活动.如图,A,B两地相距12米,小明从点A出发沿AB方向匀速前进,2秒后到达点D,此时他(CD)在某一灯光下的影长为AD,继续按原速行走2秒到达点F,此时他在同一灯光下的影子仍落在其身后,并测得这个影长为1.2米,然后他将速度提高到原来的1.5倍,再行走2秒到达点H,此时他(GH)在同一灯光下的影长为BH(点C,E,G在一条直线上).(1)请在图中画出光源O点的位置,并画出他位于点F时在这个灯光下的影长FM(不写画法);(2)求小明原来的速度.参考答案与试题解析一、选择题(每小题3分,共30分)1.【解答】解:∵x:y=1:3,∴设x=k,y=3k,∵2y=3z,∴z=2k,∴==﹣5.故选:A.2.【解答】解:∵l1∥l2∥l3∴∵AB=3,DE=4,EF=2∴BC•DE=AB•EF=6.故选D.3.【解答】解:∵四边形ABCD是平行四边形∴AB∥CD∴∠EDG=∠EAB∵∠E=∠E∴△ABE∽△DGE(第一个正确)∵AE∥BC∴∠EDC=∠BCG,∠E=∠CBG∴△CGB∽△DGE(第二个正确)∵AE∥BC∴∠E=∠FBC,∠EAF=∠BCF∴△BCF∽△EAF(第三个正确)第四个无法证得,故选D4.【解答】解:依题意有△ABF∽△ADE,∴AB:AD=BF:DE,即5:AD=0.4:5,解得AD=62.5,BD=AD﹣AB=62.5﹣5=57.5尺.故选:B.5.【解答】解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确.D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误;故选:C.6.【解答】解:当=时,则=,而∠B=∠AEG,所以△ABC∽△EDF;当=,则=,而∠DEF=∠AEG,所以△DEF∽△AEG,又因为AE=EC,所以∠EAG=∠C,而∠AEG=∠B,所以△AEG∽△ABC,所以△ABC∽△EDF;当=,则=,而∠DEF=∠AEG,所以△DEF∽△AEG,又因为AE=EC,所以∠EAG=∠C,而∠AEG=∠B,所以△AEG∽△ABC,所以△ABC∽△EDF.故选:C.7.【解答】解:∵四边形ABCD是正方形,AB=12,BM=5,∴MC=12﹣5=7.∵ME⊥AM,∴∠AME=90°,∴∠AMB+∠CMG=90°.∵∠AMB+∠BAM=90°,∴∠BAM=∠CMG,∠B=∠C=90°,∴△ABM∽△MCG,∴=,即=,解得CG=,∴DG=12﹣=.∵AE∥BC,∴∠E=CMG,∠EDG=∠C,∴△MCG∽△EDG,∴=,即=,解得DE=.故选:B.8.【解答】解:∵在平行四边形ABCD中,∴AE∥BC,AD=BC,∴△FAE∽△FBC,∵AE:ED=3:1,∴=,∴=,∴S△AFE :S四边形ABCE=9:7.故选:D.9.【解答】解:如图,在正方形网格中,△ABC和△DEF相似,连接AF,CE,∴位似中心在点G,H之间,又∵AC=2EF,∴相似比为2:1,故选:C.10.【解答】解:如图,延长FE交AB于点D,作EG⊥BC于点G,作EH⊥AC于点H,∵EF∥BC、∠ABC=90°,∴FD⊥AB,∵EG⊥BC,∴四边形BDEG是矩形,∵AE平分∠BAC、CE平分∠ACB,∴ED=EH=EG,∠DAE=∠HAE,∴四边形BDEG是正方形,在△DAE和△HAE中,∵,∴△DAE≌△HAE(SAS),∴AD=AH,同理△CGE≌△CHE,∴CG=CH,设BD=BG=x,则AD=AH=6﹣x、CG=CH=8﹣x,∵AC===10,∴6﹣x+8﹣x=10,解得:x=2,∴BD=DE=2,AD=4,∵DF∥BC,∴△ADF∽△ABC,∴=,即=,解得:DF=,则EF=DF﹣DE=﹣2=,故选:C.二、填空题(每小题3分,共12分)11.【解答】解:由题意可知,设草坪的实际面积为x,又图纸与实际的比例为0.05:15=1:300,所以有(1:300)2=300:xx=27000000cm2=2700m2所以草坪的实际面积为2700m2.故答案为:2700m2.12.【解答】解:当=时,∵∠A=∠A,∴△AED∽△ABC,此时AE===;当=时,∵∠A=∠A,∴△ADE∽△ABC,此时AE===;故答案为:或.13.【解答】解:∵C、D两点都是AB的黄金分割点,∴AC=AB,BD=AB,∴AC+BD=(﹣1)AB,即AB+CD=(﹣1)AB,∴AB=+2.故答案为+2.14.