山东大学数字信号处理课程试题答案(A卷)jiemi

合集下载

《数字信号处理》期末考试A卷答案

《数字信号处理》期末考试A卷答案
用窗函数法设计fir数字滤波器时在阶数相同的情况下加矩形窗时所设计出的滤波器其过渡带比加三角窗时阻带衰减比加三角窗时
《数字信号处理》期末考试 A卷答案
《数字信号处理》期末考试A卷答案 考试形式:闭卷考试考试时间:120分钟 班号学号姓名得分
一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.δ(n)的z变换是 A 。 A. 1 B.δ(w) C. 2πδ(w) D. 2π 2.下列系统(其中y(n)是输出序列,x(n)是输入序列)中______属于线性系统。( C ) A.y(n)=x2(n) B.y(n)=4x(n)+6 C.y(n)=x(n-n0) D.y(n)=e x(n) 3.在应用截止频率为Ωc的归一化模拟滤波器的表格时,当实际Ωc≠1时,代替表中的复变量s的应为( B ) A.Ωc/s B.s/Ωc C.-Ωc/s D.s/ c Ω 4.用窗函数法设计FIR数字滤波器时,在阶数相同的情况下,加矩形窗时所设计出的滤波器,其过渡带比加三角窗时,阻带衰 减比加三角窗时。( A ) A. 窄,小 B. 宽,小 C. 宽,大 D. 窄,大 5.用双线性变法进行IIR数字滤波器的设计,从s平面向z平面转换的关系为s= ( C ) 。 A. 1 1 1
一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.已知某序列z变换的收敛域为有限z平面,则该序列为( )。 A.有限长序列 B.右边序列 C.左边序列 D.双边序列 2.下列系统(其中y(n)是输出序列,x(n)是输入序列)中______属于线性系统。( ) A.y(n)=x2(n) B.y(n)=4x(n)+6 C.y(n)=n2x(n-n0) D.y(n)=e x(n) 3.下列关于因果稳定系统说法错误的是( ) A.极点可以在单位圆外 B.系统函数的z变换收敛区间包括单位圆 C.因果稳定系统的单位抽样响应为因果序列 D.系统函数的z变换收敛区间包括z=∞ 4.按时间抽取的基-2FFT算法的运算量按频率抽取的基-2FFT算法。( ) A.大于 B.小于 C.等于 D.大小不确定 5.序列x(n)=R7(n),其16点DFT记为X(k),k=0,1,…,15则X(0)为( )。 A.2 B.3

(完整word版)数字信号处理试卷及答案_程培青(第三版),推荐文档

(完整word版)数字信号处理试卷及答案_程培青(第三版),推荐文档

河南工业大学数字信号处理 试卷考试方式:闭卷复查总分 总复查人一、填空题:(本大题共10小题,每空2分,共28分)请在每个空格中填上正确答案。

错填、不填均无分。

1、一线性时不变系统,输入为 x (n )时,输出为y (n ) ;则输入为2x (n )时,输出为;输入为x (n-3)时,输出为 。

2、从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率f 与信号最高频率fs 关系为: 。

3、已知一个长度为N 的序列x(n),它的傅立叶变换为X (e jw ),它的N 点离散傅立叶变换X (K )是关于X (e jw )的 点等间隔 。

4、有限长序列x(n)的8点DFT 为X (K ),则X (K )= 。

5、无限长单位冲激响应(IIR )滤波器的结构上有反馈,因此是_ _____型的。

6、若正弦序列x(n)=sin(30n π/120)是周期的,则周期是N= 。

7、已知因果序列x(n)的Z 变换为X(z)=eZ -1,则x(0)=__________。

8、无限长单位冲激响应滤波器的基本结构有直接Ⅰ型,直接Ⅱ型,___ ___和__ _ ___四种。

9、DFT 与DFS 有密切关系,因为有限长序列可以看成周期序列的__________,而周期序列可以看成有限长序列的__________。

10、对长度为N 的序列x(n)圆周移位m 位得到的序列用x m (n)表示,其数学表达式为x m (n)=__________。

《数字信号处理》试卷A 第1页 ( 共 6 页 )二、选择填空题(本大题共6小题,每题2分,共12分)1、δ(n)的z 变换是 。

A. 1B.δ(w)C. 2πδ(w)D. 2π2、序列x 1(n)的长度为4,序列x 2(n)的长度为3,则它们线性卷积的长度是 , 5点圆周卷积的长度是 。

A. 5, 5B. 6, 5C. 6, 6D. 7, 53、在N=32的时间抽取法FFT 运算流图中,从x(n)到X(k)需 级蝶形运算 过程。

大学《数字信号处理》课程考试试卷(含答案)

大学《数字信号处理》课程考试试卷(含答案)

某大学《数字信号处理》课程考试试卷适应专业: 考试日期:考试时间:120分钟 考试形式:闭卷 试卷总分:100分 一、考虑下面4个8点序列,其中 0≤n ≤7,判断哪些序列的8点DFT 是实数,那些序列的8点DFT 是虚数,说明理由。

(本题12分) (1) x 1[n ]={-1, -1, -1, 0, 0, 0, -1, -1}, (2) x 2[n ]={-1, -1, 0, 0, 0, 0, 1, 1}, (3) x 3[n ]={0, -1, -1, 0, 0, 0, 1, 1}, (4) x 4[n ]={0, -1, -1, 0, 0, 0, -1, -1},二、数字序列 x(n)如图所示. 画出下列每个序列时域序列:(本题10分) (1) x(n-2); (2)x(3-n);(3)x[((n-1))6],(0≤n ≤5); (4)x[((-n-1))6],(0≤n ≤5);三、已知一稳定的LTI 系统的H(z)为)21)(5.01()1(2)(111------=z z z z H 试确定该系统H(z)的收敛域和脉冲响应h[n]。

