2016年山东省潍坊市中考数学试卷(解析版)
2016年山东中考数学试卷(含答案)

山东中考数学试卷一.选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错,不选或选出的答案超过一个,均记零分)题号 1 2 3 4 5 6 7 8 9 10 答案 题号 11 12 13 14 45 16 17 18 19 20 答案一、选择题:(本大题共20题,每小题3分,共60分.在每小题给出的代号为ABCD 四个选项中,只有一项是符合题目要求的) 1.3--的值为 A. 3B. -3C.31D. -31 2.下列各图是选自历届世博会徽中的图案,其中是中心对称图形的是AB CD3.在电子显微镜下测得一个圆球体细胞的直径是5×105-cm ,3102⨯个这样的细胞排成的细胞链的长是A .cm 210- B .cm 110- C .cm 310-D .cm 410-4.将右图所示的直角梯形绕直线l 旋转一周,得到的立体图形是A B C D5.自上海世博会开幕以来,中国馆以其独特的造型吸引了世人的目光.据预测,在会展期间,参观中国馆的人次数估计可达到14 900 000,此数用科学记数法表示是 A.61049.1⨯ B.810149.0⨯ C.7109.14⨯D.71049.1⨯6.下列运算正确的是 A .22a a a =⋅B .33)(ab ab =C .632)(a a = D .5210a a a=÷7.如图,将一副三角板按图中的方式叠放,则角α等于 A .75B .60C .45D .30 8.如果33-=-b a ,那么代数式b a 35+-的值是 A .0 B .2 C .5 D .89.计算2(3)-的结果是 A .3 B .3- C .3± D .910.右图是由五个完全相同的小正方体组合成的一个立体图形,则它的俯视图...是11.不等式组32>2(4)x xx +⎧⎨--⎩≥1 的解集在数轴上表示正确的是12.方程(5)x x x -=的解是 A .0x =B .0x =或5x =C .6x =D .0x =或6x = 13.如图,正六边形螺帽的边长是2cm ,这个扳手的 开口a 的值应是A .23 cmB .3cmC .23cm D .1cmA .92B .94 C .95 D .32 15.已知反比例函数y =x2,则下列点中在这个反比例函数图象的上的是A .(-2,1)B .(1,-2)C .(-2,-2)D .(1,2)16.如图,四边形ABCD 的对角线互相平分,要使它成为矩形,那么需要添加的条件是A .AB CD = B .AD BC = C .AB BC =D .AC BD =17.在一次信息技术考试中,某兴趣小组8名同学的成绩(单位:分)分别是:7,10,9,8,7,9,9,8,则这组数据的众数是A .7B .8C .9D .1018.手工制作课上,小红利用一些花布的边角料,剪裁后装裱手工画.下面四个图案是她剪裁出的空心不等边三角形、等边三角形、正方形、矩形花边,其中,每个图案花边的宽度都相同,那么,每个图案中花边的内外边缘所围成的几何图形不相似的是A B C D 19.右图是根据某班40名同学一周的体育锻炼情况绘制的条形统计图.那么关于 该班40名同学一周参加体育锻炼时间 的说法错误..的是 A .极差是3 B .中位数为8 C .众数是8D .锻炼时间超过8小时的有21人20.如右图是夜晚小亮从点A 经过路灯C 的正下方沿直线走到点B ,他的影长y 随他与点A 之间的距 离x 的变化而变化,那么表示y 与x 之间的函数关 系的图像大致为二、填空题(每小题3分,满分12分请将答案直接填在题中横线上)21.已知抛物线2y x bx c=++的对称轴为2x=,点A,B均在抛物线上,且AB与x轴平行,其中点A的坐标为(0,3),则点B的坐标为.22.如图,AB切⊙O于点A,BO交⊙O于点C,点D是CmA异于点C、A的一点,若∠ABO=°32,则∠ADC的度数是.23.如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD = 2,将腰CD以D为中心逆时针旋转90°至DE,连接AE、CE,△ADE的面积为3,则BC的长为.24.端午节时,王老师用72元钱买了荷包和五彩绳共20个.其中荷包每个4元,五彩绳每个3元,设王老师购买荷包x个,五彩绳y个,根据题意,可列出的方程组应为.三、解答题(本大题共5个小题)25.(本题满分8分)进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:你们是用9天完成4800米长的大坝加固任务的?我们加固600米后,采用新的加固模式,这样每天加固长度是原来的2倍.26.(本题满分10分)如图,在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,CE∥BF,连接BE、CF.(1)求证:△BDF≌△CDE;(2)当△ABC满足什么条件时,四边形BFCE是菱形?27.(本题满分10分)某学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位.(1)求该校八年级学生参加社会实践活动的人数;(2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元.根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满).请你计算本次社会实践活动所需车辆的租金.28.(本题满分10分)如图1,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D在边AB上运动,DE平分∠CDB交边BC于点E,EM⊥BD垂足为M,EN⊥CD垂足为N.(1)当AD=CD时,求证DE∥AC;(2)探究:AD为何值时,以B,M,E为顶点的三角形与以C,E,N为顶点的三角形相似?29.(本题满分10分)我市是世界有机蔬菜基地,数10种蔬菜在国际市场上颇具竞争力.某种有机蔬菜上市时,某经销商按市场价格10元/千克在我市收购了2000千克某种蔬菜存放入冷库中.据预测,该种蔬菜的市场价格每天每千克将上涨0.5元,但冷库存放这批蔬菜时每天需要支出各种费用合计340元,而且这种蔬菜在冷库中最多保存110天,同时,平均每天将会有6千克的蔬菜损坏不能出售.(1)若存放x天后,将这批蔬菜一次性出售,设这批蔬菜的销售总金额为y元,试写出y与x之间的函数关系式.(2)经销商想获得利润22500元,需将这批蔬菜存放多少天后出售?(利润=销售总金额-收购成本-各种费用)(3)经销商将这批蔬菜存放多少天后出售可获得最大利润?最大利润是多少?参考答案一、选择题:1-5BCBCD6-10CADAD11-15BDABD16-20DCDBA二、填空题:21.(4,3)22.°2923.524.20, 4372 x yx y+=⎧⎨+=⎩三、解答题926004800600=-+xx ……………………………………………………4分 去分母,得 1200+4200=18x (或18x =5400)解得 300x =检验:当300x =时,20x ≠(或分母不等于0).∴300x =是原方程的解.答:该地驻军原来每天加固300米.………………………………………8分 26.解:(1)证明:∵D 是BC 的中点,∴BD =CD∵CE ∥BF ,∴∠DBF =∠DCE又∵∠BDF =∠CDE ,∴△BDF ≌△CDE ………………………………3分(2)当△ABC 是等腰三角形,即AB =AC 时,四边形BFCE 是菱形………4分证明:∵△CDE ≌△BDF ,∴DE =D F∵BD =CD ,∴四边形BFCE 是平行四边形…………………………………7分 在△ABC 中,∵AB =AC ,BD =CD ,∴AD ⊥BC ,即EF ⊥BC ∴四边形BFCE 是菱形……………………………………………………10分27.解:(1)设单独租用35座客车需x 辆,由题意得:3555(1)45x x =--解得:5x =∴35355175x =⨯=(人)答:该校八年级参加社会实践活动的人数为175人.………4分 (2)设租35座客车y 辆,则租55座客车(4y -)辆,由题意得:3555(4)175,320400(4)1500y y y y +-⎧⎨+-⎩≥≤………………………………………7分 解这个不等式组,得11144y ≤≤2.∵y 取正整数,∴y = 2. ∴4-y = 4-2 = 2.∴320×2+400×2 = 1440(元).所以本次社会实践活动所需车辆的租金为1440元.………………10分28.(1)证明:∵AD =CD ∴∠DAC =∠DCA∴∠BDC =2∠DAC又∵DE 是∠BDC 的平分线 ∴∠DAC =∠BDE∴DE ∥AC ………………………………………………………………3分(2)解:分两种情况:①若△BME ∽△CNE ,必有∠MBE =∠NCE 此时BD =DC ∵DE 平分∠BDC ∴DE ⊥BC ,BE =EC 又∠ACB =90° ∴DE ∥AC ∴BE BD BC AB =即2211522BD AB AC BC =+=∴AD=5…………………………………………………………………7分②若△BME ∽△ENC ,必有∠EBM =∠CEN 此时NE ∥MC∴8cos 6 4.810BC AD AC A AC AB =⋅=⋅=⨯= ∴当AD =5或AD =4.8时,以B ,M ,E 为顶点的三角形与以C ,E ,N 为顶点的三角形相似…………………………………………………………………………10分 29.解:(1)由题意得y 与x 之间的函数关系式为y =()()100.520006x x +-=2394020000x x -++(1≤x ≤110)……………………………………3分(2)由题意得:2394020000x x -++-10×2000-340x =22500解方程得:1x =50;2x =150(不合题意,舍去)经销商想获得利润2250元需将这批蔬菜存放50天后出售. ………………6分 (3)设最大利润为W ,由题意得W =2394020000x x -++-10 ×2000-340x23(100)30000x =--+∴当100x =时,30000W 最大=100天<110天∴存放100天后出售这批香菇可获得最大利润30000元.………………10分。
山东省潍坊市2016届中考数学模拟试卷(三)含答案解析