【解答】解:如图,根据题意,知△ABE∽△ADG,∴AB:AD=BE:DG,又∵AB=2,AD=2+6+8=16,GD=8,∴BE=1,∴HE=6﹣1=5;同理得,△ACF∽△ADG,∴AC:AD=CF:DG,∵AC=2+6=8,AD=16,DG=8,∴CF=4,∴IF=6﹣4=2;=(IF+HE)•HI∴S梯形IHEF=×(2+5)×6=21;所以,则图中阴影部分的面积为21.三、解答题(共78分)15.【解答】解:(1)3x2﹣5x﹣2=0,(3x+1)(x﹣2)=0,∴3x+1=0或x﹣2=0,∴x1=﹣,x2=2;(2)x2﹣1=2(x+1),(x+1)(x﹣1)﹣2(x+1)=0,(x+1)(x﹣1﹣2)=0,∴x+1=0或x﹣3=0,∴x1=﹣1,x2=3;(3)4x2+4x+1=3(3﹣x)2整理得:x2+22x=26,x2+22x+121=26+121(x+11)2=147,x+11=±7,∴x1=﹣11+7,x2=﹣11﹣7;(4)(2x+8)(x﹣2)=x2+2x﹣17整理得:x2+2x+1=0,∴(x+1)2=0,∴x1=x2=﹣1.16.【解答】证明:∵DM⊥AB,∴∠MDE=∠C=90°,∵EM∥BC,∴∠MED=∠B,∴△ABC∽△MED.17.【解答】解:在△ABC与△AMN中,=,=,∴,又∵∠A=∠A,∴△ABC∽△ANM,∴,即,解得:MN=1500米,答:M、N两点之间的直线距离是1500米;18.【解答】解:(1)恒温系统在这天保持大棚温度18℃的时间为12﹣2=10小时.(2)∵点B(12,18)在双曲线y=上,∴18=,∴解得:k=216.(3)当x=16时,y==13.5,所以当x=16时,大棚内的温度约为13.5℃.19.【解答】解:(1)a2﹣4a+5=(a2﹣4a+4)+1=(a﹣2)2+1,∵(a﹣2)2≥0,∴(a﹣2)2+1≠0,∴无论a取何实数关于x的方程(a2﹣4a+5)x2+2ax+4=0都是一元二次方程;(2)当a=2时,原方程变为x2+4x+4=0,解得x1=x2=﹣2.20.【解答】(1)解:设每千克核桃应降价x元.…1分根据题意,得(60﹣x﹣40)(100+×20)=2240.…4分化简,得x2﹣10x+24=0 解得x1=4,x2=6.…6分答:每千克核桃应降价4元或6元.…7分(2)解:由(1)可知每千克核桃可降价4元或6元.因为要尽可能让利于顾客,所以每千克核桃应降价6元.此时,售价为:60﹣6=54(元),设按原售价的m折出售,则有:60×=54,解得m=9答:该店应按原售价的九折出售.21.【解答】证明:(1)∵四边形ABCD是矩形,∴AB∥DC、AD∥BC,∴∠ABD=∠CDB,∵BE平分∠ABD、DF平分∠BDC,∴∠EBD=∠ABD,∠FDB=∠BDC,∴∠EBD=∠FDB,∴BE∥DF,又∵AD∥BC,∴四边形BEDF是平行四边形;(2)当∠ABE=30°时,四边形BEDF是菱形,∵BE平分∠ABD,∴∠ABD=2∠ABE=60°,∠EBD=∠ABE=30°,∵四边形ABCD是矩形,∴∠A=90°,∴∠EDB=90°﹣∠ABD=30°,∴∠EDB=∠EBD=30°,∴EB=ED,又∵四边形BEDF是平行四边形,∴四边形BEDF是菱形.22.【解答】解:(1)∵AB=AC,∴∠B=∠C,∵∠BDE=180°﹣∠B﹣∠DEB,∠CEF=180°﹣∠DEF﹣∠DEB,∵∠DEF=∠B,∴∠BDE=∠CEF,∴△BDE∽△CEF;(2)∵△BDE∽△CEF,∴,∵点E是BC的中点,∴BE=CE,∴,∵∠DEF=∠B=∠C,∴△DEF∽△ECF,∴∠DFE=∠CFE,∴FE平分∠DFC.23.【解答】解:(1)共有4张牌,正面是中心对称图形的情况有2种,所以摸到正面是中心对称图形的纸牌的概率是;(2)列表得:共产生12种结果,每种结果出现的可能性相同,其中两张牌都是轴对称图形的有6种,∴P(两张都是轴对称图形)=,因此这个游戏公平.24.【解答】解:(1)如图,(2)设小明原来的速度为xm/s,则CE=2xm,AM=AF﹣MF=(4x﹣1.2)m,EG=2×1.5x=3xm,BM=AB﹣AM=12﹣(4x﹣1.2)=13.2﹣4x,∵点C,E,G在一条直线上,CG∥AB,∴△OCE∽△OAM,△OEG∽△OMB,∴=,=,∴=,即=,解得x=1.5,经检验x=1.5为方程的解,∴小明原来的速度为1.5m/s.答:小明原来的速度为1.5m/s.。

