弹塑性力学-弹塑性本构关系ppt课件
合集下载
弹塑性力学-弹塑性本构关系ppt课件
为非负,即有 0
功,即 0
(应变硬化和理想塑性材料)
(应变软化材料)
工程弹塑性力学·塑性位势理论
(2) 德鲁克塑性公设的表述
德鲁克公设可陈述为:对于处在某一状态下的稳定材 料的质点(试件),借助于一个外部作用在其原有应力状态 之上,缓慢地施加并卸除一组附加压力,在附加应力的施 加和卸除循环内,外部作用所作之功是非负的。
Ñ W
0 ij
ij
0 ij
d ij 0
Ñ 由于弹性应变εije在应力循环
中是可逆的,因而
( ij
0 ij
)
d
e
ij
0
0 ij
于是有:
Ñ WD WDp
( ij
0 ij
)d
p
ij
0
0 ij
工程弹塑性力学·塑性位势理论
(3) 德鲁克塑性公设的重要推论
Ñ WD WDp
( ij
0 ij
)d
势理论。他假设经过应力空间的任何一点M,必有一
塑性位势等势面存在,其数学表达式称为塑性位势函
数,记为:
g I1, J2, J3, H 0
或
g ij , H 0
式中, H 为硬化参数。
塑性应变增量可以用塑性位势函数对应力微分的表达
式来表示,即:
d
p ij
d
g
ij
工程弹塑性力学·塑性位势理论
不小于零,即附加应力的塑性功不出现负值, 则这种材料就是稳定的,这就是德鲁克公设。
工程弹塑性力学·塑性位势理论
在应力循环中,外载所作的 功为:
Ñ W
0 ij
ij
d ij
0
不论材料是不是稳定,上述 总功不可能是负的,不然, 我们可通过应力循环不断从 材料中吸取能量,这是不可 能的。要判断材料稳定必须 依据德鲁克公设,即附加应 力所作的塑性功不小零得出
第11章-弹塑性力学--本构关系
xy c41 x c42 y c43 z c44 xy c45 yz c46 zx yz c51 x c52 y c53 z c54 xy c55 yz c56 zx zx c61 x c62 y c63 z c64 xy c65 yz c66 zx
xy c41 x c42 y c43 z
y y
图4-2
(a)
z
x
x
z
现在引进坐标系 Ox’y’z’, 原坐 标系 Oxyz 绕 y 轴转动 1800 后可与之重合 (图4-2)
新旧坐标轴间的方向余弦
l11 l33 cos180
1 0 0 1 l22 cos 0 1 0 0 l21 l31 l12 l32 l13 l23 cos 90 0
(11-13)
平面应力问题 用应变分量表示 应力分量
E y x 1 2 x E (11-14) y y x 1 2 G
ij ije 2 ij
(11-3’)
以上证明了各向同性的均匀弹性体的弹性常数只有 两个。
现在考虑一种物体各边平行于坐标轴的特殊情况,并 由此导出工程上常用的弹性常数和广义胡克定律。当物 体边界法线方向与 z 轴重合的两对边上有均匀的σz 作 用,其他边均为自由边时,则由材料力学知道
第11章 本构关系
11.1 广义胡克定律 单向应力状态,应力小于屈服应力时,应力应变呈简单的 线性关系
x E x
E 为弹性常数(扬氏弹性模量)
三维应力状态,一点处的应 力状态需9个应力分量,相对 应的也要用9个应变分量表示
xy c41 x c42 y c43 z
y y
图4-2
(a)
z
x
x
z
现在引进坐标系 Ox’y’z’, 原坐 标系 Oxyz 绕 y 轴转动 1800 后可与之重合 (图4-2)
新旧坐标轴间的方向余弦
l11 l33 cos180
1 0 0 1 l22 cos 0 1 0 0 l21 l31 l12 l32 l13 l23 cos 90 0
(11-13)
平面应力问题 用应变分量表示 应力分量
E y x 1 2 x E (11-14) y y x 1 2 G
ij ije 2 ij
(11-3’)
以上证明了各向同性的均匀弹性体的弹性常数只有 两个。
现在考虑一种物体各边平行于坐标轴的特殊情况,并 由此导出工程上常用的弹性常数和广义胡克定律。当物 体边界法线方向与 z 轴重合的两对边上有均匀的σz 作 用,其他边均为自由边时,则由材料力学知道
第11章 本构关系
11.1 广义胡克定律 单向应力状态,应力小于屈服应力时,应力应变呈简单的 线性关系
x E x
E 为弹性常数(扬氏弹性模量)
三维应力状态,一点处的应 力状态需9个应力分量,相对 应的也要用9个应变分量表示
弹塑性力学课件第三章
zx C61x C62 y C63z C64 xy C65 yz C66 zx
C ij
ijkl kl
Cijkl Cijlk
2021/1/10
4
第三章 本构关系
一、线性弹性体的本构方程——具有一个弹性对称面的线
性弹性体
x
y
C11
C12 C22
C13 C23
C14 C24
2021/1/10
10
第三章 本构关系
一、线性弹性体的本构方程——各向同性弹性体
x
1 E
x
( y
z ) ,
xy
1 G
xy
y
1 E
y
( x
z ) ,
yz
1 G
yz
z
1 E
z
( x
y ) ,
zx
1 G
zx
ij 1Eij Ekkij
2021/1/10
11
第三章 本构关系 一、线性弹性体的本构方程——各向同性弹性体
0 x
0
y
z xy
C33 0 0
对
C44 0
0 z
0
xy
yz
zx
称
C55
0 C66
yz zx
2021/1/10
6
第三章 本构关系 一、线性弹性体的本构方程——正交各向异性弹性体
x y z xy
1 Ex
xy
1 Ey
对
