空间向量巧解平行、垂直关系
空间向量的平行与垂直定理
空间向量的平行与垂直定理空间向量的平行与垂直定理是空间向量运算中的一条重要定理,它描述了空间中两个向量的平行和垂直关系。
在研究物理、几何和力学等领域时,我们经常需要判断两个向量之间的关系,这个定理就为我们提供了一个有力的工具。
我们来研究两个向量的平行性。
如果两个向量的方向相同或相反,那么它们是平行的。
也就是说,如果向量A和向量B的方向相同或相反,我们可以写成A∥B。
这种平行关系可以用向量的数量积来判断。
具体来说,如果两个向量A和B的数量积等于它们的模长的乘积,即A·B=|A||B|,那么向量A和向量B是平行的。
接下来,我们来研究两个向量的垂直性。
如果两个向量的数量积等于0,那么它们是垂直的。
也就是说,如果向量A和向量B的数量积为0,我们可以写成A⊥B。
这种垂直关系可以用向量的数量积来判断。
具体来说,如果两个向量A和B的数量积等于0,即A·B=0,那么向量A和向量B是垂直的。
空间向量的平行与垂直定理在几何和物理问题中有广泛的应用。
例如,在平面几何中,我们经常需要判断两条线段的平行性或垂直性。
根据空间向量的平行与垂直定理,我们可以通过计算两个向量的数量积来判断它们之间的关系。
这样,我们就可以得到准确的结论,避免了繁琐的几何证明过程。
在物理学中,空间向量的平行与垂直定理也具有重要的应用价值。
例如,在力学中,我们经常需要计算物体受力的情况。
如果两个力的方向相同或相反,那么它们是平行的;如果两个力的数量积为0,那么它们是垂直的。
根据空间向量的平行与垂直定理,我们可以通过计算向量的数量积来判断力的方向和性质,从而进行精确的力学分析。
除了在几何和物理中的应用,空间向量的平行与垂直定理还可以应用于其他领域。
例如,在计算机图形学中,我们经常需要计算向量的平行和垂直关系,以确定图形的方向和位置。
在工程学中,空间向量的平行与垂直定理可以应用于结构分析和力学设计等方面。
空间向量的平行与垂直定理是空间向量运算中的一条重要定理,它描述了空间中两个向量的平行和垂直关系。
3.2.2空间向量与平行.垂直关系
法二 (坐标法) 设 AB 中点为 O,作 OO1∥AA1. 以 O 为坐标原点,OB 为 x 轴,OC 为 y 轴, OO1 为 z 轴建立如图所示的空间直角坐标 系.由已知得
A(-12,0,0),B(12,0,0),C(0, 23,0),N(0, 23,14),B1(12,0, 1), ∵M 为 BC 中点,∴M(14, 43,0).
题型二 证明线线垂直
【例2】 已知正三棱柱 ABC-A1B1C1 的各棱长
都为 1,M 是底面上 BC 边的中点,N 是侧
棱 CC1 上的点,且 CN=14CC1.求证:AB1⊥ MN. [思路探索] 解答本题可先选基向量,证明A→B1·M→N=0 或先 建系,再证明A→B1·M→N=0.
解 法一 (基向量法)
(3)若直线 l 的方向向量是 u,平面α的法向量是 v,则有 l∥α⇔u⊥v⇔u·v=0;l⊥α⇔u∥v⇔u=kv(k∈R).
空间垂直关系的向量表示
(1)线线垂直
设直线l的方向向量为a=(a1,a2,a3),直线m的方向向量为b =(b1,b2,b3),则l⊥m⇔a_⊥__b__⇔ a_·_b_=__0__⇔ _a_1_b_1+__a_2b2+a3b3=0 (2)线面垂直
设直线l的方向向量是u=(a1,b1,c1),平面α的法向量是v=(a2, b2,c2),则l⊥α⇔u∥v⇔ __u_=__k_v.
(3)面面垂直
设平面α的法向量u=(a1,b1,c1),平面β的法向量v= (a2,b2,c2),则α⊥β⇔__u_⊥__v_⇔ ___u_·_v=__0_ ⇔ _a_1_a_2_+__b_1b_2_+__c_1_c_2=__0___ .
试一试:若平面α与β的法向量分别是a=(4,0,-2),
空间向量的垂直与平行解析几何的几何关系
空间向量的垂直与平行解析几何的几何关系空间向量在解析几何中具有广泛的应用,它们可以描述物体在空间中的位置、方向和运动等属性。
在学习空间向量时,了解其垂直与平行的几何关系是非常重要的。
本文将通过几何解析的方式,深入探讨空间向量垂直与平行的性质及其应用。
一、垂直向量在空间中,当两个向量的数量积为零时,我们称这两个向量是垂直的。
数学上可以表达为:两个向量的数量积等于零,则它们垂直。
设有两个向量a和b,它们的坐标分别表示为(a1, a2, a3)和(b1, b2, b3),则向量a与向量b垂直的条件可以表示为:a1 * b1 + a2 * b2 + a3 * b3 = 0这个条件求解出的结果就是两个向量垂直的充要条件。
垂直向量在几何上有许多重要的应用。
例如在平面几何中,两条直线互相垂直,则它们的方向向量必然垂直;在立体几何中,两个平面互相垂直,其法向量也必然垂直。
因此,熟练掌握垂直向量的性质对于解析几何的应用非常重要。
二、平行向量在空间中,当两个向量之间存在倍数关系时,我们称这两个向量是平行的。
数学上可以表达为:两个向量之间存在倍数关系,则它们平行。
设有两个向量a和b,它们的坐标表示为(a1, a2, a3)和(b1, b2, b3),则向量a与向量b平行的条件可以表示为:a1/b1 = a2/b2 = a3/b3 = k (k为常数)其中k为两个向量平行的倍数关系。
平行向量的性质可以应用于线段、直线和平面的平行关系的判断。
例如,在平面几何中,两个直线互相平行,则它们的方向向量之间必然存在倍数关系;在立体几何中,平面与直线平行,则平面的法向量与直线的方向向量必然平行。
三、垂直与平行向量的应用举例1. 垂直向量的应用考虑一个示例问题:已知一条直线L的向量方程为(r - r1) · n = 0,其中r1为已知点,n为已知向量。
求直线L上与已知点A垂直的点B 的坐标。
解析:根据向量方程可以得知,L上的任意点P满足向量n与r - r1垂直的关系。
空间向量的平行与垂直关系解析
空间向量的平行与垂直关系解析在三维空间中,向量是常用来表示大小和方向的物理量。
当我们研究向量时,经常会遇到它们之间的平行与垂直关系。
本文将对空间向量的平行与垂直关系进行解析,并介绍相关的概念和性质。
一、向量的定义与表示在三维空间中,一个向量可以由它的起点和终点表示。
一个向量通常用字母加箭头来表示,如向量AB记作→AB。
向量的起点和终点可以是任意两个点,向量的长度可以用有向线段的长度来表示。
在直角坐标系中,一个三维向量可以表示为一个有序三元组(a, b, c),其中a、b、c是向量在x轴、y轴和z轴上的投影。
二、向量的平行关系1. 定义当两个非零向量的方向相同或相反时,这两个向量被称为平行向量。
简而言之,如果两个向量的方向相同或相反,则它们是平行的。
使用数学符号表示,则有向量→AB ∥向量→CD,或者写作向量→AB || 向量→CD。
2. 判断方法有几种方法可以判断两个向量是否平行,以下是两种常用方法:- 方法一:比较向量的方向比率。
如果两个向量的两个分量的比例相同,则这两个向量是平行的。
例如,向量A(1, 2, 3)与向量B(2, 4, 6)的三个分量的比例都是1:2:3,因此向量A与向量B是平行的。
- 方法二:比较向量的法向量。
如果两个向量的法向量是平行的,那么这两个向量是平行的。
法向量是指将向量的分量进行交换,并改变其中一个分量的符号得到的新向量。
例如,向量A(1, 2, 3)的法向量是向量(-3, 1, -2)。
如果向量A和向量B的法向量平行,那么向量A和向量B是平行的。
三、向量的垂直关系1. 定义当两个非零向量的夹角为直角(90度)时,这两个向量被称为垂直向量。
使用数学符号表示,则有向量→AB ⊥向量→CD,或者写作向量→AB⊥向量→CD。
2. 判断方法有几种方法可以判断两个向量是否垂直,以下是两种常用方法:- 方法一:通过向量的点乘运算。
如果两个向量的点乘结果为0,则这两个向量是垂直的。
高中数学第三章空间向量与立体几何3.2立体几何中的向量方法3.2.2利用向量解决平行、垂直问题讲义
3.2.2 利用向量解决平行、垂直问题1.用向量方法证明空间中的平行关系(1)证明线线平行设直线l,m的方向向量分别是a=(a1,b1,c1),b=(a2,b2,c2),则l∥m⇔□01a∥b⇔□02 a=λb⇔□03a1=λa2,b1=λb2,c1=λc2(λ∈R).(2)证明线面平行设直线l的方向向量为a=(a1,b1,c1),平面α的法向量为u=(a2,b2,c2),则l∥α⇔□04a⊥u⇔□05a·u=0⇔□06a1a2+b1b2+c1c2=0.(3)证明面面平行①设平面α,β的法向量分别为u=(a1,b1,c1),v=(a2,b2,c2),则α∥β⇔□07u∥v⇔u=λv⇔□08a1=λa2,b1=λb2,c1=λc2(λ∈R).②由面面平行的判定定理,要证明面面平行,只要转化为相应的线面平行、线线平行即可.2.用向量方法证明空间中的垂直关系(1)证明线线垂直设直线l1的方向向量u1=(a1,b1,c1),直线l2的方向向量u2=(a2,b2,c2),则l1⊥l2⇔□09u1⊥u2⇔□10u1·u2=0⇔□11a1a2+b1b2+c1c2=0.(2)证明线面垂直设直线l的方向向量是u=(a1,b1,c1),平面α的法向量v=(a2,b2,c2),则l⊥α⇔□12 u∥v⇔□13u=λv(λ∈R)⇔□14a1=λa2,b1=λb2,c1=λc2(λ∈R).(3)证明面面垂直若平面α的法向量u=(a1,b1,c1),平面β的法向量v=(a2,b2,c2),则α⊥β⇔□15u ⊥v⇔□16u·v=0⇔□17a1a2+b1b2+c1c2=0.1.判一判(正确的打“√”,错误的打“×”)(1)若两直线方向向量的数量积为0,则这两条直线一定垂直相交.( )(2)若一直线与平面垂直,则该直线的方向向量与平面内的所有直线的方向向量的数量积为0.( )(3)两个平面垂直,则其中一平面内的直线的方向向量与另一平面内的直线的方向向量垂直.( )答案 (1)× (2)√ (3)×2.做一做(请把正确的答案写在横线上)(1)若直线l 1的方向向量为u 1=(1,3,2),直线l 2上有两点A (1,0,1),B (2,-1,2),则两直线的位置关系是________.(2)若直线l 的方向向量为a =(1,0,2),平面α的法向量为n =(-2,0,-4),则直线l 与平面α的位置关系为________.