(本题10分) 四、设x(n)是一个10点的有限序列 x (n )={ 2,3,1,4,-3,-1,1,1,0,6},不计算DFT ,试确定下列表达式的值。

(本题12分)(1) X(0), (2) X(5), (3) ∑=90)(k k X ,(4)∑=-95/2)(k k j k X e π五、x(n)和h(n)是如下给定的有限序列x(n)={5, 2, 4, -1, 2}, h(n)={-3, 2, -1 }(1) 计算x(n)和h(n)的线性卷积y(n)= x(n)* h(n);(2) 计算x(n)和h(n)的6 点循环卷积y 1(n)= x(n)⑥h (n); (3) 计算x(n)和h(n)的8 点循环卷积y 2(n)= x(n)⑧h (n); 比较以上结果,有何结论?(14分)六、用窗函数设计FIR 滤波器时,滤波器频谱波动由什么决定 _____________,滤波器频谱过渡带由什么决定_______________。

门爱东数字信号处理课后题答案

门爱东数字信号处理课后题答案

n
u(n)
| y (n) |=| g (n) x(n) |≤ M | x(n) |< ∞ ,故稳定。
设当 n ≤ k 时, x1 ( n) = x 2 ( n)
y1 (n) = x1 (n) g (n) , y 2 (n) = x2 (n) g (n) , y1 (n) = y 2 (n) 故因果。
n = 0 时,c内有极点a和0,
− 0.5az 2 + z − 0.5a n−1 1 z ( z − a ) z =a = a n −1 − a ( z − a )( z − a ) 2
(下面有问题,其中一个极点应该为 0)
he (n) = Re s[ F ( z ), a] + Re s[ F ( z ), a] =
(2) y( n) =
k =−

n
x(k )
n > n0
n0
h(n) = u(n) h(n) = (1/2) 若 | x(n) |≤ M
(3) y(n) = x(n-n0) n (4) x(n) = a u(n), n (5) x(n) = a u(n), 解: (1)令 | g (n) |≤ M ,
n
k = − n0
∑ x (k ) ,
2
n
y1 (n) = y 2 (n) 故因果。
(3) 若 | x(n) |≤ M , | y ( n) |=| x( n − n0 ) |≤ M < ∞ ,故稳定。 显然,对于 y ( n) = x(n − n0 ) ,当 n0 < 0 时非因果, n0 ≥ 0 是因果。 (4) 对于 h(n) = u (n) ,当 n < 0 时 h(n) = 0 ,因果。

数字信号处理课后答案

数字信号处理课后答案

k = n0

n
x[ k ]
(B) T {x[n]} =

x[k ]
(C) T {x[ n]} = 0.5
x[ n ]
(D) T {x[n]} = x[− n]
1-5 有一系统输入为 x[n] ,输出为 y[n] ,满足关系 y[n] = ( x[n] ∗ u[n + 2])u[n] ,则系统是(A) (A)线性的 (B)时不变的 (C)因果的 (D)稳定的 解:
(a) T { x[ n ]} = h[ n] + x[ n ], (c) T {x[ n]} = ∑ x[ n − k ]
δ [n] + aδ [n − n0 ] ,单位阶跃响应 s[n] = u[n] + au[n − n0 ] 。
1-15 线性常系数差分方程为 y[n] − y[n − 1] +
y[n] = 0 , n < 0 , 则 y[3] = 0.5 。 解: y[0] = y[ −1] − 0.25 y[ −2] + x[0] = 1 y[1] = y[0] − 0.25 y[ −1] + x[1] = 1 y[2] = y[1] − 0.25 y[0] + x[2] = 0.75 y[3] = y[2] − 0.25 y[1] + x[3] = 0.5
∞ ∞ k =−∞ n '=−∞
解: (a)
n =−∞
∑ y[n] = ∑ ∑ x[k ]h[n − k ] = ∑ x[k ] ∑ h[n − k ] = ∑ x[k ] ∑ h[n ']
n =−∞ k =−∞ k =−∞ n =−∞


数字信号处理试题与答案_计算题

数字信号处理试题与答案_计算题

《数字信号处理》计算型试题解答A 卷三、(15分)已知LSI 离散时间系统的单位抽样响应为:⑴ 求该系统的系统函数)(z H ,并画出零极点分布图; ⑵ 写出该系统的差分方程。

解:⑴ 系统的系统函数)(z H 是其单位抽样响应()h n 的z 变换,因此:11111071113333():111111211242424z z z z z H z ROC z z z z z z z ---⎛⎫+-+ ⎪⎝⎭=+==>⎛⎫⎛⎫⎛⎫⎛⎫------ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭ 零点:1,03z =- 极点:11,24z = 零极点分布图:()10171()3234n n h n u n ⎡⎤⎛⎫⎛⎫=-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦⑵ 由于()1112111111()333111()1114824z z Y z H z X z z z z z ------++===⎛⎫⎛⎫-+-- ⎪⎪⎝⎭⎝⎭所以系统的差分方程是311()(1)(2)()(1)483y n y n y n x n x n --+-=+-四、(15分) 已知序列()x n 的z 变换为求其可能对应的几种不同ROC 的z 反变换。

