微电子工艺习题参考解答
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CRYSTAL GROWTH AND EXPITAXY
1.画出一50cm 长的单晶硅锭距离籽晶10cm 、20cm 、30cm 、40cm 、45cm 时砷的掺杂分布.(单晶硅锭从融体中拉出时,初始的掺杂浓度为1017cm —3) 2.硅的晶格常数为5。
43Å.假设为一硬球模型: (a )计算硅原子的半径.
(b)确定硅原子的浓度为多少(单位为cm —3)?
(c )利用阿伏伽德罗(Avogadro )常数求出硅的密度。
3.假设有一l0kg 的纯硅融体,当硼掺杂的单晶硅锭生长到一半时,希望得到0.01 Ω·cm 的电阻率,则需要加总量是多少的硼去掺杂?
4.一直径200mm 、厚1mm 的硅晶片,含有5。
41mg 的硼均匀分布在替代位置上,求: (a)硼的浓度为多少?
(b)硼原子间的平均距离。
5.用于柴可拉斯基法的籽晶,通常先拉成一小直径(5.5mm)的狭窄颈以作为无位错生长的开始.如果硅的临界屈服强度为2×106g/cm2,试计算此籽晶可以支撑的200mm 直径单晶硅锭的最大长度。
6.在利用柴可拉斯基法所生长的晶体中掺入硼原子,为何在尾端的硼原子浓度会比籽晶端的浓度高?
7.为何晶片中心的杂质浓度会比晶片周围的大?
8.对柴可拉斯基技术,在k 0=0。
05时,画出C s /C 0值的曲线。
9.利用悬浮区熔工艺来提纯一含有镓且浓度为5×1016cm —3的单晶硅锭。
一次悬浮区熔通过,熔融带长度为2cm,则在离多远处镓的浓度会低于5×1015cm —3?
10.从式L kx s e k C C /0)1(1/---=,假设k e =0.3,求在x/L=1和2时,C s /C 0的值。
11.如果用如右图所示的硅材料制造p +—n 突变结二极管,试求用传统的方法掺杂和用中子辐照硅的击穿电压改变的百分比。
12.由图10。
10,若C m =20%,在T b 时,还剩下多少比例的液体?
13.用图10.11解释为何砷化镓液体总会变成含镓比较多?
14.空隙n s 的平衡浓度为Nexp
[—E s /(kT )],N 为半导体原子的浓度,而E s 为形成能量。
计算硅在27℃、900℃和1 200℃的n s (假设E s =2。
3eV ).
15.假设弗兰克尔缺陷的形成能量(E f )为1。
1eV ,计算在27℃、900℃时的缺陷密度.
弗兰克尔缺陷的平衡密度是,其中N为硅原子的浓度(cm-3),N’为可用的间隙位置浓度(cm-3),可表示为N’=1×1027cm-3.
16.在直径为300mm的晶片上,可以放多少面积为400mm2的芯片?解释你对芯片形
状和在周围有多少闲置面积的假设.
17.求在300K时,空气分子的平均速率(空气相对分子质量为29).
图 10。
10。
Phase diagram for the gallium—图 10.11。
Partial pressure of gallium and arsenic
arsenic system. over gallium arsenide as a function of temperature.
Also shown is the partial pressure of silicon。
18.淀积腔中蒸发源和晶片的距离为15cm,估算当此距离为蒸发源分子的平均自由程的10%时系统的气压为多少?
19.求在紧密堆积下(即每个原子和其他六个邻近原子相接),形成单原子层所需的每单位面积原子数N s.假设原子直径d为4。
68Å.
20.假设一喷射炉几何尺寸为A=5cm2及L=12cm.
(a)计算在970℃下装满砷化镓的喷射炉中,镓的到达速率和MBE的生长速率;(b)利用同样形状大小且工作在700℃,用锡做的喷射炉来生长,试计算锡在如前述砷化镓生长速率下的掺杂浓度(假设锡会完全进入前述速率生长的砷化镓中,锡的摩尔质量为118.69;在700℃时,锡的压强为2。
66×10-6Pa).
21.求铟原子的最大比例,即生长在砷化镓衬底上而且并无任何错配的位错的Ga x In1—x As 薄膜的x值,假定薄膜的厚度是10nm.
22.薄膜晶格的错配f 定义为,f=[a 0(s )—a 0(f)]/a 0(f)≡△a 0/a 0.a 0(s)和a 0(f )分别为衬底和薄膜在未形变时的晶格常数,求出InAs —GaAs 和Ge-Si 系统的f 值. Solution
1. C 0 = 1017 cm —3 k 0(As in Si ) = 0.3
C S = k 0C 0(1 - M /M 0)k 0—1
= 0。
3⨯1017(1- x)—0.7 = 3⨯1016/(1 — l /50)0.7
2468101214160
10
20
30
40
50
l (cm)
N D (1016 c m -3
)
2. (a) The radius of a silicon atom can be expressed as
Å175.143.58
3
so 8
3=⨯=
=
r a r
(b ) The numbers of Si atom in its diamond structure are 8. So the density of silicon atoms is 3
223
3atoms/cm 100.5)
Å43.5(88⨯===a n (c ) The density of Si is
323
22
23
cm / g 1002.610509.28/11002.6/⨯⨯⨯=
⨯=
n
M ρ = 2.33 g / cm 3.
3. k 0 = 0。
8 for boron in silicon M / M 0 = 0。
5
The density of Si is 2。
33 g / cm 3.
The acceptor concentration for ρ = 0。
01 Ω–cm is 9⨯1018 cm —3. The doping concentration C S is given by
1
000)1(--
=k s M M C k C Therefore
3
182
.018
10
00cm 108.9 )5.01(8.0109)
1(0---⨯=-⨯=
-=k s M M k C C
The amount of boron required for a 10 kg charge is
2218102.4108.9338
.2000
,10⨯=⨯⨯ boron atoms So that
boron g 75.0atoms/mole
1002.6atoms
102.4g/mole 8.1023
22=⨯⨯⨯. 4. (a ) The molecular weight of boron is 10。
81.