xz
yz
弹塑性力学课件第三章
第三章 本构关系
本章学习要点:
掌握各项同性材料的广义Hooke定律 掌握弹性应变能密度函数的概念及计算 理解初始屈服、后继屈服以及加卸载的概 念 掌握几个常用的屈服条件 理解弹塑性材料的增量和全量本构关系的 基本概念
弹塑性本构模型理论课件
。
材料屈服强度影响规律
屈服强度定义
材料开始发生明显塑性变形的最小应力值,反映了材料抵抗塑性变 形的能力。
屈服强度对弹塑性行为的影响
屈服强度越大,材料抵抗塑性变形的能力越强,进入塑性阶段所需 的应力水平越高,材料的塑性变形能力越差。
屈服强度的影响因素
材料的晶体结构、化学成分、温度、应变速率等都会影响屈服强度 的大小。
材料弹性模量影响规律
弹性模量定义
01
材料在弹性阶段内,应力与应变之比,反映了材料抵抗弹性变
形的能力。
弹性模量对弹塑性行为的影响
02
弹性模量越大,材料的刚度越大,相同应力作用下产生的弹性
变形越小,进入塑性阶段所需的应力水平越高。
弹性模量的影响因素
03
材料的晶体结构、化学成分、温度等都会影响弹性模量的大小
弹性阶段
材料在受力初期表现出弹性行为,应 力与应变呈线性关系,卸载后无残余 变形。
屈服阶段
当应力达到屈服强度时,材料进入塑 性阶段,应力不再增加但应变继续增 加,卸载后有残余变形。
强化阶段
材料在塑性阶段表现出应变硬化特性 ,随着塑性应变的增加,屈服强度逐 渐提高。
理想弹塑性模型
无强化阶段的弹塑性模型,屈服后应 力保持恒定,应变无限增加。
通过实验测定金属材料的弹性模量、屈服强度、硬化模量等参 数,为模拟提供准确数据。
利用有限元软件建立金属材料的弹塑性行为模型,进行加载、 卸载等模拟过程。
将模拟结果与实验结果进行对比,验证弹塑性本构模型在金属 材料行为模拟中的准确性和可靠性。
实例二:混凝土结构弹塑性损伤评估
损伤模型选择
针对混凝土结构的损伤特点,选择合适 的弹塑性损伤本构模型,如塑性损伤模
《岩土弹塑性力学》课件
02
数值模拟的精度和稳 定性
数值模拟的精度和稳定性是评价数值 模拟技术的重要指标,需要不断改进 数值方法和模型参数,提高模拟结果 的可靠性和精度。
03
数值模拟的可视化和 后处理
可视化技术和后处理技术是数值模拟 的重要组成部分,能够直观地展示模 拟结果和进行结果分析,需要不断改 进和完善相关技术。
THANKS
感谢您的观看
弹塑性力学的未来发展
随着科技的不断进步和应用领域的拓展,弹塑性力学将进 一步发展并应用于更广泛的领域,如新能源、环保、生物 医学等。
Part
02
岩土材料的弹塑性性质
岩土材料的弹性性质
弹性模量
表示岩土材料在弹性范围内抵抗变形的能力,是 材料刚度的度量。
泊松比
描述材料横向变形的量,表示材料在单向受拉或 受压时,横向变形的收缩量与纵向变形的关系。
各向同性假设
假设材料在各个方向上具 有相同的物理和力学性质 ,即材料性质不随方向变 化而变化。
弹塑性力学的历史与发展
弹塑性力学的起源
弹塑性力学起源于20世纪初,随着材料科学和工程技术的 不断发展,人们对材料在复杂应力状态下的行为有了更深 入的认识。
弹塑性力学的发展
弹塑性力学经过多年的发展,已经形成了较为完善的理论 体系和研究方法,为解决工程实际问题提供了重要的理论 支持。
《岩土弹塑性力学》 PPT课件
• 弹塑性力学基础 • 岩土材料的弹塑性性质 • 岩土弹塑性本构模型 • 岩土弹塑性力学的应用 • 岩土弹塑性力学的挑战与展望
目录
Part
01
弹塑性力学基础
弹塑性力学定义
弹塑性力学
是一门研究材料在弹性变形和塑性变形共同作用下的力学行为的学科。
弹塑性力学塑性本构关系
0
14
1.理想塑性材料的增量本构关系 2.硬化材料的增量塑性本构关系 3.全量塑性本构关系
15
2. 硬化材料的增量塑性本构关系
d
p ij
d
f
ij
f g 相关联流动
塑性应变大小 塑性应变方向
对于强化材料
f
ij
d ij
0
d ij 在
f
ij
方向上的投影,反映了塑性应变增量的大小。
可假设:
d
1 h
H121
Cp ijkl
1
9K 2
G
H11H 22
H
2 22
对称
H11H 33
H 22H33
H
2 33
H11H12 H 22H12 H 33 H12
H122
H11H 23
H 22H 23
H 33 H12
H12H 23
H
2 23
H11H 31 H 22H31
H
33
H
31
H12H31
H12
H
0
如果hd以 d累积pf塑2ij d性d32应ijd变ijpdkfddijpkdp作32p0为d内2变hd量f ij
f
fij ij
ij
p ij
d
k k p k d2 p f f
p ij
d
d
p ij
d
f k
k
p
d
d p
f
p
ij
0
3 ij ij
2 f f
3 ij ij
h f
Cijkl
1 H
H
ij
H
kl
H
【全版】绪论弹塑性力学内容推荐PPT
几何连续规律:要求变形前连续的物体,变形后仍为连续物 体,由这个规律建立几何方程或变形协调方程,均为微 分方程。
物理(本构)关系:应力 (内力)与应变 (变形)之间的关系,根据 材料的不同性质来建立,最常见的为各向同性材料。
平衡方程和几何方程都与材料无关,塑性 力学与弹性力学的主要区别在于本构方程
哈工大 土木工程学院
在研究方法上的不同。材料力学为简化计算,对构件的应 力分布和变形状态作出某些假设,因此得到的解答是粗略 和近似的;而弹塑性力学研究通常不引入上述假设,从而 所得结果比较精确,并可验证材料力学结果的精确性。