2016年山东省潍坊市中考数学模拟试卷(三)一、选择题1.||=()A.B. C.﹣D.2.如图所示的是三通管的立体图,则这个几何体的俯视图是()A.B.C.D.3.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法表示为()A.6.75×104吨B.6.75×103吨C.0.675×105吨D.67.5×103吨4.如图,一个小圆沿着一个五边形的边滚动,如果五边形的各边长都和小圆的周长相等如图,一个小圆沿着一个五边形的边滚动,如果五边形的各边长都和小圆的周长相等,那么当小圆滚动到原来位置时,小圆自身滚动的圈数是()A.4 B.5 C.6 D.105.小明用图中所示的扇形纸片作一个圆锥的侧面,小明用图中所示的扇形纸片作一个圆锥的侧面,已知扇形的半径为5cm,弧长是6πcm,那么这个的圆锥的高是()A.4cm B.6cm C.8cm D.2cm6.如图,过点C(1,2)分别作x轴、y轴的平行线,交直线y=﹣x+6于A、B两点,若反比例函数y=(x>0)的图象与△ABC有公共点,则k的取值范围是()A.2≤k≤9 B.2≤k≤8 C.2≤k≤5 D.5≤k≤87.某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到吴江儿童福利院看望孤儿.如果分给每位儿童4盒牛奶,那么剩下28盒牛奶;如果分给每位儿童5盒牛奶,那么最后一位儿童分不到5盒,但至少能有2盒.则这个儿童福利院的儿童最少有()A.28人B.29人C.30人D.31人8.已知⊙O1、⊙O2的半径分别是2cm、4cm,若O1O2=6cm,则两圆的位置关系是()A.外切 B.相交 C.内切 D.外离9.甲、乙两人参加植树活动,两人共植树20棵,已知甲植树数是乙的1.5倍、如果设甲植树x棵,乙植树y棵,那么可以列方程组()A.B.C.D.10.如图,△AOB中,∠AOB=120°,BD,AC是两条高,连接CD,若AB=4,则DC的长为()A.B.2 C. D.11.若3a+2b=2,则直线y=ax+b一定经过点()A.(0,2) B.(3,2) C.(﹣,2)D.(,1)12.若函数y=的自变量x的取值范围是全体实数,则c的取值范围是()A.c<1 B.c=1 C.c>1 D.c≤1二、填空题13.函数y=+中,自变量x的取值范围是.14.设a,b是方程x2+x﹣2013=0的两个不相等的实数根,则a2+2a+b的值为.15.分解因式:x2+x﹣2=.16.如图,△ABC中,BD和CE是两条高,如果∠A=45°,则=.17.如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,弦CE⊥AB于点F,过点D的切线交EC的延长线于点G,连接AD,分别交CF、BC于点P、Q,连接AC.给出下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心;④AP•AD=CQ•CB.其中正确的是(写出所有正确结论的序号).18.如图,矩形ABCD的长AB=6cm,宽AD=3cm.O是AB的中点,OP⊥AB,两半圆的直径分别为AO与OB.抛物线y=ax2经过C、D两点,则图中阴影部分的面积是cm2.三、解答题(共66分)19.(1)我市开展了“寻找雷锋足迹”的活动,某中学为了了解七年级800名学生在“学雷锋活动月”中做好事的情况,随机调查了七年级50名学生在一个月内做好事的次数,并将所得数据绘制成统计图,请根据图中提供的信息解答下列问题:①所调查的七年级50名学生在这个月内做好事次数的平均数是,众数是,极差是:②根据样本数据,估计该校七年级800名学生在“学雷锋活动月”中做好事不少于4次的人数.(2)甲口袋有2个相同的小球,它们分别写有数字1和2;乙口袋中装有3个相同的小球,它们分别写有数字3、4和5,从这两个口袋中各随机地取出1个小球.①用“树状图法”或“列表法”表示所有可能出现的结果;②取出的两个小球上所写数字之和是偶数的概率是多少?20.如图,小明想用所学的知识来测量湖心岛上的迎宾槐与岸上的凉亭间的距离,如图,小明想用所学的知识来测量湖心岛上的迎宾槐与岸上的凉亭间的距离,他先在湖岸上的凉亭A处测得湖心岛上的迎宾槐C处位于北偏东65°方向,然后,他从凉亭A处沿湖岸向正东方向走了100米到B处,测得湖心岛上的迎宾槐C处位于北偏东45°方向(点A、B、C在同一水平面上).请你利用小明测得的相关数据,求湖心岛上的迎宾槐C处与湖岸上的凉亭A处之间的距离(结果精确到1米).(参考数据:sin25°≈0.4226,cos25°≈0.9063,tan25°≈0.4663,sin65°≈0.9063,cos65°≈0.4226,tan65°≈2.1445)21.如图,已知A、B、C、D是⊙O上的四个点,AB=BC,BD交AC于点E,连接CD、AD.(1)求证:DB平分∠ADC;(2)若BE=3,ED=6,求AB的长.22.某工厂投入生产一种机器的总成本为2000万元.当该机器生产数量至少为10台,但不超过70台时,每台成本y与生产数量x之间是一次函数关系,函数y与自变量x的部分对应值如下表:(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求该机器的生产数量;(3)市场调查发现,这种机器每月销售量z(台)与售价a(万元∕台)之间满足如图所示的函数关系.该厂生产这种机器后第一个月按同一售价共卖出这种机器25台,请你求出该厂第一个月销售这种机器的利润.(注:利润=售价﹣成本)23.已知:如图所示的一张矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A与点C重合,再展开,折痕EF交AD边于点E,交BC边于点F,分别连接AF和CE.(1)求证:四边形AFCE是菱形;(2)若AE=10cm,△ABF的面积为24cm2,求△ABF的周长;(3)在线段AC上是否存在一点P,使得2AE2=AC•AP?若存在,请说明点P的位置,并予以证明;若不存在,请说明理由.24.如图,在平面直角坐标系中,点O是原点,点A的坐标为(4,0),以OA为一边,在第一象限作等边△OAB(1)求点B的坐标;(2)求经过O、A、B三点的抛物线的解析式;(3)直线y=x与(2)中的抛物线在第一象限相交于点C,求点C的坐标;(4)在(3)中,直线OC上方的抛物线上,是否存在一点D,使得△OCD的面积最大?如果存在,求出点D的坐标和面积的最大值;如果不存在,请说明理由.2016年山东省潍坊市中考数学模拟试卷(三)参考答案与试题解析一、选择题1.||=()A.B. C.﹣D.【考点】实数的性质.【专题】计算题.【分析】根据绝对值的性质,正数的绝对值是它的本身,负数的绝对值是它的相反数,0的绝对值是0,即可求解.【解答】解:∵则﹣<0∴||=故选D.【点评】此题主要考查了绝对值的性质,解题时先确定绝对值符号中代数式的正负再去绝对值符号.2.如图所示的是三通管的立体图,则这个几何体的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】俯视图是从上往下看得到的视图,结合选项进行判断即可.【解答】解:所给图形的俯视图是A选项所给的图形.故选A.【点评】本题考查了简单组合体的三视图,解答本题的关键是掌握俯视图是从上往下看得到的视图.3.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法表示为()A.6.75×104吨B.6.75×103吨C.0.675×105吨D.67.5×103吨【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于67500有5位,所以可以确定n=5﹣1=4.【解答】解:67 500=6.75×104.故选A.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.如图,一个小圆沿着一个五边形的边滚动,如果五边形的各边长都和小圆的周长相等如图,一个小圆沿着一个五边形的边滚动,如果五边形的各边长都和小圆的周长相等,那么当小圆滚动到原来位置时,小圆自身滚动的圈数是()A.4 B.5 C.6 D.10【考点】轨迹.【分析】因为五边形的各边长都和小圆的周长相等,所有小圆在每一边上滚动正好一周,另外五边形的外角和为360°,所有小圆在五个角处共滚动一周,可以求出小圆滚动的圈数.【解答】解:因为五边形的各边长都和小圆的周长相等,所有小圆在每一边上滚动正好一周,在五条边上共滚动了5周.由于每次小圆从五边形的一边滚动到另一边时,都会翻转72°,所以小圆在五个角处共滚动一周.因此,总共是滚动了6周.故选:C.【点评】本题考查的是对圆的认识,根据圆的周长与五边形的边长相等,可以知道圆在每边上滚动一周.然后由多边形外角和是360°,可以知道圆在五个角处滚动一周.因此可以求出滚动的总圈数.5.小明用图中所示的扇形纸片作一个圆锥的侧面,小明用图中所示的扇形纸片作一个圆锥的侧面,已知扇形的半径为5cm,弧长是6πcm,那么这个的圆锥的高是()A.4cm B.6cm C.8cm D.2cm【考点】圆锥的计算.【专题】计算题.【分析】设圆锥底面圆的半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长得到2πr=6π,解得r=3,然后利用勾股定理计算这个的圆锥的高.【解答】解:设圆锥底面圆的半径为r,根据题意得2πr=6π,解得r=3.所以这个的圆锥的高==4(cm).故选A.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.6.如图,过点C(1,2)分别作x轴、y轴的平行线,交直线y=﹣x+6于A、B两点,若反比例函数y=(x>0)的图象与△ABC有公共点,则k的取值范围是()A.2≤k≤9 B.2≤k≤8 C.2≤k≤5 D.5≤k≤8【考点】反比例函数综合题.【专题】综合题;压轴题.【分析】先求出点A、B的坐标,根据反比例函数系数的几何意义可知,当反比例函数图象与△ABC 相交于点C时k的取值最小,当与线段AB相交时,k能取到最大值,根据直线y=﹣x+6,设交点为(x,﹣x+6)时k值最大,然后列式利用二次函数的最值问题解答即可得解.【解答】解:∵点C(1,2),BC∥y轴,AC∥x轴,∴当x=1时,y=﹣1+6=5,当y=2时,﹣x+6=2,解得x=4,∴点A、B的坐标分别为A(4,2),B(1,5),根据反比例函数系数的几何意义,当反比例函数与点C相交时,k=1×2=2最小,设反比例函数与线段AB相交于点(x,﹣x+6)时k值最大,则k=x(﹣x+6)=﹣x2+6x=﹣(x﹣3)2+9,∵1≤x≤4,∴当x=3时,k值最大,此时交点坐标为(3,3),因此,k的取值范围是2≤k≤9.故选:A.【点评】本题考查了反比例函数系数的几何意义,二次函数的最值问题,本题看似简单但不容易入手解答,判断出最大最小值的取值情况并考虑到用二次函数的最值问题解答是解题的关键.7.某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到吴江儿童福利院看望孤儿.如果分给每位儿童4盒牛奶,那么剩下28盒牛奶;如果分给每位儿童5盒牛奶,那么最后一位儿童分不到5盒,但至少能有2盒.则这个儿童福利院的儿童最少有()A.28人B.29人C.30人D.31人【考点】一元一次不等式组的应用.【专题】应用题.