微积分定理和公式
高等数学常用微积分公式
高等数学常用微积分公式一、极限1.无穷大与无穷小:当x→∞时,若极限值L=0,则称函数f(x)是无穷小。
常见无穷小有:x→0时的无穷小o(x)、无穷次可导的无穷小O(x^n);当x→∞时,若极限值L≠0或不存在,则称函数f(x)是无穷大;2.函数极限:若函数f(x)当x→a时的极限存在稳定的常数L,则称L为f(x)当x→a时的极限,记作:lim(x→a) f(x) = L;3.等价无穷小:若 f(x) 和 g(x) 都是x→a 时的无穷小,并且lim(x→a)(f(x)/g(x))=1,则称 f(x) 和 g(x) 是x→a 时的等价无穷小。
二、导数1.导数的定义:若函数f(x)在点x处的函数值可近似表示为f(x+Δx)≈f(x)+f'(x)Δx,其中f'(x)为f(x)在点x处的导数,则称f'(x)是函数f(x)在点x处的导数。
2.常见函数的导数:(1)和差法则:(u±v)'=u'±v';(2)乘法法则:(u*v)'=u'*v+u*v';(3)除法法则:(u/v)'=(u'*v-u*v')/v^2,其中v≠0;(4) 链式法则:若 y=f(u),u=g(x) ,则 y=f(g(x)) 的导数为dy/dx = f'(u)*g'(x)。
3.高阶导数:函数f(x)的导数f'(x)的导数称为f(x)的二阶导数,记为f''(x)。
可以依此类推,得到函数f(x)的n阶导数f^(n)(x)。
三、微分1.微分的定义:函数 f(x) 在点 x 处的微分记为 dx,根据导数的定义,有 df(x) = f'(x)dx。
2.微分的性质:(1)常数微分:d(c)=0,其中c为常数;(2) 取单项微分:d(x^n) = nx^(n-1)dx,其中 n 为实数,x 为变量;(3) 和差微分:d(u ± v) = du ± dv;(4) 乘法微分:d(uv) = u*dv + v*du;(5) 除法微分:d(u/v) = (v*du - u*dv)/v^2,其中v ≠ 0;(6) 复合函数微分:若 y=f(u),u=g(x),则 dy = f'(u)du =f'(g(x))g'(x)dx。
dx微积分所有公式,微积分24个基本公式
dx微积分所有公式,微积分24个基本公式dx表示x变化无限小的量,其中d表示“微分”,是“derivative(导数)”的第一个字母。
当一个变量x,越来越趋向于一个数值a时,这个趋向的过程无止境的进行,x与a的差值无限趋向于0,就说a是x的极限。
这个差值,称它为“无穷小”,它是一个越来越小的过程,一个无限趋向于0的过程,它不是一个很小的数,而是一个趋向于0的过程。
扩展资料:注意微分的几何意义:设δx是曲线y = f(x)上的点m的在横坐标上的增量,δy是曲线在点m对应δx在纵坐标上的增量,dy是曲线在点m的切线对应δx在纵坐标上的增量。
f(x0)在表示曲线y=f(x)在切点m(x0,f(x0))处切线的斜率。
(1)微积分的基本公式共有四大公式:1.牛顿-莱布尼茨公式,又称为微积分基本公式2.格林公式,把封闭的曲线积分化为区域内的二重积分,它是平面向量场散度的二重积分3.高斯公式,把曲面积分化为区域内的三重积分,它是平面向量场散度的三重积分4.斯托克斯公式,与旋度有关(2)微积分常用公式:dx sin x=cos xcos x = -sin xtan x = sec2 xcot x = -csc2 xsec x = sec x tan xcsc x = -csc x cot xsin x dx = -cos x + ccos x dx = sin x + ctan x dx = ln |sec x | + ccot x dx = ln |sin x | + csec x dx = ln |sec x + tan x | + c csc x dx = ln |csc x - cot x | + c sin-1(-x) = -sin-1 xcos-1(-x) = - cos-1 xtan-1(-x) = -tan-1 xcot-1(-x) = - cot-1 xsec-1(-x) = - sec-1 xcsc-1(-x) = - csc-1 xdx sin-1 ()=cos-1 ()=tan-1 ()=cot-1 ()=sec-1 ()=csc-1 (x/a)=sin-1 x dx = x sin-1 x++ccos-1 x dx = x cos-1 x-+ctan-1 x dx = x tan-1 x- ln (1+x2)+c cot-1 x dx = x cot-1 x+ ln (1+x2)+c sec-1 x dx = x sec-1 x- ln |x+|+c csc-1 x dx = x csc-1 x+ ln |x+|+c sinh-1 ()= ln (x+) xrcosh-1 ()=ln (x+) x≥1tanh-1 ()=ln () |x| 1sech-1()=ln(+)0≤x≤1csch-1 ()=ln(+) |x| 0dx sinh x = cosh xcosh x = sinh xtanh x = sech2 xcoth x = -csch2 xsech x = -sech x tanh xcsch x = -csch x coth xsinh x dx = cosh x + ccosh x dx = sinh x + ctanh x dx = ln | cosh x |+ c coth x dx = ln | sinh x | + c sech x dx = -2tan-1 (e-x) + c csch x dx = 2 ln || + cduv = udv + vduduv = uv = udv + vdu→ udv = uv - vducos2θ-sin2θ=cos2θcos2θ+ sin2θ=1cosh2θ-sinh2θ=1cosh2θ+sinh2θ=cosh2θdx sinh-1()=cosh-1()=tanh-1()=coth-1()=sech-1()=csch-1(x/a)=sinh-1 x dx = x sinh-1 x-+ ccosh-1 x dx = x cosh-1 x-+ ctanh-1 x dx = x tanh-1 x+ ln | 1-x2|+ c coth-1 x dx = x coth-1 x- ln | 1-x2|+ c sech-1 x dx = x sech-1 x- sin-1 x + c csch-1 x dx = x csch-1 x+ sinh-1 x + c sin 3θ=3sinθ-4sin3θcos3θ=4cos3θ-3cosθ→sin3θ= (3sinθ-sin3θ)→cos3θ= (3cosθ+cos3θ)sin x = cos x =sinh x = cosh x =正弦定理:= ==2r余弦定理:a2=b2+c2-2bc cosαb2=a2+c2-2ac cosβc2=a2+b2-2ab cosγsin (α±β)=sin α cos β ± cos α sin βcos (α±β)=cos α cos β sin α sin β2 sin α cos β = sin (α+β) + sin (α-β) 2 cos α sin β = sin (α+β) - sin (α-β) 2 cos α cos β = cos (α-β) + cos (α+β) 2 sin α sin β = cos (α-β) - cos (α+β) sin α + sin β = 2 sin (α+β) cos (α-β) sin α - sin β = 2 cos (α+β) sin (α-β) cos α + cos β = 2 cos (α+β) cos (α-β) cos α - cos β = -2 sin (α+β) sin (α-β) tan (α±β)=,cot (α±β)=ex=1+x+++…++ …sin x = x-+-+…++ …cos x = 1-+-+++ln (1+x) = x-+-+++tan-1 x = x-+-+++(1+x)r =1+rx+x2+x3+ -1= n= n (n+1)= n (n+1)(2n+1)= [ n (n+1)]2γ(x) = x-1e-t dt = 22x-1dt = x-1 dtβ(m,n) =m-1(1-x)n-1 dx=22m-1x cos2n-1x dx = dx转换为 f (ω ) = 解f (t ) = ± jω0t f ( t ) e ? jωt dt f ( t ) e ? j(ω ?ω0 ) t dt = f (ω ? ω0 ) 。