哈工大 土木工程学院
6 / 27
01 绪 论
第2节 基本假设和基本规律
弹塑性力学的定义:弹塑性力学是固体力学的一个重要分支,是研究弹性体和弹塑性体在载荷作用下应力分布规律和变形规律的一门
学◆科新。理论-实损伤际、混问沌等题; 由多方面因素构成,分析极为复杂。应按照物体
的性质,以及求解范围,忽略一些暂时可不考虑的因素, 混合法(同时以应力和位移为未知量)
19世纪70年代,建立了各种能量原理,并提出了这些原理的近似计算方法。
第混2合节法(基同本使时假以设我应和力基们和本位规研移律为究未知的量)问题限定在一个方便可行的范围内。
对工科来说,弹性力学的任务,和材料力学、结构力学 的任务一样,是分析各种结构物或其构件在弹性阶段的应 力和应变,校核它们是否具有所需的强度、刚度和稳定性, 并寻求或改进它们的计算方法。
哈工大 土木工程学院
2 / 27
01 绪 论
弹塑性力学是根据固体材料受外因作用时所呈现的弹性与 塑性性质而命名。它们是固体材料变化过程的两个阶段。
(2)在研究问题的过程中可以略去相关的二次及二 次以上的高阶微量;
物理(本构)关系:应力 (内力)与应变 (变形)之间的关系,根据 材料的不同性质来建立,最常见的为各向同性材料。
平衡方程和几何方程都与材料无关,塑性 力学与弹性力学的主要区别在于本构方程
哈工大 土木工程学院
在研究方法上的不同。材料力学为简化计算,对构件的应 力分布和变形状态作出某些假设,因此得到的解答是粗略 和近似的;而弹塑性力学研究通常不引入上述假设,从而 所得结果比较精确,并可验证材料力学结果的精确性。
哈工大 土木工程学院
6 / 27
01 绪 论
第2节 基本假设和基本规律
弹塑性力学的定义:弹塑性力学是固体力学的一个重要分支,是研究弹性体和弹塑性体在载荷作用下应力分布规律和变形规律的一门
学◆科新。理论-实损伤际、混问沌等题; 由多方面因素构成,分析极为复杂。应按照物体
的性质,以及求解范围,忽略一些暂时可不考虑的因素, 混合法(同时以应力和位移为未知量)
19世纪70年代,建立了各种能量原理,并提出了这些原理的近似计算方法。
第混2合节法(基同本使时假以设我应和力基们和本位规研移律为究未知的量)问题限定在一个方便可行的范围内。
对工科来说,弹性力学的任务,和材料力学、结构力学 的任务一样,是分析各种结构物或其构件在弹性阶段的应 力和应变,校核它们是否具有所需的强度、刚度和稳定性, 并寻求或改进它们的计算方法。
哈工大 土木工程学院
2 / 27
01 绪 论
弹塑性力学是根据固体材料受外因作用时所呈现的弹性与 塑性性质而命名。它们是固体材料变化过程的两个阶段。
(2)在研究问题的过程中可以略去相关的二次及二 次以上的高阶微量;
非线性有限元9弹塑性本构关系ppt课件
单轴试验下材料的弹塑性性态 (1/3)
对塑性变形基本规律的认识来自于实验: • 从实验中找出在应力超出弹性极限后材料的特性; • 将这些特性进行归纳并提出合理的假设和简化模型,
确定应力超过弹性极限后材料的本构关系; • 建立塑性力学的基本方程; 1) 求解这些方程,得到不同塑性状态下物体内的应力和
应变。
• 塑性阶段:继续加载,材料可承受 更大应力,称为材料强化,并伴随 出现塑性应变。至A点以前卸载, 路径接近直线,即处于弹性卸载状 态,其斜率等于加载斜率E。
1) 破坏点:继续加载至可承受的最大 极限应力,试件出现颈缩而破坏,
称为强度极限。
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
1913年:泰勒(Taylor)的实验证明,LevyMises本构关系是真实情况的一阶近似。
1924年:提出塑性全量理论,伊柳辛(Ilyushin) 等苏联学者用来解决大量实际问题。
1930年:罗伊斯(Reuss)在普朗特(Prandtle) 的启示下,提出包括弹性应变部分的三维塑性应力 -应变关系。至此,塑性增量理论初步建立。
(屈服点),描写多维问题的屈服条件就需要应力或应变空间的一个临界曲面,该
曲面称为屈服面。
考虑到塑性变形与静
水压力无关的特点
f1,2,3C
FJ2,J3C
至今已出现许多屈服理论。俞茂宏教授在这方面做出了重要贡献。 屈服函数:
是描写屈服条件的函数。不同屈服条件,其屈服函数不尽相同。
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
基本实验有两个: • 简单拉伸实验:实验表明,塑性力学研究的应力与应变
对塑性变形基本规律的认识来自于实验: • 从实验中找出在应力超出弹性极限后材料的特性; • 将这些特性进行归纳并提出合理的假设和简化模型,
确定应力超过弹性极限后材料的本构关系; • 建立塑性力学的基本方程; 1) 求解这些方程,得到不同塑性状态下物体内的应力和
应变。
• 塑性阶段:继续加载,材料可承受 更大应力,称为材料强化,并伴随 出现塑性应变。至A点以前卸载, 路径接近直线,即处于弹性卸载状 态,其斜率等于加载斜率E。
1) 破坏点:继续加载至可承受的最大 极限应力,试件出现颈缩而破坏,
称为强度极限。
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
1913年:泰勒(Taylor)的实验证明,LevyMises本构关系是真实情况的一阶近似。
1924年:提出塑性全量理论,伊柳辛(Ilyushin) 等苏联学者用来解决大量实际问题。