【分析】首先设这个儿童福利院的儿童有x人,则有牛奶(4x+28)盒,根据关键语句“如果分给每位儿童5盒牛奶,那么最后一位儿童分得的牛奶不足5盒,但至少2盒”可得不等式组,解出不等式组后再找出符合条件的整数.【解答】解:设这个儿童福利院的儿童有x人,则有牛奶(4x+28)盒,依题意得:,解得:28<x≤31,∵x为整数,∴x最少为29,即这个儿童福利院的儿童最少有29人.故选:B.【点评】此题主要考查了一元一次不等式组的应用,解决问题的关键是读懂题意,找到关键描述语,列出不等式组,难度一般.8.已知⊙O1、⊙O2的半径分别是2cm、4cm,若O1O2=6cm,则两圆的位置关系是()A.外切 B.相交 C.内切 D.外离【考点】圆与圆的位置关系.【分析】由⊙O1、⊙O2的半径分别是2cm、4cm,若O1O2=6cm,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出⊙O1和⊙O2的位置关系.【解答】解:∵⊙O1、⊙O2的半径分别是2cm、4cm,若O1O2=6cm,又∵2+4=6,∴⊙O1和⊙O2的位置关系是外切.故选A.【点评】此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系.圆和圆的位置与两圆的圆心距、半径的数量之间的关系:①两圆外离⇔d>R+r;②两圆外切⇔d=R+r;③两圆相交⇔R﹣r<d<R+r(R≥r);④两圆内切⇔d=R﹣r(R>r);⑤两圆内含⇔d <R﹣r(R>r).9.甲、乙两人参加植树活动,两人共植树20棵,已知甲植树数是乙的1.5倍、如果设甲植树x棵,乙植树y棵,那么可以列方程组()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】关键描述语是:两人共植树20棵,甲植树数是乙的1.5倍.此题中的等量关系为:①甲植树棵数+乙植树棵数=20;②甲植树棵数=1.5×乙植树棵数.【解答】解:根据甲植树棵数+乙植树棵数=20,得方程x+y=20;根据甲植树棵数=1.5×乙植树棵数,得方程x=1.5y.可列方程组为.故选C.【点评】要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.10.如图,△AOB中,∠AOB=120°,BD,AC是两条高,连接CD,若AB=4,则DC的长为()A.B.2 C. D.【考点】相似三角形的判定与性质.【分析】由△MAC∽△MBD推出△MDC∽△MBA得=即可解决问题.【解答】解:如图延长AD、BC交于点M.∵∠AOB=120°,∴∠DOA=∠COB=60°,∵AD⊥BD,AC⊥BC,∴∠ADM=∠MDB=∠ACB=∠ACM=90°,∴∠MAC=∠MBD=30°,∴△MAC∽△MBD,∴,∴,∠M=∠M,∴△MDC∽△MBA,∴,在RT△MBD中,∵∠MBD=30°,∴MB=2MD,∵AB=4,∴,∴DC=2.故选B.【点评】本题考查相似三角形的判定和性质、直角三角形中30度角的性质,添加辅助线构造相似三角形是解决问题的关键.11.若3a+2b=2,则直线y=ax+b一定经过点()A.(0,2) B.(3,2) C.(﹣,2)D.(,1)【考点】一次函数图象上点的坐标特征.【专题】计算题.【分析】将A、B、C、D分别代入直线y=ax+b,符合3a+2b=2形式的即为正确答案.【解答】解:A、把(0,2)代入y=ax+b得,b=2;B、把(3,2)代入y=ax+b得,3a+b=2;C、把(﹣,2)代入y=ax+b得,﹣a+b=2,整理得﹣3a+2b=4;D、把(,1)代入y=ax+b得,a+b=1,整理得3a+2b=2,符合3a+2b=2形式,为正确答案.故选D.【点评】此题考查了函数图象上点的坐标特征,将坐标代入解析式,与3a+2b=2进行类比,形式相同即可.12.若函数y=的自变量x的取值范围是全体实数,则c的取值范围是()A.c<1 B.c=1 C.c>1 D.c≤1【考点】二次函数的性质;分式有意义的条件;函数自变量的取值范围.【专题】计算题;压轴题.【分析】先根据分式的意义,分母不等于0,得出x2﹣2x+c≠0,再根据二次函数y=ax2+bx+c(a≠0)的图象性质,可知当二次项系数a>0,△<0时,有y>0,此时自变量x的取值范围是全体实数.【解答】解:由题意,得△=(﹣2)2﹣4c<0,解得c>1.故选C.【点评】本题考查了函数自变量取值范围的求法.要使得本题函数式子有意义,必须满足分母不等于0.难点在于分母是关于自变量x的二次函数,要使自变量x的取值范围是全体实数,必须满足△<0.二、填空题13.函数y=+中,自变量x的取值范围是x<1且x≠0.【考点】函数自变量的取值范围.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【解答】解:根据题意得:,解得:x<1且x≠0,故答案是:x<1且x≠0.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.14.设a,b是方程x2+x﹣2013=0的两个不相等的实数根,则a2+2a+b的值为2012.【考点】根与系数的关系;一元二次方程的解.【分析】根据方程的根的定义,把a代入方程求出a2+a的值,再利用根与系数的关系求出a+b的值,然后两者相加即可得解.【解答】解:∵a,b是方程x2+x﹣2013=0的两个不相等的实数根,∴a2+a﹣2013=0,∴a2+a=2013,又∵a+b=﹣=﹣1,∴a2+2a+b=(a2+a)+(a+b)=2013﹣1=2012.故答案为:2012.【点评】本题考查了根与系数的关系与一元二次方程的解的定义,考虑把a2+2a+b分成(a2+a)与(a+b)的和是解题的关键.15.分解因式:x2+x﹣2=(x﹣1)(x+2).【考点】因式分解-十字相乘法等.【专题】探究型.【分析】因为(﹣1)×2=﹣2,2﹣1=1,所以利用十字相乘法分解因式即可.【解答】解:∵(﹣1)×2=﹣2,2﹣1=1,∴x2+x﹣2=(x﹣1)(x+2).故答案为:(x﹣1)(x+2).【点评】本题考查的是十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.16.如图,△ABC中,BD和CE是两条高,如果∠A=45°,则=.【考点】相似三角形的判定与性质.【分析】由△ABC中BD和CE是两条高,∠A=45°,易得△AEC和△ABD是等腰直角三角形,则可求得在Rt△ACE,Rt△ABD中,cos∠A==,cos∠A==,∠A是公共角,可证得△ADE∽△ACB,然后利用相似三角形的对应边成比例,求得答案.【解答】解:∵△ABC中BD和CE是两条高,∠A=45°,∴∠AEC=∠ADB=90°,∴∠ACE=∠ABD=45°,∴△AEC和△ABD是等腰直角三角形,∴在Rt△ACE,Rt△ABD中,cos∠A==,∵cos∠A==,∠A是公共角,∴△ADE∽△ACB,∴==.故答案为:.【点评】此题考查了相似三角形的判定与性质以及等腰直角三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用是解此题的关键.17.如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,弦CE⊥AB于点F,过点D的切线交EC的延长线于点G,连接AD,分别交CF、BC于点P、Q,连接AC.给出下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心;④AP•AD=CQ•CB.其中正确的是②③④(写出所有正确结论的序号).【考点】切线的性质;圆周角定理;三角形的外接圆与外心;相似三角形的判定与性质.【专题】计算题;压轴题.【分析】连接BD,由GD为圆O的切线,根据弦切角等于夹弧所对的圆周角得到∠GDP=∠ABD,再由AB为圆的直径,根据直径所对的圆周角为直角得到∠ACB为直角,由CE垂直于AB,得到∠AFP 为直角,再由一对公共角,得到三角形APF与三角形ABD相似,根据相似三角形的对应角相等可得出∠APF等于∠ABD,根据等量代换及对顶角相等可得出∠GPD=∠GDP,利用等角对等边可得出GP=GD,选项②正确;由直径AB垂直于弦CE,利用垂径定理得到A为的中点,得到两条弧相等,再由C为的中点,得到两条弧相等,等量代换得到三条弧相等,根据等弧所对的圆周角相等可得出∠CAP=∠ACP,利用等角对等边可得出AP=CP,又AB为直径得到∠ACQ为直角,利用等角的余角相等可得出∠PCQ=∠PQC,得出CP=PQ,即P为直角三角形ACQ斜边上的中点,即为直角三角形ACQ的外心,选项③正确;利用等弧所对的圆周角相等得到一对角相等,再由一对公共角相等,得到三角形ACQ与三角形ABC相似,根据相似得比例得到AC2=CQ•CB,连接CD,同理可得出三角形ACP与三角形ACD相似,根据相似三角形对应边成比例可得出AC2=AP•AD,等量代换可得出AP•AD=CQ•CB,选项④正确.【解答】解:∠BAD与∠ABC不一定相等,选项①错误;连接BD,如图所示:∵GD为圆O的切线,∴∠GDP=∠ABD,又AB为圆O的直径,∴∠ADB=90°,∵CE⊥AB,∴∠AFP=90°,∴∠ADB=∠AFP,又∠PAF=∠BAD,∴△APF∽△ABD,∴∠ABD=∠APF,又∠APF=∠GPD,∴∠GDP=∠GPD,∴GP=GD,选项②正确;∵直径AB⊥CE,∴A为的中点,即=,又C为的中点,∴=,∴=,∴∠CAP=∠ACP,∴AP=CP,又AB为圆O的直径,∴∠ACQ=90°,∴∠PCQ=∠PQC,∴PC=PQ,∴AP=PQ,即P为Rt△ACQ斜边AQ的中点,∴P为Rt△ACQ的外心,选项③正确;连接CD,如图所示:∵=,∴∠B=∠CAD,又∵∠ACQ=∠BCA,∴△ACQ∽△BCA,∴=,即AC2=CQ•CB,∵=,∴∠ACP=∠ADC,又∠CAP=∠DAC,∴△ACP∽△ADC,∴=,即AC2=AP•AD,∴AP•AD=CQ•CB,选项④正确,则正确的选项序号有②③④.故答案为:②③④【点评】此题考查了切线的性质,圆周角定理,相似三角形的判定与性质,以及三角形的外接圆与圆心,熟练掌握性质及定理是解本题的关键.18.如图,矩形ABCD 的长AB=6cm ,宽AD=3cm .O 是AB 的中点,OP ⊥AB ,两半圆的直径分别为AO 与OB .抛物线y=ax 2经过C 、D 两点,则图中阴影部分的面积是 cm 2.【考点】二次函数综合题.【专题】压轴题.【分析】根据抛物线的对称性易知阴影部分的面积实际是一个半圆的面积,且半圆的半径为OA (或OB )的一半,AB 的四分之一,由此可求出阴影部分的面积.【解答】解:由题意,得:S 阴影=S 半圆=π()2=π(cm 2).【点评】此题并不难,能够发现阴影部分与半圆面积之间的关系是解答此题的关键.三、解答题(共66分)19.(1)我市开展了“寻找雷锋足迹”的活动,某中学为了了解七年级800名学生在“学雷锋活动月”中做好事的情况,随机调查了七年级50名学生在一个月内做好事的次数,并将所得数据绘制成统计图,请根据图中提供的信息解答下列问题:①所调查的七年级50名学生在这个月内做好事次数的平均数是 4.4次 ,众数是 5次 ,极差是 4次 :②根据样本数据,估计该校七年级800名学生在“学雷锋活动月”中做好事不少于4次的人数.