The boron concentration can be given as
3
18223
3atoms/cm
1078.9 1
.014.30.101002.6g 81.10/g 1041.5 fer
silicon wa of volume atoms boron of number ⨯=⨯⨯⨯⨯⨯==
-b n
(b) The average occupied volume of everyone boron atoms in the wafer is
3
18
cm 1078.911⨯==b n V We assume the volume is a sphere, so the radius of the sphere ( r ) is the average distance between two boron atoms. Then
cm 109.2437-⨯==
π
V
r . 5. The cross —sectional area of the seed is
22
cm 24.0255.0=⎪⎭
⎫ ⎝⎛π The maximum weight that can be supported by the seed equals the product of the critical yield strength and the seed ’s cross-sectional area: kg 480g 108.424.0)102(56=⨯=⨯⨯ The corresponding weight of a 200—mm —diameter ingot with length l is
g/cm 33.2(3
=∴ l 6。
The tail —7。
8.We have
0/C s C 9. The segregation coefficient of Ga in Si is 8 ⨯10-3
From Eq. 18
L kx s e k C C /0)1(1/---= We have
0.2
0.4
0.6
0.8
1
F ra c tion S olidifie d
cm.
24 ln(1.102) 250 105/10511081ln 1082 /11ln 16
153
3-0==⎪⎪⎭
⎫ ⎝⎛⨯⨯-⨯-⨯=⎪⎪⎭
⎫
⎝⎛--=-C C k k L x s 10。
We have from Eq 。
18
])/exp()1(1[0L x e k e k C s C ---=
So the ratio )]/exp()1(1[0/L x e k e k C s C ---=
= 1/at
52.0)13.0exp()3.01(1==⨯-•--L x = 38.0 at x/L = 2.
11。
For the conventionally —doped silicon , the resistivity varies from 120 Ω—cm to 155 Ω—cm 。
The
corresponding doping concentration varies from 2。
5⨯1013 to 4⨯1013 cm —3。
Therefore the range of breakdown voltages of p + - n junctions is given by
V 11600 to 7250/109.2)(10
6.12)103(1005.1)(217119
25121
2
=⨯=⨯⨯⨯⨯⨯=≅
----B B B c s B N N N q
V E εV 4350725011600=-=∆B V
%307250/2±=⎪⎭
⎫
⎝⎛∆∴B V For the neutron irradiated silicon , ρ= 148 ± 1。
5 Ω—cm. The doping concentration is 3⨯1013 (±1%). The range of breakdown voltage is
. V 9762 to 9570%)1(103/109.2/103.1131717=±⨯⨯=⨯=B B N V
V 19295709762=-=∆B V
%19570/2±=⎪⎭⎫
⎝⎛∆∴B V . 12。
We have
l
s
C C C C M M m s l m l s =--==b b T at liquid of weight T at GaAs of weight
Therefore , the fraction of liquid remained f can be obtained as following
65.030
1630=+≈+=+=l s l M M M f l s l 。
13. From the Fig 。
11, we find the vapor pressure of As is much higher than that of the Ga.
Therefore , the As content will be lost when the temperature is increased 。
Thus the composition of liquid GaAs always becomes gallium rich. 14。
⎥⎦
⎤
⎢
⎣⎡-⨯=⨯=-=)300/(8.88exp 105)/eV 3.2exp(105)/exp(2222T kT kT E N n s s = K 300
C 27at 0cm 1023.10316=≈⨯-- = K 1173 C 900at cm 107.60312=⨯- = K 1473 C 1200at
cm 107.60314=⨯-.
15. )2/exp(`kT E NN n f f -=
=)300//(7.94242/1.1/8.327221007.7101105T kT eV kT eV e e e ---⨯⨯=⨯⨯⨯⨯ = 1027.517-⨯at 27o C = 300 K
=2。
14⨯1014 at 900o C = 1173 K 。
16. 37 ⨯ 4 = 148 chips
In terms of litho-stepper considerations,
there are 500 μm space tolerance between the mask boundary of two dice. We divide the wafer into four symmetrical parts for convenient dicing , and discard the perimeter parts of the wafer. Usually the quality of the perimeter parts is the worst due to the edge effects. 17. M
kT
dv
f dv vf v v av
πν8 0
0 =
=⎰
⎰∞∞
Where ⎪⎪⎭
⎫ ⎝
⎛-⎪
⎭
⎫
⎝⎛=kT
M kT M f 2exp 242
22
/3ννπν M: Molecular mass
k: Boltzmann constant = 1.38⨯10—23 J/k T : The absolute temperature ν: Speed of molecular
So that
cm/sec 1068.4m/sec 46810
67.1293001038.122
4
27
23⨯==⨯⨯⨯⨯⨯=
--π
νav 。
18. cm )Pa in (66
.0P =
λ
Pa 104.4150
66
.066
.03-⨯==
=
∴λ
P . 19。
For close-packing arrange , there are 3 pie shaped sections
in the equilateral triangle. Each section corresponds to 1/6 of an atom. Therefore
d d N s 2
3
2161
3 triangle the of area triangle in the contained atoms of number ⨯⨯
=
= =
2
82
)
1068.4(3232-⨯=
d
=2
14atoms/cm 1027.5⨯.