Im[]j z 2()341zX z z z =-+解:1121211()34134(1)(3)z z z X z z z z z z z ------===-+-+-- 设11()13A BX z z z--=+-- 有111131(1)()23(3)()2z z A z X z B z X z -=-==-==-=-故111111()121213X z z z --⎛⎫⎪⎛⎫=- ⎪ ⎪-⎝⎭ ⎪-⎝⎭ 由于()X z 有两个极点:11,3z z ==。

所以()X z 的三个不同ROC 分别为:ROC1:z 11ROC2:z 131ROC3:z 3><<<于是可得()X z 的三个不同的ROC 对应的序列分别为:111ROC1:z 1()()()2231111ROC2:z 1()(1)()32231111ROC3:z ()(1)(1)3223nnn x n u n u n x n u n u n x n u n u n ⎛⎫>=- ⎪⎝⎭⎛⎫<<=---- ⎪⎝⎭⎛⎫<=---+-- ⎪⎝⎭五、(10分)已知一因果系统差分方程为()3(1)()y n y n x n +-=,求:⑴ 系统的单位脉冲响应()h n ; ⑵ 若2()()()x n n n u n =+,求()y n 。

(完整版)数字信号处理试卷及答案_程培青(第三版),推荐文档

(完整版)数字信号处理试卷及答案_程培青(第三版),推荐文档

《数字信号处理》试卷 A 第 6 页 ( 共 6 页 )
数字信号处理基础 试卷答案及评分标准
一、 填空题:(共 28 分,每空 2 分)
7
建议收藏下载本文,以便随时学习! (1)2y(n),y(n-3) (2)f≥2fs (3)N,抽样 (4) X (k) xnWNnk n0
(5)递归型
(6)8
Z-1 0.5 -1.4
Z-1 -0.8 1
Z-1
Z-1
-0.8
1
3、
我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙龙课反倒是龙卷风前一天我分页符ZNBX吃噶十多个OK地方价格
复加所需时间T1 0.5106 N N 1 0.5106 512 511 0.130816s
所以T T1 T2 1.441536s
2、用 FFT 计算
复乘所需时间
T1
5 106
N 2
log2
N
5 106
512 2
log2
512
0.01152s
复加所需时间T2 0.5106 N log2 N 0.5106 512 log2 512 0.002304s
3、请画出 8 点的按频率抽取的(DIF)基-2 FFT 流图,要求输入自然数顺序,输出倒 位序。
2、用级联型结构实现以下系统函数,试问一共能构成几种级联型网络,并画出结构 图。
4Z 1Z 2 1.4Z 1 H (z) Z 0.5Z 2 0.9Z 0.8
专业班级:
学院名称
我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙龙课反倒是龙卷风前一天我分页符ZNBX吃噶十多个OK地方价格

A. 1
B.δ(w)
C. 2πδ(w)

数字信号处理试题和答案优选资料

数字信号处理试题和答案优选资料

一. 填空题1、一线性时不变系统,输入为x(n)时,输出为y(n);则输入为2x(n)时,输出为2y(n) ;输入为x(n-3)时,输出为y(n-3) 。

2、从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率fs与信号最高频率f max关系为:fs>=2f max。

3、已知一个长度为N的序列x(n),它的离散时间傅立叶变换为X(e jw),它的N点离散傅立叶变换X(K)是关于X(e jw)的N 点等间隔采样。

4、有限长序列x(n)的8点DFT为X(K),则X(K)= 。

5、用脉冲响应不变法进行IIR数字滤波器的设计,它的主要缺点是频谱的交叠所产生的现象。

6.若数字滤波器的单位脉冲响应h(n)是奇对称的,长度为N,则它的对称中心是(N-1)/2 。

7、用窗函数法设计FIR数字滤波器时,加矩形窗比加三角窗时,所设计出的滤波器的过渡带比较窄,阻带衰减比较小。

8、无限长单位冲激响应(IIR)滤波器的结构上有反馈环路,因此是递归型结构。

9、若正弦序列x(n)=sin(30nπ/120)是周期的,则周期是N= 8 。

10、用窗函数法设计FIR数字滤波器时,过渡带的宽度不但与窗的类型有关,还与窗的采样点数有关11.DFT与DFS有密切关系,因为有限长序列可以看成周期序列的主值区间截断,而周期序列可以看成有限长序列的周期延拓。

