2011年山东省威海市中考数学试题及答案(word版)

合集下载

2011年中考数学试题汇编---一次函数

2011年中考数学试题汇编---一次函数

选择题(每小题x 分,共y 分) (2011•潜江市)9.如图,已知直线l :y=33x ,过点A (0,1)作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2;…;按此作法继续下去,则点A 4的坐标为C A .(0,64) B .(0,128) C .(0,256) D .(0,512)(2011•桂林市)8.直线1y kx =-一定经过点( D ).A .(1,0)B .(1,k )C .(0,k )D .(0,-1)(2011•黄冈市)14.如图,把Rt △ABC 放在直角坐标系内,其中∠CAB =90°,BC =5,点A 、B 的坐标分别为(1,0)、(4,0),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段BC 扫过的面积为CA .4B .8C .16D .(2011•黄石市)10.已知梯形ABCD 的四个顶点的坐标分别为(1,0)A -,(5,0)B ,(2,2)C ,(0,2)D ,直线2y kx =+将梯形分成面积相等的两部分,则k 的值为( A ) A. 23-B.29-C. 47-D. 27- (2011•苏州市)10.如图,已知A 点坐标为(5,0),直线(0)y x b b =+>与y 轴交于点B ,连接AB ,∠a =75°,则b 的值为B A .3 B C .4 D(2011●河北省)5.一次函数y =6x +1的图象不经过...D . A .第一象限B .第二象限C .第三象限D .第四象限(第9题图)年度(第10题图)〔2011•浙江省义乌〕11.一次函数y =2x -1的图象经过点(a ,3),则a = 2 ▲ . 〔2011•福州市〕9.甲、乙两个工程队完成某项工程,首先是甲单独做了10天,然后乙队加入合做,完成剩下的全部工程,设工程总量为单位1, 工程进度满足如图所示的函数关系,那么实际完成这项工程所用的时间比由甲单独完成这项工程所需时间少( D ) A.12天 B.14天 C.16天 D.18天〔2011•南京市〕6.如图,在平面直角坐标系中,⊙P 的圆心是(2,a )(a >2),半径为2,函数y =x 的图象被⊙P 的弦AB的长为a 的值是B A. B.2+C. D.2〔2011•日照市〕9.在平面直角坐标系中,已知直线y =-43x +3与x 轴、y 轴分别交于A 、B 两点,点C (0,n )是y 轴上一点.把坐标平面沿直线AC 折叠,使点B 刚好落在x 轴上,则点C 的坐标是 B (A )(0,43) (B )(0,34) (C )(0,3) (D )(0,4) (2011•乐山)8、已知一次函数y ax b =+的图象过第一、二、四象限,且与x 轴交于点(2,0),则关于x 的不等式(1)0a x b -->的解集为A(A) x<-1 (B)x> -1 (C ) x>1 (D )x<1〔2011•芜湖市〕7.已知直线y kx b =+经过点(k ,3)和(1,k),则k 的值为( B ) A...二、填空题(每小题x 分,共y 分)(2011•呼和浩特市)12、已知关于x 的一次函数n mx y +=的图象如图所示,则2||m m n --可化简为________n_________.(第9题)x第14题图(2011•天津)(13) 已知一次函数的图象经过点(0.1).且满足y 随x 的增大而增大,则该一次函数的解析式可以为__1y x =+(答案不唯一,形如1(0)y kx k =+>都可以) ________ (写出一一个即可).(2011•威海市)18.如图,在直线l 1⊥x 轴于点(1,0),直线l 2⊥x 轴于点(2,0),直线l 3⊥x 轴于点(n ,0)……直线l n ⊥x 轴于点(n ,0).函数y =x 的图象与直线l 1,l 2,l 3,……l n 分别交于点B 1,B 2,B 3,……B n 。

山东省威海市2011年中考数学试卷-解析版

山东省威海市2011年中考数学试卷-解析版

山东省威海市2011年中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1、(2011•威海)在实数0,﹣,,﹣2中,最小的是()A、﹣2B、﹣C、0D、考点:实数大小比较。

专题:计算题。

分析:根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解.解答:解:∵正数大于0和一切负数,所以只需比较和﹣2的大小,因为|﹣|<|﹣|,所以最小的数是﹣2.故选A.点评:此题主要考查了实数的大小的比较,注意两个无理数的比较方法:统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.2、(2011•威海)今年体育学业考试增加了跳绳测试项目,下面是测试时记录员记录的一组(10名)同学的测试成绩(单位:个/分钟).176 180 184 180 170 176 172 164 186 180该组数据的众数、中位数、平均数分别为()A、180,180,178B、180,178,178C、180,178,176.8D、178,180,176.8考点:众数;算术平均数;中位数。

专题:计算题。

分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据.再根据平均数、众数和中位数的定义求解即可.解答:解:在这一组数据中180是出现次数最多的,故众数是180;将这组数据从小到大的顺序排列(164,170,172,176,176,180,180,180,184,186),处于中间位置的那两个数为176,180,那么由中位数的定义可知,这组数据的中位数是178;平均数为:(164+170+172+176+176+180+180+180+184+186)÷10=176.8.故选C.点评:本题为统计题,考查平均数、众数与中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.3、(2011•威海)在▱ABCD中,点E为AD的中点,连接BE,交AC于点F,则AF:CF=()A、1:2B、1:3C、2:3D、2:5考点:相似三角形的判定与性质;平行四边形的性质。

山东威海中考数学试题及答.doc

山东威海中考数学试题及答.doc

2015年山东威海中考数学试题及答案-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。

学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。

适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。

适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。

适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。

适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。

适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。

该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。

适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。

题库 中考 试卷---威海市2011—2012学年度第二学期八年级下数学期末模拟试卷及答案(二)

题库 中考 试卷---威海市2011—2012学年度第二学期八年级下数学期末模拟试卷及答案(二)

山东省威海市2011—2012学年度第二学期八年级下数学期末模拟试卷及答案(二)一、你的数学风采,在于你的合理选择!(每小题3分,共30分) 1.一直角三角形两边分别为3和5,则第三边为( )A 、4B 、34C 、4或34D 、22.用两个全等的等边三角形,可以拼成下列哪种图形( )A 、矩形B 、菱形C 、正方形D 、等腰梯形3.小明妈妈经营一家服装专卖店,为了合理利用资金,小明帮妈妈对上个月各种型号的服装销售数量进行了一次统计分析,决定在这个月的进货中多进某种型号服装,此时小明应重点参考( )A 、众数B 、平均数C 、加权平均数D 、中位数4.王英在荷塘边观看荷花,突然想测试池塘的水深,她把一株竖直的荷花(如右图)拉到岸边,花柄正好与水面成600夹角,测得AB 长60cm ,则荷花处水深OA 为( ) A 、120cm B 、360cm C 、60cm D 、cm 320第4题图 第5题图 第7题图5.如图,□ABCD 的对角线AC 、BD 相交于O ,EF 过点O 与AD 、BC 分别相交于E 、F ,若AB=4,BC=5,OE=1.5,那么四边形EFCD 的周长为( ) A 、16 B 、14 C 、12 D 、106.已知,a 、b ,这个代数式是( )A .a+bB .abC .2aD .2b7.如图,把菱形ABCD 沿AH 折叠,使B 点落在BC 上的E 点处,若∠B=700,则∠EDC 的大小为A 、100B 、150C 、200D 、3008.若x 2+mx+3=(x+3)(x+1),则方程mx 2+3mx+8=0的两个根是( ).A .x 1=1,x 2=2B .x 1=-1,x 2=-2;C .x 1=1,x 2=-2D .x 1=-1,x 2=2 9.下列命题正确的是A 、同一边上两个角相等的梯形是等腰梯形;B 、一组对边平行,一组对边相等的四边形是平行四边形;C 、如果顺次连结一个四边形各边中点得到的是一个正方形,那么原四边形一定是正方形。