20. (a) The pressure at 970︒C (=1243K ) is 2.9⨯10-1 Pa for Ga and 13 Pa for As 2. The arrival rate is given by the product of the impringement rate and A/πL 2 :
Arrival rate = 2.64⨯1020⎪⎭
⎫
⎝⎛⎪⎭⎫ ⎝⎛2L A MT P π
= 2。
64⨯1020⎪⎭⎫
⎝
⎛⨯⎪⎪⎭⎫ ⎝⎛
⨯⨯-21
125124372.69109.2π
= 2。
9⨯1015 Ga molecules/cm 2 –s
The growth rate is determined by the Ga arrival rate and is given by (2。
9⨯1015)⨯2.8/(6⨯1014) = 13。
5 Å/s = 810 Å/min .
(b) The pressure at 700ºC for tin is 2。
66⨯10-6 Pa 。
The molecular weight is 118.69.
Therefore the arrival rate is
s ⋅⨯=⎪⎭⎫ ⎝
⎛⨯⎪⎪⎭⎫ ⎝⎛⨯⨯⨯-2
102620
cm molecular/ 1028.212
597369.1181066.21064.2π If Sn atoms are fully incorporated and active in the Ga sublattice of GaAs , we have an
electron concentration of
. cm 1074.121042.4109.21028.23
-17221510⨯=⎪⎪⎭
⎫ ⎝⎛⨯⎪⎪⎭⎫ ⎝⎛⨯⨯
21. The x value is about 0.25, which is obtained from Fig. 26。
22. The lattice constants for InAs , GaAs, Si and Ge are
6.05, 5。
65,5.43, and 5。
65 Å, respectively (Appendix F)。
Therefore, the f value for InAs-GaAs
system is
066.005.6)05.665.5(-=-=f And for Ge-Si system is
. 39.065.5)65.543.5(-=-=f
THERMAL OXIDATION AND FILM DEPOSITION
1.一p型掺杂、方向为〈100>的硅晶片,其电阻率为10Ω·cm,置于湿法氧化的系统中,其生长厚度为0。
45μm,温度为1 050℃.试决定氧化的时间.
2.习题1中第一次氧化后,在氧化膜上定义一个区域生长栅极氧化膜,其生长条件为1000℃,20 min.试计算栅极氧化膜的厚度及场氧化膜的总厚度.
3.试推导方程式(11).当时间较长时,可化简为x2=Bt;时间较短时·可化简为x=.
4.试计算在方向为〈100>的硅晶片上,温度980℃及latm下进行干法氧化的扩散系数D.
5.(a)在等离子体式淀积氮化硅的系统中,有20%的氢气,且硅与氮的比值为1。
2,试计算淀积SiN x H y,中的x及y.
(b)假设淀积薄膜的电阻率随5×1028exp(—33.3γ)而改变(当2>γ〉0·8),其中γ为与氮的比值.试计算(a)中薄膜的电阻率.
6.SiO2、Si3N4及Ta2O5的介电常数约为3。
9、7。
6及25.试计算以Ta2O5与SiO2:Si3N4:SiO2作为介质的电容的比值.其中介质厚度均相等,且SiO2:Si3N4:SiO2的比例亦为1:1:1.
7.续习题6,若选择介电常数为500的BST来取代Ta2O5。
试计算欲维持相等的电容值,面积所减少的比例.假设两薄膜厚度相等.
8.续习题6,试以SiO2的厚度来计算Ta2O5的等效厚度.假设两者有相同的电容值。
9.在硅烷与氧气的环境下,淀积未掺杂的氧化膜.当温度为425℃时,淀积速率为15nm/min.在多少温度时,淀积速率可提高一倍?
10.磷硅玻璃回流的工艺需高与1000℃.在ULSI中,当器件的尺寸缩小时,必须降低工艺温度.试建议一些方法,可在温度小于900℃的情形下,淀积表面平坦的二氧化硅绝缘层来作为金属层间介质.
11.为何在淀积多晶硅时,通常以硅烷为气体源,而不以硅氯化物为气体源? 12.解释为何一般淀积多晶硅薄膜的温度普遍较低,大约在600℃~650℃之间。
13.一电子束蒸发系统淀积铝以完成MOS电容的制作.若电容的平带电压因电子束辐射而变动0。
5V,试计算有多少固定氧化电荷(氧化膜厚度为50nm)?试问如何将这些电荷去除?
14.一金属线长20μm ,宽0.25μm ,薄层电阻值为5Ω/.请计算此线的电阻值.
15.计算TiSi 2与CoSi 2的厚度,其中Ti 与Co 的初始厚度为30nm .
16.比较TiSi 2与CoSi 2在自对准金属硅化物应用方面的优、缺点.
17.一介质置于两平行金属线间.其长度L=lcm ,宽度W=0。
28μm ,厚度T=0。
3μm .两金属间距s 为0。
36μm.
(a )计算RC 时间延迟。
假设金属材料为铝,其电阻率为2。
67μΩ·cm ,介质
为氧化膜,其介电常数为3.9.
(b)计算RC 时间延迟。
假设金属材料为铜,其电阻率为1。
7μΩ·cm ,介质为有
机聚合物,其介电常数为2。
8.
(c)比较(a)、(b)中结果,我们可以减少多少RC 时间延迟?
18.重复计算习题17(a )及(b).假设电容的边缘因子(fringing factor )为3,
边缘因子是由于电场线分布超出金属线的长度与宽度的区域.
19.为避免电迁移的问题,最大铝导线的电流密度不得超过5×105 A/cm2.假设
导线长为2mm,宽为1μm ,最小厚度为1μm ,此外有20%的线在台阶上,该处厚
度为0。
5μm .试计算此线的电阻值.假设电阻率为3×10—6Ω·cm .并计算铝线
两端可承受的最大电压.
