高一数学必修1《基本初等函数》测试题
(完整版)必修一基本初等函数单元练习题(含答案),推荐文档
D. ∅
建议收藏下载本文,以便随时学习! 2、已知函数 f(x)的定义域为[-1,5],在同一坐标系下,函数 y=f(x)的图像与直线 x=1 的交点个
9.若函数 f(x)=
是奇函数,则 m 的值是( )
D.(-1,-∞)
数为( ).
A.0 个 B.1 个 C.2 个 D.0 个或 1 个均有可能
3 设函数
1
1
1
B.(2,1)∪(1,2) C.(2,1)∪(2,+∞) D.(0,2)∪(2,+∞)
A.(1),(4)
B. (2),(3)
C. (1)
D. (3)
二、填空题(本大题共 4 小题,每小题 4 分,共 16 分)
1 5.函数 f(x)=lnx-x的零点所在的区间是
A.(0,1)
B.(1,e) C.(e,3)
(2)当 A B B 时,有 A B ,所以 a 3 或 a 3 0 ,
解得 a 3 或 a 3
…………10 分
答:经过 8 秒后,汽车和自行车之间的距离最短,最短距离是 20 5 米. …12 分
21.解:(1)由题可知:
f f
(0) 0 (1) 2 25
a b
1 0
(2)函数 f (x) 在 (1,1) 上单调递增,
1 D.[7,1)
11.函数
f
(x)
2x x 2
x 2 ,0 x 3 6x,2 x 0
的值域是(
)
A. R
B. [1,)
C. [8,1]
D. [9,1]
1
1
12.定义在 R 的偶函数 f(x)在[0,+∞)上单调递减,且 f(2)=0,则满足 f(log4x)<0 的 x 的集合为( )
高一数学必修一基本初等函数高考真题(含详细答案)
基本初等函数11.(2012年高考(安徽文))23log 9log 4⨯=( )A .14B .12C .2D .4 22.(2012年高考(广东理))(函数)下列函数中,在区间()0,+∞上为增函数的是( )A .()ln 2y x =+ B.y =C .12xy ⎛⎫= ⎪⎝⎭D .1y x x=+33.(2012年高考(重庆))设函数2()43,()32,x f x x x g x =-+=-集合{|(())0},M x R f g x =∈>{|()2},N x R g x =∈<则MN 为 ( )A .(1,)+∞B .(0,1)C .(-1,1)D .(,1)-∞44.(2012年高考(天津))下列函数中,既是偶函数,又在区间(1,2)内是增函数的为( )A .cos 2y x =B .2log ||y x =C .2x xe e y --=D .31y x =+55.(2012年高考(四川))函数(0,1)x y a a a a =->≠的图象可能是66.(2012年高考(山东))函数1()ln(1)f x x =+( ) A .[2,0)(0,2]- B .(1,0)(0,2]- C .[2,2]-D .(1,2]-77.(2012年高考(广东))(函数)下列函数为偶函数的是( )A .sin y x =B .3y x =C .x y e = D.y =88.(2012年高考(安徽文))设集合{3213}A x x =-≤-≤,集合B 是函数lg(1)y x =-的定义域;则A B =( )A .(1,2)B .[1,2]C .[,)12D .(,]1299.(2012年高考(四川理))函数1(0,1)x y a a a a=->≠的图象可能是1010.(2012年高考(江西理))下列函数中,与函数定义域相同的函数为 ( )A .y=1sin xB .y=1nxxC .y=xe xD .sin xx二、填空题1111.(2012年高考(上海))方程03241=--+x x的解是_________.1212.(2012年高考(陕西))设函数发0,()1(),0,2x x f x x ìï³ïï=íï<ïïïî,则((4))f f -=_____ 1313.(2012年高考(北京))已知()(2)(3)f x m x m x m =-++,()22x g x =-.若,()0x R f x ∀∈<或()0g x <,则m 的取值范围是________.1414.(2012年高考(北京))已知函数()lg f x x =,若()1f ab =,则22()()f a f b +=_________.1515.(2012年高考(上海春))函数224log ([2,4])log y x x x=+∈的最大值是______.1616.(2012年高考(江苏))函数x x f 6log 21)(-=的定义域为____.三、解答题1717.(2012年高考(上海文理))已知函数)1lg()(+=x x f .(1)若1)()21(0<--<x f x f ,求x 的取值范围;(2)若)(x g 是以2为周期的偶函数,且当10≤≤x 时,有)()(x f x g =,求函数)(x g y =])2,1[(∈x 的反函数.基本初等函数参考答案一、选择题 1)【解析】选D23lg 9lg 42lg 32lg 2log 9log 44lg 2lg 3lg 2lg 3⨯=⨯=⨯= 2)(2012年高考(广东理))(函数)下列函数中,在区间()0,+∞上为增函数的是( )A .()ln 2y x =+ B .y =C .12xy ⎛⎫= ⎪⎝⎭D .1y x x=+解析:A.()ln 2y x =+在()2,-+∞上是增函数.3).(2012年高考(重庆文))设函数2()43,()32,x f x x x g x =-+=-集合{|(())0},M x R f g x =∈>{|()2},N x R g x =∈<则MN 为 ( )A .(1,)+∞B .(0,1)C .(-1,1)D .(,1)-∞【答案】:D 【解析】:由(())0f g x >得2()4()30g x g x -+>则()1g x <或()3g x >即321x -<或323x ->所以1x <或3log 5x>;由()2g x <得322x -<即34x <所以3log 4x <故(,1)MN =-∞4)(2012年高考(天津文))下列函数中,既是偶函数,又在区间(1,2)内是增函数的为( )A .cos 2y x =B .2log ||y x =C .2x xe e y --=D .31y x =+【解析】函数xy 2log =为偶函数,且当0>x时,函数x x y 22log log ==为增函数,所以在)2,1(上也为增函数,选B.5)(2012年高考(四川文))函数(0,1)x y a a a a =->≠的图象可能是[答案]C[解析]采用特殊值验证法.函数(0,1)x y a a a a =->≠恒过(1,0),只有C 选项符合.6)(2012年高考(山东文))函数1()ln(1)f x x =++( ) A .[2,0)(0,2]- B .(1,0)(0,2]-C .[2,2]-D .(1,2]-解析:要使函数)(x f 有意义只需⎩⎨⎧≥-≠+040)1ln(2x x ,即⎩⎨⎧≤≤-≠->220,1x x x ,解得21≤<-x ,且0≠x .答案应选B.7)(2012年高考(广东文))(函数)下列函数为偶函数的是( )A .sin y x =B .3y x =C .x y e =D .y =:D.()()f x f x -===.8)(2012年高考(安徽文))设集合{3213}A x x =-≤-≤,集合B 是函数lg(1)y x =-的定义域;则A B =( )A .(1,2)B .[1,2]C .[,)12D .(,]12【解析】选D {3213}[1,2]A x x =-≤-≤=-,(1,)(1,2]B A B =+∞⇒=9)(2012年高考(四川理))函数1(0,1)x y a a a a=->≠的图象可能是[答案]C[解析]采用排除法.函数(0,1)x y a a a a =->≠恒过(1,0),选项只有C 符合,故选C.10)(2012年高考(江西理))下列函数中,与函数定义域相同的函数为 ( )A .y=1sin xB .y=1nxxC .y=xe xD .sin xxD【解析】函数y =的定义域为()(),00,-∞+∞,而答案中只有sin xy x=的定义域为()(),00,-∞+∞.故选D.二、填空题11)(2012年高考(上海文))方程03241=--+x x的解是_________.[解析]0322)2(2=-⋅-x x ,0)32)(12(=-+x x ,32=x ,3log 2=x .12)(2012年高考(陕西文))设函数发0,()1(),0,2x x f x x ³=íï<ïïïî,则((4))f f -=_____解析:41(4)()162f --==,((4))(16)4f f f -==13)(2012年高考(北京文))已知()(2)(3)f x m x m x m =-++,()22x g x =-.若,()0x R f x ∀∈<或()0g x <,则m 的取值范围是________.【解析】首先看()22x g x =-没有参数,从()22x g x =-入手,显然1x <时,()0g x <,1x ≥时,()0g x ≥,而对,()0x R f x ∀∈<或()0g x <成立即可,故只要1x ∀≥时,()0f x <(*)恒成立即可.当0m =时,()0f x =,不符合(*),所以舍去;当0m >时,由()(2)(3)0f x m x m x m =-++<得32m x m --<<,并不对1x ∀≥成立,舍去;当0m <时,由()(2)(3)0f x m x m x m =-++<,注意20,1m x ->≥,故20x m ->,所以30x m ++>,即(3)m x >-+,又1x ≥,故(3)(,4]x -+∈-∞-,所以4m >-,又0m <,故(4,0)m ∈-,综上,m 的取值范围是(4,0)-.14)(2012年高考(北京文))已知函数()lg f x x =,若()1f ab =,则22()()f a f b +=_________.【解析】()lg ,()1f x x f ab ==,lg()1ab ∴=2222()()lg lg 2lg()2f a f b a b ab ∴+=+==15)(2012年高考(上海春))函数224log ([2,4])log y x x x=+∈的最大值是___5___.16)(2012年高考(江苏))函数x x f 6log 21)(-=的定义域为____.1266000112log 0log 620<x >x >x >x x x x -≥≤≤⎧⎧⎧⎪⎪⇒⇒⎨⎨⎨⎩⎪⎪⎩⎩三、解答题18.(2012年高考(上海文理))已知函数)1lg()(+=x x f .(1)若1)()21(0<--<x f x f ,求x 的取值范围;(2)若)(x g 是以2为周期的偶函数,且当10≤≤x 时,有)()(x f x g =,求函数)(x g y =])2,1[(∈x 的反函数.[解](1)由⎩⎨⎧>+>-01022x x ,得11<<-x .由1lg )1lg()22lg(0122<=+--<+-x x x x 得101122<<+-x x 因为01>+x ,所以1010221+<-<+x x x ,3132<<-x .由⎩⎨⎧<<-<<-313211x x 得3132<<-x (2)当x ?[1,2]时,2-x ?[0,1],因此)3lg()2()2()2()(x x f x g x g x g y -=-=-=-==由单调性可得]2lg ,0[∈y .因为y x 103-=,所以所求反函数是x y 103-=,]2lg ,0[∈x_s 12__。
高一数学必修一第二章《基本初等函数Ⅰ》测试 附有答案!