山东威海数学中考答案

山东威海数学中考答案

2010威海中考数学试题答案~二、填空题(本大题共6小题,每小题3分,共18分)13.x ≤3; 14.105°; 15.2; 16.﹙0,1﹚; 17.20%; 18.2611+. 三、解答题(本大题共7小题, 共66分) 19.(本小题满分7分)解:⎪⎩⎪⎨⎧-≤--+-②(①>).342125,3231x x xx解不等式①,得x <5. ………………………………………………………………3分解不等式②,得x ≥-2. ………………………………………………………………6分因此,原不等式组的解集为-2≤x <5. ………………………………………………7分 20.(本小题满分7分)解:设该市去年居民用气的价格为x 元/ m³,则今年的价格为(1+25%)x 元/ m³.……1分根据题意,得 10%)251(9096=+-x x . …………………………………………………3分解这个方程,得x =2.4. …………………………………………………………………6分 经检验,x =2.4是所列方程的根. 2.4×(1+25%)=3 (元).所以,该市今年居民用气的价格为3元/ m³. ………………………………………7分 21.(本小题满分9分)﹙1﹚80;…………………………………………………………………………………3分 ﹙2﹚26.4, 27, 27; ………………………………………………﹙每空1分﹚6分﹙3﹚396804472080231227720=⨯=+++⨯﹙人﹚. ……………………………………9分 22.(本小题满分10分)解:(1)∵ 反比例函数x m y =的图象经过点A ﹙-2,-5﹚, ∴ m =(-2)×( -5)=10.∴ 反比例函数的表达式为x y 10=. ……………………………………………………2分 ∵ 点C ﹙5,n ﹚在反比例函数的图象上,∴ 2510==n .∴ C 的坐标为﹙5,2﹚. ……………………………………………………………3分 ∵ 一次函数的图象经过点A ,C ,将这两个点的坐标代入b kx y +=,得⎩⎨⎧+=+-=-.5225b k b k , 解得⎩⎨⎧-==.31b k , …………………………………………………5分 ∴ 所求一次函数的表达式为y =x -3. …………………………………………………6分 (2) ∵ 一次函数y =x -3的图像交y 轴于点B ,∴ B 点坐标为﹙0,-3﹚. …………………………………………………………7分 ∴ OB =3.∵ A 点的横坐标为-2,C 点的横坐标为5,∴ S △AOC = S △AOB + S △BOC =()22152215212-21=+⋅⋅=⋅⋅+⋅⋅OB OB OB . …………10分 23.(本小题满分10分)解:连接OE ,OA .……………………1分 ∵ AB ,AD 分别与⊙O 相切于点E ,F .∴ OE ⊥AB ,OE =3㎝.………………2分 ∵ ∠DAB =60°, ∴ ∠OAE =30°. ……………………3分在Rt △AOE 中,AE=3tan tan 30OE OAE ︒==∠㎝. …………………………………5分 ∵ AD ∥BC ,∠DAB =60°,∴ ∠ABC =120°. ………………………………………………………………6分 设当运动停止时,⊙O 与BC ,AB 分别相切于点M ,N ,连接ON ,OB . ………7分同理可得 BN =3㎝. ……………………………………………………………9分∴ )3415(33315-=--=--=BN AE AB EN ㎝.∴ ⊙O 滚过的路程为()3415-㎝. ……………………………………………10分 24.(本小题满分11分)(1)证明:由题意,知△ABC ≌△A 1B 1C 1, ∴ AB= A 1B 1,BC 1=AC ,∠2=∠7,∠A =∠1.∴ ∠3=∠A =∠1. ………………………………………………………………1分 ∴ BC 1∥AC .∴ 四边形ABC 1C 是平行四边形. ………………2分∴ AB ∥CC 1. ∴ ∠4=∠7=∠2. …………………………………3分 ∵ ∠5=∠6, ∴ ∠B 1C 1C =∠B 1BC .……………………………4分﹙2﹚∠A 1C 1C =∠A 1BC . …………………………5分理由如下:由题意,知△ABC ≌△A 1B 1C 1, ∴ AB= A 1B 1,BC 1=BC ,∠1=∠8,∠A =∠2. ∴ ∠3=∠A ,∠4=∠7. ………………………6分 ∵ ∠1+∠FBC =∠8+∠FBC , ∴ ∠C 1BC =∠A 1BA . …………………………7分 ∵ ∠4=21(180°-∠C 1BC ),∠A=21(180°-∠A 1BA ).∴ ∠4=∠A . …………………………………8分 ∴ ∠4=∠2. ∵ ∠5=∠6,∴ ∠A 1C 1C =∠A 1BC .……………………………………………………………………9分 ﹙3﹚△C 1FB ,…………10分; △A 1C 1B ,△ACB .…………11分﹙写对一个不得分﹚ 25.(本小题满分12分)A B (A 1) C B 1 C 1 图 ② E 14 32 56 7A 1 C 1C A B (B 1)图 ③F3 645 1 2 7 8﹙1﹚①证明:分别过点M ,N 作 ME ⊥AB ,NF ⊥AB ,垂足分别为点E ,F . ∵ AD ∥BC ,AD =BC , ∴ 四边形ABCD 为平行四边形.∴ AB ∥CD .∴ ME = NF .∵S △ABM =ME AB ⋅21,S △ABN =NFAB ⋅21, ∴ S △ABM = S △ABN . ……………………………………………………………………1分 ②相等.理由如下:分别过点D ,E 作DH ⊥AB ,EK ⊥AB ,垂足分别为H ,K . 则∠DHA =∠EKB =90°. ∵ AD ∥BE ,∴ ∠DAH =∠EBK . ∵ AD =BE , ∴ △DAH ≌△EBK . ∴ DH =EK . ……………………………2分 ∵ CD ∥AB ∥EF ,∴S △ABM =DH AB ⋅21,S △ABG =EKAB ⋅21, ∴ S △ABM = S △ABG . …………………………………………………………………3分 ﹙2﹚答:存在. …………………………………………………………………………4分解:因为抛物线的顶点坐标是C (1,4),所以,可设抛物线的表达式为4)1(2+-=x a y . 又因为抛物线经过点A (3,0),将其坐标代入上式,得()41302+-=a ,解得1-=a .∴ 该抛物线的表达式为4)1(2+--=x y ,即322++-=x x y . ………………………5分 ∴ D 点坐标为(0,3).设直线AD 的表达式为3+=kx y ,代入点A 的坐标,得330+=k ,解得1-=k .∴ 直线AD 的表达式为3+-=x y .过C 点作CG ⊥x 轴,垂足为G ,交AD 于点H .则H 点的纵坐标为231=+-.∴ CH =CG -HG =4-2=2. …………………………………………………………6分设点E 的横坐标为m ,则点E 的纵坐标为322++-m m .过E 点作EF ⊥x 轴,垂足为F ,交AD 于点P ,则点P 的纵坐标为m -3,EF ∥CG . 由﹙1﹚可知:若EP =CH ,则△ADE 与△ADC 的面积相等.①若E 点在直线AD 的上方﹙如图③-1﹚,则PF =m -3,EF =322++-m m .∴ EP =EF -PF =)3(322m m m --++-=m m 32+-.∴ 232=+-m m .解得21=m ,12=m . ……………………………7分当2=m 时,PF =3-2=1,EF=1+2=3. ∴ E 点坐标为(2,3).同理 当m =1时,E 点坐标为(1,4),与C 点重合. ………………………………8分②若E 点在直线AD 的下方﹙如图③-2,③-3﹚,则m m m m m PE 3)32()3(22-=++---=. ……………………………………………9分 ∴232=-m m .解得21733+=m ,21734-=m . ………………………………10分A BD C M N 图 ①E F HC图 ②A B D M F E G K当2173+=m 时,E 点的纵坐标为2171221733+-=-+-;当2173-=m 时,E 点的纵坐标为2171221733+-=---.∴ 在抛物线上存在除点C 以外的点E ,使得△ADE 与△ACD 的面积相等,E 点的坐标为E 1(2,3);)21712173(2+-+,E ;)21712173(3+--,E . ………………12分﹙其他解法可酌情处理﹚。

2011中考数学真题解析82 中位线(含答案)

2011中考数学真题解析82 中位线(含答案)

(2012年1月最新最细)2011全国中考真题解析120考点汇编中位线一、选择题1.(2011•湘西州)如图,在△ABC中,E、F分别是AB、AC的中点,若中位线EF=2cm,则BC边的长是()A、1cmB、2cmC、3cmD、4cm考点:三角形中位线定理。

专题:计算题。

分析:由E、F分别是AB、AC的中点,可得EF是△ABC的中位线,直接利用三角形中位线定理即可求BC.解答:解:∵△ABC中,E、F分别是AB、AC的中点,EF=2cm,∴EF是△ABC的中位线∴BC=2EF=2×2=4cm.故选D.点评:本题考查了三角形中位线的性质,三角形的中位线是指连接三角形两边中点的线段,中位线的特征是平行于第三边且等于第三边的一半.2.(2011江苏苏州,9,3分)如图,在四边形ABCD中,E、F分別是AB、AD的中点,若EF=2,BC=5,CD=3,则tanC等于()A.34B.43C.35D.45考点:锐角三角函数的定义;勾股定理的逆定理;三角形中位线定理.专题:几何图形问题.分析:根据三角形的中位线定理即可求得BD的长,然后根据勾股定理的逆定理即可证得△BCD是直角三角形,然后根据正切函数的定义即可求解.解答:解:连接BD.∵E、F分別是AB、AD的中点.∴BD=2EF=4∵BC=5,CD=3∴△BCD是直角三角形.∴tanC= 4 3故选B.点评:本题主要考查了三角形的中位线定义,勾股定理的逆定理,和三角函数的定义,正确证明△BCD是直角三角形是解题关键.3.(2011•贺州)如图,在梯形ABCD中,AB∥CD,AB=3CD,对角线AC、BD交于点O,中位线EF与AC、BD分别交于M、N两点,则图中阴影部分的面积是梯形ABCD面积的()A、B、C、D、考点:梯形中位线定理;三角形中位线定理。

分析:首先根据梯形的中位线定理,得到EF∥CD∥AB,再根据平行线等分线段定理,得到M,N分别是AD,BC的中点;然后根据三角形的中位线定理得到CD=2EM=2NF,最后根据梯形面积求法以及三角形面积公式求出,即可求得阴影部分的面积与梯形ABCD面积的面积比.解答:解:过点D作DQ⊥AB,交EF于一点W,∵EF是梯形的中位线,∴EF∥CD∥AB,DW=WQ,∴AM=CM,BN=DN.∴EM=CD,NF=CD.∴EM=NF,∵AB=3CD,设CD=x,∴AB=3x,EF=2x,∴MN=EF﹣(EM+FN)=x,∴S△AME+S△BFN=×EM×WQ+×FN×WQ=(EM+FN)QW=x•QW,S梯形ABFE=(EF+AB)×WQ=QW,S△DOC+S△OMN=CD×DW=xQW,S梯形FECD=(EF+CD)×DW=xQW,∴梯形ABCD面积=xQW+xQW=4xQW,图中阴影部分的面积=x•QW+xQW=xQW,∴图中阴影部分的面积是梯形ABCD面积的:=.故选:C.点评:此题考查了三角形中位线定理、平行线等分线段定理和梯形的中位线定理和梯形面积与三角形面积求法,解答时要将三个定理联合使用,以及得出各部分对应关系是解决问题的关键.4.(2011•泰州,8,3分)如图,直角三角形纸片ABC的∠C为90°,将三角形纸片沿着图示的中位线DE剪开,然后把剪开的两部分重新拼接成不重叠的图形,下列选项中不能拼出的图形是()A、平行四边形B、矩形C、等腰梯形D、直角梯形考点:三角形中位线定理。

威海中考数学及答案(word版)

威海中考数学及答案(word版)

2012年中考数学试题(山东威海卷)(本试卷满分120分,考试时间120分钟)第Ⅰ卷 (选择题 共36分)一、选择题:(本大题共12小题,每小题3分,共36分) 1. 64的立方根是【 】A.8B.±8C.4D.±4 【答案】C 。

2. 2012年是威海市实施校安工程4年规划的收官年。

截止4月底,全市已开工项目39个,投入资金4999万元。

请将4999万用科学计数法表示【 】(保留两个有效数字) A.4999×104 B. 4.999×107 C. 4.9×107 D. 5.0×107 【答案】D 。

3.如图,a ∥b ,点A 在直线a 上,点C 在直线b 上,∠BAC=900,AB=AC 。

若∠1=200,则∠2的度数为【 】A.250B.650C.700D.750 【答案】B 。

4.下列运算正确的是【 】A.326a a a ⋅=B. 5510a +a a =C. 23a a a -÷=D. ()223a 9a -=- 【答案】C 。

5.如图所示的零件的左视图是【 】【答案】C 。

6.函数1y=x 3-的自变量x 的取值范围是【 】A. x >3B. x≥3C. x≠3D. x <-3 【答案】A 。

7.某外贸公司要出口一批食品罐头,标准质量为每听454克,现抽取10听样品进行检测,它们的质量与标准质量的差值(单位:克)如下:-10,+5,0,+5,0,0,-5,0,+5,+10。

