2015年高考理科数学全国1卷-含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年高考理科数学试卷全国1卷

1.设复数z 满足

11z

z

+-=i ,则|z|=( ) (A)1 (B )2 (C )3 (D )2 2.o o o o sin 20cos10cos160sin10- =( ) (A)32-

(B )32 (C )12- (D)12

3.设命题p :2,2n n N n ∃∈>,则p ⌝为( )

(A )2,2n n N n ∀∈> (B)2,2n n N n ∃∈≤ (C)2,2n n N n ∀∈≤ (D )2,=2n n N n ∃∈

4.投篮测试中,每人投3次,至少投中2次才能通过测试。已知某同学每次投篮投中的概率为0。6,且各

次投篮是否投中相互独立,则该同学通过测试的概率为( ) (A )0.648 (B)0。432 (C )0。36 (D )0。312

5.已知M (00,x y )是双曲线C :2

212x y -=上的一点,12,F F 是C 上的两个焦点,若120MF MF •<,则0y 的

取值范围是( ) (A)(—

33,33) (B )(—36,36

) (C )(223-

,223

) (D )(233-,233)

6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,

高五尺。问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?"已知1斛米的体积约为1。62立方尺,圆周率约为3,估算出堆放斛的米约有( )

(A )14斛 (B )22斛 (C )36斛 (D )66斛 7.设D 为ABC ∆所在平面内一点3BC CD =,则( )

(A )1433AD AB AC =-+ (B )14

33AD AB AC =-

(C)4133AD AB AC =

+ (D)4133

AD AB AC =- 8.函数()f x =cos()x ωϕ+的部分图像如图所示,则()f x 的单调递减区间为( )

(A )13(,),44k k k Z ππ-+∈ (B )13

(2,2),44k k k Z ππ-+∈

(C)13(,),44k k k Z -+∈ (D )13

(2,2),44

k k k Z -+∈

9.执行右面的程序框图,如果输入的t=0.01,则输出的n=( )

(A )5 (B )6 (C )7 (D )8 10.25()x x y ++的展开式中,52x y 的系数为( )

(A )10 (B )20 (C )30 (D )60

11.圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示。若该几何体的表面积为16 + 20π,则r=( )

(A )1 (B )2 (C )4 (D )8

12.设函数()f x =(21)x e x ax a --+,其中a 1,若存在唯一的整数0x ,使得0()f x 0,则a 的取值范围是( ) (A )[—

32e ,1) (B )[—32e ,34) (C)[32e ,34) (D)[3

2e

,1) 13.若函数f(x )=2ln()x x a x ++为偶函数,则a=

14.一个圆经过椭圆22

1164

x y +

=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为. 15.若,x y 满足约束条件10

040

x x y x y -≥⎧⎪

-≤⎨⎪+-≤⎩

,则y x 的最大值为。

16.在平面四边形ABCD 中,∠A=∠B=∠C=75°,BC=2,则AB 的取值范围是。

17.(本小题满分12分)n S 为数列{n a }的前n 项和。已知n a >0,2

n

n a a +=43n S +。 (Ⅰ)求{n a }的通项公式;

(Ⅱ)设1

1

n n n b a a +=

,求数列{n b }的前n 项和。 18.如图,四边形ABCD 为菱形,∠ABC=120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD,DF ⊥平面ABCD,BE=2DF,AE ⊥EC.

(Ⅰ)证明:平面AEC ⊥平面AFC ;

(Ⅱ)求直线AE 与直线CF 所成角的余弦值。

19.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y(单位:t)和年利润z (单位:千元)的影响,对近8年的年宣传费i x 和年销售量i y (i =1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值。

x

y

w

8

2

1

()

i

i x x =-∑

8

2

1

()

i

i w w =-∑

81

()()i

i

i x x y y =--∑ 8

1

()()i

i

i w w y

y =--∑

46。6 56.3

6.8 289。8 1。6 1469 108.8

表中i i w x =,w =

18

8

1

i i w =∑

(Ⅰ)根据散点图判断,y=a+bx 与x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)

(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;

(Ⅲ)已知这种产品的年利率z 与x 、y 的关系为z=0。2y-x.根据(Ⅱ)的结果回答下列问题: (ⅰ)年宣传费x=49时,年销售量及年利润的预报值是多少? (ⅱ)年宣传费x 为何值时,年利率的预报值最大?

相关文档
最新文档