(3)已知两平面α,β的法向量分别为u 1=(1,0,1),u 2=(0,2,0),则平面α,β的位置关系为________.(4)若平面α,β的法向量分别为(-1,2,4),(x ,-1,-2),并且α⊥β,则x 的值为________.答案 (1)垂直 (2)垂直 (3)垂直 (4)-10探究1 利用空间向量解决平行问题例1 已知正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F 分别是BB 1,DD 1的中点,求证: (1)FC 1∥平面ADE ; (2)平面ADE ∥平面B 1C 1F .[证明] (1)如图所示,建立空间直角坐标系Dxyz ,则有D (0,0,0),A (2,0,0),C 1(0,2,2),E (2,2,1),F (0,0,1),B 1(2,2,2), 所以FC 1→=(0,2,1),DA →=(2,0,0),AE →=(0,2,1).设n 1=(x 1,y 1,z 1)是平面ADE 的法向量,则n 1⊥DA →,n 1⊥AE →, 即⎩⎪⎨⎪⎧n 1·DA →=2x 1=0,n 1·AE →=2y 1+z 1=0,得⎩⎪⎨⎪⎧x 1=0,z 1=-2y 1,令z 1=2,则y 1=-1,所以n 1=(0,-1,2). 因为FC 1→·n 1=-2+2=0,所以FC 1→⊥n 1.又因为FC 1⊄平面ADE ,所以FC 1∥平面ADE . (2)因为C 1B 1→=(2,0,0),设n 2=(x 2,y 2,z 2)是平面B 1C 1F 的一个法向量. 由n 2⊥FC 1→,n 2⊥C 1B 1→,得 ⎩⎪⎨⎪⎧n 2·FC 1→=2y 2+z 2=0,n 2·C 1B 1→=2x 2=0,得⎩⎪⎨⎪⎧x 2=0,z 2=-2y 2.令z 2=2,得y 2=-1,所以n 2=(0,-1,2), 因为n 1=n 2,所以平面ADE ∥平面B 1C 1F . 拓展提升利用向量法证明平行问题的两种途径(1)利用三角形法则和平面向量基本定理实现向量间的相互转化,得到向量的共线关系; (2)通过建立空间直角坐标系,借助直线的方向向量和平面的法向量进行平行关系的证明.【跟踪训练1】 在长方体ABCD -A 1B 1C 1D 1中,AB =4,AD =3,AA 1=2,P ,Q ,R ,S 分别是AA 1,D 1C 1,AB ,CC 1的中点.求证:PQ ∥RS .证明 证法一:以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系Dxyz .则P (3,0,1),Q (0,2,2),R (3,2,0),S (0,4,1), PQ →=(-3,2,1),RS →=(-3,2,1),∴PQ →=RS →,∴PQ →∥RS →,即PQ ∥RS . 证法二:RS →=RC →+CS →=12DC →-DA →+12DD 1→,PQ →=PA 1→+A 1Q →=12DD 1→+12DC →-DA →,∴RS →=PQ →,∴RS →∥PQ →,即RS ∥PQ . 探究2 利用空间向量解决垂直问题例2 如图,在四棱锥E -ABCD 中,AB ⊥平面BCE ,CD ⊥平面BCE ,AB =BC =CE =2CD =2,∠BCE =120°.求证:平面ADE ⊥平面ABE .[证明] 取BE 的中点O ,连接OC ,则OC ⊥EB , 又AB ⊥平面BCE .∴以O 为原点建立空间直角坐标系Oxyz .如图所示.则由已知条件有C (1,0,0),B (0,3,0),E (0,-3,0),D (1,0,1),A (0,3,2). 设平面ADE 的法向量为n =(a ,b ,c ),则n ·EA →=(a ,b ,c )·(0,23,2)=23b +2c =0,n ·DA →=(a ,b ,c )·(-1,3,1)=-a +3b +c =0.令b =1,则a =0,c =-3, ∴n =(0,1,-3).∵AB ⊥平面BCE ,∴AB ⊥OC ,又OC ⊥EB ,且EB ∩AB =B ,∴OC ⊥平面ABE , ∴平面ABE 的法向量可取为m =(1,0,0). ∵n ·m =(0,1,-3)·(1,0,0)=0, ∴n ⊥m ,∴平面ADE ⊥平面ABE . 拓展提升利用向量法证明几何中的垂直问题的两条途径(1)利用三角形法则和平面向量基本定理实现向量间的相互转化,得到向量的垂直关系. (2)通过建立空间直角坐标系,借助直线的方向向量和平面的法向量进行证明.证明线面垂直时,只需直线的方向向量与平面的法向量平行或直线的方向向量与平面内两相交的直线的方向向量垂直.在判定两个平面垂直时,只需求出这两个平面的法向量,再看它们的数量积是否为0.【跟踪训练2】 如右图所示,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,D 1B 1的中点.求证:EF ⊥平面B 1AC .证明 证法一:设AB →=a ,AD →=c ,AA 1→=b ,则EF →=EB 1→+B 1F →=12(BB 1→+B 1D 1→)=12(AA 1→+BD →)=12(AA 1→+AD →-AB →)=12(-a +b +c ),∵AB 1→=AB →+AA 1→=a +b .∴EF →·AB 1→=12(-a +b +c )·(a +b )=12(b 2-a 2+c ·a +c ·b ) =12(|b |2-|a |2+0+0)=0. ∴EF →⊥AB 1→,即EF ⊥AB 1,同理,EF ⊥B 1C . 又AB 1∩B 1C =B 1, ∴EF ⊥平面B 1AC .证法二:设正方体的棱长为2,以DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立如图所示的直角坐标系,则A (2,0,0),C (0,2,0),B 1(2,2,2),E (2,2,1),F (1,1,2).∴EF →=(1,1,2)-(2,2,1) =(-1,-1,1).AB 1→=(2,2,2)-(2,0,0)=(0,2,2),AC →=(0,2,0)-(2,0,0)=(-2,2,0),∴EF →·AB 1→=(-1,-1,1)·(0,2,2)=(-1)×0+(-1)×2+1×2=0.EF →·AC →=(-1,-1,1)·(-2,2,0)=2-2+0=0, ∴EF →⊥AB 1→,EF →⊥AC →, ∴EF ⊥AB 1,EF ⊥AC . 又AB 1∩AC =A , ∴EF ⊥平面B 1AC .证法三:同法二得AB 1→=(0,2,2),AC →=(-2,2,0), EF →=(-1,-1,1).设面B 1AC 的法向量n =(x ,y ,z ), 则AB →1·n =0,AC →·n =0,即⎩⎪⎨⎪⎧2y +2z =0,-2x +2y =0,取x =1,则y =1,z =-1,∴n =(1,1,-1),∴EF →=-n ,∴EF →∥n ,∴EF ⊥平面B 1AC . 探究3 与平行、垂直有关的探索性问题例3 如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上,已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)在线段AP 上是否存在点M ,使得平面AMC ⊥平面BMC ?若存在,求出AM 的长;若不存在,请说明理由.[解] (1)证明:如图,以O 为原点,以射线OD 为y 轴的正半轴,射线OP 为z 轴的正半轴,建立空间直角坐标系Oxyz .则O (0,0,0),A (0,-3,0),B (4,2,0),C (-4,2,0),P (0,0,4), AP →=(0,3,4),BC →=(-8,0,0),由此可得AP →·BC →=0,所以AP →⊥BC →,即AP ⊥BC .(2)假设存在满足题意的M ,设PM →=λPA →,λ≠1,则PM →=λ(0,-3,-4).BM →=BP →+PM →=BP →+λPA →=(-4,-2,4)+λ(0,-3,-4)=(-4,-2-3λ,4-4λ),AC →=(-4,5,0).设平面BMC 的法向量n 1=(x 1,y 1,z 1), 平面APC 的法向量n 2=(x 2,y 2,z 2). 由⎩⎪⎨⎪⎧BM →·n 1=0,BC →·n 1=0,得⎩⎪⎨⎪⎧-4x 1-(2+3λ)y 1+(4-4λ)z 1=0,-8x 1=0,即⎩⎪⎨⎪⎧x 1=0,z 1=2+3λ4-4λy 1,可取n 1=⎝ ⎛⎭⎪⎫0,1,2+3λ4-4λ.由⎩⎪⎨⎪⎧AP →·n 2=0,AC →·n 2=0,即⎩⎪⎨⎪⎧3y 2+4z 2=0,-4x 2+5y 2=0,得⎩⎪⎨⎪⎧x 2=54y 2,z 2=-34y 2,可取n 2=(5,4,-3),由n 1·n 2=0,得4-3×2+3λ4-4λ=0,解得λ=25,故PM →=⎝ ⎛⎭⎪⎫0,-65,-85,AM →=AP →+PM →=⎝ ⎛⎭⎪⎫0,95,125,所以AM =3.综上所述,存在点M 符合题意,AM =3. 拓展提升利用向量解决探索性问题的方法对于探索性问题,一般先假设存在,利用空间坐标系,结合已知条件,转化为代数方程是否有解的问题,若有解满足题意则存在,若没有满足题意的解则不存在.【跟踪训练3】 如图,直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AB =5,AA 1=4.(1)求证:BC 1⊥平面AB 1C ;(2)在AB 上是否存在点D ,使得AC 1∥平面CDB 1.解 (1)证明:由已知AC =3,BC =4,AB =5,因而△ABC 是∠ACB 为直角的直角三角形,由三棱柱是直三棱柱,则CC 1⊥平面ABC ,以CA ,CB ,CC 1分别为x ,y ,z 轴建立空间直角坐标系,从而CA →=(3,0,0),BC 1→=(0,-4,4),则BC 1→·CA →=(0,-4,4)·(3,0,0)=0,则BC 1→⊥AC →,所以BC 1⊥AC .又四边形BCC 1B 1为正方形,因而BC 1⊥B 1C .又∵B 1C ∩AC =C ,∴BC 1⊥平面AB 1C .(2)假设存在点D (x ,y,0),使得AC 1∥平面CDB 1,CD →=(x ,y,0),CB 1→=(0,4,4), 设平面CDB 1的法向量m =(a ,b ,c ),则⎩⎪⎨⎪⎧m ·CD →=0,m ·CB 1→=0,即⎩⎪⎨⎪⎧xa +yb =0,4b +4c =0.