则这10听罐头质量的平均数及众数为【 】A.454,454B.455,454C.454,459D.455,0 【答案】B 。

8.化简22x 1+x 93x--的结果是【 】 A. 1x 3- B. 1x+3 C. 13x- D. 23x+3x 9-【答案】B 。

9.下列选项中,阴影部分面积最小的是【 】【答案】C 。

10.如图,在ABCD 中,AE ,CF 分别是∠BAD 和∠BCD 的平分线。

2011中考数学真题解析1 数轴、绝对值、相反数(含答案)

2011中考数学真题解析1 数轴、绝对值、相反数(含答案)

(2012年1月最新最细)2011全国中考真题解析120考点汇编数轴、绝对值、相反数一、选择题1.(2011江苏淮安,1,3分)3 的相反数是()A.-3B.-13C.13D.3考点:相反数。

专题:计算题。

分析:根据相反数的定义即可求出3的相反数.解答:解:3的相反数是﹣3故选A.点评:相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.2.(2011 江苏连云港,1,3分)2的相反数是()A.2 B.-2 C D.1 2考点:相反数。

专题:计算题。

分析:根据相反数的意义,相反数是只有符号不同的两个数,改变﹣2前面的符号,即可得﹣2的相反数.解答:解:由相反数的意义得,﹣2的相反数是2.故选A.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.3.(2011•泰州,1,3分)12-的相反数是()A、12-B、12C、2D、﹣2考点:相反数。

专题:计算题。

分析:根据相反数的定义进行解答即可. 解答:解:由相反数的定义可知,12-的相反数是﹣(12-)=12.故选B .点评:本题考查的是相反数的定义,即只有符号不同的两个数叫互为相反数. 4. (2011•江苏徐州,1,2)﹣2的相反数是( ) A 、2B 、﹣2C 、12D 、12-考点:相反数。

专题:计算题。

分析:根据相反数的定义:只有符号不同的两个数就是相反数,进行判断. 解答:解:根据相反数的定义,﹣2的相反数是2. 故选A .点评:本题考查了相反数的定义.应该从相反数的符号特点及在数轴上的位置关系进行判断. 5. (2011盐城,1,3分)-2的绝对值是( )A.﹣2B.21-C.2D.21考点:绝对值. 专题:计算题.分析:根据负数的绝对值等于它的相反数求解. 解答:解:因为|-2|=2,故选C .点评:绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.6.(2011江苏无锡,1,3分)|﹣3|的值等于( )A .3B .﹣3C .±3D .3考点:绝对值。

威海市中考数学试题及答案(2)

威海市中考数学试题及答案(2)

绝密★启用前试卷类型:A威海市二○一○年初中升学考试数学亲爱的同学:你好!答题前,请仔细阅读以下说明:1.本试卷共10页,分第 I 卷和第 II 卷两部分.第 I 卷(1-2页)为选择题,第 II 卷(3-10页)为非选择题.试卷满分120分.考试时间120分钟.2.请清点试卷,并将答题卡和第Ⅱ卷密封线内的考生信息填写完整.3.第Ⅰ卷的答案用2B铅笔涂在答题卡上.第Ⅱ卷的答案用蓝色或黑色钢笔、圆珠笔填写在试卷上.不要求保留精确度的题目,计算结果保留准确值.希望你能愉快地度过这120分钟,祝你成功!第 I 卷(选择题,共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个是正确的.每小题选对得3分,选错、不选或多选,均不得分)1.据统计,截止到5月31日上海世博会累计入园人数803.27万人.803.27万这个数字(保留两位有效数字)用科学记数法表示为A.8.0×102 B. 8.03×102 C. 8.0×106 D. 8.03×1062.如图,在△ABC中,∠C=90°.若BD∥AE,∠DBC=20°,则∠CAE的度数是A.40°B.60°C.70°D.80°3.计算()2010200902211-⨯⎪⎭⎫⎝⎛-的结果是AEA .-2B .-1C .2D .34.下列运算正确的是A .xy y x 532=+B .a a a =-23C .b b a a -=--)(D .2)2(12-+=+-a a a a )( 5.一个圆锥的底面半径为6㎝,圆锥侧面展开图扇形的圆心角为240°,则圆锥的母线长为A .9㎝B .12㎝C .15㎝D .18㎝6.化简a a b a b -÷⎪⎭⎫⎝⎛-2的结果是A .1--aB .1+-aC .1+-abD .b ab +-7则搭成这个几何体的小正方体的个数是 A .5B .6C .7D .88.已知1=-b a ,则a 2-b 2-2b 的值为A .4B .3C .1D .09.如图,在△ABC 中,D ,E 分别是边AC ,AB 的中点,连接BD .若BD 平分∠ABC ,则下列结论错误的是 A .BC =2BEB .∠A =∠EDAC .BC =2AD D .BD ⊥AC10.如图,在梯形ABCD 中,AB ∥CD ,AD =BC ,对角线AC ⊥BD ,垂足为O .若CD =3,AB =5,则AC 的长为 A .24B .4C .33D .52CABDOCADBE左视图主视图11.如图是两个可以自由转动的转盘,每个转盘被分成两个扇形,同时转动两个转A .21B .31C .41D .5112.在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(1,0),点D 的坐标为(0,2).延长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ;延长C 1B 1交x 轴于点A 2,作正方形A 2B 2C 2C 1…按这样的规律进行下去,第2020个正方形的面积为A .2009235⎪⎭⎫⎝⎛B .2010495⎪⎭⎫ ⎝⎛ C .2008495⎪⎭⎫ ⎝⎛D .4018235⎪⎭⎫ ⎝⎛第 II 卷 (非选择题,共84分)二、填空题(本大题共6小题,每小题3分,共18分. 只要求填出最后结果)13.在函数x y -=3中,自变量x 的取值范围是 .14.如图,AB 为⊙O 的直径,点C ,D 在⊙O 上.若∠AOD =30°,则∠BCD 的度数是 .15.如图①,在第一个天平上,砝码A 的质量等于砝码B 加上砝码C 的质量;如图②,在第二个天平上,砝码A 加上砝码B16.如图,点A ,B ,C 的坐标分别为(2,4),(5,2),(3,-1).若以点A ,B ,C ,D 为顶点的四边形既是轴对称图形,又是中心对称图形,则点D 的坐标为 .17.小明家为响应节能减排号召,计划利用两年时间,将家庭每年人均碳排放量由目前的3125kg 降至2000㎏﹙全球人均目标碳排放量﹚,则小明家未来两年人均碳排放量平均每年须降低的百分率是 .18.从边长为a 的大正方形纸板中间挖去一个边长为b 的小正方形后,将其截成四个相同的等腰梯形﹙如图①﹚,可以拼成一个平行四边形﹙如图②﹚. 现有一平行四边形纸片ABCD ﹙如图③﹚,已知∠A =45°,AB =6,AD =4.若将(第15题图)图 ①图 ②(第16题图)﹙第14题图﹚AB该纸片按图②方式截成四个相同的等腰梯形,然后按图①方式拼图,则得到的大正方形的面积为 .三、解答题(本大题共7小题,共66分)19.(7分)解不等式组:20.(7分)图 ② 图 ①aA图 ③BC(第18题图)>-3,⎪⎩⎪⎨⎧-+-125231x x x ≤()342-x .某市从今年1月1日起调整居民用天燃气价格,每立方米天燃气价格上涨25%.小颖家去年12月份的燃气费是96元.今年小颖家将天燃气热水器换成了太阳能热水器,5月份的用气量比去年12月份少10m³,5月份的燃气费是90元.求该市今年居民用气的价格.21.(9分)某校为了解学生“体育大课间”的锻炼效果,中考体育测试结束后,随机从学校720名考生中抽取部分学生的体育测试成绩绘制了条形统计图.试根据统计图提(1)共抽取了名学生的体育测试成绩进行统计.(2)随机抽取的这部分学生中男生体育成绩的平均数是,众数是;女生体育成绩的中位数是.(3)若将不低于27分的成绩评为优秀,估计这720名考生中,成绩为优秀的学生大约是多少?22.(10分)如图,一次函数b kx y +=的图象与反比例函数x my =的图象交于点A ﹙-2,-5﹚,C ﹙5,n ﹚,交y 轴于点B ,交x 轴于点D .(1) 求反比例函数x my =和一次函数b kx y +=(2) 连接OA ,OC .求△AOC 的面积.23.(10分)如图,在□ABCD 中,∠DAB =60°,AB =15㎝.已知⊙O 的半径等于3㎝,AB ,AD 分别与⊙O 相切于点E ,F .⊙O 在□ABCD 内沿AB 方向滚动,与BC 边相切时运动停止.试求⊙O 滚过的路程.A24.(11分)如图①,将一张矩形纸片对折,然后沿虚线剪切,得到两个(不等边)三角形纸片△ABC,△A1B1C1.A1B1C1ABC (图①)﹙1﹚将△ABC ,△A 1B 1C 1如图②摆放,使点A 1与B 重合,点B 1在AC 边的延长线上,连接CC 1交BB 1于点E .求证:∠B 1C 1C =∠B 1BC .﹙2﹚若将△ABC ,△A 1B 1C 1如图③摆放,使点B 1与B 重合,点A 1在AC 边的延长线上,连接CC 1交A 1B 于点F .试判断∠A 1C 1C 与∠A 1BC 是否相等,并说明理由.﹙3﹚写出问题﹙2﹚中与△A 1FC 相似的三角形 .25.(12分) (1)探究新知:①如图,已知AD ∥BC ,AD =BC ,点M ,N 是直线CD 上任意两点. 求证:△ABM 与△ABN 的面积相等.ABDCMN图 ①AB (A 1)C B 1C 1图 ②EA 1C 1CAB (B 1)图 ③F②如图,已知AD ∥BE ,AD =BE ,AB ∥CD ∥EF ,点M 是直线CD 上任一点,点G 是直线EF 上任一点.试判断△ABM 与△ABG 的面积是否相等,并说明理由.(2)结论应用:如图③,抛物线c bx ax y ++=2的顶点为C (1,4),交x 轴于点A (3,0),交y 轴于点D .试探究在抛物线c bx ax y ++=2上是否存在除点C 以外的点E ,使得△ADE 与△ACD 的面积相等? 若存在,请求出此时点E 的坐标,若不存在,请说明理由.﹙友情提示:解答本问题过程中,可以直接使用“探究新知”中的结论.﹚图 ③C图 ②ABDMF EG参考解答及评分意见 评卷说明:1.第一大题(选择题)和第二大题(填空题)的每小题,只有满分和零分两个评分档,不给中间分.2.第三大题(解答题)每小题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数.部分试题有多种解法,对考生的其他解法,请参照评分意见进行评分.3.如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分.一、选择题(本大题共12小题,每小题3分,共36分)二、填空题(本大题共6小题,每小题3分,共18分)13.x ≤3; 14.105°; 15.2; 16.﹙0,1﹚; 17.20%; 18.2611 . 三、解答题(本大题共7小题, 共66分) 19.(本小题满分7分)备用图解:⎪⎩⎪⎨⎧-≤--+-②(①>).342125,3231x x xx解不等式①,得x<5. ………………………………………………………………3分 解不等式②,得x≥-2. ………………………………………………………………6分 因此,原不等式组的解集为-2≤x<5. ………………………………………………7分 20.(本小题满分7分)解:设该市去年居民用气的价格为x 元/ m³,则今年的价格为(1+25%)x 元/ m³.……1分根据题意,得 10%)251(9096=+-x x . …………………………………………………3分 解这个方程,得x=2.4. …………………………………………………………………6分 经检验,x =2.4是所列方程的根. 2.4×(1+25%)=3 (元). 所以,该市今年居民用气的价格为3元/m³. ………………………………………7分 21.(本小题满分9分) ﹙1﹚80; …………………………………………………………………………………3分﹙2﹚26.4, 27, 27; ………………………………………………﹙每空1分﹚6分 ﹙3﹚396804472080231227720=⨯=+++⨯﹙人﹚. (9)分22.(本小题满分10分) 解:(1)∵ 反比例函数x my =的图象经过点A ﹙-2,-5﹚,∴ m=(-2)×( -5)=10. ∴反比例函数的表达式为x y 10=. ……………………………………………………2分∵ 点C ﹙5,n ﹚在反比例函数的图象上, ∴2510==n .∴ C 的坐标为﹙5,2﹚. ……………………………………………………………3分∵ 一次函数的图象经过点A ,C ,将这两个点的坐标代入b kx y +=,得⎩⎨⎧+=+-=-.5225b k b k , 解得⎩⎨⎧-==.31b k , (5)分 ∴所求一次函数的表达式为y=x-3. …………………………………………………6分 (2) ∵ 一次函数y=x-3的图像交y 轴于点B ,∴ B 点坐标为﹙0,-3﹚. …………………………………………………………7分 ∴ OB =3.∵ A 点的横坐标为-2,C 点的横坐标为5,∴ S △AOC = S △AOB + S △BOC =()22152215212-21=+⋅⋅=⋅⋅+⋅⋅OB OB OB . …………10分 23.(本小题满分10分)解:连接OE ,OA . (1)∵ AB ,AD 分别与⊙O 相切于点E ,F .∴ OE ⊥AB ,OE=3㎝.………………2分 ∵ ∠DAB =60°,∴ ∠OAE =30°. ……………………3分在Rt △AOE 中,AE=3tan tan 30OE OAE ︒==∠㎝. (5)分∵ AD ∥BC ,∠DAB =60°,∴ ∠ABC =120°. ………………………………………………………………6分设当运动停止时,⊙O 与BC ,AB 分别相切于点M ,N ,连接ON ,OB . ………7分 同理可得 BN=3㎝. ……………………………………………………………9分∴ )3415(33315-=--=--=BN AE AB EN ㎝.∴ ⊙O 滚过的路程为()3415-㎝. ……………………………………………10分24.(本小题满分11分)(1)证明:由题意,知△ABC ≌△A 1B 1C 1, ∴ AB= A 1B 1,BC 1=AC ,∠2=∠7,∠A=∠1.∴ ∠3=∠A=∠1. ………………………………………………………………1分∴ BC 1∥AC .∴ 四边形ABC 1C 是平行四边形. ………………2分 ∴ AB ∥CC 1.∴ ∠4=∠7=∠2. …………………………………3分 ∵ ∠5=∠6,∴ ∠B 1C 1C =∠B 1BC .……………………………4分 ﹙2﹚∠A 1C 1C =∠A 1BC . …………………………5分AB (A 1)CB 1C 1图 ②E14 32 5 67理由如下:由题意,知△ABC ≌△A 1B 1C 1, ∴ AB= A 1B 1,BC 1=BC ,∠1=∠8,∠A=∠2.∴ ∠3=∠A ,∠4=∠7. ………………………6分 ∵ ∠1+∠FBC=∠8+∠FBC , ∴ ∠C 1BC =∠A 1BA . …………………………7分∵ ∠4=21(180°-∠C 1BC),∠A=21(180°-∠A 1BA).∴ ∠4=∠A . …………………………………8分 ∴ ∠4=∠2. ∵ ∠5=∠6,∴ ∠A 1C 1C=∠A 1BC .……………………………………………………………………9分﹙3﹚△C 1FB ,…………10分; △A 1C 1B ,△ACB .…………11分﹙写对一个不得分﹚25.(本小题满分12分)﹙1﹚①证明:分别过点M ,N 作 ME ⊥AB ,NF ⊥AB ,垂足分别为点E ,F . ∵ AD ∥BC ,AD =BC ,∴ 四边形ABCD 为平行四边形. ∴ AB ∥CD . ∴ ME= NF .∵S △ABM =ME AB ⋅21,S △ABN =NF AB ⋅21,∴ S △ABM = S △ABN . ……………………………………………………………………1分②相等.理由如下:分别过点D ,E 作DH ⊥AB ,EK ⊥AB ,垂足分别为H ,K . 则∠DHA=∠EKB=90°. ∵ AD ∥BE , ∴ ∠DAH=∠EBK .A 1C 1CB (B 1)图 ③F 3 6451 2 7 8ABDCMN图 ①EF HC图 ②ABDMF EGK∵ AD =BE , ∴ △DAH ≌△EBK .∴ DH=EK . ……………………………2分 ∵ CD ∥AB ∥EF ,∴S △ABM =DH AB ⋅21,S △ABG =EKAB ⋅21,∴ S △ABM = S △ABG . …………………………………………………………………3分 ﹙2﹚答:存在. …………………………………………………………………………4分 解:因为抛物线的顶点坐标是C(1,4),所以,可设抛物线的表达式为4)1(2+-=x a y .又因为抛物线经过点A(3,0),将其坐标代入上式,得()41302+-=a ,解得1-=a .∴ 该抛物线的表达式为4)1(2+--=x y ,即322++-=x x y . (5)分∴ D 点坐标为(0,3).设直线AD 的表达式为3+=kx y ,代入点A 的坐标,得330+=k ,解得1-=k . ∴ 直线AD 的表达式为3+-=x y .过C 点作CG ⊥x 轴,垂足为G ,交AD 于点H .则H 点的纵坐标为231=+-. ∴ CH =CG -HG =4-2=2. …………………………………………………………6分设点E 的横坐标为m ,则点E 的纵坐标为322++-m m .过E 点作EF ⊥x 轴,垂足为F ,交AD 于点P ,则点P 的纵坐标为m -3,EF ∥CG . 由﹙1﹚可知:若EP =CH ,则△ADE 与△ADC①若E 点在直线AD 的上方﹙如图③-1﹚,则PF=m -3,EF =322++-m m .∴ EP =EF -PF =)3(322m m m --++-=m m 32+-.∴ 232=+-m m .解得21=m ,12=m . ……………………………7分 当2=m 时,PF=3-2=1,EF=1+2=3. ∴ E 点坐标为(2,3).同理 当m=1时,E 点坐标为(1,4),与C 点重合. ………………………………8分②若E 点在直线AD 的下方﹙如图③-2,③-3﹚,则m m m m m PE 3)32()3(22-=++---=. (9)分∴232=-m m .解得21733+=m ,21734-=m . (10)分 当2173+=m 时,E 点的纵坐标为2171221733+-=-+-; 当2173-=m 时,E 点的纵坐标为2171221733+-=---.∴ 在抛物线上存在除点C 以外的点E ,使得△ADE 与△ACD 的面积相等,E 点的坐标为E 1(2,3);)21712173(2+-+,E ;)21712173(3+--,E . ………………12分﹙其他解法可酌情处理﹚。