20.在布局金属线时若要使用铜,必须克服以下几点困难:①铜通过二氧化硅层
而扩散;②铜与二氧化硅层的附着性;③铜的腐蚀性.有一种解决的方法是使用
具有包覆性、附着性的薄膜来保护铜导线.考虑一被包覆的铜导线,其横截面积
为0.5μm×0。
5μm .与相同尺寸大小的TiN/Al/TiN 导线相比(其中上层TiN 厚度
为40 nm ,下层为60 nm ),其最大包覆层的厚度为多少?(假设被包覆的铜线与
TiN/A1/TiN 线的电阻相等)
1. From Eq 。
11 (with τ=0)
x 2+Ax = Bt
From Figs 。
6 and 7, we obtain B/A =1。
5 µm /hr, B =0。
47 µm 2/hr, therefore A = 0。
31 µm. The time required to grow 0.45µm oxide is
min 44hr 0.720.45)0.31(0.450.47
12==⨯+=+=Ax)(x B 1t 2.
2. After a window is opened in the oxide for a second oxidation, the rate constants are
B = 0.01 µm 2/hr , A= 0.116 µm (B/A = 6 ×10-2 µm /hr ).
If the initial oxide thickness is 20 nm = 0.02 µm for dry oxidation , the value
ofτcan be obtained as followed:
(0。
02)2 + 0.166(0。
02) = 0。
01 (0 +τ)
or
τ= 0.372 hr.
For an oxidation time of 20 min (=1/3 hr), the oxide thickness in the window area
is
x 2+ 0.166x = 0.01(0.333+0。
372) = 0.007
or
x = 0。
0350 µm = 35 nm (gate oxide).
For the field oxide with an original thickness 0。
45 µm , the effectiveτis given by τ=.hr 72.27)45.0166.045.0(01
.01)(122=⨯+=+Ax x B x 2+ 0.166x = 0。
01(0.333+27.72) = 0。
28053
or x = 0。
4530 µm (an increase of 0.003µm only for the field oxide)。
3. x 2 + Ax = B )(τ+t
)(4
)2(2
2τ+=-+t B A A x ⎥⎦
⎤⎢⎣⎡++=+)(4 )2(22τt B A B A x when t 〉> τ, t >> B
A 42
, then, x 2 = Bt
similarly ,
when t >> τ, t 〉> B
A 42
, then , x = )(τ+t A
B 4. At 980℃(=1253K) and 1 atm, B = 8。
5×10—3 µm 2/hr , B/A = 4×10—2 µm /hr (from Figs 。
6 and 7). Since A ≡2D/k , B /A = k C 0/C 1, C 0 = 5。
2×1016 molecules/cm 3 and C 1 = 2。
2×1022 cm -3 , the diffusion coefficient is given by
.
s /cm 104.79 hr
/m 101.79 hr /m 10
2.5102.22105.8 22229-232162230101⨯=⨯=⨯⨯⨯=⎪⎪⎭
⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⋅==-μμC C B C C A B A Ak D
t A 3C 01O Ta 52εε=A A A 020302ONO t t t C 1εεεεεε++=()t
A
32032ONO 2C εεεεε+=()t
A t A 32203210123εεεεεεε+=5. (a ) For SiN x H y
2.11N Si ==x
∴x = 0。
83
atomic % 2083.01100H =++=y
y ∴y = 0.46
The empirical formula is SiN 0.83H 0.46.
(b ) ρ= 5× 1028e —33.3×1。
2 = 2× 1011 Ω—cm
As the Si/N ratio increases , the resistivity decreases exponentially 。
6。
Set Ta 2O 5 thickness = 3t , ε1 = 25
SiO 2 thickness = t , ε2 = 3.9
Si 3N 4 thickness = t, ε3 = 7。
6, area = A
then
()()37.56
.79.336.729.32532C C 32321ONO O Ta 5
2=⨯⨯⨯+=+=εεεεε。
7. Set
BST thickness = 3t , ε1 = 500, area = A 1
SiO 2 thickness = t , ε2 = 3.9, area = A 2
Si 3N 4 thickness = t , ε3 = 7.6, area = A 2
then
.0093.0A A 2
1=
8。
Let
Ta 2O 5 thickness = 3t , ε1 = 25
SiO 2 thickness = t , ε2 = 3。
9
Si 3N 4 thickness = t , ε3 = 7.6
area = A
then
9. The deposition rate can be expressed as
r = r 0 exp (—E a /kT )
where E a = 0.6 eV for silane —oxygen reaction. Therefore for T 1 = 698 K
⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-== 116.0 exp 2)()(21
12kT kT T r T r ln 2 = ⎥⎦
⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛- 300698300 0259.06.02T ∴T 2 =1030 K= 757 ℃。
10. We can use energy-enhanced CVD methods such as using a focused energy
source or UV lamp 。
Another method is to use boron doped P -glass which will
reflow at temperatures less than 900℃.
11. Moderately low temperatures are usually used for polysilicon deposition, and
silane decomposition occurs at lower temperatures than that for chloride reactions.
In addition, silane is used for better coverage over amorphous materials such
SiO 2.
12. There are two reasons 。
One is to minimize the thermal budget of the wafer,
reducing dopant diffusion and material degradation. In addition, fewer gas phase
reactions occur at lower temperatures, resulting in smoother and better adhering
films. Another reason is that the polysilicon will have small grains 。
The finer
grains are easier to mask and etch to give smooth and uniform edges 。
However,
for temperatures less than 575 ºC the deposition rate is too low 。
有两个原因.一是减少硅片的热预算,降低掺杂剂扩散和材料的降解。
此外,少
气相反应在较低的温度下发生,导致更顺畅,更好的粘合膜。
另一个原因是,多
晶硅将有小颗粒。
细颗粒容易掩模蚀刻给光滑和均匀的边缘。
然而,温度低于
575ºC 沉积速率太低。
d A t A 02013εεεε=.468.0312t t d ==εε
Ω⨯=⨯⨯⨯⨯⨯==---3446102.3103.01028.011067.2A L R ρF .....S TL d A C 13464414109210
3601010110301085893-----⨯=⨯⨯⨯⨯⨯⨯⨯⨯===εε13. The flat-band voltage shift is
FB V ∆= 0。
5 V ~ 0
C Q ot 28814
0F/cm 109.610
5001085.89.3----⨯=⨯⨯⨯==d C ox
ε. ∴ Number of fixed oxide charge is 2-11198
0cm 101.210
6.1109.65.05.0⨯=⨯⨯⨯=--q C To remove these charges , a 450℃ heat treatment in hydrogen for about 30
minutes is required.