12.对长度为N的序列x(n)圆周移位m位得到的序列用xm(n)表示,其数学表达式为xm (n)= x((n-m))NRN(n)。

13.对按时间抽取的基2-FFT流图进行转置,并将输入变输出,输出变输入即可得到按频率抽取的基2-FFT流图。

14.线性移不变系统的性质有 交换率 、 结合率 和分配律。

15.用DFT 近似分析模拟信号的频谱时,可能出现的问题有混叠失真、 泄漏 、 栅栏效应 和频率分辨率。

16.无限长单位冲激响应滤波器的基本结构有直接Ⅰ型,直接Ⅱ型, 串联型 和 并联型 四种。

(完整)数字信号处理试卷及答案,推荐文档

(完整)数字信号处理试卷及答案,推荐文档

数字信号处理试卷及答案1一、填空题(每空1分, 共10分)1.序列()sin(3/5)x n n π=的周期为 。

2.线性时不变系统的性质有 律、 律、 律。

3.对4()()x n R n =的Z 变换为 ,其收敛域为 。

4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为 。

5.序列x(n)=(1,-2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为 。

6.设LTI 系统输入为x(n) ,系统单位序列响应为h(n),则系统零状态输出y(n)= 。

7.因果序列x(n),在Z →∞时,X(Z)= 。

二、单项选择题(每题2分, 共20分)1.δ(n)的Z 变换是 ( )A.1 B.δ(ω) C.2πδ(ω) D.2π 2.序列x 1(n )的长度为4,序列x 2(n )的长度为3,则它们线性卷积的长度是 ( )A. 3 B. 4 C. 6 D. 73.LTI 系统,输入x (n )时,输出y (n );输入为3x (n-2),输出为 ( ) A. y (n-2) B.3y (n-2) C.3y (n ) D.y (n )4.下面描述中最适合离散傅立叶变换DFT 的是 ( )A.时域为离散序列,频域为连续信号B.时域为离散周期序列,频域也为离散周期序列C.时域为离散无限长序列,频域为连续周期信号D.时域为离散有限长序列,频域也为离散有限长序列5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过 即可完全不失真恢复原信号 A.理想低通滤波器 B.理想高通滤波器 C.理想带通滤波器 D.理想带阻滤波器6.下列哪一个系统是因果系统 ( )A.y(n)=x (n+2) B. y(n)= cos(n+1)x (n) C. y(n)=x (2n) D.y(n)=x (- n)7.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括 ( )A. 实轴B.原点C.单位圆D.虚轴8.已知序列Z 变换的收敛域为|z |>2,则该序列为A.有限长序列B.无限长序列C.反因果序列D.因果序列 9.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N 需满足的条件是 A.N≥M B.N≤M C.N≤2M D.N≥2M 10.设因果稳定的LTI 系统的单位抽样响应h(n),在n<0时,h(n)= ( )A.0 B .∞ C. -∞ D.1 三、判断题(每题1分, 共10分)1.序列的傅立叶变换是频率ω的周期函数,周期是2π。

数字信号处理习题答案共59页文档

数字信号处理习题答案共59页文档
、机遇对于有准备的头脑有特别的 亲和力 。 27、自信是人格的核心。
28、目标的坚定是性格中最必要的力 量泉源 之一, 也是成 功的利 器之一 。没有 它,天 才也会 在矛盾 无定的 迷径中 ,徒劳 无功。- -查士 德斐尔 爵士。 29、困难就是机遇。--温斯顿.丘吉 尔。 30、我奋斗,所以我快乐。--格林斯 潘。
16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃

数字信号处理试卷a标准答案及评分

数字信号处理试卷a标准答案及评分

标准答案及评分标准一、简答题1、答:IIR 滤波器: h (n )无限长,极点位于z 平面任意位置,滤波器阶次低,非线性相位,递归结构,不能用FFT 计算,可用模拟滤波器设计,用于设计规格化的选频滤波器。

FIR 滤波器:h (n )有限长,极点固定在原点,滤波器阶次高得多,可严格的线性相位,一般采用非递归结构,可用FFT 计算,设计借助于计算机,可设计各种幅频特性和相频特性的滤波器。

---5分 2、答: L 点循环卷积是线性卷积以L 为周期的周期延拓序列的主值序列。

当L>=M+N-1时,L 点循环卷积能代表线性卷积。

---5分 3、答:a) 确定数字滤波器的技术指标:b) 利用双线性变换法将数字滤波器的技术指标转变成模拟滤波器的技术指标:)2tan(2ωT =Ωc) 按模拟滤波器的技术指标设计模拟低通滤波器d) 利用双线性变换法将模拟低通滤波器转换成数字低通滤波器---5分4、答:① 对连续信号进行等间隔采样得到采样信号,采样信号的频谱是原连续信号的频谱以采样频率为周期进行周期性延拓形成的。

②要想抽样后能够不失真地还原出原信号,则抽样频率必须大于两倍信号谱的最高频率,h s h s f f 22>Ω>Ω,即---5分二、计算证明题1.解: (1)满足叠加原理 因此该系统是线性系统。

-----4分 (2)因此该系统不是移不变系统。

-----4分(3) 因为系统的输出只取决于当前输入,与未来输入无关。

所以是因果系统 -----3分 (4)若)(n x 有界,即∞<≤M n x )(,则[]M n g n x T )()(≤当∞<)(n g 时,输出有界,系统为稳定系统;当∞=)(n g 时,输出无界,系统为不稳定系统。

-----4分()()()()()1212T ax n bx n g n ax n bx n +=+⎡⎤⎡⎤⎣⎦⎣⎦ 解:()()()()12ag n x n bg n x n =+()()12aT x n bT x n =+⎡⎤⎡⎤⎣⎦⎣⎦()()()T x n m g n x n m -=-⎡⎤⎣⎦()()()y n m g n m x n m -=--()T x n m ≠-⎡⎤⎣⎦()()()T x n g n x n =⎡⎤⎣⎦22s h s hf f Ω>Ω> 即2.解 ))(()(12232523211---=+--=---z z z zzz Z X122211223-+--=---=z z z z zZ X ))(()(502.)(-+--=z zz z Z X(1) Roc :250<<z .)()()(1221--+⎪⎭⎫ ⎝⎛=n u n u n x nn------5分(2) Roc :2>z)()()(n u n u n x nn221-⎪⎭⎫ ⎝⎛= ------5分(3)系统的并联结构为- -----5分3.解----5分-----10分4.解11122232=+-+=+-+=++=s T s B s A s s s s s s G βα)((1)111211111211-----------=---=ze zezeB zeA z H ssT T βα)(脉zz z z z z z s G z H z z T s s 261111212112222112--=++--++-==+-=)()()()(双(2) -- -10分a) 冲激响应不变法:优点:h (n )完全模仿模拟滤波器的单位抽样响应)(t g 时域逼近良好,保持线性关系:s T Ωω=线性相位模拟滤波器转变为线性相位数字滤波器 缺点:频率响应混迭只适用于限带的低通、带通滤波器 - b) 双线形变换法:优点:避免了频率响应的混迭现象缺点: 线性相位模拟滤波器产生非线性相位数字滤波器 -- -55.解 因为 其它42/)(πωωω≤⎩⎨⎧=-j j d e eH 所以M=4 ,增大时,非线性严重当,之间有近似的线性关系和较小时,当ωωΩω(1)ππωπππωω)()(sin )(242212-⎥⎦⎤⎢⎣⎡-==⎰--n n d een h nj jdππωπππωω)()(sin )(242212-⎥⎦⎤⎢⎣⎡-==⎰--n n d een h nj j,M n ,,, 10=41222312140/)(,/)()(,/)()(=====h h h h h ππ -- -10分(2)432142122412221----=-++++==∑zzzzzn h z H n nππππ)()(ππππ224213412221210=====)(,)(,)(,)(,)(b b b b b其横截型结构为-- 10分。