微积分基本公式16个
微积分基本公式16个1. 微分:微分是数学中最重要的概念之一,它指的是在一定时间内几何形状的变化率。
可以理解为小步长地移动拟合函数,接近曲线本身。
可以表示为\frac{dy}{dx} 或f'(x) 。
2. 泰勒公式:泰勒公式是一个重要的微积分工具,它可以在某一特定点附近对任意连续函数进行展开,也就是说任意设定一个位置x0,可以根据它附近的数值向量求出函数在该位置的平均值。
可以用公式表示为:f(x) = f(x_0) + f'(x_0)(x-x_0) + \frac{f''(x_0)(x-x_0)^2}{2!} + \frac{f^{n}(x_0)(x-x_0)^n}{n!} + ...3. 高斯积分公式:高斯积分是指将函数抽象为一次多项式曲线,采用指数型或线性型积分方法求解积分。
它可以用公式f(x)=\sum_{i=0}^n a_i x^i 表示,其中a_i为积分下限、上限和积分点x_i处函数值相乘所得到的系数。
4. 黎曼积分:黎曼积分是一种常用的积分方法,它通过对连续函数求和,来确定函数在给定区间上的定积分。
可以用公式表示为:\int_{a}^{b}f(x)dx=\sum_{i=1}^{n}f(x_i)\Delta x_i ,其中n为梯形的节点数。
5. Stokes公式:Stokes公式是一种将多变量函数投影到多方向进行积分的方法,可以用公式表示为:\int_{\Omega}\nabla\times{\bf F} dA =\int_{\partial\Omega}{\bf F}\cdot{\bf n}dS,其中\nabla\times{\bf F} 为梯度矢量场,\partial\Omega 为边界,{\bfn}dS 为单位向量与边界面积的乘积。
6. Γ函数:Γ函数是一种重要的数学函数,通常用来表示非负整数的排列组合,也可以表示实数的阶乘,可以用公式表示为:\Gamma(x)=\int_0^{\infty}t^{x-1}e^{-t}dt7. 方阵的行列式:方阵的行列式是指一个n阶矩阵的行列式,可以用公式表示为:D= |a_{i,j}| = \begin{vmatrix} a_{1,1} & a_{1,2} & ... & a_{1,n} \\ a_{2,1} & a_{2,2} & ... & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & ... & a_{n,n} \end{vmatrix} ,其中a_{i,j} 为矩阵中的元素。
微积分公式定理整理
微分积分公式整理一、导数1. 基本导数公式(1)()0='C (2)()1-='μμμx x(3)()x cos x sin =' (4)()x sin x cos -=' (5)()x sec x tan 2=' (6)()x csc x cot 2-=' (7)()x tan x sec x sec ⋅=' (8)()x cot x csc x csc ⋅-='(9)()x x e e =' (10)()a ln a a x x ='(11)()xx ln 1=' (12)()aln x x log a1=' (13)()211x x arcsin -=' (14)()211x x arccos --='(15)()211x x arctan +=' (16)()211x xcot arc +-='2. 导数的四则运算法则(1)()v u v u '±'=± (2)()v u v u uv '+'='(3)2v v u v u v u '-'='⎪⎭⎫ ⎝⎛ 3. 常用等价无穷小代换: 当x →0时,xx sin →xx tan →xx arcsin →xx arctan →2211xx cos →- a ln x a x →-1 x e x →-1()x x ln →+1()abxbx a →+-11()nx x n1111→-+()a ln x x log a →+1 4. 高阶导数公式(1)()()[]()()()()()n n n x v x u x v x u ±=± (2)()[]()()x cu x cu n n = (3)()[]()()()b ax u a b ax u n n n +=+(4)莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑5.基本初等函数的n 阶导数公式 (1)()()!x x n n= (2)()()bax n n bax ea e ++⋅= (3)()()a ln a a n x n x=(4)()[]()⎪⎭⎫ ⎝⎛⋅++=+2x n b ax sin a b ax sin n n (5)()[]()⎪⎭⎫ ⎝⎛⋅++=+2x n b ax cos a b ax cos n n (6)()()()111++⋅-=⎪⎭⎫ ⎝⎛+n n nn b ax !n a b ax(7)()[]()()()()nn n n b ax !n a b ax ln +-⋅-=+-1116. 中值定理与导数应用:拉格朗日中值定理。
微积分基本公式和基本定理
x
sec2
xdx
tan
x
C
(9)
d sin
x
2
x
csc 2
xdx
cot
x
C
(10) sec x tan xdx sec x C
(11) csc x cot xdx csc x C
(12) ex dx ex C (13) a xdx a x C
ln a
(14) sh xdx ch x C
2
xdx.
2
2
0
0
例9
证
明2 e
1 4
2 e x2 xdx 2e2 .
0
第二节
第三章
微积分基本公式与基本定理
一、微积分基本公式 二、微积分基本定理 三、不定积分
一、微积分基本公式
在变速直线运动中, s(t) v(t) 物体在时间间隔
内经过的路程为 vT2 (t)d t s(T2 ) s(T1 ) T1
例10
1 et2 dt
求
lim
x0
cos x
x2
.
解 d 1 et2dt d cos x et2dt,
dx cos x
dx 1
ecos2 x (cos x) sin x ecos2 x ,
1 et2 dt
lim
x0
cos x
x2
lim sin x ecos2 x
x0
2x
1. 2e
ln
x
C
x 0时 ( ln x ) [ ln(x) ] 1
(4)
1
dx x
2
arctan
x
C
x
或 arccot x C
微积分基本定理
A.
d
f (x)dx
a
B.
d
f (x)dx
a
C.
b
f (x)dx
c
f (x)dx
d
f (x)dx
a
b
c
y
D.
b
c
f (x)dx f (x)dx
y loga x (a 0, a 1, x 0)
y 1 x ln a
y sin x
y cos x
y cos x
y sin x
注:ln a loge a ,称为 a 的自然对数,其底为e ,e 是一个和 π 一样重要的无理数e 2.7182818284 . 注意 (ex ) ex .
0
2
【答案】 2π
【例3】
求定积分
1
(
1 (x 1)2 x)dx .
0
【解析】
1
(
1 (x 1)2 x)dx
1
1 (x 1)2 dx
1 xdx ,
0
0
0
设 y 1 (x 1)2 ,则 (x 1)2 y2 1( y ≥0) ,
∵ 1 1 (x 1)2 dx 表示以1 为半径的圆的四分之一面积, 0
2π
| cos x | dx
0
π
2 cos xdx
0
3π
2 π
( cos
x)dx
2π 3π
cos
xdx
.