14.20/0。
25 = 80 sqs.
Therefore , the resistance of the metal line is
5⨯50 = 400 Ω .
15. For TiSi 230 ⨯ 2.37 = 71.1nm
For CoSi 230 ⨯ 3.56 = 106。
8nm 。
16。
For TiSi 2:
Advantage:low resistivity
It can reduce native —oxide layers
TiSi 2 on the gate electrode is more resistant to
high —field-induced hot-electron degradation 。
Disadvantage: bridging effect occurs 。
Larger Si consumption during formation of TiSi 2
Less thermal stability
For CoSi 2:
Advantage :low resistivity
High temperature stability
No bridging effect
A selective chemical etch exits
Low shear forces
Disadvantage :not a good candidate for polycides
17. (a )
ns 42.0101.2102133=⨯⨯⨯=-RC Ω⨯=⨯⨯⨯⨯⨯==-3446102.3103.01028.011067.2A L R ρF 107.81036.031103.01085.89.3134414---⨯=⨯⨯⨯⨯⨯⨯⨯===S TL d A C εε.ns 93.0109.2103.2155=⨯⨯⨯=-RC
(b) Ω⨯=⨯⨯⨯⨯⨯==---344610210
3.01028.01107.1L A R ρ F 101.21036.01103.01085.88.2d A 134414----⨯=⨯⨯⨯⨯⨯⨯===S TL
C εε (c ) We can decrease the RC delay by 55%。
Ratio =
09342.0 = 0.45。
18. (a)
RC = 3.2 ×103 ×8.7 × 10-13 = 2。
8 ns.
(b) Ω⨯=⨯⨯⨯⨯⨯==-344610210
3.01028.01107.1A L R ρ F 103.610
36.031103.01085.88.2d 134414---⨯=⨯⨯⨯⨯⨯⨯⨯===S TL
A C εε ns.
5.2107.8102.3ns 5.2107.8102133133=⨯⨯⨯==⨯⨯⨯=--RC RC 19. (a ) The aluminum runner can be considered as two segments connected in series: 20% (or 0.4 mm) of the length is half thickness (0.5 µm ) and the remaining
1。
6 mm is full thickness (1µm )。
The total resistance is
⎥⎦⎤⎢⎣⎡⨯⨯+⨯⨯=⎥⎦
⎤⎢⎣⎡+=-----)105.0(1004.0101016.0103444462211A A R ρ = 72 Ω。
The limiting current I is given by the maximum allowed current density times
cross-sectional area of the thinner conductor sections:
I = 5×105 A/cm 2× (10—4×0.5×10-4) = 2.5×10—3 A = 2。
5 mA.
The voltage drop across the whole conductor is then
A 105.2723-⨯⨯Ω==RI V = 0.18V 。
20.
40 nm
0.5 μm
h : height , W : width , t : thickness, assume that the resistivities of the cladding layer
and TiN are much larger than Cu A and ρρ
5.0)1.05.0(7.2⨯-=⨯⨯
= W h R Al Al ρ )
25.0()25.0(7.1t t W h R Cu Cu -⨯-=⨯⨯= ρ When Cu Al R R = Then 2)25.0(7
.15.04.07.2t -=⨯
⇒ t = 0。
073 μm = 73 nm .
LITHOGRAPHY AND ETHING
1·对等级为100的洁净室,试依粒子大小计算每单位立方米中尘埃粒子总数.
(a)0.5μm到1μm;
(b)1μm到2μm;
(c)比2μm大.
2.试计算一有9道掩模版工艺的最后成品率.其中有4道平均致命缺陷密度为0。
1/cm2,4道为0。
25cm2.,1道为1。
0/cm2.芯片面积为50 mm2.
3.一个光学光刻系统,其曝光功率为0。
3mW/cm2..正性光刻胶要求的曝光能量为
140mJ/cm2。
,负性光刻胶为9mJ/cm2。
.假设忽略装载与卸载晶片的时间,试比较正性光刻胶与负性光刻胶的产率.
4.(a)对波长为193nm的ArF—准分子激光光学光刻系统,其D NA=0.65,k1=0.60,k2=0。
50.此光刻机理论的分辨率与聚焦深度为多少?
(b))实际上我们可以如何修正D NA、k1与k2参数来改善分辨率?
(c)相移掩模版(PSM)技术改变哪一个参数可改善分辨率?
5.右图为光刻系统的反应曲线
(response curves):
(a)使用较大γ值的光刻胶有何
优缺点?
(b)传统的光刻胶为何不能用
于248nm或193rim光刻系统?
6.(a)解释在电子束光刻中为
何可变形状电子束比高斯电子束
拥有较高的产率?
(h)电子束光刻图案如何对
准?为何X射线光刻的图案对准
如此困难?
(c)X射线光刻比电子束光刻
的潜在优点有哪些?
7·(a)为何光学光刻系统的工作模式由邻近影印法进化到投影,最后进化到5:1
的步进重复投影法?
(b)X射线光刻系统是否可能使用重复扫描系统?并说明原因.
8.如果掩蔽层与衬底不能被某一腐蚀剂腐蚀,试画出下列几种情形薄膜厚度为h f的各向异性腐蚀图案的侧边轮廓;
(a)刚好完全腐蚀;
(b)100%过度腐蚀;
(c)200%过度腐蚀.