(2)甲口袋有2个相同的小球,它们分别写有数字1和2;乙口袋中装有3个相同的小球,它们分别写有数字3、4和5,从这两个口袋中各随机地取出1个小球.①用“树状图法”或“列表法”表示所有可能出现的结果;②取出的两个小球上所写数字之和是偶数的概率是多少?【考点】列表法与树状图法;用样本估计总体;条形统计图.【分析】(1)①根据平均数、众数、极差定义分别进行计算即可;②根据样本估计总体的方法,用800乘以调查的学生做好事不少于4次的人数所占百分比即可;(2)①根据题意画出树状图可直观的得到所有可能出现的结果;②根据①所列树状图,找出符合条件的情况,再利用概率公式进行计算即可.【解答】解:(1)①平均数;(2×5+3×6+4×13+5×16+6×10)÷50=4.4;众数:5次;极差:6﹣2=4;②做好事不少于4次的人数:800×=624;(2)①如图所示:②一共出现6种情况,其中和为偶数的有3种情况,故概率为=.【点评】此题主要考查了条形统计图、众数、平均数、极差、样本估计总体、以及画树状图和概率,关键是能从条形统计图中得到正确信息,正确画出树状图.20.如图,小明想用所学的知识来测量湖心岛上的迎宾槐与岸上的凉亭间的距离,如图,小明想用所学的知识来测量湖心岛上的迎宾槐与岸上的凉亭间的距离,他先在湖岸上的凉亭A处测得湖心岛上的迎宾槐C处位于北偏东65°方向,然后,他从凉亭A处沿湖岸向正东方向走了100米到B处,测得湖心岛上的迎宾槐C处位于北偏东45°方向(点A、B、C在同一水平面上).请你利用小明测得的相关数据,求湖心岛上的迎宾槐C处与湖岸上的凉亭A处之间的距离(结果精确到1米).(参考数据:sin25°≈0.4226,cos25°≈0.9063,tan25°≈0.4663,sin65°≈0.9063,cos65°≈0.4226,tan65°≈2.1445)【考点】解直角三角形的应用-方向角问题.【分析】作CD⊥AB交AB的延长线于点D,设AC=x,则AD=xsin65°,根据x=进行解答.【解答】解:如图,作CD⊥AB交AB的延长线于点D,则∠BCD=45°,∠ACD=65°.在Rt△ACD和Rt△BCD中,设AC=x,则AD=xsin65°,BD=CD=xcos65°,∴100+xcos65°=xsin65°,∴x=≈207米.∴湖心岛上的迎宾槐C处与凉亭A处之间距离约为207米.【点评】本题考查了解直角三角形应用﹣﹣方向角问题,结合生活中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.21.如图,已知A、B、C、D是⊙O上的四个点,AB=BC,BD交AC于点E,连接CD、AD.(1)求证:DB平分∠ADC;(2)若BE=3,ED=6,求AB的长.【考点】圆心角、弧、弦的关系;相似三角形的判定与性质.【专题】综合题.【分析】(1)等弦对等角可证DB平分∠ABC;(2)易证△ABE∽△DBA,根据相似三角形的性质可求AB的长.【解答】(1)证明:∵AB=BC,∴,∴∠BDC=∠ADB,∴DB平分∠ADC;(2)解:由(1)可知,∴∠BAC=∠ADB,又∵∠ABE=∠ABD,∴△ABE∽△DBA,∴,∵BE=3,ED=6,∴BD=9,∴AB2=BE•BD=3×9=27,∴AB=3.【点评】本题考查圆周角的应用,找出对应角证明三角形相似,解决实际问题.22.某工厂投入生产一种机器的总成本为2000万元.当该机器生产数量至少为10台,但不超过70台时,每台成本y与生产数量x之间是一次函数关系,函数y与自变量x的部分对应值如下表:(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求该机器的生产数量;(3)市场调查发现,这种机器每月销售量z(台)与售价a(万元∕台)之间满足如图所示的函数关系.该厂生产这种机器后第一个月按同一售价共卖出这种机器25台,请你求出该厂第一个月销售这种机器的利润.(注:利润=售价﹣成本)【考点】一次函数的应用.【专题】销售问题;待定系数法.【分析】(1)设y与x之间的关系式为y=kx+b,运用待定系数法就可以求出其关系式,由该机器生产数量至少为10台,但不超过70台就可以确定自变量的取值范围;(2)根据每台的成本乘以生产数量等于总成本建立方程求出其解即可;(3)设每月销售量z(台)与售价a(万元∕台)之间的函数关系式为z=ma+n,运用待定系数法求出其解析式,再将z=25代入解析式求出a的值,就可以求出每台的利润,从而求出总利润.【解答】解:(1)设y与x之间的关系式为y=kx+b,由题意,得,解得:,∴y=﹣x+65.∵该机器生产数量至少为10台,但不超过70台,∴10≤x≤70;(2)由题意,得xy=2000,﹣x2+65x=2000,﹣x2+130x﹣4000=0,解得:x1=50,x2=80>70(舍去).答:该机器的生产数量为50台;(3)设每月销售量z(台)与售价a(万元∕台)之间的函数关系式为z=ma+n,由函数图象,得,解得:,∴z=﹣a+90.当z=25时,a=65,成本y=﹣z+65=﹣×25+65=(万元);总利润为:25(65﹣)==312.5(万元).答:该厂第一个月销售这种机器的利润为312.5万元.【点评】本题考查了待定系数法求一次函数的解析式的运用,一元二次方程的运用,销售问题利润=售价﹣进价的运用,解答时求出一次函数的解析式是关键.23.已知:如图所示的一张矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A与点C重合,再展开,折痕EF交AD边于点E,交BC边于点F,分别连接AF和CE.(1)求证:四边形AFCE是菱形;(2)若AE=10cm,△ABF的面积为24cm2,求△ABF的周长;(3)在线段AC上是否存在一点P,使得2AE2=AC•AP?若存在,请说明点P的位置,并予以证明;若不存在,请说明理由.【考点】相似三角形的判定与性质;全等三角形的判定与性质;勾股定理;矩形的性质;翻折变换(折叠问题).【专题】几何综合题.【分析】(1)通过证明△AOE≌△COF,可得四边形AFCE是平行四边形;由折叠的性质,可得AE=EC,即可证明;(2)由勾股定理得AB2+FB2=100,△ABF的面积为24cm2可得,AB×BF=48;变换成完全平方式,即可解答;(3)过点E作BC的垂线,交AC于点P,通过证明△AOE∽△AEP,即可证明;【解答】(1)证明:由题意可知OA=OC,EF⊥AO,∵AD∥BC,∴∠AEO=∠CFO,∠EAO=∠FCO,∴△AOE≌△COF,∴AE=CF,又AE∥CF,∴四边形AECF是平行四边形,由图形折叠的性质可知,AC⊥EF,∴四边形AECF是菱形;(2)解:∵四边形AECF是菱形,∴AF=AE=10cm,设AB=a,BF=b,∵△ABF的面积为24cm2,∴a2+b2=100,ab=48,∴(a+b)2=196,∴a+b=14或a+b=﹣14(不合题意,舍去),∴△ABF的周长为14+10=24cm;。
中考数学试卷及答案-山东省潍坊市市2016年中考数学试题

2016年山东省潍坊市中考数学试卷一、选择题:本大题共12小题,每小题3分1.计算:20•2﹣3=()A.﹣B.C.0 D.82.下列科学计算器的按键中,其上面标注的符号是轴对称图形但不是中心对称图形的是()A.B.C.D.3.如图,几何体是由底面圆心在同一条直线上的三个圆柱构成的,其俯视图是()A.B.C.D.4.近日,记者从潍坊市统计局获悉,2016年第一季度潍坊全市实现生产总值1256.77亿元,将1256.77亿用科学记数法可表示为(精确到百亿位)()A.1.2×1011B.1.3×1011C.1.26×1011D.0.13×10125.实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b6.关于x的一元二次方程x2﹣x+sinα=0有两个相等的实数根,则锐角α等于()A.15° B.30° C.45° D.60°7.木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是()A.B.C.D.8.将下列多项式因式分解,结果中不含有因式a+1的是()A.a2﹣1 B.a2+a C.a2+a﹣2 D.(a+2)2﹣2(a+2)+19.如图,在平面直角坐标系中,⊙M与x轴相切于点A(8,0),与y轴分别交于点B(0,4)和点C(0,16),则圆心M到坐标原点O的距离是()A.10 B.8C.4D.210.若关于x的方程+=3的解为正数,则m的取值范围是()A.m<B.m<且m≠C.m>﹣D.m>﹣且m≠﹣11.如图,在Rt△ABC中,∠A=30°,BC=2,以直角边AC为直径作⊙O交AB于点D,则图中阴影部分的面积是()A.﹣B.﹣C.﹣D.﹣12.运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是()A.x≥11 B.11≤x<23 C.11<x≤23 D.x≤23二、填空题:本大题共6小题,每小题3分13.计算:(+)=.14.若3x2n y m与x4﹣n y n﹣1是同类项,则m+n=.的总成绩是分.16.已知反比例函数y=(k≠0)的图象经过(3,﹣1),则当1<y<3时,自变量x的取值范围是.17.已知∠AOB=60°,点P是∠AOB的平分线OC上的动点,点M在边OA上,且OM=4,则点P到点M与到边OA的距离之和的最小值是.18.在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、,使得点A1、A2、A3、…在直线l上,点C1、正方形A2B2C2C1、…、正方形A n B n C n C n﹣1C2、C3、…在y轴正半轴上,则点B n的坐标是.三、解答题:本大题共7小题,共66分19.关于x的方程3x2+mx﹣8=0有一个根是,求另一个根及m的值.20.今年5月,某大型商业集团随机抽取所属的m家商业连锁店进行评估,将各连锁店按(1)求m的值;(2)在扇形统计图中,求B等级所在扇形的圆心角的大小;(结果用度、分、秒表示)(3)从评估成绩不少于80分的连锁店中任选2家介绍营销经验,求其中至少有一家是A 等级的概率.21.正方形ABCD内接于⊙O,如图所示,在劣弧上取一点E,连接DE、BE,过点D 作DF∥BE交⊙O于点F,连接BF、AF,且AF与DE相交于点G,求证:(1)四边形EBFD是矩形;(2)DG=BE.22.如图,直立于地面上的电线杆AB,在阳光下落在水平地面和坡面上的影子分别是BC、CD,测得BC=6米,CD=4米,∠BCD=150°,在D处测得电线杆顶端A的仰角为30°,试求电线杆的高度(结果保留根号)23.旅游公司在景区内配置了50辆观光车共游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数.