高一第二章《基本初等函数Ⅰ》测试一、选择题: 1.若32a =,则33log 82log 6-用a的代数式可表示为( )()A a -2 ()B 3a -(1+a )2 ()C 5a -2 ()D 3a -a 22.下列函数中,值域为(0,)+∞的是( )()A 125xy -= ()B 11()3xy -= ()C y =()D y = 3. 设1a >,实数,x y 满足()xf x a =,则函数()f x 的图象形状大致是(4.世界人口已超过56亿,若按千分之一的年增长率计算,则两年增长的人口就可相当于一个()()A 新加坡(270万) ()B 香港(560万) ()C 瑞士(700万)()D 上海(1200万)5.已知函数l o g (2)a y a x =-在[0,1]上是x 的减函数,则a 的取值范围是 ( )()A (0,1) ()B (0,2) ()C (1,2) ()D [2,+∞)6.函数lg (1)(01)()1lg() (10)1x x f x x x-≤<⎧⎪=⎨-<<⎪+⎩,则它是( )()A 偶函数且有反函数 ()B 奇函数且有反函数 ()C 非奇非偶函数且有反函数 ()D 无反函数 二、填空题:7.函数()1log 15.0-=x y 的定义域是 .8.化简⨯53xx 35xx ×35xx = .9.如图所示,曲线是幂函数y x α=在第一象限内的图象,已知α分别取11,1,,22-四个值,则相应图象依次为 .10.定义在(0,)+∞上的函数对任意的,(0,)x y ∈+∞,都有()()()f x f y f xy +=,且当01x << 上时,有()0f x >,则()f x 在(0,)+∞上的单调性是 . 三、解答题:(.解答应写出文字说明,证明过程或演算步骤.) 11.(Ⅰ)求x x x x f -+--=4lg 32)(的定义域; (Ⅱ)求212)(x x g -=的值域.12.若()1log 3,()2log 2x x f x g x =+=,试比较()f x 与()g x 的大小.13.已知函数2()(0,0)1bxf x b a ax =≠>+.(1)判断()f x 的奇偶性; (2)若3211(1),log (4)log 422f a b =-=,求a ,b 的值.14.已知函数()x f 满足()()()1,01log 12≠>--=-a a xx a a x f a , (Ⅰ)求()x f 的解析式并判断其单调性;(Ⅱ)对定义在()1,1-上的函数()x f ,若()()0112<-+-m f m f ,求m 的取值范围;(Ⅲ)当()2,∞-∈x 时,关于x 的不等式()04<-x f 恒成立,求a 的取值范围.参考答案(仅供参考):ABADCB , 7(1,2), 8、1, 9、C4,C2,C3,C1 10单调递减, 11.(Ⅰ){243}x x x ≤<≠且 (Ⅱ)(0,2] 12.f (x)-g(x)=log x 3x-log x 4=log x 43x.当0<x<1时,f(x)>g(x);当x=34时,f(x)=g(x);当1<x<34时,f(x)<g(x);当x>34时,f(x)>g(x). 13解:(1)()f x 定义域为R ,2()()1bxf x f x ax --==-+,故()f x 是奇函数. (2)由1(1)12b f a ==+,则210a b -+=.又log 3(4a -b )=1,即4a -b =3. 由{21043a b a b -+=-=得a =1,b =1.14. (Ⅰ) 21()()1xxa f x a a a =-- …………………2′证明在(1,1)-上单调递增 ……………………………………4′(Ⅱ)判断函数()f x为奇函数,22111111111m m m m m -<-<⎧⎪-<-<⇒<<⎨⎪-<-⎩…4′(Ⅲ)[2(1,2 ………………4′。
(word完整版)高一数学基本初等函数测试题
8、若集合R} , M={y|y=x2,x R},则下列结论中正确的是…高一数学《基本初等函数》测试题一、选择题:本大题共 15小题,共50分.在每小题给出的四个选项中,只有一项是符合 题目要求的.1下列函数是幕函数的是4、若 100a 5, 10b 2,则 2a b =C 、25、函数y= log 1(2x 1)的定义域为1A.( 3 , +x ) B . [ 1, +x )2A 、 y 2xB 、y x 3xC 、y 3x1x 212、 计算-log 312 log 3 2 •…2A. '、3B. 2 3C.— 2 3、 设集合A {x|x 1 0},BD.3{x|log 2 x 0|},则A B等于A . {x| x 1}B . {x| x 0}C . {x|x 1}D . {x | x()1C.( 1,1]D. ( — x, 1)6、已知f(x)=|lgx|,则匕)、f (3)、 f(2)的大小关系是……A. f(2)f(3)f(;)B. f(4)f(1)f(2)C. f (2)f(4)f©D.f(1)f(2)7、方程:lgx lg(x 3) 1的解为 x =(A 5 或-2、无解CB-2D、5A 、a 5或 a 2B 、2 a 3或3 a 5C 、2a5D 、3a4xxe e11、 已知f (x)- ............................................................ ——,则下列正确的是 ()2A •奇函数,在R 上为增函数B •偶函数,在R 上为增函数C .奇函数,在R 上为减函数D •偶函数,在R 上为减函数1112、 ................................................................ 已知logalog b 0,则a,b 的关系是 .............................................. () 33A 1<b<aB 1<a<bC 0<a<b<1D 0<b<a<1 13、世界人口已超过56亿,若按千分之一的年增长率计算,则两年增长的人口就可相当于一个 ............................................... ()A.M np={2 , 4}B. M HP ={4 , 16}C.M=PD.P M9、已知 f (X) lOg a X , g(x) lOg bh(x) log d x 的图象如图所示则A. c d aC. d c ab B.cd b a b D. d c b a 10. 在 b log (a 2) (5a)中,实数a 的取值范围是A.新加坡(270万)B •香港(560万)C •瑞士( 700万)D.上海(1200万)14若函数f (x) log a x(0 a 1)在区间a,2a上的最大值是最小值的3倍,则a的值为C、(a 1)x2在同坐标系中的图象只能是图中的二、填空题.(每小题3分)16•函数y (2 a)x在定义域内是减函数,则a的取值范围是__________________ 。
2023年新版高一数学必修一基本初等函数高考真题含详细答案
基本初等函数1.(高考(安徽文))23log 9log 4⨯=( )A .14 B .12C .2D .4 2.(高考(广东理))(函数)下列函数中,在区间()0,+∞上为增函数旳是( )A .()ln 2y x =+B .1y x =-+C .12xy ⎛⎫= ⎪⎝⎭D .1y x x=+3.(高考(重庆))设函数2()43,()32,xf x x xg x =-+=-集合{|(())0},M x R f g x =∈>{|()2},N x R g x =∈<则M N 为 ( )A .(1,)+∞ B .(0,1) C .(-1,1) D .(,1)-∞4.(高考(天津))下列函数中,既是偶函数,又在区间(1,2)内是增函数旳为( )A .cos 2y x =B .2log ||y x =C .2x x e e y --= D .31y x =+5.(高考(四川))函数(0,1)xy a a a a =->≠旳图象也许是6.(高考(山东))函数21()4ln(1)f x x x =+-+( ) A .[2,0)(0,2]- B .(1,0)(0,2]- C .[2,2]-D .(1,2]-7.(高考(广东))(函数)下列函数为偶函数旳是( )A .sin y x =B .3y x =C .x y e =D .21y x =+8.(高考(安徽文))设集合{3213}A x x =-≤-≤,集合B 是函数lg(1)y x =-旳定义域;则AB =( )A .(1,2)B .[1,2]C .[,)12D .(,]129.(高考(四川理))函数1(0,1)x y a a a a=->≠旳图象也许是10.(高考(江西理))下列函数中,与函数3x( )A .y=1sin xB .y=1nxxC .y=xe xD .sin xx二、填空题11.(高考(上海))方程03241=--+x x 旳解是_________.12.(高考(陕西))设函数发,0,()1(),0,2xx x f x x ,则((4))f f =_____13.(高考(北京))已知()(2)(3)f x m x m x m =-++,()22xg x =-.若,()0x R f x ∀∈<或()0g x <,则m旳取值范围是________.14.(高考(北京))已知函数()lg f x x =,若()1f ab =,则22()()f a f b +=_________.15.(高考(上海春))函数224log ([2,4])log y x x x=+∈旳最大值是______.16.(高考(江苏))函数x x f 6log 21)(-=旳定义域为____.三、解答题17.(高考(上海文理))已知函数)1lg()(+=x x f .(1)若1)()21(0<--<x f x f ,求x 旳取值范围;(2)若)(x g 是以2为周期旳偶函数,且当10≤≤x 时,有)()(x f x g =,求函数)(x g y =])2,1[(∈x 旳反函数.基本初等函数参照答案一、选择题1.【解析】选D 23lg 9lg 42lg 32lg 2log 9log 44lg 2lg 3lg 2lg 3⨯=⨯=⨯= 2.(高考(广东理))(函数)下列函数中,在区间()0,+∞上为增函数旳是( )A .()ln 2y x =+B .1y x =-+C .12xy ⎛⎫= ⎪⎝⎭D .1y x x=+解析:A.()ln 2y x =+在()2,-+∞上是增函数.3..(高考(重庆文))设函数2()43,()32,xf x x xg x =-+=-集合{|(())0},M x R f g x =∈>{|()2},N x R g x =∈<则M N 为 ( )A .(1,)+∞ B .(0,1)C .(-1,1)D .(,1)-∞【答案】:D 【解析】:由(())0f g x >得2()4()30g x g x -+>则()1g x <或()3g x >即321x -<或323x ->因此1x <或3log 5x >;由()2g x <得322x -<即34x <因此3log 4x <故(,1)MN =-∞4.(高考(天津文))下列函数中,既是偶函数,又在区间(1,2)内是增函数旳为( )A .cos 2y x =B .2log ||y x =C .2x xe e y --=D .31y x =+【解析】函数x y 2log =为偶函数,且当0>x 时,函数x x y 22log log ==为增函数,因此在)2,1(上也为增函数,选B.5.(高考(四川文))函数(0,1)xy a a a a =->≠旳图象也许是[答案]C [解析]采用特殊值验证法. 函数(0,1)xy a a a a =->≠恒过(1,0),只有C 选项符合. 6. (高考(山东文))函数21()4ln(1)f x x x =-+( ) A .[2,0)(0,2]- B .(1,0)(0,2]- C .[2,2]-D .(1,2]-解析:要使函数)(x f 故意义只需⎩⎨⎧≥-≠+040)1ln(2x x ,即⎩⎨⎧≤≤-≠->220,1x x x ,解得21≤<-x ,且0≠x .答案应选B. 7.(高考(广东文))(函数)下列函数为偶函数旳是( )A .sin y x =B .3y x =C .x y e =D .2ln 1y x =+解析:D.()()()22ln 1ln 1f x x x f x -=-+=+=.8.(高考(安徽文))设集合{3213}A x x =-≤-≤,集合B 是函数lg(1)y x =-旳定义域;则AB =( )A.(1,2)B .[1,2]C .[,)12D .(,]12【解析】选D {3213}[1,2]A x x =-≤-≤=-,(1,)(1,2]B A B =+∞⇒=9.(高考(四川理))函数1(0,1)x y a a a a=->≠旳图象也许是[答案]C [解析]采用排除法. 函数(0,1)xy a a a a =->≠恒过(1,0),选项只有C 符合,故选C. 10.(高考(江西理))下列函数中,与函数3x定义域相似旳函数为 ( )A .y=1sin xB .y=1nxxC .y=xe xD .sin xxD 【解析】 函数3y x=旳定义域为()(),00,-∞+∞,而答案中只有sin xy x=旳定义域为()(),00,-∞+∞.故选D.二、填空题11.(高考(上海文))方程03241=--+x x 旳解是_________.[解析] 0322)2(2=-⋅-xx ,0)32)(12(=-+xx,32=x ,3log 2=x . 12.(高考(陕西文))设函数发,0,()1(),0,2x x x f x x ,则((4))f f =_____解析:41(4)()162f ,((4))(16)164f f f13.(高考(北京文))已知()(2)(3)f x m x m x m =-++,()22xg x =-.若,()0x R f x ∀∈<或()0g x <,则m 旳取值范围是________. 【解析】首先看()22xg x =-没有参数,从()22xg x =-入手,显然1x <时,()0g x <,1x ≥时,()0g x ≥,而对,()0x R f x ∀∈<或()0g x <成立即可,故只要1x ∀≥时,()0f x <(*)恒成立即可.当0m =时,()0f x =,不符合(*),因此舍去;当0m >时,由()(2)(3)0f x m x m x m =-++<得32m x m --<<,并不对1x ∀≥成立,舍去;当0m <时,由()(2)(3)0f x m x m x m =-++<,注意20,1m x ->≥,故20x m ->,因此30x m ++>,即(3)m x >-+,又1x ≥,故(3)(,4]x -+∈-∞-,因此4m >-,又0m <,故(4,0)m ∈-,综上,m 旳取值范围是(4,0)-.14.(高考(北京文))已知函数()lg f x x =,若()1f ab =,则22()()f a f b +=_________.【解析】()lg ,()1f x x f ab ==,lg()1ab ∴= 2222()()lg lg 2lg()2f a f b a b ab ∴+=+==15.(高考(上海春))函数224log ([2,4])log y x x x=+∈旳最大值是___5___.16.(高考(江苏))函数xx f 6log 21)(-=旳定义域为____.1266000112log 0log 620<x >x >x >x x x x -≥≤≤⎧⎧⎧⎪⎪⇒⇒⎨⎨⎨⎩⎪⎪⎩⎩三、解答题18.(高考(上海文理))已知函数)1lg()(+=x x f .(1)若1)()21(0<--<x f x f ,求x 旳取值范围;(2)若)(x g 是以2为周期旳偶函数,且当10≤≤x 时,有)()(x f x g =,求函数)(x g y =])2,1[(∈x 旳反函数.[解](1)由⎩⎨⎧>+>-01022x x ,得11<<-x . 由1lg)1lg()22lg(0122<=+--<+-x x x x 得101122<<+-x x 由于01>+x ,因此1010221+<-<+x x x ,3132<<-x . 由⎩⎨⎧<<-<<-313211x x 得3132<<-x (2)当x ∈[1,2]时,2-x ∈[0,1],因此)3lg()2()2()2()(x x f x g x g x g y -=-=-=-== 由单调性可得]2lg ,0[∈y . 由于y x 103-=,因此所求反函数是xy 103-=,]2lg ,0[∈x。
高一数学基本初等函数精选测试题