9.一个<100〉晶向硅晶片,利用KOH溶液腐蚀一个利用二氧化硅当掩蔽层的1。
5μm×l。
5μm 窗,垂直于〈100>晶面的腐蚀速率为0。
6μm/min.而〈100〉:<110〉:〈111〉晶面的腐蚀速率比为100:16:1.画出20s、40s与60s的腐蚀轮廓.
10.续上题,一个<110>晶向硅晶片利用薄的SiO2当掩蔽层,在KOH溶液中藕蚀.画出<110>硅的腐蚀轮廓.
11.一个直径150mm<100〉晶向硅晶片厚度为625μm.晶片上有1 000μm×1 000μm的IC.这些IC是利用各向异性腐蚀的方式来隔开.试用两种方法来完成此工艺,并计算使用这两种工艺方法损失的面积所占的比例.
12.粒子碰撞平均移动的距离称为平均自由程λ,λ≈5×1 0—3/p(cm),其中P为压强,单位为Torr.一般常用的等离子体,其反应腔压强范围为1Pa~150Pa.其相关的气体浓度(cm—3)与平均自由程是多少?
13.氟原子(F)刻蚀硅的刻蚀速率为:刻蚀速率(nm/min)=2.86×10-13×n F×T1/2exp(-E a/RT).
其中n F为氟原子的浓度(cm-3),T为绝对温度(K),E a与R分别为激活能(10。
416kJ/mol)与气体常数(8.345J•K).如果n F为3×l015cm—3,试计算室温时硅的刻蚀速率.
1 4.续上题,利用氟原子一样可以刻蚀SiO2,刻蚀速率可表示为
刻蚀速率(nm/min)=0.614×10-13×n F×T1/2exp(—E a/RT).
其中n F为3×1015cm-3,E a为15。
12kJ/mol.计算室温时SiO2的刻蚀速率及SiO2对Si的刻蚀选择比.
1 5.可以用多重步骤的刻蚀工艺来刻蚀薄栅极氧化层上的多晶硅栅极.如何设计一个刻蚀工艺使之满足:没有做掩蔽效应(micrornasking)、各向异性刻蚀、对薄的栅极氧化层有适合的选择比?
16.刻蚀400 nm多晶硅而不会移去1 nm厚的底部栅氧化层,试找出所需的刻蚀选择比?假设多晶硅的刻蚀工艺有10%的刻蚀速率均匀度.
17.1 um厚的A1薄膜淀积在平坦的场氧化层区域上.并且利用光刻胶来定义图案.接着金属层利用Helicon刻蚀机,混合BCI3/Cl2气体.在温度为70 ºC来刻蚀.A1与光刻胶的刻蚀选择比维持在3.假设有30%的过度刻蚀,试问为确保顶部的金属不被侵蚀·所需光刻胶的最薄厚度为多少?
18.在ECR 等离子体中,一个静磁场B 驱使电子沿着磁场随一个角频率ω做圆周运动ωe=qB/m e ,其中q 为电荷、m e 为电子质量.如果微波的频率为2.45GHz ,试问所需的磁场太小为多少?
19.传统的反应离子刻蚀与高密度等离子体(ECR ,ICP 等)相比,最大的区别是什么?
20.叙述如何消除Al 金属线在氯化物等离子体刻蚀后所造成的腐蚀.
1. With reference to Fig 。
2 for class 100 clean room we have a total of 3500 particles/m 3 with
particle sizes ≥0.5 µm
3500100
21⨯= 735 particles/m 2 with particle sizes ≥ 1.0 µm 3500100
5.4⨯= 157 particles/m 2 with particle sizes ≥ 2.0 µm Therefore , (a ) 3500—735 = 2765 particles/m 3 between 0.5 and 1 µm
(b) 735—157 = 578 particles/m 3 between 1 and 2 µm
(c) 157 particles/m 3 above 2 µm.
2. A D n e Y 19
1-=∏= A = 50 mm 2 = 0。
5 cm 2
%1.302.1)5.01(1)5.025.0(4)5.01.0(4==⨯⨯=-⨯-⨯-⨯-e e e e Y .
3. The available exposure energy in an hour is
0.3 mW 2/cm 2 × 3600 s =1080 mJ/cm 2 For positive resist, the throughput is
waf ers/hr 7140
1080= For negative resist, the throughput is
r waf ers/h 0129
1080=。
4. (a) The resolution of a projection system is given by
178.065
.0m μ193.06.01=⨯==NA k l m λ µm ⎥⎦⎤⎢⎣⎡==222)65.0(m 193.05.0)(μλ
NA k DOF = 0.228 µm (b) We can increase NA to improve the resolution 。
We can adopt resolution enhancement
techniques (RET ) such as optical proximity correction (OPC ) and phase-shifting Masks (PSM)。
We can also develop new resists that provide lower k 1 and higher k 2 for better resolution and depth of focus.
(c) PSM technique changes k 1 to improve resolution 。
5. (a) Using resists with high γ value can result in a more vertical profile but throughput
decreases.
(b) Conventional resists can not be used in deep UV lithography process because these resists
have high absorption and require high dose to be exposed in deep UV . This raises the concern of damage to stepper lens, lower exposure speed and reduced throughput. 6。
(a)A shaped beam system enables the size and shape of the beam to be varied , thereby minimizing
the number of flashes required for exposing a given area to be patterned. Therefore , a shaped beam can save time and increase throughput compared to a Gaussian beam.