1930年:罗伊斯(Reuss)在普朗特(Prandtle) 的启示下,提出包括弹性应变部分的三维塑性应力 -应变关系。至此,塑性增量理论初步建立。
(屈服点),描写多维问题的屈服条件就需要应力或应变空间的一个临界曲面,该
曲面称为屈服面。
考虑到塑性变形与静
水压力无关的特点
f1,2,3C
FJ2,J3C
至今已出现许多屈服理论。俞茂宏教授在这方面做出了重要贡献。 屈服函数:
是描写屈服条件的函数。不同屈服条件,其屈服函数不尽相同。
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
基本实验有两个: • 简单拉伸实验:实验表明,塑性力学研究的应力与应变
弹塑性力学塑性本构关系
德鲁克-普拉格屈服条件是对Mises屈服条件的改进,该 条件中增加了应力张量的第一不变量,屈服条件表达式为
f (I1, J2 ) = α I1 + J2 = k
( ) 其中 α=
2 sin ϕ
3 3 − sin 2 ϕ
( ) k = 6c cosϕ 3 3 − sin 2 ϕ
c, φ 分别为材料的粘性系数和内摩擦角。
= k2
其中 σ0 为拉伸屈服应力,所以
k=
1 3
σ
0
5.2 常用的屈服条件
5.2.2 Mises屈服条件
MIses屈服条件的一般形式为
σ Mises − σ 0 = 0
其中 σ Mises =
3J2 =
1 2
⎡⎣(σ1
−
σ2
)2
+
(σ
2
−
σ3
)2
+
(σ 3
−
σ1 )2
⎤ ⎦
在主应力空间中,Mises屈服条
3 2
sij
−
Cdε
p ij
sij −
Cdε
p ij
−σs = 0
C表征材料强化的大小,来自单向拉伸
5.3 后继屈服条件
内变量
描述连续介质的力学量可以分为外变量和内变量,外变 量是可以从外部直接量测的量,例如总应变、总变形、应 力,温度等;内变量则是不能直接量测的,表征材料内部变 化的量,例如塑性应变、塑性功(塑性变形消耗的功)等。
塑性应变
εp ij
塑性功
= εij
−
ε
e ij
=
ε ij
− ⎜⎜⎝⎛
σ
′
0
σ
弹塑性力学课件
5.Ramberg-Osgood模型
其加载规律可写为: ( 9)
如取 就有
说明:这对应于割线余率为0.7E的应力和应变,上式 中有三个参数可用来刻画实际材料的拉伸特性,而在 数学表达式上也较为简单。
6. 等向强化模型及随动强化模型
M
M1 C
等向强化模型
S
A
—— 是刻画塑性变形历史的参数
假定材料是不可压缩的:A0l0=Al,并认为名义应力 达到最高点C时出现颈缩:
[1] 由
则在颈缩时真应力应满足条件
结论:拉伸失稳分界点的斜率正好和该点的纵坐标值相等。
[2] 注意到
颈缩时的条件也可写为:
即
结论: 拉伸失稳点C的斜率为其纵坐标值除以 (1 )
[3] 以截面积收缩比q为自变量
其中
——为变形后第2杆与第1杆(和第3杆)之间的夹角 可见(33)式中有三个未知量 在不卸载的情况下,由本构方程:
得到 P 与 a 之间的非线性关系
结论: 随着 的增长, 的值将会由于强化效应和 角的减小而提高, 但也会随着杆件截面积的收缩而下降。故当 很大时,结构将可能 变成不稳定的。
§1.8 弹性极限曲线
卸载时的载荷-位移曲线(见图9) 与初始弹性加载时的曲线有相同 的斜率。
应力和应变:
最终的应力和应变值可由(21)、(25)和(22)、(26)下式的叠加求得:
残余应力和残余应变:
特别地,当载荷P值全部卸除后,由△P=-P*,便得到杆 中的残余应力和残余应变(见图10)为:
其中
节点O的残余位移为:
不产生新的塑性变形的限制条件:
其中
值满足
(37)式对应于图12中虚线所构成 的六边形区域。 说明: 可见在加载方向一侧屈服载荷有所提高而与加载方向相反 的一侧屈服载荷有所降低。可用来对应变硬化和包氏效应 等现象做一个比较形象的解释。
弹塑性力学-弹塑性本构关系ppt课件
d
p
|
cos
0
此式限制了屈服面的形状: 对于任意应力状态,应力增量方向
与塑性应变向量之间所成的夹角不应 该大于90°
稳定材料的屈服面必须是凸的.
(a)满足稳定材 料的屈服面
ij
0 ij
(b) 不满足稳定 材料的屈服面
/2
工程弹塑性力学·塑性位势理论
2 塑性应变增量向量与屈服面法向平行
d 必p 与加载面的外法线
p
ij
0
0 ij
WD
(ij
adij
0 ij
)d
p
ij
0
1 a 1 2
当
0 ij
时,略去无穷小量
ij
( ij
0 ij
)d
p ij
0
当
0 ij
ij时,
d
ij
d
p ij
0
屈服面的外凸性
塑性应变增量方向 与加载曲面正交
工程弹塑性力学·塑性位势理论
1 屈服曲面的外凸性
( ij
0 ij
)dijp
|
A0 A||
不小于零,即附加应力的塑性功不出现负值, 则这种材料就是稳定的,这就是德鲁克公设。
工程弹塑性力学·塑性位势理论
在应力循环中,外载所作的 功为:
Ñ W
0 ij
ij
d ij
0
不论材料是不是稳定,上述 总功不可能是负的,不然, 我们可通过应力循环不断从 材料中吸取能量,这是不可 能的。要判断材料稳定必须 依据德鲁克公设,即附加应 力所作的塑性功不小零得出
弹塑性力学本构关系
1
工程弹塑性力学·塑性位势理论
(1) 稳定材料与非稳定材料
塑性力学03-塑性本构关系ppt课件
的应力和应变的改变量, 即B点的应
B
%
力和应变为
% , %
o
p e
因为卸载要服从弹性本构关系,
即 E. 这就是说,我们可以
由因为卸载引起的荷载的改变
%
量 P P% P 按弹性计算得到.