令b =-x ,则c =x ,a =y ,所以m =(y ,-x ,x ),而AC 1→=(-3,0,4),则AC 1→·m =0,得-3y +4x =0.① 由D 在AB 上,A (3,0,0),B (0,4,0)得x -3-3=y4,即得4x +3y =12,② 联立①②可得x =32,y =2,∴D ⎝ ⎛⎭⎪⎫32,2,0,即D 为AB 的中点. 综上,在AB 上存在点D ,使得AC 1∥平面CDB 1,点D 为AB 的中点.1.利用向量证明线线平行的两种思路一是建立空间直角坐标系,通过坐标运算,利用向量平行的坐标表示证明;二是用基底思路,通过向量的线性运算,利用共线向量定理证明.2.向量法证明线线垂直的方法用向量法证明空间中两条直线相互垂直,其主要思路是证明两条直线的方向向量相互垂直.具体方法为:(1)坐标法:根据图形的特征,建立适当的空间直角坐标系,准确地写出相关点的坐标,表示出两条直线的方向向量,证明其数量积为0.(2)基向量法:利用向量的加减运算,结合图形,将要证明的两条直线的方向向量用基向量表示出来.利用数量积运算说明两向量的数量积为0.3.向量法证明线面垂直的方法(1)向量基底法,具体步骤如下:①设出基向量,用基向量表示直线的方向向量;②找出平面内两条相交直线的方向向量并分别用基向量表示;③分别计算直线的方向向量与平面内两条相交直线的方向向量的数量积.(2)坐标法,具体方法如下:方法一:①建立空间直角坐标系;②将直线的方向向量用坐标表示;③将平面内任意两条相交直线的方向向量用坐标表示;④分别计算直线的方向向量与平面内两条相交直线的方向向量的数量积.方法二:①建立空间直角坐标系;②将直线的方向向量用坐标表示;③求平面的法向量;④说明平面的法向量与直线的方向向量平行.4.证明面面垂直的两种思路一是证明其中一个平面过另一个平面的垂线,即转化为线面垂直;二是证明两平面的法向量垂直.1.已知线段AB的两端点坐标为A(9,-3,4),B(9,2,1),则线段AB与坐标平面( ) A.xOy平行B.xOz平行C.yOz平行D.yOz相交答案 C解析 因为AB →=(9,2,1)-(9,-3,4)=(0,5,-3),所以AB ∥平面yOz .2.若两个不同平面α,β的法向量分别为u =(1,2,-1),v =(-3,-6,3),则( ) A .α∥β B .α⊥βC .α,β相交但不垂直D .以上均不正确 答案 A解析 ∵v =-3u ,∴α∥β.3.已知直线l 与平面α垂直,直线l 的一个方向向量为u =(1,-3,z ),向量v =(3,-2,1)与平面α平行,则z 等于( )A .3B .6C .-9D .9 答案 C解析 ∵l ⊥α,v 与平面α平行,∴u ⊥v ,即u ·v =0,∴1×3+3×2+z ×1=0,∴z =-9.4.在三棱锥P -ABC 中,CP ,CA ,CB 两两垂直,AC =CB =1,PC =2,在如图所示的空间直角坐标系中,下列向量中是平面PAB 的法向量的是( )A.⎝⎛⎭⎪⎫1,1,12 B .(1,2,1) C .(1,1,1) D .(2,-2,1) 答案 A解析 PA →=(1,0,-2),AB →=(-1,1,0),设平面PAB 的一个法向量为n =(x ,y,1),则x -2=0,即x =2;-x +y =0,即y =x =2.所以n =(2,2,1).因为⎝⎛⎭⎪⎫1,1,12=12n ,所以A正确.5.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 为棱BB 1的中点,在棱DD 1上是否存在点P ,使MD ⊥平面PAC?解 如图,建立空间直角坐标系,则A (1,0,0),C (0,1,0),D (0,0,0),M ⎝⎛⎭⎪⎫1,1,12.假设存在P (0,0,x )满足条件,则PA →=(1,0,-x ),AC →=(-1,1,0).设平面PAC 的法向量为n =(x 1,y 1,z 1),则由⎩⎪⎨⎪⎧ PA →·n =0,AC →·n =0,得⎩⎪⎨⎪⎧ x 1-xz 1=0,-x 1+y 1=0.令x 1=1得y 1=1,z 1=1x ,即n =⎝ ⎛⎭⎪⎫1,1,1x , 由题意MD →∥n ,由MD →=⎝⎛⎭⎪⎫-1,-1,-12,得x =2, ∵正方体棱长为1,且2>1,∴棱DD 1上不存在点P ,使MD ⊥平面PAC .。
空间向量的垂直与平行
空间向量的垂直与平行空间向量是三维空间中的矢量,具有方向和大小。
在进行向量运算时,了解向量之间的垂直与平行关系至关重要。
本文将探讨空间向量的垂直与平行性质,以及它们在几何和物理等领域的应用。
1. 垂直向量两个向量的垂直关系可以通过它们的点积(内积)来判断。
设有向量A和向量B,若它们的点积等于零,则A与B垂直。
点积的计算公式为:A·B = |A| × |B| × cosθ其中,A·B表示向量A与向量B的点积,|A|和|B|分别表示向量A 和向量B的模长,θ表示向量A与向量B之间的夹角。
如果A·B = 0,则cosθ = 0,即θ = 90°,这说明向量A与向量B相互垂直。
利用向量的垂直关系,我们可以解决诸如平面交线、直线垂直性等几何问题。
在物理学中,垂直向量的概念也被广泛应用于力的分解和求和等问题。
2. 平行向量两个向量的平行关系可以通过它们的叉积(外积)来判断。
设有向量A和向量B,若它们的叉积等于零,则A与B平行。
叉积的计算公式为:|A × B| = |A| × |B| × sinθ其中,A × B表示向量A与向量B的叉积,|A × B|表示向量A与向量B叉积结果的模长,|A|和|B|分别表示向量A和向量B的模长,θ表示向量A与向量B之间的夹角。
如果A × B = 0,则sinθ = 0,即θ = 0°或θ = 180°,这说明向量A与向量B相互平行。
平行向量常常涉及到直线的平行性和共面性的问题。
在物理学上,平行向量用于计算力的合成以及判断物体的平衡状态等应用。
3. 垂直向量和平行向量的应用垂直向量和平行向量在几何和物理学中有广泛的应用。
以下是它们的一些具体应用:3.1 几何应用- 判断直线的垂直性或平行性,用于解决平面几何中的交线问题。
- 通过垂直向量和平行向量的性质,求解平面的法线向量和方向向量。
空间向量与平行、垂直关系
•
5、知人者智,自知者明。胜人者有力 ,自胜 者强。 20.12.1 320.12. 1308:5 9:3608: 59:36D ecembe r 13, 2020
•
6、意志坚强的人能把世界放在手中像 泥块一 样任意 揉捏。 2020年 12月13 日星期 日上午 8时59 分36秒0 8:59:36 20.12.1 3
• 13、无论才能知识多么卓著,如果缺乏热情,则无异 纸上画饼充饥,无补于事。Sunday, December 13, 20201
3-Dec-2020.12.13
• 14、我只是自己不放过自己而已,现在我不会再逼自 己眷恋了。20.12.1308:59:3613 December 202008:59
应用举例:
例1.在正方体ABCD-A1B1C1D1中, M, N分别是
C1C, B1C1 的中点, 求证:MN∥平面zA1BD.
解题思路:如图建立空间直
D1
C1
角坐标系,求出平面A1BD的 A1
B1
法向量 n (1,1,1) ,只需
证明 MN n ,即证 MN n 0
y
M(0, 2, 1 ), N(1, 2, 2 )
MN (1, 0, 1)
x
MN n 1 0 1 0
例2.正方体ABCD-A1B1C1D1中,E、F分别 是BB1、CD的中点,求证:平面AED⊥平面
A1FD1.
z
略解:如图建立空间直角坐标系
设棱长为2 则 E(2, 2, 1), A( 2, 0, 0 )
DE (2, 2, 1), AE (0, 2, 1)
• 10、你要做多大的事情,就该承受多大的压力。12/13/
2020 8:59:36 AM08:59:362020/12/13
空间向量与立体几何:第5讲利用空间向量证明平行与垂直问题
()
A.相交
B.平行
C.在平面内
D.平行或在平面内
→ → → →→ → 解析 ∵AB=λCD+μCE,∴AB,CD,CE共面.则 AB 与平面 CDE 的位置关系是平行或在平面内.
答案 D
6.已知平面α内有一点 M(1,-1,2),平面α的一个法向量为 n=(6,-3,6),则下列点 P 中,在平面α
内的是
()
A.P(2,3,3)
B.P(-2,0,1)
C.P(-4,4,0)
D.P(3,-3,4)
→ 解析 逐一验证法,对于选项 A,MP=(1,4,1),
→
→
∴MP·n=6-12+6=0,∴MP⊥n,
∴点 P 在平面α内,同理可验证其他三个点不在平面α内.
答案 A
∵PB⊄面 EFG,∴PB∥平面 EFG.
【变式探究】 如图,平面 PAC⊥平面 ABC,△ABC 是以 AC 为斜边的等腰直角三角形,E,F,O 分别为
PA,PB,AC 的中点,AC=16,PA=PC=10.
【例 2】如图,四棱柱 ABCD-A1B1C1D1 的底面 ABCD 是正方形,O 为底面中心,A1O⊥平面 ABCD,AB =AA1= 2.
号是________.
答案 ①②③
4.若直线 l 的方向向量为 a,平面α的法向量为 n,能使 l∥α的是
()
A.a=(1,0,0),n=(-2,0,0)
B.a=(1,3,5),n=(1,0,1)
C.a=(0,2,1),n=(-1,0,-1)
D.a=(1,-1,3),n=(0,3,1)
→→ → 5.若AB=λCD+μCE,则直线 AB 与平面 CDE 的位置关系是
【规律技巧】 恰当建立坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键. 利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量
专题六 立体几何 第三讲 利用空间向量证明平行与垂直关系——2024届高考数学二轮复习
的值为( )
A. 11
6
√B. 11 6
C. 1
2
D. 1
3
设 D(x, y, z) ,则 AD (x 1, y 1, z 2), AB (2, 1, 3), DB (1 x, y, 1 z) . AD 2DB ,
x 1 2(1 x),
x
1 3
,
y
z
1 2
2 y, 2
2z.
y
z
1, 3 0,
D
1 3
,
1 3
,0
, CD
1 3
,
,
1
.