发现每天的营运规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入﹣管理费)(2)当每辆车的日租金为多少元时,每天的净收入最多?24.如图,在菱形ABCD中,AB=2,∠BAD=60°,过点D作DE⊥AB于点E,DF⊥BC于点F.(1)如图1,连接AC分别交DE、DF于点M、N,求证:MN=AC;(2)如图2,将△EDF以点D为旋转中心旋转,其两边DE′、DF′分别与直线AB、BC相交于点G、P,连接GP,当△DGP的面积等于3时,求旋转角的大小并指明旋转方向.25.如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P时直线AC下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.2016年山东省潍坊市中考数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分1.计算:20•2﹣3=()A.﹣B.C.0 D.8【考点】负整数指数幂;零指数幂.【分析】直接利用负整数指数幂的性质结合零指数幂的性质分析得出答案.【解答】解:20•2﹣3=1×=.故选:B.2.下列科学计算器的按键中,其上面标注的符号是轴对称图形但不是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,又是中心对称图形,故此选项错误;B、不是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,又是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项正确.故选:D.3.如图,几何体是由底面圆心在同一条直线上的三个圆柱构成的,其俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据俯视图的概念和看得到的边都应用实线表现在三视图中、看不到,又实际存在的,又没有被其他边挡住的边用虚线表现在三视图中解答即可.【解答】解:图中几何体的俯视图是C选项中的图形.故选:C.4.近日,记者从潍坊市统计局获悉,2016年第一季度潍坊全市实现生产总值1256.77亿元,将1256.77亿用科学记数法可表示为(精确到百亿位)()A.1.2×1011B.1.3×1011C.1.26×1011D.0.13×1012【考点】科学记数法与有效数字.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将1256.77亿用科学记数法可表示为1.3×1011.故选B.5.实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b【考点】二次根式的性质与化简;实数与数轴.【分析】直接利用数轴上a,b的位置,进而得出a<0,a﹣b<0,再利用绝对值以及二次根式的性质化简得出答案.【解答】解:如图所示:a<0,a﹣b<0,则|a|+=﹣a﹣(a﹣b)=﹣2a+b.故选:A.6.关于x的一元二次方程x2﹣x+sinα=0有两个相等的实数根,则锐角α等于()A.15° B.30° C.45° D.60°【考点】根的判别式;特殊角的三角函数值.【分析】由方程有两个相等的实数根,结合根的判别式可得出sinα=,再由α为锐角,即可得出结论.【解答】解:∵关于x的一元二次方程x2﹣x+sinα=0有两个相等的实数根,∴△=﹣4sinα=2﹣4sinα=0,解得:sinα=,∵α为锐角,∴α=30°.故选B.7.木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是()A .B .C .D .【考点】轨迹;直角三角形斜边上的中线.【分析】先连接OP ,易知OP 是Rt △AOB 斜边上的中线,根据直角三角形斜边上的中线等于斜边的一半,可得OP=AB ,由于木杆不管如何滑动,长度都不变,那么OP 就是一个定值,那么P 点就在以O 为圆心的圆弧上. 【解答】解:如右图,连接OP ,由于OP 是Rt △AOB 斜边上的中线,所以OP=AB ,不管木杆如何滑动,它的长度不变,也就是OP 是一个定值,点P 就在以O 为圆心的圆弧上,那么中点P 下落的路线是一段弧线. 故选D .8.将下列多项式因式分解,结果中不含有因式a+1的是( ) A .a 2﹣1 B .a 2+a C .a 2+a ﹣2 D .(a+2)2﹣2(a+2)+1 【考点】因式分解的意义.【分析】先把各个多项式分解因式,即可得出结果. 【解答】解:∵a 2﹣1=(a+1)(a ﹣1), a 2+a=a (a+1), a 2+a ﹣2=(a+2)(a ﹣1),(a+2)2﹣2(a+2)+1=(a+2﹣1)2=(a+1)2, ∴结果中不含有因式a+1的是选项C ; 故选:C .9.如图,在平面直角坐标系中,⊙M 与x 轴相切于点A (8,0),与y 轴分别交于点B (0,4)和点C (0,16),则圆心M 到坐标原点O 的距离是( )A.10 B.8C.4D.2【考点】切线的性质;坐标与图形性质.【分析】如图连接BM、OM,AM,作MH⊥BC于H,先证明四边形OAMH是矩形,根据垂径定理求出HB,在RT△AOM中求出OM即可.【解答】解:如图连接BM、OM,AM,作MH⊥BC于H.∵⊙M与x轴相切于点A(8,0),∴AM⊥OA,OA=8,∴∠OAM=∠MH0=∠HOA=90°,∴四边形OAMH是矩形,∴AM=OH,∵MH⊥BC,∴HC=HB=6,∴OH=AM=10,在RT△AOM中,OM===2.故选D.10.若关于x的方程+=3的解为正数,则m的取值范围是()A.m<B.m<且m≠C.m>﹣D.m>﹣且m≠﹣【考点】分式方程的解.【分析】直接解分式方程,再利用解为正数列不等式,解不等式得出x的取值范围,进而得出答案.【解答】解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=,∵关于x 的方程+=3的解为正数,∴﹣2m+9>0,级的:m <,当x=3时,x==3,解得:m=,故m 的取值范围是:m <且m ≠. 故选:B .11.如图,在Rt △ABC 中,∠A=30°,BC=2,以直角边AC 为直径作⊙O 交AB 于点D ,则图中阴影部分的面积是( )A .﹣B .﹣C .﹣D .﹣【考点】扇形面积的计算;含30度角的直角三角形.【分析】连接连接OD 、CD ,根据S 阴=S △ABC ﹣S △ACD ﹣(S 扇形OCD ﹣S △OCD )计算即可解决问题.【解答】解:如图连接OD 、CD . ∵AC 是直径, ∴∠ADC=90°, ∵∠A=30°,∴∠ACD=90°﹣∠A=60°, ∵OC=OD ,∴△OCD 是等边三角形, ∵BC 是切线.∴∠ACB=90°,∵BC=2,∴AB=4,AC=6,∴S 阴=S △ABC ﹣S △ACD ﹣(S 扇形OCD ﹣S △OCD ) =×6×2﹣×3×﹣(﹣×32)=﹣π.故选A .12.运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是()A.x≥11 B.11≤x<23 C.11<x≤23 D.x≤23【考点】一元一次不等式组的应用.【分析】根据运算程序,前两次运算结果小于等于95,第三次运算结果大于95列出不等式组,然后求解即可.【解答】解:由题意得,,解不等式①得,x≤47,解不等式②得,x≤23,解不等式③得,x>11,所以,x的取值范围是11<x≤23.故选C.二、填空题:本大题共6小题,每小题3分13.计算:(+)=12.【考点】二次根式的混合运算.【分析】先把化简,再本括号内合并,然后进行二次根式的乘法运算.【解答】解:原式=•(+3)=×4=12.故答案为12.14.若3x2n y m与x4﹣n y n﹣1是同类项,则m+n=.【考点】同类项.【分析】直接利用同类项的定义得出关于m,n的等式,进而求出答案.【解答】解:∵3x2n y m与x4﹣n y n﹣1是同类项,∴,解得:则m+n=+=.故答案为:.的总成绩是77.4分.【考点】加权平均数.【分析】根据该应聘者的总成绩=创新能力×所占的比值+综合知识×所占的比值+语言表达×所占的比值即可求得.【解答】解:根据题意,该应聘者的总成绩是:70×+80×+92×=77.4(分),故答案为:77.4.16.已知反比例函数y=(k≠0)的图象经过(3,﹣1),则当1<y<3时,自变量x的取值范围是﹣3<x<﹣1.【考点】反比例函数的性质;反比例函数图象上点的坐标特征.【分析】根据反比例函数过点(3,﹣1)结合反比例函数图象上点的坐标特征可求出k值,根据k值可得出反比例函数在每个象限内的函数图象都单增,分别代入y=1、y=3求出x值,即可得出结论.【解答】解:∵反比例函数y=(k≠0)的图象经过(3,﹣1),∴k=3×(﹣1)=﹣3,∴反比例函数的解析式为y=.∵反比例函数y=中k=﹣3,∴该反比例函数的图象经过第二、四象限,且在每个象限内均单增.当y=1时,x==﹣3;当y=3时,x==﹣1.∴1<y<3时,自变量x的取值范围是﹣3<x<﹣1.故答案为:﹣3<x<﹣1.17.已知∠AOB=60°,点P是∠AOB的平分线OC上的动点,点M在边OA上,且OM=4,则点P到点M与到边OA的距离之和的最小值是2.【考点】轴对称-最短路线问题.【分析】过M作MN′⊥OB于N′,交OC于P,即MN′的长度等于点P到点M与到边OA 的距离之和的最小值,解直角三角形即可得到结论.【解答】解:过M作MN′⊥OB于N′,交OC于P,则MN′的长度等于PM+PN的最小值,即MN′的长度等于点P到点M与到边OA的距离之和的最小值,∵∠ON′M=90°,OM=4,∴MN′=OM•sin60°=2,∴点P到点M与到边OA的距离之和的最小值为2.18.在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、,使得点A1、A2、A3、…在直线l上,点C1、正方形A2B2C2C1、…、正方形A n B n C n C n﹣1C2、C3、…在y轴正半轴上,则点B n的坐标是(2n﹣1,2n﹣1).【考点】一次函数图象上点的坐标特征;正方形的性质.【分析】先求出B1、B2、B3的坐标,探究规律后即可解决问题.【解答】解:∵y=x﹣1与x轴交于点A1,∴A1点坐标(1,0),∵四边形A1B1C1O是正方形,∴B1坐标(1,1),∵C1A2∥x轴,∴A2坐标(2,1),∵四边形A2B2C2C1是正方形,∴B2坐标(2,3),∵C2A3∥x轴,∴A3坐标(4,3),∵四边形A3B3C3C2是正方形,∴B3(4,7),∵B1(20,21﹣1),B2(21,22﹣1),B3(22,23﹣1),…,∴B n坐标(2n﹣1,2n﹣1).故答案为(2n﹣1,2n﹣1).三、解答题:本大题共7小题,共66分19.关于x的方程3x2+mx﹣8=0有一个根是,求另一个根及m的值.