(b) We can make alignment marks on wafers using e —beam and etch the exposed marks 。
We can
then use them to do alignment with e-beam radiation and obtain the signal from these marks for wafer alignment 。
X —ray lithography is a proximity printing lithography. Its accuracy requirement is very high, therefore alignment is difficult 。
(c)X —ray lithography using synchrotron radiation has a high exposure flux so X-ray has better
throughput than e-beam 。
7. (a ) To avoid the mask damage problem associated with shadow printing , projection printing
exposure tools have been developed to project an image from the mask 。
With a 1:1 projection printing system is much more difficult to produce defect-free masks than it is with a 5:1 reduction step-and-repeat system. (b) It is not possible. The main reason is that X —rays cannot be focused by an optical lens.
When it is through the reticle. So we can not build a step-and —scan X —ray lithography system.
8. As shown in the figure, the profile for each case is a segment of a circle with origin at the
initial mask-film edge. As overetching proceeds the radius of curvature increases so that the profile tends to a vertical line. 9. (a ) 20 sec
0。
6 × 20/60 = 0.2 µm…。
(100) plane 0。
6/16 × 20/60 = 0。
0125 µm……。
.(110) plane
0。
6/100 × 20/60 = 0.002 µm……。
(111) plane
22.12.025.120=⨯-=-=l W W b µm
(b) 40 sec
0。
6 × 40/60 = 0.4 µm….(100)plane
0.6/16 × 40/60 = 0.025 µm…。
(110) plane 0.6/100 × 40/60 = 0.004 µm….。
(111) plane
4.02
5.120⨯-=-=l W W b = 0.93 µm
(c) 60 sec
0.6 ×1 = 0.6 µm…。
(100)plane
0.6/16 ×1 = 0.0375 µm…. (110) plane 0.6/100 ×1= 0。
006 µm…。
.(111) plane
=⨯-=-=6.025.120l W W b 0。
65 µm.
10. Using the data in Prob. 9, the etched pattern profiles on 〈100>-Si are shown in below.
(a) 20 sec l = 0。
012 µm , 5.10==b W W µm (b) 40 sec l = 0.025 µm, 5.10==b W W µm (c ) 60 sec l = 0。
0375 µm 5.10==b W W µm 。
11. If we protect the IC chip areas (e 。
g. with Si 3N 4 layer ) and etch the wafer from the top ,
the width of the bottom surface is
18846252100021=⨯+=+=l W W µm
The fraction of surface area that is lost is
2212/)(W W W -×
100%=(18842—10002) /18842× 100% = 71。
8 % In terms of the wafer area, we have lost
71.8 % × 2)2/15(π=127 cm 2
Another method is to define masking areas on the backside and etch from the back 。
The width
of each square mask centered with respect of IC chip is given by
6252100021⨯-=-=l W W = 116 µm
Using this method , the fraction of the top surface area that is lost can be negligibly small.
12. 1 Pa = 7。
52 m Torr
PV = nRT 7.52 /760 × 10—3 = n/V ×0.082 × 273
n/V = 4。
42 × 10—7 mole/liter = 4。
42 × 10—7 × 6.02 × 1023/1000 =2.7 ×1014 cm -3 mean –free –path
P /1053-⨯=λ cm = 5× 10—3 ×1000/ 7.52 = 0.6649 cm = 6649 µm 150Pa = 1128 m Torr PV = nRT 1128/ 760 × 10-3 = n/V × 0。
082 × 273 n/V = 6.63 × 10-5 mole/liter = 6。
63 ×10-5×6.02×1023/1000 = 4 × 1016 cm -3 mean —free —path P /1053-⨯=λcm = 5× 10-3 ×1000/1128 = 0。
0044 cm = 44 µm.
13。
Si Etch Rate (nm/min ) = 2。
86 × 10-13
× RT
E F a
e
T n -⨯⨯2
1
= 2.86 × 10—13 ×3×1015×298
987.11048.22
13)298(⨯⨯-⨯e
= 224。
7 nm/min 。
14. SiO 2 Etch Rate (nm/min ) = 0。
614× 10-13 ×3×1015×298
987.11076.32
1
3)
298(⨯⨯-⨯e
= 5。
6 nm/min
Etch selectivity of SiO 2 over Si =
025.07
.2246
.5= Or etch rate (SiO 2)/etch rate (Si) =
025.086
.2614.0298
987.1)48.276.3(=⨯⨯+-e . 15. A three –step process is required for polysilicon gate etching 。
Step 1 is a nonselective etch
process that is used to remove any native oxide on the polysilicon surface. Step 2 is a high polysilicon etch rate process which etches polysilicon with an anisotropic etch profile 。
Step 3 is a highly selective polysilicon to oxide process which usually has a low polysilicon etch rate 。
16. If the etch rate can be controlled to within 10 %, the polysilicon may be etched 10 % longer or
for an equivalent thickness of 40 nm. The selectivity is therefore
40 nm/1 nm = 40.
17. Assuming a 30% overetching, and that the selectivity of Al over the photoresist maintains 3。
The minimum photoresist thickness required is
(1+ 30%) × 1 µm/3 = 0.433 µm = 433.3 nm.
18. e
e m qB =
ω 31
199
10
1.9106.11045.22--⨯⨯⨯=⨯⨯B
π B = 8。
75 × 10-2(tesla)
= 875 (gauss )。
19. Traditional RIE generates low-density plasma (109 cm -3) with high ion energy. ECR and ICP
generate high —density plasma (1011 to 1012 cm —3) with low ion energy 。
Advantages of ECR and ICP are low etch damage, low microloading, low aspect —ratio dependent etching effect , and simple chemistry. However , ECR and ICP systems are more complicated than traditional RIE systems.
20. The corrosion reaction requires the presence of moisture to proceed 。
Therefore , the first line of
defense in controlling corrosion is controlling humidity. Low humidity is essential,. especially if copper containing alloys are being etched. Second is to remove as much chlorine as possible from the wafers before the wafers are exposed to air. Finally, gases such as CF 4 and SF 6 can be used for fluorine/chlorine exchange reactions and polymeric encapsulation. Thus , Al-Cl bonds are replaced by Al-F bonds 。
Whereas Al-Cl bonds will react with ambient moisture and start the corrosion process , Al —F bonds are very stable and do not react 。
Furthermore, fluorine will not
catalyze any corrosion reactions.