2
2
3 / 15
同步课程˙微积分基本定理 y
1
O
2 x
【答案】
2π
| cos x | dx
0
π
2 cos xdx
高等数学微积分公式定理整理
高等数学公式中值定理与导数应用:拉格朗日中值定理。
时,柯西中值定理就是当柯西中值定理:拉格朗日中值定理:x x F f a F b F a f b f a b f a f b f =''=---'=-)(F )()()()()()())(()()(ξξξ曲率:.1;0.)1(lim M s M M :.,13202aK a K y y ds d s K M M sK tg y dx y ds s =='+''==∆∆='∆'∆∆∆==''+=→∆的圆:半径为直线:点的曲率:弧长。
:化量;点,切线斜率的倾角变点到从平均曲率:其中弧微分公式:ααααα定积分的近似计算:⎰⎰⎰----+++++++++-≈++++-≈+++-≈ban n n ban n ba n y y y y y y y y nab x f y y y y n a b x f y y y nab x f )](4)(2)[(3)(])(21[)()()(1312420110110 抛物线法:梯形法:矩形法:定积分应用相关公式:⎰⎰--==⋅=⋅=bab a dt t f a b dxx f a b y k rmm k F Ap F sF W )(1)(1,2221均方根:函数的平均值:为引力系数引力:水压力:功:导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin ududx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
微积分基本定理
1
2
x ,0 ≤ x < 1 , 例8 设 f ( x ) = x,1 ≤ x ≤ 2
2
上的表达式. 求 Φ( x ) = ∫0 f (t )dt ,在 [0,2] 上的表达式
x
解
当 0 ≤ x < 1 时,
Φ( x ) = ∫0 f (t )dt = ∫0 t dt
x x 2
1 t 3 = 1 x 3 = 3 0 3
3 2
3x 2 2x = − 12 1+ x 1 + x8
x 0 “ 型未定式,可利用洛必达法 型未定式, 解 这是一个 ” 0 1 −t cos x −t e 则计算, 则计算,分子为 ∫cos x dt=-∫1 e dt
2 2
例4
e ∫cos x 求 limt
由法则2得 由法则 得
(2)定理2 (2)定理2 定理
分上限函数Φ ( x ) = ∫ f (t )dt 是 f ( x ) 在区间
x
上连续, 若函数 f ( x ) 在 [a, b]上连续,则积
a
上的一个原函数. [a, b] 上的一个原函数.
此定理一方面说明了连续函数一定存在原函数, 此定理一方面说明了连续函数一定存在原函数, 另一方面也说明了定积分与原函数之间的关系, 另一方面也说明了定积分与原函数之间的关系, 从而可能用原函数来计算定积分. 从而可能用原函数来计算定积分
3.法则3 3.法则3 法则
α ( x ) ∈ [a , , β ( x ) ∈ [a , b] 且α ( x ) 与 β ( x ) b] ,
都可微, 都可微,则有
若函数 f ( x )在区间 [a, b]上连续, 上连续,
微积分定理和公式
、函数【定义】设在某一变化过程中有两个变量X和y,若对非空集合D中的每一点x,都按照某一对应规则f ,有惟一确定的实数y与之相对应,则称y是x的函数,记作x 称为自变量, y 称为因变量, D 称为函数的定义域, y 的取值范围即集合y| y f(x),x D 称为函数的值域.xoy平面上点的集合(x,y)|y f(x),x D称为函数y f (x)的图形.定义域D( 或记D f )与对应法则 f 是确定函数的两个要素. 因此称两个函数相同是指它们的定义域与对应法则都相同.(二)函数的几何特性1.单调性(1)【定义】设函数f(x)在实数集D上有定义,对于D内任意两点x「X2,当为V X2时,若总有f(xj < f(X2)成立,则称f(x)在D内单调递增(或单增);若总有f(xj V f(X2)成立,则称f(x)在D内严格单增,严格单增也是单增.当f(x)在D内单调递增时,又称f(x)是D内的单调递增函数.单调递增或单调递减函数统称为单调函数.2.有界性【定义】设函数f(x)在集合D内有定义,若存在实数M > 0,使得对任意x D ,都有| f(x)| < M ,则称f(x)在D内有界,或称f(x)为D内的有界函数.【定义】设函数f (x)在集合D内有定义,若对任意的实数M >0,总可以找到一x D ,使得| f (x) | > M ,则称f (x)在D内无界,或称f(x)为D内的无界函数.【定义】设函数f(x)在一个关于原点对称的集合内有定义,若对任意x D,都有f( x) f(x)(或f( x) f(x)),则称f(x)为D内的奇(偶)函数.奇函数的图形关于原点对称, 当f(x) 为连续的函数时, f(x) =0, 即f(x) 的图形过原点. 偶函数的图形关于y 轴对称. 关于奇偶函数有如下的运算规律:设f1(x) f2(x) 为奇函数, g1(x),g2(y) 为偶函数, 则f i(x) f2(x)为奇函数;g,x) g2(x)为偶函数;f i(x)g i(x)非奇偶函数;f i(x)g i(x)为奇函数;f i(x) f2(x),g i(x) g2(x)均为偶函数. 常数C是偶函数,因此,奇函数加非零常数后不再是奇函数了.利用函数奇偶性可以简化定积分的计算. 对研究函数的单调性、函数作图都有很大帮助.4.周期性【定义】设函数f(x)d在集合D内有定义,如果存在非零常数T,使得对任意x D ,恒有f (x T) f (x)成立,则称f (x)为周期函数.满足上式的最小正数T,称为f(x) 的基本周期, 简称周期.我们熟知的三角函数为周期函数( 考纲不要求), 除此以外知之甚少. y x [x]是以1为周期的周期函数• y [X]与y x [X]的图形分别如图1-1(a)和图1-1(b) 所示•(三) 初等函数 1 .基本初等函数(1)常数函数 y C ,定义域为(-*,+ X ),图形为平行于x 轴的直线.在y 轴 上的截距为c .(2)幂函数y x ,其定义域随着 的不同而变化.但不论取何值,总在(1,+ X )内有定义,且图形过点(1,1 ).当 > 0时,函数图形过原点(图1-2 )( b )图1-21),其定义域为(-X ,+ X)..当 > 1时,函数严格单调递增.子数图形e 为底的指数函数,即y e x (图1-3 )0, 1),其定义域为(1,+ X ),它与y x 互为反函数.微积分中常用到以 e 为底的对数,记作y 1nx ,称为自然对数.对数函数对基本初等函数的特性和图形要熟练地掌握,这充分条件判断、导数和定积分 应用中都很重要.例如,设f (x)在(a,b)区间内二阶可导,对任意x (a,b),f 〃(x) v 0.(3)指数函数 y x (0,当0v v 1时,函数严格单调递减 过点(0,1 ).微积分中经常用到以(4)对数函数 y的图形过点(1,0 )(图1-4)贝9 (1) f ' (x)在(a,b)内严格单调减少;(2) f(x)在(1,b)上为凸弧,均不充此题可以用举例的方法来说明( 1 )、( 2)均不充分.由初等函数的图形可知,y x4为凸弧.讨'二4x3在(一X , x + )上严格单调递减,但y “ =-12 x2< 0,因此(1) , (2)均不充分,故选E.