九年级数学上第三次月考试卷

九年级数学上第三次月考试卷

九年级数学上第三次月考试卷一、选择题(每小题3分,满分30分):1.已知反比例函数y =m -5x 的图象在第二、四象限,则m 的取值范围是( )A .m ≥5B .m >5C .m ≤5D .m <52.下列判断中正确的个数有( ).①全等三角形是相似三角形 ②顶角相等的两个等腰三角形相似 ③所有的等腰三角形都相似 ④所有的菱形都相似 ⑤两个位似三角形一定是相似三角形A .2 B.3 C.4 D.5 3. 某气球内充满了一定质量的气体,当温度不变 时,气球内气体的气压p (kpa )是气体体积v (3m )的反比例函数,其图像如图所示,当气球内气体的气压大于120 kpa 时,气球将爆炸.为安全起见,气球的体积应为( ).A.不小于354mB.小于354mC.不小于345mD.小于345m4.去年某校有1500人参加中考,为了了解他们的数学成绩.从中抽取200名考生的数学成绩,其中有60名考生达到优秀,那么该校考生达到优秀的人数约有( )A .400名B .450名C .475名D .500名 5.如图,在边长为1的小正方形组成的网格中,△ABC 的 三个顶点均在格点上,则tan A =( ) A.35 B.45 C.34 D.436.用配方法解关于x 的一元二次方程x 2-2x -3=0,配方后的方程可以是( )A .(x -1)2=4B .(x +1)2=4C .(x -1)2=16D .(x +1)2=167.在ABC ∆中,∠C=90,若2sin 3A =,那么tanB=( ). A.35B.2C.5D.38.若关于x 的一元二次方程(k -1)x 2+2x -2=0有两个不相等实数根,则k 的取值范围是( )A .k >12B .k ≥12C .k >12且k ≠1D .k ≥12且k ≠19.如图,将矩形ABCD 沿对角线BD 折叠,使C 落在'C 处,B 'C 交AD 于点E ,则下列结论不一定成立的是( ). A.ABE ∆∽CBD ∆ B.∠EBD=∠EDBC.AD=B 'CD.sin ∠ABE=AEED10.已知a ,b ,c 是△ABC 三条边的长, 那么方程cx 2+(a +b )x +c4=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .无法确定二、填空题(每小题3分,满分30分):11.反比例函数ky x =(k≠0)的图像经过点A (1,-3),则k 得值为 .12.已知关于x 的一元二次方程x 2+(2k +1)x +k 2-2=0的两根为x 1和x 2, 且(x 1-2)(x 1-x 2)=0,则k 的值是__ .13.两个相似多边形周长之比为2:3,面积之差为302cm ,则这两个多边形面积之和为 2cm . 14.已知73a b =,则a ba b+-= . 15.如图,△ABC 中,点D 在边AB 上,满足∠ACD =∠ABC , 若AC =2,AD =1,则DB =____.16.在Rt ABC ∆中,∠C=90,∠B=2∠A ,则cosA= .17.如图,在直角坐标系中有两点A (4,0),B (0,2) 如果C 在x 轴上(C 点与A 不重合),当C 点坐标 为 或 时,使得由点B ,O ,C构成的三角形与AOB ∆相似(至少找出两个满足条件点). 18.若代数式x 2-8x +12的值是21,则x 的值是_ __.19.某市加快了郊区旧房拆迁的步伐,为了解被拆迁的236户家庭对拆迁补偿方案是否满意,小明利用周末调查了其中的50户家庭,有32户对方案表示满意,则被拆迁的236户家庭对补偿方案,满意的百分率是__ __.20.如图,在反比例函数y =2x (x >0)的图象上,有点P 1,P 2,P 3,P 4, 它们的横坐标依次为1,2,3,4.分别过这些点作x 轴与y 轴的 垂线,图中所构成的阴影部分的面积从左到右依次为S 1,S 2,S 3, 则S 1+S 2+S 3=__ __.三、解答题(共60分):21.(7分)已知关于x 的方程2x 2-kx +1=0的一个解与方程2x +11-x=4的解相同,求k 的值.22.(8分)如果是我国某海域内的一个小岛,其平面图如图甲所示,小明据此构造出该岛的一个数学模型如图乙所示,其中∠B =∠D =90°,AB =BC =15千米,CD =32千米.求∠ACD 的余弦值.23.(10分)如图,学校生物兴趣小组的同学们用围栏围了一个面积为24平方米的矩形饲养场地ABCD ,设BC 为x 米,AB 为y 米.(1)求y 与x 的函数表达式;(2)延长BC 至E ,使CE 比BC 少1米,围成一个新的矩形ABEF , 结果场地的面积增加了16平方米,求BC 的长.24.(9分)如图,一次函数y kx b =+的图像与反比例函数my x=(m≠0) 的图像相交于A 、B 两点.(1)根据图像,分别写出点A 、B 的坐标; (2)求出这两个函数的解析式; (3)直接写出一次函数值大于反比例函数值的x 的范围.25.(8分)某商场将某种商品的售价从原来的40元/件,经两次调价后 调至32.4元/件.(1)若该商品两次调价的降价率相同,求这个降价率.(2)经调查,该商品每降价0.2元/件,即可多销售10件,若该商品原来每月可销售500件,那么两次调价后,每月可销售该商品多少件?26(8分)某环保小组为了解世博园的游客在园区内购买瓶装饮料数量的情况,一天,他们分别在A 、B 、C 三个出口处,对离开园区的游客进行调查,其中在A(如图). (1)在A 出口的被调查游客中,购买 2瓶及2瓶以上饮料的游客人数占A 出口的被调查游客人数的______%.(2)试问A 出口的被调查游客在园区 内人均购买了多少瓶饮料?(3)已知B 、C 两个出口的被调查游客在若C 出口的被调查人数比B 出口的被调查人数多2万,且B 、C 两个出口 的被调查游客在园区内共购买了49万瓶饮料,试问B 出口的被调查游客 有多少万人?27.(10分)已知某小区的两幢10层住宅间的距离AC=30m ,由地面向上依次为第一层、第二层、…、第10层,每层高度3m.假设某一时刻甲楼在乙楼侧面的影长EC=h ,太阳光线与水平线的夹角为α. (1)用含α的式子表示h (不必指出α的范围);(2)当α等于30时,甲楼楼顶B 点的影子落在乙楼的第几层?若α每小时增加15,从此时起几小时后甲楼的影子刚好不影响乙楼的采光?参考答案一、1、D 2、A 3、C 4、B 5、D 6、A 7、B 8、C 9、A 10、B二、11、-3;12、-2或-94;(点拨:若x 1-2=0,则x 1=2,代入方程解得k =-2;若x 2-x 2=0,则Δ=0,解得k =-94) 13、78;14、52;15、3;16;17、(2,0) 或(-2,0); 18、9或-1;19、64%;20、32; 三、 21、解:2x +11-x=4得x =12,经检验x =12是原方程的解,x =12是2x 2-kx +1=0的解,∴k =322、解:连接AC ,在Rt △ABC 中,AC =AB 2+BC 2=152千米,在Rt △ACD 中,cos ∠ACD =CDAC =32152=15,∴∠ACD 的余弦值为15 23、解:(1)y =24x (2)根据题意有(x +x -1)y =16+24,即2xy -y =40, 又由xy =24,解得y =8,∴BC =3米25、(1)设降价率为x ;得 40(1-x ) 2=32.4 x =10% 即降价率是10%26、(1)60﹪,(2)A 出口的被调查游客总数:1+3+2.5+2+1.5=10万人 A 出口的被调查游客购买饮料总数:3×1+2.5×2+2×3+1.5×4=20万瓶, A 出口的被调查游客人均购买饮料数:20÷10=2瓶/人(3)设B 出口人数为x 万人,则C 出口人数为(x +2)万人, 则有3x +2(x +2)=49,解得:x =9. 27、解:(1)过点E 作EF ⊥AB 于F ,由题意,四边形ACEF 为矩形. ∴EF=AC=30,AF=CE=h ,∠BEF=α,∴BF=3×10-h=30-h . 又在Rt △BEF 中,tan ∠BEF=BFEF, ∴tanα=30h-,即30-h=30tanα.∴h=30-30tanα.(2)当α=30°时,h=30-30tan30°3≈12.7, ∵12.7÷3≈4.2,∴B 点的影子落在乙楼的第五层.当B 点的影子落在C 处时,甲楼的影子刚好不影响乙楼采光. 此时,由AB=AC=30,知△ABC 是等腰直角三角形,∴∠ACB=45°,∴453015=1(小时). 故经过1小时后,甲楼的影子刚好不影响乙楼采光.。