基本初等函数练习卷一、选择题(本大题共12小题,每小题5分,共60分) 1、函数1213log (1)(1)y x x -=++-的定义域是()A .(-1,0)B .(-1,1)C .(0,1)D .(0,1]2、下列函数在(0,+∞)上是增函数并且是定义域上的偶函数的是( )A .23y x = B .12xy ⎛⎫= ⎪⎝⎭C .y =ln xD .y =x 2+2x +33、已知x x f 26log )(=,则=)8(f ( )A.34 B. 8 C. 18 D.21 4、已知函数e 1,1,()ln ,1,x x f x x x ⎧-≤=⎨>⎩那么f (ln 2)的值是( )A .0B .1C .ln(ln 2)D .25、函数x y a =与log (0,1)a y x a a =->≠且在同一坐标系中的图象可能是( )A B C D6、设a =log 0.50.6,b =log 1.10.6,c =1.10.6,则a ,b ,c 的大小关系是( )A .a <b <cB .b <c <aC .b <a <cD .c <a <b 7、函数(为自然对数的底数)对任意实数、,都有( )A. B. C. D. 8、已知幂函数()f x 的图象经过点(4,2), 则下列命题正确的是( )A. ()f x 是偶函数B. ()f x 是单调递增函数C. ()fx 的值域为R D. ()f x 在定义域内有最大值9、若y=log a (2-ax)在[0,1]上是减函数,则a 的取值范围为( ) (A)(0,1) ( B)(1,2) (C)(0,2) (D)(1,+∞)10、已知函数2()1,()43x f x e g x x x =-=-+-,若有()()f a g b =,则b 取值范围( )()()()f x y f x f y =+()()()f x y f xf y =()()()fx y fx fy +=+()()()f x y f x f y +=y x e ()xf x e=yxyxyxy xA. 22,22⎡⎤-+⎣⎦B. (22,22)-+C. []1,3D. ()1,311、函数y =e|-ln x |-|x -1|的图象大致是( )12、给出幂函数①f(x)=x ;②f(x)=x 2;③f(x)=x 3;④f(x)=x ;⑤f(x)=1x. 其中满足条件f 12()2x x +>12()()2f x f x + (x 1>x 2>0)的函数的个数是 ( ) A .1个 B .2个 C .3个 D .4个 二、填空题(本大题共4小题,每小题4分,共16分)13、当a >0且a ≠1时,函数f (x)=a x -2-3必过定点 . 14、函数652-+-=x x y 的单调增区间是15、已知函数2()f x x bx c =++,对任意x R ∈都有(1)()f x f x +=-,则(2)f -、 (0)f 、(2)f 的大小顺序是 .16.下列说法中:① 若2()(2)2f x ax a b x =+++(其中[21,4]x a a ∈-+)是偶函数,则实数2b =; ② 20132013)(22-+-=x x x f 既是奇函数又是偶函数;③ 函数()()43ln 2--=x x x f 的减区间是⎪⎭⎫ ⎝⎛+∞,23;④ 已知()f x 是定义在R 上的不恒为零的函数,且对任意的,x y R ∈都满足()()()f x y x f y y f x ⋅=⋅+⋅,则()f x 是奇函数。
(完整版)基本初等函数测试题及答案
基本初等函数测试题一、选择题 (本大题共 12 个小题,每题 5 分,共 60 分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的)1.有以下各式:① na n = a ; ②若 a ∈ R ,则 (a 2- a + 1)0= 1;③ 3 x 44y ; ④6- 2 2= 3- 2.y3x3此中正确的个数是 ()A . 0B . 1C .2D .3|x|的图象是 ()2.函数 y = a (a>1)3.以下函数在 (0,+∞ )上是增函数的是 ()-xB . y =- 2x1A . y = 3C . y = logxD . y = x24.三个数 log 21, 20.1,2-1 的大小关系是 ()51-1--11 -A . log 25<2<2 1 B . log 25<2 1<20.1 C . 2<2 1<log 25 D . 2<log 25<215.已知会合 A = { y|y = 2x , x<0} , B = { y|y =log 2x} ,则 A ∩ B = ()A . { y|y>0}B . { y|y>1}C . { y|0<y<1}D .6.设 P 和 Q 是两个会合,定义会合 P -Q = { x|x ∈ P 且 x?Q} ,假如 P ={ x|log x < 1} ,Q2= { x|1<x<3} ,那么 P -Q 等于 ( )A . { x|0< x < 1}B . { x|0< x ≤ 1}C . { x|1≤ x <2}D . { x|2≤ x < 3}17.已知 0<a<1, x = log a 2+ log a 3, y =2log a 5,z =log a 21- log a 3,则 ( )A . x>y>zB . x>y>xC . y>x>zD . z>x>y8.函数 y = 2x - x 2 的图象大概是 ()9.已知四个函数① y = f 1(x);② y = f 2 (x);③ y =f 3(x);④ y = f 4( x)的图象以以下图:- 1 -则以下不等式中可能建立的是 ()A . f (x + x )= f (x )+ f (x )B . f (x + x )=f (x )+ f(x )112111 22122122C . f 3(x 1+ x 2) =f 3(x 1)+ f 3(x 2 )D . f 4(x 1+ x 2)=f 4(x 1)+ f 4(x 2)f ( x)12-1, f 3 2,则 f 1 2 310.设函数x 2(x)= x(2010))) 等于 ()1, f (x)= x ( f (fB . 2010211A . 2010 C.2010 D. 201211.函数 f(x)=3x 2 + lg(3 x + 1)的定义域是 ( )1-xA. -∞,- 1B. - 1, 133 3C. -1, 1D. - 1,+∞332e x -1, x<2,12. (2010 石·家庄期末测试)设 f(x)=则 f[ f(2)] 的值为 ()log 3 x 2- 1 , x ≥ 2.A . 0B . 1C . 2D . 3二、填空题 (本大题共 4 小题,每题 5 分,共 20 分.把答案填在题中横线上 )13. 给出以下四个命题:(1)奇函数的图象必定经过原点;(2)偶函数的图象必定经过原点;1(3)函数 y = lne x 是奇函数; (4)函数 yx 3 的图象对于原点成中心对称.此中正确命题序号为 ________. (将你以为正确的都填上 )14. 函数 y log 1 (x 4) 的定义域是.215.已知函数 y = log a (x +b)的图象以以下图所示,则 a = ________, b = ________.16.(2008 上·海高考 )设函数 f(x)是定义在 R 上的奇函数, 若当 x ∈ (0,+∞ )时,f(x)= lgx ,则知足 f(x)>0 的 x 的取值范围是 ________.- 2 -三、解答题 (本大题共 6 小题,共 70 分.解答应写出必需的文字说明、证明过程或演算步骤 )17. (本小题满分 10 分 )已知函数 f( x)= log 2(ax + b),若 f(2)= 1, f(3)= 2,求 f(5).118. (本小题满分 12 分 )已知函数 f (x)2 x 2 .(1)求 f(x) 的定义域; (2) 证明 f(x)在定义域内是减函数.2x - 1 19. (本小题满分 12 分 )已知函数f( x)=2x + 1.(1)判断函数的奇偶性; (2) 证明: f( x)在(-∞,+∞ )上是增函数.220. (本小题满分 12 分 )已知函数 f x(m 2 m 1)x mm 3是幂函数 , 且 x ∈ (0,+∞ )时, f(x)是增函数,求 f(x)的分析式.21. (本小题满分 12 分 )已知函数 f( x)= lg(a x -b x ), (a>1>b>0) .(1)求 f(x)的定义域;(2)若 f(x)在 (1,+∞ )上递加且恒取正当,求a ,b 知足的关系式.1122. (本小题满分 12 分 )已知 f(x)= 2x -1+2 ·x.(1)求函数的定义域;(2)判断函数 f(x)的奇偶性;(3)求证: f(x)>0.- 3 -参照答案答案速查: 1-5 BCDBC6-10 BCACC11-12 CC1.分析: 仅有②正确. 答案: Ba x , x ≥0 ,2.分析: y = a |x|=-且 a>1 ,应选 C.答案: Ca x, x<0 ,3.答案: D4.答案: B5.分析:A = { y|y = 2x ,x<0} = { y|0<y<1} ,B = { y|y = log 2x} = { y|y ∈ R} ,∴ A ∩ B ={ y|0<y<1} .答案: C6.分析: P ={ x|log 2x<1} = { x|0<x<2} , Q ={ x|1<x<3} ,∴ P - Q = { x|0<x ≤1} ,应选 B.答案: B17.分析: x = log a 2+ log a 3= log a 6= 2log a 6, z = loga21- loga 3= loga 7= 2log 7.1a∵ 0<a<1 ,∴ 111log a 7.2 log a 5> log a 6> 22 即 y>x>z.答案: C8.分析: 作出函数 y =2x 与 y = x 2 的图象知,它们有3 个交点,因此 y =2x - x 2 的图象与x 轴有 3 个交点,清除B 、C ,又当 x<- 1 时, y<0,图象在 x 轴下方,清除 D.应选 A.答案: A9.分析: 联合图象知, A 、 B 、 D 不建立, C 建立. 答案: C10.分析: 依题意可得 f 3(2010) = 20102, f 2(f 3(2010))22 -1-2 = f 2(2010 ) =(2010 ) = 2010 ,∴ f 1(f 2(f 3(2010))) = f 1(2010 - 2-2 1-11 .)= (2010) =2010=20102答案: C1-x>0x<1-111.分析: 由 ?1? <x<1. 答案: C3x +1>0x>- 3312.分析: f(2) = log 3(22- 1)= log 33= 1,∴ f[f(2)] = f(1) = 2e 0= 2.答案: C13.分析: (1) 、 (2)不正确,可举出反例,如1, y = x -2,它们的图象都可是原点. (3)y = x中函数 y = lne x=x ,明显是奇函数.对于(4) , y =x 13是奇函数,而奇函数的图象对于原点对称,因此 (4)正确.答案: (3)(4)- 4 -14.答案: (4,5]15.分析: 由图象过点 (- 2,0), (0,2)知, log a (- 2+ b)= 0, log a b = 2,∴- 2+ b =1,∴ b= 3, a 2= 3,由 a>0 知 a = 3.∴ a = 3, b = 3.答案: 3 316.分析: 依据题意画出 f(x)的草图,由图象可知,f(x)>0 的 x 的取值范围是-1<x<0 或x>1.答案: (- 1,0)∪ (1,+∞ )17.解:由 f(2) log 2 2a + b =12a + b =2 ? a = 2, = 1,f(3)= 2,得 3a + b = 2? ∴ f(x)= log 2(2xlog 2 3a + b =4 b =- 2. - 2),∴ f(5)= log 28 =3.18.∵ x 2>x 1≥ 0,∴ x 2- x 1>0, x 2+ x 1>0,∴ f(x 1) - f(x 2)>0 ,∴ f(x 2)<f( x 1).于是 f(x)在定义域内是减函数.19.解: (1) 函数定义域为 R.2-x - 11- 2x2x - 1f(- x)=- x+ 1 =x =-x=- f(x),21+ 22 + 1因此函数为奇函数.1 2< +∞ ,(2)证明:不如设- ∞<x <x∴ 2x 2>2x 1.又由于 f(x 2)- f(x 1)= 2x 2- 1 - 2x 1- 1 = 2 2x 2- 2x 12 1 1 2x 2>0,2x + 1 2x + 1 2x + 1 +1∴ f(x 2)> f(x 1).因此 f(x)在 (- ∞ ,+ ∞ )上是增函数.20.解: ∵ f(x)是幂函数,∴ m 2- m - 1= 1, ∴ m =- 1 或 m = 2,∴ f(x)= x -3 或 f(x)= x 3,而易知 f(x)= x -3 在 (0,+ ∞ )上为减函数,f(x)=x 3 在 (0,+ ∞ )上为增函数. ∴ f(x)= x 3.21.解: (1) 由 a x- b x>0,得 a x>1.ba∵ a>1>b>0,∴ b >1, ∴ x>0.即 f(x)的定义域为 (0,+ ∞ ).(2)∵ f( x)在 (1,+ ∞ )上递加且恒为正当,∴ f(x)>f(1) ,只需 f(1)≥ 0,即 lg(a - b)≥ 0,∴ a - b ≥1.∴ a ≥ b + 1 为所求22.解: (1) 由 2x - 1≠ 0 得 x ≠0,∴函数的定义域为 { x|x ≠0, x ∈ R} . (2)在定义域内任取 x ,则- x 必定在定义域内. 1 1 f(- x)= 2-x - 1+ 2 (- x)=2xx +1 ( -x) =- 1+2x ·x = 2x +1 ·x.1-2 22 1- 2x 2 2x - 111 2x + 1而f(x)=2x - 1+2 x = 2 2x -1 ·x , ∴ f(- x)= f(x).∴ f(x)为偶函数.(3)证明:当 x>0 时, 2x >1,11∴2x - 1+2 ·x>0.又 f(x)为偶函数,∴当 x<0 时, f(x)>0.故当 x ∈ R 且 x ≠ 0 时, f(x)>0.。
高一数学基本初等函数Ⅰ试题答案及解析
高一数学基本初等函数Ⅰ试题答案及解析1.方程的根的情况是()A.仅有一根B.有两个正根C.有一正根和一个负根D.有两个负根【答案】C【解析】主要考查指数函数、对数函数的图象和性质。
解:采用数形结合的办法,在同一坐标系中,画出的图象可知。
2.已知 .【答案】8【解析】主要考查指数函数、二次函数的性质。
利用换元法。
解:可化为,令,又因为所以,,,故。
3.若下列命题正确的个数为()A.0B.1C.2D.3【答案】B【解析】主要考查对数运算法则。
解:根据对数的运算性质易知只有④是正确的。
4.已知_____________【答案】【解析】主要考查对数运算。
解:5.已知镭经过100年,剩留原来质量的95.76%,设质量为1的镭经过x年的剩留量为y,则y 与x的函数关系是A.y=(0.9576)B.y=(0.9576)100xC.y=()x D.y=1-(0.0424)【答案】A【解析】设每年减少q%,因为镭经过100年,剩留原来质量的95.76%,所以=95.76%, q%=1-(0.9576),所以=(0.9576)。
故选A。
【考点】主要考查函数的概念、解析式,考查应用数学知识解决实际问题的能力。
点评:审清题意,构建函数解析式。
6.一个体户有一种货,如果月初售出可获利100元,再将本利都存入银行,已知银行月息为2.4%,如果月末售出可获利120元,但要付保管费5元,问这种货是月初售出好,还是月末售出好?【答案】当成本大于525元时,月末售出好;成本小于525元时,月初售出好.【解析】解:设这种货的成本费为a元,则若月初售出,到月末共获利润为:y1=100+(a+100)×2.4%若月末售出,可获利y2=120-5=115(元)y 2-y1=0.024a-12.6=0.024(a-525)故当成本大于525元时,月末售出好;成本小于525元时,月初售出好.【考点】主要考查函数模型的广泛应用,考查应用数学知识解决实际问题的能力。
高一数学必修1《基本初等函数Ⅰ》测试卷(含答案)
第二章《基本初等函数Ⅰ》测试卷考试时间:120分钟 满分:150分一.选择题.(本大题共12小题,每小题5分,共60分)1.给出下列说法:①0的有理次幂等于0;②01()a a R =∈;③若0,x a R >∈,则0a x >;④11221()33-=.其中正确的是( )A.①③④B.③④C.②③④D. ③ 2.552log 10log 0.25+的值为( )A.0B.1C.2D.4 3.函数2()3x f x =的值域为( )[A.[)0,+∞B.(],0-∞C.[)1,+∞D.(),-∞+∞4.幂函数2()(1),(0,)m f x m m x x =--∈+∞当时为减函数,则m 的值为( ) A.1 B.1- C.12-或 D.25.若函数2013()2012(0,1)x f x a a a -=->≠且,则()f x 的反函数图象恒过定点( ) A.(2013,2011)B.(2011,2013)C.(2011,2012)D.(2012,2013)6.函数22()log (1)()f x x x x R =++∈的奇偶性为( ) A.奇函数而非偶函数 B.偶函数而非奇函数C.非奇非偶函数D.既是奇函数又是偶函数-7. 若函数()log (01)a f x x a =<<在区间[],2a a 上的最大值是最小值的2倍,则a 的值为( )A. 24B. 22C. 14D. 128.如果60.7a =,0.76b =,0.7log 6c =,则( )A.a b c <<B.c b a <<C.c a b <<D.b c a <<9.函数2()log (1)2f x x =++的单调递增区间为( ) A.()1,-+∞ B.[)0,+∞ C.[]1,2 D.(]0,110.当1a >时,在同一坐标系中,函数x y a -=与log xa y =的图象是下图中的( )}11.对于0,1a a >≠,下列说法中,正确的是( )①若M N =则log log a a M N =; ②若log log a a M N =则M N =; ③若22log log a a M N =则M N =; ④若M N =则22log log a a M N =?A.①②③④B.①③C.②④D.②12.已知R 上的奇函数()f x 和偶函数()g x 满足()()2(0,1)x x f x g x a a a a -+=-+>≠且,若(2),(2)g a f =则的值为( )A.2B.154 C.174D.2a 二.填空题.(本大题共4小题,每小题5分,共20分)13.设12322()((2))log (1)2x e x f x f f x x -⎧<⎪=⎨-≥⎪⎩,,则的值为, . 14.函数215()log (1)f x x =+的单调递减区间为 .15.已知23234(0),log 9a a a =>则的值为 .16.关于函数()2x f x -=,对任意的1212,,x x R x x ∈≠且,有下列四个结论:&()(0)0()0,F x F x F x ∴=⎧⎪=⎨又是a0∴<①当max 1241()()/xf t -⎡∴∈⎢⎣=5.0lg1.5L =+(0)1(2)f ∴=对任意的。
基本初等函数练习题与答案
5.