• 推广到复杂应力的卸载情况(即应力强度 i 减小)得到:
卸载定律 . 即: 卸载后的应力或应变等于卸载前的应力或应变 减去卸载时的荷载改变量 P P% P 为假想荷载按弹性计算所
是某一非零的参考应力状态,
t 是单调增加的参数.
这样定义的简单加载说明, 在加载时物体内应变和应力的主方
向都保持不变.
• 但是物体内的内力是不能事先确定的, 那么如何判断加载过 程是简单加载? Il’yushin指出, 在符合下列三个条件时, 可以 证明物体内所有各点是处于简单加载过程:
(1) 荷载(包括体力)按比例增长.如有位移边界条件应为零.
应变增量强度
d
p i
的公式得到
d
p i
d
2 3
Sij Sij
2 3
d
i
所以 d 3dip 3d i 2 i 2H 14i
• 将上面得到的 d代入Levy-Mises流动法则就得到弹塑性硬化
材料的增量型本构方程:
dii
1 2
E
d ii
deij
1 2G
dSij
3d i 2H i
Sij
或写成:
dij
z
2
S
1 E
1 F
1
4
1
z
S
3
1 G
3 F
ln
2
z
屈服曲线
B
%
力和应变为
% , %
o
p e
因为卸载要服从弹性本构关系,
即 E. 这就是说,我们可以
由因为卸载引起的荷载的改变
%
量 P P% P 按弹性计算得到.
• 推广到复杂应力的卸载情况(即应力强度 i 减小)得到:
卸载定律 . 即: 卸载后的应力或应变等于卸载前的应力或应变 减去卸载时的荷载改变量 P P% P 为假想荷载按弹性计算所
是某一非零的参考应力状态,
t 是单调增加的参数.
这样定义的简单加载说明, 在加载时物体内应变和应力的主方
向都保持不变.
• 但是物体内的内力是不能事先确定的, 那么如何判断加载过 程是简单加载? Il’yushin指出, 在符合下列三个条件时, 可以 证明物体内所有各点是处于简单加载过程:
(1) 荷载(包括体力)按比例增长.如有位移边界条件应为零.
应变增量强度
d
p i
的公式得到
d
p i
d
2 3
Sij Sij
2 3
d
i
所以 d 3dip 3d i 2 i 2H 14i
• 将上面得到的 d代入Levy-Mises流动法则就得到弹塑性硬化
材料的增量型本构方程:
dii
1 2
E
d ii
deij
1 2G
dSij
3d i 2H i
Sij
或写成:
dij
z
2
S
1 E
1 F
1
4
1
z
S
3
1 G
3 F
ln
2
z
屈服曲线
工程弹塑性力学教学课件
实验设备与实验原理介绍
实验设备
弹塑性力学实验中常用的设备包括压力机、拉伸机、压缩机 、弯曲机等。
实验原理
介绍弹塑性力学的基本原理,包括弹性变形和塑性变形的基 本概念、应力应变关系、屈服准则等。
实验操作与数据处理方法介绍
实验操作
详细介绍实验操作步骤,包括试样制备、加载方式选择、数据采集等。
数据处理方法
工程弹塑性力学教学 课件
目录
• 弹塑性力学概述 • 弹塑性力学基础知识 • 弹塑性力学分析方法 • 弹塑性力学在工程中的应用案例 • 弹塑性力学实验与实践教学 • 总结与展望
01 弹塑性力学概述
弹塑性力学定义与分类
弹塑性力学定义
弹塑性力学是研究物体在受力状态下 ,弹性变形和塑性变形相互作用的学 科。
塑性力学的基本方程
包括屈服条件方程、流动法则方程、 强化法则方程等。
弹塑性力学基本原理
弹塑性本构关系
描述材料在弹塑性状态下的应力 应变关系。
弹塑性稳定性理论
研究结构在弹塑性状态下的稳定性 问题。
弹塑性极限分析
确定结构在弹塑性状态下的极限承 载能力。
03 弹塑性力学分析方法
弹性力学分析方法
弹性力学基本原理
弹塑性力学基础知识
02
弹性力学基础知识
弹性力学的基本假设
包括连续性假设、均匀性假设、各向同性假设 等。
弹性力学的基本概念
包括应力、应变、弹性模量等。
弹性力学的基本方程
包括平衡方程、几何方程和物理方程等。
塑性力学基础知识
塑性力学的基本概念
塑性力学的基本应用
包括屈服条件、流动法则、强化法则 等。
包括压力加工、材料强度、结构稳定 性等。
弹塑性力学PPT课件精选全文
◆ 体力分量指向同坐标轴正向一致取正,反之负。
.
*
⑾.静力边界条件
◆ 一个客观的弹塑性力学问题,在物体边界上 任意一点的应力分量和面力分量必定满足这 组方程。
◆ 面力分量指向同坐标轴正向一致取正,反之 取负。
.
*
◆ 当边界面与某一坐标轴相垂直时,应力分量 与相应的面力分量直接对应相等。
.
*
2、几何假设——小变形条件
(1)在弹塑性体产生变形后建立平衡方程时,可以 不考虑因变形而引起的力作用线方向的改变;
从而使得平衡条件与几何变形条件线性化。
(2)在研究问题的过程中可以略去相关的二次及二 次以上的高阶微量;
假定物体在受力以后,体内的位移和变形是微小 的,即体内各点位移都远远小于物体的原始尺寸,而 且应变( 包括线应变与角应变 )均远远小于1。根据 这一假定:
.