此题若把题干改成f 〃(x) < 0,则(1) , (2) 均充分,差别就在等于零与不等于零.可见用初等函数图形来判断非常便捷.2. 反函数【定义】设函数y f (x)的定义域为D ,值域为R,如果对于每一个y R,都有惟一确定的x D与之对应,且满足y f(x) x是一个定义在R以y为自变量的函数记作并称其为y f(x)反函数.习惯上用x作自变量,y作因变量,因此y f(x)反函数常记为y f 1(x),x R. 函数y f (x)与反函数y f 1(x)的图形关于直线y x对称.严格单调函数必有反函数,且函数与其反函数有相同的单调性.y a x与y log a x互为反函.y x2,x [0,+ X]的反函数为y x ,而y x2,x (-x ,0 )的反函数为y (图1-2 (b)).3. 复合函数【定义】已知函数y f (u), u D f, y R f.又u (x), x D ,u R ,若D f R f非空,则称函数为函数y f (u)与u (x)的复合函数.其中y称为因变量,x称为自变量,u称为中间变量.4. 初等函数由基本初等函数经过有限次四则运算和有限次复合运算而得到的一切函数统称为初等函数,初等函数在其定义域内有统一的表达式(四)隐函数若函数的因变量y明显地表示成y f(x)的形式,则称其为显然函数.y x2, y 1n(3x21), y x21 等.设自变量x与因变量y之间的对应法则用一个方程式F(x,y) 0表示,如果存在函数y f(x)(不论这个函数是否能表示成显函数) ,将其代入所设方程,使方程变为恒等式:其中D f为非空实数集.则称函数y f(x)由方程F(x,y) 0所确定的一个隐函数.如方程x y 1可以确定一个定义在[0,1]上的隐函数.此隐函数也可以表示成显函数的形式,即但并不是所有隐函数都可以用x的显函数形式来表示,如e xy x y 0因为y我法用初等函数表达,故它不是初等函数.另外还需注意,并不是任何一个方程都能确定隐函数,如x2 y2 1 0.(五)分段函数有些函数,对于其定义域内的自变量 x 的不同值,不能用一个统一的解析式表 示,而是要用两个或两个以上的式子表示 ,这类函数称为分段函数,如 都是定义在(—X , +^)上的分段函数.分段函数不是初等函数,它不符合初等函数的定义.、极限(不在考试大纲内,只需了解即可)极限是微积分的基础• (一) 数列极限按照一定顺序排成一串的数叫做数列 ,如a i ,a 2 a n a n 称为通项. 1 .极限定义【定义】 设数列a n ,当项数n 无限增大时,若通项a n 无限接近某个常数A ,则 称数列a n 收敛于A 或称A 为数列a n 的极限,记作否则称数列a n 发散或lim a n 不存在. 2. 数列极限性质 ° (1)四则极限性质设lim x n a,limy n b ,贝卩nn(2) lim x n a lim x n k ann(3) 若limx n a ,则数列x n 是有界数列.(4) 夹逼定理 设存在正整数N o ,使得n N o 时,数列X n , y n , Z n 满足不等式Z n X ny n .若 lim y n lim 召 a ,则 lim x n a . 利用此定理1可以证明重要极限利用此定理可以证明重要极限(二) 函数的极限 1. x时的极限接近常数A 则称f(x)当X 时以A 为极限,记作当X 或X 时的极限当X 沿数轴正(负)方向趋于无穷大 ,简记X( X )时,f(x)无限接(k 为任意正整数)lim 1(,是一个无理数)(5)单调有界数列必有极限设数列X n 有界,且存在正整数N 。
微积分学基本定理及基本积分公式
1.变限定积分
f (t) 在[a, b]上可积,则对 x [a, b], f (t) 在[a, x]上
可积,即 x f (t )dt . a
---变上限定积分
1) 变上限定积分是上限的函数
设 f 在[a, b]上可积,
x
( x) a f (t)dt, x [a, b]
(1 x2 ) x2 x2 (1 x2 ) dx
=
1 x2
dx
1 1 x2
dx
=
1 x
arctan
x
C
.
结果是否正确,检验方法
求导,看积分结果的导函数是否为被积函数
例 5 (3) tan2 x dx (sec2 x 1)dx tan x x C
EXE (4)
1 dx 1 x2
F(x) ex2 (x2 ) 2xex2 .
一般地,
u(x)
v( x)
f (t) dt f (u( x))u( x) f (v( x))v( x)
.
( x) x f (t)dt , ( x) f ( x) .
2) 变上限a 定积分求导
例 2
F(x)
x
( x t) f (t) dt,
结论:若 F ( x)为 f ( x) 的任一原函数, 则(1)F(原 x) 函 C数为的f存( x在) 的性原函数的全体,其中 C 为常数.
已有结论:若 f ( x) C[a, b] , 则 f ( x) 在[a, b]上一定存在原函数.
(2) 原函数不唯一
若 f ( x) 在[a, b]上有原函数,则有一个必有无穷多个.
即从一条曲线上下平移而得 3) 基本积分公式
微积分定理和公式
微积分定理和公式 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT一、函数【定义】 设在某一变化过程中有两个变量x 和y ,若对非空集合D 中的每一点x ,都按照某一对应规则f ,有惟一确定的实数y 与之相对应,则称y 是x 的函数,记作x 称为自变量,y 称为因变量,D 称为函数的定义域,y 的取值范围即集合{}D x x f y y ∈=),(|称为函数的值域.xoy 平面上点的集合{}D x x f y y x ∈=),(|),(称为函数)(x f y =的图形.定义域D (或记f D )与对应法则f 是确定函数的两个要素.因此称两个函数相同是指它们的定义域与对应法则都相同.(二)函数的几何特性 1.单调性(1)【定义】 设函数)(x f 在实数集D 上有定义,对于D 内任意两点21,x x ,当 1x <2x 时,若总有)(1x f ≤)(2x f 成立,则称D x f 在)(内单调递增(或单增);若总有 )(1x f <)(2x f 成立,则称)(x f 在D 内严格单增,严格单增也是单增.当)(x f 在D 内单调递增时,又称D x f 是)(内的单调递增函数.单调递增或单调递减函数统称为单调函数.2.有界性【定义】 设函数内有定义在集合D x f )(,若存在实数M >0,使得对任意D x ∈,都有|)(|x f ≤M ,则称)(x f 在D 内有界,或称)(x f 为D 内的有界函数.【定义】 设函数内有定义在集合D x f )(,若对任意的实数M >0,总可以找到一D x ∈,使得|)(|x f >M ,则称)(x f 在D 内无界,或称)(x f 为D 内的无界函数.【定义】 设函数)(x f 在一个关于原点对称的集合内有定义,若对任意D x ∈,都有))()()(()(x f x f x f x f =--=-或,则称)(x f 为D 内的奇(偶)函数.奇函数的图形关于原点对称,当)(x f 为连续的函数时,)(x f =0,即)(x f 的图形过原点.偶函数的图形关于y 轴对称.关于奇偶函数有如下的运算规律: 设)()(21x f x f ±为奇函数,)(),(21y g x g 为偶函数,则)()(21x f x f ±为奇函数;)()(21x g x g ±为偶函数; )()(11x g x f ±非奇偶函数;)()(11x g x f ⋅为奇函数;)()(),()(2121x g x g x f x f ⋅⋅均为偶函数. 