CD
AB,CD
AB
2
1 3
3(1
)
0,
11 6
.故选
B.
(二)核心知识整合
考点 2:向量法求线线角、线面角、面面角 1.向量法求空间角 (1)异面直线所成的角:设 a,b 分别为异面直线 a,b 的方向向量,
则两异面直线所成的角满足 cos = | a b | .
则 B(0,0,0) , A(1,0,1) ,C(0,1,1) ,N(1,1,0) ,因此 BA (1, 0,1) ,BC (0,1,1) ,BN (1,1,0) .设平面 ABC
的一个法向量为
n
(
x,
y,
z)
,则
n
BA
x
z
0,
令
x
1,得
n
(1,1,
1)
.易知三棱锥
S
ABC
的外
n BC y z 0
√A.-1
B.1
C.2
D.3
a c ,a c 2x 4 2 0 ,解得 x 1,又 b//c , 1 y 1 ,
利用空间向量解决立体几何平行与垂直
即24xx
2y 5y
z0 ,
3z 0
取z
1,得
x
1 2
y 1
n (1 , 1,1),
2
三、简单应用
练习1:设直 线l,m的方向向量分别 为 a,b ,根据下列条件判断
l,m的位置关系 : (1)a (2,1,2), b (6,3,6)
(2)a (1,2,2), b (2,3,2)
设正方体的棱长为1,则可求得 M(0,1,1/2),N(1/2,1,1),D(0,0,0),
z D!
A!
A1(1,0,1),B(1,1,0).于是
MN
1 (
2
,
0,
1 )
2
D
设平面A1BD的法向量是 n
(x, y, z)
x z
A
x
0
则 n DA1 0且n DB 0, 得
x
y
0
取x=1,得y=-1,z=-1, ∴ n (1,1,1)
易证:PDA=450,∴PA=AD, P
设AB=2a, PA=AD=2b,则
M(a,0,0), C(2a,2b,0),
AN D
D(0,2b,0),P(0,0,2b)
BM
C
N(a,b,b)
练习:如图所示,PA 矩形ABCD所在平
面,M, N分别是AB, PC的中点。
(3)当AD:AP为何值时,MN 面PDC,
叫做平面 的法向量.
l
给定一点A和一个向量 n,那么 过点A,以向量 n 为法向量的平面是
完全确定的.
n
几点注意:
1.法向量一定是非零向量;
A
2.一个平面的所有法向量都
互相平行;
用空间向量讨论立体几何中的平行与垂直关系
用空间向量讨论立体几何中的平行与垂直关系学习目标:1.理解直线的方向向量与平面的法向量.2.能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系.3.能用向量方法证明有关直线和平面位置关系的立体几何问题。
重点:空间向量共线与垂直的充要条件;空间向量的运算及其坐标表示;用向量方法证明有关直线和平面位置关系的立体几何问题。
难点:空间直角坐标系的正确建立,空间向量的运算及其坐标表示;用向量语言证明立体几何中有关垂直、平行关系的问题.学习策略:直线的方向向量和平面的法向量可以确定直线和平面的位置,因此用向量讨论立体几何中的平行和垂直问题,关键就是利用直线的方向向量和平面的法向量,讨论这些向量之间的平行垂直关系,从而得出空间直线、平面间的平行垂直关系。
知识要点梳理知识点一:基本定理线面平行判定定理:如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行。
面面平行判定定理:若一个平面内有两条相交直线都平行与另一个平面,则这两个平面平行。
线面垂直判定定理:若一条直线垂直于一个平面内的两条相交直线,则该直线与此平面垂直。
面面垂直判定定理:若一个平面经过另一个平面的一条垂线,则这两个平面垂直。
知识点二:空间向量平行和垂直的充要条件若,,则①,,②知识点三:直线的方向向量和平面的法向量1.直线的方向向量:若A、B是直线上的任意两点,则为直线的一个方向向量;与平行的任意非零向量也是直线的方向向量。
2.平面的法向量:如果直线垂直于平面,那么直线的方向向量就叫做平面的法向量;设平面的法向量为,A、P为平面内任意两点,则。
知识点四:用向量语言表述线与面之间的平行与垂直关系.设空间直线、的方向向量分别为、,平面的法向量分别为、,则:①线线平行:或与重合即:两直线平行或重合两直线的方向向量共线。
②线线垂直:即:两直线垂直两直线的方向向量垂直。
③线面平行:且在平面外即:直线与平面平行直线的方向向量与该平面的法向量垂直且直线在平面外。
8.7空间向量在立体几何中的应用——证明平行与垂直
1.用向量表示直线或点在直线上的位置(1)给定一个定点A 和一个向量a ,再任给一个实数t ,以A 为起点作向量AP →=t a ,则此向量方程叫做直线l 以t 为参数的参数方程.向量a 称为该直线的方向向量.(2)对空间任一确定的点O ,点P 在直线l 上的充要条件是存在唯一的实数t ,满足等式OP →=(1-t )OA →+tOB →,叫做空间直线的向量参数方程. 2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数x ,y ,使v =x v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u . (4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1 ∥u 2. 3.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0. (2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u . (3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)直线的方向向量是唯一确定的.( × ) (2)平面的单位法向量是唯一确定的.( × ) (3)若两平面的法向量平行,则两平面平行.( √ ) (4)若两直线的方向向量不平行,则两直线不平行.( √ ) (5)若a ∥b ,则a 所在直线与b 所在直线平行.( × )(6)若空间向量a 平行于平面α,则a 所在直线与平面α平行.( × )1.平面α的法向量为(1,2,-2),平面β的法向量为(-2,-4,k ),若α∥β,则k 等于( ) A.2 B.-4 C.4 D.-2 答案 C解析 ∵α∥β,∴两平面法向量平行, ∴-21=-42=k-2,∴k =4. 2.已知A (1,0,0),B (0,1,0),C (0,0,1),则下列向量是平面ABC 法向量的是( ) A.(-1,1,1) B.(1,-1,1) C.(-33,-33,-33) D.(33,33,-33) 答案 C解析 设n =(x ,y ,z )为平面ABC 的法向量, 则⎩⎪⎨⎪⎧n ·AB →=0,n ·AC →=0,化简得⎩⎪⎨⎪⎧-x +y =0,-x +z =0,∴x =y =z .故选C.3.已知直线l 的方向向量为v =(1,2,3),平面α的法向量为u =(5,2,-3),则l 与α的位置关系是____________. 答案 l ∥α或l ⊂α解析 ∵v ·u =0,∴v ⊥u ,∴l ∥α或l ⊂α.4.(教材改编)设u ,v 分别是平面α,β的法向量,u =(-2,2,5),当v =(3,-2,2)时,α与β的位置关系为________;当v =(4,-4,-10)时,α与β的位置关系为________. 答案 α⊥β α∥β解析 当v =(3,-2,2)时,u ·v =(-2,2,5)·(3,-2,2)=0⇒α⊥β. 当v =(4,-4,-10)时,v =-2u ⇒α∥β.5.(教材改编)如图所示,在正方体ABCD -A 1B 1C 1D 1中,O 是底面正方形ABCD 的中心,M 是D 1D 的中点,N 是A 1B 1的中点,则直线ON ,AM 的位置关系是________. 答案 垂直解析 以A 为原点,分别以AB →,AD →,AA 1→所在直线为x ,y ,z 轴,建立空间直角坐标系,设正方体棱长为1,则A (0,0,0),M (0,1,12),O (12,12,0),N (12,0,1),AM →·ON →=(0,1,12)·(0,-12,1)=0, ∴ON 与AM 垂直.题型一 利用空间向量证明平行问题例1 如图所示,平面P AD ⊥平面ABCD ,ABCD 为正方形,△P AD 是直角三角形,且P A =AD =2,E ,F ,G 分别是线段P A ,PD ,CD 的中点.求证:PB ∥平面EFG . 证明 ∵平面P AD ⊥平面ABCD ,且ABCD 为正方形,∴AB ,AP ,AD 两两垂直,以A 为坐标原点,建立如图所示的空间直角坐标系Axyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0). ∴PB →=(2,0,-2),FE →=(0,-1,0),FG →=(1,1,-1), 设PB →=sFE →+tFG →,即(2,0,-2)=s (0,-1,0)+t (1,1,-1), ∴⎩⎪⎨⎪⎧t =2,t -s =0,-t =-2,解得s =t =2.∴PB →=2FE →+2FG →,又∵FE →与FG →不共线,∴PB →,FE →与FG →共面. ∵PB ⊄平面EFG ,∴PB ∥平面EFG . 引申探究本例中条件不变,证明平面EFG ∥平面PBC . 证明 ∵EF →=(0,1,0),BC →=(0,2,0), ∴BC →=2EF →,∴BC ∥EF .又∵EF ⊄平面PBC ,BC ⊂平面PBC , ∴EF ∥平面PBC ,同理可证GF ∥PC ,从而得出GF ∥平面PBC . 又EF ∩GF =F ,EF ⊂平面EFG ,FG ⊂平面EFG , ∴平面EFG ∥平面PBC .思维升华 (1)恰当建立空间直角坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键.(2)证明直线与平面平行,只需证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算.如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ=3QC .证明:PQ ∥平面BCD .证明 方法一 如图,取BD 的中点O ,以O 为原点,OD 、OP 所在射线分别为y 、z轴的正半轴,建立空间直角坐标系Oxyz .由题意知,A (0,2,2),B (0,-2,0),D (0,2,0). 设点C 的坐标为(x 0,y 0,0). 因为AQ →=3QC →,所以Q ⎝⎛⎭⎫34x 0,24+34y 0,12.因为M 为AD 的中点,故M (0,2,1). 又P 为BM 的中点,故P ⎝⎛⎭⎫0,0,12, 所以PQ →=⎝⎛⎭⎫34x 0,24+34y 0,0.又平面BCD 的一个法向量为a =(0,0,1),故PQ →·a =0. 