*
五、 弹塑性力学的基本假设
(1)连续性假设:假定物质充满了物体所占有的 全部空间,不留下任何空隙。
(2)均匀性与各向同性的假设:假定物体内部各点 处,以及每一点处各个方向上的物理性质相同。
1、物理假设:
(3)力学模型的简化假设: (A)完全弹性假设 ;(B)弹塑性假设。
可归纳为以下几点: 1.建立求解固体的应力、应变和位移分布规律的 基本方程和理论; 2.给出初等理论无法求解的问题的理论和方法, 以及对初等理论可靠性与精确度的度量; 3.确定和充分发挥一般工程结构物的承载能力, 提高经济效益; 4.为进一步研究工程结构物的强度、振动、稳定 性、断裂等力学问题,奠定必要的理论基础。
理论上可证明:当一点的应力状态确定时,经推导 必可求出三个实根,即为主应力,且主应力彼此正交。
.
.
*
⑾.静力边界条件
◆ 一个客观的弹塑性力学问题,在物体边界上 任意一点的应力分量和面力分量必定满足这 组方程。
◆ 面力分量指向同坐标轴正向一致取正,反之 取负。
.
*
◆ 当边界面与某一坐标轴相垂直时,应力分量 与相应的面力分量直接对应相等。
.
*
2、几何假设——小变形条件
(1)在弹塑性体产生变形后建立平衡方程时,可以 不考虑因变形而引起的力作用线方向的改变;
从而使得平衡条件与几何变形条件线性化。
(2)在研究问题的过程中可以略去相关的二次及二 次以上的高阶微量;
假定物体在受力以后,体内的位移和变形是微小 的,即体内各点位移都远远小于物体的原始尺寸,而 且应变( 包括线应变与角应变 )均远远小于1。根据 这一假定:
.
*
五、 弹塑性力学的基本假设
(1)连续性假设:假定物质充满了物体所占有的 全部空间,不留下任何空隙。
(2)均匀性与各向同性的假设:假定物体内部各点 处,以及每一点处各个方向上的物理性质相同。
1、物理假设:
(3)力学模型的简化假设: (A)完全弹性假设 ;(B)弹塑性假设。
可归纳为以下几点: 1.建立求解固体的应力、应变和位移分布规律的 基本方程和理论; 2.给出初等理论无法求解的问题的理论和方法, 以及对初等理论可靠性与精确度的度量; 3.确定和充分发挥一般工程结构物的承载能力, 提高经济效益; 4.为进一步研究工程结构物的强度、振动、稳定 性、断裂等力学问题,奠定必要的理论基础。
理论上可证明:当一点的应力状态确定时,经推导 必可求出三个实根,即为主应力,且主应力彼此正交。
.
弹塑性力学最全课件2
18
2.全量应力-应变简化模型
二、弹性-线性强化模型 (材料有显著强化率)
s
E
E
加载
d 0
E
s
1 E
1 E
sign
卸载
d 0 d d E
0 s
s E
19
2.全量应力-应变简化模型
三、弹性-幂次强化模型
k n 0
E
1
0
E k n
0 0
0
k 0
E
n
20
2.全量应力-应变简化模型
(1)塑性应变增量的方向与主应力轴的方向一致;
(2)
d
p ij
d
g
ij
, d 为一非负的比例常数,称为塑性因子。
则称 g( ij ) 为塑性势函数。
Drucker塑性共设
34
3.塑性理论基础
二、流动法则
1、Druker塑性公设,必然得出 f g
2、 f g 即屈服函数与塑性势函数相等,称为相关联流动法则; f g 即屈服函数与塑性势函数相等,称为非关联流动法则。
35
3.塑性理论基础
三、硬化法则 1、各向同性强化(各向同性后继屈服准则) 2、随动强化(随动后继屈服准则) 3、混合强化(混合后继屈服准则)
36
3.塑性理论基础
三、硬化法则
1、各向同性强化(各向同性后继屈服准则)
f ij , k f0 ij K k 0
K k 是一个强化函数或增函数,用来确定屈服面的大小。k 是一个强化
T
T
2、随动后继屈服准则:材料进入塑性后,弹性
0T
范围的大小保持不变,而弹性范围的中心移动。
2 0T
C
C
2.全量应力-应变简化模型
二、弹性-线性强化模型 (材料有显著强化率)
s
E
E
加载
d 0
E
s
1 E
1 E
sign
卸载
d 0 d d E
0 s
s E
19
2.全量应力-应变简化模型
三、弹性-幂次强化模型
k n 0
E
1
0
E k n
0 0
0
k 0
E
n
20
2.全量应力-应变简化模型
(1)塑性应变增量的方向与主应力轴的方向一致;
(2)
d
p ij
d
g
ij
, d 为一非负的比例常数,称为塑性因子。
则称 g( ij ) 为塑性势函数。
Drucker塑性共设
34
3.塑性理论基础
二、流动法则
1、Druker塑性公设,必然得出 f g
2、 f g 即屈服函数与塑性势函数相等,称为相关联流动法则; f g 即屈服函数与塑性势函数相等,称为非关联流动法则。
35
3.塑性理论基础
三、硬化法则 1、各向同性强化(各向同性后继屈服准则) 2、随动强化(随动后继屈服准则) 3、混合强化(混合后继屈服准则)
36
3.塑性理论基础
三、硬化法则
1、各向同性强化(各向同性后继屈服准则)
f ij , k f0 ij K k 0
K k 是一个强化函数或增函数,用来确定屈服面的大小。k 是一个强化
T
T
2、随动后继屈服准则:材料进入塑性后,弹性
0T
范围的大小保持不变,而弹性范围的中心移动。
2 0T
C
C
弹塑性力学 第三章 弹性本构方程 ppt课件
ppt课件
15
式(2)可用矩阵表示
式(3)可用简写为
称为弹性矩阵.
ppt课件
16
三、. 弹性常数
1. 极端各向异性体:
物体内的任一点, 沿各个方向的性能都不相 同, 则称为极端各向异性体. (这种物体的材料极 少见)
即使在极端各向异性条件下, 式(2)中的36个 弹性常数也不是全部独立.