数字信号处理试卷及详细答案(三套)

数字信号处理试卷及详细答案(三套)

数字信号处理试卷答案完整版一、填空题:(每空1分,共18分)1、 数字频率ω是模拟频率Ω对采样频率s f 的归一化,其值是连续(连续还是离散?)。

2、 双边序列z 变换的收敛域形状为圆环或空集。

3、 某序列的DFT 表达式为∑-==1)()(N n knMWn x k X ,由此可以看出,该序列时域的长度为N ,变换后数字频域上相邻两个频率样点之间的间隔是Mπ2。

4、 线性时不变系统离散时间因果系统的系统函数为252)1(8)(22++--=z z z z z H ,则系统的极点为2,2121-=-=z z ;系统的稳定性为不稳定。

系统单位冲激响应)(n h 的初值4)0(=h ;终值)(∞h 不存在。

5、 如果序列)(n x 是一长度为64点的有限长序列)630(≤≤n ,序列)(n h 是一长度为128点的有限长序列)1270(≤≤n ,记)()()(n h n x n y *=(线性卷积),则)(n y 为64+128-1=191点点的序列,如果采用基FFT2算法以快速卷积的方式实现线性卷积,则FFT 的点数至少为256点。

6、 用冲激响应不变法将一模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之间的映射变换关系为Tω=Ω。

用双线性变换法将一模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之间的映射变换关系为)2tan(2ωT =Ω或)2arctan(2T Ω=ω。

7、当线性相位FIR 数字滤波器满足偶对称条件时,其单位冲激响应)(n h 满足的条件为)1()(n N h n h --=,此时对应系统的频率响应)()()(ωϕωωj j e H eH =,则其对应的相位函数为ωωϕ21)(--=N 。

8、请写出三种常用低通原型模拟滤波器巴特沃什滤波器、切比雪夫滤波器、 椭圆滤波器。

二、判断题(每题2分,共10分)1、 模拟信号也可以与数字信号一样在计算机上进行数字信号处理,只要加一道采样的工序就可以了。

(完整word版)数字信号处理试卷及参考答案(2)

(完整word版)数字信号处理试卷及参考答案(2)

《数字信号处理》课程期末考试试卷(A )一、填空题(本题满分30分,共含4道小题,每空2分)1. 两个有限长序列x 1(n),0≤n ≤33和x 2(n),0≤n ≤36,做线性卷积后结果的长度是,若对这两个序列做64点圆周卷积,则圆周卷积结果中n=至为线性卷积结果。

2. DFT 是利用nkN W 的、和三个固有特性来实现FFT 快速运算的。

3. IIR 数字滤波器设计指标一般由、、和等四项组成。

4. FIR 数字滤波器有和两种设计方法,其结构有、和等多种结构。

一、判断题(本题满分16分,共含8道小题,每小题2分,正确打√,错误打×) 1. 相同的Z 变换表达式一定对应相同的时间序列。

()2. Chirp-Z 变换的频率采样点数M 可以不等于时域采样点数N 。

()3. 按频率抽取基2 FFT 首先将序列x(n)分成奇数序列和偶数序列。

()4. 冲激响应不变法不适于设计数字带阻滤波器。

()5. 双线性变换法的模拟角频率Ω与数字角频率ω成线性关系。

()6. 巴特沃思滤波器的幅度特性必在一个频带中(通带或阻带)具有等波纹特性。

()7. 只有FIR 滤波器才能做到线性相位,对于IIR 滤波器做不到线性相位。

()8. 在只要求相同的幅频特性时,用IIR 滤波器实现其阶数一定低于FIR 阶数。

()二、 综合题(本题满分18分,每小问6分)若x (n)= {3,2,1,2,1,2 },0≤n≤5, 1) 求序列x(n)的6点DFT ,X (k)=?2) 若)()]([)(26k X W n g DFT k G k==,试确定6点序列g(n)=?3) 若y(n) =x(n)⑨x(n),求y(n)=?三、 IIR 滤波器设计(本题满分20分,每小问5分)设计一个数字低通滤波器,要求3dB 的截止频率f c =1/π Hz ,抽样频率f s =2 Hz 。

1. 导出归一化的二阶巴特沃思低通滤波器的系统函数H an (s)。

数字信号处理_山东大学中国大学mooc课后章节答案期末考试题库2023年

数字信号处理_山东大学中国大学mooc课后章节答案期末考试题库2023年

数字信号处理_山东大学中国大学mooc课后章节答案期末考试题库2023年1.一个线性时不变系统满足差分方程:【图片】,若系统满足初始松弛条件(若当n参考答案:该系统是因果的线性时不变系统。