【考点】根与系数的关系.【分析】由于x=是方程的一个根,直接把它代入方程即可求出m的值,然后由根与系数的关系来求方程的另一根.【解答】解:设方程的另一根为t.依题意得:3×()2+m﹣8=0,解得m=10.又t=﹣,所以t=﹣4.综上所述,另一个根是﹣4,m的值为10.20.今年5月,某大型商业集团随机抽取所属的m家商业连锁店进行评估,将各连锁店按A B C D(1)求m的值;(2)在扇形统计图中,求B等级所在扇形的圆心角的大小;(结果用度、分、秒表示)(3)从评估成绩不少于80分的连锁店中任选2家介绍营销经验,求其中至少有一家是A 等级的概率.【考点】列表法与树状图法;频数(率)分布表;扇形统计图.【分析】(1)由C等级频数为15,占60%,即可求得m的值;(2)首先求得B等级的频数,继而求得B等级所在扇形的圆心角的大小;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其中至少有一家是A等级的情况,再利用概率公式求解即可求得答案.【解答】解:(1)∵C等级频数为15,占60%,∴m=15÷60%=25;(2)∵B等级频数为:25﹣2﹣15﹣6=2,∴B等级所在扇形的圆心角的大小为:×360°=28.8°=28°48′;(3)评估成绩不少于80分的连锁店中,有两家等级为A,有两家等级为B,画树状图得:∵共有12种等可能的结果,其中至少有一家是A等级的有10种情况,∴其中至少有一家是A等级的概率为:=.21.正方形ABCD内接于⊙O,如图所示,在劣弧上取一点E,连接DE、BE,过点D 作DF∥BE交⊙O于点F,连接BF、AF,且AF与DE相交于点G,求证:(1)四边形EBFD是矩形;(2)DG=BE.【考点】正方形的性质;矩形的判定;圆周角定理.【分析】(1)直接利用正方形的性质、圆周角定理结合平行线的性质得出∠BED=∠BAD=90°,∠BFD=∠BCD=90°,∠EDF=90°,进而得出答案;(2)直接利用正方形的性质的度数是90°,进而得出BE=DF,则BE=DG.【解答】证明:(1)∵正方形ABCD内接于⊙O,∴∠BED=∠BAD=90°,∠BFD=∠BCD=90°,又∵DF∥BE,∴∠EDF+∠BED=180°,∴∠EDF=90°,∴四边形EBFD是矩形;(2))∵正方形ABCD内接于⊙O,∴的度数是90°,∴∠AFD=45°,又∵∠GDF=90°,∴∠DGF=∠DFC=45°,∴DG=DF,又∵在矩形EBFD中,BE=DF,∴BE=DG.22.如图,直立于地面上的电线杆AB,在阳光下落在水平地面和坡面上的影子分别是BC、CD,测得BC=6米,CD=4米,∠BCD=150°,在D处测得电线杆顶端A的仰角为30°,试求电线杆的高度(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】延长AD交BC的延长线于E,作DF⊥BE于F,根据直角三角形的性质和勾股定理求出DF、CF的长,根据正切的定义求出EF,得到BE的长,根据正切的定义解答即可.【解答】解:延长AD交BC的延长线于E,作DF⊥BE于F,∵∠BCD=150°,∴∠DCF=30°,又CD=4,∴DF=2,CF==2,由题意得∠E=30°,∴EF==2,∴BE=BC+CF+EF=6+4,∴AB=BE×tanE=(6+4)×=(2+4)米,答:电线杆的高度为(2+4)米.23.旅游公司在景区内配置了50辆观光车共游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数.发现每天的营运规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入﹣管理费)(2)当每辆车的日租金为多少元时,每天的净收入最多?【考点】二次函数的应用.【分析】(1)观光车全部租出每天的净收入=出租自行车的总收入﹣管理费,根据不等关系:净收入为正,列出不等式求解即可;(2)由函数解析式是分段函数,在每一段内求出函数最大值,比较得出函数的最大值.【解答】解:(1)由题意知,若观光车能全部租出,则0<x≤100,由50x﹣1100>0,解得x>22,又∵x是5的倍数,∴每辆车的日租金至少应为25元;(2)设每辆车的净收入为y元,当0<x≤100时,y1=50x﹣1100,∵y1随x的增大而增大,∴当x=100时,y1的最大值为50×100﹣1100=3900;当x>100时,y2=(50﹣)x﹣1100=﹣x2+70x﹣1100=﹣(x﹣175)2+5025,当x=175时,y2的最大值为5025,5025>3900,故当每辆车的日租金为175元时,每天的净收入最多是5025元.24.如图,在菱形ABCD中,AB=2,∠BAD=60°,过点D作DE⊥AB于点E,DF⊥BC于点F.(1)如图1,连接AC分别交DE、DF于点M、N,求证:MN=AC;(2)如图2,将△EDF以点D为旋转中心旋转,其两边DE′、DF′分别与直线AB、BC相交于点G、P,连接GP,当△DGP的面积等于3时,求旋转角的大小并指明旋转方向.【考点】旋转的性质;菱形的性质.【分析】(1)连接BD,证明△ABD为等边三角形,根据等腰三角形的三线合一得到AE=EB,根据相似三角形的性质解答即可;(2)分∠EDF顺时针旋转和逆时针旋转两种情况,根据旋转变换的性质解答即可.【解答】(1)证明:如图1,连接BD,交AC于O,在菱形ABCD中,∠BAD=60°,AD=AB,∴△ABD为等边三角形,∵DE⊥AB,∴AE=EB,∵AB∥DC,∴==,同理,=,∴MN=AC;(2)解:∵AB∥DC,∠BAD=60°,∴∠ADC=120°,又∠ADE=∠CDF=30°,∴∠EDF=60°,当∠EDF顺时针旋转时,由旋转的性质可知,∠EDG=∠FDP,∠GDP=∠EDF=60°,DE=DF=,∠DEG=∠DFP=90°,在△DEG和△DFP中,,∴△DEG≌△DFP,∴DG=DP,∴△DGP为等边三角形,∴△DGP的面积=DG2=3,解得,DG=2,则cos∠EDG==,∴∠EDG=60°,∴当顺时针旋转60°时,△DGP的面积等于3,同理可得,当逆时针旋转60°时,△DGP的面积也等于3,综上所述,将△EDF以点D为旋转中心,顺时针或逆时针旋转60°时,△DGP的面积等于3.25.如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P时直线AC下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)用待定系数法求出抛物线解析式即可;(2)设点P(m,m2+2m+1),表示出PE=﹣m2﹣3m,再用S四边形AECP=S△AEC+S△APC=AC×PE,建立函数关系式,求出极值即可;(3)先判断出PF=CF,再得到∠PCF=∠EAF,以C、P、Q为顶点的三角形与△ABC相似,分两种情况计算即可.【解答】解:(1)∵点A(0,1).B(﹣9,10)在抛物线上,∴,∴,∴抛物线的解析式为y=x2+2x+1,(2)∵AC∥x轴,A(0,1)∴x2+2x+1=1,∴x1=6,x2=0,∴点C的坐标(﹣6,1),∵点A(0,1).B(﹣9,10),∴直线AB的解析式为y=﹣x+1,设点P(m,m2+2m+1)∴E(m,﹣m+1)∴PE=﹣m+1﹣(m2+2m+1)=﹣m2﹣3m,∵AC⊥EP,AC=6,∴S四边形AECP=S△AEC+S△APC=AC×EF+AC×PF=AC×(EF+PF)=AC×PE=×6×(﹣m2﹣3m)=﹣m2﹣9m=﹣(m+)2+,∵﹣6<m<0∴当m=﹣时,四边形AECP的面积的最大值是,此时点P(﹣,﹣).(3)∵y=x2+2x+1=(x+3)2﹣2,∴P(﹣3,﹣2),∴PF=y F﹣y P=3,CF=x F﹣x C=3,∴PF=CF,∴∠PCF=45°同理可得:∠EAF=45°,∴∠PCF=∠EAF,∴在直线AC上存在满足条件的Q,设Q(t,1)且AB=9,AC=6,CP=3∵以C、P、Q为顶点的三角形与△ABC相似,①当△CPQ∽△ABC时,∴,∴,∴t=﹣4,∴Q(﹣4,1)②当△CQP∽△ABC时,∴,∴,∴t=3,∴Q(3,1).2016年7月11日。
2016年山东省潍坊市市中考数学试卷(含解析)

2016年山东省潍坊市中考数学试卷一、选择题:本大题共12小题,每小题3分1.计算:20•2﹣3=()A.﹣B. C.0 D.82.下列科学计算器的按键中,其上面标注的符号是轴对称图形但不是中心对称图形的是()A. B. C. D.3.如图,几何体是由底面圆心在同一条直线上的三个圆柱构成的,其俯视图是()A. B. C. D.4.近日,记者从潍坊市统计局获悉,2016年第一季度潍坊全市实现生产总值1256.77亿元,将1256.77亿用科学记数法可表示为(精确到百亿位)()A.1.2×1011B.1.3×1011C.1.26×1011D.0.13×10125.实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b6.关于x的一元二次方程x2﹣x+sinα=0有两个相等的实数根,则锐角α等于()A.15° B.30° C.45° D.60°7.木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是()A. B. C. D.8.将下列多项式因式分解,结果中不含有因式a+1的是()A.a2﹣1 B.a2+a C.a2+a﹣2 D.(a+2)2﹣2(a+2)+19.如图,在平面直角坐标系中,⊙M与x轴相切于点A(8,0),与y轴分别交于点B(0,4)和点C(0,16),则圆心M到坐标原点O的距离是()A.10 B.8C.4D.210.若关于x的方程+=3的解为正数,则m的取值范围是()A.m<B.m<且m≠C.m>﹣D.m>﹣且m≠﹣11.如图,在Rt△ABC中,∠A=30°,BC=2,以直角边AC为直径作⊙O交AB于点D,则图中阴影部分的面积是()A.﹣B.﹣C.﹣D.﹣12.运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是()A.x≥11 B.11≤x<23 C.11<x≤23 D.x≤23二、填空题:本大题共6小题,每小题3分13.计算:(+)= .14.若3x2n y m与x4﹣n y n﹣1是同类项,则m+n= .分.16.已知反比例函数y=(k≠0)的图象经过(3,﹣1),则当1<y<3时,自变量x的取值范围是.17.已知∠AOB=60°,点P是∠AOB的平分线OC上的动点,点M在边OA上,且OM=4,则点P到点M与到边OA的距离之和的最小值是.18.在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形A n B n C n C n﹣1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点B n的坐标是.三、解答题:本大题共7小题,共66分19.