又PQ ⊄平面BCD ,所以PQ ∥平面BCD .方法二 在线段CD 上取点F ,使得DF =3FC ,连接OF ,同方法一建立空间直角坐标系,写出点A 、B 、C 的坐标,设点C 坐标为(x 0,y 0,0). ∵CF →=14CD →,设点F 坐标为(x ,y,0),则(x -x 0,y -y 0,0)=14(-x 0,2-y 0,0),∴⎩⎨⎧x =34x 0y =24+34y∴OF →=(34x 0,24+34y 0,0)又由方法一知PQ →=(34x 0,24+34y 0,0),∴OF →=PQ →,∴PQ ∥OF .又PQ ⊄平面BCD ,OF ⊂平面BCD , ∴PQ ∥平面BCD .题型二 利用空间向量证明垂直问题 命题点1 证线面垂直例2 如图所示,正三棱柱ABC —A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD .证明 方法一 设平面A 1BD 内的任意一条直线m 的方向向量为m .由共面向量定理,则存在实数λ,μ,使m =λBA 1→+μBD →.令BB 1→=a ,BC →=b ,BA →=c ,显然它们不共面,并且|a |=|b |=|c |=2,a ·b =a·c =0,b·c =2,以它们为空间的一个基底,则BA 1→=a +c ,BD →=12a +b ,AB 1→=a -c ,m =λBA 1→+μBD →=⎝⎛⎭⎫λ+12μa +μb +λc , AB 1→·m =(a -c )·⎣⎡⎦⎤⎝⎛⎭⎫λ+12μa +μb +λc =4⎝⎛⎭⎫λ+12μ-2μ-4λ=0.故AB 1→⊥m ,结论得证. 方法二 如图所示,取BC 的中点O ,连接AO . 因为△ABC 为正三角形, 所以AO ⊥BC .因为在正三棱柱ABC —A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1, 所以AO ⊥平面BCC 1B 1.取B 1C 1的中点O 1,以O 为原点,分别以OB →,OO 1→,OA →所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则B (1,0,0),D (-1,1,0),A 1(0,2,3), A (0,0,3),B 1(1,2,0).设平面A 1BD 的法向量为n =(x ,y ,z ),BA 1→=(-1,2,3),BD →=(-2,1,0). 因为n ⊥BA 1→,n ⊥BD →,故⎩⎪⎨⎪⎧n ·BA 1→=0,n ·BD →=0,⇒⎩⎨⎧-x +2y +3z =0,-2x +y =0,令x =1,则y =2,z =-3,故n =(1,2,-3)为平面A 1BD 的一个法向量, 而AB 1→=(1,2,-3),所以AB 1→=n ,所以AB 1→∥n , 故AB 1⊥平面A 1BD . 命题点2 证面面垂直例3 如图,在三棱锥P ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上.已知BC =8,PO =4,AO =3,OD =2. (1)证明:AP ⊥BC ;(2)若点M 是线段AP 上一点,且AM =3.试证明平面AMC ⊥平面BMC . 证明 (1)如图所示,以O 为坐标原点,以射线OP 为z 轴的正半轴建立空间直角坐标系Oxyz .则O (0,0,0),A (0,-3,0), B (4,2,0),C (-4,2,0),P (0,0,4).于是AP →=(0,3,4), BC →=(-8,0,0),∴AP →·BC →=(0,3,4)·(-8,0,0)=0, 所以AP →⊥BC →,即AP ⊥BC . (2)由(1)知|AP |=5,又|AM |=3,且点M 在线段AP 上, ∴AM →=35AP →=⎝⎛⎭⎫0,95,125, 又BC →=(-8,0,0),AC →=(-4,5,0),BA →=(-4,-5,0), ∴BM →=BA →+AM →=⎝⎛⎭⎫-4,-165,125, 则AP →·BM →=(0,3,4)·⎝⎛⎭⎫-4,-165,125=0, ∴AP →⊥BM →,即AP ⊥BM ,又根据(1)的结论知AP ⊥BC ,且BM ∩BC =C , ∴AP ⊥平面BMC ,于是AM ⊥平面BMC . 又AM ⊂平面AMC ,故平面AMC ⊥平面BCM . 思维升华 证明垂直问题的方法(1)利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键.(2)其一证明直线与直线垂直,只需要证明两条直线的方向向量垂直;其二证明线面垂直,只需证明直线的方向向量与平面内不共线的两个向量垂直即可,当然 ,也可证直线的方向向量与平面法向量平行;其三证明面面垂直:①证明两平面的法向量互相垂直;②利用面面垂直的判定定理,只要能证明一个平面内的一条直线的方向向量为另一个平面的法向量即可.(1)如图所示,已知直三棱柱ABC —A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D 、E 、F 分别为B 1A 、C 1C 、BC 的中点.求证: ①DE ∥平面ABC ; ②B 1F ⊥平面AEF .证明 ①如图建立空间直角坐标系Axyz , 令AB =AA 1=4,则A (0,0,0),E (0,4,2),F (2,2,0),B (4,0,0),B 1(4,0,4). 取AB 中点为N ,连接CN , 则N (2,0,0),C (0,4,0),D (2,0,2), ∴DE →=(-2,4,0),NC →=(-2,4,0),∴DE →=NC →,∴DE ∥NC ,又∵NC ⊂平面ABC ,DE ⊄平面ABC . 故DE ∥平面ABC .②B 1F →=(-2,2,-4),EF →=(2,-2,-2),AF →=(2,2,0). B 1F →·EF →=(-2)×2+2×(-2)+(-4)×(-2)=0, B 1F →·AF →=(-2)×2+2×2+(-4)×0=0.∴B 1F →⊥EF →,B 1F →⊥AF →,即B 1F ⊥EF ,B 1F ⊥AF , 又∵AF ∩EF =F ,∴B 1F ⊥平面AEF .(2)如图所示,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,∠B =∠C =90°,AB =4,CD =1,点M 在PB 上,PB =4PM ,PB 与平面ABCD 成30°角.①求证:CM ∥平面P AD ; ②求证:平面P AB ⊥平面P AD .证明 ①以C 为坐标原点,分别以CB 所在直线为x 轴,CD 所在直线为y 轴,CP 所在直线为z 轴建立如图所示的空间直角坐标系Cxyz , ∵PC ⊥平面ABCD ,∴∠PBC 为PB 与平面ABCD 所成的角, ∴∠PBC =30°.∵PC =2,∴BC =23,PB =4.∴D (0,1,0),B (23,0,0),A (23,4,0),P (0,0,2), M (32,0,32), ∴DP →=(0,-1,2),DA →=(23,3,0),CM →=(32,0,32),令n =(x ,y ,z )为平面P AD 的一个法向量, 则⎩⎪⎨⎪⎧DP →·n =0,DA →·n =0,即⎩⎨⎧-y +2z =0,23x +3y =0,∴⎩⎨⎧z =12y ,x =-32y ,令y =2,得n =(-3,2,1).∵n ·CM →=-3×32+2×0+1×32=0,∴n ⊥CM →,又CM ⊄平面P AD , ∴CM ∥平面P AD .②取AP 的中点E ,则E (3,2,1),BE →=(-3,2,1). ∵PB =AB ,∴BE ⊥P A .又∵BE →·DA →=(-3,2,1)·(23,3,0)=0, ∴BE →⊥DA →,∴BE ⊥DA ,又P A ∩DA =A ,∴BE ⊥平面P AD , 又∵BE ⊂平面P AB , ∴平面P AB ⊥平面P AD .题型三 利用空间向量解决探索性问题例4 如图,棱柱ABCD -A 1B 1C 1D 1的所有棱长都等于2,∠ABC 和∠A 1AC 均为60°,平面AA 1C 1C ⊥平面ABCD . (1)求证:BD ⊥AA 1;(2)求二面角D -A 1A -C 的余弦值;(3)在直线CC 1上是否存在点P ,使BP ∥平面DA 1C 1,若存在,求出点P 的位置,若不存在,请说明理由. (1)证明 设BD 与AC 交于点O ,则BD ⊥AC ,连接A 1O ,在△AA 1O 中,AA 1=2,AO =1,∠A 1AO =60°,∴A 1O 2=AA 21+AO 2-2AA 1·AO cos 60°=3, ∴AO 2+A 1O 2=AA 21, ∴A 1O ⊥AO .由于平面AA 1C 1C ⊥平面ABCD ,∴A 1O ⊥平面ABCD .以OB ,OC ,OA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (0,-1,0),B (3,0,0),C (0,1,0),D (-3,0,0),A 1(0,0,3),C 1(0,2,3). 由于BD →=(-23,0,0),AA 1→=(0,1,3), AA 1→·BD →=0×(-23)+1×0+3×0=0, ∴BD →⊥AA 1→,即BD ⊥AA 1. (2)解 由于OB ⊥平面AA 1C 1C ,∴平面AA 1C 1C 的一个法向量为n 1=(1,0,0). 设n 2=(x ,y ,z )为平面DAA 1D 1的一个法向量, 则⎩⎪⎨⎪⎧n 2·AA 1→=0,n 2·AD →=0, 即⎩⎨⎧y +3z =0,-3x +y =0,取n 2=(1,3,-1),则〈n 1,n 2〉即为二面角D -A 1A -C 的平面角,∴cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=55,所以,二面角D -A 1A -C 的余弦值为55. (3)解 假设在直线CC 1上存在点P ,使BP ∥平面DA 1C 1,设CP →=λCC 1,P (x ,y ,z ),则(x ,y -1,z )=λ(0,1,3). 从而有P (0,1+λ,3λ),BP →=(-3,1+λ,3λ). 设n 3=(x 3,y 3,z 3)⊥平面DA 1C 1,则⎩⎪⎨⎪⎧n 3⊥A 1C 1→,n 3⊥DA 1→,又A 1C 1→=(0,2,0),DA 1→=(3,0,3),则⎩⎨⎧2y 3=0,3x 3+3z 3=0,取n 3=(1,0,-1),因为BP ∥平面DA 1C 1,则n 3⊥BP →, 即n 3·BP →=-3-3λ=0,得λ=-1, 即点P 在C 1C 的延长线上,且C 1C =CP .思维升华 对于“是否存在”型问题的探索方式有两种:一种是根据条件作出判断,再进一步论证;另一种是利用空间向量,先设出假设存在点的坐标,再根据条件求该点的坐标,即找到“存在点”,若该点坐标不能求出,或有矛盾,则判定“不存在”.