1
3x 3x 3x 3x 3, x 1 1 3x
6.
x
|
x
1
,y
|
y
0,
且y
1
2x
1
0,
x
1
;
y
1
8 2 x 1
0, 且y
1
2
2
7. 奇函数 f (x) x2 lg(x x2 1) x2 lg(x x2 1) f (x)
84 411
212 222
212 (1 210 )
3. 2 原式 log2 5 2 log2 51 log2 5 2 log2 5 2
4. 0 (x 2)2 ( y 1)2 0, x 2且y 1, logx ( yx ) log2 (12 ) 0
4.若函数
f
(x)
1
m ax 1
是奇函数,则 m
为__________。
5.求值:
2
27 3
2log2 3
log2
1 8
2 lg(
3
5
3
5 ) __________。
三、解答题
1.解方程:(1) log4 (3 x) log0.25 (3 x) log4 (1 x) log0.25 (2x 1)
log a
(1
1 a
)
②
log a
(1
a)
log a
(1
1 a
)
③ a1a
高一数学必修一第3章基本初等函数章末检测学生版
章末检测一、选择题1.下列函数中,在区间(0,+∞)上为增函数的是( )A .y =ln(x +2)B .y =-x +1C .y =⎝⎛⎭⎫12xD .y =x +1x2.若a<12,则化简4-2的结果是( ) A.2a -1B .-2a -1 C.1-2a D .-1-2a 3.函数y =lg x +lg(5-3x)的定义域是( )A .[0,53)B .[0,53]C .[1,53)D .[1,53]4.已知集合A ={x|y =lg(2x -x 2)},B ={y|y =2x ,x>0},R 是实数集,则∁R B∩A 等于( ) A .[0,1]B .(0,1]C .(-∞,0]D .以上都不对 5.幂函数的图象过点⎝⎛⎭⎫2,14,则它的单调递增区间是( )A .(0,+∞)B .[0,+∞)C .(-∞,0)D .(-∞,+∞) 6.函数y =2+log 2(x 2+3)(x≥1)的值域为( )A .(2,+∞)B .(-∞,2)C .[4,+∞)D .[3,+∞)7.比较1.513.1、23.1、213.1的大小关系是( )A .23.1<213.1<1.513.1B .1.513.1<23.1<213.1C .1.513.1<213.1<23.1D .213.1<1.513.1<23.18.函数y =a x -1a(a>0,且a≠1)的图象可能是( )9.若0<x<y<1,则( )A .3y <3xB .log x 3<log y 3C .log 4x<log 4yD .(14)x <(14)y10.若偶函数f(x)在(-∞,0)内单调递减,则不等式f(-1)<f(lg x)的解集是( )A .(0,10)B .(110,10)C .(110,+∞)D .(0,110)∪(10,+∞)11.若函数f(x)=⎩⎪⎨⎪⎧log 2x , x>0,log 12-, x<0,若f(a)>f(-a),则实数a 的取值范围是 ( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)12.已知函数f(x)=log 12(4x -2x +1+1)的值域为[0,+∞),则它的定义域可以是 ( )A .(0,1]B .(0,1)C .(-∞,1]D .(-∞,0]二、填空题13.函数f(x)=a x -1+3的图象一定过定点P ,则P 点的坐标是________.14.函数f(x)=log 5(2x +1)的单调增区间是________.15.设函数f(x)是定义在R 上的奇函数,若当x ∈(0,+∞)时,f(x)=lg x ,则满足f(x)>0的x 的取值范围是______________.16.定义:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =|log 0.5x|的定义域为[a ,b],值域为[0,2],则区间[a ,b]的长度的最大值为________. 三、解答题17.已知幂函数y =xm 2-2m(m ∈Z )的图象与x 轴、y 轴都无交点,且关于原点对称,求m 的值.18.已知f(x)为定义在[-1,1]上的奇函数,当x ∈[-1,0]时,函数解析式为f(x)=14x -a2x (a ∈R ).(1)写出f(x)在[0,1]上的解析式;(2)求f(x)在[0,1]上的最大值.19.已知x>1且x≠43,f(x)=1+log x 3,g(x)=2log x 2,试比较f(x)与g(x)的大小.20.2011年我国国内生产总值(GDP)为471 564亿元,如果我国的GDP 年均增长7.8%左右,按照这个增长速度,在2011年的基础上,经过多少年后,我国GDP 才能实现比2000年翻两番的目标?(lg 2≈0.301 0,lg 1.078≈0.032 6结果保留整数). 21.已知函数f(x)=2x -12|x|.(1)若f(x)=2,求x 的值;(2)若2t f(2t)+mf(t)≥0对于t ∈[1,2]恒成立,求实数m 的取值范围. 22.已知常数a 、b 满足a>1>b>0,若f(x)=lg(a x -b x ).(1)求y =f(x)的定义域;(2)证明:y =f(x)在定义域内是增函数;(3)若f(x)恰在(1,+∞)内取正值,且f(2)=lg 2,求a 、b 的值.。
必修一基本初等函数练习题(含详细答案解析)
必修一基本初等函数练习题(含详细答案解析)一、选择题1.对数式log32-(2+3)的值是().A.-1 B.0 C.1 D.不存在1.A解析:log32-(2+3)=log32-(2-3)-1,故选A.2.当a>1时,在同一坐标系中,函数y=a-x与y=log a x的图象是().A B C D2.A解析:当a>1时,y=log a x单调递增,y=a-x单调递减,故选A.3.如果0<a<1,那么下列不等式中正确的是().A.(1-a)31>(1-a)21B.log1-a(1+a)>0C.(1-a)3>(1+a)2D.(1-a)1+a>13.A解析:取特殊值a=21,可立否选项B,C,D,所以正确选项是A.4.函数y=log a x,y=log b x,y=log c x,y=log d x的图象如图所示,则a,b,c,d的大小顺序是().A.1<d<c<a<bB.c<d<1<a<bC.c<d<1<b<aD.d<c<1<a<b4.B解析:画出直线y=1与四个函数图象的交点,它们的横坐标的值,分别为a,b,c,d的值,由图形可得正确结果为B.(第4题)5.已知f (x 6)=log 2 x ,那么f (8)等于( ). A .34 B .8 C .18 D .21 5.D6.如果函数f (x )=x 2-(a -1)x +5在区间⎪⎭⎫⎝⎛121 ,上是减函数,那么实数a 的取值范围是( ).A . a ≤2B .a >3C .2≤a ≤3D .a ≥36.D7.函数f (x )=2-x -1的定义域、值域是( ). A .定义域是R ,值域是RB .定义域是R ,值域为(0,+∞)C .定义域是R ,值域是(-1,+∞)D .定义域是(0,+∞),值域为R7.C+∞).8.已知-1<a <0,则( ).A .(0.2)a <a⎪⎭⎫⎝⎛21<2aB .2a <a⎪⎭⎫⎝⎛21<(0.2)aC .2a <(0.2)a <a⎪⎭⎫⎝⎛21D .a⎪⎭⎫⎝⎛21<(0.2)a <2a8.B9.已知函数f (x )=⎩⎨⎧+-1 log 1≤413> ,,)(x x x a x a a是(-∞,+∞)上的减函数,那么a 的取值范围是( ).A .(0,1)B .⎪⎭⎫ ⎝⎛310,C .⎪⎭⎫⎢⎣⎡3171,D .⎪⎭⎫⎢⎣⎡171,9.C解析:由f (x )在R 上是减函数,∴ f (x )在(1,+∞)上单减,由对数函数单调性,即0上是减函数,为了满足单调区间的定义,f (x )在(-∞,1]上的最小值7a -1要大于等于f (x )在[1,+∞)上的最大值0,才能保证f (x )在R 上是减函数.10.已知y =log a (2-ax )在[0,1]上是x 的减函数,则a 的取值范围是( ). A .(0,1) B .(1,2) C .(0,2) D .[2,+∞)10.B解析:先求函数的定义域,由2-ax >0,有ax <2,因为a 是对数的底,故有a >0且若0<a <1,当x 在[0,1]上增大时,2-ax 减小,从而log a (2-ax )增大,即函数 y =log a (2-ax )在[0,1]上是单调递增的,这与题意不符.若1<a <2,当x 在[0,1]上增大时,2-ax 减小,从而log a (2-ax )减小,即函数 y =log a (2-ax )在[0,1]上是单调递减的.所以a 的取值范围应是(1,2),故选择B . 二、填空题11.满足2-x >2x 的 x 的取值范围是 .11.参考答案:(-∞,0). 解析:∵ -x >x ,∴ x <0.12.已知函数f (x )=log 0.5(-x 2+4x +5),则f (3)与f (4)的大小关系为 . 12.参考答案:f (3)<f (4).解析:∵ f (3)=log 0.5 8,f (4)=log 0.5 5,∴ f (3)<f (4). 13.64log 2log 273的值为_____.14.已知函数f (x )=⎪⎩⎪⎨⎧,≤ ,,>,020log 3x x x x 则⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛91f f 的值为_____.15.函数y =)-(34log 5.0x 的定义域为 .16.已知函数f (x )=a -121+x,若f (x )为奇函数,则a =________. 解析:∵ f (x )为奇函数,三、解答题17.设函数f (x )=x 2+(lg a +2)x +lg b ,满足f (-1)=-2,且任取x ∈R ,都有f (x )≥2x ,求实数a ,b 的值.17.参考答案:a =100,b =10.解析:由f (-1)=-2,得1-lg a +lg b =0 ①,由f (x )≥2x ,得x 2+x lg a +lg b ≥0 (x ∈R ).∴Δ=(lg a )2-4lg b ≤0 ②.联立①②,得(1-lg b )2≤0,∴ lg b =1,即b =10,代入①,即得a =100.18.已知函数f (x )=lg (ax 2+2x +1) .(1)若函数f (x )的定义域为R ,求实数a 的取值范围; (2)若函数f (x )的值域为R ,求实数a 的取值范围.18.参考答案:(1) a 的取值范围是(1,+∞) ,(2) a 的取值范围是[0,1]. 解析:(1)欲使函数f (x )的定义域为R ,只须ax 2+2x +1>0对x ∈R 恒成立,所以有⎩⎨⎧0 <440a -a >,解得a >1,即得a 的取值范围是(1,+∞); (2)欲使函数 f (x )的值域为R ,即要ax 2+2x +1 能够取到(0,+∞) 的所有值.②当a ≠0时,应有⎩⎨⎧0 ≥440a -a =>Δ⇒ 0<a ≤1.当x ∈(-∞,x 1)∪(x 2,+∞)时满足要求(其中x 1,x 2是方程ax 2+2x +1=0的二根).综上,a 的取值范围是[0,1].19.求下列函数的定义域、值域、单调区间: (1)y =4x +2x +1+1; (2)y =2+3231x -x ⎪⎭⎫⎝⎛.19.参考答案:(1)定义域为R .令t =2x (t >0),y =t 2+2t +1=(t +1)2>1, ∴ 值域为{y | y >1}.t =2x 的底数2>1,故t =2x 在x ∈R 上单调递增;而 y =t 2+2t +1在t ∈(0,+∞)上单调递增,故函数y =4x +2x +1+1在(-∞,+∞)上单调递增.20.已知函数f(x)=log a(x+1),g(x)=log a(1-x),其中a>0,a≠1.(1)求函数f(x)-g(x)的定义域;(2)判断f(x)-g(x)的奇偶性,并说明理由;(3)求使f(x)-g(x)>0成立的x的集合.20.参考答案:(1){x |-1<x<1};(2)奇函数;(3)当0<a<1时,-1<x<0;当a>1时,0<x<1.(2)设F(x)=f(x)-g(x),其定义域为(-1,1),且F(-x)=f(-x)-g(-x)=log a(-x+1)-log a(1+x)=-[log a(1+x)-log a(1-x)]=-F(x),所以f(x)-g(x)是奇函数.(3)f(x)-g(x)>0即log a(x+1)-log a(1-x)>0有log a(x+1)>log a(1-x).。
基本初等函数测试题及答案
