《概率统计》期中考试模拟题

合集下载

概率论与数理统计试题期中考试-答案

概率论与数理统计试题期中考试-答案

概率论与数理统计课程期中考试考试时间:90分钟姓名:班级:学号:一、单项选择题(本大题共有5个小题,每小题4分,共20分)1,设..~(100,0.1)R V X B,1..~()2R V Yπ,且X和Y相互独立,令72+-=YXZ,则D(Z)=(D )。

A:7 B:8 C:10 D:11 2,若P(A)=1/2,P(B|A)=1/3,则P(AB)=( B )A:1/2 B: 1/3 C: 5/6 D:1/63,设X的概率密度函数为30()xke xf x-⎧>=⎨⎩其它,则=k( C )A:1/3 B:1/9 C: 3 D: 94, 如果X,Y为两个随机变量,满足COV(X,Y)=0,下列命题中正确的是( A )。

A:X,Y不相关B:X,Y相互独立C:D(XY) =D(X)+D(Y) D:D(X-Y) =D(X)-D(Y)5,在8片药中有4片是安慰剂,从中任取3片,则取到2片是安慰剂的概率为( B )A:1/4 B :3/7 C:1/2 D:6/7二、填空题(本大题共有6个小题,每空2分,共20分)4 A,B为两个随机事件,若P(A)=0.4,P(B)=0.6,P(B A)=0.2.则P(AB)= 0.4 ,P(AB)= 0.25 甲乙两人独立射击,击中目标的概率分别为0.8,0.7,现在两人同时射击同一目标,则目标被击中的概率为 0.946.若某产品平均数量为73,均方差为7,利用切比雪夫不等式估计数量在52~94之间的概率为 8/97.在8件产品中有2件次品。

从中随机抽取2次,每次抽取一件,做不放回抽取。

则两次都是正品的概率为 15/28 抽取的产品分别有一正品和一件次品的概率为 3/7 ,第二次取出的产品为次品的概率为 1/48若X~N(2,1),Y~U[1,4],X,Y互相独立,则E(X+2Y-XY+2)= 4 ,D(X-2Y+3)=49 设D(X)=D(Y)=2,0.3XY ρ=,则D(X-Y)= 2.8三、解答题(本大题共有3个小题,共32分)10(7分)病树主人外出,委托邻居浇水。

2022概率统计期中考试卷

2022概率统计期中考试卷

2022概率统计期中考试卷《概率论与数理统计》期中考试试卷一、选择题(每小题4分,共24分)1.P(A)1/4P(B)1/2A.B相互独立,则P(AB)().A)1/2B)1/4C)1/8D)5/8 2D某DY1,E某EY0,2.设随机变量某,Y相互独立,则E某(Y)1()A.3B.2C.1D.63.随机事件A、B互斥,且P(A)0,P(B)0,则()A.P(B/A)0B.P(A/B)P(A)C.P(A/B)0D.P(AB)P(A)P(B)4.设甲、乙进行象棋比赛,考虑事件A{。

甲胜乙负},则A()A.{甲负乙胜}B.{甲乙平局}C.{甲负}D.{甲负或平局}5.设A1,A2,,An相互独立,P(Ak)pkk1,,n,则n个事件都发生的概率为().nnA.piB.pi(1pj)C.1(1pj)D.pii1i1j1j16.设事件A和B满足PBA1,则有().nnA.A是必然事件B.PBA0C.ABD.AB二、填空题(每小题5分,共30分)1.设对于事件A,B,C有PAPBPCPAC1,PABPBC0,41,则A,B,C三事件中至少有1个发生的概率为.82.设D某DY2,某与Y的相关系数1,则3D(某Y)_____________.3.设随机变量某服从二项分布B(n,p),且E某3,D某2.1,则n____,P____.14.设随机变量(某,Y)具有D某9,DY4,某y,则D(某3Y4)____.63A5.设离散型随机变量的分布律为P{某k}k(k1,2,),则A____.26.一批产品共100件,其中95件是合格品,5件是次品,现从中任取3件,则这3件中有次品的概率为___________.三、解答题(第1小题6分,其余每小题10分,共46分)111,P(B),P(AB),求P(AB),P(AB),P(AB).4222.某射击小组共有20名选手,其中一级射手4人,二级射手8人,三级射手7人,四级射手1人。

概率论与数理统计练习题

概率论与数理统计练习题

《概率论与数理统计》期中考试试题一、单项选择题:1.某人连续向一目标射击,每次命中目标的概率为34,他连续射击直到命中为止,则射击次数为3的概率是( )(A).()343 (B).()34142⨯ (C).()14342⨯ (D).C 4221434()2.设A ,B 为随机事件,且A ⊂B ,则B A Y 等于( )(A).A (B).B (C).AB(D).B A Y3.同时掷3枚均匀硬币,则至多有1枚硬币正面向上的概率为( )(A).81 (B).61 (C).41 (D).214.对一批次品率为p(0<p<1)的产品逐一检测,则第二次或第二次后才检测到次品的概率为( )(A).p (B).1-p (C).(1-p)p (D).(2-p)p5. 已知事件 A 与 B 的概率都是 ,则下列结论肯定正确的是( )。

25.0)()(;1)()(==⋃B A P B B A P A()()0.5;()()()C P AB D P AB P AB ==6. 设 P(A) = a , P(B) = b , P(A ∪B) = c , 则)(B A P 为( )。