在四棱锥P —ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E 、F 分别是AB 、PB 的中点. (1)求证:EF ⊥CD ;(2)在平面P AD 内求一点G ,使GF ⊥平面PCB ,并证明你的结论. (1)证明 如图,分别以DA 、DC 、DP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,设AD =a ,则D (0,0,0), A (a,0,0),B (a ,a,0), C (0,a,0),E ⎝⎛⎭⎫a ,a2,0, P (0,0,a ),F ⎝⎛⎭⎫a 2,a 2,a 2.EF →=⎝⎛⎭⎫-a 2,0,a 2,DC →=(0,a,0). ∵EF →·DC →=0,∴EF →⊥DC →,即EF ⊥CD .(2)解 设G (x,0,z ),则FG →=⎝⎛⎭⎫x -a 2,-a 2,z -a 2, 若使GF ⊥平面PCB ,则由FG →·CB →=⎝⎛⎭⎫x -a2,-a 2,z -a 2·(a,0,0) =a ⎝⎛⎭⎫x -a 2=0,得x =a2;由FG →·CP →=⎝⎛⎭⎫x -a2,-a 2,z -a 2·(0,-a ,a ) =a 22+a ⎝⎛⎭⎫z -a 2=0,得z =0. ∴G 点坐标为⎝⎛⎭⎫a 2,0,0,即G 点为AD 的中点.17.利用向量法解决立体几何问题典例 (12分)(2014·湖北)如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F ,M ,N 分别是棱AB ,AD ,A 1B 1,A 1D 1的中点,点P ,Q 分别在棱DD 1,BB 1上移动,且DP =BQ =λ(0<λ<2).(1)当λ=1时,证明:直线BC 1∥平面EFPQ ;(2)是否存在λ,使平面EFPQ 与平面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由. 规范解答解 以D 为原点,射线DA ,DC ,DD 1分别为x ,y ,z 轴的正半轴,建立如图所示的空间直角坐标系Dxyz .[1分]由已知得B (2,2,0),C 1(0,2,2),E (2,1,0),F (1,0,0),P (0,0,λ),M (2,1,2),N (1,0,2),BC 1→=(-2,0,2),FP →=(-1,0,λ),FE →=(1,1,0),MN →=(-1,-1,0),NP →=(-1,0,λ-2).[3分] (1)证明 当λ=1时,FP →=(-1,0,1), 因为BC 1→=(-2,0,2), 所以BC 1→=2FP →,即BC 1∥FP .而FP ⊂平面EFPQ ,且BC 1⊄平面EFPQ , 故直线BC 1∥平面EFPQ .[7分](2)解 设平面EFPQ 的一个法向量为n =(x ,y ,z ),则由⎩⎪⎨⎪⎧ FE →·n =0,FP →·n =0,可得⎩⎪⎨⎪⎧x +y =0,-x +λz =0. 于是可取n =(λ,-λ,1).[9分]同理可得平面PQMN 的一个法向量为m =(λ-2,2-λ,1).若存在λ,使平面EFPQ 与平面PQMN 所成的二面角为直二面角,则m ·n =(λ-2,2-λ,1)·(λ,-λ,1)=0,即λ(λ-2)-λ(2-λ)+1=0,解得λ=1±22.[11分] 故存在λ=1±22,使平面EFPQ 与平面PQMN 所成的二面角为直二面角.[12分] 温馨提醒 (1)利用向量法证明立体几何问题,可以建坐标系或利用基底表示向量;(2)建立空间直角坐标系时,要根据题中条件找出三条互相垂直的直线;(3)利用向量除了可以证明线线平行、垂直,线面、面面平行、垂直外,还可以利用向量求夹角、距离,从而解决线段长度问题、体积问题等.[方法与技巧]1.用向量法解决立体几何问题,是空间向量的一个具体应用,体现了向量的工具性,这种方法可把复杂的推理证明、辅助线的作法转化为空间向量的运算,降低了空间想象演绎推理的难度,体现了由“形”转“数”的转化思想.2.两种思路:(1)选好基底,用向量表示出几何量,利用空间向量有关定理与向量的线性运算进行判断.(2)建立空间直角坐标系,进行向量的坐标运算,根据运算结果的几何意义解释相关问题.[失误与防范]用向量知识证明立体几何问题,仍然离不开立体几何中的定理.如要证明线面平行,只需要证明平面外的一条直线和平面内的一条直线平行,即化归为证明线线平行,用向量方法证明直线a ∥b ,只需证明向量a =λb (λ∈R )即可.若用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外.A 组 专项基础训练(时间:40分钟)1.若直线l 的方向向量为a =(1,0,2),平面α的法向量为n =(-2,0,-4),则( )A.l ∥αB.l ⊥αC.l ⊂αD.l 与α相交答案 B解析 ∵n =-2a ,∴a 与α的法向量平行,∴l ⊥α.2.已知平面α内有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则下列点P 中,在平面α内A.P (2,3,3)B.P (-2,0,1)C.P (-4,4,0)D.P (3,-3,4)答案 A解析 逐一验证法,对于选项A ,MP →=(1,4,1),∴MP →·n =6-12+6=0,∴MP →⊥n ,∴点P 在平面α内,同理可验证其他三个点不在平面α内.3.若AB →=λCD →+μCE →,则直线AB 与平面CDE 的位置关系是( )A.相交B.平行C.在平面内D.平行或在平面内答案 D解析 ∵AB →=λCD →+μCE →,∴AB →、CD →、CE →共面,∴AB 与平面CDE 平行或在平面CDE 内.4.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE ,则M 点的坐标为( )A.(1,1,1)B.(23,23,1) C.(22,22,1) D.(24,24,1) 答案 C解析 设M 点的坐标为(x ,y,1),AC ∩BD =O ,则O (22,22,0), 又E (0,0,1),A (2,2,0),∴OE →=(-22,-22,1),AM →=(x -2,y -2,1), ∵AM ∥平面BDE ,∴OE →∥AM →,∴⎩⎨⎧ x -2=-22,y -2=-22,⇒⎩⎨⎧ x =22,y =22.5.已知平面α内的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1),则不重合的两个平面α与β的位置关系是___________________________________.解析 设平面α的法向量为m =(x ,y ,z ),由m ·AB →=0,得x ·0+y -z =0⇒y =z ,由m ·AC →=0,得x -z =0⇒x =z ,取x =1,∴m =(1,1,1),m =-n ,∴m ∥n ,∴α∥β.6.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量;④AP →∥BD →.其中正确的是________.答案 ①②③解析 ∵AB →·AP →=0,AD →·AP →=0,∴AB ⊥AP ,AD ⊥AP ,则①②正确.又AB →与AD →不平行,∴AP →是平面ABCD 的法向量,则③正确.∵BD →=AD →-AB →=(2,3,4),AP →=(-1,2,-1),∴BD →与AP →不平行,故④错误.7.如图,四棱锥P -ABCD 的底面为正方形,侧棱P A ⊥底面ABCD ,且P A =AD=2,E ,F ,H 分别是线段P A ,PD ,AB 的中点.求证:(1)PB ∥平面EFH ;(2)PD ⊥平面AHF .证明 建立如图所示的空间直角坐标系Axyz .∴A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),H (1,0,0).(1)∵PB →=(2,0,-2),EH →=(1,0,-1),∴PB →=2EH →,∴PB ∥EH .∵PB ⊄平面EFH ,且EH ⊂平面EFH ,∴PB ∥平面EFH .(2)PD →=(0,2,-2),AH →=(1,0,0),AF →=(0,1,1),∴PD →·AF →=0×0+2×1+(-2)×1=0,PD →·AH →=0×1+2×0+(-2)×0=0,∴PD ⊥AF ,PD ⊥AH ,又∵AF ∩AH =A ,∴PD ⊥平面AHF .8.如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .证明:平面PQC ⊥平面DCQ .证明 如图,以D 为坐标原点,线段DA 的长为单位长,射线DA 、DP 、DC 分别为x 轴、y 轴、z 轴的正半轴建立空间直角坐标系Dxyz .依题意有Q (1,1,0),C (0,0,1),P (0,2,0),则DQ →=(1,1,0),DC →=(0,0,1),PQ →=(1,-1,0).∴PQ →·DQ →=0,PQ →·DC →=0.即PQ ⊥DQ ,PQ ⊥DC ,又DQ ∩DC =D ,∴PQ ⊥平面DCQ ,又PQ ⊂平面PQC ,∴平面PQC ⊥平面DCQ .9.如图,在底面是矩形的四棱锥P -ABCD 中,P A ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,P A =AB =1,BC =2.(1)求证:EF ∥平面P AB ;(2)求证:平面P AD ⊥平面PDC .证明 以A 为原点,AB 所在直线为x 轴,AD 所在直线为y 轴,AP 所在直线为z 轴,建立如图所示的空间直角坐标系,则A (0,0,0),B (1,0,0),C (1,2,0),D (0,2,0),P (0,0,1),∴E (12,1,12),F (0,1,12),EF →=(-12,0,0),PB →=(1,0,-1),PD →=(0,2,-1),AP →=(0,0,1),AD →=(0,2,0),DC →=(1,0,0),AB →=(1,0,0).(1)∵EF →=-12AB →,∴EF →∥AB →,即EF ∥AB , 又AB ⊂平面P AB ,EF ⊄平面P AB ,∴EF ∥平面P AB .(2)∵AP →·DC →=(0,0,1)·(1,0,0)=0,AD →·DC →=(0,2,0)·(1,0,0)=0,∴AP →⊥DC →,AD →⊥DC →,即AP ⊥DC ,AD ⊥DC .又AP ∩AD =A ,∴DC ⊥平面P AD .∵DC ⊂平面PDC ,∴平面P AD ⊥平面PDC .B 组 专项能力提升(时间:25分钟)10.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别是棱BC ,DD 1上的点,如果B 1E ⊥平面ABF ,则CE 与DF 的和的值为________.