九年级数学上册第三次月考试卷

九年级数学上册第三次月考试卷

上册第三次月考试卷初三数学一、选择题:(每小题4分,共32分) 1、使代数式43--x x 有意义的x 的取值范围是( ) A 、x>3B 、x ≥3C 、 x>4D 、x ≥3且x ≠42、在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外,其他完全相同,李明通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是( )A .6B .16C .18D .243、已知抛物线y=x 2+bx+c 的部分图象如图所示,则它与x 轴的另一 个交点是( )A. (2,0)B. (3,0)C. (4,0)D. (5,0) 4、下列四个选项中的三角形,与左图中的三角形相似的是( )5、 如图,CD 是⊙O 的直径,A 、B 是⊙O 上的两点,若∠ABD =20°,则∠ADC 的度数为( )A. 40°B. 50°C. 60°D. 70°6、如图,现有一圆心角为90︒,半径为8cm 扇形纸片, 用它恰好围成一个圆锥的侧面(接缝处忽略不计),则 该圆锥底面圆的半径为( )A .4 cmB .3 cmC .2 cmD .1 cm7、烟花厂为国庆观礼特别设计制作一种新型礼炮,这种礼炮的升空高度h(m)与飞行时C间t(s)的关系式是25(4)402h t =--+,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为( )A .2sB .4sC .6sD .8s 8、我国古代的“河图”是由3×3的方格构成,每个方格内均有1—9九个不同的整数点图,每一行、每一列以及每一条对角线上的三个点图的点数之和相等,图中给出了“河图”的部分点图,请你推算出P 处所对应的点图是( )A .B .C .D .二、填空题:(每空4分,共20分) 9、2-的倒数是.10、如果0432≠==z y x ,则=-+++zy x zy x ________. 11、如图,⊙M 经过点A (-3,5),B (1,5),C (4,2),则圆心M 的坐标是 . 12、如图,三角板ABC 中,︒=∠90ACB ,︒=∠30B ,6=BC .三角板绕直角顶点C 逆时针旋转,点A 的对应点A '恰好落在AB 边上,则旋转角为_________,点B 转过的路径长为 .13、一条抛物线的图象同时满足下列条件:①开口向下, ②对称轴是直线x=2,③抛物线经过原点,则这条抛物 线的解析式是 (写一个即可). 三、解答题:(本大题共5小题,每小题7分,共35分) 14、一个三角形的三边长分别为54(1)求它的周长(要求结果化简);(2)请你给一个适当的x 值,使它的周长为整数,并求出此时三角形周长的值. 15、如图所示,图①和图②中的每个小正方形的边长都为1个单位长度(1)将图①中的格点△ABC (顶点都在网格线交点处的三角形叫格点三角形)以点A为旋转中心,按逆时针方向旋转900,画出旋转后的△AB 1C 1.(2)在图②中画一个与格点△ABC 相似的格点△A 2B 2C 2,且△A 2B 2C 2与△ABC 的相似比为2∶1① ② 16、求抛物线213y 22x x =-++与x 轴的交点及顶点坐标;17、如图,为测量学校旗杆的高度,小东用长为3.2m 的竹竿作测量工具,移动竹竿,使竹竿顶端与旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距8m ,与旗杆相距22m ,求旗杆的高度;18、如图,A 、B 、C 、D 在圆O 上.(1)指出图中有哪些相等的角?(要求不再添加字母)(2)如果∠1=∠2,图中存在全等三角形吗?如果存在,请找出来并证明.四、解答题:(本大题共3小题,每小题9分,共27分)19、如图,甲转盘被分成 3 个面积相等的扇形,乙转盘被分成 4 个面积相等的扇形,每一个扇形都标有相应的数字.同时转动两个转盘,当转盘停止后,设甲转盘中指针所指区域内的数字为x ,乙转盘中指针所指区域内的数字为y (当指针指在边界线上时,重转一次,直到指针指向一个区域为止).(1)请你用画树状图或列表格的方法,求出点(),x y 落在第二象限内的概率; (2)直接写出点(),x y 落在函数1y x=-图象上的概率.20、为了尽快摆脱金融危机的影响,某市划建了大型的工业园区,用以招商引资,并制定了《工业园区建设发展规划纲要(草案)》.由于金融危机的影响,园区工业企业2008年工业总产值只完成440亿元,如果要在2010年达到743.6亿元,那么2008年到2010年的工业总产值年平均增长率是多少?《纲要》确定2012年园区工业总产值要达到1200亿元,若继续保持上面的增长速度,该目标是否可以完成? 21、在直角坐标平面内,二次函数图象的顶点为A (1,-4),且过点B (3,0)⑴求该二次函数的解析式;⑵将该二次函数的图象向右至少..平移几个单位,可使得平移后的图象经过坐标原点?并直接写出平移后所得图象与x 轴的另一个交点的坐标.五、解答题:(本大题共3小题,每小题12分,共36分) 22、如图,在△ABC 中,∠ABC=90°,O 是AB 上一点,以 O 为圆心OB 为半径的圆与AB 交于点E ,与AC 交于点D ,连结DE 、DE 、OC ,且DE ∥OC .(1)求证:AC 是⊙O 的切线; (2)若DE ·OC=8,求⊙O 的半径.23、某汽车城销售某种型号的汽车,每辆汽车进货价为25万元.市场调研表明:当销售价为29万元时,平均每周能售出8辆;当销售价每降低0.5万元时,平均每周能多售出4辆.如果设每辆汽车降价x 万元,每辆汽车的销售利润为y 万元(销售利润=销售价-进货价).(1)求y 与x 的函数关系式;在保证商家不亏本的前提下,写出x 的取值范围; (2)假设这种汽车平均每周的销售利润为z 万元,试写出z 与x 之间的函数关系式; (3)当每辆汽车的定价为多少万元时,平均每周的销售利润最大?最大利润是多少?24、如图,抛物线y =-12 x 2+32 x +2 交x 轴于A 、B 两点,交y 轴于点C .(1)求证:△ABC 为直角三角形;(2)⊙M 是△ABC 的外接圆,⊙M 与抛物线交于另一点D ,则点M 和点D 的坐标分别是:M ( , );D ( , )(3)在y 轴上找点P ,连结PB ,若△PBC 为等腰三角形,直接写出点P 的坐标; (4)在BC 上方的抛物线上取点E ,连结CE 和BE ,△BCE 的面积是否存在最大值?若存在,求出点E的坐标;若不存在,请说明理由.金中南校2009~2010学年度上学期第三次月考答题卷初三数学( 时间:100分钟满分:150分 )一、精心选一选(每小题4分,共32分)二、耐心填一填(每小题4分,共20分)9. ________________ 10. 11.12.; 13.________________三、解答题: (每小题7分,共35分,解答时要有必要的文字说明和解答过程)14.解:15.解:①②16.解:17. 解:18. 解:四、解答题: (每小题9分,共27分)19.解:20. 解:21. 解:五、解答题: (每小题12分,共36分) 22.23. 解:24.。