)1()(;)(;)(;)1()(c a D b c c b a B b a A ----7.设事件{X=k}表示在n 次独立重复试验中恰好成功k 次,则称随机变量X 服从( )(A).两点分布 (B).二项分布 (C).泊松分布 (D).均匀分布 8.设事件A ,B 相互独立,且360160.)B A (P ,.)B A (P ==,则)B (P ),A (P分别为 ( ) . (A). ; (B).; (C). ; (D). ; 9.A 、B 为两个任意事件,且1()3P A B =,则()P A B =[ ](A)13 (B) 14 (C) 23 (D) 3410.对任意两事件A 和B ,则._______)(=-B A P)()()(B P A P A -;)()()()(AB P B P A P B +- ; )()()(AB P A P C - ;)()()()(B A P B P A P D -+11.在下列函数中,可以作为某随机变量的分布函数的为( )(A)211)(x x F +=(B) 21arctan 1)(+=x x F π (C) ⎪⎩⎪⎨⎧≤>-=-0,00),1(21)(x x e x F x (D) ⎰∞-=x dx x f x F ,)()(其中1)(=⎰∞∞-dx x f12. 设在三次独立试验中,事件A 发生的概率相等,若已知事件A 至少出现一次的概率为2719,则事件A 在一次试验中出现的概率为( ) (A)41 (B) 31 (C)32 (D) 2113.任一个连续型的随机变量ξ的概率密度为)(x ϕ,则)(x ϕ必满足( )(A) 1)(0<<x ϕ (B)单调不减 (C)()⎰+∞∞-=1dx x ϕ (D)1)(lim =+∞→x x ϕ14.若定义分布函数(){}x P x F ≤=ξ,则函数)(x F 是某一随机变量ξ的分布函数的充要条件是( )(A) 1)(0≤≤x F (B) 1)(0≤≤x F 且0)(=-∞F , 1)(=∞F (C))(x F 单调不减,且0)(=-∞F , 1)(=∞F(D) )(x F 单调不减,函数)(x F 右连续,且0)(=-∞F , 1)(=∞F15.设随机变量ξ服从正态分布)4,1(N ,)(ξηf =服从标准正态分布,则=)(ξf ( ) (A)41-ξ (B) 31-ξ (C)21-ξ (D)13+ξ 16.设ξ的分布律为而{}x P x F ≤=ξ)( ,则=)2( F ( ) (A) 6.0 (B) 35.0 (C) 25.0 (D) 0 17. 设连续型随机变量ξ的分布函数为)( 211)(+∞<<-∞+=x arctgx x F π,则{}=-=3ξP ( )(A)16 (B)56(C)0 (D)2318. 设随机变量ξ的概率密度为()2x Aex -=ϕ ,则A= ( ) ( A ) 2 ( B ) 1 ( C ) 12( D )1419. 设的概率密度为),( 21)(+∞<<-∞=-x e x x ϕ 又{}x P x F ≤=ξ)(, 则 x <0 时,=)(x F ( )( A ) x e 211-( B ) x e --211 ( C ) x e -21( D )x e 2120.设随机变量ξ具有概率密度)(x ϕ,则b a +=ξη0(≠a ,b 是常数)的分布密度为( ) (A)⎪⎭⎫⎝⎛-a b y a ξϕ1 (B) ⎪⎭⎫ ⎝⎛-a b y a ξϕ1 (C) ⎪⎭⎫ ⎝⎛--a b y a ξϕ1 ( D ) ⎪⎪⎭⎫⎝⎛-a b y a ξϕ1 21.设X ,Y 相互独立,且服从区间[ 0,1 ]上的均匀分布,则_______.( A )Z =X+Y 服从 [ 0 , 2 ]上的均匀分布; ( B ) Z= XY 服从[1 ,1 ] 上的均匀分布;( C ) Z = M a x { X ,Y } 服从 [ 0,1 ] 上的均匀分布; ( D ) ( X ,Y ) 服从区域 ⎩⎨⎧≤≤≤≤1010y x 上的均匀分布.22.设两个随机变量X 与Y 相互独立且同分布,{}{}1112P X P Y ====, {}{}1112P X P Y =-==-=,则下列各式成立的_____. (A){}12P X Y ==(B) {}1P X Y == (C){}104P X Y +== (D) {}114P XY ==23.设X,Y 是两个相互独立的随机变量,它们的分布函数为()X F x , Y F ()y ,则Z=max(X,Y)的分布函数是_________.(A)()Z F z =max{()X F x ,()Y F y }(B)()Z F z =(1())X F z -(1())Y F z -(C) ()Z F z = ()X F z ()Y F z (D) 都不是24.已知二维随机变量(X ,Y ) 的联合分布函数},{),(y Y x X P y x F ≤≤=,则事件 }3,2{>>Y X 的概率是________(A) F ( 2 , 3 ) (B) F ( 2 , +∞ ) F ( 2 , 3 )(C) 1?F ( 2 , 3) (D) 1? F ( 2 , +∞ ) F( +∞ , 3 ) + F( 2 , 3 ) 25.设二维随机向量(X ,Y )的联合分布律为则P{X=0}=_______. (A)112 (B) 212 (C) 412 (D) 51226.已知X,Y 的联合分布如下表所示,则有________.2 0(A) X 与Y 不独立 ( B) X 与Y 独立 (C) X 与Y 不相关 (D) X 与Y 相关27.设二维随机变量(,)X Y 服从G 上的均匀分布,G 的区域由曲线2x y =与x y =所围,则(,)X Y 的联合概率密度函数为_______.)(A ⎩⎨⎧∈=他其,0),(,6),(G y x y x f )(B ⎩⎨⎧∈=他其,0),(,6/1),(Gy x y x f )(C ⎩⎨⎧∈=他其,0),(,2),(Gy x y x f)(D ⎩⎨⎧∈=他其,0),(,2/1),(Gy x y x f 28.设随机变量,X Y 相互独立,)1,0(~N X ,)1,1(~N Y ,则 ________.)(A 2/1}0{=≤+Y X P ; )(B 2/1}1{=≤+Y X P ;()C 2/1}0{=≤-Y X P ;)(D 2/1}1{=≤-Y X P29.将一枚硬币抛掷三次,设前两次抛掷中出现正面的次数为X ,第三次抛掷出现正面的次数为Y ,二维随即变量),(Y X 所有可能取值的数对有________.( A ) 2 对( B ) 6对( C )3对( D ) 8对30.设二维随机变量),(ηξ的联合概率密度为),(y x ϕ,记在条件}{x P =ξ下η的条件分布密度为)(1x y ϕ,则⎭⎬⎫⎩⎨⎧≤≤)21(|)21(ξηP 的值为_______.(A)dxy x dxdyy x ),(),(212121ϕϕ⎰⎰⎰∞-∞-∞- ( B )dxdy x y )|(12121ϕ⎰⎰∞-∞-(C)⎰⎰⎰∞-∞-∞-212121),(),(dyy x dxdyy x ϕϕ (D)⎰⎰⎰⎰∞-∞+∞-∞-∞-⎥⎦⎤⎢⎣⎡212121),(),(dx dy y x dxdyy x ϕϕ31. 对于任意两个随机变量ξ和η,若)()()(ηξξηE E E =,则有( ) (A ))()()(ηξξηD D D = (B ))()()(ηξηξD D D +=+ (C )ξ和η独立 (D )ξ和η不独立 32.若随机变量ξ和η相互独立,且方差21)(σξ=D 和22)(ση=D 2121,),0,0(k k >>σσ是已知常数,则)(21ηξk k D -等于( )(A )222211σσk k - (B )222211σσk k + (C )22222121σσk k - (D )22222121σσk k + 33.若随机变量ξ的概率密度为4421)(-+-=x xe x πϕ,则ξ的数学期望是( )(A )0 (B )1 (C )2 (D )334.已知随机变量ξ和η的方差16)(,9)(==ηξD D ,相关系数5.0=ξηρ,则=-)(ηξD ( )(A )19 (B )13 (C )37 (D )2535.设ξ的分布律为:{}{},)1(21+=-===n n n P n P ξξ(n 正整数),则()=ξE ( )(A )0 (B )1 (C ) (D)不存在36.ξ的分布函数为()⎪⎩⎪⎨⎧>≤≤<=1,110,0,03x x x x x F ,则()=ξE ( )(A)⎰14dx x (B)⎰⎰+∞+114xdx dx x (C)⎰123dx x (D)⎰133dx x37.设ξ服从02.0,100==p n 的二项分布,η服从正态分布且()()ηξE E =,()()ηξD D =,则η的概率密度函数=)(x ϕ( )(A)2221x e -π (B)()96.12221--x eπ(C)()96.12224.11--x eπ(D)()92.32224.11--x eπ38.设随机变量X,Y独立同分布,记Y X Y X -=+=ηξ,,则随机变量ξ和η之间的关系必然是( )(A)不独立 (B)独立 (C)相关系数等于0 (D)相关系数不为0 39.设随机变量n ξ,服从二项分布()p n B ,,其中,,2,1,10Λ=<<n p 那么,对于任一实数x 有()⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<--+∞→x p np np P n n 1lim ξ等于( )(A)⎰∞--xt dt e2221π(B)0 (C)⎰∞+∞--dt et 2221π(D)⎰∞--x t dt e2240.设随机变量ξ的数学期望()μξ=E ,方差()2σξ=D ,试利用切比雪夫不等式估计{}≥<-σμξ4P ( )(A)98 (B)1615 (C)109(D)101二、多项选择题1.设A 、B 为相互独立事件,且P(A)>0,P(B)>0,下面四个结论中,正确的是: (A) P(B|A)>0 (B)P(A|B)=P(A) (C) P(A|B)=0 (D) P(AB)=P(A)P(B)2.设随机事件A 与B 互不相容,且P(A)>0,P(B)>0,则下面选项不正确的是( ) (A).P(A)=1-P (B )(B).P(AB)=P(A)P(B) (C).P(A ∪B)=1(D) P(AB )=13.从一批产品中随机抽两次,每次抽1件。

《概率论与数理统计》期中考试(B卷)

《概率论与数理统计》期中考试(B卷)
对外经济贸易大学信息学院
概率论与数理统计
期中考试 B 卷
《概率论与数理统计》期中考试(B卷)
序号:_____ 学号:____ 姓名:_____ 成绩:_____
3 1 1. (7分)某医院用某种新药医治流感,对病人进行试验,其中 的病人服此药, 的病人 4 4 不服此药,5天后有70%的病人痊愈,已知不服药的病人5天后10%有的可以治愈。 (1). 求该药的治愈率; (2). 若某病人5天后痊愈求他是服此药而痊愈的概率。 解:(1)设A = {病人服药} B = {病人痊愈}. 因 ¯ ) = P(A)P( B|A) + P(A ¯ )( BA ¯ ) = 3 × P( B|A) + 1 × 0.1 = 0.9. P( B) = P(AB) + P(AB 4 4 故该药的自愈率为P( B|A) = 0.9.′ P(AB) 27 (2)P(A| B) = = . P( B) 28 2. (10分)已知随机变量X ∼ U (−2, 5), (1). 试求方程4t2 + 4Xt + X + 2 = 0有实根的概率; (2). 求Y = |X |的概率密度。 1 7 , −2 < x < 5, 解:(1) 由已知, fX ( x) = 0, 其他 P(方程有实根) = P(判别式▽ = P{16X 2 − 16X + 2 = P{X 2} + P{X 0) 得分____ 得分____
在区域0 < y < 1, −y < x < y 内, f ( x, y) = fX ( x) fY (y), · · · · · · 1′ 因此X 与Y 不相互独立. (2)
1 P{X ≤ 1 ,Y ≥ 2 } 5 1 1 2 = . P{Y ≥ |X ≤ } = 1 2 2 7 P{ X ≤ 2 }

概率统计期中模拟题(一)

概率统计期中模拟题(一)

概率统计期中考试模拟题(一)(第一章--第三章方差结束)一、填空题(每小题3分,共15分)1.设随机事件A , B , C 的概率均为p ,且A 与B , C 分别相互独立,B 与C 不相容,若A , B , C 中至少有一个发生的概率为97,则A , B , C 中至少有两个发生的概率为 。