2.假设离散时间LTI系统是因果稳定的,则下列说法正确的是()参考答案:H(z)的极点在单位圆内。

3.如图所示为因果稳定的LTI离散时间系统H(z)的幅值平方系统函数C(z)(【图片】)的零极点图,则关于系统函数H(z)的正确说法是()【图片】【图片】参考答案:如果C(z)已知,则系统幅频响应也就可以确定。

_系统函数H(z)的极点一定在单位圆内。

4.在用脉冲不变法设计如图所示离散时间系统H(z)时,如果整个等效的连续时间系统的系统函数Hc(s)有零点-0.6和极点-0.8,那么下面关于H(z)的零极点的说法,正确的是()【图片】参考答案:零点无法确定,有极点5.若一个离散时间LTI系统的幅频响应(【图片】)是1,而系统的群延迟(【图片】)不是常数,则下列说法正确的是()参考答案:输入信号经过系统后,输出信号的频谱的形状与输入信号的频谱的形状相同。

_输入信号经过系统后,输出波形与输入波形不相同。

6.在用窗函数法设计低通滤波器时,采用的矩形窗和三角窗的窗函数长度都是51,则下面说法比较正确的是()参考答案:用三角窗设计的滤波器比用矩形窗设计的滤波器的过渡带宽更宽7.下列信号中是离散时间信号(而非数字信号)的是()参考答案:y[n]=3sin(0.4n), n是整数8.已知右边序列x[n]如下式所示,则其z变换X(z) 的收敛域ROC是()【图片】参考答案:0.5<|z|<∞9.序列x[n] 的z变换 X(z) 的收敛域ROC如图所示,则序列x[n]是()【图片】参考答案:双边序列10.下面关于稳定的线性时不变系统的单位脉冲响应h[n]的描述,正确的选项是()参考答案:单位脉冲响应h[n]绝对可和,即。

11.已知有限长序列x[n]={1,2,3,4}, n=0,1,2,3,其离散时间傅里叶变换【图片】在0~2p内的3等分采样序列(【图片】)的3点离散傅里叶反变换IDFT 是时间序列()参考答案:x3[n]={5,2,3}, n=0,1,212.已知有限长序列x[n]={1,2,3,4,5}, n=0,1,2,3,4,其5点DFT是X[k],则【图片】的5点离散傅里叶反变换IDFT即y[n]是序列()参考答案:y[n]={5,1,2,3,4}, n=0,1,2,3,413.关于实数序列x[n]的N=4点的DFT即X[k],下面说法错误的是()参考答案:X[k] =X[N- k], k=0,1,2,314.已知有限长序列x[n]在区间0£n£15内非0,在区间0£n£15外全为0,有限长序列h[n]在区间0£n£ 25内非0,在区间0£n£ 25外全为0,x[n]与h[n]的DFT分别是X[k], H[k],且y[n]=IDFT{ X[k]H[k] }(注:DFT和IDFT 的点数均为32), c[n]= h[n]*x[n](卷积和),则y[n]与c[n]的序列值相等的区间范围是()参考答案:9£n£3115.下列信号中是数字信号的是()参考答案:y[n]=round(127.5sin(0.4πn)+127.5), n是自然数(注:round()函数是四舍五入的取整函数)16.已知序列x[n]={1,1}, n=0,1,则x[n]的2点DFT为()参考答案:X[k]= {1,0}, k=0,117.设序列h[n] 是一LTI系统的单位脉冲响应,如果h[n]的z变换 H(z) 的收敛域ROC包含单位圆,则下面陈述正确的是()参考答案:序列h[n]的离散时间傅里叶变换存在,即系统是稳定的。

山东大学数字信号处理课程试题答案(A卷)

山东大学数字信号处理课程试题答案(A卷)
山东大学数字信号处理课程试题答案(A 卷)
1 (1)数字信号处理机,计算机的软件; (2)方块图,信号流图;加法器,延时器;精确度,误差,稳定性,经济性及)3,0.5rad/s 2 解:y(n)=x(n)+1/3 x(n-1)+3/4y(n-1)-1/8y(n-2) H(z)= a)
r ( N / 2+ k )
N / 2 −1 N / 2 −1 r (k + ) N rk ∴ G ( k + ) = ∑ g ( r )W N / 2 2 = ∑ g ( r )W N / 2 = G (k ) 2 r =0 r =0
N
同理: H (k +
( N +k )
N ) = H (k ) 2

z −1 − α ′ 得:G(1)=–1,G(–1)=1, wc 等效于高通滤波器的 π + wc ,而 −1 1 − αz
– wc 等效为高通滤波器的 wc ,则:

e − j ( − wc ) = −

e − jwc + α 1 + αe − jwc
c '

α [1 + e j ( w
j − ( wc ' − wc ) 2
∑1−W
H(
N −1
zk 1− r N z −N )= r N
∑ 1 − rW
k =0
N −1
H (k )
−k N
z −1
+
N / 2 −1 H (k ) = ∑ ∑ − k −1 k =0 k = 0 1 − rW N z
H (k ) 1 − re
2πk j N
z −1

数字信号处理习题及答案完整版

数字信号处理习题及答案完整版

数字信号处理习题及答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】==============================绪论============================== 1. A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV==================第一章 时域离散时间信号与系统================== 1.①写出图示序列的表达式答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用(n) 表示y (n )={2,7,19,28,29,15} 2. ①求下列周期②判断下面的序列是否是周期的; 若是周期的, 确定其周期。