基本初等函数测试题一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.有下列各式: ①na n =a ;②若a ∈R ,则(a 2-a +1)0=1;③44333x y x y +=+; ④6-22=3-2.其中正确的个数是( )A .0B .1C .2D .32.函数y =a |x |(a >1)的图象是( )3.下列函数在(0,+∞)上是增函数的是( ) A .y =3-x B .y =-2x C .y = D .y =x 12>4.三个数log 215,,2-1的大小关系是( )A .log 215<<2-1B .log 215<2-1<C .<2-1<log 215 D .<log 215<2-1 5.已知集合A ={y |y =2x ,x <0},B ={y |y =log 2x },则A ∩B =( ) A .{y |y >0} B .{y |y >1} C .{y |0<y <1} D .∅6.设P 和Q 是两个集合,定义集合P -Q ={x |x ∈P 且x ∉Q },如果P ={x |log 2x <1},Q={x |1<x <3},那么P -Q 等于( )A .{x |0<x <1}B .{x |0<x ≤1}C .{x |1≤x <2}D .{x |2≤x <3}7.已知0<a <1,x =log a 2+log a 3,y =12log a 5,z =log a 21-log a 3,则( ) A .x >y >z B .x >y >x C .y >x >z D .z >x >y 8.函数y =2x -x 2的图象大致是( )¥9.已知四个函数①y =f 1(x );②y =f 2(x );③y =f 3(x );④y =f 4(x )的图象如下图:则下列不等式中可能成立的是( )A .f 1(x 1+x 2)=f 1(x 1)+f 1(x 2)B .f 2(x 1+x 2)=f 2(x 1)+f 2(x 2)C .f 3(x 1+x 2)=f 3(x 1)+f 3(x 2)D .f 4(x 1+x 2)=f 4(x 1)+f 4(x 2)10.设函数121()f x x =,f 2(x )=x -1,f 3(x )=x 2,则f 1(f 2(f 3(2010)))等于( ) A .2010 B .2010211.函数f (x )=3x 21-x +lg(3x +1)的定义域是( )\12.(2010·石家庄期末测试)设f (x )=⎩⎪⎨⎪⎧2e x -1, x <2,log 3x 2-1, x ≥2. 则f [f (2)]的值为( ) A .0 B .1 C .2 D .3二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.给出下列四个命题:(1)奇函数的图象一定经过原点;(2)偶函数的图象一定经过原点; (3)函数y =lne x 是奇函数;(4)函数13y x =的图象关于原点成中心对称.其中正确命题序号为________.(将你认为正确的都填上) 14. 函数12log (4)y x =-的定义域是 .15.已知函数y =log a (x +b )的图象如下图所示,则a =________,b =________.¥16.(2008·上海高考)设函数f (x )是定义在R 上的奇函数,若当x ∈(0,+∞)时,f (x )=lg x ,则满足f (x )>0的x 的取值范围是________.三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知函数f (x )=log 2(ax +b ),若f (2)=1,f (3)=2,求f (5)..18.(本小题满分12分)已知函数12()2f x x =-.(1)求f (x )的定义域;(2)证明f (x )在定义域内是减函数. 19.(本小题满分12分)已知函数f (x )=2x -12x +1.(1)判断函数的奇偶性;(2)证明:f (x )在(-∞,+∞)上是增函数. 20.(本小题满分12分)已知函数()223(1)mm f x m m x +-=--是幂函数, 且x ∈(0,+∞)时,f (x )是增函数,求f (x )的解析式.21.(本小题满分12分)已知函数f (x )=lg(a x -b x ),(a >1>b >0). (1)求f (x )的定义域;…(2)若f (x )在(1,+∞)上递增且恒取正值,求a ,b 满足的关系式. 22.(本小题满分12分)已知f (x )=⎝⎛⎭⎫12x -1+12·x . (1)求函数的定义域; (2)判断函数f (x )的奇偶性; (3)求证:f (x )>0.*参考答案答案速查:1-5 BCDBC 6-10 BCACC 11-12 CC 1.解析:仅有②正确.答案:B2.解析:y =a |x |=⎩⎪⎨⎪⎧a x ,x ≥0,a -x ,x <0,且a >1,应选C.答案:C3.答案:D4.答案:B5.解析:A ={y |y =2x ,x <0}={y |0<y <1},B ={y |y =log 2x }={y |y ∈R },∴A ∩B ={y |0<y <1}.(答案:C6.解析:P ={x |log 2x <1}={x |0<x <2},Q ={x |1<x <3},∴P -Q ={x |0<x ≤1},故选B.答案:B7.解析:x =log a 2+log a 3=log a 6=12log a 6, z =log a 21-log a 3=log a 7=12log a 7. ∵0<a <1,∴12log a 5>12log a 6>12log a 7. 即y >x >z . 答案:C8.解析:作出函数y =2x 与y =x 2的图象知,它们有3个交点,所以y =2x -x 2的图象与x 轴有3个交点,排除B 、C ,又当x <-1时,y <0,图象在x 轴下方,排除D.故选A.答案:A|9.解析:结合图象知,A 、B 、D 不成立,C 成立.答案:C 10.解析:依题意可得f 3(2010)=20102,f 2(f 3(2010)) =f 2(20102)=(20102)-1=2010-2,∴f 1(f 2(f 3(2010)))=f 1(2010-2)=(2010-2)12=2010-1=12010. 答案:C11.解析:由⎩⎪⎨⎪⎧1-x >03x +1>0⇒⎩⎪⎨⎪⎧x <1x >-13⇒-13<x <1. 答案: C12.解析:f (2)=log 3(22-1)=log 33=1,∴f [f (2)]=f (1)=2e 0=2. 答案:C13.解析:(1)、(2)不正确,可举出反例,如y =1x ,y =x -2,它们的图象都不过原点.(3)中函数y =lne x =x ,显然是奇函数.对于(4),y =x 13是奇函数,而奇函数的图象关于原点对称,所以(4)正确.答案:(3)(4)14.答案:(4,5]【15.解析:由图象过点(-2,0),(0,2)知,log a (-2+b )=0,log a b =2,∴-2+b =1,∴b=3,a 2=3,由a >0知a = 3.∴a =3,b =3.答案:3 316.解析:根据题意画出f (x )的草图,由图象可知,f (x )>0的x 的取值范围是-1<x <0或x >1.答案:(-1,0)∪(1,+∞)17.解:由f (2)=1,f (3)=2,得⎩⎪⎨⎪⎧ log 22a +b =1log 23a +b =2⇒⎩⎪⎨⎪⎧ 2a +b =23a +b =4⇒⎩⎪⎨⎪⎧a =2,b =-2.∴f (x )=log 2(2x -2),∴f (5)=log 28=3. 18.·∵x 2>x 1≥0,∴x 2-x 1>0,x 2+x 1>0, ∴f (x 1)-f (x 2)>0,∴f (x 2)<f (x 1). 于是f (x )在定义域内是减函数. 19.解:(1)函数定义域为R .f (-x )=2-x -12-x +1=1-2x 1+2x =-2x -12x +1=-f (x ),所以函数为奇函数.(2)证明:不妨设-∞<x 1<x 2<+∞, ∴2x 2>2x 1.又因为f (x 2)-f (x 1)=2x 2-12x 2+1-2x 1-12x 1+1=22x 2-2x 12x 1+12x 2+1>0,∴f (x 2)>f (x 1).%所以f (x )在(-∞,+∞)上是增函数. 20.解:∵f (x )是幂函数, ∴m 2-m -1=1, ∴m =-1或m =2, ∴f (x )=x-3或f (x )=x 3,而易知f (x )=x -3在(0,+∞)上为减函数,f (x )=x 3在(0,+∞)上为增函数. ∴f (x )=x 3.21.解:(1)由a x -b x >0,得⎝⎛⎭⎫a b x >1.∵a >1>b >0,∴ab >1,…∴x >0.即f (x )的定义域为(0,+∞).(2)∵f (x )在(1,+∞)上递增且恒为正值, ∴f (x )>f (1),只要f (1)≥0, 即lg(a -b )≥0,∴a -b ≥1.∴a ≥b +1为所求22.解:(1)由2x -1≠0得x ≠0,∴函数的定义域为{x |x ≠0,x ∈R }.(2)在定义域内任取x ,则-x 一定在定义域内. f (-x )=⎝⎛⎭⎫12-x -1+12(-x )=⎝⎛⎭⎫2x 1-2x +12(-x )=-1+2x 21-2x ·x =2x +122x -1·x .而f (x )=⎝⎛⎭⎫12x -1+12x =2x +122x -1·x ,∴f (-x )=f (x ). ∴f (x )为偶函数.(3)证明:当x >0时,2x >1,∴⎝⎛⎭⎫12x -1+12·x >0. 又f (x )为偶函数, ∴当x <0时,f (x )>0. 故当x ∈R 且x ≠0时,f (x )>0.。
高一数学必修一第二章基本初等函数练习题难题带答案
高一数学必修一基本初等函数一.选择题(共30小题)1.设a=log43,b=log54,c=2﹣0.01,则a,b,c的大小关系为()A.b<a<c B.a<b<c C.a<c<b D.b<c<a2.已知a=3ln2π,b=2ln3π,c=3lnπ2,则下列选项正确的是()A.a>b>c B.c>a>b C.c>b>a D.b>c>a3.函数f(x)=(|x|﹣7)e|x|则()A.B.f(0.76)<f(60.5)<f(log0.76)C.D.4.已知P(x,y)为函数f(x)=图象上一动点,则的最大值为()A.B.C.2D.5.设a=3,b=3log3π,c=πlogπ3,则a,b,c的大小关系为()A.a<b<c B.a<c<b C.c<a<b D.c<b<a6.若a=0.220.33,b=0.330.22,c=log0.330.22,则()A.a>b>c B.b>a>c C.c>a>b D.c>b>a7.已知a,b,c∈R,满足==﹣<0,则a,b,c的大小关系为()A.c>a>b B.a>c>b C.c>b>a D.b>a>c8.已知2a=log2|a|,,c=sin c+1,则实数a,b,c的大小关系是()A.b<a<c B.a<b<c C.c<b<a D.a<c<b9.已知实数a,b,c分别满足2a=﹣a,log0.5b=b,log2c=,那么()A.a<b<c B.a<c<b C.b<c<a D.c<b<a10.已知a=log1213,b=(),c=log1314,则a,b,c的大小关系为()A.a>b>c B.c>a>b C.b>c>a D.a>c>b11.已知a>b>0,ab=1,设,则log x2x,log y2y,log z2z的大小关系为()A.log x2x>log y2y>log z2z B.log y2y>log z2z>log x2xC.log x2x>log z2z>log y2y D.log y2y>log x2x>log z2z12.已知,,c=log23,则a,b,c的大小关系为()A.b>a>c B.a>c>b C.a>b>c D.b>c>a13.下列命题为真命题的个数是()①②③A.0B.1C.2D.314.设,实数c满足e﹣c=lnc,(其中e为自然常数),则()A.a>b>c B.b>c>a C.b>a>c D.c>b>a15.若实数x,y,z满足,则x,y,z的大小关系是()A.x<y<z B.x<z<y C.z<x<y D.z<y<x16.已知x1=ln,x2=e,x3满足e=lnx3,则下列各选项正确的是()A.x1<x3<x2B.x1<x2<x3C.x2<x1<x3D.x3<x1<x217.已知t>1,x=log2t,y=log3t,z=log5t,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z18.已知定义在R上的函数y=f(x)对任意的x都满足f(x+2)=f(x),当﹣1≤x<1时,f(x)=x3.若函数g(x)=f(x)﹣log a|x|恰有6个不同零点,则a的取值范围是()A.(,]∪(5,7] B.(,]∪(5,7]C.(,]∪(3,5] D.(,]∪(3,5]19.已知函数f(x)=,g(x)=x2﹣2x,设a为实数,若存在实数m,使f(m)﹣2g(a)=0,则实数a的取值范围为()A.[﹣1,+∞)B.(﹣∞,﹣1]∪[3,+∞)C.[﹣1,3] D.(﹣∞,3]20.已知函数y=f(x)(x∈R)满足f(x+2)=2f(x),且x∈[﹣1,1]时,f(x)=﹣|x|+1,则当x∈[﹣10,10]时,y=f(x)与g(x)=log4|x|的图象的交点个数为()A.13B.12C.11D.1021.设a=log46,,,则()A.a>b>c B.b>c>a C.a>c>b D.c>b>a22.已知实数a>0,b>0,a≠1,且满足lnb=,则下列判断正确的是()A.a>b B.a<b C.log a b>1D.log a b<123.设a=π﹣e,b=lnπ﹣1,c=eπ﹣e e,则()A.a<b<c B.b<c<a C.c<b<a D.b<a<c24.若函数f(x)=在区间[2019,2020]上的最大值是M,最小值是m,则M﹣m()A.与a无关,但与b有关B.与a无关,且与b无关C.与a有关,但与b无关D.与a有关,且与b有关25.正数a,b满足1+log2a=2+log3b=3+log6(a+b),则的值是()A.B.C.D.26.已知实数a,b,c,d满足,则(a﹣c)2+(b﹣d)2的最小值为()A.8B.4C.2D.27.函数y=log a(x+3)﹣1(a>0,且a≠1)的图象恒过定点A,若点A在直线mx+ny+2=0上(其中m,n>0),则的最小值等于()A.10B.8C.6D.428.若m,n,p∈(0,1),且log3m=log5n=lgp,则()A.B.C.D.29.已知a=log2e,b=ln3,c=log,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>b>a D.b>c>a30.若函数f(x)=ln(ax2﹣2x+3)的值域为R,则实数a的取值范围是()A.[0,]B.(,+∞)C.(﹣∞,]D.(0,]二.填空题(共6小题)31.已知函数f(x)在R上连续,对任意x∈R都有f(﹣3﹣x)=f(1+x);在(﹣∞,﹣1)中任意取两个不相等的实数x1,x2,都有(x1﹣x2)[f(x1)﹣f(x2)]<0恒成立;若f(2a﹣1)<f(3a﹣2),则实数a的取值范围是.32.若存在正数x,y,使得(y﹣2ex)(lny﹣lnx)z+x=0(其中e为自然对数的底数),则实数z的取值范围是33.已知函数f(x)=log2(x+2)与g(x)=(x﹣a)2+1,若对任意的x1∈[2,6),都存在x2∈[0,2],使得f(x1)=g(x2),则实数a的取值范围是.34.已知函数f(x)的图象与函数g(x)=2x关于直线y=x对称,令h(x)=f(1﹣|x|),则关于函数h(x)有以下命题:(1)h(x)的图象关于原点(0,0)对称;(2)h(x)的图象关于y轴对称;(3)h(x)的最小值为0;(4)h(x)在区间(﹣1,0)上单调递增.中正确的是.35.设a,b为非零实数,x∈R,若,则=.36.