答案 1解析 以D 1A 1,D 1C 1,D 1D 分别为x ,y ,z 轴建立空间直角坐标系,设CE =x ,DF =y ,则易知E (x,1,1),B 1(1,1,0),F (0,0,1-y ),B (1,1,1),∴B 1E →=(x -1,0,1),∴FB →=(1,1,y ),由于B 1E ⊥平面ABF ,∴FB →·B 1E →=(1,1,y )·(x -1,0,1)=0⇒x +y =1.11.在正方体ABCD —A 1B 1C 1D 1中,P 为正方形A 1B 1C 1D 1四边上的动点,O 为底面正方形ABCD 的中心,M ,N 分别为AB ,BC 的中点,点Q 为平面ABCD 内一点,线段D 1Q与OP 互相平分,则满足MQ →=λMN →的实数λ有________个.答案 2解析 建立如图的空间直角坐标系,设正方体的边长为2,则P (x ,y,2),O (1,1,0),∴OP 的中点坐标为⎝⎛⎭⎫x +12,y +12,1, 又知D 1(0,0,2),∴Q (x +1,y +1,0),而Q 在MN 上,∴x Q +y Q =3,∴x +y =1,即点P 坐标满足x +y =1.∴有2个符合题意的点P ,即对应有2个λ.12.如图,在长方体ABCD -A 1B 1C 1D 1中,AA 1=AD =1,E 为CD 的中点.(1)求证:B 1E ⊥AD 1;(2)在棱AA 1上是否存在一点P ,使得DP ∥平面B 1AE ?若存在,求AP 的长;若不存在,说明理由.(1)证明 以A 为原点,AB →,AD →,AA 1→的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图).设AB =a ,则A (0,0,0),D (0,1,0),D 1(0,1,1),E ⎝⎛⎭⎫a 2,1,0,B 1(a,0,1),故AD 1→=(0,1,1),B 1E →=⎝⎛⎭⎫-a 2,1,-1,AB 1→=(a,0,1),AE →=⎝⎛⎭⎫a 2,1,0. ∵B 1E →·AD 1→=-a 2×0+1×1+(-1)×1=0, ∴B 1E ⊥AD 1.(2)解 假设在棱AA 1上存在一点P (0,0,z 0).使得DP ∥平面B 1AE ,此时DP →=(0,-1,z 0).又设平面B 1AE 的法向量n =(x ,y ,z ).∵n ⊥平面B 1AE ,∴n ⊥AB 1→,n ⊥AE →,得⎩⎪⎨⎪⎧ ax +z =0,ax 2+y =0. 取x =1,得平面B 1AE 的一个法向量n =⎝⎛⎭⎫1,-a 2,-a . 要使DP ∥平面B 1AE ,只要n ⊥DP →,有a 2-az 0=0, 解得z 0=12. 又DP ⊄平面B 1AE ,∴存在点P ,满足DP ∥平面B 1AE ,此时AP =12. 13.如图所示,四棱锥S —ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱SD 上的点.(1)求证:AC ⊥SD .(2)若SD ⊥平面P AC ,则侧棱SC 上是否存在一点E ,使得BE ∥平面P AC .若存在,求SE ∶EC 的值;若不存在,试说明理由.(1)证明 连接BD ,设AC ∩BD =O ,则AC ⊥BD .由题意知SO ⊥平面ABCD .以O 为坐标原点,OB →,OC →,OS →分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系,如图.设底面边长为a ,则高SO =62a , 于是S ⎝⎛⎭⎫0,0,62a ,D ⎝⎛⎭⎫-22a ,0,0, B ⎝⎛⎭⎫22a ,0,0,C ⎝⎛⎭⎫0,22a ,0,OC →=⎝⎛⎭⎫0,22a ,0, SD →=⎝⎛⎭⎫-22a ,0,-62a ,则OC →·SD →=0. 故OC ⊥SD .从而AC ⊥SD .(2)解 棱SC 上存在一点E ,使BE ∥平面P AC .理由如下:由已知条件知DS →是平面P AC 的一个法向量,且DS →=⎝⎛⎭⎫22a ,0,62a ,CS →=⎝⎛⎭⎫0,-22a ,62a ,BC →=⎝⎛⎭⎫-22a ,22a ,0. 设CE →=tCS →,则BE →=BC →+CE →=BC →+tCS → =⎝⎛⎭⎫-22a ,22a (1-t ),62at , 而BE →·DS →=0⇔t =13. 即当SE ∶EC =2∶1时,BE →⊥DS →.而BE 不在平面P AC 内,故BE ∥平面P AC .∴存在一点E ,使得BE ∥平面P AC ,此时SE ∶EC =2.。
利用空间向量证明平行、垂直问题 课件
答案:(1)l1⊥l2 (2)α∥β (3)l与α斜交 (4)l⊂α或l∥α
题型二 平面法向量的求法
例 2 若 A0,2,189,B1,-1,58,C-2,1,58 是平面 α 内的三点,设平面 α 的法向量 a=(x,y,z),
6.证明两条直线平行,只要证明这两条直线的 方向向量是平__行__(_或__共__线__)_.
7.证明两条直线垂直,只要证明这两条直线的 方向向量_垂__直___.
1.若直线l1,l2的方向向量分别为a=(1,2,-2), b=(-2,3,2),则( )B
A.l1∥l2
B.l1⊥l2
C.l1、l2相交但不垂直 D.不能确定
2.若平面α、β的法向量分别为u=(2,-3,5), v=(-3,1,-4),则( ) C
A.α∥β B.α⊥β
C.α、β相交但不垂直 D.以上均不正确
自测 自评
3.平面 α 的法向量 u=(x,1,-2),平面 β 的法向
量 v=-1,y,12,已知 α∥β,则 x+y=(
)
A.
13 4
B.145
(2)①u=(1,-1,2),v=3,2,-12, ∴u·v=3-2-1=0,∴u⊥v,∴α⊥β. ②∵u=(0,3,0),v=(0,-5,0),∴u=-35v, ∴u∥v,∴α∥β. ③∵u=(2,-3,4),v=(4,-2,1), ∴u 与 v 不共线,也不垂直, ∴α 与 β 相交但不垂直. (3)①∵u=(2,2,-1),a=(-3,4,2),
①a=(2,3,-1),b=(-6,-9,3); ②a=(5,0,2),b=(0,4,0); ③a=(-2,1,4),b=(6,3,3). (2)设 u,v 分别是不同的平面 α,β 的法向量,根据下列条 件判断 α,β 的位置关系: ①u=(1,-1,2),v=3,2,-12; ②u=(0,3,0),v=(0,-5,0);
向量法证明平行与垂直-人教版高中数学
第02讲一向量法证明平行与垂直知识图谱-利用向量证明空间中的平行关系-利用向星证明空间中的垂直关系宜线的方向向量与直线的向量方程利用向量方法证明线面平行关系利用向星方法证明线线与面面的平行关系利用向星方法证明线线垂直平面的法向星利用向星方法证明线面垂直利用向量方法证明面面垂直第02讲-向量法证明平行与垂直错题回顾利用向量证明空间中的平行关系知识Si井一・直线的方向向量与直线的向量方程1.点的位置向量在空间中,我们取一定点0作为基点,那么空间中任意一点P的位置就可以用向量成来表示,我们把向量质称为点P的位置向量.2.直线的方向向量空间中任一直线I的位置可以由I上的一个定点A以及一个定方向确定,如图,点村是直线,上的一点,向量或表示直线[的方向向量,则对于直线[上任一点户,有步弟,这样点工和向量成,不仅可以确定直线,的位置,还可具体表示出/上的任意点;直线I上的向量S以及与3共线的向量叫做i的方向向量・3.直线I的向量方程直线上任意一点P定存在实数,,使得衣=龙①,①式可以看做直线[的参数方程,直线f的参数方程还可以作如下表示:对空间中任意一确定点。
,点户在直线[上的充要条件是存在唯一的实数,满足等式灵=鬲*②,如果在,上取后=株,则上式可以化为灸=扇以刀=函硕赤-&)=(1-!)宓H房①;①②③都叫做空间直线的向量参数方程.二•平面的法向量1.平面法向量的定义已知平面a,如果向量成的基线与平面a垂直,则向量成叫作平面”的法向量或者说向量成与平面a正交.2.平面法向量的性质(1)平面“上的一个法向量垂直于平面“共面的所有向量;(2)一个平面的法向量有无限多个,它们互相平行.三.用向量方法证明空间中的平行关系1.牺平行设直线4房的方向向量分别是',5,则要证明4"《或4与"重合,只需要证明加,即M疗.2.线面平行(1)设直线,的方向向量是a,平面。
的法向量是元,要证明〃r/,只需要证明Sz;=o;(2)根据线面平行的判定定理:如果直线(平面夕卜)与平面内的一条直线平行,那么这条直线与这个平面平行;所以,要证明2直线和一个平面平行,也可以在平面内找到一个向量与已知直线的方向向量是共线向量即可;(3)根据共面向量定理可知:如果一个向量和两个不共线的向量是共面向量,那么这个向量与这两个不共面向量确定的平面一定平行.已知两个不共线向量名逡与平面“共面,一条直线]的一个方向向量为亍,则由共面向量定理,可得E或[在位内9存在两个实数W,使土戒+>£.3平行(1借能求出平面s月的法向量元足,要证明耻,只需要证明河即可.(2)由面面平行的判定定理:要证明面面平行,只要转化为相应的线面平行、线线平行即可,已知两个不共线的向量相与与平面“共面,则由两平面平行的判定与性质,得。
利用空间向量证明平行、垂直关系 课件
答案 1.线线平行 线面平行 面面平行 线线垂直 线面垂 直 面面垂直 2.共线向量 3.垂直 共线 共面向量 4.线线平行 线面平行 共线向量 5.互相垂直 6.共线向量 两条不共线向量互相垂直 7.线线垂直 线面垂直 互相垂直
题型一 证明线面平行 例 1 在正方体 ABCD-A1B1C1D1 中,M,N 分别是 C1C, B1C1 的中点,求证:MN∥平面 A1BD. 分析 分析 1,如下图,易知 MN∥DA1 因此得方法 1.
∴M→N=(0,-12,12). 设平面 A1BD 的法向量为 n(x,y,z) 则 n·A→1D=0 且 n·A→1B=0,
得yx--zz==00 取 x=1,则 y=1,z=1, ∴n=(1,1,1). ∴M→N·n=0-21+21=0. ∴M→N⊥n,又 MN⊄平面 A1BD. ∴MN∥平面 A1BD.
由题意可得C→E=D→M,∴D→M=C→E=12(C→A+C→B). ∴D→M·A→A1=12(C→A+C→B)·A→A1 =12(C→A·A→A1+C→B·A→A1)=0.
D→M·A→B=12(C→A+C→B)·A→B =12(C→A·A→B+C→B·A→B)=0. ∴D→M⊥A→B,D→M⊥A→A1, 即DDMM⊥⊥AABA,1, 且 AB∩AA1=A, ∴DM⊥平面 ABB1A1. 又∵DM⊂面 AB1D, ∴面 AB1D⊥面 ABB1A1.
4.证明面面平行的方法 (1)转化为__________、__________处理; (2)证明这两个平面的法向量是__________.
5.证明线线垂直的方法是证明这两条直线的方向向量 __________.