苏科版九年级上册数学第三次月考试卷及答案

苏科版九年级上册数学第三次月考试卷及答案

苏科版九年级上册数学第三次月考试题一、选择题。

(每小题只有一个正确答案)1.如图所示,二次函数y=ax 2+bx+c 的图象中,王刚同学观察得出了下面四条信息:(1)b 2﹣4ac >0;(2)c >1;(3)2a ﹣b <0;(4)a+b+c <0,其中错误的有()A .1个B .2个C .3个D .4个2.下列四个命题:(1)圆既是轴对称图形又是中心对称图形;(2)平分弦的直径垂直于弦;(3)相等的圆心角所对的弧相等;(4)圆的切线垂直于半径.(5)90°的圆周角所对的弦是直径.其中真命题的个数有()A .0B .1C .2D .33.如图,⊙O 的内接△ABC 的外角∠ACE 的平分线交⊙O 于点D .DF ⊥AC ,垂足为F ,DE ⊥BC ,垂足为E .给出下列4个结论:①CE =CF ;②∠ACB =∠EDF ;③DE 是⊙O 的切线;④ AD BD.其中一定成立的是()A .①②③B .②③④C .①③④D .①②④4.如图所示,AB 是⊙O 的直径,点C 为⊙O 外一点,CA ,CD 是⊙O 的切线,A ,D 为切点,连接BD ,AD .若∠ACD=30°,则∠DBA 的大小是()A.15°B.30°C.60°D.75°5.如图,在Rt△ABO中,∠AOB=90°,OA=OB=4,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),则切线长PQ的最小值是()A.26B7C.2D.36.如图,C、D是以线段AB为直径的⊙O上两点(位于AB两侧),CD=AD,且∠ABC=70°,则∠BAD的度数是()A.50°B.45°C.35°D.30°7.已知点A(﹣3,y1),B(2,y2)均在抛物线y=ax2+bx+c上,点P(m,n)是该抛物线的顶点,若y1>y2≥n,则m的取值范围是()A.﹣3<m<2B.﹣32<m<-12C.m>﹣12D.m>28.若m、n(n<m)是关于x的一元二次方程1﹣(x﹣a)(x﹣b)=0的两个根,且b<a,则m,n,b,a的大小关系是()A.m<ab<n B.a<m<n<b C.b<n<m<a D.n<b<a<m 9.如图,AB是⊙O的直径,点P在BA的延长线上,PA=AO,PD与⊙O相切于点D,BC⊥AB 交PD的延长线于点C,若⊙O的半径为1,则BC的长是()A.1.5B.2C2D.310.一个扇形的圆心角是120°,面积为3πcm2,那么这个扇形的半径是()A.1cm B.3cm C.6cm D.9cm二、填空题11.如图,AB为⊙O的切线,切点为B,连接AO,AO与⊙O交于点C,BD为⊙O的直径,连接CD,若∠A=30°,⊙O的半径为2,则图中阴影部分的面积为_____(结果保留π)12.已知弦AB把圆周分成1:5的两部分,则弦AB所对的圆心角的度数为________.13.用一个圆心角为150°,半径为2cm的扇形作一个圆锥的侧面,则这个圆锥的底面圆的半径为__________cm.14.已知△ABC内接于⊙O,AB=AC,半径OB=5cm,圆心O到BC的距离为3cm,则AB的长为_____cm.15.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x =﹣1,给出以下结论:①abc<0;②b2﹣4ac>0;③4b+c<0;④若B(﹣5,y1),C(2,y2)为函数图象上的两点,则y1>y2;⑤当﹣3≤x≤1时,y≥0,其中正确的结论是_____.(填序号)16.如图,M(0,﹣3)、N(0,﹣9),半径为5的⊙A经过M、N,则A点坐标为_____.17.已知,在平面直角坐标系中,点A (0,1),B(0,5),C(5,0),且点P 在第一象限运动,且∠APB=45°,则PC 的最小值为_____.三、解答题18.解方程:(1)2410x x --=;(2)()()2232x x -=-19.明明和亮亮玩“剪刀、石头、布”游戏.游戏规则是:双方每次任意出“剪刀”、“石头”、“布”这三种手势中的一种,石头胜剪刀,剪刀胜布,布胜石头,若双方出现相同手势,算打平.明明和亮亮两人只比赛一局.(1)请用树状图或列表法列出游戏的所有可能结果.(2)求出双方打平的概率.20.关于x 的方程2220x x m +-=.(1)求证:不论m 为何值,方程总有两个不相等的实数根;(2)若方程有一个根是1,求另一个根及m 的值.21.为增强学生垃圾分类意识,推动垃圾分类进校园.某初中学校组织全校1200名学生参加了“垃圾分类知识竞赛”,为了解学生的答题情况,学校考虑采用简单随机抽样的方法抽取部分学生的成绩进行调查分析.(1)学校设计了以下三种抽样调查方案:方案一:从初一、初二、初三年级中指定部分学生成绩作为样本进行调查分析;方案二:从初一、初二年级中随机抽取部分男生成绩及在初三年级中随机抽取部分女生成绩进行调查分析;方案三:从三个年级全体学生中随机抽取部分学生成绩进行调查分析.其中抽取的样本具有代表性的方案是__________.(填“方案一”、“方案二”或“方案三”)(2)学校根据样本数据,绘制成下表(90分及以上为“优秀”,60分及以上为“及格”):样本容量平均分及格率优秀率最高分最低分10093.5100%70%10080分数段统计(学生成绩记为x )分数段080x ≤<8085x ≤<8590x ≤<9095x ≤<95100x ≤≤频数5253040请结合表中信息解答下列问题:①估计该校1200名学生竞赛成绩的中位数落在哪个分数段内;②估计该校1200名学生中达到“优秀”的学生总人数.22.已知二次函数y =-x 2+2x +3.(1)求函数图象的顶点坐标,并画出这个函数的图象;(2)根据图象,直接..写出:①当函数值y 为正数时,自变量x 的取值范围;②当-2<x <2时,函数值y 的取值范围;③若经过点(0,k )且与x 轴平行的直线l 与y =-x 2+2x +3的图象有公共点,求k 的取值范围.23.如图,已知点I是△ABC的内心,AI交BC于D,交外接圆O于E,求证:(1)IE=EC;(2)IE2=ED•EA.24.如图,AB是⊙O的直径,⊙O过BC的中点D,且DE⊥AC于点E.(1)求证:DE是⊙O的切线;(2)若∠C=30°,CD,求⊙O的半径.25.如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,设运动时间为x秒.(1)当x为何值时,PQ∥BC?(2)当S13BCQABCS∆∆=时,求SBPQABCS∆∆的值;(3)△APQ能否与△CQB相似?若能,求出时间x的值,若不能,说明理由.26.如图,在平面直角坐标系中,顶点为(4,﹣1)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有怎样的位置关系,并给出证明;(3)已知点P是抛物线上的一个动点,且位于A,C两点之间,问:当点P运动到什么位置时,△PAC的面积最大?并求出此时P点的坐标和△PAC的最大面积.27.如图,直线y=x+c与x轴交于点A(﹣4,0),与y轴交于点C,抛物线y=﹣x2+bx+c 经过点A,C.(1)求抛物线的解析式;(2)已知点P是抛物线上的一个动点,并且点P在第二象限内,过动点P作PE⊥x轴于点E,交线段AC于点D.①如图1,过D作DF⊥y轴于点F,交抛物线于M,N两点(点M位于点N的左侧),连接EF,当线段EF的长度最短时,求点P,M,N的坐标;②如图2,连接CD ,若以C ,P ,D 为顶点的三角形与△ADE 相似,求△CPD 的面积.参考答案1.A 2.C 3.D 4.D 5.B 6.C 7.C 8.D 9.D 10.B11.43.12.60°13.56.14.15.②③⑤16.(﹣4,﹣6)17.18.(1)12x =+,22x =(2)12x =,25x =.19.(1)见解析;(2)1320.(1)证明见解析(2),-321.(1)方案三;(2)①该校1200名学生竞赛成绩的中位数落在9095x ≤<分数段内;②该校1200名学生中达到“优秀”的学生总人数为840人22.(1)y =-(x -1)2+4,顶点(1,4);(2)①-1<x <3,②-5<y≤4,③k≤4.23.(1)证明见解析;(2)证明见解析.24.(1)见解析;(2)1.25.(1)103;(2)29;(3)109或5.26.(1)y =14x 2−2x +3;(2)相交,理由见解析.(3)P 点的坐标(3,−34),△PAC 的面积最大274;27.(1)y =﹣x 2﹣3x +4;(2)①点P 坐标为(﹣2,6),点M 、N 的坐标分别为(3172-,2)、(32-,2);②△CPD 的面积为92或4.。