山东威海中考数学试题解析版.doc

山东威海中考数学试题解析版.doc

山东省威海市2011年中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1、(2011•威海)在实数0,﹣,,﹣2中,最小的是()A、﹣2B、﹣C、0D、考点:实数大小比较。

专题:计算题。

分析:根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解.解答:解:∵正数大于0和一切负数,所以只需比较和﹣2的大小,因为|﹣|<|﹣|,所以最小的数是﹣2.故选A.点评:此题主要考查了实数的大小的比较,注意两个无理数的比较方法:统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.2、(2011•威海)今年体育学业考试增加了跳绳测试项目,下面是测试时记录员记录的一组(10名)同学的测试成绩(单位:个/分钟).176 180 184 180 170 176 172 164 186 180该组数据的众数、中位数、平均数分别为()A、180,180,178B、180,178,178C、180,178,176.8D、178,180,176.8考点:众数;算术平均数;中位数。

专题:计算题。

分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据.再根据平均数、众数和中位数的定义求解即可.解答:解:在这一组数据中180是出现次数最多的,故众数是180;将这组数据从小到大的顺序排列(164,170,172,176,176,180,180,180,184,186),处于中间位置的那两个数为176,180,那么由中位数的定义可知,这组数据的中位数是178;平均数为:(164+170+172+176+176+180+180+180+184+186)÷10=176.8.故选C.点评:本题为统计题,考查平均数、众数与中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.3、(2011•威海)在▱ABCD中,点E为AD的中点,连接BE,交AC于点F,则AF:CF=()A、1:2B、1:3C、2:3D、2:5考点:相似三角形的判定与性质;平行四边形的性质。

山东省17市2011年中考数学试题分类解析专题(1-12)-10

山东省17市2011年中考数学试题分类解析专题(1-12)-10

山东省17市2011年中考数学专题6:函数的图像与性质 选择题1. (滨州3分)关于一次函数=1y x -+的图象,下列所画正确的是A 、B 、C 、D 、【答案】C 。

【考点】一次函数的图象。

【分析】根据所给函数得k =-1,b =1,可判断函数为减函数,且与y 轴的交点在y 轴的负半轴。

故选C 。

2.(德州3分)已知函数()()=y x a x b --(其中a >b )的图象如下面左图所示,则函数=y ax b +的图象可能正确的是【答案】D 。

【考点】一、二次函数的图象和性质。

【分析】根据图象可得出方程()()=y x a x b --的两个实数根为a b ,,且一正一负,负数的绝对值大,又00a >b a >b <∴,,。

则根据一次函数=y ax b +的图象的性质即可得出答案:函数=y ax b +的图象经过第一、三、四象限。

故选D 。

3.(烟台4分)如图,平面直角坐标系中,两条抛物线有相同的对称轴,则下列关系正确的是A .m =n ,k >hB .m =n ,k <hC .m >n ,k =hD .m <n ,k =h 【答案】A 。