6.证明线面垂直的方法 (1)证明直线的方向向量与平面的法向量是__________; (2)证明直线与平面内的__________. 7.证明面面垂直的方法 (1)转化为__________、__________; (2)证明两个平面的法向量__________.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、重难点提示重点:用向量方法判断有关直线和平面的平行和垂直关系问题。
难点:用向量语言证明立体几何中有关平行和垂直关系的问题。
考点一:直线的方向向量与平面的法向量1. 直线l上的向量a或与a共线的向量叫作直线l的方向向量。
2. 如果表示向量a的有向线段所在直线垂直于平面α,则称这个向量垂直于平面α,记作a⊥α,此时向量a叫作平面α的法向量。
【核心归纳】①一条直线的方向向量有无数多个,一个平面的法向量也有无数多个,且它们是共线的。
②在空间中,给定一个点A和一个向量a,那么以向量a为法向量且经过点A的平面是唯一确定的。
【随堂练习】已知A(1,1,0),B(1,0,1),C(0,1,1),则平面ABC的一个法向量的单位向量是()A. (1,1,1)B. (,333C.111(,,)333D. (333-思路分析:设出法向量坐标,列方程组求解。
答案:设平面ABC的一个法向量为n=(x,y,z),AB=(0,-1,1),BC=(-1,1,0),AC=(-1,0,1),则·0·0·0AB y zBC x yAC x z⎧=-+=⎪⎪=-+=⎨⎪=-+=⎪⎩nnn,∴x=y=z,又∵单位向量的模为1,故只有B正确。
技巧点拨:一般情况下,使用待定系数法求平面的法向量,步骤如下:(1)设出平面的法向量为n=(x,y,z)。
(2)找出(求出)平面内的两个不共线的向量a=(a1,b1,c1),b=(a2,b2,c2)。
(3)根据法向量的定义建立关于x,y,z的方程组·0·0.=⎧⎨=⎩n an b(4)解方程组,取其中的一个解,即得法向量。
【核心突破】①用向量法解决立体几何问题是空间向量的一个具体应用,体现了向量的工具性,这种方法可把复杂的推理证明、辅助线的作法转化为空间向量的运算,降低了空间想象演绎推理的难度,体现了由“形”转“数”的转化思想。
②用空间向量解决立体几何问题的“三步曲”:例题1 (浙江改编)如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC 。
证明:PQ ∥平面BCD 。
思路分析:利用直线的方向向量和平面的法向量垂直证明线面平行。
答案:证明:如图,取BD 的中点O ,以O 为原点,OD 、OP 所在射线为y 、z 轴的正半轴,建立空间直角坐标系O -xyz 。
由题意知,A (0,2),B (0,0),D (0,0)。
设点C 的坐标为(x 0,y 0,0)。
因为3AQ QC =,所以Q00331,442x y ⎛⎫+ ⎪ ⎪⎝⎭。
因为M 为AD 的中点,故M (0,1),又P 为BM 的中点,故P 10,0,2⎛⎫ ⎪⎝⎭,所以PQ =0033,,0444x y ⎛⎫+ ⎪ ⎪⎝⎭。
又平面BCD 的一个法向量为a =(0,0,1),故PQ ·a =0。
又PQ ⊄平面BCD ,所以PQ ∥平面BCD 。
技巧点拨:解决此类问题的依据是要根据线面平行的判定定理,可证直线的方向向量与平面内某一向量平行,也可证直线的方向向量与平面的法向量垂直。
例题2 如图所示,正三棱柱(底面为正三角形的直三棱柱)ABC—A1B1C1的所有棱长都为2,D为CC1的中点。
求证:AB1⊥平面A1BD。
思路分析:证明线面垂直可以通过证明线与面的法向量平行来实现。
答案:证明:如图所示,取BC的中点O,连接AO ,因为△ABC为正三角形,所以AO⊥BC。
∵在正三棱柱ABC—A1B1C1中,平面ABC⊥平面BCC1B1,∴AO⊥平面BCC1B1,取B1C1的中点O1,以O为原点,分别以OB,1OO,OA所在直线为x轴,y轴,z轴建立空间直角坐标系,则B(1,0,0),D(-1,1,0),A1(0,23,A(0,03,B1(1,2,0)。
1BA=(-1,23,BD=(-2,1,0)。
1AB=(1,2,3-)设平面A1BD的法向量为n=(x,y,z),因为n⊥1BA,n⊥BD,故1023020BA x y zx yBD⎧⎧⋅=-+=⎪⎪⇒⎨⎨-+=⎪⋅=⎪⎩⎩nn,令x=1,则y=2,z3n=(1,2,-3)为平面A1BD的一个法向量,而1AB=(1,23,所以1AB=n,所以1AB∥n,故AB1⊥平面A1BD。
技巧点拨:解决此类问题的依据是要根据线面垂直的判定定理,证明直线的方向向量与平面的法向量平行。
例题3 如图,在直三棱柱ABC-A1B1C1中,AB⊥BC,AB=BC=2,BB1=1,E为BB1的中点,求证:平面AEC1⊥平面AA1C1C。
思路分析:建系写出坐标,分别求出两个平面的法向量,证明两个平面垂直。
答案:证明:由题意得AB,BC,B1B两两垂直,以B为原点,分别以BA,BC,BB1所在直线为x,y,z轴,建立如图所示的空间直角坐标系,则A (2,0,0),A 1(2,0,1),C (0,2,0),C 1(0,2,1),E (0,0,12), 则1AA =(0,0,1),AC =(-2,2,0),1AC =(-2,2,1),AE =(-2,0,12)。
设平面AA 1C 1C 的一个法向量为n 1=(x ,y ,z ),则11·0·0AA AC ⎧=⎪⎨=⎪⎩1n n ⇒0220z x y =⎧⎨-+=⎩ 令x =1,得y =1,∴n 1=(1,1,0)。
设平面AEC 1的一个法向量为n 2=(x 0,y 0,z 0),则21·0·0AC AE ⎧=⎪⎨=⎪⎩2n n ⇒000002201202x y z x z -++=⎧⎪⎨-+=⎪⎩ 令z 0=4,得x 0=1,y 0=-1。
∴n 2=(1,-1,4)。
∵n 1·n 2=1×1+1×(-1)+0×4=0, ∴n 1⊥n 2.∴平面AEC 1⊥平面AA 1C 1C 。
技巧点拨:利用空间向量证明面面垂直通常可以有两个途径,一是利用两个平面垂直的判定定理将面面垂直问题转化为线面垂直进而转化为线线垂直;二是直接求解两个平面的法向量,由两个法向量垂直,得面面垂直。
向量法证明面面垂直的优越性主要体现在不必考虑图形的位置关系。
恰当建系或用基向量表示后,只须经过向量运算就可得到要证明的结果,思路方法“公式化”,降低了思维难度。
利用向量解决立体几何中的探索性问题【满分训练】在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是棱AB ,BC 的中点,棱BB 1上是否存在一点M ,使得D 1M ⊥平面EFB 1。
思路分析:设出点M 的坐标,利用线面垂直列方程组求解。
答案:建立如图所示的空间直角坐标系D -xyz ,设正方体的棱长为2,则E (2,1,0),F (1,2,0),D 1(0,0,2),B 1(2,2,2)。
设M (2,2,m ),则EF =(-1,1,0),1B E =(0,-1,-2),1D M =(2,2,m -2)。
∵D 1M ⊥平面EFB 1, ∴D 1M ⊥EF ,D 1M ⊥B 1E ,∴1D M ·EF =0且1D M ·1B E =0, 于是22022(2)0m -+=⎧⎨---=⎩,∴m =1。
故取B 1B 的中点为M 就能满足D 1M ⊥平面EFB 1。
技巧点拨:对于“是否存在”型问题的探索方式有两种:一种是根据条件做出判断,再进一步论证。
另一种是利用空间向量,先设出假设存在的点的坐标,再根据条件求该点的坐标,即找到“存在点”,若该点坐标不能求出,或有矛盾,则判定“不存在”。
(答题时间:40分钟)1. (东营高二检测)已知平面α的法向量为a =(1,2,-2),平面β的法向量为b =(-2,-4,k ),若α⊥β,则k =( )A. 4B. -4C. 5D. -52. (青岛高二检测)若AB =λCD +μCE ,则直线AB 与平面CDE 的位置关系是( )A. 相交B. 平行C. 在平面内D. 平行或在平面内3. 已知AB =(1,5,-2),BC =(3,1,z ),若AB ⊥BC ,BP =(x -1,y ,-3),且BP ⊥平面ABC ,则实数x ,y ,z 分别为( )A.337,-157,4 B. 407,-157,4 C. 407,-2,4 D. 4,407,-154. (汕头模拟)如图,已知正方体ABCD-A 1B 1C 1D 1的棱长为3,点E 在AA 1上,点F 在CC 1上,且AE =FC 1=1。
(1)求证:E ,B ,F ,D 1四点共面; (2)若点G 在BC 上,BG =23,点M 在BB 1上,GM ⊥BF ,垂足为H ,求证:EM ⊥平面BCC 1B 1。
5. 下列命题中,正确的是________。
(填序号)① 若n 1,n 2分别是平面α,β的一个法向量,则n 1∥n 2⇔α∥β; ② 若n 1,n 2分别是平面α,β的一个法向量,则α⊥β⇔n 1·n 2=0; ③ 若n 是平面α的一个法向量,a 与平面α共面,则n ·a =0; ④ 若两个平面的法向量不垂直,则这两个平面一定不垂直。
6. 平面上有四个互异的点A ,B ,C ,D ,已知(DB +DC -2DA )·(AB -AC )=0,则△ABC 的形状是 三角形。
7. 如图,直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 是矩形,AB =2,AD =1,AA 1=3,M 是BC 的中点。
在DD 1上是否存在一点N ,使MN ⊥DC 1?并说明理由。
8. (衡水调研卷)如图所示,在四棱柱ABCD -1111A B C D 中,1A D ⊥平面ABCD ,底面ABCD 是边长为1的正方形,侧棱1A A =2。
(1)证明:AC ⊥1A B ;(2)是否在棱A 1A 上存在一点P ,使得AP =λ1PA ,且面AB 1C 1⊥面PB 1C 1。
1. D 解析:∵α⊥β,∴a ⊥b ,∴a ·b =-2-8-2k =0,∴k =-5。
2. D 解析:∵AB =λCD +μCE ,∴AB 、CD 、CE 共面,则AB 与平面CDE 的位置关系是平行或在平面内。
3. B 解析:∵AB ⊥BC ,∴AB ·BC =0,即3+5-2z =0,解得z =4,又∵BP ⊥平面ABC ,∴BP ⊥AB ,BP ⊥BC ,则156031120x y x y (-)++=⎧⎨(-)+-=⎩ ,解得407157x y ⎧=⎪⎪⎨⎪=-⎪⎩。
4. 证明:(1)以B 为原点,以BA ,BC ,BB 1为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系B xyz ,则B (0,0,0),E (3,0,1),F (0,3,2),D 1(3,3,3),则BE =(3,0,1),BF =(0,3,2),1BD =(3,3,3),所以1BD =BE +BF 。