九年级数学第一学期第三次月考试卷

九年级数学第一学期第三次月考试卷

九年级数学第一学期第三次月考试卷(卷一)本卷满分100分 命题人:一、选择题(本大题12个小题,每小题3分,共36分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个答案是正确的。

1.下列各式中,是最简二次根式的是( )。

A .18 B .b a 2 C . 22b a + D .32 2.三角形两边的长分别是8和6,第三边的长是一元二次方程060162=+-x x 的一个实数根,则该三角形的面积是 ( )A . 24B . 24或58C . 48D . 583.方程x ²-x +2=0根的情形是( )A. 只有一个实数根B. 有两个相等的实数根C. 有两个不相等的实数根D. 没有实数根 4.下列语句中不正确的有( )①相等的圆心角所对的弧相等 ②平分弦的直径垂直于弦③圆是轴对称图形,任何一条直径差不多上它的对称轴 ④长度相等的两条弧是等弧 A .3个 B.2个 C.1个 D.4个5. 由一已知点P 到圆上各点的最大距离为5,最小距离为1,则圆的半径为( ) A .2或3 B. 3 C. 4 D. 2 或46.二次函数y=x 2-(12-k)x+12,当x>1时,y 随着x 的增大而增大,当x<1时,y 随着x 的增大而减小,则k 的值应取( )A .12 B. 11 C. 10 D. 97. 下列四个函数中,y 的值随着x 值的增大而减小的是( )A.x y 2=B. ()01>=x xy C. 1+=x y D. ()02>=x x y 8.假如抛物线y=x 2-6x+c-2的顶点到x 轴的距离是3,那么c 的值等于( ) A. 8 B. 14 C. 8或14 D. -8或-149.把二次函数23x y =的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数关系式是( ) A.()1232+-=x y B.()1232-+=x y C.()1232--=x y D.()1232++=x y10.直线a上有一点到圆心O 的距离等于⊙O 的半径,则直线a与⊙O 的位置关系是( ) A.相离 B.相切 C.相切或相交 D.相交11.有一个多边形的边长分别是4cm 、5cm 、6cm 、4cm 、5cm ,和它相似的一个多边形最长边为8cm ,那么那个多边形的周长是( )A .12cmB .18cm C. 32cm D. 48cm 12.下列图形既是轴对称图形,又是中心对称图形的是( )A B C D 二、填空题(本大题12个小题,每小题2分,共24分)13.若x 、y 都为实数,且152********+-+-=x x y ,则y x +2=________。