(1)A是常数 8ππn 73Acos x(n)⎪⎪⎭⎫ ⎝⎛-= (2))81(j e )(π-=n n x 解: (1) 因为ω=73π, 所以314π2=ω, 这是有理数, 因此是周期序列, 周期T =14。

(2) 因为ω=81, 所以ωπ2=16π, 这是无理数, 因此是非周期序列。

③序列)Acos(nw x(n)0ϕ+=是周期序列的条件是是有理数2π/w 0。

3.加法乘法序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。

移位翻转:①已知x(n)波形,画出x(-n)的波形图。

②尺度变换:已知x(n)波形,画出x(2n)及x(n/2)波形图。

卷积和:①h(n)*求x(n),其他2n 0n 3,h(n)其他3n 0n/2设x(n) 例、⎩⎨⎧≤≤-=⎩⎨⎧≤≤=②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n )x (m )={1,2,4,3},h (m )={2,3,5},则h (-m )={5,3,2}(Step1:翻转)解得y (n )={2,7,19,28,29,15} ③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+=4. 如果输入信号为,求下述系统的输出信号。

数字信号处理习题集(附答案)

数字信号处理习题集(附答案)

第一章数字信号处理概述简答题:1.在A/D变换之前和D/A变换之后都要让信号通过一个低通滤波器,它们分别起什么作用?答:在A/D变化之前为了限制信号的最高频率,使其满足当采样频率一定时,采样频率应大于等于信号最高频率2倍的条件。

此滤波器亦称为“抗混叠”滤波器。

在D/A变换之后为了滤除高频延拓谱,以便把抽样保持的阶梯形输出波平滑化,故又称之为“平滑”滤波器。

判断说明题:2.模拟信号也可以与数字信号一样在计算机上进行数字信号处理,自己要增加一道采样的工序就可以了。

()答:错。

需要增加采样和量化两道工序。

3.一个模拟信号处理系统总可以转换成功能相同的数字系统,然后基于数字信号处理理论,对信号进行等效的数字处理。

()答:受采样频率、有限字长效应的约束,与模拟信号处理系统完全等效的数字系统未必一定能找到。

因此数字信号处理系统的分析方法是先对抽样信号及系统进行分析,再考虑幅度量化及实现过程中有限字长所造成的影响。

故离散时间信号和系统理论是数字信号处理的理论基础。

第二章 离散时间信号与系统分析基础一、连续时间信号取样与取样定理计算题:1.过滤限带的模拟数据时,常采用数字滤波器,如图所示,图中T 表示采样周期(假设T 足够小,足以防止混叠效应),把从)()(t y t x 到的整个系统等效为一个模拟滤波器。

(a ) 如果kHz rad n h 101,8)(=π截止于,求整个系统的截止频率。

(b ) 对于kHz T 201=,重复(a )的计算。

解 (a )因为当0)(8=≥ωπωj e H rad 时,在数 — 模变换中)(1)(1)(Tj X T j X T e Y a a j ωω=Ω= 所以)(n h 得截止频率8πω=c 对应于模拟信号的角频率c Ω为8π=ΩT c因此 Hz Tf c c 6251612==Ω=π 由于最后一级的低通滤波器的截止频率为T π,因此对T 8π没有影响,故整个系统的截止频率由)(ωj e H 决定,是625Hz 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

N −1
N −1
n 为偶数
N / 2 −1
n 为奇数
N / 2 −1 r =0

∑ g (r )WN2rk +
r =0
∑ h(r )W
k N / 2 −1 r =0
( 2 r +1) k N
N / 2 −1

∑ g (r )W
r =0
−j 2π ⋅2 r N
2 rk N
+ WN
2π ⋅r N /2
∑ h(r )W
2 rk N
∵W
2r N
=e
=e
−j
r = WN /2
∴ x(k ) =
N / 2 −1 r =0
∑ g (r )WNrk/ 2 + WNk
rk = WN /2
N / 2 −1 r =0
∑ h(r )W
rk N /2
= G (k ) + WN H (k )
k
则 G(k),H(k)分别为 g(r),h(r)的 N/2 点 DFT 又 ∵ WN / 2

z −1 − α ′ 得:G(1)=–1,G(–1)=1, wc 等效于高通滤波器的 π + wc ,而 −1 1 − αz
– wc 等效为高通滤波器的 wc ,则:

e − j ( − wc ) = −

e − jwc + α 1 + αe − jwc
c '

α [1 + e j ( w
j − ( wc ' − wc ) 2
N = 2 M , x(2r ) = g (r ), x(2r + 1) = h(r ), r=0,1,…
则:x(n)的 DFT 可分解为:
nk X (k ) = DFT [ x(n)] = ∑ x(n)WN n =0 N −1
N −1 2