【考点】二次函数的图象和性质。

【分析】由两抛物线的解析式可判断其顶点坐标分别为(m ,k ),(n ,h );根据坐标意义有m =n ,k >h 。

故选A 。

4.(东营3分)如图,直线l 和双曲线(0)ky k x =>交于A 、B 两点,P 是线段AB 上的点(不与A 、B 重 合).过点A 、B 、P 分别向x 轴作垂线,垂足分别为C 、D 、E ,连接OA 、OB 、OP .设△AOC 的面积为1S .△BOD 的面积为2S 。

△POE 的面积为3S ,则 A .123S S S << B .123S S S >> C .123S S S => D .123S S S =< 【答案】D 。

山东省17市2011年中考数学试题分类解析汇编 专题9 三角形

山东省17市2011年中考数学试题分类解析汇编 专题9 三角形

某某17市2011年中考数学试题分类解析汇编专题9:三角形一、选择题1. (日照4分)在Rt△ABC 中,∠C=90°,把∠A 的邻边与对边的比叫做∠A 的余切,记作cotA =b a.则下列关系式中不成立的是 A 、tanA·cotA=1B 、sinA =tanA·cosAC 、cosA =cotA·sinAD 、tan 2A +cot 2A =1【答案】D 。

【考点】三角函数的定义,代数式变换。

【分析】根据三角函数的定义和已知cotA =b a ,逐一计算进行判断;A 、tanA·cotA=a bb a⋅=1,关系式成立;B 、∵左边=sinA =a c ,右边=tanA·cosA=a b b c ⋅=ac,∴左边=右边,关系式成立;C 、∵左边=cosA =b c ,右边=cotA·sinA=b a a c⋅=b c ,∴左边=右边,关系式成立; D 、tan 2A +cot 2A =22a b b a ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭≠1,关系式不成立。

故选D 。

2.(滨州3分)在△ABC 中,∠C=90°,∠A=72°,AB =10,则边AC 的长约为(精确到0.1)【答案】C 。

【考点】解直角三角形。

【分析】在Rt△ABC 中,根据三角函数的定义有cosA =ACAB,∴ AC=AB•cosA=10·cos72°≈3.1。

故选C 。

3.(某某4分)如果△ABC 中,sinA=cosB=22,则下列最确切的结论是 A. △ABC 是直角三角形 B. △ABC 是等腰三角形 C. △ABC 是等腰直角三角形 D. △ABC 是锐角三角形 【答案】C【考点】特殊角的三角函数值,三角形分类。

【分析】∵sinA=cosB=22,∴∠A=∠B=45°,∴△ABC是等腰直角三角形。

故选C。

山东威海中考数学试题解析版.doc

山东威海中考数学试题解析版.doc

山东省威海市2011年中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1、(2011•威海)在实数0,﹣,,﹣2中,最小的是()A、﹣2B、﹣C、0D、考点:实数大小比较。

专题:计算题。

分析:根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解.解答:解:∵正数大于0和一切负数,所以只需比较和﹣2的大小,因为|﹣|<|﹣|,所以最小的数是﹣2.故选A.点评:此题主要考查了实数的大小的比较,注意两个无理数的比较方法:统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.2、(2011•威海)今年体育学业考试增加了跳绳测试项目,下面是测试时记录员记录的一组(10名)同学的测试成绩(单位:个/分钟).176 180 184 180 170 176 172 164 186 180该组数据的众数、中位数、平均数分别为()A、180,180,178B、180,178,178C、180,178,176.8D、178,180,176.8考点:众数;算术平均数;中位数。

专题:计算题。

分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据.再根据平均数、众数和中位数的定义求解即可.解答:解:在这一组数据中180是出现次数最多的,故众数是180;将这组数据从小到大的顺序排列(164,170,172,176,176,180,180,180,184,186),处于中间位置的那两个数为176,180,那么由中位数的定义可知,这组数据的中位数是178;平均数为:(164+170+172+176+176+180+180+180+184+186)÷10=176.8.故选C.点评:本题为统计题,考查平均数、众数与中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.3、(2011•威海)在▱ABCD中,点E为AD的中点,连接BE,交AC于点F,则AF:CF=()A、1:2B、1:3C、2:3D、2:5考点:相似三角形的判定与性质;平行四边形的性质。

2022中考数学专项五-动手操作

2022中考数学专项五-动手操作

2022中考数学专项五-动手操作1.(2011四川省乐山市)7、如图(4),直角三角板ABC 的斜边AB=12㎝,∠A=30°,将三角板ABC 绕C 顺时针旋转90°至三角板A B C '''的位置后,再沿CB方向向左平移, 使点B '落在原三角板ABC 的斜边AB 上, 则三角板A B C '''平移的距离为( )(A) 6㎝ (B) 4㎝ (C ) (6-23 )㎝ (D )(436-)㎝解:C2.(2011广东省广州市)如图所示,将矩形纸片先沿虚线AB 按箭头方向向右..对折,接着对折后的纸片沿虚线CD 向下..对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是( )考点:剪纸问题。

分析:严格按照图中的方法亲自动手操作一下,即可专门直观地出现出来,也可认真观看图形特点,利用对称性与排除法求解. 解答:解:∵第三个图形是三角形, ∴将第三个图形展开,可得,即可排除答案A ,∵再展开可知两个短边正对着, ∴选择答案D ,排除B 与C . 故选D .点评:本题要紧考查学生的动手能力及空间想象能力.关于此类问题,学生只要亲自动手操作,答案就会专门直观地出现.3..(2011黑龙江省鸡西市)如图,在Rt △ABC 中,AB=CB ,BO ⊥AC ,把△ABC 折叠,使AB落在AC 上,点B 与AC 上的点E 重合,展开后,折痕AD 交BO 于点F ,连结DE 、EF.下列结论:①tan ∠ADB=2 ②图中有4对全 等三角形 ③若将△DEF 沿EF 折叠,则点D 不一定落在AC 上④BD=BF ⑤S 四边形DFOE =S △AOF ,上述结论中正确的个数是( ) A 1个 B 2个 C 3个 D 4个30°BA B'A'考点:翻折变换(折叠问题);全等三角形的判定与性质;锐角三角函数的定义。

山东省威海市中考数学试卷及答案(Word解析版)

山东省威海市中考数学试卷及答案(Word解析版)