函数f(x)=log2x在区间[a,2a](a>0)上的最大值与最小值之差为.三.解答题(共4小题)37.已知函数f(x)=的图象关于原点对称,其中a为常数.(1)求a的值;(2)当x∈(1,+∞)时,f(x)+(x﹣1)<m恒成立,求实数m的取值范围;(3)若关于x的方程f(x)=(x+k)在[2,3]上有解,求k的取值范围.38.已知函数f(x)=log a(2﹣x)﹣log a(2+x)(a>0且a≠1),且1是函数y=f(x)+x的零点.(1)求实数a的值;(2)求使f(x)>0的实数x的取值范围.39.已知函数f(x)=(a2﹣3a+3)a x是指数函数.(1)求f(x)的解析式;(2)判断函数F(x)=f(x)﹣f(﹣x)的奇偶性,并证明;(3)解不等式log a(1﹣x)>log a(x+2).40.已知f(x)是定义在R上的偶函数,且x≤0时,f(x)=(﹣x+1)(1)求f(3)+f(﹣1);(2)求函数f(x)的解析式;(3)若f(a﹣1)<﹣1,求实数a的取值范围.参考答案与试题解析一.选择题(共30小题)1.【解答】解:因为0=log41<a=log43<log44=1,0<b=log54<log55=1,c=2﹣0.01>2≈0.92,log54=≈0.86,==log43×log45<()2=()2<1,∴a,b,c的大小关系为a<b<c.故选:B.2.【解答】解:,,=,∵6π>0,∴a,b,c的大小比较可以转化为的大小比较.设f(x)=,则f′(x)=,当x=e时,f′(x)=0,当x>e时,f′(x)<0,当0<x<e时,f′(x)>0∴f(x)在(e,+∞)上,f(x)单调递减,∵e<3<π<4∴,∴b>c>a,故选:D.3.【解答】解,60.5>1>0.76>0>log0.76,函数f(x)为偶函数,则,当x>0时,f(x)=(x﹣7)e x,则f′(x)=(x﹣6)e x,易知函数f(x)在(0,6)上单调递减,又,故,即﹣log0.76<6,又,故,即﹣log0.76>3,则0<0.76<1<60.5<﹣log0.76<6,所以f(0.76)>f(60.5)>f(﹣log0.76)=f(log0.76),故选:D.4.【解答】解:设Q(,1),原点O,则=(,1),=(x,y),∴即.∴当OP与f(x)在y轴右侧相切时取最大值,设直线y=kx(k>0)与函数f(x)相切于点P0(x0,y0),y′=k,f′(x)=2x,则,解得.即切点P0(,),∴,即的最大值为.故选:D.5.【解答】解:构造函数f(x)=(x>1),则f′(x)=,当x∈(1,e2)时,f′(x)>0,则f(x)在(1,e2)上为增函数,∴f(π)>f(3),即>,∴>,即3log3π>πlogπ3,则b>c;设g(x)=,则g′(x)=,当x>3时,g′(x)>30ln3﹣1>0,∴g(x)在(3,+∞)上为增函数,则g(π)>g(3)=0,即>π,则3π>π3.又πlogπ3=>.∴a<c<b.故选:B.6.【解答】解:由1>a=0.220.33>0,1>b=0.330.22>0,c=log0.330.22>log0.330.33=1,所以c>a,且c>b;又ln0.220.33=0.33ln0.22,ln0.330.22=0.22ln0.33;不妨设0.33ln0.22<0.22ln0.33,则有<;构造函数f(x)=,x>0,所以f′(x)=,令f′(x)=0,解得x=e;所以x∈(0,e)时,f′(x)>0,f(x)是单调增函数;所以f(0.22)<f(0.33),即<,所以b>a;综上知,c>b>a.故选:D.7.【解答】解:已知a,b,c∈R,令==﹣=﹣1,则:,所以c>1.由于3b>0,且,故lnb<0,解得0<b<1,同理2a>0,且,故lna<0,解得0<a<1.由于0<a<1,0<b<1,==﹣<0,所以2a<3b,故lnb<lna,整理得b<a,所以c>1>a>b>0.故选:A.8.【解答】解:作出函数y=2x和y=log2|x|的图象,由图1可知,交点A的横坐标a<0;作出函数y=和y=的图象,由图2可知,交点B的横坐标0<b<1;作出函数y=x和y=sin x+1的图象,由图3可知,交点C的横坐标c>1所以,a<b<c.故选:B.9.【解答】解:∵log0.5b=﹣log2b=b,∴log2b=﹣b,在同一坐标系内画出函数y=2x,y=﹣x,y=log2x,y=的图象.可知a<0<b<1<c.故选:A.10.【解答】解:=,∵=<1,∴log1314<log1213,且log1314>1,,∴a>c>b.故选:D.11.【解答】解:,=,,∵a>b>0,ab=1,∴a>1>b>0,∴,log2(a+b)<2,∴,∴,∴,又0<,∴,∴log y2y>log z2z>log x2x.故选:B.12.【解答】解:根据指数运算与对数运算的性质,>3,1<<2,1<c=log23<2,设b=,c=log23,由于函数m=log2t为增函数,由于的值接近于4,所以a>b>c.故选:C.13.【解答】解:构造函数f(x)=,x∈(0,+∞),∴,令f'(x)=0得:x=e,∵当x∈(0,e)时,f'(x)>0,f(x)单调递增;当x∈(e,+∞)时,f'(x)<0,f(x)单调递减,∴f(e)>f(3)>f(π),即,故①正确,②错误,构造函数g(x)=,x∈(0,+∞),∵,令g'(x)=0得:x=e,∵当x∈(0,e)时,g'(x)<0,g(x)单调递减;当x∈(e,+∞)时,g'(x)>0,g(x)单调递增,∴g(e)<g(3),即0<,∴ln3<,∴,故③正确,∴真命题的个数是2个,故选:C.14.【解答】解:∵e﹣c>0,∴lnc>0,∴c>1,∴,∴,∴1<c<2,又,∴b>c>a.故选:B.15.【解答】解:设=p,∴p>0,设y1=log2x,y2=log3y,y3=2z,作出3个函数的图象,如图所示:由图可知:z<x<y,故选:C.16.【解答】解:依题意,因为y=lnx为(0,+∞)上的增函数,所以x1=ln<ln1=0;因为y=e x为R上的增函数,且e x>0,所以0<x2=e<e0=1;x3满足e=lnx3,所以x3>0,所以>0,所以lnx3>0=ln1,又因为y=lnx为(0,+∞)的增函数,所以x3>1,综上:x1<x2<x3.故选:B.17.【解答】解:∵t>1,∴lgt>0.又0<lg2<lg3<lg5,∴2x=2>0,3y=3>0,5z=>0,∴=>1,可得5z>2x.=>1.可得2x>3y.综上可得:3y<2x<5z.故选:D.18.【解答】解:首先将函数g(x)=f(x)﹣log a|x|恰有6个零点,这个问题转化成f(x)=log a|x|的交点来解决.数形结合:如图,f(x+2)=f(x),知道周期为2,当﹣1<x≤1时,f(x)=x3图象可以画出来,同理左右平移各2个单位,得到在(﹣7,7)上面的图象,以下分两种情况:(1)当a>1时,log a|x|如图所示,左侧有4个交点,右侧2个,此时应满足log a5≤1<log a7,即log a5≤log a a<log a7,所以5≤a<7.(2)当0<a<1时,log a|x|与f(x)交点,左侧有2个交点,右侧4个,此时应满足log a5>﹣1,log a7≤﹣1,即log a5<﹣log a a≤log a7,所以5<a﹣1≤7.故≤a<综上所述,a的取值范围是:5≤a<7或≤a<,故选:A.19.【解答】解:∵g(x)=x2﹣2x,设a为实数,∴2g(a)=2a2﹣4a,a∈R,∵y=2a2﹣4a,a∈R,∴当a=1时,y最小值=﹣2,∵函数f(x)=,f(﹣7)=6,f(e﹣2)=﹣2,∴值域为[﹣2,6]∵存在实数m,使f(m)﹣2g(a)=0,∴﹣2≤2a2﹣4a≤6,即﹣1≤a≤3,故选:C.20.【解答】解:由题意,函数f(x)满足:定义域为R,且f(x+2)=2f(x),当x∈[﹣1,1]时,f(x)=﹣|x|+1;在同一坐标系中画出满足条件的函数f(x)与函数y=log4|x|的图象,如图:由图象知,两个函数的图象在区间[﹣10,10]内共有11个交点;故选:C.21.【解答】解:,,,∵0<log34<log35<log36,∴,∴a>b>c.故选:A.22.【解答】解:∵lnb=,∴lnb﹣lna=,构造函数∴f(x)=;∴==;∴≥0;∴f(x)在(0,+∞)单调递增.且f(1)=0;当x∈(0,1)时,f(x)<0,当x∈(1.+∞)时f(x)>0;∵a≠1∴当0<a<1时,f(a)<0⇒0即lnb﹣lna<0⇒b<a,∴lnb<lna<0⇒⇒log a b>1,当a>1时,f(a)>0⇒即lnb﹣lna>0⇒b>a,∴lnb>lna>0⇒⇒log a b>1,故选:C.23.【解答】解:∵a=π﹣e>0,b=lnπ﹣1=lnπ﹣lne>0,c=eπ﹣e e>0;设y=lnx,则=,表示了连接两点(π,lnπ),(e,lne)的割线的斜率,而y'=,当x>1时,曲线切线的斜率0<k<1;故0<=<1,故b<a;设y=e x,则=,表示了连接两点(π,eπ),(e,e e)的割线的斜率,而y'=e x,当x>1时,曲线切线的斜率k>1;故=>1,故c>a;故b<a<c;故选:D.24.【解答】解:,令,则y=2019t2+bt+a的最大值是M,最小值是m,而a是影响图象的上下平移,此时最大和最小值同步变大或变小,故M﹣m与a无关,而b是影响图象的左右平移,故M﹣m与b有关,故选:A.25.【解答】解,依题意,设1+log2a=2+log3b=3+log6(a+b)=k,则a=2k﹣1,b=3k﹣2,a+b=6k﹣3,所以=====,故选:A.26.【解答】解:∵实数a,b,c,d满足,∴b=lna,d=c+1.考查函数y=lnx,与y=x+1.∴(a﹣c)2+(b﹣d)2就是曲线y=lnx与直线y=x+1之间的距离的平方值,对曲线y=lnx求导:y′=,与直线y=x+1平行的切线斜率k=1=,解得:x=1,将x=1代入y=lnx得:y=0,即切点坐标为(1,0),∴切点(1,0)到直线y=x+1的距离d==,即d2=2,则(a﹣c)2+(b﹣d)2的最小值为2.故选:C.27.【解答】解:令x+3=1,求得x=﹣2,可得函数y=log a(x+3)﹣1(a>0,且a≠1)的图象恒过定点A(﹣2,﹣1),若点A在直线mx+ny+2=0上(其中m,n>0),则﹣2m﹣n+2=0,即2m+n=2.由基本不等式可得2≥2,即mn≤,即≥2,当且仅当2m=n=1时,取等号.则==≥4,故选:D.28.【解答】解:∵m,n,p∈(0,1),且log3m=log5n=lgp=k,∴lgm,lgn,lgp<0,m=3k,n=5k,p=10k,∴==,==,==,因为,=53=125,所以,同理=5×5=25,=10,所以,所以>0,又因为y=x k(k<0)在(0,+∞)上单调递减,∴即<<.故选:A.29.【解答】解:根据题意,c=log=ln2<lne=1,则c<1,ln3>ln2,∴c<b,a=log2e>log22=1,即a>c,ln3﹣log2e=ln3﹣=,∵2=lne2>ln6=ln2+ln3>2,∴<1,即ln2ln3<1,则ln3﹣log2e=ln3﹣=<0,即ln3<log2e,即a>b,综上a>b>c,故选:A.30.【解答】解:若函数f(x)=ln(ax2﹣2x+3)的值域为R,即有t=ax2﹣2x+3取得一切的正数,当a=0时,t=3﹣2x取得一切的正数,成立;当a<0不成立;当a>0,△≥0即4﹣12a≥0,解得0<a≤,综上可得0≤a≤.故选:A.二.填空题(共6小题)31.【解答】解:由f(﹣3﹣x)=f(1+x)可知函数f(x)关于直线x=﹣1对称;在(﹣∞,﹣1)中任意取两个不相等的实数x1,x2,都有(x1﹣x2)[f(x1)﹣f(x2)]<0恒成立;可知函数f(x)在区间(﹣∞,﹣1)上单调递减,由对称性可知函数f(x)在区间(﹣1,+∞)上单调递增,不妨设f(x)=(x+1)2,则由f(2a﹣1)<f(3a﹣2)可得4a2<(3a﹣1)2,整理得5a2﹣6a+1>0,即(a﹣1)(5a﹣1)>0,解得或a>1,所以实数a的取值范围是.故答案为:.32.【解答】解:则(y﹣2ex)(lny﹣lnx)z+x=0可化为:,令t=,得(t﹣2e)lnt=﹣.令f(t)=(t﹣2e)lnt,(t>0),则f′(t)=g(t)=lnt+1﹣,则g′(t)=,故g(t)为(0,+∞)上的增函数,又因为f′(e)=g(e)=1+1﹣2=0,故当t∈(0,e)时,f′(t)<0,当t>e时,f′(t)>0,所以f(t)在(0,e)上单调递减,在(e,+∞)上单调递增,所以f(t)在(0,+∞)存在最小值f(e)=﹣e,即f(t)的值域为(﹣e,+∞),∴﹣∈(﹣e,+∞),所以z∈(﹣∞,0)∪[,+∞),故填:(﹣∞,0)∪[,+∞),33.【解答】解:∵x1∈[2,6),∴f(2)≤f(x1)<f(6),即2≤f(x1)<3,∴f(x1)的值域为[2,3).g(x)的图象开口向上,对称轴为x=a,(1)若a≤0,则g(x)在[0,2]上是增函数,∴g(0)≤g(x2)≤g(2),即g(x2)的值域为[a2+1,a2﹣4a+5],∴,解得﹣1≤a≤0.(2)若a≥2,则g(x)在[0,2]上是减函数,∴g(2)≤g(x2)≤g(1),即g(x2)的值域为[a2﹣4a+5,a2+1],∴,解得2≤a≤3.(3)若0<a≤1,则g min(x)=g(a)=1,g max(x)=g(2)=a2﹣4a+5,∴g(x)的值域为[1,a2﹣4a+5],∴,解得0.(4)若1<a<2,则g min(x)=g(a)=1,g max(x)=g(0)=a2+1,∴g(x)的值域为[1,a2+1],∴,解得a<2.综上,a的取值范围是[﹣1,0]∪[2,3]∪(0,2﹣)∪(,2)=[﹣1,2﹣]∪[,3].故答案为[﹣1,2﹣]∪[,3].34.【解答】解:由于函数f(x)的图象与函数g(x)=2x关于直线y=x对称,故函数f(x)与函数g(x)=2x互为反函数.故函数f(x)=log2x.∴h(x)=f(1﹣|x|)=log2(1﹣|x|),故函数h(x)是偶函数,图象关于y对称,故(2)正确而(1)不正确.函数h(x)的定义域为(﹣1,1),在(﹣1,0)上是增函数,在(0,1)上是减函数,故(4)正确.故当x=0时,函数h(x)取得最大值为0,故(3)不正确.故答案为②④.35.【解答】解:由成立,得=(sin2x+cos2x)2,化简得:,即,∴,又sin2x+cos2x=1,得,.