2.将一枚均匀硬币掷2n 次,则出现正面次数多于反面次数的概率等于 。

3.设A , B 为两个事件,则{}{}P AB P AB {}{}P A P B (填符号(≥≤=><,,,,)之一)。

4.设随机变量)2()1(),(~===X P X P P X 且λ,则=>}1{X P 。

5.设随机变量)exp(~λX ,则随机变量32+-=X Y 的概率密度是: 。

二、解答下列各题(每小题7分,共42分)1.设随机变量X 的概率分布为{}122P X =-=,{}1P X a ==,{}3P X b ==,若0EX =,求:(1)常数,a b ; (2)方差)(X D 。

2. 设0()1,0()1P A P B <<<<且(|)(|)1P A B P A B +=,证明事件A 与B 相互独立。

3. 设事件A , B , C 两两独立,其发生的概率均为0.6,若已知A 发生的条件下B , C 至少一个发生的概率为0.2,求A , B , C 最多发生两个的概率。

4.设1(),1,2,33P X i i ===,(|),4,592k i P Y k X i k i-====-,求随机变量Y 的概率分布。

5.设随机变量~(2,1)X U -,随机变量2Y X =,求Y 的概率密度。

6. 设随机变量),(Y X 的概率密度为1,0,1(,)0,x y f x y <<⎧=⎨⎩其他,求),(Y X 的联合分布函数。

三(15分)、设二维随机变量),(Y X 的概率密度为01,1,(,)0,x x x y ae f x y <<<<⎧=⎨⎩其他 试求:(1)常数a ; (2)边缘密度函数()X f x 及()Y f y ;(3)判断Y X 与是否相互独立,为什么? (4)概率{0.5}P X Y +≤。

概率统计期中考试试卷

概率统计期中考试试卷

概率论与数理统计期中考试试卷一、填空题(每题3分,共15分)1.3人独立的破译一份密码,他们能单独译出的概率分别为41,31,51,则此密码被破译出的概率为 ___________. 2.已知X 的密度函数为⎩⎨⎧<<=其它,010,2)(x x x f ,用Y 表示对X 的3次独立重复观察中事件⎭⎬⎫⎩⎨⎧≤21X 出现的次数,则._________}2{==Y P3. 从五个数1,2,3,4,5中任选3个数,用X 表示这3个数中最大的一个,则________}4{=≥X P .4. 设)4,1(~N X ,,8413.0)1(0=Φ,9986.0)3(0=Φ则._________}31{=≤≤X P5. 已知X 的密度函数为+∞<<-∞=-x Ae x f x ,)(,则._________=A二.计算题(共85分)1.(15分)一种玻璃杯成箱出售,每箱10只,每箱不含次品的概率为0.8,每箱含有1只次品或2只次品的概率都为0.1,一顾客为了决定是否购买该产品,随机的查看箱中的3只,若无次品则买下,否则退回,试求: (1)随机选取一箱玻璃杯,顾客买下该箱玻璃杯的概率。

(2)假设顾客已经买下一箱玻璃杯,问箱中没有次品的概率。

2.(10分)已知1.0)(,6.0)(,4.0)(===B A P B P A P ,求)(),(),(A B P B A P B A P +3.(10分)已知⎩⎨⎧<<++=其它,010,)(~2x c bx ax x f X ,15.0,5.0==DX EX ,求c b a ,,4.(15分)已知]2,2[~-U X ,122+=X Y ,求Y 的密度函数)(y f Y5.(15分)已知离散型随机变量Y X ,相互独立,其联合分布及边缘分布如下表所示:(1)请将表格填写完整 (2)计算DY EY DX EX ,,,6.(20分)设二维随机向量),(Y X 概率密度为⎩⎨⎧<<<<=其它,0x y 0,1x 0,xy )y x,(f A ,(1)求常数A (2)求边缘密度)(),(y f x f Y X (3)判断Y X ,是否相互独立,并说明理由(4)求)1(≤+Y X P。

概率论与数理统计期中考试复习题

概率论与数理统计期中考试复习题

概率论与数理统计期中考试复习题一、填空题1. 十个考签中有三个难签,从中接连抽取两个(不放回),则第三个才抽到难签的概率为___________。

2. 设A ,B ,C 为三个随机事件,则“三个事件至多发生两个”的事件表示为 。

3. 若A 、B 为两个随机事件,且P (A )=0.8,P (B -A )=0.3,则P (AB )= 。

4. 若A 、B 相互独立,且P (A )=0.5,P (B )=0.6,则)(B A P += 。

5. 设随机变量X 服从b (2,p ),且 {}2591=≥X P ,则p =__________。

6. 设X则(1)P X ≥=__________。

7.则k =__________8. 设(X ,Y )的联合概率密度为,0,0(,)0,x y ce x y f x y --⎧≥≥=⎨⎩其他,则c =__________。

9. 设随机变量X 服从指数分布e (0.001),则P (X >1000)= 。

10. 设X 的分布函数为⎪⎩⎪⎨⎧>≤≤<=111000)(2x x x x x F ,则(0.5)P X ≤=__________。

11. 设随机变量X 服从均匀分布U (0,4),则E (2X +1)= 。

12. 设随机变量X 服从指数分布e (3),则=2EX __________。

13. 设随机变量X 的数学期望为EX u =、方差2DX σ=,则由切比雪夫不等式有{}2P X u σ-≥ 。

14. 设随机变量X 1,X 2,…,X n 相互独立,并服从同一分布,数学期望为μ,方差为σ2,令∑==ni i X n X 11。

则D (X )=__________。

二、单项选择题1. 从一批产品中任取10件,设A ={至少1件次品},则事件A =( )。

A. {至多1件次品} B. {至多1件正品}C. {没有1件次品}D. {没有1件正品}2. 一名射手向某个目标射击三次,设A i ={第i 次击中目标}(i =1,2,3),则321A A A ++表示( )。

2023-2024学年第一学期概率统计期中测试卷

2023-2024学年第一学期概率统计期中测试卷

2023-2024第一学期概率论与数理统计期中测试题班级:学号:姓名:第一部分:选择题,每小题3分,共10小题,共30分.1.设B A ⊂,且0)(>A P ,则以下错误的是().A.)()(B P B A P =⋃B.)()(A P AB P =C.1)|(=A B PD.)()()(B P A P B A P -=-2.设)2,1(~-N X ,则X 的密度函数为().A.4)1(221--x eπB.2)1(221+-x eπC.2)1(2221+-x e πD.4)1(221+-x eπ3.设连续型随机变量的概率密度函数与分布函数为,与)()(x F x f 则正确的是().A.1)(0≤≤x f B.)(}{x F x X P == C.)(}{x F x X P =≤ D.)(}{x f x X P ==4.设X 是一随机变量,则下列各式中正确的是().A.)(4)25(X D X D =-B.)(25)25(X D X D -=-C.)(25)25(X D X D +=- D.)(4)25(X D X D -=-5.已知(X,Y)的概率密度为),(y x f ,则关于Y 的边缘密度为().A.⎰+∞∞-dyy x f ),( B.⎰+∞∞-dxy x f ),( C.⎰+∞∞-dxy x xf ),( D.⎰+∞∞-dyy x yf ),(6.已知随机变量X 与Y 相互独立,且),2,0(~),1,0(~U Y U X 则=<}{Y X P ().A.41B.83 C.43 D.857.下列式子中成立的是().A.)()()(Y E X E Y X E +=+B.)()()(Y D X D Y X D +=+C.)()()(Y D X D XY D = D.)()()(Y E X E XY E =8.设随机变量X 的概率密度)(x f 满足)1()1(x f x f -=+,且⎰=206.0)(dx x f ,则}0{<X P 为().A.53 B.32 C.51 D.549.)1,1(~N X ,概率密度函数为)(x f ,分布函数为)(x F ,则().A.5.0)0()0(=≥=≤X P X PB.),(),()(+∞-∞∈-=x x F x FC.5.0)2()2(=>=<X P X P D.5.0)1()1(=>=≤X P X P 10.设随机变量12200,,,X X X 相互独立且服从同一分布,()3,()5E X D X ==,令12200Y X X X =+++ ,由中心极限定理知Y 近似服从()(A )(600,25)N (B )(3,5)N (C )(600,1000)N (D )(1000,600)N 第二部分:填空题,每小题6分,共3小题,共18分.1.甲乙两人独立射击,击中目标的概率分别为0.8,0.7,现在两人同时射击同一个目标,则目标被击中的概率为.2.随机变量X 服从参数为1的泊松分布,则==))((X D X P .3.设随机变量X 的分布律为,...2,1,0,!)(2===-k e k c k X P 则=c .4.已知随机变量X 只取-1,0,1,2四个数值,对应的概率为cc c c 162,85,43,21,则c=.5.设二维随机变量) , (Y X 的联合分布律为则(2)E X Y +=6.设随机变量~(0.5)X b 10,,则2(2)E X =第三部分:计算题,每小题7分,共4小题,共28分.1.设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤≤=其他, ,0.10 )(x x A x f 试求:(1)A 的值;(2)X 的分布函数;(3))41161(<<X P .YX -10100.10.20.110.30.10.22.已知二维随机变量(X,Y)的联合概率密度为⎩⎨⎧≤≤≤≤+=其他,0,0,10),(2),(y x y y x y x f 试求:(1)X 与Y 的边缘概率密度,并判定X 与Y 是否独立;(2)}1{≥+Y X P .3.设随机变量X 在区间(1,2)上服从均匀分布,(1)写出X 的概率密度函数;(2)求XeY 3=的概率密度函数)(y f Y .4.设二维随机变量(,)X Y 的概率密度为,0,(,)0,,y xe x y f x y -⎧<<=⎨⎩其它求随机变量Z X Y =+的概率密度.四、综合应用题(共3个小题,每个小题8分,共24分)1.某地区居民的肝癌发病率为0.0004,先用甲胎蛋白法进行普查.医学研究表明,化验结果是存有错误的.已知患有肝癌的人其化验结果99%呈阳性(有病),而没患肝癌的人其化验结果99.9%呈阴性(无病).现某人的检查结果呈阳性,问他真的患肝癌的概率是多少?2.对于一名学生来说,来参加家长会的家长人数是一个随机变量.设一名学生无家长、1名家长、2名家长来参加会议的概率分别为0.05、0.8、0.15.若学校共有400名学生,设各学生参加会议的家长数相互独立,且服从同一分布.求有一名家长来参加会议的学生数不多于336的概率.(已知9772.0)2(=Φ)3.一工厂生产的某种设备的寿命X (以年计)服从以14为参数的指数分布,工厂规定,出售的设备若在一年之内损坏可予以调换,若工厂售出一台设备赢利100元,调换一台设备厂方需花费300元,求该厂出售一台设备净赢利的数学期望。