常数C 是偶函数,因此,奇函数加非零常数后不再是奇函数了.利用函数奇偶性可以简化定积分的计算.对研究函数的单调性、函数作图都有很大帮助. 4.周期性【定义】 设函数内有定义在集合D d x f )(,如果存在非零常数T,使得对任意D x ∈,恒有)()(x f T x f =+成立,则称)(x f 为周期函数.满足上式的最小正数T,称为)(x f 的基本周期,简称周期.我们熟知的三角函数为周期函数(考纲不要求),除此以外知之甚少.][x x y -=是以1为周期的周期函数.][x y =与][x x y -=的图形分别如图1-1(a)和图1-1(b)所示.(三)初等函数 1.基本初等函数(1)常数函数 C y =,定义域为(-∞,+∞),图形为平行于x 轴的直线.在y 轴上的截距为c .(2)幂函数 αx y =,其定义域随着α的不同而变化.但不论α取何值,总在(1,+∞)内有定义,且图形过点(1,1).当α>0时,函数图形过原点(图1-2)(a ) (b )图1-2(3)指数函数 )1,0(≠=ααα x y ,其定义域为(-∞,+∞).当0<α<1时,函数严格单调递减.当α>1时,函数严格单调递增.子数图形过点(0,1).微积分中经常用到以e 为底的指数函数,即x e y =(图1-3)(4)对数函数 )1,0(log ≠=ααα x y ,其定义域为(1,+∞),它与x y α=互为反函数.微积分中常用到以e 为底的对数,记作nx y 1=,称为自然对数.对数函数的图形过点(1,0)(图1-4)(图1-3) (图1-4)另有两类基本初等函数:三角函数与反三角函数,不在考纲之内.对基本初等函数的特性和图形要熟练地掌握,这充分条件判断、导数和定积分应用中都很重要.例如,设f b a x b a x f ),,(,),()(∈对任意区间内二阶可导在″)(x <0.则 (1)f ′)(x 在),(b a 内严格单调减少;(2))(x f 在),1(b 上为凸弧,均不充分.此题可以用举例的方法来说明(1)、(2)均不充分.由初等函数的图形可知,4x y -=为凸弧.y ′=34x -在(-∞,∞+)上严格单调递减,但y ″=-122x ≤0,因此(1),(2)均不充分,故选E.此题若把题干改成f ″)(x ≤0,则(1),(2)均充分,差别就在等于零与不等于零.可见用初等函数图形来判断非常便捷.2.反函数【定义】 设函数)(x f y =的定义域为D ,值域为R ,如果对于每一个R y ∈,都有惟一确定的D x ∈与之对应,且满足)(x f y =x 是一个定义在R 以y 为自变量的函数,记作并称其为)(x f y =反函数.习惯上用x 作自变量,y 作因变量,因此)(x f y =反函数常记为R x x f y ∈=-),(1. 函数)(x f y =与反函数)(1x f y -=的图形关于直线x y =对称.严格单调函数必有反函数,且函数与其反函数有相同的单调性.x y a y a x log ==与互为反函.∈=x x y ,2[0,+∞]的反函数为x y =,而∈=x x y ,2(-∞,0)的反函数为x y -=(图1-2(b )).3.复合函数【定义】 已知函数f f R y D u u f y ∈∈=,),(.又D x x u ∈=),(ϕϕ,u ≤R ϕ,若f f R D 非空,则称函数为函数)()(x u u f y ϕ==与的复合函数.其中y 称为因变量,x 称为自变量,u 称为中间变量.4.初等函数由基本初等函数经过有限次四则运算和有限次复合运算而得到的一切函数统称为初等函数,初等函数在其定义域内有统一的表达式.(四)隐函数若函数的因变量y 明显地表示成)(x f y =的形式,则称其为显然函数.1),13(1,222-=-==x y x n y x y 等.设自变量x 与因变量y 之间的对应法则用一个方程式0),(=y x F 表示,如果存在函数)(x f y =(不论这个函数是否能表示成显函数),将其代入所设方程,使方程变为恒等式: 其中f D 为非空实数集.则称函数)(x f y =由方程0),(=y x F 所确定的一个隐函数.如方程1=+y x 可以确定一个定义在[0,1]上的隐函数.此隐函数也可以表示成显函数的形式,即但并不是所有隐函数都可以用x 的显函数形式来表示,如0=++y x e xy 因为y 我法用初等函数表达,故它不是初等函数.另外还需注意,并不是任何一个方程都能确定隐函数,如0122=++y x .(五)分段函数有些函数,对于其定义域内的自变量x 的不同值,不能用一个统一的解析式表示,而是要用两个或两个以上的式子表示,这类函数称为分段函数,如 都是定义在(-∞,+∞)上的分段函数.分段函数不是初等函数,它不符合初等函数的定义.二、极限(不在考试大纲内,只需了解即可)极限是微积分的基础. (一)数列极限按照一定顺序排成一串的数叫做数列,如n n a a a a ⋅ 21,称为通项. 1.极限定义【定义】 设数列{}n a ,当项数n 无限增大时,若通项n a 无限接近某个常数A ,则称数列{}n a 收敛于A ,或称A 为数列{}n a 的极限,记作否则称数列{}n a 发散或n n a ∞→lim 不存在.2.数列极限性质(1)四则极限性质 设b y a x n n n n ==∞→∞→lim ,lim ,则(2)a x a x k n n n n =⇔=+∞→∞→lim lim (k 为任意正整数).(3)若a x n n =∞→lim ,则数列{}n x 是有界数列.(4)夹逼定理 设存在正整数0N ,使得0N n ≥时,数列{}{}{}n n n z y x ,,满足不等式n n n y x z ≤≤. 若a z y n n n n ==∞→∞→lim lim ,则a x n n =∞→lim . 利用此定理可以证明重要极限e n nn =⎪⎭⎫⎝⎛+∞→11lim (=,是一个无理数). (5)单调有界数列必有极限 设数列{}n x 有界,且存在正整数0N ,使得对任意0N n ≥都有n n x x ≤+1(或n n x x ≥+1),则数列{}n x 的极限一定存在.利用此定理可以证明重要极限e n nn =⎪⎭⎫⎝⎛+∞→11lim (=,是一个无理数). (二)函数的极限1.∞→x 时的极限【定义】 设函数)(x f 在)0(||>≥a a x 上有定义,当∞→x 时,函数)(x f 无限接近常数A ,则称)(x f 当∞→x 时以A 为极限,记作当+∞→x 或-∞→x 时的极限当x 沿数轴正(负)方向趋于无穷大,简记+∞→x (-∞→x )时,)(x f 无限接近常数A ,则称)(x f 当+∞→x (-∞→x )时以A 为极限,记作 3.0x x →时的极限【定义】 设函数)(x f 在0x 附近(可以不包括0x 点)有定义,当x 无限接近)(00x x x ≠时,函数)(x f 无限接近常数A ,则称当0x x →时,)(x f 以A 为极限,记作 4.左、右极限若当x 从0x 的左侧(0x x <)趋于0x 时,)(x f 无限接近一个常数A ,则称A 为0x x →时)(x f 的左极限,记作.)(lim 0A x f x x =-→ 或 A x f =-)0(0若当x 从0x 的左侧(0x x >)趋于0x 时,)(x f 无限接近一个常数A ,则称A 为0x x →时)(x f 的右极限,记作.)(lim 0A x f x x =+→ 或 A x f =+)0(0(三)函数极限的性质 1.惟一性若,B x f A x f x x x x ==→→)(lim ,)(lim 00则A=B . 2.局部有界性若A x f x x =→)(lim 0.则在0x 的某邻域内(点0x 可以除外),)(x f 是有界的. 3.局部保号性若A x f x x =→)(lim 0.且A >0(或A <0=,则存在0x 的某邻域(点0x 可以除外),在该邻域内有)(x f >0(或)(x f <0=。