∴.则==•(sin2x+cos2x)=.故答案为:.36.【解答】解:∵f(x)=log2x在区间[a,2a]上是增函数,∴f(x)max﹣f(x)min=f(2a)﹣f(a)=log22a﹣log2a=1.故答案为:1.三.解答题(共4小题)37.【解答】解:(1)函数f(x)=的图象关于原点对称,∴f(x)+f(﹣x)=0,即+=0,∴()=0,∴=1恒成立,即1﹣a2x2=1﹣x2,即(a2﹣1)x2=0恒成立,所以a2﹣1=0,解得a=±1,又a=1时,f(x)=无意义,故a=﹣1;(2)x∈(1,+∞)时,f(x)+(x﹣1)<m恒成立,即+(x﹣1)<m,∴(x+1)<m在(1,+∞)恒成立,由于y=(x+1)是减函数,故当x=1,函数取到最大值﹣1,∴m≥﹣1,即实数m的取值范围是m≥﹣1;(3)f(x)=在[2,3]上是增函数,g(x)=(x+k)在[2,3]上是减函数,∴只需要即可保证关于x的方程f(x)=(x+k)在[2,3]上有解,下解此不等式组.代入函数解析式得,解得﹣1≤k≤1,即当﹣1≤k≤1时关于x的方程f(x)=(x+k)在[2,3]上有解.38.【解答】解:(1)∵1是函数y=f(x)+x的零点,∴f(1)=﹣1,即log a(2﹣1)﹣log a(2+1)+1=0,即log a3=1,解得a=3.(2)由(1)可知函数f(x)是递增函数,f(x)>0得log3(2﹣x)>log3(2+x),所以:有解得﹣2<x<0,所使f(x)>0的实数x的取值集合为{x|﹣2<x<0}.39.【解答】解:(1)a2﹣3a+3=1,可得a=2或a=1(舍去),∴f(x)=2x;(2)F(x)=2x﹣2﹣x,∴F(﹣x)=﹣F(x),∴F(x)是奇函数;(3)不等式:log2(1﹣x)>log2(x+2),即1﹣x>x+2>0,∴﹣2<x<﹣,解集为{x|﹣2<x<﹣}.40.【解答】解:(I)∵f(x)是定义在R上的偶函数,x≤0时,f(x)=(﹣x+1),∴f(3)+f(﹣1)=f(﹣3)+f(﹣1)=4+2=﹣2﹣1=﹣3;(II)令x>0,则﹣x<0,f(﹣x)=(x+1)=f(x)∴x>0时,f(x)=(x+1),则f(x)=.(Ⅲ)∵f(x)=(﹣x+1)在(﹣∞,0]上为增函数,∴f(x)在(0,+∞)上为减函数∵f(a﹣1)<﹣1=f(1)∴|a﹣1|>1,∴a>2或a<0。
高一数学必修一第二章基本初等函数综合素能检测及答案
第二章基本初等函数综合素能检测本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。
)1.函数y =log 12(x -1)的定义域是( )A .[2,+∞)B .(1,2]C .(-∞,2] D.⎣⎡⎭⎫32,+∞ [答案] B[解析] log 12(x -1)≥0,∴0<x -1≤1,∴1<x ≤2.故选B.2.(·浙江文,2)已知函数f (x )=log 2(x +1),若f (α)=1,则α=( ) A .0 B .1 C .1 D .3 [答案] B[解析] 由题意知,f (α)=log 2(α+1)=1,∴α+1=2,∴α=1.3.已知集合A ={y |y =log 2x ,x >1},B ={y |y =(12)x ,x >1},则A ∩B =( )A .{y |0<y <12} B .{y |0<y <1}C .{y |12<y <1} D .∅[答案] A[解析] A ={y |y >0},B ={y |0<y <12}∴A ∩B ={y |0<y <12},故选A.4.(·重庆理,5)函数f (x )=4x +12x 的图象( )A .关于原点对称B .关于直线y =x 对称C .关于x 轴对称D .关于y 轴对称 [答案] D[解析] ∵f (-x )=2-x +12-x =2x +12x =f (x )∴f (x )是偶函数,其图象关于y 轴对称.5.(·辽宁文,10)设2a =5b =m ,且1a +1b=2,则m =( )A.10 B .10 C .20 D .100 [答案] A[解析] ∵2a =5b =m ∴a =log 2m b =log 5m ∴1a +1b =1log 2m +1log 5m =log m 2+log m 5=log m 10=2 ∴m =10 选A.6.已知f (x )=⎩⎪⎨⎪⎧f (x +2) x ≤0log 12x x >0,则f (-8)等于( )A .-1B .0C .1D .2[答案] A[解析] f (-8)=f (-6)=f (-4)=f (-2)=f (0)=f (2)=log 122=-1,选A.7.若定义域为区间(-2,-1)的函数f (x )=log (2a -3)(x +2),满足f (x )<0,则实数a 的取值范围是( )A.⎝⎛⎭⎫32,2 B .(2,+∞) C.⎝⎛⎭⎫32,+∞ D.⎝⎛⎭⎫1,32 [答案] B[解析] ∵-2<x <-1,∴0<x +2<1, 又f (x )=log (2a -3)(x +2)<0, ∴2a -3>1,∴a >2.8.已知f (x )是偶函数,它在[0,+∞)上是减函数.若f (lg x )>f (1),则x 的取值范围是( )A .(110,1)B .(0,110)∪(1,+∞)C .(110,10) D .(0,1)∪(10,+∞)[答案] C[解析] ∵f (x )为偶函数, ∴f (lg x )>f (1)化为f (|lg x |)>f (1),又f (x )在[0,+∞)上为减函数,∴|lg x |<1,∴-1<lg x <1,∴110<x <10,选C.9.幂函数y =x m 2-3m -4(m ∈Z )的图象如下图所示,则m 的值为( )A .-1<m <4B .0或2C .1或3D .0,1,2或3[答案] D[解析] ∵y =x m 2-3m -4在第一象限为减函数 ∴m 2-3m -4<0即-1<m <4 又m ∈Z ∴m 的可能值为0,1,2,3. 代入函数解析式知都满足,∴选D.10.(09·北京理)为了得到函数y =lg x +310的图像,只需把函数y =lg x 的图像上所有的点( )A .向左平移3个单位长度,再向上平移1个单位长度B .向右平移3个单位长度,再向上平移1个单位长度C .向左平移3个单位长度,再向下平移1个单位长度D .向右平移3个单位长度,再向下平移1个单位长度 [答案] C[解析] y =lg x +310=lg(x +3)-1需将y =lg x 图像先向左平移3个单位得y =lg(x +13)的图象,再向下平移1个单位得y =lg(x +3)-1的图象,故选C.11.已知log 12b <log 12a <log 12c ,则( ) A .2b >2a >2c B .2a >2b >2c C .2c >2b >2aD .2c >2a >2b[答案] A[解析] ∵由log 12b <log 12a <log 12c ,∴b >a >c , 又y =2x 为增函数,∴2b >2a >2c .故选A.12.若0<a <1,则下列各式中正确的是( )A .log a (1-a )>0B .a 1-a >1 C .log a (1-a )<0 D .(1-a )2>a 2 [答案] A[解析] 当0<a <1时,log a x 单调减,∵0<1-a <1,∴log a (1-a )>log a 1=0.故选A.[点评] ①y =a x 单调减,0<1-a <1,∴a 1-a <a 0=1. y =x 2在(0,1)上为增函数.当1-a >a ,即a <12时,(1-a )2>a 2;当1-a =a ,即a =12时,(1-a )2=a 2;当1-a <a ,即12<a <1时,(1-a )2<a 2.②由于所给不等式在a ∈(0,1)上成立,故取a =12时有log a (1-a )=log 1212=1>0,a 1-a=⎝⎛⎭⎫1212=22<1,(1-a )2-a 2=⎝⎛⎭⎫122-⎝⎛⎭⎫122=0, ∴(1-a )2=a 2,排除B 、C 、D ,故选A.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上)13.函数y =a x (a >0,且a ≠1)在[1,3]上的最大值比最小值大a2,则a 的值是________.[答案] 22或62.[解析] 当a >1时,y =a x 在[1,3]上递增, 故a 3-a =a 2,∴a =62;当0<a <1时,y =a x 在[1,3]上单调递减,故a -a 3=a 2,∴a =22,∴a =22或62.[点评] 指数函数的最值问题一般都是用单调性解决.14.若函数f (2x )的定义域是[-1,1],则f (log 2x )的定义域是________. [答案] [2,4][解析] ∵y =f (2x )的定义域是[-1,1],∴12≤2x ≤2,∴y =f (x )的定义域是⎣⎡⎦⎤12,2,由12≤log 2x ≤2得,2≤x ≤4. 15.函数y =lg(4+3x -x 2)的单调增区间为________.[答案] (-1,32][解析] 函数y =lg(4+3x -x 2)的增区间即为函数y =4+3x -x 2的增区间且4+3x -x 2>0,因此所求区间为(-1,32].16.已知:a =x m,b =x m2,c =x 1m ,0<x <1,0<m <1,则a ,b ,c 的大小顺序(从小到大)依次是__________.[答案] c ,a ,b[解析] 将a =x m ,b =x m2,c =x 1m 看作指数函数y =x P (0<x <1为常数,P 为变量), 在P 1=m ,P 2=m 2,P 3=1m时的三个值,∵0<x <1,∴y =x P 关于变量P 是减函数,∵0<m <1,∴m 2<m <1m ,∴x m2>x m >x 1m ;∴c <a <b .三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分12分)在同一坐标系中,画出函数f (x )=log 2(-x )和g (x )=x +1的图象.当f (x )<g (x )时,求x 的取值范围.[解析] f (x )与g (x )的图象如图所示;显然当x =-1时,f (x )=g (x ),由图可见,使f (x )<g (x )时,x 的取值范围是-1<x <0.18.(本题满分12分)把下列各数按从小到大顺序排列起来. ⎝⎛⎭⎫340,⎝⎛⎭⎫2334,⎝⎛⎭⎫-323,⎝⎛⎭⎫32-45,⎝⎛⎭⎫-433, log 2332,log 143,log 34,log 35,log 142.[分析] 先区分正负,正的找出大于1的,小于1的,再比较.[解析] 首先⎝⎛⎭⎫340=1;⎝⎛⎭⎫2334、⎝⎛⎭⎫32-45∈(0,1);log 35、log 34都大于1;log 2332=-1;⎝⎛⎭⎫-323,⎝⎛⎭⎫-433都小于-1,log 142=-12,-1<log 143<0. (1)⎝⎛⎭⎫32-45=⎝⎛⎭⎫2345,∵y =⎝⎛⎭⎫23x 为减函数,34<45,∴⎝⎛⎭⎫2334>⎝⎛⎭⎫2345=⎝⎛⎭⎫32-45;(2)∵y =x 3为增函数,-32<-43<-1,∴⎝⎛⎭⎫-323<⎝⎛⎭⎫-433<-1; (3)y =log 14x 为减函数,∴-12=log 142>log 143>log 144=-1;(4)y =log 3x 为增函数,∴log 35>log 34>log 33=1.综上可知,⎝⎛⎭⎫-323<⎝⎛⎭⎫-433<log 143<log 142<⎝⎛⎭⎫32-45<⎝⎛⎭⎫2334<⎝⎛⎭⎫340<log 34<log 35. 19.(本题满分12分)已知f (x ) 是偶函数,当x ≥0时,f (x )=a x (a >1),若不等式f (x )≤4的解集为[-2,2],求a 的值.[解析] 当x <0时,-x >0,f (-x )=a -x , ∵f (x )为偶函数,∴f (x )=a -x , ∴f (x )=⎩⎪⎨⎪⎧a x x ≥0⎝⎛⎭⎫1a x x <0,∴a >1,∴f (x )≤4化为⎩⎪⎨⎪⎧ x ≥0,a x ≤4,或⎩⎪⎨⎪⎧x <0⎝⎛⎭⎫1a x ≤4,∴0≤x ≤log a 4或-log a 4≤x <0,由条件知log a 4=2,∴a =2.20.(本题满分12分)在已给出的坐标系中,绘出同时符合下列条件的一个函数f (x )的图象.(1)f (x )的定义域为[-2,2];(2)f (x )是奇函数; (3)f (x )在(0,2]上递减;(4)f (x )是既有最大值,也有最小值; (5)f (1)=0.[解析] ∵f (x )是奇函数, ∴f (x )的图象关于原点对称,∵f (x )的定义域为[-2,2],∴f (0)=0,由f (x )在(0,2]上递减知f (x )在[-2,0)上递减, 由f (1)=0知f (-1)=-f (1)=0,符合一个条件的一个函数的图象如图.[点评] 符合上述条件的函数不只一个,只要画出符合条件的一个即可,再结合学过的一次、二次、幂、指、对函数可知,最简单的为一次函数.下图都是符合要求的.21.(本题满分12分)设a >0,f (x )=e xa +aex 是R 上的偶函数.(1)求a 的值;(2)证明f (x )在(0,+∞)上是增函数.[解析] (1)依题意,对一切x ∈R 有f (-x )=f (x )成立,即e x a +a e x =1aex +ae x ,∴⎝⎛⎭⎫a -1a ⎝⎛⎭⎫e x -1e x =0,对一切x ∈R 成立,由此得到a -1a=0,∴a 2=1,又a >0,∴a =1.(2)设0<x 1<x 2,f (x 1)-f (x 2)=ex 1-ex 2+1ex 1-1ex 2=(ex 2-ex 1)<0∴f (x 1)<f (x 2),∴f (x )在(0,+∞)上为增函数.22.(本题满分14分)某民营企业生产A 、B 两种产品,根据市场调查与预测,A 产品的利润与成正比,其关系如图1,B 产品的利润与的算术平方根成正比,其关系如图2(注:利润与单位:万元)(1)分别将A 、B 两种产品的利润表示为的函数关系式;(2)该企业已筹集到10万元资金,并全部投入A 、B 两种产品的生产,问:怎样分配这10万元,才能使企业获得最大利润,其最大利润约为多少万元?(精确到1万元)[解析] (1)设各x 万元时,A 产品利润为f (x )万元,B 产品利润为g (x )万元,由题设f (x )=k 1x ,g (x )=k 2x ,由图知f (1)=14,∴k 1=14,又g (4)=52,∴k 2=54,从而:f (x )=14x (x ≥0),g (x )=54x (x ≥0).(2)设A 产品投入x 万元,则B 产品投入10-x 万元;设企业利润为y 万元.y =f (x )+g (10-x )=x 4+5410-x (0≤x ≤10),令10-x =t ,则0≤t ≤10,∴y =10-t 24+54t =-14(t -52)2+6516(0≤t ≤10),当t =52时,y max =6516≈4,此时x =10-254=3.75.∴当A 产品投入3.75万元,B 产品投入6.25万元时,企业获得最大利润约4万元.。