关于x的方程3x2+mx﹣8=0有一个根是,求另一个根及m的值.20.今年5月,某大型商业集团随机抽取所属的m家商业连锁店进行评估,将各连锁店按照评估成绩分(1)求m的值;(2)在扇形统计图中,求B等级所在扇形的圆心角的大小;(结果用度、分、秒表示)(3)从评估成绩不少于80分的连锁店中任选2家介绍营销经验,求其中至少有一家是A等级的概率.21.正方形ABCD内接于⊙O,如图所示,在劣弧上取一点E,连接DE、BE,过点D作DF∥BE交⊙O于点F,连接BF、AF,且AF与DE相交于点G,求证:(1)四边形EBFD是矩形;(2)DG=BE.22.如图,直立于地面上的电线杆AB,在阳光下落在水平地面和坡面上的影子分别是BC、CD,测得BC=6米,CD=4米,∠BCD=150°,在D处测得电线杆顶端A的仰角为30°,试求电线杆的高度(结果保留根号)23.旅游公司在景区内配置了50辆观光车共游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数.发现每天的营运规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入﹣管理费)(2)当每辆车的日租金为多少元时,每天的净收入最多?24.如图,在菱形ABCD中,AB=2,∠BAD=60°,过点D作DE⊥AB于点E,DF⊥BC于点F.(1)如图1,连接AC分别交DE、DF于点M、N,求证:MN=AC;(2)如图2,将△EDF以点D为旋转中心旋转,其两边DE′、DF′分别与直线AB、BC相交于点G、P,连接GP,当△DGP的面积等于3时,求旋转角的大小并指明旋转方向.25.如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x 轴,点P时直线AC下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC 相似,若存在,求出点Q的坐标,若不存在,请说明理由.2016年山东省潍坊市中考数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分1.计算:20•2﹣3=()A.﹣B. C.0 D.8【考点】负整数指数幂;零指数幂.【分析】直接利用负整数指数幂的性质结合零指数幂的性质分析得出答案.【解答】解:20•2﹣3=1×=.故选:B.2.下列科学计算器的按键中,其上面标注的符号是轴对称图形但不是中心对称图形的是()A. B. C. D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,又是中心对称图形,故此选项错误;B、不是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,又是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项正确.故选:D.3.如图,几何体是由底面圆心在同一条直线上的三个圆柱构成的,其俯视图是()A. B. C. D.【考点】简单组合体的三视图.【分析】根据俯视图的概念和看得到的边都应用实线表现在三视图中、看不到,又实际存在的,又没有被其他边挡住的边用虚线表现在三视图中解答即可.【解答】解:图中几何体的俯视图是C选项中的图形.故选:C.4.近日,记者从潍坊市统计局获悉,2016年第一季度潍坊全市实现生产总值1256.77亿元,将1256.77亿用科学记数法可表示为(精确到百亿位)()A.1.2×1011B.1.3×1011C.1.26×1011D.0.13×1012【考点】科学记数法与有效数字.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将1256.77亿用科学记数法可表示为1.3×1011.故选B.5.实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b【考点】二次根式的性质与化简;实数与数轴.【分析】直接利用数轴上a,b的位置,进而得出a<0,a﹣b<0,再利用绝对值以及二次根式的性质化简得出答案.【解答】解:如图所示:a<0,a﹣b<0,则|a|+=﹣a﹣(a﹣b)=﹣2a+b.故选:A.6.关于x的一元二次方程x2﹣x+sinα=0有两个相等的实数根,则锐角α等于()A.15° B.30° C.45° D.60°【考点】根的判别式;特殊角的三角函数值.【分析】由方程有两个相等的实数根,结合根的判别式可得出sinα=,再由α为锐角,即可得出结论.【解答】解:∵关于x的一元二次方程x2﹣x+sinα=0有两个相等的实数根,∴△=﹣4sinα=2﹣4sinα=0,解得:sinα=,∵α为锐角,∴α=30°.故选B.7.木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是()A. B. C. D.【考点】轨迹;直角三角形斜边上的中线.【分析】先连接OP,易知OP是Rt△AOB斜边上的中线,根据直角三角形斜边上的中线等于斜边的一半,可得OP=AB,由于木杆不管如何滑动,长度都不变,那么OP就是一个定值,那么P点就在以O为圆心的圆弧上.【解答】解:如右图,连接OP,由于OP是Rt△AOB斜边上的中线,所以OP=AB,不管木杆如何滑动,它的长度不变,也就是OP是一个定值,点P就在以O为圆心的圆弧上,那么中点P下落的路线是一段弧线.故选D.8.将下列多项式因式分解,结果中不含有因式a+1的是()A.a2﹣1 B.a2+a C.a2+a﹣2 D.(a+2)2﹣2(a+2)+1【考点】因式分解的意义.【分析】先把各个多项式分解因式,即可得出结果.【解答】解:∵a2﹣1=(a+1)(a﹣1),a2+a=a(a+1),a2+a﹣2=(a+2)(a﹣1),(a+2)2﹣2(a+2)+1=(a+2﹣1)2=(a+1)2,∴结果中不含有因式a+1的是选项C;故选:C.9.如图,在平面直角坐标系中,⊙M与x轴相切于点A(8,0),与y轴分别交于点B(0,4)和点C(0,16),则圆心M到坐标原点O的距离是()A.10 B.8C.4D.2【考点】切线的性质;坐标与图形性质.【分析】如图连接BM、OM,AM,作MH⊥BC于H,先证明四边形OAMH是矩形,根据垂径定理求出HB,在RT△AOM中求出OM即可.【解答】解:如图连接BM、OM,AM,作MH⊥BC于H.∵⊙M与x轴相切于点A(8,0),∴AM⊥OA,OA=8,∴∠OAM=∠MH0=∠HOA=90°,∴四边形OAMH是矩形,∴AM=OH,∵MH⊥BC,∴HC=HB=6,∴OH=AM=10,在RT△AOM中,OM===2.故选D.10.若关于x的方程+=3的解为正数,则m的取值范围是()A.m<B.m<且m≠C.m>﹣D.m>﹣且m≠﹣【考点】分式方程的解.【分析】直接解分式方程,再利用解为正数列不等式,解不等式得出x的取值范围,进而得出答案.【解答】解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=,∵关于x的方程+=3的解为正数,∴﹣2m+9>0,级的:m<,当x=3时,x==3,解得:m=,故m的取值范围是:m<且m≠.故选:B.11.如图,在Rt△ABC中,∠A=30°,BC=2,以直角边AC为直径作⊙O交AB于点D,则图中阴影部分的面积是()A.﹣B.﹣C.﹣D.﹣【考点】扇形面积的计算;含30度角的直角三角形.【分析】连接连接OD、CD,根据S阴=S△ABC﹣S△ACD﹣(S扇形OCD﹣S△OCD)计算即可解决问题.【解答】解:如图连接OD、CD.∵AC是直径,∴∠ADC=90°,∵∠A=30°,∴∠ACD=90°﹣∠A=60°,∵OC=OD,∴△OCD是等边三角形,∵BC是切线.∴∠ACB=90°,∵BC=2,∴AB=4,AC=6,∴S阴=S△ABC﹣S△ACD﹣(S扇形OCD﹣S△OCD)=×6×2﹣×3×﹣(﹣×32)=﹣π.故选A.12.运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是()A.x≥11 B.11≤x<23 C.11<x≤23 D.x≤23【考点】一元一次不等式组的应用.【分析】根据运算程序,前两次运算结果小于等于95,第三次运算结果大于95列出不等式组,然后求解即可.【解答】解:由题意得,,解不等式①得,x≤47,解不等式②得,x≤23,解不等式③得,x>11,所以,x的取值范围是11<x≤23.故选C.二、填空题:本大题共6小题,每小题3分13.计算:(+)= 12 .【考点】二次根式的混合运算.【分析】先把化简,再本括号内合并,然后进行二次根式的乘法运算.【解答】解:原式=•(+3)=×4=12.故答案为12.14.若3x2n y m与x4﹣n y n﹣1是同类项,则m+n= .【考点】同类项.【分析】直接利用同类项的定义得出关于m,n的等式,进而求出答案.【解答】解:∵3x2n y m与x4﹣n y n﹣1是同类项,∴,解得:则m+n=+=.故答案为:.77.4 分.【考点】加权平均数.【分析】根据该应聘者的总成绩=创新能力×所占的比值+综合知识×所占的比值+语言表达×所占的比值即可求得.【解答】解:根据题意,该应聘者的总成绩是:70×+80×+92×=77.4(分),故答案为:77.4.16.已知反比例函数y=(k≠0)的图象经过(3,﹣1),则当1<y<3时,自变量x的取值范围是﹣3<x<﹣1 .【考点】反比例函数的性质;反比例函数图象上点的坐标特征.【分析】根据反比例函数过点(3,﹣1)结合反比例函数图象上点的坐标特征可求出k值,根据k值可得出反比例函数在每个象限内的函数图象都单增,分别代入y=1、y=3求出x值,即可得出结论.【解答】解:∵反比例函数y=(k≠0)的图象经过(3,﹣1),∴k=3×(﹣1)=﹣3,∴反比例函数的解析式为y=.∵反比例函数y=中k=﹣3,∴该反比例函数的图象经过第二、四象限,且在每个象限内均单增.当y=1时,x==﹣3;当y=3时,x==﹣1.∴1<y<3时,自变量x的取值范围是﹣3<x<﹣1.故答案为:﹣3<x<﹣1.17.已知∠AOB=60°,点P是∠AOB的平分线OC上的动点,点M在边OA上,且OM=4,则点P到点M与到边OA的距离之和的最小值是2.【考点】轴对称-最短路线问题.【分析】过M作MN′⊥OB于N′,交OC于P,即MN′的长度等于点P到点M与到边OA的距离之和的最小值,解直角三角形即可得到结论.【解答】解:过M作MN′⊥OB于N′,交OC于P,则MN′的长度等于PM+PN的最小值,即MN′的长度等于点P到点M与到边OA的距离之和的最小值,∵∠ON′M=90°,OM=4,∴MN′=OM•sin60°=2,∴点P到点M与到边OA的距离之和的最小值为2.18.在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形A n B n C n C n﹣1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点B n的坐标是(2n﹣1,2n﹣1).