高等数学一(微积分)常用公式表
1、乘法公式(1)(a+b )²=a 2+2ab+b 2(2)(a-b)²=a ²-2ab+b ²(3)(a+b)(a-b)=a ²-b ² (4)a ³+b ³=(a+b)(a ²-ab+b ²) (5)a ³-b ³=(a-b)(a ²+ab+b ²)2、指数公式:(1)a 0=1 (a ≠0)(2)a P -=P a 1(a ≠0)(3)amn=mna(4)a m a n =a n m +(5)a m ÷a n=n maa =anm -(6)(am)n =amn(7)(ab )n =a n b n(8)(b a)n =n nba (9)(a )2=a (10)2a =|a|3、指数与对数关系: (1)若a b=N ,则N b a log = (2)若10b=N ,则b=lgN (3)若be =N ,则b=㏑N4、对数公式:(1)b a ba =log , ㏑eb=b (2)N aaN=log ,eNln =N(3)aNN a ln ln log =(4)a b be aln = (5)N M MN ln ln ln +=(6)N M NMln ln ln-= (7)M n M n ln ln =(8)㏑nM =M nln 15、三角恒等式:(1)(Sin α)²+(Cos α)²=1 (2)1+(tan α)²=(sec α)²(3)1+(cot α)²=(csc α)²(4)αααtan cos sin =(5)αααcot sin cos =(6)ααtan 1cot =(7)ααcos 1csc = (8)ααcos 1sec =7.倍角公式: (1)αααcos sin 22sin = (2)ααα2tan 1tan 22tan -=(3)ααααα2222sin 211cos 2sin cos 2cos -=-=-=8.半角公式(降幂公式):(1)(2sin α)2=2cos 1a- (2)(2cosα)2=2cos 1a + (3)2tan α=a a sin cos 1+=a acos 1sin +常用公式表(二)1、求导法则:(1)(u+v )/=u /+v /(2)(u-v )/=u /-v /(3)(cu )/=cu / (4)(uv )/=uv /+u/v (5)2v v u v u v u '-'='⎪⎭⎫ ⎝⎛ 5、定积分公式:(1)⎰⎰=babadtt f dx x f )()( (2)⎰=aadx x f 0)((3)()()dx x f dx x f a bba⎰⎰-= (4)⎰⎰⎰+=bac abcdxx f dx x f dx x f )()()((5)若f (x )是[-a,a]的连续奇函数,则⎰-=aadx x f 0)((6)若f (x )是[-a,a]的连续偶函数,则6、积分定理: (1)()()x f dt t f xa='⎥⎦⎤⎢⎣⎡⎰ ()()()()()[]()()[]()x a x a f x b x b f dt t f x b x a '-'='⎥⎦⎤⎢⎣⎡⎰2(3)若F (x )是f (x )的一个原函数,则)()()()(a F b F x F dx x f ba b a -==⎰7.积分表()C x x xdx ++=⎰tan sec ln sec 1 ()C x x xdx +-=⎰cot csc ln csc 2()C a xa dx x a +=+⎰arctan 11322 ()C a x dx x a +=-⎰arcsin 1422()C a x ax a dx ax ++-=-⎰ln 211522 8.积分方法()()bax x f +=1;设:t b ax =+()()222x a x f -=;设:t a x sin = ()22a x x f -=;设:t a x sec = ()22x a x f +=;设:t a x tan =()3分部积分法:⎰⎰-=vdu uv udv。
微积分入门基本公式例题
微积分入门基本公式例题微积分是数学中的一个重要分支,它涉及到函数的极限、连续性、导数、积分等概念。
以下是一些微积分的基本公式及其例题:1.导数的基本公式导数描述了函数值随自变量变化的速率。
基本的导数公式包括:(1) 常数导数:f'(x) = 0,其中f(x)是一个常数;(2) 正比例函数导数:f'(x) = k,其中f(x) = kx;(3) 幂函数导数:f'(x) = nx^(n-1),其中f(x) = x^n;(4) 对数函数导数:f'(x) = 1/x,其中f(x) = ln x;(5) 三角函数导数:f'(x) = cos x,其中f(x) = sin x;以及f'(x) = -sin x,其中f(x) = cos x。
例题:求f(x) = 3x^2 + 5x + 2的导数。
解:根据幂函数导数的公式,f'(x) = 2*3x + 5 = 6x + 5。
2.积分的基本公式积分是微分的逆运算,它可以用来计算曲线下面积、求解定积分等。
基本的积分公式包括:(1) 常数积分:∫ a dx = ax + C,其中a是常数;(2) 正比例函数积分:∫ x dx = x^2/2 + C,其中C是积分常数;(3) 幂函数积分:∫ x^n dx = x^(n+1)/(n+1) + C,其中n是正整数;(4) 对数函数积分:∫ ln x dx = x ln x - x + C,其中C是积分常数;(5) 三角函数积分:∫ sin x dx = -cos x + C,以及∫ cos x dx = sin x + C,其中C是积分常数。
例题:计算∫ (3x^2 + 5x + 2) dx。
解:根据积分的基本公式,∫ (3x^2 + 5x + 2) dx = (3/3) * x^3 + (5/2) * x^2 + 2x + C = x^3 + (5/2)*x^2 + 2x + C。
微积分的公式大全
微积分的公式大全微积分是数学的一个重要分支,应用广泛,内容繁多。
在这里,我将为您介绍一些微积分中的基本公式和定理。
请注意,这里只是列举一些常用的公式,若要深入学习微积分,请参考相关教材和课程。
1.导数的基本公式:- 常数导数法则:对于常数c,其导数为0,即d/dx(c) = 0。
- 幂函数导数法则:对于幂函数f(x) = x^n ,其中n是常数,则其导数为d/dx(x^n) = nx^(n-1)。
-和差导数法则:若f(x)和g(x)都可导,则(f(x)±g(x))'=f'(x)±g'(x)。
-积法则:若f(x)和g(x)都可导,则(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)。
-商法则:若f(x)和g(x)都可导,且g(x)≠0,则(f(x)/g(x))'=(f'(x)g(x)-f(x)g'(x))/(g(x))^22.基本积分公式:- 反微分法则:若F(x)是f(x)的一个原函数,则∫f(x)dx = F(x) + C,其中C为常数。
- 平方差公式:∫(a^2 - x^2)^(1/2) dx = (1/2)(x√(a^2 - x^2) + a^2sin^(-1)(x/a)) + C。