湘教版九年级上册数学第三次月考试卷含答案

湘教版九年级上册数学第三次月考试卷含答案

湘教版九年级上册数学第三次月考试题一、选择题。

(每小题只有一个正确答案)1.已知点()5,m -在反比例函数10y x=的图象上,则m 的值是()A .50B .2C .2-D .50-2.方程2680x x +-=的左边配成完全平方后,得到的方程为()A .()2317x -=B .()2317x +=C .()231x +=D .以上都不对3.在Rt ABC △,90C ∠=︒,3sin 5B =,则cos A 的值是()A .35B .45C .53D .544.某品牌电视机今年三月份的单价为6000元,四、五月每月的平均增长率是10%,则五月份的单价为()A .6600元B .7200元C .7260元D .4860元5.如图,用放大镜将图形放大,应属何种变换()A .相似变换B .平移变换C .旋转变换D .对称变换6.如图,已知//BC FE ,12AB =,9AC =,3AF =,则BE 的值是()A .4B .5C .6D .87.不解方程,判定方程22310x x --=的根的情况是()A .方程有两个相等的实数根B .方程有两个不相等的实数根C .没有实数根D .不能确定8.某5人学习小组在疫情期间进行线上数学测试,其成绩(分)分别为:84,90,94,92,90,下列说法不正确的是()A .5人平均成绩是90分B .成绩的中位数是94分C .成绩的众数是90分D .成绩的方差是211.2分二、填空题9.若25a b =,则a b b+=______.10.已知点C 是线段AB 的黄金分割点,且AC>BC ,若AB=8,则AC=____.11.一元二次方程2x 3x 0-=的根是_______.12.如图,点A 在反比例函数ky x=的图象上,AB 垂直于x 轴,点C 是y 轴上一动点,若4ABC S = ,那么这个反比例函数解析式是______.13.如图,ABC 与111A B C △为位似图形,点O 是它们的位似中心,位似比是1:2,已知ABC 的面积为5,那么111A B C △的面积是______.14.已知关于x 的一元二次方程x 2+kx ﹣6=0有一个根为﹣3,则方程的另一个根为_____.15.某周长为20cm 的等腰三角形其一边长是5cm ,则底角的余弦值为______.16.如图,已知一次函数y kx b =+的图象与x 轴的正半轴交于点M ,与y 轴的正半轴交于点()0,2N ,且60OMN ∠=︒,则此一次函数的表达式为______.三、解答题17.计算:()()20214tan 60120202021π--+-︒18.解方程:①2250x x --=②22510x x --=19.如图,一次函数112y x =+的图象与反比例函数ky x=的图象相交于()2,A m 和B 两点.(1)求反比例函数的解析式(2)求点B 的坐标,并观察图象,说出不等式112kx x+>的解集.20.如图,小明在距离地面36米的P处测得A处的俯角为15°,B处的俯角为60°;若斜i AB的长是多少米?面AB坡度21.随着移动终端设备的升级换代,手机已经成为我们生活中不可缺少的一部分,为了解中学生在假期使用手机的情况(选项:(A)和同学亲友聊天;(B)学习:(C)购物;(D)游戏:(E)其它),疫情复学后某中学在全校范围内随机抽取了若干名学生进行调查,得到如下图表(部分信息未给出):选项频数频率A10mB n0.2C50.1D p0.4E50.1根据以上信息解答下列问题:(1)m =______,n =______,p =______.(2)求本次参与调查的总人数,并补全条形统计图.(3)若该中学约有1800名学生,估计全校学生中利用手机购物或玩游戏的共有多少人?并根据以上调查结果,就中学生如何合理使用手机给出你的一条建议.22.郴州某特产店销售某种进价为40/kg 元的特产,已知该店按60/kg 元出售时,平均每天可售出100kg ,后来经过市场调查发现,单价每降低1元,则平均每天的销售量可增加10kg .设该店销售这种特产计划平均每天获利w 元.(1)当2240w =时,每千克该特产应降价多少元?(2)求每千克该特产应降价多少元时,该店销售这种特产计划平均每天获利会最大?最大获利多少元?23.如图,直角ABC 中,90C ∠=︒,AB =sin 5B =.(1)求AC 、BC 的长;(2)点P 为边BC 上一动点,点Q 为边AC 上一定点,若0.8CQ =,则当CPQ 与CAB △相似时,CP 的长为多少?24.小明根据学习函数的经验,对函数111y x =-+的图象与性质进行了探究.下面是小明的探究过程,请补充完整:(1)函数111y x =-+的自变量x 的取值范围是______;(2)下表列出了y 与x 的几组对应值,请写出m ,n 的值:m =______,n =______;x (4)-72-3-52-2-32-12-121322…y…m75-32-53-2-3-1013-12-35-n…(3)在如图所示的平面直角坐标系中,描全上表中以各对对应值为坐标的点,并画出该函数的图象.(4)结合函数的图象,解决问题:①写出该函数的一条性质:______;②当11112x -≥-+时,x 的取值范围是:______;③方程111x x -=+的解为______.25.如图,边长为的正方形ABCD 中,P 是对角线AC 上的一个动点(点P 与A 、C 不重合),连接BP ,将BP 绕点B 顺时针旋转90°得到BQ ,连接QP ,QP 与BC 交于点E ,其延长线与AD (或AD 延长线)交于点F .(1)连接CQ ,证明:CQ AP =;(2)设AP x =,CE y =,试写出y 关于x 的函数关系式,并写出自变量x 的取值范围;(3)试问当P 点运动到何处时,PB PE +的值最小,并求出此时CE 的长.(画出图形,直接写出答案即可)26.如图,抛物线()20y ax bx c a =++≠交x 轴于点()1,0A ,点()3,0B ,交y 轴于点()0,3E ,直线2y x =--交x 轴于点C ,交y 轴于点D .(1)求抛物线的函数表达式;(2)若N 点是抛物线上一动点,求当CDN △是以CD 边为直角边的直角三角形时N 点的横坐标;(3)若点M 是抛物线上不同于点A ,点B 的另一点,Q 是抛物线对称轴上一动点,求以A ,B ,M ,Q 为顶点的四边形为平行四边形时点M 的坐标;(直接写出答案)(4)若P 点是y 轴右边抛物线上一动点,求使PCD 的面积最小时点P 的坐标及此时PCD 面积的最小值.参考答案1.C 2.B 3.A 4.C 5.A 6.D 7.B 8.B 9.7510.11.12x 0, x 3==12.8y x=-13.2014.215.1316.2y =+17.018.(1)11x =,21x =-;(2)154x +=,254x =19.(1)反比例函数的解析式:4y x=;(2)B (﹣4,﹣1),﹣4<x <0或x >2.20.21.(1)0.2、10、20;(2)50人,图见解析;(3)900人,建议:学生在假期里应该更加规范自己使用手机的情况,可以用于学习或其他有意义的事情.22.(1)每千克应降价4元或6元;(2)当单价降低5元时,该店每天的利润最大,最大利润是2250元.23.(1)AC =2,BC =4;(2)CP =0.4或CP =1.6.24.(1)1x ≠-;(2)43-,23-;(3)见解析;(4)①函数图象经过原点且关于点(-1,-1)对称;②11x -≤<;③x =0或x =-2.25.(1)见解析;(2)2(06)6y x x =-<<;(3)P 位置如图所示,此时PB PE +的值最小,6CE =-26.(1)243y xx =-+;(2)N 点的横坐标为52122+或52122-或5522+或5522-;(3)点M 的坐标为(0,3)、(4,3);(4)P 点坐标为33(,24-,PCD 面积的最小值为114.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学上学期第三次月考试卷
数 学 试 卷
(说明:全卷共8页,考试时间90分钟,满分120分)
一.选择题(本题共5小题,每小题3分,共15分,每小题给的四个答案中,有且只
有一个是正确的,将你认为正确的选项填在题后的括号内) 1.下列式子结果是负数的是
( )
A .3--
B .()3--
C .()2
3- D .23-
2.刘翔在出征雅典奥运会前刻苦进行110米跨栏训练,教练对他10次成绩进行统
计分析,判断他的成绩是否稳定,则教练需要知道刘翔这10次成绩的 ( ) A .众数
B .方差
C .平均数
D .频数
3.下图需再添上一个面,折叠后才能围成一个正方体,下面是四位同学所画的情况(图中阴影部分),其中正确的是
( )
4.如图,小明在打网球时,使球恰好打过网,已知球着地离网6m ,网高0.8m .根据
( )
A .1.6m
B .2.0m
C .2.4m
D .3.2m
班 号
姓名:
试室座号:


