全等三角形经典编辑题型50题(含规范标准答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD

已知:D 是AB 中点,∠ACB=90°,求证:12

CD AB

已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC

1. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C

2. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE

C

D

B A

D

B

C

A

B A C

D

F

2 1 E

6. 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD

上。求证:BC=AB+DC。

.

7.已知:AB//ED,∠EAB=∠BDE,AF=CD,EF=BC,求证:∠F=∠C

8已知:AB=CD,∠A=∠D,求证:∠B=∠C

D

C

B

A

F

E

A

B C

D

9.已知∠ABC=3∠C,∠1=∠2,BE⊥AE,求证:AC-AB=2BE

10.如图,在△ABC中,BD=DC,∠1=∠2,求证:AD⊥BC.

12.如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M.

(1)求证:MB=MD,ME=MF

(2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.

13.已知:如图,DC∥AB,且DC=AE,E为AB的中点,

(1)求证:△AED≌△EBC.

(2)观看图前,在不添辅助线的情况下,除△EBC外,请再写出两个与△AED的面积相等的三角形.(直接写出结果,不要求证明):

F

A

E

D

C

B

O

E

D

C

B

A

24.(7分)如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F .

求证:BD =2CE . 证明:延长BA 、CE ,两线相交于点F ∵BE ⊥CE ∴∠BEF=∠BEC=90° 在△BEF 和△BEC 中 ∠FBE=∠CBE, BE=BE, ∠BEF=∠BEC

∴△BEF ≌△BEC(ASA) ∴EF=EC ∴CF=2CE

∵∠ABD+∠ADB=90°,∠ACF+∠CDE=90° 又∵∠ADB=∠CDE

∴∠ABD=∠ACF 在△ABD 和△ACF 中 ∠ABD=∠ACF, AB=AC, ∠BAD=∠CAF=90° ∴△ABD ≌△ACF(ASA) ∴BD=CF ∴BD=2CE 25、(10分)如图:DF=CE ,AD=BC ,∠D=∠C 。求证:△AED ≌△BFC 。

26、(10分)如图:AE 、BC 交于点M ,F 点在AM 上,BE ∥CF ,BE=CF 。

求证:AM 是△ABC 的中线。

证明:∵BE‖CF ∴∠E=∠CFM ,∠EBM=∠FCM ∵BE=CF

∴△BEM ≌△CFM

F

E D

C

B

A M

F

E

C

B

A

F

E D

C

B

A

∴BM=CM ∴AM 是△ABC 的中线.

27、(10分)如图:在△ABC 中,BA=BC ,D 是AC 的中点。求证:BD ⊥AC 。

三角形ABD 和三角形BCD 的三条边都相等,它们全等,所以角ADB 和角CDB 相等,它们的和是180度,所以都是90度,BD 垂直AC

28、(10分)AB=AC ,DB=DC ,F 是AD 的延长线上的一点。求证:BF=CF 证明:在△ABD 与△ACD 中AB=ACBD=DCAD=AD ∴△ABD ≌△ACD ∴∠ADB=∠ADC ∴∠BDF=∠FDC 在

△BDF 与△FDC 中

BD=DC ∠BDF=∠FDCDF=DF ∴△FBD ≌△FCD ∴BF=F C

29、(12分)如图:AB=CD ,AE=DF ,CE=FB 。求证:AF=DE 。

因为AB=DCAE=DF,CE=FB CE+EF=EF+FB 所以三角形ABE=三角形CDF 因为 角DCB=角ABFAB=DC BF=CE 三角形ABF=三角形CDE 所以AF=DE

30.公园里有一条“Z ”字形道路ABCD ,如图所示,其中AB

∥CD ,在AB ,CD ,BC 三段路旁各有一只小石凳E ,F ,M ,且BE =CF ,M 在BC 的中点,试说明三只石凳E ,F ,M 恰好在一条直线上.

证:∵AB 平行CD (已知)∴∠B=∠C (两直线平行,内错角相等)∵M 在BC 的中点(已知)∴EM=FM (中点定义)在△BME 和△CMF 中 BE=CF (已知) ∠B=∠C (已证) EM=FM (已证)∴△BME 全等与△CMF (SAS )∴∠EMB=∠FMC (全等三角形的对应角相等) ∴∠EMF=∠EMB+∠BMF=∠FMC+∠BMF=∠BMC=180°(等式的性质) ∴E ,M ,F 在同一直线上

31.已知:点A 、F 、E 、C 在同一条直线上, AF =CE ,BE ∥DF ,BE =DF .求证:△ABE ≌△CDF . 证明:

∵AF=CE ∴AF+EF=CE+EF ∴AE=CF ∵BE//DF ∴∠BEA=∠DFC 又∵BE=DF ∴⊿ABE ≌⊿CDF (SAS )

32.已知:如图所示,AB =AD ,BC =DC ,E 、F 分别是DC 、BC 的中点,求证: AE =AF 。

D

C

B

A F

D

C

B

A

F

E D C B

A

D

A

F

E

相关文档
最新文档