- 指数函数积分:∫e^x dx = e^x + C,其中e是自然对数的底数。
- 三角函数积分:∫cos(x) dx = sin(x) + C,∫sin(x) dx = -cos(x) + C。
3.特殊函数和公式:-泰勒级数展开:函数f(x)在点a处的泰勒展开式为f(x)=f(a)+f'(a)(x-a)/1!+f''(a)(x-a)^2/2!+f'''(a)(x-a)^3/3!+...。
- 自然对数函数和指数函数的微分法则:d/dx(ln(x)) = 1/x,d/dx(e^x) = e^x。
常用微积分公式大全
常用微积分公式大全微积分是数学的一个重要分支,涵盖了导数、积分、极限等概念和公式。
在学习微积分的过程中,掌握一些常用的微积分公式对于解题和理解概念非常重要。
下面是一些常用的微积分公式的介绍。
1. 导数的基本公式:- 常数函数导数为0:(c)' = 0,其中 c 是常数。
- 幂函数导数公式:(x^n)' = n*x^(n-1),其中 n 是常数。
- 乘积法则:(f*g)' = f'*g + f*g',其中 f 和 g 是可导函数。
- 商法则:(f/g)' = (f'*g - f*g')/g^2,其中 f 和 g 是可导函数,并且 g 不等于0。
- 链式法则:(f(g(x)))' = f'(g(x))*g'(x),其中 f 是可导函数,g 是可导函数。
2. 基本积分公式:- 变上限定积分公式:∫(f(x)'dx) = f(x) + C,其中 C 是常数。
- 幂函数积分公式:∫(x^n dx) = (x^(n+1))/(n+1) + C,其中 n 不等于-1,C 是常数。
- 指数函数积分公式:∫(e^x dx) = e^x + C,其中 C 是常数。
- 三角函数积分公式:∫(sin(x) dx) = -cos(x) + C,∫(cos(x) dx) = sin(x) + C,∫(tan(x) dx) = -ln|cos(x)| + C,C 是常数。
- 分部积分法:∫(f(x)g(x) dx) = f(x)∫(g(x) dx) - ∫(f'(x)∫(g(x) dx) dx,其中 f 和 g 是可导函数。
3. 极限的基本公式:- 夹逼定理:如果对于 x -> a,有g(x) ≤ f(x) ≤ h(x),且 g(x) 和h(x) 的极限都等于 L,则 f(x) 的极限也等于 L。
- 幂函数极限公式:lim(x -> a) (x^n) = a^n,其中 n 是正整数。
微积分基本公式16个
微积分基本公式16个微积分是数学的一门重要分支,它主要研究函数的极限、导数、积分等概念和性质。
微积分的基本公式是我们学习和应用微积分的基础,下面将介绍微积分的16个基本公式。
1.1+1=2这是微积分的最基本的公式,表示两个数相加得到另一个数。
2.a*b=b*a这是乘法交换律,表示两个数相乘的结果与顺序无关。
3.a+(b+c)=(a+b)+c这是加法结合律,表示三个数相加的结果与加法的顺序无关。
4.a*(b+c)=a*b+a*c这是乘法分配律,表示一个数与两个数相加的结果等于这个数与每个数相加的结果之和。
5.a-b=-(b-a)这是减法的性质,表示两个数相减的结果与减法的顺序无关。
6.a/b=b/a这是除法的性质,表示两个数相除的结果与除法的顺序无关。
7. (a+b)^2=a^2+2ab+b^2这是二次方的展开公式,表示两个数的和的平方等于它们的平方和加上两倍的乘积。
8. (a-b)^2=a^2-2ab+b^2这是二次方差的公式,表示两个数的差的平方等于它们的平方差减去两倍的乘积。
9.(a+b)*(a-b)=a^2-b^2这是差的平方公式,表示两个数的和与差的乘积等于它们的平方差。
10. (a+b)^3=a^3+3a^2b+3ab^2+b^3这是立方和的展开公式,表示两个数的和的立方等于它们的立方和加上三倍的乘积加上三倍的乘积再加上立方。
11. (a-b)^3=a^3-3a^2b+3ab^2-b^3这是立方差的公式,表示两个数的差的立方等于它们的立方差减去三倍的乘积加上三倍的乘积再减去立方。
12. (a+b)*(a^2-ab+b^2)=a^3+b^3这是立方和的因式分解公式,表示两个数的和与和的平方差的乘积等于它们的立方和。
13. (a-b)*(a^2+ab+b^2)=a^3-b^3这是立方差的因式分解公式,表示两个数的差与差的平方和的乘积等于它们的立方差。
14. (a+b)^n=a^n+na^(n-1)b+(n(n-1)/2)a^(n-2)b^2+...+nb^(n-1)+b^n这是二项式定理,表示两个数的和的n次方等于它们的各种组合的乘积之和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微积分定理和公式 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】一、函数【定义】 设在某一变化过程中有两个变量x 和y ,若对非空集合D 中的每一点x ,都按照某一对应规则f ,有惟一确定的实数y 与之相对应,则称y 是x 的函数,记作 x 称为自变量,y 称为因变量,D 称为函数的定义域,y 的取值范围即集合{}D x x f y y ∈=),(|称为函数的值域.xoy 平面上点的集合{}D x x f y y x ∈=),(|),(称为函数)(x f y =的图形.定义域D (或记f D )与对应法则f 是确定函数的两个要素.因此称两个函数相同是指它们的定义域与对应法则都相同.(二)函数的几何特性 1.单调性(1)【定义】 设函数)(x f 在实数集D 上有定义,对于D 内任意两点21,x x ,当 1x <2x 时,若总有)(1x f ≤)(2x f 成立,则称D x f 在)(内单调递增(或单增);若总有 )(1x f <)(2x f 成立,则称)(x f 在D 内严格单增,严格单增也是单增.当)(x f 在D 内单调递增时,又称D x f 是)(内的单调递增函数.单调递增或单调递减函数统称为单调函数. 2.有界性【定义】 设函数内有定义在集合D x f )(,若存在实数M >0,使得对任意D x ∈,都有|)(|x f ≤M ,则称)(x f 在D 内有界,或称)(x f 为D 内的有界函数.【定义】 设函数内有定义在集合D x f )(,若对任意的实数M >0,总可以找到一D x ∈,使得|)(|x f >M ,则称)(x f 在D 内无界,或称)(x f 为D 内的无界函数.【定义】 设函数)(x f 在一个关于原点对称的集合内有定义,若对任意D x ∈,都有))()()(()(x f x f x f x f =--=-或,则称)(x f 为D 内的奇(偶)函数.奇函数的图形关于原点对称,当)(x f 为连续的函数时,)(x f =0,即)(x f 的图形过原点.偶函数的图形关于y 轴对称.关于奇偶函数有如下的运算规律: 设)()(21x f x f ±为奇函数,)(),(21y g x g 为偶函数,则)()(21x f x f ±为奇函数;)()(21x g x g ±为偶函数; )()(11x g x f ±非奇偶函数;)()(11x g x f ⋅为奇函数;)()(),()(2121x g x g x f x f ⋅⋅均为偶函数. 常数C 是偶函数,因此,奇函数加非零常数后不再是奇函数了.利用函数奇偶性可以简化定积分的计算.对研究函数的单调性、函数作图都有很大帮助.4.周期性【定义】 设函数内有定义在集合D d x f )(,如果存在非零常数T,使得对任意D x ∈,恒有)()(x f T x f =+成立,则称)(x f 为周期函数.