概率统计模拟试题及答案2

概率统计模拟试题及答案2

一、 选择题,根据题目要求,在题下选项中选出一个正确答案(本题共32分,每小题各4分)1.已知离散型随机变量X 的分布函数为0,10.3,13()0.5,341,4x x F x x x <⎧⎪≤<⎪=⎨≤<⎪⎪≥⎩ ,则{1|3}P X X >≠=( )。

A.57 ; B.58; C.78; D.710 。

2.设321,,X X X 为来自总体X 的一个简单样本, 总体均值EX μ=,总体方差2DX σ=,下列几个总体均值μ的无偏估计量中,方差最小的是 。

A.123131ˆ5102X X X θ=++;B. 123111ˆ326X X X θ=++; C.123111ˆ333X X X θ=++; D. 123131ˆ3412X X X θ=+- 。

3.设随机变量),(~2σμN X , 则=-||μX E 。

A. 0 ; B μ. ; C. σ ; D.σπ22。

4.设总体2~(,)X N μσ,其中2σ 未知;12,,,n x x x 为来自总体X 的样本,给定01α<<, 下列表述中正确的结论是 。

A .1122{((1P x tn x t n ααμα----≤≤+-=-;B.1122{((1P x tn x t n ααμα---≤≤+=-;C.22{((P x tn x t n ααμα--≤≤+-=;D. 1122{1P x z x z ααμα---≤≤+=-。

5. 设随机变量),(Y X 的分布函数为(,)F x y ,对任意实数z ,则有{max{,}}P X Y z >= 。

A.1(,)F z z - ;B. {}{}P X z P Y z >+>;C. (,)F z z ;D. {,}P Xz Y z >>。

6. 设随机变量Y X ,的二阶矩22,EX EY 存在,下列不等式中正确的结论是 。

A. 122|()|()E X EX >; B.111222222(||)()()E X Y EX EY +≥+;C.|(,)|Cov X Y ≥112222|()|()()E XY EX EY ≤⋅。

《概率论与数理统计》期中考试试题汇总

《概率论与数理统计》期中考试试题汇总

系数 X ,Y
18.(8 分) 设测量距离时产生的随机误差 X~N(0,102)(单位:m),现作三次独 立测量,记 Y 为三次测量中误差绝对值大于 19.6 的次数,已知Φ(1.96)=0.975.
(1)求每次测量中误差绝对值大于 19.6 的概率 p; (2)问 Y 服从何种分布,并写出其分布律;求 E(Y).
fY
( y)
1
2
, 1
y
1 , (X ,Y )
相互独立,且
Z
X
Y
的概率密度函数为
fz (z)
0, others
15. 设 随 机 变 量 X , E(X ) 3, D(X ) 1 , 则 应 用 切 比 雪 夫 不 等 式 估 计 得 3
P{| X 3|1}
三、计算题(本题共 5 小题,共 70 分)
2
D. 2
3
4.若随机变量 X ,Y 不相关,则下列等式中不成立的是

A. D(X Y ) DX DY
B. Cov(X ,Y ) 0
C. E(XY ) EX EY
D. D(XY ) DX DY
5.设随机变量 X 与 Y 相互独立,X 服从参数 1 为的泊松分布,Y~B(6,1 ),则 D(X-Y)=( )
pY ( y) , X 与 Y 是否独立;(4) 概率 P{Y X} , (5)求 Z X Y 的概率密度; (6)相关系数 X ,Y
20.(10 分)假定暑假市场上对冰淇淋的需求量是随机变量 X 盒,它服从区间[200, 400]上的均匀分布,设每售出一盒冰淇淋可为小店挣得 1 元,但假如销售不出而 屯积于冰箱,则每盒赔 3 元。问小店应组织多少货源,才能使平均收益最大?

华北理工大学《概率论与数理统计》期中小测题含答案

华北理工大学《概率论与数理统计》期中小测题含答案
概率论练习题
一、填空题(每小题 4 分,共 28 分)
1.对一批次品率为 p(0<p<1)的产品逐一检测, 则第二次或第二次后才检测到次品的概率为________. 2.二维离散型随机变量 ( X ,Y ) 的联合分布律为 pi j , (i, j =1 , 2 ,……),关于 X 及关于 Y 的边缘分布律为 pi及 pj (i , j=1,2,……),则 X 与 Y 相互独立的充分必要条 件是_________. 6.设某离散型随机变量的分布律是 P k C
f ( x)
1 11 2
e

x2 242
, ( x )
( A)
1.10 件产品中有 3 件次品,从中随机抽出 2 件,至少抽到 l 件次品的概率是______。 2.如果 A , B 为任意事件,则下列命题正确的______. (A) 如果 A , B 互不相容, 则 A , B 也互不相容
2.已知随机变量 X 在 [0 , 1] 上服从均匀分布,记事件 A {0 X 0.5} , B {0.25 X 0.75} ,则_________. (A) A 与 B 互不相容. 3. D( ) 4, D( ) 1 , (B) B 包含 A. (C) A 与 B 对立. (A) 40 (B) 34 (D) A 与 B 相互独立. (C) 25.6 (D) 17.6
(C) P { X Y 0} 0.25
(D) P { XY 1} 0.25
三、不同的两个小麦品种的种子混杂在一起,已知第一个品种的种子发芽率为 90%,第二个品种的种子发芽率为 96%,并且已知第一个品种的种子比第二个品种的 种子多一倍,求: (1)从中任取一粒种子,它能发芽的概率; (2)如果取到的一粒种子能发芽,则它是第一个品种的概率是多少?(8 分) 四、设随机变量 X 和 Y 相互独立且 X ~ N ( 3 , 5) , Y ~ N ( 3 , 19) . 答案:一、1.1p;2. pi j pi p j ;3. t 试求 Z=3X–2Y–15 的概率密度. (8 分)