DOPING
1.试计算在中性环境中,950ºC、30min硼预置掺杂情况的结深与杂质总量.假设衬底是n型硅,N D=1.88×1016cm-3,而硼的表面浓度为C s=1.8×1020cm—3。
2.如果习题1中的例子放入1 050ºC、60min的中性环境进行再分布扩散,试计算扩散分布与结深.
3.假设测得的磷扩散分布可以用高斯函数表示,其扩散系数D=2.3×10-13cm2/s,测出的表面浓度是1×1018cm-3,在衬底浓度为1×1015cm—3下测得的结深为1μm。
请计算扩散时间和在扩散层中的全部杂质量.
4.为防止突然降温而引起的硅晶片翘曲,扩散炉管的温度在20min内自1 000ºC 线性地下降至500ºC.对硅内的磷扩散而言,初始扩散温度的有效时间为多少? 5.硅中低浓度磷在1 000ºC下再分布,若扩散时间与温度有1%变动,试找出表面浓度变化的比例.
6.在1 100ºC将砷扩散到掺有硼的厚硅晶片中(硼浓度为1015cm—3.),历时3h,如果表面浓度保持恒定在4×1018cm—3,则砷的最后浓度分布、扩散长度及结深为多少?
7.在900ºC将砷扩散到掺有硼的厚硅晶片中(硼浓度为1015cm—3)达3h,如果表面浓度恒定在4×1018 cm—3,则结深为多少?假设D=D o exp(一E a/kT)×(n/n i),
D0=45.8cm2/s,E a=4.05eV,x j
8.解释本征与非本征扩散的意义.
9.定义分凝系数.
10.气相淀积后测得二氧化硅中铜的浓度是5×1013cm-3,在HF/H2O2内溶解之后在硅层内的铜浓度是3×1011cm—3,计算在二氧化硅与硅层内铜的分凝系数. 11.在一个200mm硅晶片硼离子注入系统中,假设离子束电流是10μA.对P沟道晶体管来说,试计算将闯值电压由—1。
1V降低到—0.5V所需的注入时间.假设被注入的受主在硅表面的下方形成一层负电荷而氧化层厚度是10nm.12.假设100mm砷化镓硅晶片在固定离子束电流10μA下均匀地注入100keV的锌离子达5min,请问在单位面积上的离子剂量与离子浓度的峰值.
13.通过氧化层上所开的窗注入80keV的硼到硅中形成p-n结.如果硼的剂量是2×1015cm—2,而n型衬底的浓度是1015cm-3,试找出冶金结的位置.
14.通过厚度为25nm的栅极氧化层进行阈值电压调整注入.衬底是方向为〈100〉的P型硅,电阻率为10Ω•cm.如果在40keV硼注入下增加的阈值电压是1V,计
算单位面积的总注入剂量,并估计硼浓度的峰值所在位置. 15.同习题11中的衬底,请问总剂量在硅中所占比例为多少?
16.如果50keV 的硼注入进硅衬底,试计算损伤密度.假设硅原子密度为5.02×1022cm -3,硅的移位能量为15eV ,范围是2.5nm ,硅晶面间距为0。
25nm . 17.解释为何高温RTA 较低温RTA 更适用于形成无缺陷浅结.
18.如果栅极氧化层厚度为4nm,试计算将P 沟道闽值电压降低1V 所需的注入剂量.
假设注入电压被调整到可使分布的峰值发生在氧化硅与硅的界面上,因此只有一半的注入
离子进入硅中.进而假设硅中90%的注入离子由退火X-艺而激活电特性.这些假设使45%被注入的离子可用于阈值电压调整.同时也假设所有在硅中的电荷都位于硅-二氧化硅界面.
19·我们要在亚微米MOSFET 的源极与漏极形成一个0.1μm 重掺杂的结.能选择哪几种杂质?注入将其激活的方法有几种?你会推荐哪一种?为什么? 20.当砷以100keV 注入而光刻胶的厚度为400nm .试推算此光刻胶掩蔽层防止离子穿透的阻挡率(R p =0。
6μm ,σp =0.2μm ).如果光刻胶厚度改为1μm ,请计算掩蔽层的阻挡率.
21.当硼离子以200keV 注入时,需要多厚的SiO 2来阻挡99.999%的入射离子?投影射程为0.53µm,投影偏差为0.093µm 。
1。
E a (boron ) = 3。
46 eV , D 0 = 0.76 cm 2/sec
From Eq. 6, /s cm 10142.4122310614.846.3exp 76.0)exp(2
155
0--⨯=⎪⎭
⎫ ⎝⎛⨯⨯-=-=kT E D D a cm 1073.2180010142.4615--⨯=⨯⨯==Dt L From Eq 。
9, ⎪⎭
⎫
⎝⎛
⨯⨯==-62010
46.5 erfc 108.1)2(
erfc )(x L x C x C s If 320 /cm atoms 108.1)0(,0⨯==C x ; x = 0。
05 ×
10-4, C (5× 10—6) = 3。
6 × 1019 atoms/cm 3; x = 0。
075 ×10—4 , C(7。
5×10—6) = 9。
4 ×1018 atoms/cm 3; x =
0。
1×10-4, C (10-5) = 1。
8 × 1018 atoms/cm 3; x = 0。
15× 10-4, C(1。
5×10—5) = 1.8× 1016 atoms/cm 3。
The m 15.0)(erfc 21-μ==s sub j C C
Dt x
Total amount of dopant introduced = Q (t)。