山东省威海市中考数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)(•威海)花粉的质量很小,一粒某种植物花粉的质量约为0.000037毫克,已知1克=1000毫克,那么0.000037毫克可用科学记数法表示为()A.3.7×10﹣5克B.3.7×10﹣6克C.37×10﹣7克D.3.7×10﹣8克考点:科学记数法—表示较小的数分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:1克=1000毫克,将0.000037毫克用科学记数法表示为:3.7×10﹣8克.故选D.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2.(3分)(•威海)下列各式化简结果为无理数的是()A.B.C.D.考点:立方根;算术平方根;零指数幂.分析:先将各选项化简,然后再判断.解答:解:A、=﹣3,是有理数,故本选项错误;B、(﹣1)0=1,是有理数,故本选项错误;C、=2,是无理数,故本选项正确;D、=2,是有理数,故本选项错误;故选C.点评:本题考查了无理数、立方根及零指数幂的知识,属于基础题.3.(3分)(•威海)下列运算正确的是()A.3x2+4x2=7x4B.2x3•3x3=6x3C.x6+x3=x2D.(x2)4=x8考点:单项式乘单项式;合并同类项;幂的乘方与积的乘方.专题:计算题.分析:根据单项式乘单项式、合并同类项、幂的乘方与积的乘方的定义解答.解答:解:A、∵3x2+4x2=7a2≠7x4,故本选项错误;B、∵2x3•3x3=2×3x3+3≠6x3,故本选项错误;C、∵x6和x3不是同类项,不能合并,故本选项错误;D、∵(x2)4=x2×4=x8,故本选项正确.故选D.点评:本题考查了单项式乘单项式、合并同类项、幂的乘方与积的乘方,熟练掌握运算法则是解题的关键.4.(3分)(•威海)若m﹣n=﹣1,则(m﹣n)2﹣2m+2n的值是()A.3B.2C.1D.﹣1考点:代数式求值专题:计算题.分析:所求式子后两项提取﹣2变形后,将m﹣n的值代入计算即可求出值.解答:解:∵m﹣n=﹣1,∴(m﹣n)2﹣2m+2n=(m﹣n)2﹣2(m﹣n)=1+2=3.故选A.点评:此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.5.(3分)(•威海)如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变考点:简单组合体的三视图.分析:分别得到将正方体①移走前后的三视图,依此即可作出判断.解答:解:将正方体①移走前的主视图正方形的个数为1,2,1;正方体①移走后的主视图正方形的个数为1,2;发生改变.将正方体①移走前的左视图正方形的个数为2,1,1;正方体①移走后的左视图正方形的个数为2,1,1;没有发生改变.将正方体①移走前的俯视图正方形的个数为1,3,1;正方体①移走后的俯视图正方形的个数,1,3;发生改变.故选D.点评:考查三视图中的知识,得到从几何体的正面,左面,上面看的平面图形中正方形的列数及每列正方形的个数是解决本题的关键.6.(3分)(•威海)已知关于x的一元二次方程(x+1)2﹣m=0有两个实数根,则m的取值范围是()A.m≥﹣B.m≥0 C.m≥1 D.m≥2考点:解一元二次方程-直接开平方法.分首先移项把﹣m移到方程右边,再根据直接开平方法可得m的取值范围.析:解答:解;(x+1)2﹣m=0,(x+1)2=m,∵一元二次方程(x+1)2﹣m=0有两个实数根,∴m≥0,故选:B.点评:本题主要考查了直接开平方法解一元二次方程,关键是将方程右侧看做一个非负已知数,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解.7.(3分)(•威海)不等式组的解集在数轴上表示为()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.专题:探究型.分析:分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.解答:解:,由①得,x<0;由②得,x≤1,故此不等式组的解集为:x<0,在数轴上表示为:故选B.点评:本题考查的是在数轴上表示不等式组的解集,熟知实心原点与空心原点的区别是解答此题的关键.8.(3分)(•威海)如图,在△ABC中,∠A=36°,AB=AC,AB的垂直平分线OD交AB于点O,交AC于点D,连接BD,下列结论错误的是()A.∠C=2∠A B.B D平分∠ABCC.S△BCD=S△BOD D.点D为线段AC的黄金分割点考点:线段垂直平分线的性质;等腰三角形的性质;黄金分割分析:求出∠C的度数即可判断A;求出∠ABC和∠ABD的度数,求出∠DBC的度数,即可判断B;根据三角形面积即可判断C;求出△DBC∽△CAB,得出BC2=BC•AC,求出AD=BC,即可判断D.解答:解:A、∵∠A=36°,AB=AC,∴∠C=∠ABC=72°,∴∠C=2∠A,正确,故本选项错误;B、∵DO是AB垂直平分线,∴AD=BD,∴∠A=∠ABD=36°,∴∠DBC=72°﹣36°=36°=∠ABD,∴BD是∠ABC的角平分线,正确,故本选项错误;C,根据已知不能推出△BCD的面积和△BOD面积相等,错误,故本选项正确;D、∵∠C=∠C,∠DBC=∠A=36°,∴△DBC∽△CAB,∴=,∴BC2=BC•AC,∵∠C=72°,∠DBC=36°,∴∠BDC=72°=∠C,∴BC=BD,∵AD=BD,∴AD=BC,∴AD2=CD•AC,即点D是AC的黄金分割点,正确,故本选项错误;故选C.点评:本题考查了相似三角形的性质和判定,等腰三角形性质,黄金分割点,线段垂直平分线性质的应用,主要考查学生的推理能力.9.(3分)(•威海)甲、乙两辆摩托车同时从相距20km的A,B两地出发,相向而行.图中l1,l2分别表示甲、乙两辆摩托车到A地的距离s(km)与行驶时间t(h)的函数关系.则下列说法错误的是()A.乙摩托车的速度较快B.经过0.3小时甲摩托车行驶到A,B两地的中点C.经过0.25小时两摩托车相遇D.当乙摩托车到达A地时,甲摩托车距离A地km考点:一次函数的应用分析:根据乙用时间比甲用的时间少可知乙摩托车的速度较快;根据甲0.6小时到达B地判定B正确;设两车相遇的时间为t,根据相遇问题列出方程求解即可;根据乙摩托车到达A地时,甲摩托车行驶了0.5小时,计算即可得解.解解:A由图可知,甲行驶完全程需要0.6小时,乙行驶完全程需要0.5小时,所以,答:乙摩托车的速度较快正确,故本选项错误;B、∵甲摩托车行驶完全程需要0.6小时,∴经过0.3小时甲摩托车行驶到A,B两地的中点正确,故本选项错误;C、设两车相遇的时间为t,根据题意得,+=20,t=,所以,经过0.25小时两摩托车相遇错误,故本选项正确;D、当乙摩托车到达A地时,甲摩托车距离A地:20×=km正确,故本选项错误.故选C.点评:本题考查了一次函数的应用,主要利用了路程、速度、时间三者之间的关系,相遇问题的等量关系,从图形中准确获取信息是解题的关键.10.(3分)(•威海)如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.B C=AC B.C F⊥BF C.B D=DF D.A C=BF考点:正方形的判定;线段垂直平分线的性质分析:根据中垂线的性质:中垂线上的点到线段两个端点的距离相等,有BE=EC,BF=FC 进而得出四边形BECF是菱形;由菱形的性质知,以及菱形与正方形的关系,进而分别分析得出即可.解答:解:∵EF垂直平分BC,∴BE=EC,BF=CF,∵CF=BE,∴BE=EC=CF=BF,∴四边形BECF是菱形;当BC=AC时,∵∠ACB=90°,则∠A=45°时,菱形BECF是正方形.∵∠A=45°,∠ACB=90°,∴∠EBC=45°∴∠EBF=2∠EBC=2×45°=90°∴菱形BECF是正方形.故选项A正确,但不符合题意;当CF⊥BF时,利用正方形的判定得出,菱形BECF是正方形,故选项B正确,但不符合题意;当BD=DF时,利用正方形的判定得出,菱形BECF是正方形,故选项C正确,但不符合题意;当AC=BD时,无法得出菱形BECF是正方形,故选项D错误,符合题意.故选:D.点评:本题考查了菱形的判定和性质及中垂线的性质、直角三角形的性质、正方形的判定等知识,熟练掌握正方形的相关的定理是解题关键.11.(3分)(•威海)一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是()A.B.C.D.考点:列表法与树状图法专题:计算题.分析:列表得出所有等可能的结果,找出两次都为红球的情况数,即可求出所求的概率.解答:解:列表如下:红红红绿绿红﹣﹣﹣(红,红)(红,红)(绿,红)(绿,绿)红(红,红)﹣﹣﹣(红,红)(绿,红)(绿,红)红(红,红)(红,红)﹣﹣﹣(绿,红)(绿,红)绿(红,绿)(红,绿)(红,绿)﹣﹣﹣(绿,绿)绿(红,绿)(红,绿)(红,绿)(绿,绿)﹣﹣﹣得到所有可能的情况数为20种,其中两次都为红球的情况有6种,则P两次红==.故选A点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.12.(3分)(•威海)如图,在平面直角坐标系中,∠AOB=90°,∠OAB=30°,反比例函数的图象经过点A,反比例函数的图象经过点B,则下列关于m,n的关系正确的是()A.m=﹣3n B.m=﹣n C.m=﹣n D.m=n考反比例函数综合题.分析:过点B作BE⊥x轴于点E,过点A作AF⊥x轴于点F,设点B坐标为(a,),点A的坐标为(b,),证明△BOE∽△OAF,利用对应边成比例可求出m、n的关系.解答:解:过点B作BE⊥x轴于点E,过点A作AF⊥x轴于点F,设点B坐标为(a,),点A的坐标为(b,),∵∠OAB=30°,∴OA=OB,设点B坐标为(a,),点A的坐标为(b,),则OE=﹣a,BE=,OF=b,AF=,∵∠BOE+∠OBE=90°,∠AOF+∠BOE=90°,∴∠OBE=∠AOF,又∵∠BEO=∠OFA=90°,∴△BOE∽△OAF,∴==,即==,解得:m=﹣ab,n=,故可得:m=﹣3n.故选A.点评:本题考查了反比例函数的综合,解答本题的关键是结合解析式设出点A、B的坐标,得出OE、BE、OF、AF的长度表达式,利用相似三角形的性质建立m、n之间的关系式,难度较大.二、填空题(共6小题,每小题3分,满分18分)13.(3分)(•威海)将一副直角三角板如图摆放,点C在EF上,AC经过点D.已知∠A=∠EDF=90°,AB=AC.∠E=30°,∠BCE=40°,则∠CDF=25°.考三角形的外角性质;三角形内角和定理.分析:由∠A=∠EDF=90°,AB=AC.∠E=30°,∠BCE=40°,可求得∠ACB的度数,又由三角形外角的性质,可得∠CDF=∠ACE﹣∠F=∠BCE+∠ACB﹣∠F,继而求得答案.解答:解:∵AB=AC,∠A=90°,∴∠ACB=∠B=45°,∵∠EDF=90°,∠E=30°,∴∠F=90°﹣∠E=60°,∵∠ACE=∠CDF+∠F,∠BCE=40°,∴∠CDF=∠ACE﹣∠F=∠BCE+∠ACB﹣∠F=45°+40°﹣60°=25°.故答案为:25°.点评:本题考查三角形外角的性质以及直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.14.(3分)(•威海)分解因式:=﹣(3x﹣1)2.考点:提公因式法与公式法的综合运用.分析:先提取公因式﹣,再根据完全平方公式进行二次分解.解答:解:﹣3x2+2x﹣,=﹣(9x2﹣6x+1),=﹣(3x﹣1)2.故答案为:﹣(3x﹣1)2.点评:本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.15.(3分)(•威海)如图,AC⊥CD,垂足为点C,BD⊥CD,垂足为点D,AB与CD 交于点O.若AC=1,BD=2,CD=4,则AB=5.考点:相似三角形的判定与性质;勾股定理分析:首先过点B作BE∥CD,交AC的延长线于点E,易证得四边形BDCE是矩形,然后由勾股定理求得答案.解答:解:过点B作BE∥CD,交AC的延长线于点E,∵AC⊥CD,BD⊥CD,∴AC∥BD,∠D=90°,∴四边形BDCE是平行四边形,∴平行四边形BDCE是矩形,∴CE=BD=2,BE=CD=4,∠E=90°,∴AE=AC+CE=1+2=3,∴在Rt△ABE中,AB==5.故答案为:5.点评:此题考查了矩形的判定与性质以及勾股定理.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.16.(3分)(•威海)若关于x的方程无解,则m=﹣8.考点:分式方程的解.专题:计算题.分析:分式方程去分母转化为整式方程,将x=5代入计算即可求出m的值.解答:解:分式方程去分母得:2(x﹣1)=﹣m,将x=5代入得:m=﹣8.故答案为:﹣8点评:此题考查了分式方程的解,方程的解即为能使方程左右两边相等的未知数的值.17.(3分)(•威海)如图①,将四边形纸片ABCD沿两组对边中点连线剪切为四部分,将这四部分密铺可得到如图②所示的平行四边形,若要密铺后的平行四边形为矩形,则四边形ABCD需要满足的条件是AC=BD.考点:图形的剪拼;中点四边形.分析:首先认真读题,理解题意.