由能量守恒定律和应变能理论可证明,弹性常数 之间存在关系
K E
3(1 2 )
32
应变能:
ppt课件
33
产生的x方向应变:
产生的x方向应变:
叠加
产生的x方向应变:
同理:
ppt课件
7
剪应变:
物理方程:
说明:
1.方程表示了各向同性材料的应力与应 变的关系,称为广义Hooke定义。也称 为本构关系或物理方程。
2.方程组在线弹性条件下成立。
ppt课件
8
三. 体积应变与体积弹性模量
令: 则: 令:
sm称为平均应力; q 称为体积应变
ppt课件
12
当自变量(应变)很小时,式(1)中的各表达式可用泰 勒级数展开.略去二阶及以上的高阶微量,则式(1)中 的第一式展开为:
表示应变分量为零时的值,由基本假设,初始应力为 零.故
表示函数f1对应变分量的一阶偏导数在应变分量为零 时的值,等于一个常数
ppt课件
13
故, 式(1)可用一个线性方程组表示(线弹性体)
ppt课件
23
比较:
可见:
ppt课件
24
§3-3 弹性应变能
弹性体受外力作用后产生变形,外力在其作用位置的 变形上做功。忽略速度、热交换和温度等因素,则外力所 做的功全部转换为应变能储存在物体的内部。
塑性力学第五章本构关系ppt课件
(5-2)
将三个正应变相加,得:
kk
kk
2G
3
E
mkk
1 2
E
kk
记:平均正应变
m
1 3
kk
体积弹性模量 K E / 3(1 2 )
则平均正应力与平均正应变的关系:
m 3K m
(5-4)
(5-2)式用可用应力偏量 sij 和应变偏量 eij 表示为
1 eij 2G sij
(5-5)
包含5个独立方程
利用Mises屈服条件
J 2
2 s
2 s
3,
可以得到
本构关系
d dijdij d 3d
2 J 2
2 s 2 s
将(5-41)式代回(5-39)式,可求出
(5-41)
sij
d ij d
2 sdij d
2 sdij 3d
(5-44)
在(5-39)式中,给定 sij 后不能确定 dij ,但反之却可由 dij
确定 sij 如下:
J 2
1 2
sij sij
1
2(d)2
dijdij ,
将(5-38)式与(5-41)式加以比较就发现:
dW p s d s d
(5-45)
对于刚塑性材料 dW dW p
3、实验验证
本构关系
理想塑性材料与Mises条件相关连的流动法则:
d
p ij
d sij
对应于π平面上,d与p 二S 向量在由坐标原点发出的同一条射线上。
sij
(5-5)
We
1 2G
J 2
1
2
1 G 2
2
1
2
1
《弹塑性力学》幻灯片
弹塑性力学根本方程
• 弹塑性力学的根本方程是: • 〔1〕平衡方程; • 〔2〕几何方程。 • 〔3〕本构方程。 • 前两类方程与材料无关,塑性力学与弹性力学的主要
区别在于第三类方程
1.2 弹塑性力学开展历史
• 1678年胡克〔R. Hooke〕提出弹性体的变形和 所受外力成正比的定律。
• 19世纪20年代,法国的纳维〔C. I. M. H. Navier 〕、柯西〔A. I. Cauchy〕和圣维南〔A. J. C. B. de Saint Venant〕等建立了弹性理论
M r F
2.2.4 三重积
• 三重标量积:
u1 u2 u3 U(VW)v1 v2 v3 (UV)W
w1 w2 w3
• 称为三重标量积或框积,是以U、V、W 为边的平行六面体的体积或体积的负值。 可用[U,V,W]来表示。
U ( V W ) ( U W ) V ( U V ) W
2.2.5 标量场和矢量场
• 函数 (x1,x2,x3)c 称为一个标量场,
梯度 grade1x1e2x2e3x3 (,,)
x1 x2 x3
• 构成矢量场, 垂直于 =常数的外表。
• 矢量的散度:
Vv1v2v3 x1 x2 x3
• 矢量的旋度:
e1
e2
e3
Vcurl/V x1 /x2 /x3
v1
v2
v3
2.3 张量
• 1.3.1 指标记法和求和约定 • 1.3.2 ij 符号〔Kronecker符号〕 • 1.3.3 ijk 符号〔交织张量〕 • 1.3.4 坐标变换 • 1.3.5 笛卡尔张量 • 1.3.6 张量性质
2.3.1 指标记法和求和约定
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
d 0
d 0
CD
AB
dσ<0,但dσp>0,塑性变形
dεp>0,总变形dε>0
d dp 0 d d p 0
d 0
d 0
WI
(ij
0 ij
1
d ij
) d
p
ij
2
WD
1
d
ij
d
p
ij
WD
0
①
ij
0 ij
0时,
(ij
0 ij
)d
p ij
0
应变空间加 载面外凸
2
③
②
塑性势面与屈服面相同
0 ij
ij时,
d
ij
d
p ij
0
加载准则(取大于号表示 有新的塑性变形发生)
根据
d
p ij
关于
0
的正交法则,可得:
d
p ij
d
ij
由应力空间中的屈服与应变空间中屈服面的转换关系,可得:
结合
D
ij
ij
dipj
D
d
p ij
d
p ij
d
ij
可得:
d d
3.1.4 塑性位势理论与流动法则
续应加 变d载ε到ijpσ,ij+最dσ后ij,应在力这又一卸阶回段到,σij将0。产若生整塑个性