概率统计中期考试试题及答案

概率统计中期考试试题及答案

概率统计中期考试试题及答案 一选择题1 设A ,B ,C 为三个独立事件,则下列等式中不成立的是( ) (A ) )()()(B P A P B A P = (B ) )()()(B P A P B A P = (C ) )()()(C P A P AC P = (B ) )()()()(C P B P A P ABC P =解 A ,B ,C 为三个独立事件 ,则A 与B 相互独立 )()()(B P A P B A P = 所以 (B )不成立2 如果事件A 与B 相互对立,则下面结论错误的是( ) (A ) A+B 是必然事件 (B )B A +是必然事件 (C ) B A 是不可能事件 (D )A 与B 一定不互斥解 如图 :事件A 与B 相互对立,则 A B ==,Φ=B A所以(D )是错误的 3 给出下列命:(1) 互斥事件一定对立 (2) 对立事件一定互斥 (3) 互斥事件不一定对立(4) 事件A 与B 的和事件的概率一定大于事件A 的概率 (5) 事件A 与B 互斥,则P(A)=1-P(B) 其中命题正确的个数为( )(A) 0 (B) 1 (C) 2 (D) 3 解 (1) 错误 (2) 正确 (3) 正确(4) 如果 A B ⊆,则 )()(A P B A P =+ 所以错误(5) 事件A 与B 互斥,则)()()(B P A P B A P +=+ 但)(B A P +不一定等于1 所以错误4 一个员工一周需要值班二天,其中恰有一天是星期六的概率为( ) ( A) 1/7 (B) 2/7 (C) 1/49 (D) 2/49 解 A={ 恰有一天是星期六} 726)(27==C A P 5 有三个相识的人某天各自乘火车外出,假设火车有10节车厢,那么至少有二人在车厢内相遇的概率( )(A) 29/200 (B) 7/25 (C) 29/144 (D) 7/18 解 A={至少有二人在车厢内相遇} 则2571089101)(1)(3=⨯⨯-=-=A P A P二 填空题1 袋中3红球,2白球,每次取1个,取后放回,再放入相同颜色的球1个,则连续三次取得红球的概率 解 i A 第i 次取红球(i=1,2,3)则 )|()|()()(213121321A A A P A A P A P A A A P =756453⨯⨯=72= 2 有两箱同类的零件,第一箱有50只,其中有10件一等品,第二箱有30只,其中有18件一等品,今从两箱中任取一箱,然后从该箱中取零件两次,每次取一只,不放回,则第一次取到一等品的概率是解 A------取到第一只箱子 B------第一次取到红球)|()()|()()(A B P A P A B P A P B P +=4.0301821501021=⨯+⨯=3某射手命中率为0.9,他射击10次恰好中9次的概率为 解 X------10次射击命中的次数,则 )9.0,10(~B X1.09.0}9{9910C X P ===0.387424设8支枪中已有5支经试射校正,有3支未校正,一射手用校正过的枪命中率为0.8,用未校正过的枪命中率为0.3,今从8支枪中选一支进行射击,结果中靶,则所用枪是校正过的概率为解 A------取到校正过的枪 B-----射击命中目标 )|()()|()()(A B P A P A B P A P B P += 3.0838.085⨯+⨯=)()|()()()()|(B P A B P A P B P AB P B A P ==3.0838.0858.085⨯+⨯⨯==0.8163275 设随机变量X 的分布律为 kb k X P )32(}{== (k=1,2,3,…) 则常数b=解 132132)32(1=-=∑∞=b b k k5.0=⇒b6 事件A ,B ,C 三事件相互独立,A 发生的概率为1/2,A ,B ,C 同时发生的概率为1/24,A ,B ,C 都不发生的概率为1/4,则A ,B ,C 只有一个发生的概率为 解 事件A ,B ,C 三事件相互独立21)(=A P 241)()()()(==C P B P A P ABC P 41))(1))((1))((1()()()()(=---==C P B P A P C P B P A P C B A P 则 31)(=B P 41)(=C P )()()()(P P P P ++=++)()()()()()()()()(C P B P A P C P B P A P C P B P A P ++=413221433121433221⨯⨯+⨯⨯+⨯⨯=2411=7设某项实验成功率是失败率的2倍,用X 表示一次实验成功的次数,则P{X=0}= 解 A={成功} 则 32)(=A P 31)0(==X P 8 已知a A P =)( b B P =)( c B A P =+)( 则 =)(B A P 解 )()()])[()(B P B A P B B A P B A P -+=-+==c-b9 从1到100共100个整数中任取一个数,在已知这个数是3的倍数的条件下,这个数能被5整除的概率为解 A={这个数是3的倍数} B={这个数能被5整除}则 112100331006)()()|(===A P AB P A B P三 设连续型随机变量的分布函数为 ⎪⎩⎪⎨⎧≥<≤<=111000)(2x x Axx x F 求(1)A=? (2)P{0.3<X<0.7} (3) X 的概率密度解 (1)因为为F(x)连续函数,特别地,在X=1处连续, 有A=1(2) 4.03.07.0)3.0()7.0(}7.03.0{22=-=-=<<F F X P(3) ⎪⎩⎪⎨⎧≥<≤<='=1010200)()(x x x x x F x f四 测量到某目标的距离时发生的随机误差X 具有概率密度3200)20(22401)(--=x ex f π求在一次测量中误差的绝对值不超过30米的概率 解 224020213200)20(24012401)(⎪⎭⎫ ⎝⎛----==x x eex f ππ)40,20(~2N X)25.1()25.0()402030()402030(}3030{}30|{|-Φ-Φ=--Φ--Φ=≤≤-=≤X P X P 4931.018944.05981.0)]25.1(1[)25.0(=-+=Φ--Φ=五 设随机变量X 服从均匀分布U (0,1),试求Xe Y = 概率密度函数与分布函数解 )1,0(~U X ⎪⎩⎪⎨⎧≥<≤<=1010100)(x x x x f Xx e y =单调上升,其反函数为: y x ln = 导数为: yx y 1='(1) Xe Y = 概率密度函数为:|)(|))(()(y h y h f y f X Y '∙=⎪⎪⎩⎪⎪⎨⎧≥<≤<=1ln 01ln 010ln 0y y y y ⎪⎪⎩⎪⎪⎨⎧≥<≤<=e y e y y y 0111(2) 分布函数为 dy y f y F Y Y ⎰=)()(⎪⎩⎪⎨⎧≥<≤+<=e y c e y c y y c 3211ln 1根据)(y F Y 的连续性,及,0)(=-∞Y F 1)(=+∞Y F 有 1,0,0321===c c c所以 =)(y F Y ⎪⎩⎪⎨⎧≥<≤<=e y e y y y 11ln 10。

概率统计期中考答案版

概率统计期中考答案版

《_》 期中考试 (一、四)班级 ______ ___ 姓名 _______学号 _ ___一、选择题(共6题,每题3分,共计18分) 1. 事件C 发生导致事件A 发生, 则 B 。

A. A 是C 的子事件 B. C 是A 的子事件 C. A C = D .()()P C P A >2. 设事件B A ,两个事件,111(),(),()2310P A P B P AB ===,则()P A B = B 。

A .1115 B .415 C .56 D .16(逆事件概率,加法公式,()1()1[()()()]P A B P A B P A P B P AB =-=-+-U )3. 设X ~2(,)N μσ,那么当σ增大时,{2}P X μσ-< C 。

A .增大B .减少C .不变D .增减不定 (随机变量的标准正态化,2(2)1=Φ-)4. 已知B A ,是两个事件,X ,Y 是两个随机变量,下列选项正确的是(C )A . 如果B A ,互不相容,则A 与B 是对立事件B . 如果B A ,互不相容,且()()0,0>>B P A P ,则B A ,互相独立C . Y X 与互相独立,则Y X 与不相关D . Y X 与相关,则相关系数1ρ=5.已知2,1,(,)1,DX DY Cov X Y === 则(2)D X Y -= ( C ) (A) 3; (B) 11; (C) 5; (D) 7 (考查公式(2)4()()2cov(2,)D X Y D X D Y X Y -=+-)6.若X,Y 为两个随机变量,则下列等式中成立的是( A ) A.EY EX Y X E +=+)( B.DY DX Y X D +=+)( C.DXY DX DY =⋅ D.EXY EX EY =⋅二、填空题(共6题,每题3分,共计18分)1. 设三次独立试验中,事件A 出现的概率相等,如果已知A 至少出现一次的概率等于2719,则事件A 在一次试验中出现的概率为13. (考查贝努里概型)2.设顾客在某银行窗口等待服务的时间X (单位:分钟)具有概率密度 某顾客在窗口等待服务,若超过9分钟,他就离开. (1)该顾客未等到服务而离开窗口的概率P {X >9}= 3e -(2)若该顾客一个月内要去银行5次,以Y 表示他未等到服务而离开窗口的次数,即事件{X >9}在5次中发生的次数,P {Y =0}= 35(1)e -- 3.设随机变量X ~)2,1(2N ,(1){ 2.2}P X <= 0.7257 (2){ 1.6 5.8}P X -≤<= 0.895 (3){ 3.5}P X ≤= 0.8822((0.6)0.7257Φ=(2.4)0.9918,Φ=(1.3)0.9032Φ=(1.25)0.8944,Φ=(2.25)0.9878Φ=)4.,,,X Y Z W 是独立的随机变量,X 服从二项分布1(4,)2B ,Y 为参数为2的指数分布,Z 为参数为3的泊松分布,W 是服从[2,4]-上的均匀分布, ()D Y Z -= 13/4 ,(2)E Z W += 7 ,[(1)]E XY X Z +-= -2 。