密铺后的平行四边形成为矩形,必须四个内角均为直角,据此可判定中点四边形EFGH为菱形,进而由中位线定理判定四边形ABCD的对角线相等.解解:密铺后的平行四边形成为矩形,必须四个内角均为直角.答:如解答图所示,连接EF、FG、GH、HE,设EG与HF交于点O,则EG⊥HF.连接AC、BD,由中位线定理得:EF∥AC∥GH,且EF=GH=AC,∴中点四边形EFGH为平行四边形.∴OE=OG,OH=OF.又∵EG⊥HF,∴由勾股定理得:EF=FG=GH=HE,即中点四边形EFGH为菱形.∵EF=FG,EF=AC,FG=BD,∴AC=BD,即四边形ABCD需要满足的条件为:AC=BD.故答案为:AC=BD.点评:本题考查图形剪拼与中点四边形.解题关键是理解三角形中位线的性质,熟练应用平行四边形、矩形、菱形等特殊四边形的判定与性质.18.(3分)(•威海)如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,0),(0,1),(﹣1,0).一个电动玩具从坐标原点0出发,第一次跳跃到点P1.使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称;…照此规律重复下去,则点P的坐标为(0,﹣2).考点:中心对称;规律型:点的坐标.专题:规律型.分析:计算出前几次跳跃后,点P1,P2,P3,P4,P5,P6,P7的坐标,可得出规律,继而可求出点P的坐标.解答:解:点P1(2,0),P2(﹣2,2),P3(0,﹣2),P4(2,2),P5(﹣2,0),P6(0,0),P7(2,0),从而可得出6次一个循环,∵=503…3,∴点P的坐标为(0,﹣2).故答案为:(0,﹣2).点评:本题考查了中心对称及点的坐标的规律变换,解答本题的关键是求出前几次跳跃后点的坐标,总结出一般规律.三、解答题(共7小题,满分66分)19.(7分)(•威海)先化简,再求值:,其中x=﹣1.考点:分式的化简求值.分析:这是个分式除法与减法混合运算题,运算顺序是先做括号内的减法,此时要注意把各分母先因式分解,确定最简公分母进行通分;做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.最后代值计算.解答:解:(﹣1)÷=•=.当x=﹣1时,原式===.点评:考查了分式的化简求值.解这类题的关键是利用分解因式的方法化简分式.20.(8分)(•威海)如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,AO=1.(1)求∠C的大小;(2)求阴影部分的面积.考点:垂径定理;圆心角、弧、弦的关系;扇形面积的计算.分析:(1)根据垂径定理可得=,∠C=∠AOD,然后在Rt△COE中可求出∠C的度数.(2)连接OB,根据(1)可求出∠AOB=120°,在Rt△AOF中,求出AF,OF,然后根据S阴影=S扇形OAB﹣S△OAB,即可得出答案.解答:解:(1)∵CD是圆O的直径,CD⊥AB,∴=,∴∠C=∠AOD,∵∠AOD=∠COE,∴∠C=∠COE,∵AO⊥BC,∴∠C=30°.(2)连接OB,由(1)知,∠C=30°,∴∠AOD=60°,∴∠AOB=120°,在Rt△AOF中,AO=1,∠AOF=60°,∴AF=,OF=,∴AB=,∴S阴影=S扇形OAB﹣S△OAB=﹣××=π﹣.点评:本题考查了垂径定理及扇形的面积计算,解答本题的关键是利用解直角三角形的知识求出∠C、∠AOB的度数,难度一般.21.(9分)(•威海)某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分均为100分.前6名选手的得分如下:序号项目1 2 3 4 5 6笔试成绩/分85 92 84 90 84 80面试成绩/分90 88 86 90 80 85根据规定,笔试成绩和面试成绩分别按一定的百分比折和成综合成绩(综合成绩的满分仍为100分)(1)这6名选手笔试成绩的中位数是84.5分,众数是84分.(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩个占的百分比.(3)求出其余五名选手的综合成绩,并以综合成绩排序确定前两名人选.考点:加权平均数;中位数;众数;统计量的选择.分析:(1)根据中位数和众数的定义即把这组数据从小到大排列,再找出最中间两个数的平均数就是中位数,再找出出现的次数最多的数即是众数;(2)先设笔试成绩和面试成绩各占的百分百是x,y,根据题意列出方程组,求出x,y的值即可;(3)根据笔试成绩和面试成绩各占的百分比,分别求出其余五名选手的综合成绩,即可得出答案.解答:解:(1)把这组数据从小到大排列为,80,84,84,85,90,92,最中间两个数的平均数是(84+85)÷2=84.5(分),则这6名选手笔试成绩的中位数是84.5,84出现了2次,出现的次数最多,则这6名选手笔试成绩的众数是84;故答案为:84.5,84;(2)设笔试成绩和面试成绩各占的百分百是x,y,根据题意得:,解得:,笔试成绩和面试成绩各占的百分比是40%,60%;(3)2号选手的综合成绩是92×0.4+88×0.6=89.6(分),3号选手的综合成绩是84×0.4+86×0.6=85.2(分),4号选手的综合成绩是90×0.4+90×0.6=90(分),5号选手的综合成绩是84×0.4+80×0.6=81.6(分),6号选手的综合成绩是80×0.4+85×0.6=83(分),则综合成绩排序前两名人选是4号和2号.点评:此题考查了加权平均数,用到的知识点是中位数、众数、加权平均数的计算公式,关键灵活运用有关知识列出算式.22.(9分)(•威海)如图,已知抛物线y=x2+bx+c与x轴交于点A,B,AB=2,与y轴交于点C,对称轴为直线x=2.(1)求抛物线的函数表达式;(2)设P为对称轴上一动点,求△APC周长的最小值;(3)设D为抛物线上一点,E为对称轴上一点,若以点A,B,D,E为顶点的四边形是菱形,则点D的坐标为(2,﹣1).考点:二次函数综合题分析:(1)根据抛物线对称轴的定义易求A(1,0),B(3,0).所以1、3是关于x的一元二次方程x2+bx+c=0的两根.由韦达定理易求b、c的值;(2)如图,连接AC、BC,BC交对称轴于点P,连接PA.根据抛物线的对称性质得到PA=PB,则△APC的周长的最小值=AC+AP+PC=AC+BC,所以根据两点间的距离公式来求该三角形的周长的最小值即可;(3)如图2,点D是抛物线的顶点,所以根据抛物线解析式利用顶点坐标公式即可求得点D的坐标.解答:解:(1)如图,∵AB=2,对称轴为直线x=2.∴点A的坐标是(1,0),点B的坐标是(3,0).∵抛物线y=x2+bx+c与x轴交于点A,B,∴1、3是关于x的一元二次方程x2+bx+c=0的两根.由韦达定理,得1+3=﹣b,1×3=c,∴b=﹣4,c=3,∴抛物线的函数表达式为y=x2﹣4x+3;(2)如图1,连接AC、BC,BC交对称轴于点P,连接PA.由(1)知抛物线的函数表达式为y=x2﹣4x+3,A(1,0),B(3,0),∴C(0,3),∴BC==3,AC==.∵点A、B关于对称轴x=2对称,∴PA=PB,∴PA+PC=PB+PC.此时,PB+PC=BC.∴点P在对称轴上运动时,(PA+PB)的最小值等于BC.∴△APC的周长的最小值=AC+AP+PC=AC+BC=3+;(3)如图2,根据“菱形ADBE的对角线互相垂直平分,抛物线的对称性”得到点D 是抛物线y=x2﹣4x+3的顶点坐标,即(2,﹣1).故答案是:(2,﹣1).点评:本题考查了二次函数综合题.解题过程中用到的知识点有:待定系数法求二次函数的解析式,轴对称﹣﹣两点间距离最短,菱形的性质.解(1)题时,也可以把点A、B的坐标代入抛物线解析式,列出关于系数b、c的方程组,通过解方程组来求它们的值.23.(10分)(•威海)要在一块长52m,宽48m的矩形绿地上,修建同样宽的两条互相垂直的甬路.下面分别是小亮和小颖的设计方案.(1)求小亮设计方案中甬路的宽度x;(2)求小颖设计方案中四块绿地的总面积(小颖设计方案中的与小亮设计方案中的取值相同)考点:一元二次方程的应用;解直角三角形的应用.专题:几何图形问题.分析:(1)根据小亮的方案表示出矩形的长和宽,利用矩形的面积公式列出方程求解即可;(2)求得甬道的宽后利用平行四边形的面积计算方法求得两个阴影部分面积的和即可;解答:解:(1)根据小亮的设计方案列方程得:(52﹣x)(48﹣x)=2300解得:x=2或x=98(舍去)∴小亮设计方案中甬道的宽度为2m;(2)作AI⊥CD,HJ⊥EF,垂足分别为I,J,∵AB∥CD,∠1=60°,∴∠ADI=60°,∵BC∥AD,∴四边形ADCB为平行四边形,∴BC=AD由(1)得x=2,∴BC=HE=2=AD在Rt△ADI中,AI=2sin60°=∴小颖设计方案中四块绿地的总面积为52×48﹣52×2﹣48×2+()2=2299平方米.点评:本题考查了一元二次方程的应用,特别是图形的面积问题更是近几年中考中考查一元二次方程的应用的主要题型.24.(11分)(•威海)操作发现将一副直角三角板如图①摆放,能够发现等腰直角三角板ABC的斜边与含30°角的直角三角板DEF的长直角边DE重合.问题解决将图①中的等腰直角三角板ABC绕点B顺时针旋转30°,点C落在BF上,AC与BD交于点O,连接CD,如图②.(1)求证:△CDO是等腰三角形;(2)若DF=8,求AD的长.考点:等腰直角三角形;等腰三角形的判定;含30度角的直角三角形;勾股定理;矩形的判定与性质.分析:(1)根据题意可得BC=DE,进而得到∠BDC=∠BCD,再根据三角形内角和定理计算出度数,然后再根据三角形内角与外角的性质可得∠DOC=∠DBC+∠BCA,进而算出度数,根据角度可得△CDO是等腰三角形;(2)作AG⊥BC,垂足为点G,DH⊥BF,垂足为点H,首先根据∠F=60°,DF=8,可以算出DH=4,HF=4,DB=8,BF=16,进而得到BC=8,再根据等腰三角形的性质可得BG=AG=4,证明四边形AGHD为矩形,根据线段的和差关系可得AD长.解答:解;(1)由图①知BC=DE,∴∠BDC=∠BCD,∵∠DEF=30°,∴∠BDC=∠BCD=75°,∵∠ACB=45°,∴∠DOC=30°+45°=75°,∴∠DOC=∠BDC,∴△CDO是等腰三角形;(2)作AG⊥BC,垂足为点G,DH⊥BF,垂足为点H,在Rt△DHF中,∠F=60°,DF=8,∴DH=4,HF=4,在Rt△BDF中,∠F=60°,DF=8,∴DB=8,BF=16,∴BC=BD=8,∵AG⊥BC,∠ABC=45°,∴BG=AG=4,∴AG=DH,∵AG∥DH,∴四边形AGHD为矩形,∴AD=GH=BF﹣BG﹣HF=16﹣4﹣4=12﹣4.点评:此题主要考查了等腰三角形的判定与性质,矩形的判定与性质,以及三角函数的应用,关键是掌握如果一个三角形有两个角相等,那么这两个角所对的边也相等.25.(12分)(•威海)如图,在平面直角坐标系中,直线y=x+与直线y=x交于点A,点B在直线y=x+上,∠BOA=90°.抛物线y=ax2+bx+c过点A,O,B,顶点为点E.(1)求点A,B的坐标;(2)求抛物线的函数表达式及顶点E的坐标;(3)设直线y=x与抛物线的对称轴交于点C,直线BC交抛物线于点D,过点E作FE∥x 轴,交直线AB于点F,连接OD,CF,CF交x轴于点M.试判断OD与CF是否平行,并说明理由.考二次函数综合题.点:分析:(1)由直线y=x+与直线y=x交于点A,列出方程组,通过解该方程组即可求得点A的坐标;根据∠BOA=90°得到直线OB的解析式为y=﹣x,则,通过解该方程组来求点B的坐标即可;(2)把点A、B、O的坐标分别代入已知二次函数解析式,列出关于系数a、b、c 的方程组,通过解方程组即可求得该抛物线的解析式;(3)如图,作DN⊥x轴于点N.欲证明OD与CF平行,只需证明同位角∠CMN 与∠DON相等即可.解解:(1)由直线y=x+与直线y=x交于点A,得答:,解得,,∴点A的坐标是(3,3).∵∠BOA=90°,∴OB⊥OA,∴直线OB的解析式为y=﹣x.又∵点B在直线y=x+上,∴,解得,,∴点B的坐标是(﹣1,1).综上所述,点A、B的坐标分别为(3,3),(﹣1,1).(2)由(1)知,点A、B的坐标分别为(3,3),(﹣1,1).∵抛物线y=ax2+bx+c过点A,O,B,∴,解得,,∴该抛物线的解析式为y=x2﹣x,或y=(x﹣)2﹣.∴顶点E的坐标是(,﹣);(3)OD与CF平行.理由如下:由(2)知,抛物线的对称轴是x=.∵直线y=x与抛物线的对称轴交于点C,∴C(,).设直线BC的表达式为y=kx+b(k≠0),把B(﹣1,1),C(,)代入,得,解得,,∴直线BC的解析式为y=﹣x+.∵直线BC与抛物线交于点B、D,∴﹣x+=x2﹣x,解得,x1=,x2=﹣1.把x1=代入y=﹣x+,得y1=,∴点D的坐标是(,).如图,作DN⊥x轴于点N.则tan∠DON==.∵FE∥x轴,点E的坐标为(,﹣).∴点F的纵坐标是﹣.把y=﹣代入y=x+,得x=﹣,∴点F的坐标是(﹣,﹣),∴EF=+=.∵CE=+=,∴tan∠CFE==,∴∠CFE=∠DON.又∵FE∥x轴,∴∠CMN=∠CFE,∴∠CMN=∠DON,∴OD∥CF,即OD与CF平行.点评:本题考查了二次函数综合题.其中涉及到的知识点有:待定系数法求二次函数解析式,一次函数与二次函数交点问题,平行线的判定以及锐角三角函数的定义等知识点.此题难度较大.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