应力循环过程中,附加应力dσij所作的塑性 功不小于零,即附加应力的塑性功不出现负 值,则这种材料就是稳定的,这就是德鲁克 公设。
在应力循环中,外载所作的 功为:
Ñ W
0 ij
ij
d ij
0
不论材料是不是稳定,上述 总功不可能是负的,不然, 我们可通过应力循环不断从 材料中吸取能量,这是不可 能的。要判断材料稳定必须 依据德鲁克公设,即附加应 力所作的塑性功不小零得出
与弹性位势理论相类似,Mises于1928年提出塑性
位势理论。他假设经过应力空间的任何一点M,必有
一塑性位势等势面存在,其数学表达式称为塑性位势
函数,记为:
g I1, J2, J3, H 0
或
g ij , H 0
式中, H 为硬化参数。
塑性应变增量可以用塑性位势函数对应力微分的表达
2
因此可将应变循环所作的外部功,写成
Wp
ij
(ij
0 ij
1 2
d ij
)d
p
ij
0
上式表明,如果德鲁克塑性公设成立,WD≥0,则依留申塑性公
设也一定成立,反之,依留申塑性公设成立,并不要求WD≥0, 也就是说,德鲁克塑性公设是依留申塑性公设的充分条件,而
不是必要条件。 当应力点由A到B时,
Ñ WI ijdij 0 i0j
只有在弹性应变时,上述WI=0。
根据Druker塑性公设
当
0 ij
ij时
(ij
0 ij
)dijp
0
可将Druker塑性公设改写成:
WD
(ij
0 ij
)d
p ij
0
由图(a)可知,对于弹性性质不随加载面改变的非耦合情况,外 部作用在应变循环内做功WI和应力循环所作的外部功之间仅差 一个正的附加项: 1 d p d p
Ñ W
0 ij
ij
0 ij
d ij 0
Ñ 由于弹性应变εije在应力循
环中是可逆的,因而
( ij
0 ij
)
d
e
ij
0
0 ij
于是有:
Ñ WD WDp
( ij
0 ij
)d
p
ij
0
0 ij
(3) 德鲁克塑性公设的重要推论
Ñ WD WDp
( ij
0 ij
)d
p
ij
0
0 ij
WD
(ij
adij
p ij
ij
ij
0
(2)附加应力功不符合功的 定义,并非真实功
0 ij
ij
0 ij
d ij
0
应力循环中外载所作真实功 与附加应力功
(3)非真实物理功不能引用热力学定律;
(4)德鲁克公设的适用条件:
①ij0在塑性势面与屈服面
之内时,德鲁克公设成立;
②ij0在塑性势面与屈服面
之间时,德鲁克公设不成立;
后在单元体上缓慢地施加荷载,使
εij达到屈服面,再继续加载达到 应变变dε点ijpε。ij+然d后ε卸ij,载此使时应产变生又塑回性到应 原先的应变状态εij0,并产生了与
塑性变量所对应的残余应力增量 dσijp。
残余应力增量与塑性 应变增量存在关系:
dipj
D
d
p ij
式中,D为弹性矩阵。
根据依留申公设,在 完成上述应变循环中, 外部功不为负,即
0 ij
)d
p
ij
0
1 a 1 2
当
0 ij
时,略去无穷小量
ij
( ij
0 ij
)d
p ij
0
当
0 ij
ij时,
d
ij
d
p ij
0
屈服面的外凸性
塑性应变增量方向 与加载曲面正交
1 屈服曲面的外凸性
( ij
0 ij
)dijp
|
A0 A||
d
p
|
cos
0
此式限制了屈服面的形状: 对于任意应力状态,应力增量方向
d
p ij
d
ij
切平面 加载面
表明,塑性应变分量σij之间的比例可由在 加载面上Φ的位置确定。
dijdijp 0 dσ n 0
加载准则
意义:只有当应力增量指向加载面的外部时才能产生塑性变形。
3德鲁克塑性公设的评述
➢德鲁克公设的适用条件:
(1)应力循环中外载所作
的真实功与ij0起点无关;
Ñ d
与塑性应变向量之间所成的夹角不应 该大于90°
稳定材料的屈服面必须是凸的.
(a)满足稳定材 料的屈服面
ij
0 ij
(b) 不满足稳定 材料的屈服面
/2
2 塑性应变增量向量与屈服面法向平行
d 必p 与加载面的外法线
重合,否则总可以找到A0 使A0A·dεp≥0不成立(如右 图)。
标量dλ,称
为塑性因子
弹塑性力学本构关系
1
(1) 稳定材料与非稳定材料
德鲁克公设和依留申公设是传统塑性力学的基础,它把塑性势函 数与屈服函数紧密联系在一起。德鲁克公设只适用于稳定材料, 而依留申既适用于稳定材料,又适用于不稳定材料。
稳定材料
非稳定材料
附加应力对附加应变做功 附加应力对附加应变负做
为非负,即有 0
功,即 0
屈服面 势面线
(5)金属材料的塑性势面与 屈服面基本一致。
附加应力功为非负的条件
3.1.3 依留申塑性公设的表述
依留申塑性公设:在弹塑性材料的一个应变循环内, 外部作用做功是非负的,如果做功是正的,表示有塑性变 形,如果做功为零,只有弹性变形发生。
设材料单元体经历任意应力
历即史初后始,的在应应变力εσij0ij在0下加处载于面平内衡,,然
(应变硬化和理想塑性材料)
(应变软化材料)
(2) 德鲁克塑性公设的表述
德鲁克公设可陈述为:对于处在某一状态下的稳定材 料的质点(试件),借助于一个外部作用在其原有应力状态 之上,缓慢地施加并卸除一组附加压力,在附加应力的施 加和卸除循环内,外部作用所作之功是非负的。
设材料单元体经历任意应力历史后, 在应力σij0下处于平衡,即开始应力σij0在加 载面内,然后在单元体上缓慢地施加一个附 加力,使σij0达到σij,刚好在屈服面上,再继