高一数学基本初等函数Ⅰ试题答案及解析
高一数学基本初等函数Ⅰ试题答案及解析1.的值域是_______ ;【答案】[0,30]【解析】,因为,结合二次函数的图象可知函数在上单调递减,当时当时,所以函数的值域为[0,30].【考点】本小题主要考查二次函数在闭区间上的值域,考查学生的运算求解能力.点评:对于二次函数要采用配方法求函数的值域,结合函数的图象进行即可.2.如图所示,当时,函数的图象是 ( )【答案】D【解析】因为当时,函数,因为a,b同号,则可知当a>0,b>0,或者a<0,b<0那么分析可知选D3.已知奇函数;(1)求实数m的值,并在给出的直角坐标系中画出的图象;(2)若函数在区间[-1,||-2]上单调递增,试确定的取值范围.【答案】(1)证明:的定义域为,令,则,令,则,即.,故为奇函数. 4分(2)证明:任取且,则又,,,即.故是上的减函数. 8分(3)解:又为奇函数,由(2)知是上的减函数,所以当时,取得最大值,最大值为;当时,取得最小值,最小值为. 11分所以函数在区间上的值域为. 12分【解析】考查奇函数的定义,应用转化的思想求值;作函数的图象,求a的取值范围,体现了作图和用图的能力,属中档题.(1)由奇函数的定义,对应相等求出m的值;画出图象.(2)根据函数的图象知函数的单调递增区间,从而得到|a|-2的一个不等式,解不等式就求得a 的取值范围.(1)证明:的定义域为,令,则,令,则,即.,故为奇函数. 4分(2)证明:任取且,则又,,,即.故是上的减函数. 8分(3)解:又为奇函数,由(2)知是上的减函数,所以当时,取得最大值,最大值为;当时,取得最小值,最小值为. 11分所以函数在区间上的值域为. 12分4.设,则的大小关系为()A.B.C.D.【答案】D【解析】因为,所以,选D.5.若定义运算,则函数的值域是()A.B.C.D.【答案】B【解析】因为,那么化简可知则其值域为,选B.6.已知偶函数在区间上单调递增,则满足不等式的的取值范围是()A.B.C.D.【答案】A【解析】因为解:根据函数在区间[0,+∞)单调递增,得当2x-1≥0,即x≥时,不等式f(2x-1)<f()等价于2x-1<,解之得x<而当2x-1<0,即x<时,由于函数是偶函数,所以f(2x-1)>f()等价于f(1-2x)<f()再根据单调性,得1-2x<,解之得x>综上所述,不等式f(2x-1)<f()的解集为{x|x>}故选A7.求函数的定义域;【答案】【解析】要使原式有意义,则满足,求解不等式得到定义域为。
人教B版高中数学必修一第三章《基本初等函数I》讲解与例题+综合测试(7份).docx
3.4函数的应用(II)QJy I (.Hl / H?S li IJHi E \ J I \ L \1.函数模型所谓数学模型是指对客观实际的特征或数量关系进行抽象概括,用形式化的数学语言表述一种数学结构.数学模型剔除了事物中一切与研究目标无木质联系的各种属性,在纯粹状态下研究数量关系和空间形式,函数就是重要的数学模型,用函数解决方程问题,使求解变得容易进行,这是数学模型间的相互转换在发挥作用.而用函数解决实际问题,则体现了数学模型是联系数学与现实世界的桥梁.本节涉及的函数模型有:⑴指数函数模型:y=G//+c(b>0, bHl, aHO),当b>\, d>0时,其增长特点是随着自变量的增大,函数值增大的速度越来越快,常形象地称为指数爆炸.(2)对数函数模型:y=mlog(l x+n(m^O f a>0, aHl),当aAl,加>0时,其增长的特点是随着自变量的增大,函数值增大的速度越来越慢.(3)帚函数模型:y=a-x n+b(a^O),其中最常见的是二次函数模型y=ax2+bx~\~c(a0), 当d>0时,其特点是随着自变量的增大,函数值先减小,后増大.在以上几种函数模型的选择与建立时,要注意函数图彖的直观运用,分析图象特点,分析变量x的范围,同时还要与实际问题结合,如取整等.【例1 — 1】据报道,全球变暖使北冰洋冬季冰雪覆盖面积在最近50年内减少了5%,如果按此速度,设2012年的冬季冰雪覆盖面积为加,从2012年起,经过兀年后,北冰洋冬季冰雪覆盖面积),与x的函数关系式是()A. ^=0.9550 -mB. >,=(l-O.O55O)-mC. y=0.9550_x-/?zD. y=(l-O.O55O_v)-/n解析:设每年的冰雪覆盖面积减少率为d.・・・50年内覆盖面积减少了5%,1・・・(1—a)5°=l—5%,解得0=1 — 0.9550.1 △・••从2012年起,经过x年后,冰雪覆盖面积尸加1一(1一0.95巧F二加095込答案:A【例1一2】某公司为应对金融危机的影响,拟投资100万元,有两种投资可供选择:一种是年利率1%,按单利计算,5年后收回本金和利息;另一种是年利率3%,按每年复利一次计算,5年后收回本金和利息.哪一种投资更有利?这种投资比另一种投资5年可多得利息多少元?(结果精确到0.01万元)分析:这是一个单利和复利所获得收益多少的比较问题.可先按单利和复利讣算5年后的本利和分别是多少,再通过比较作答.解:本金100万元,年利率1%,按单利计算,5年后的本利和是100X(l + l%X5) = 105(万元).本金100万元,年利率3%,按每年复利一次计算,5年后的本利和是100X(1 + 3%『a 115.93(万元).由此可见按年利率3%每年复利一次投资要比按年利率1%单利投资更有利,5年后多得利息约10.93万元.谈重点利息的计算利息分单利和复利两种.单利是只有木金牛息,利息不再牛息,而复利是把前一期的本利 和作为本金再牛息,两种情况要注意区分.我国现行定期储蓄中的自动转存业务类似复利计•息的储蓄,如某人存入本金。
高中数学必修1基本初等函数测试题及答案1
必修1 第二章 基本初等函数(1)一、选择题:1.3334)21()21()2()2(---+-+----的值 ( )A 437B 8C -24D -8 2.函数x y 24-=的定义域为 ( ) A ),2(+∞ B (]2,∞- C (]2,0 D [)+∞,13.下列函数中,在),(+∞-∞上单调递增的是 ( ) A ||x y = B x y 2log = C 31x y = D xy 5.0=4.函数x x f 4log )(=与xx f 4)(=的图象 ( )A 关于x 轴对称B 关于y 轴对称C 关于原点对称D 关于直线x y =对称5.已知2log 3=a ,那么6log 28log 33-用a 表示为 ( )A 2-aB 25-aC 2)(3a a a +-D 132--a a6.已知10<<a ,0log log <<n m a a ,则 ( )A m n <<1B n m <<1C 1<<n mD 1<<m n7.已知函数f (x )=2x ,则f (1—x )的图象为 ( )A B C D8.有以下四个结论 ① l g(l g10)=0 ② l g(l n e )=0 ③若10=l g x ,则x=10 ④ 若e =ln x,则x =e 2, 其中正确的是 ( ) A. ① ③ B.② ④ C. ① ② D. ③ ④ 9.若y=log 56·log 67·log 78·log 89·log 910,则有 ( )A. y ∈(0 , 1) B . y ∈(1 , 2 ) C. y ∈(2 , 3 ) D. y =1 10.已知f (x )=|lgx |,则f (41)、f (31)、f (2) 大小关系为 ( ) A. f (2)> f (31)>f (41) B. f (41)>f (31)>f (2) C. f (2)> f (41)>f (31) D. f (31)>f (41)>f (2) 11.若f (x )是偶函数,它在[)0,+∞上是减函数,且f (lg x )>f (1),则x 的取值范围是( )A. (110,1) B. (0,110)U (1,+∞) C. (110,10) D. (0,1)U (10,+∞)12.若a 、b 是任意实数,且a >b ,则 ( )A. a 2>b 2B. a b <1C. ()lg a b - >0D.12a ⎛⎫ ⎪⎝⎭<12b⎛⎫⎪⎝⎭二、填空题:13. 当x ∈[-1,1]时,函数f (x )=3x -2的值域为14.已知函数⎩⎨⎧<+≥=-),3)(1(),3(2)(x x f x x f x 则=)3(log 2f _________.15.已知)2(log ax y a -=在]1,0[上是减函数,则a 的取值范围是_________ 16.若定义域为R 的偶函数f (x )在[0,+∞)上是增函数,且f (21)=0,则不等式 f (l og 4x )>0的解集是______________.三、解答题:17.已知函数xy 2=(1)作出其图象;(2)由图象指出单调区间;(3)由图象指出当x 取何值时函数有最小值,最小值为多少?18. 已知f (x )=log a11xx+- (a >0, 且a ≠1) (1)求f (x )的定义域(2)求使 f (x )>0的x 的取值范围.19. 已知函数()log (1)(0,1)a f x x a a =+>≠在区间[1,7]上的最大值比最小值大12,求a 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学必修1《基本初等函数》测试题
一、选择题.(共50分每小题5分.每题都有且只有一个正确选项.)
1、若0a >,且,m n 为整数,则下列各式中正确的是 ( )
A 、m m n n a a a ÷=
B 、n m n m a a a •=•
C 、()n m m n a a +=
D 、01n n a a -÷=
2、对于0,1a a >≠,下列说法中,正确的是 ( )
①若M N =则log log a a M N =;②若log log a a M N =则M N =;③若22log log a a M N =则
M N =;④若M N =则22log log a a M N =。
A 、①②③④
B 、①③
C 、②④
D 、②
3、设集合2{|3,},{|1,}x S y y x R T y y x x R ==∈==-∈,则S T 是 ( )
A 、∅
B 、T
C 、S
D 、有限集
4、函数22log (1)y x x =+≥的值域为 ( )
A 、()2,+∞
B 、(),2-∞
C 、[)2,+∞
D 、[)3,+∞
5、设 1.50.90.4812314,8,2y y y -⎛⎫=== ⎪⎝⎭,则 ( )
A 、312y y y >>
B 、213y y y >>
C 、132y y y >>
D 、123y y y >>
6、在(2)log (5)a b a -=-中,实数a 的取值范围是 ( )
A 、52a a ><或
B 、2335a a <<<<或
C 、25a <<
D 、34a <<
7、计算lg52lg2)lg5()lg2(22•++等于 ( )
A 、0
B 、1
C 、2
D 、3
8、已知3log 2a =,那么33log 82log 6-用a 表示是 ( )
A 、52a -
B 、2a -
C 、23(1)a a -+
D 、 231a a --
9、已知幂函数f(x)过点(2,2
2),则f(4)的值为 ( )
A 、2
1 B 、 1 C 、
2 D 、8 10、若函数 ()log (01)a f x x a =<<在区间[],2a a 上的最大值是最小值的3倍,则a 的值为( )
A
、4 B
、2 C 、14 D 、12
二、 填空题.(每小题5分)
11、已知函数)]91(f [f ,)0x (20)(x x log )x (f x 3则,
,⎩⎨⎧≤>=的值为 12、函数2)23x (lg )x (f +-=恒过定点
13、计算:453log 27log 8log 25⨯⨯=
14、若n 3log ,m 2log a a ==,则2n
3m a -=
15、由于电子技术的飞速发展,计算机的成本不断降低,若每隔5年计算机的价格降低
13
,问现在价格为8100元的计算机经过15年后,价格应降为_______
三、 解答题.写出必要的文字说明.
16.求下列各式中的x 的值(共15分,每题5分) 1)1x (ln )1(<- 0231)2(x 1<-⎪⎭
⎫ ⎝⎛-
17、(普通班做,10分)已知函数1])2
1[(
log )x (f x 21-=, 1.a 0a ,1)3(21
2≠>⎪⎭⎫ ⎝⎛>--且其中x x a a
(1)求f(x)的定义域;
(2)讨论函数f(x)的增减性。
17、(实验班做,10分)已知函数)
1a (log )x (f x
a -= )1a 0a (≠>且,
(1)求f(x)的定义域;
(2)讨论函数f(x)的增减性。
参考答案:
DDCCC BBBAA
11、9 12、(1,2) 13、1/4 14、3
62 15、2400元 16、(1)解:ln(x-1)<lne }
1|{11-<∈∴+<∴<-∴e x x x e x e
x
}
2log 1|{2
log 12
log 1)3
1()31(2)3
1()2(3
13
1312log 1x 13
1+<∈∴+<∴>-∴<∴<--x x x x x x 解:
1
212,101
212,11)3(2122
12<∴-<-<<>∴->->∴>∴⎪⎭⎫ ⎝⎛>----x x x a x x x a a a a a x
x x x 时当时当解:
}
0|{,10}
0|x {,11a 0
1(1)a :17x x <<<>>∴>∴>-x x a x a 函数的定义域为时当函数的定义域为时当解 .
)0,()(,10;
),0()(,1)2(上递增在时当上递增在时当-∞<<+∞>x f a x f a。