威海市二○一一年初中学业考试
数学
亲爱的同学:
你好!答题前,请仔细阅读以下说明:
1.本试卷共10页,分第Ⅰ卷和第Ⅱ卷两部分。

第Ⅰ卷(第1—2页)为选择题,第Ⅱ卷(3—10页)为非选择题。

试卷满分120分,考试时间为120分钟。

2.请清点试卷,并将答题卡和第Ⅱ卷密封线的考生信息填写完整。

3.第Ⅰ卷的答案用2B铅笔涂在答题卡上,第Ⅱ卷的答案用蓝色或黑色钢笔、圆珠笔填写在试卷上,不要求保留精确度的题目,计算结果保留准确值。

希望你能愉快地度过这120分钟,祝你成功!
第Ⅰ卷(选择题,共36分)
一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四
个选项中,只有一个是正确的,每小题选对得3分,选错、不选或多选均不得分)
1.在实数0
2中,最小的是
A.-2 B.
C.0 D
2.今年体育学业考试增加了跳绳测试项目,下面是测试时记录员记录的一组(10名)同学的测试成绩(单位:个/分钟)。

176 180 184 180 170 176 172 164 186 180 该组数据的众数、中位数、平均数分别为
A.180,180,178 B.180,178,178
C.180,178,176.8 D.178,180,176.8
3.在□ABCD中,点E为AD的中点,连接BE,交AC于点F,
则AF:CF=
A.1:2 B.1:3
C.2:3 D.2:5
4.下列运算正确的是
A.a3•a2=a6B.(x3)3=x6
C.x5+x5=x10D.(-ab)5÷(-ab)2 =-a3b3
5.下列各点中,在函数
6
y
x
=-图象上的是
A.(-2,-4)B.(2,3)C.(-6,1)D.(-1
2
,3)
6.在△AB C中,AB>AC,点D、E分别是边AB、AC的中点,点F在BC边上,连接DE,DF,EF,则添加下列哪一个条件后,仍无法判定△BFD与△ED F全等
A.EF∥AB B.BF=CF C.∠A=∠DFE D.∠B=∠DEF
(第7题图)
7.二次函数y =x 2-2x -3的图象如图所示。

当y <0时,自变量x 的取值范围是
A .-1<x <3
B .x <-1
C .x >3
D .x <-3或x >3 8.计算1÷
()2111m
m m
+•--的结果果 A .-m 2-2m -1 B .-m 2+2m -1 C .m 2-2m -1 D .m 2-1 9.关于x 的一元二次方程x 2+(m -2)x +m +1=0有两个相等的实数根,则m 的值是
A .0
B
.8
C .4±
D . 0或8
10.如图是由一些大小相同的小立方体组成的几何体的主视图和左视图,则组成这个几何体
的小立方体的个数不可能是 A .3 B .4 C .5 D .6
11.如果不等式组()2131x x x m --⎧⎪⎨⎪⎩
><的解集是2x <,那么m 的取值范围是
A .m =2
B .m >2
C .m <2
D .m ≥2
12.如图,在正方形ABCD 中,AB =3㎝,动点M 自A 点出发沿AB 方向
以每秒1㎝的速度运动,同时动点N 自A 点出发沿折线AD -DC -CB 以每秒3㎝的速度运动,到达B 点时运动同时停止。

设△AMB 的面积为y (㎝2)。

运动时间为x (秒),则下列图象中能大致反映y 与x 之间函数关系的是
(第6题图)
N 主视图
左视图
(第10题图)
威海市二○一一年初中学业考试
数 学
第Ⅱ卷(非选择题,共84分)
二、
填空题(本大题共6小题,每小题3分,共18分,只要求填出最后结果)
13.
计算
的结果是________。

14.正方形ABCD 在平面直角坐标系中的位置如图所示,已知A 点坐标(0,4),B 点坐标(-3,0),则C 点坐标________。

15.如图,⊙O 的直径A B 与弦CD 交于点E ,AE =5,BE =1,CD
,则∠AED =________。

16.分解因式:16-8(x -y )+(x -
y )2=_______________________。

17.如图①,将一个量角器与一张等腰三角形(△ABC )纸片放置成轴对称图形。

∠ACB =
90°,CD ⊥AB ,垂足为D ,半圆(量角器)的圆心与点D 重合,测得CE =5㎝;将量角器沿DC 方向平移2㎝,半圆(量角器)恰与△ABC 的边AC ,BC 相切,如图②。

则AB 的边长为________㎝。

(精确到0.1㎝)
18.如图,在直线l 1⊥x 轴于点(1,0),直线l 2⊥x 轴于点
(2,0),直线l 3⊥x 轴于点(n
,0)……直线l n ⊥x 轴于点(n ,0).函数y =x 的图象与直线l 1,l 2,l 3,……l n 分别交于点B 1,B 2,B 3,……B n 。

如果△OA 1B 1的面积记为S 1,四边形A 1A 2B 2B 1的面积记作S 2,四边形A 2A 3B 3B 2的面积记作S 3,……四边形A n -1A n B n B n -1的面积记作S n ,那么S 2011=_______________________。

图①
图②
(第17题图)
A (第15题图)
三、解答题(本大题共7小题,共66分) 19.(7分)
解方程:
233
01
x x x +-=- 20.(8分)
我们学习过:在平面内,将一个图形绕一个定点沿着某个方向转动一个角度,这样的图形运动叫做旋转,这个定点称为旋转中心。

⑴如图①,△ABC ≌△DEF 。

△DEF 能否由△ABC 通过一次旋转得到?若能,请用直尺和圆规画出旋转中心,若不能,试简要说明理由;
⑵如图②,△ABC ≌△MNK 。

△MNK 能否由△ABC 通过一次旋转得到?若能,请用直尺和圆规画出旋转中心,若不能,试简要说明理由。

(保留必要的作图痕迹)
21.(9分)
甲乙二人玩一个游戏:每人分别抛掷一个质地均匀的小立方体(每个面分别标有数字1,2,3,4,5,6),落定后,若两个小立方体朝上的数字之和为偶数,则甲胜;若两个小立方体朝上的数字之和为奇数,则乙胜,你认为这个游戏公平吗?试说明理由。

A
B
C
D
E
F
A
B C
N
M
K
图① 图②
22.(9分)
为了参加2011年威海国际铁人三项(游泳,自行车,长跑)系列赛业余组的比赛,李明针对自行车和长跑项目进行专项训练。

某次训练中,李明骑自行车的平均速度为每分钟600米,跑步的平均速度为每分钟200米,自行车路段和长跑路段共5千米,用时15分钟。

求自行车路段和长跑路段的长度。

23.(10分)
一副直角三角板如图放置,点C 在FD 的延长线上,AB ∥CF ,∠F =∠ACB =90°,∠E = 45°,∠A =60°,AC =10,试求CD 的长。

24.如图,ABCD 是一张矩形纸片,AD =BC =1,AB =CD =5.在矩形ABCD 的边AB 上取一
点M ,在CD 上取一点N ,将纸片沿MN 折叠,使MB 与DN 交于点K ,得到△MNK 。

⑴若∠1=70°,求∠MKN 的度数;
⑵△MNK 的面积能否小于
1
2
?若能,求出此时∠1的度数;若不能,试说明理由; ⑶如何折叠能够使△MNK 的面积最大?请你用备用图探究可能出现的情况,求最大值。

25.(12分)
A B
A
B 备用图
A B
A M
如图,抛物线y=ax2+bx+c交x轴于点A(-3,0),点B(1,0),交y轴于点E(0,-3)。

点C是点A关于点B的对称点,点F是线段BC的中点,直线l过点F且与y轴平行。

直线y=-x+m过点C,交y轴于D点。

⑴求抛物线的函数表达式;
⑵点K为线段AB上一动点,过点K作x轴的垂线与直线CD交于点H,与抛物线交于点G,求线段HG长度的最大值;
⑶在直线l上取点M,在抛物线上取点N,使以点A,C,M,N为顶点的四边形是平行四边形,求点N的坐标。

图①
备用图
2011年威海市中考数学答案。

相关文档
最新文档