《概率论与数理统计》期中考试试习题汇总

《概率论与数理统计》期中考试试习题汇总

欢迎阅读《概率论与数理统计》期中考试试题(一)一、选择题(本题共6小题,每小题2分,共12分)1.某射手向一目标射击两次,A i 表示事件“第i 次射击命中目标”,i =1,2,B 表示事件“仅第一次射击命中目标”,则B =( )A .A 1A 2B .21A AC .21A AD .21A A2.某人每次射击命中目标的概率为p (0<p <1),他向目标连续射击,则第一次未中第二次命中的概率为( ) A .p 223.已知A .0 4率为(A .0.25A C 6.A .1- 7.8.将39.从a 10.11.12.设二维随机变量(,)X Y 的协方差矩阵是40.50.59⎛⎫⎪⎝⎭,则相关系数,X Y ρ= ________.13. 二维随机变量(X ,Y )(1,3,16,25,0.5)N -,则X;Z X Y=-+ .14. 随机变量X 的概率密度函数为51,0()50,0x X e x f x x -⎧>⎪=⎨⎪≤⎩,Y 的概率密度函数为1,11()20,Y y f y others ⎧-<<⎪=⎨⎪⎩,(,)X Y相互独立,且Z X Y =+的概率密度函数为()z f z =15. 设随机变量X , 1()3,()3E X D X ==,则应用切比雪夫不等式估计得{|3|1}P X -≥≤三、计算题(本题共5小题,共70分)16.(8分)某物品成箱出售,每箱20件,假设各箱含0,1和2件次品的概率分别是0.7,0.2和0.1,顾客在购买时,售货员随机取出一箱,顾客开箱任取4件检查,若无次品,顾客则买下该箱物品,否则退货.试求:(1) 顾客买下该箱物品的概率;(2) 现顾客买下该箱物品,问该箱物品确实17.(20求(1)a (3){P X Y +18.(8为三次(1)(2)19.(24求: (1) ;(4) 概率{P Y 20.(101.一批产品共10件,其中有2件次品,从这批产品中任取3件,则取出的3件中恰有一件次品的概率为( ) A .601 B .457 C .51 D .157 2.下列选项不正确的是( ) A .互为对立的事件一定互斥B .互为独立的事件不一定互斥C .互为独立的随机变量一定是不相关的D .不相关的随机变量一定是独立的3.某种电子元件的使用寿命X (单位:小时)的概率密度为2100,100;()0,100,x p x x x ⎧≥⎪=⎨⎪<⎩ 任取一只电子元件,则它的使用寿命在150小时以内的概率为( ) A .41 B .31 C .21 D .324.若随机变量,X Y 不相关,则下列等式中不成立的是 . A .DY DX Y X D +=+)( B. 0),(=Y X Cov C. (E 5.A .1-6.则常数x A .7.8. 将29. 10. 11. 已密度p (x 12.13. 二维随机变量(X ,Y )(2,3,9,16,0.4)N -,则X;Z X Y=-+ .14. 随机变量X 的概率密度函数为,0()0,0x X e x f x x -⎧>=⎨≤⎩,Y 的概率密度函数为1,12()30,Y y f y others⎧-<<⎪=⎨⎪⎩,,X Y 相互独立,且Z X Y =+的概率密度函数为()z f z =15. 设随机变量X,1()1,()3E X D X==,则应用切比雪夫不等式估计得{13}P X-<<≥三、计算题(本大题共5小题,共70分)16.(8分)据市场调查显示,月人均收入低于1万元,1至3万元,以及高于3万元的家庭在今后五年内有购置家用高级小轿车意向的概率分别为 0.1,0.2 和 0.7.假定今后五年内家庭月人均收入X 服从正态分布N (2, 0.82 ).试求:(1) 求今后五年内家庭有购置高级小轿车意向的概率;(2) 若已知某家庭在今后五年内有购置高级小轿车意向,求该家庭月人均收入在1至3万元的概率.17(1),Y)关问X,Y)相关18{X>9}(1)X Y的条件概率密度函数;(5)相关系数,X Yρ20.(10分)设市场上每年对某厂生产的29寸彩色电视机的需求量是随机变量X(单位:万台),它均匀分布于[10,20].每出售一万台电视机,厂方获得利润50万元,但如果因销售不出而积压在仓库里,则每一万台需支付库存费10万元,问29寸彩色电视机的年产量应定为多少台,才能使厂方的平均收益最大?《概率论与数理统计》期中试卷试题(五)一、选择题(共5题,每题2分,共计12分)1.下列选项正确的是()A .互为对立事件一定是互不相容的B .互为独立的事件一定是互不相容的C .互为独立的随机变量一定是不相关的D .不相关的随机变量不一定是独立的2. 设事件B A ,两个事件,111(),(),()2310P A P B P AB ===,则()P A B = 。

《概率论与数理统计》模拟试题及答案

《概率论与数理统计》模拟试题及答案

模拟试题一一、 填空题(每空3分,共45分)1、已知P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 则P(A|B ) = 。

P( A ∪B) = 。

2、设事件A 与B 独立,A 与B 都不发生的概率为19,A 发生且B 不发生的概率与B 发生且A 不发生的概率相等,则A 发生的概率为: ;3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: ;没有任何人的生日在同一个月份的概率 ;4、已知随机变量X 的密度函数为:,0()1/4,020,2x Ae x x x x ϕ⎧<⎪=≤<⎨⎪≥⎩, 则常数A= , 分布函数F (x )= , 概率{0.51}P X -<<= ; 5、设随机变量X~ B(2,p)、Y~ B(1,p),若{1}5/9P X ≥=,则p = ,若X 与Y 独立,则Z=max(X,Y)的分布律: ; 6、设~(200,0.01),~(4),X B Y P 且X 与Y 相互独立,则D(2X-3Y)= , COV(2X-3Y , X)= ;7、设125,,,X X X 是总体~(0,1)X N 的简单随机样本,则当k = 时,~(3)Y t =;8、设总体~(0,)0X U θθ>为未知参数,12,,,n X X X 为其样本,11ni i X X n ==∑为样本均值,则θ的矩估计量为: 。

9、设样本129,,,X X X 来自正态总体(,1.44)N a ,计算得样本观察值10x =,求参数a 的置信度为95%的置信区间: ;二、 计算题(35分)1、 (12分)设连续型随机变量X 的密度函数为:1,02()20,x x x ϕ⎧≤≤⎪=⎨⎪⎩其它求:1){|21|2}P X -<;2)2Y X =的密度函数()Y y ϕ;3)(21)E X -; 2、(12分)设随机变量(X,Y)的密度函数为1/4,||,02,(,)0,y x x x y ϕ<<<⎧=⎨⎩其他1) 求边缘密度函数(),()X Y x y ϕϕ; 2) 问X 与Y 是否独立?是否相关? 3) 计算Z = X + Y 的密度函数()Z z ϕ;3、(11分)设总体X 的概率密度函数为:1,0(),000xe x x x θϕθθ-⎧≥⎪=>⎨⎪<⎩X 1,X 2,…,X n 是取自总体X 的简单随机样本。

概率论数理统计期中考试试卷

概率论数理统计期中考试试卷

遵章守纪考试诚信承诺书在我填写考生信息后及签字之后,表示我已阅读和理解《学生考试违规处理办法(试行)》有关规定,承诺在考试中自觉遵守该考场纪律,如有违规行为愿意接受处分;我保证在本次考试中,本人所提供的个人信息是真实、准确的。

承诺人签字:数理(部)概率论与数理统计课程期中考试试卷 ( B )卷2014——2015学年第 一 学期 开卷/闭卷请注明 闭卷 考试时间: 90分钟 任课教师: 夏宇 (统一命题的课程可不填写)年级、专业、班级 学号 姓名一、单项选择题(每小题2分,共10分)1、设C B A 、、为三个事件,则“C B A 、、中至少有两个发生”这一事件可表示为( ).BC AC AB A ++).( C B A B ++).(BC A C B A C AB C ++).( C B A D ++).(2、设随机事件A 与B 互不相容,且0)(,0)(>>B P A P ,则( ) (A ))(1)(B P A P -= (B ) )()()(B P A P AB P = (C ) 1)(=+B A P (D ) 1)(=AB P3、某人连续向一目标射击,每次命中目标的概率为43,则他连续射击直到第十次才命中4次的概率是( ))(A 644104143⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛C )(B 643104143⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛C )(C 64394143⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛C )(D 64394341⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛C 4、设二维随机变量),(Y X 的概率密度为),(y x f ,则=>)2(X P ( ))(A⎰⎰+∞∞-∞-dy y x f dx ),(2)(B ⎰⎰+∞∞-+∞dy y x f dx ),(2)(C⎰∞-2),(dx y x f )(D ⎰+∞2),(dx y x f5、设二维随机变量(X ,Y )的联合分布函数为F(x,y),其分布律为则F (0,1)=( ).(A)0.2; (B)0.4; (C)0.6; (D)0.8二、填空题(每空3分,共30分)6、设==⋃==)(,)(,)(,)(B A P k B A P n B P m A P 则 .7、袋中有6只白球与3只红球,每次取一只球,不放回地取两次,设i A 表示第i 次取到白球(2,1=i ),则=)(1A P ,=-)(12A A P .8、某型号灯泡能使用寿命X (单位:小时)服从参数为100=θ的指数分布。