线





A C
B D
5.如图,把一个直角三角形ABC 绕着30°角的顶点B 顺时针旋转, 使点A 与CB 的延长线上的点E 重合,这时∠BDC 的度数是( ) A .10° B .15°
C .20°
D .30°
二.填空题(本题共5小题,每小题4分,共20分,请把你认为正确的答案写在横线上) 6.生物学家发现一种病毒的长度约为0.00 054mm ,用科学记数法表示0.00 054的结果
是 .
7.写出一个两实根之和为2的一元二次方程是: . 8.分解因式:=+-4842x x . 9.如图,直线x y 2-=与双曲线x
k
y =
的一个交点坐标为(-2, 4 )
则它们的另一个交点坐标为 . 10.如图,平行四边形ABCD 的对角线相交于
点O ,AB <BC ,过点O 作OE ⊥AC 交BC 于E ,如果△ABE 的周长为10,则平行四 边形ABCD 的周长为 . 三.解答题(本题共5小题,每小题6分,共30分)
11.先化简代数式:1121112-÷
⎪⎭

⎝⎛+-+-+a a a a a a ,然后选取一个使原式有意义的a 的值 代入求值.
A B
C
D A
B
C
D
E
O
12.已知方程()01012=-+-+m x m x 的一根是3,求m 的值及方程的另一个根.
13.如图,已知AC 是□ABCD 的对角线,EF 平分AC 于O ,且分别交AD ,BC 于点E ,F .
求证:ED =BF .
14.在某次考试中,小明对其中的两道“三选一”的单项选择题(每题都给出A ,B ,C 三个
选项,其中只有一个正确)毫无把握,便从给定的三个选项中随机选择一个作为答案. (1)试用树状图或列表表示小明答这两道题的所有可能的结果. (2)求这两道题都被小明答对的概率.
A
B
C
D
E F
O
15.如图,在10×10的正方形网格中,每个小正方形的边长均为单位1,在方格中作图:(1)将△ABC向右平移4个
单位得△A1B1C1.
(2)将△A1B1C1绕点C1顺时针
旋转90°得△A2B2C2.
(3)如果建立直角坐标系,使
点B的坐标为(-5,0),
点B1的坐标为(-1,0),
则点B2的坐标为.
四.(本题共4小题,每小题7分,共28分)
16.某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,为了使5月份的营业额达到633.6万元,那么3月份到5月份的平均增长率为多少?
17.如图,△ABC内部有若干个点,用这些点以及△ABC的顶点A,B,C把原三角形分割成一些三角形(互相不重叠)密封线内不要答题
A
B C
A
B C
A
B C
A
B C
(1)填写下表:
(2)当△ABC 内部有n 个点时,△ABC 被分割成的三角形的个数用y 表示.
试写出y 与n 的关系式: .
(3)原△ABC 能否被分割成2006个三角形?若能,此时△ABC 内部有多少个点?
若不能,请说明理由.
18.某校为了增加九年级学生的复习时间,把上课时间提前到7∶10,八年级综
合实践活动小组想探索这一举措的合理性,决定对九年级学生到校时间及早餐质量进行调查,他们从早上6∶30开始在校门口对九年级到校学生进行观察统计,并把结果制成统计图.
(1)该校九年级学生约有
人,迟到学生有
人,占九年级学生数的 %.
(2)计算因担心迟到而在路上随便吃早餐的九年级学生数.
(3)通过以上信息,你认为“九年级提前到7∶10上课”这一举措是否合理?为什么?
班 号
姓名:
试室座
号:


线





100
200 300 时间
6:30 0 6:40 6:50 7:00 7:10 7:20 7:30 7:40
A 55%
B 15%
C
A :在家吃营养早餐
B :来不及吃早餐
C :在路上随便吃早餐
19.如图,在C 处用高1米的测角器测得塔AB 顶端B 的仰角α=30°,向塔的方向前
进20米到E 处,又测得顶端B 的仰角β=45°.求塔AB 的高(结果可用根式表示).
五.解答题(本题共3小题,每小题9分,共27分)
20.如图,已知在□ABCD 中,E ,F 分别是AB ,CD 的中点,BD 是对角线,AG ∥DB 交CB 延长线于G .
(1)求证:△ADE ≌△CBF . (2)若四边形BEDF 是菱形,则四边形AGBD
是什么特殊四边形?并证明你的结论.
A
B
G E
F D C
β α A B C D E F G
21.已知等腰直角三角形ABC的底边为AB,直线L过直角顶点C,过点A,B分别作直线L的垂线AE,BF,E,F为垂足.
(1)如图,当直线L不与底边AB相交时,求证:EF=AE+BF.
(2)如图,当直线L绕C顺时针旋转,使L与底边AB相交于点D,且AD>BD,其他条件不变,请画出图形,并写出EF,AE,BF之间的等量关系,并证明你的结论.
A
C
E
F
L
B
B
A
C
22.如图,在等腰直角三角形ABC 中,O 为斜边AC 的中点,P 为斜边AC 的一个动点,
D 为BC 上的一点,且PB =PD ,D
E ⊥AC ,垂足为E .
(1)求证:PE =BO .
(2)若AC =4,AP =x ,四边形PBDE 的面积为y ,求y 与x 之间的函数关系式,
并写出自变量x 的取值范围


线





A
B C
O
P
D
E。

相关文档
最新文档