满足上式的最小正数T,称为)(x f 的基本周期,简称周期.我们熟知的三角函数为周期函数(考纲不要求),除此以外知之甚少.][x x y -=是以1为周期的周期函数.][x y =与][x x y -=的图形分别如图1-1(a)和图1-1(b)所示.(三)初等函数1.基本初等函数(1)常数函数 C y =,定义域为(-∞,+∞),图形为平行于x 轴的直线.在y 轴上的截距为c .(2)幂函数 αx y =,其定义域随着α的不同而变化.但不论α取何值,总在(1,+∞)内有定义,且图形过点(1,1).当α>0时,函数图形过原点(图1-2)(a ) (b )图1-2(3)指数函数 )1,0(≠=ααα x y ,其定义域为(-∞,+∞).当0<α<1时,函数严格单调递减.当α>1时,函数严格单调递增.子数图形过点(0,1).微积分中经常用到以e 为底的指数函数,即x e y =(图1-3)(4)对数函数 )1,0(log ≠=ααα x y ,其定义域为(1,+∞),它与x y α=互为反函数.微积分中常用到以e 为底的对数,记作nx y 1=,称为自然对数.对数函数的图形过点(1,0)(图1-4)(图1-3) (图1-4) 另有两类基本初等函数:三角函数与反三角函数,不在考纲之内.对基本初等函数的特性和图形要熟练地掌握,这充分条件判断、导数和定积分应用中都很重要.例如,设f b a x b a x f ),,(,),()(∈对任意区间内二阶可导在″)(x <0.则 (1)f ′)(x 在),(b a 内严格单调减少;(2))(x f 在),1(b 上为凸弧,均不充分. 此题可以用举例的方法来说明(1)、(2)均不充分.由初等函数的图形可知,4x y -=为凸弧.y ′=34x -在(-∞,∞+)上严格单调递减,但y ″=-122x ≤0,因此(1),(2)均不充分,故选E.此题若把题干改成f ″)(x ≤0,则(1),(2)均充分,差别就在等于零与不等于零.可见用初等函数图形来判断非常便捷.2.反函数【定义】 设函数)(x f y =的定义域为D ,值域为R ,如果对于每一个R y ∈,都有惟一确定的D x ∈与之对应,且满足)(x f y =x 是一个定义在R 以y 为自变量的函数,记作并称其为)(x f y =反函数.习惯上用x 作自变量,y 作因变量,因此)(x f y =反函数常记为R x x f y ∈=-),(1. 函数)(x f y =与反函数)(1x f y -=的图形关于直线x y =对称.严格单调函数必有反函数,且函数与其反函数有相同的单调性.x y a y a x log ==与互为反函.∈=x x y ,2[0,+∞]的反函数为x y =,而∈=x x y ,2(-∞,0)的反函数为x y -=(图1-2(b )).3.复合函数【定义】 已知函数f f R y D u u f y ∈∈=,),(.又D x x u ∈=),(ϕϕ,u ≤R ϕ,若ff R D 非空,则称函数为函数)()(x u u f y ϕ==与的复合函数.其中y 称为因变量,x 称为自变量,u 称为中间变量.4.初等函数由基本初等函数经过有限次四则运算和有限次复合运算而得到的一切函数统称为初等函数,初等函数在其定义域内有统一的表达式.(四)隐函数若函数的因变量y 明显地表示成)(x f y =的形式,则称其为显然函数.1),13(1,222-=-==x y x n y x y 等.设自变量x 与因变量y 之间的对应法则用一个方程式0),(=y x F 表示,如果存在函数)(x f y =(不论这个函数是否能表示成显函数),将其代入所设方程,使方程变为恒等式:其中f D 为非空实数集.则称函数)(x f y =由方程0),(=y x F 所确定的一个隐函数.如方程1=+y x 可以确定一个定义在[0,1]上的隐函数.此隐函数也可以表示成显函数的形式,即但并不是所有隐函数都可以用x 的显函数形式来表示,如0=++y x e xy 因为y 我法用初等函数表达,故它不是初等函数.另外还需注意,并不是任何一个方程都能确定隐函数,如0122=++y x .(五)分段函数有些函数,对于其定义域内的自变量x 的不同值,不能用一个统一的解析式表示,而是要用两个或两个以上的式子表示,这类函数称为分段函数,如 都是定义在(-∞,+∞)上的分段函数.分段函数不是初等函数,它不符合初等函数的定义.二、极限(不在考试大纲内,只需了解即可)极限是微积分的基础. (一)数列极限按照一定顺序排成一串的数叫做数列,如n n a a a a ⋅ 21,称为通项. 1.极限定义【定义】 设数列{}n a ,当项数n 无限增大时,若通项n a 无限接近某个常数A ,则称数列{}n a 收敛于A ,或称A 为数列{}n a 的极限,记作否则称数列{}n a 发散或n n a ∞→lim 不存在.2.数列极限性质(1)四则极限性质 设b y a x n n n n ==∞→∞→lim ,lim ,则(2)a x a x k n n n n =⇔=+∞→∞→lim lim (k 为任意正整数).(3)若a x n n =∞→lim ,则数列{}n x 是有界数列.(4)夹逼定理 设存在正整数0N ,使得0N n ≥时,数列{}{}{}n n n z y x ,,满足不等式n n n y x z ≤≤.若a z y n n n n ==∞→∞→lim lim ,则a x n n =∞→lim . 利用此定理可以证明重要极限e n nn =⎪⎭⎫⎝⎛+∞→11lim (=,是一个无理数). (5)单调有界数列必有极限 设数列{}n x 有界,且存在正整数0N ,使得对任意0N n ≥都有n n x x ≤+1(或n n x x ≥+1),则数列{}n x 的极限一定存在.利用此定理可以证明重要极限e n nn =⎪⎭⎫⎝⎛+∞→11lim (=,是一个无理数). (二)函数的极限 1.∞→x 时的极限【定义】 设函数)(x f 在)0(||>≥a ax 上有定义,当∞→x 时,函数)(x f 无限接近常数A ,则称)(x f 当∞→x 时以A 为极限,记作当+∞→x 或-∞→x 时的极限当x 沿数轴正(负)方向趋于无穷大,简记+∞→x (-∞→x )时,)(x f 无限接近常数A ,则称)(x f 当+∞→x (-∞→x )时以A 为极限,记作3.0x x →时的极限【定义】 设函数)(x f 在0x 附近(可以不包括0x 点)有定义,当x 无限接近)(00x x x ≠时,函数)(x f 无限接近常数A ,则称当0x x →时,)(x f 以A 为极限,记作4.左、右极限若当x 从0x 的左侧(0x x <)趋于0x 时,)(x f 无限接近一个常数A ,则称A 为0x x →时)(x f 的左极限,记作.)(lim 0A x f x x =-→ 或 A x f =-)0(0若当x 从0x 的左侧(0x x >)趋于0x 时,)(x f 无限接近一个常数A ,则称A 为0x x →时)(x f 的右极限,记作.)(lim 0A x f x x =+→ 或 A x f =+)0(0(三)函数极限的性质 1.惟一性若,B x f A x f x x x x ==→→)(lim ,)(lim 00则A=B .2.局部有界性若A x f x x =→)(lim 0.则在0x 的某邻域内(点0x 可以除外),)(x f 是有界的. 3.局部保号性若A x f x x =→)(lim 0.且A >0(或A <0=,则存在0x 的某邻域(点0x 可以除外),在该邻域内有)(x f >0(或)(x f <0=。