概率论与数理统计练习题

概率论与数理统计练习题

《概率论与数理统计》期中考试试题一、单项选择题:1.某人连续向一目标射击,每次命中目标的概率为34,他连续射击直到命中为止,则射击次数为3的概率是( )(A).()343 (B).()34142⨯ (C). ()14342⨯(D).C 4221434()2.设A ,B 为随机事件,且A ⊂B ,则B A 等于( )(A).A (B).B (C).AB(D).B A3.同时掷3枚均匀硬币,则至多有1枚硬币正面向上的概率为( )(A).81(B).61 (C).41(D).214.对一批次品率为p(0<p<1)的产品逐一检测,则第二次或第二次后才检测到次品的概率为( )(A).p (B).1-p (C).(1-p)p (D).(2-p)p 5. 已知事件 A 与 B 的概率都是 ,则下列结论肯定正确的是( )。

25.0)()(;1)()(==⋃B A P B B A P A()()0.5;()()()C P AB D P AB P AB ==6. 设 P(A) = a , P(B) = b , P(A ∪B) = c , 则)(B A P 为( )。

)1()(;)(;)(;)1()(c a D b c c b a B b a A ----7.设事件{X=k}表示在n 次独立重复试验中恰好成功k 次,则称随机变量X 服从( )(A).两点分布 (B).二项分布 (C).泊松分布 (D).均匀分布 8.设事件A ,B 相互独立,且360160.)B A (P ,.)B A (P ==,则)B (P ),A (P 分别为 ( ) .(A). ; (B).; (C). ; (D). ; 9. A 、B 为两个任意事件,且1()3P AB =,则()P A B =[ ] (A) 13 (B) 14 (C) 23 (D) 3410.对任意两事件A 和B ,则._______)(=-B A P)()()(B P A P A -;)()()()(AB P B P A P B +- ; )()()(AB P A P C - ;)()()()(B A P B P A P D -+11.在下列函数中,可以作为某随机变量的分布函数的为( )(A)211)(x x F +=(B) 21arctan 1)(+=x x F π (C) ⎪⎩⎪⎨⎧≤>-=-0,00),1(21)(x x e x F x (D) ⎰∞-=x dx x f x F ,)()(其中1)(=⎰∞∞-dx x f12. 设在三次独立试验中,事件A 发生的概率相等,若已知事件A 至少出现一次的概率为2719,则事件A 在一次试验中出现的概率为( )(A)41 (B) 31 (C)32 (D) 21 13.任一个连续型的随机变量ξ的概率密度为)(x ϕ,则)(x ϕ必满足( )(A) 1)(0<<x ϕ (B)单调不减 (C)()⎰+∞∞-=1dx x ϕ (D)1)(lim =+∞→x x ϕ14.若定义分布函数(){}x P x F ≤=ξ,则函数)(x F 是某一随机变量ξ的分布函数的充要条件是( )(A) 1)(0≤≤x F (B) 1)(0≤≤x F 且0)(=-∞F , 1)(=∞F (C))(x F 单调不减,且0)(=-∞F , 1)(=∞F(D) )(x F 单调不减,函数)(x F 右连续,且0)(=-∞F , 1)(=∞F15.设随机变量ξ服从正态分布)4,1(N ,)(ξηf =服从标准正态分布,则=)(ξf ( ) (A)41-ξ (B) 31-ξ (C)21-ξ (D)13+ξ 16.设ξ的分布律为ξ0 1 2p而{}x P x F ≤=ξ)( ,则=)2( F ( ) (A) 6.0 (B) 35.0 (C) 25.0 (D) 0 17. 设连续型随机变量ξ的分布函数为)( 211)(+∞<<-∞+=x arctgx x F π,则{}=-=3ξP ( )(A)16 (B)56(C)0 (D)2318. 设随机变量ξ的概率密度为 ()2x Aex -=ϕ ,则A= ( )( A ) 2 ( B ) 1 ( C ) 12 ( D ) 1419. 设的概率密度为),( 21)(+∞<<-∞=-x e x x ϕ 又{}x P x F ≤=ξ)(, 则 x <0 时,=)(x F ( )( A ) x e 211-( B ) x e --211 ( C ) x e -21( D )x e 2120.设随机变量ξ具有概率密度)(x ϕ,则b a +=ξη0(≠a ,b 是常数)的分布密度为( )(A)⎪⎭⎫⎝⎛-a b y a ξϕ1 (B) ⎪⎭⎫⎝⎛-a b y a ξϕ1 (C) ⎪⎭⎫ ⎝⎛--a b y a ξϕ1 ( D ) ⎪⎪⎭⎫ ⎝⎛-a b y a ξϕ1 21.设X ,Y 相互独立,且服从区间[ 0,1 ]上的均匀分布,则_______.( A )Z =X+Y 服从 [ 0 , 2 ]上的均匀分布; ( B ) Z= XY 服从[1 ,1 ] 上的均匀分布;( C ) Z = M a x { X ,Y } 服从 [ 0,1 ] 上的均匀分布;( D ) ( X ,Y ) 服从区域 ⎩⎨⎧≤≤≤≤1010y x 上的均匀分布.22.设两个随机变量X与Y 相互独立且同分布,{}{}1112P X P Y ====,{}{}1112P X P Y =-==-=,则下列各式成立的_____.(A){}12P X Y == (B) {}1P X Y ==(C){}104P X Y +== (D) {}114P XY ==23.设X,Y 是两个相互独立的随机变量,它们的分布函数为()X F x , Y F ()y ,则Z=max(X,Y)的分布函数是_________. (A)()Z F z =max{()X F x ,()Y F y } (B)()Z F z =(1())X F z -(1())Y F z -(C) ()Z F z = ()X F z ()Y F z (D) 都不是24.已知二维随机变量(X ,Y ) 的联合分布函数},{),(y Y x X P y x F ≤≤=,则事件 }3,2{>>Y X 的概率是________ (A) F ( 2 , 3 ) (B) F ( 2 , +∞ )F ( 2 , 3 )(C) 1 F ( 2 , 3) (D) 1 F ( 2 , +∞ ) F( +∞ , 3 ) + F( 2 , 3 )25.设二维随机向量(X ,Y )的联合分布律为则P{X=0}=_______. (A)112 (B) 212 (C) 412 (D) 51226.已知X,Y 的联合分布如下表所示,则有________.XY120 1 0 2(A) X 与Y 不独立 ( B) X 与Y 独立 (C) X 与Y 不相关 (D) X 与Y 相关27.设二维随机变量(,)X Y 服从G 上的均匀分布,G 的区域由曲线2x y =与XY120 112 212 2121 112 112 02212112212x y =所围,则(,)X Y 的联合概率密度函数为_______.)(A ⎩⎨⎧∈=他其,0),(,6),(G y x y x f )(B ⎩⎨⎧∈=他其,0),(,6/1),(Gy x y x f )(C ⎩⎨⎧∈=他其,0),(,2),(Gy x y x f)(D ⎩⎨⎧∈=他其,0),(,2/1),(Gy x y x f 28.设随机变量,X Y 相互独立,)1,0(~N X ,)1,1(~N Y ,则 ________.)(A 2/1}0{=≤+Y X P ; )(B 2/1}1{=≤+Y X P ;()C 2/1}0{=≤-Y X P ; )(D 2/1}1{=≤-Y X P29.将一枚硬币抛掷三次,设前两次抛掷中出现正面的次数为X ,第三次抛掷出现正面的次数为Y ,二维随即变量),(Y X 所有可能取值的数对有________. ( A ) 2 对( B ) 6对( C )3对( D ) 8对30.设二维随机变量),(ηξ的联合概率密度为),(y x ϕ,记在条件}{x P =ξ下η 的条件分布密度为)(1x y ϕ,则⎭⎬⎫⎩⎨⎧≤≤)21(|)21(ξηP 的值为_______. (A)dxy x dxdyy x ),(),(212121ϕϕ⎰⎰⎰∞-∞-∞- ( B )dxdy x y )|(12121ϕ⎰⎰∞-∞-(C)⎰⎰⎰∞-∞-∞-212121),(),(dyy x dxdyy x ϕϕ (D)⎰⎰⎰⎰∞-∞+∞-∞-∞-⎥⎦⎤⎢⎣⎡212121),(),(dx dy y x dxdyy x ϕϕ31. 对于任意两个随机变量ξ和η,若)()()(ηξξηE E E =,则有( )(A ))()()(ηξξηD D D = (B ))()()(ηξηξD D D +=+ (C )ξ和η独立 (D )ξ和η不独立 32.若随机变量ξ和η相互独立,且方差21)(σξ=D 和22)(ση=D 2121,),0,0(k k >>σσ是已知常数,则)(21ηξk k D -等于( )(A )222211σσk k - (B )222211σσk k + (C )22222121σσk k - (D )22222121σσk k + 33.若随机变量ξ的概率密度为4421)(-+-=x xe x πϕ,则ξ的数学期望是( )(A )0 (B )1 (C )2 (D )334.已知随机变量ξ和η的方差16)(,9)(==ηξD D ,相关系数5.0=ξηρ,则=-)(ηξD ( )(A )19 (B )13 (C )37 (D )25 35.设ξ的分布律为:{}{},)1(21+=-===n n n P n P ξξ(n 正整数),则()=ξE ( )(A )0 (B )1 (C ) (D)不存在36.ξ的分布函数为()⎪⎩⎪⎨⎧>≤≤<=1,110,0,03x x x x x F ,则()=ξE ( )(A)⎰14dx x (B)⎰⎰+∞+114xdx dx x (C)⎰1023dx x (D)⎰133dx x37.设ξ服从02.0,100==p n 的二项分布,η服从正态分布且()()ηξE E =,()()ηξD D =,则η的概率密度函数=)(x ϕ( )(A)2221x e -π(B)()96.12221--x eπ(C)()96.12224.11--x eπ(D)()92.32224.11--x eπ38.设随机变量X,Y独立同分布,记Y X Y X -=+=ηξ,,则随机变量ξ和η之间的关系必然是( )(A)不独立 (B)独立 (C)相关系数等于0 (D)相关系数不为0 39.设随机变量n ξ,服从二项分布()p n B ,,其中,,2,1,10 =<<n p 那么,对于任一实数x 有()⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<--+∞→x p np np P n n 1lim ξ等于( ) (A)⎰∞--xt dt e2221π(B)0 (C)⎰∞+∞--dt et 2221π(D)⎰∞--xt dt e2240.设随机变量ξ的数学期望()μξ=E ,方差()2σξ=D ,试利用切比雪夫不等式估计{}≥<-σμξ4P ( )(A)98 (B)1615 (C)109(D)101二、多项选择题1.设A 、B 为相互独立事件,且P(A)>0,P(B)>0,下面四个结论中,正确的是: (A) P(B|A)>0 (B)P(A|B)=P(A) (C) P(A|B)=0 (D) P(AB)=P(A)P(B)2.设随机事件A 与B 互不相容,且P(A)>0,P(B)>0,则下面选项不正确的是( )(A).P(A)=1-P (B ) (B).P(AB)=P(A)P(B) (C).P(A ∪B)=1 (D) P(AB )=13.从一批产品中随机抽两次,每次抽1件。