∑ x(n)WNnk + ∑ x(n)WNnk
n =0 n =0
N log 2 N 次复乘运算,故DFT与FFT算法所需乘法次数改善比为: 2
N2 N log 2 N 2 = 2N log 2 N
(2)
5
得证。 证明:h(n)满足奇对称条件,即:h(n)= –h (N-1-n) (1) N 为奇数时,H(z)=
∑ h(n) z − n =
n =0
N −1
( N −1) / 2 n =0
2
,α =
N −1 ,故该 FIR 滤波器具有线性相位特性。 2
6
证明: 冲激响应不变法: 使数字滤波器 h(n)等于原模拟滤波器冲激响应 ha (t ) 的等间隔抽样 ha (nT ) H(z)与H(s)的关系:H(z)=Z[h(n)]=Z[£-1[Ha(s)t=nT]] 分解: H ( s ) =
1+ (
1 Ωp Ωc
] )
2N
(2) Ω = Ω s ⇒ As = −10 lg[
1 ] Ωs 2N 1+ ( ) Ωc
−1
⇒ N , Ω c 的值即可。
8
解:由已知,低通到高通滤波器的变换: z
=−
z −1 + α , 1 + αz −1
设 wc 为原型低通滤波器的截止频率, wc 为高通滤波器的截至频率 由 G( z) = −
–jw(N-1) / 2
− jwn
− e − jw( N −1− n ) ]
jw ( N −1 −n) 2
N / 2 −1 n =0
=e
∑ h(n)[e
−e
− jw (
N −1 −n ) 2
]
=e –jw(N-1) / 2
π N −1 j ( −w ) 2 2
N / 2 −1 n =0
∑ h(n) ⋅ 2 j sin[w(
9 证明: (1)
0 X (0) = ∑ x(n)WN = ∑ x ( n) = ∑ x ( n) − ∑ x ( N − 1 − n ) n =0 n =0 n =0 n= N 2 N −1 N −1 N −1 2 N −1
(3)
令N-1-n = m ⎯⎯ ⎯⎯ ⎯→ = ∑ x(n) − ∑ x(m) =0 n =0 m =0
π
2
− w(
N −1 ) 2
(2) N 为偶数时,H(z)=
∑ h(n) z − n =
∑ h( n) z − n +
n= N / 2
∑ h( n) z
N −1
−n
令第二项 n′=N-1-n ,得:
N / 2 −1
H(z)=
∑ h( n) z − n +
n =0
N / 2 −1 n =0
∑ h( N − 1 − n) z
1 + 1 / 3z −1 1 • −1 1 − 1/ 4z 1 − 1 / 2 z −1
z –1 1/3 z -1 1/2
1/4
d)
并联型:H(z)=
−7/3 10 / 3 + −1 1 − 1/ 4z 1 − 1 / 2 z −1
-7/3 z
–1
x(n)
1/4 10/3 z 1/2
–1
y(n)
3
k =0 r =0 N −1 2 N −1 2
N-1-2 r = 2 k +1 ⎯令 ⎯ ⎯⎯⎯ ⎯→ =
10
证明: z k = re
j 2πk / N
= rz ⇒ z = 1− z −N N
N −1 k =0
zk r z H (k ) ,将 z= k 代入得: − k −1 r N z

H ( z) =
山东大学数字信号处理课程试题答案(A 卷)
1 (1)数字信号处理机,计算机的软件; (2)方块图,信号流图;加法器,延时器;精确度,误差,稳定性,经济性及运算速度; (3)
ab 1 − bc
(4)3,0.5rad/s 2 解:y(n)=x(n)+1/3 x(n-1)+3/4y(n-1)-1/8y(n-2) H(z)= a)
N / 2 −1 n =0
N −1 − n)] 2
=e
∑ 2h(n) sin[ w(
π
2 − w(
N −1 − n)] 2
其相位函数为: ϕ ( w) =
N −1 ) 2
由以上两种情况可以看出, ϕ ( w) 满足第一类“线性相位”滤波器的定义:
∠H (e jw ) = β − αw, β = ±
π
N −1 2
N −1 2
(2)
X(
N ) = ∑ x( n )WN 2 n =0 =
N −1 2 r =0
N −1
j
N n 2
= ∑ x( n )( −1) n =
n=0 N −1 2 r =0
N −1
ቤተ መጻሕፍቲ ባይዱ
∑ x(2r ) − ∑ x(2r + 1)
r =0 r =0
N −1 2
N −1 2
∑ x( N − 1 − 2r ) − ∑ x(2r + 1) ∑ x(2k + 1) − ∑ x(2r + 1) =0
∑1−W
H(
N −1
zk 1− r N z −N )= r N
∑ 1 − rW
k =0
N −1
H (k )
−k N
z −1
+
N / 2 −1 H (k ) = ∑ ∑ − k −1 k =0 k = 0 1 − rW N z
H (k ) 1 − re
2πk j N
z −1
k=N / 2

N −1
H (k ) 1 − re
− wc )
] = −(e − jwc + e jwc )
(1)
两边同乘以 e
得:

′ wc + wc cos( ) 2 α =− ′ w − wc cos( c ) 2
(2)
即:由低通到高通的公式:
′ wc + wc cos( ) z −1 + α 2 z −1 = − , α = − ′ 1 + αz −1 wc − wc cos( ) 2
r ( N / 2+ k )
N / 2 −1 N / 2 −1 r (k + ) N rk ∴ G ( k + ) = ∑ g ( r )W N / 2 2 = ∑ g ( r )W N / 2 = G (k ) 2 r =0 r =0
N
同理: H (k +
( N +k )
N ) = H (k ) 2
∑s−s
k =1
N
Ak
,单极点多项式和
k
N
对 H a ( s ) 进行拉式反变换,得: ha (t ) =
∑A e
k =1 k N k =1
sk t
u (t )
h(n) = ha (nT ) = ∑ Ak e sk nT u (nT )
对 h(n) 求 Z 变换: H ( z ) =
(1)
n = −∞
N / 2 −1
− ( N −1− n )
N / 2 −1
=
∑ h( n) z
n =0
−n

∑ h( n ) z
n =0
−( N −1− n )
N / 2 −1
=
∑ h(n)[ z
n =0
−n
− z −( N −1− n ) ]
将z=e jw代入,得: H(e jw)=
N / 2 −1 n =0
∑ h(n)[e
相关文档
最新文档