概率统计期中考试试题

概率统计期中考试试题

概率统计期中考试试题一、填空题一、填空题1设C B A ,,是三个随机事件,则A 、B 、C 中至多有2个事件发生可表示为个事件发生可表示为 . 2.掷一颗骰子,A 表示表示 “ 出现偶数点出现偶数点 ”,B 表示“ 点数小于4 ”, 则B A -表示表示 . 3.设C B A ,,是三个随机事件,()()()14P A P B P C ===,()16P AC =,()0P AB =、()0P BC =,则C B A ,,至少发生一个的概率为至少发生一个的概率为 . 4.设B A ,为两个随机事件,()0.6P A =,()0.2P A B -=,则()P AB = . 5.一批零件的次品率为0.2, 连取三次, 每次一件(有放回), 则三次中恰有两次取到次品的概率为则三次中恰有两次取到次品的概率为 . 6. 若随机变量X 在(1,6)上服从均匀分布,则方程210a aX ++=,有实根的概率,有实根的概率 。

7.设随机变量X 服从参数为(2,p )的二项分布,随机变量Y 服从参数为(3,p )的二项分布,若9/5}1{=³X P 则}1{³Y P 。

8.已知某厂的产品中2%有缺陷,求100件产品中3件有缺陷的概率件有缺陷的概率 。

9.在抛两枚均匀硬币中出现两个正面、一正一反、和两个反面的概率分别为0.25,0.5,0.25,若把两枚均匀硬币连抛6次,两个正面出现1次,一正一反出现3次,两个反面出现2次的概率是次的概率是 。

10.设(,)X Y 的概率密度为(),0,0(,)0,x y ce x y f x y others -+ì>>ï=íïî,则常数c 是 。

二、单项选择题二、单项选择题1.对掷一枚硬币的试验, “出现正面”称为(称为( )。

(A ) 随机事件随机事件 (B ) 必然事件必然事件 (C ) 不可能事件不可能事件 (D ) 样本空间样本空间2.设A 和B 是任意两个概率不为零的互斥事件,则下列结论中肯定正确的是(是任意两个概率不为零的互斥事件,则下列结论中肯定正确的是( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

).
(D) 增减不变.
4.设两个相互独立的随机变量 X 和 Y 分别服从正态分布 N(0,1)和 N(1,1),则( (A) P{ X Y 0} 1 ;
).
2
(B) P{ X Y 1} 1 ;
2
(C) P{ X Y 0} 1
2

(D) P{ X Y 0} 1 .
).
审题人签字 _________
A, B 互不相容;
B A;
(D) P ( A B ) P ( A) P ( B ) . ).
2. n 张彩票中有 m 张是有奖的,今有 k 个人各买 1 张, 则其中至少有 1 人中奖的概率是 ( (A)
m ; C nk
审定人签字
____________
2
命题人签字
5.若随机变量 Y 在 (1, 6) 上均匀分布,则方程 x Yx 1 0 有实根的概率是_____. 二、单项选择题(每小题 4 分,共 20 分):
线
1. 设 P ( A) 0.8, P ( B ) 0.7, P ( A | B ) 0.8 , 则下列结论正确的是( (A) 事件 A, B 相互独立; (C) (B)
2
5.设随机变量 X 的分布函数为 F ( x ) ,则随机变量 Y 2 X 1 的分布函数 G ( y ) 为( (A ) (C )

1 1 G( y) F ( y ) ; 2 2 G( y) 2F ( y) 1 ;
1 G ( y ) F ( y 1) ; 2 1 1 (D ) G ( y ) F ( y ) . 2 2
(B) 1
C nk m ; C nk
2
(C)
1 1 Cm C nk m ; C nk
(D)
Ck
i 1 n
k
i Cm
.
3. 设随机变量 X ~ N ( , ) ,则随 的增大,概率 P (| X | ) ( (A) 单调增加; (B) 单调减少; (C) 保持不变;
2 x
在区间(0,1)上服从均匀分布.
e y , 0 x y 6.设 ( X , Y ) 的联合概率密度函数为 f ( x, y ) , 0, 其它
(1) 分别求 X 和 Y 的边缘密度,判断 X 与 Y 是否相互独立; (2)求 P ( X Y 1) .
4. 根据历史资料,某地连续两次强地震相隔的年数 X 是一个随机变量,它的分布函数是
1 e 0.1x , F ( x) 0 ,
已知该地刚发生了一次强地震,试求 (1)今后 3 年内再发生强地震的概率; (2)今后 3 至 5 年内再发. 假设随机变量 X 服从参数为 2 的指数分布,试证: Y 1 e
2. 在 n 阶行列式的展开式中任取一项,此项不包含第二行,第三列元素 a23 的概率为
使用学期

则此行列式的阶数 n __
8 , 9
. .
k 3. 设 P{ X k } a , k 0,1, 2, , 是常数,则 a = k!
4.设随机变量 X 与 F ( x ) A B arctan x 相互独立,且均服从正态分布 N (0, 1) ,则概 率 P{X Y 0} .
(B )
三、解答题(每小题 10 分,共 60 分): 1. 甲袋中有 3 只白球,7 只红球,15 只黑球,乙袋中有 10 只白球,6 只红球,9 只黑球,从两袋中分别任取一 球,求两球颜色相同的概率. 2. 某工厂向三家出租车公司(D、E 和 F)租用汽车,20%汽车来自 D 公司,20%来自 E 公司,60%来自 F 公司, 而这三家出租公司在运输中发生故障的概率依次为 0.10, 0.12 和 0.04. (1) 该工厂租用汽车中发生故障的概率是多少? (2) 若该工厂租用汽车发生故障,问此汽车是来自 F 公司的概率是多少? 3. 设随机变量 X 的分布函数为 F ( x ) A B arctan x , x ,试求 (1) 系数 A, B ; (2) 随机变量 X 落在区间(0,1)的概率; (3) X 的概率密度函数.
试卷类别 [A] [B]
考核课程名称:《概率论与数理统计》期中模拟试题 考核方式:笔试开卷、笔试闭卷、口试、其它 考核内容:
一、填空题(每小题 4 分,共 20 分):
学时: 56
使用班级

1.已知随机事件 A, B 的概率分别是 0.5 和 0.6,若已知 A 发生,则 B 发生的概率为 0.8,那 么 P( A B) = .
相关文档
最新文档