【考点】一次函数图象上点的坐标特征;正方形的性质.【分析】先求出B1、B2、B3的坐标,探究规律后即可解决问题.【解答】解:∵y=x﹣1与x轴交于点A1,∴A1点坐标(1,0),∵四边形A1B1C1O是正方形,∴B1坐标(1,1),∵C1A2∥x轴,∴A2坐标(2,1),∵四边形A2B2C2C1是正方形,∴B2坐标(2,3),∵C2A3∥x轴,∴A3坐标(4,3),∵四边形A3B3C3C2是正方形,∴B3(4,7),∵B1(20,21﹣1),B2(21,22﹣1),B3(22,23﹣1),…,∴B n坐标(2n﹣1,2n﹣1).故答案为(2n﹣1,2n﹣1).三、解答题:本大题共7小题,共66分19.关于x的方程3x2+mx﹣8=0有一个根是,求另一个根及m的值.【考点】根与系数的关系.【分析】由于x=是方程的一个根,直接把它代入方程即可求出m的值,然后由根与系数的关系来求方程的另一根.【解答】解:设方程的另一根为t.依题意得:3×()2+m﹣8=0,解得m=10.又t=﹣,所以t=﹣4.综上所述,另一个根是﹣4,m的值为10.20.今年5月,某大型商业集团随机抽取所属的m家商业连锁店进行评估,将各连锁店按照评估成绩分(1)求m的值;(2)在扇形统计图中,求B等级所在扇形的圆心角的大小;(结果用度、分、秒表示)(3)从评估成绩不少于80分的连锁店中任选2家介绍营销经验,求其中至少有一家是A等级的概率.【考点】列表法与树状图法;频数(率)分布表;扇形统计图.【分析】(1)由C等级频数为15,占60%,即可求得m的值;(2)首先求得B等级的频数,继而求得B等级所在扇形的圆心角的大小;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其中至少有一家是A等级的情况,再利用概率公式求解即可求得答案.【解答】解:(1)∵C等级频数为15,占60%,∴m=15÷60%=25;(2)∵B等级频数为:25﹣2﹣15﹣6=2,∴B等级所在扇形的圆心角的大小为:×360°=28.8°=28°48′;(3)评估成绩不少于80分的连锁店中,有两家等级为A,有两家等级为B,画树状图得:∵共有12种等可能的结果,其中至少有一家是A等级的有10种情况,∴其中至少有一家是A等级的概率为: =.21.正方形ABCD内接于⊙O,如图所示,在劣弧上取一点E,连接DE、BE,过点D作DF∥BE交⊙O 于点F,连接BF、AF,且AF与DE相交于点G,求证:(1)四边形EBFD是矩形;(2)DG=BE.【考点】正方形的性质;矩形的判定;圆周角定理.【分析】(1)直接利用正方形的性质、圆周角定理结合平行线的性质得出∠BED=∠BAD=90°,∠BFD=∠BCD=90°,∠EDF=90°,进而得出答案;(2)直接利用正方形的性质的度数是90°,进而得出BE=DF,则BE=DG.【解答】证明:(1)∵正方形ABCD内接于⊙O,∴∠BED=∠BAD=90°,∠BFD=∠BCD=90°,又∵DF∥BE,∴∠EDF+∠BED=180°,∴∠EDF=90°,∴四边形EBFD是矩形;(2))∵正方形ABCD内接于⊙O,∴的度数是90°,∴∠AFD=45°,又∵∠GDF=90°,∴∠DGF=∠DFC=45°,∴DG=DF,又∵在矩形EBFD中,BE=DF,∴BE=DG.22.如图,直立于地面上的电线杆AB,在阳光下落在水平地面和坡面上的影子分别是BC、CD,测得BC=6米,CD=4米,∠BCD=150°,在D处测得电线杆顶端A的仰角为30°,试求电线杆的高度(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】延长AD交BC的延长线于E,作DF⊥BE于F,根据直角三角形的性质和勾股定理求出DF、CF的长,根据正切的定义求出EF,得到BE的长,根据正切的定义解答即可.【解答】解:延长AD交BC的延长线于E,作DF⊥BE于F,∵∠BCD=150°,∴∠DCF=30°,又CD=4,∴DF=2,CF==2,由题意得∠E=30°,∴EF==2,∴BE=BC+CF+EF=6+4,∴AB=BE×tanE=(6+4)×=(2+4)米,答:电线杆的高度为(2+4)米.23.旅游公司在景区内配置了50辆观光车共游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数.发现每天的营运规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入﹣管理费)(2)当每辆车的日租金为多少元时,每天的净收入最多?【考点】二次函数的应用.【分析】(1)观光车全部租出每天的净收入=出租自行车的总收入﹣管理费,根据不等关系:净收入为正,列出不等式求解即可;(2)由函数解析式是分段函数,在每一段内求出函数最大值,比较得出函数的最大值.【解答】解:(1)由题意知,若观光车能全部租出,则0<x≤100,由50x﹣1100>0,解得x>22,又∵x是5的倍数,∴每辆车的日租金至少应为25元;(2)设每辆车的净收入为y元,当0<x≤100时,y1=50x﹣1100,∵y1随x的增大而增大,∴当x=100时,y1的最大值为50×100﹣1100=3900;当x>100时,y2=(50﹣)x﹣1100=﹣x2+70x﹣1100=﹣(x﹣175)2+5025,当x=175时,y2的最大值为5025,5025>3900,故当每辆车的日租金为175元时,每天的净收入最多是5025元.24.如图,在菱形ABCD中,AB=2,∠BAD=60°,过点D作DE⊥AB于点E,DF⊥BC于点F.(1)如图1,连接AC分别交DE、DF于点M、N,求证:MN=AC;(2)如图2,将△EDF以点D为旋转中心旋转,其两边DE′、DF′分别与直线AB、BC相交于点G、P,连接GP,当△DGP的面积等于3时,求旋转角的大小并指明旋转方向.【考点】旋转的性质;菱形的性质.【分析】(1)连接BD,证明△ABD为等边三角形,根据等腰三角形的三线合一得到AE=EB,根据相似三角形的性质解答即可;(2)分∠EDF顺时针旋转和逆时针旋转两种情况,根据旋转变换的性质解答即可.【解答】(1)证明:如图1,连接BD,交AC于O,在菱形ABCD中,∠BAD=60°,AD=AB,∴△ABD为等边三角形,∵DE⊥AB,∴AE=EB,∵AB∥DC,∴==,同理, =,∴MN=AC;(2)解:∵AB∥DC,∠BAD=60°,∴∠ADC=120°,又∠ADE=∠CDF=30°,∴∠EDF=60°,当∠EDF顺时针旋转时,由旋转的性质可知,∠EDG=∠FDP,∠GDP=∠EDF=60°,DE=DF=,∠DEG=∠DFP=90°,在△DEG和△DFP中,,∴△DEG≌△DFP,∴DG=DP,∴△DGP为等边三角形,∴△DGP的面积=DG2=3,解得,DG=2,则cos∠EDG==,∴∠EDG=60°,∴当顺时针旋转60°时,△DGP的面积等于3,同理可得,当逆时针旋转60°时,△DGP的面积也等于3,综上所述,将△EDF以点D为旋转中心,顺时针或逆时针旋转60°时,△DGP的面积等于3.25.如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x 轴,点P时直线AC下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC 相似,若存在,求出点Q的坐标,若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)用待定系数法求出抛物线解析式即可;(2)设点P(m, m2+2m+1),表示出PE=﹣m2﹣3m,再用S四边形AECP=S△AEC+S△APC=AC×PE,建立函数关系式,求出极值即可;(3)先判断出PF=CF,再得到∠PCF=∠EAF,以C、P、Q为顶点的三角形与△ABC相似,分两种情况计算即可.【解答】解:(1)∵点A(0,1).B(﹣9,10)在抛物线上,∴,∴,∴抛物线的解析式为y=x2+2x+1,(2)∵AC∥x轴,A(0,1)∴x2+2x+1=1,∴x1=6,x2=0,∴点C的坐标(﹣6,1),∵点A(0,1).B(﹣9,10),∴直线AB的解析式为y=﹣x+1,设点P(m, m2+2m+1)∴E(m,﹣m+1)∴PE=﹣m+1﹣(m2+2m+1)=﹣m2﹣3m,∵AC⊥EP,AC=6,∴S四边形AECP=S△AEC+S△APC=AC×EF+AC×PF=AC×(EF+PF)=AC×PE=×6×(﹣m2﹣3m)=﹣m2﹣9m=﹣(m+)2+,∵﹣6<m<0∴当m=﹣时,四边形AECP的面积的最大值是,此时点P(﹣,﹣).(3)∵y=x2+2x+1=(x+3)2﹣2,∴P(﹣3,﹣2),∴PF=y F﹣y P=3,CF=x F﹣x C=3,∴PF=CF,∴∠PCF=45°同理可得:∠EAF=45°,∴∠PCF=∠EAF,∴在直线AC上存在满足条件的Q,设Q(t,1)且AB=9,AC=6,CP=3∵以C、P、Q为顶点的三角形与△ABC相似,①当△CPQ∽△ABC时,∴,∴,∴t=﹣4,∴Q(﹣4,1)②当△CQP∽△ABC时,∴,∴,∴t=3,∴Q(3,1).2016年7月11日。
2016年山东省潍坊市中考数学试题及答案(word版)【优质】

试卷类型:A2009年潍坊市初中学业水平考试数 学 试 题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷4页,为选择题,36分;第Ⅱ卷8页,为非选择题,84分;共120分.考试时间为120分钟.2.答第Ⅰ卷前务必将自己的姓名、准考证号、考试科目涂写在答题卡上.考试结束,试题和答题卡一并收回.3.第Ⅰ卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号(ABCD )涂黑,如需改动,必须先用橡皮擦干净,再改涂其它答案.第Ⅰ卷 选择题(共36分)一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记0分.) 1.下列运算正确的是( )A .236·a a a =B .1122-⎛⎫=- ⎪⎝⎭C4=±D .|6|6-=2.一个自然数的算术平方根为a ,则和这个自然数相邻的下一个自然数是( ) A .1a +B .21a +CD13.太阳内部高温核聚变反应释放的辐射能功率为33.8102⨯千瓦,到达地球的仅占20亿分之一,到达地球的辅射能功率为( )千瓦.(用科学计数法表示,保留2个有效数字) A .141.910⨯B .142.010⨯C .157.610⨯D .151.910⨯4.已知关于x 的一元二次方程2610x x k -++=的两个实数根是12x x ,,且2212x x +=24,则k 的值是( )A .8B .7-C .6D .55.某班50名同学分别站在公路的A 、B 两点处,A 、B 两点相距1000米,A 处有30人,B 处有20人,要让两处的同学走到一起,并且使所有同学走的路程总和最小,那么集合地点应选在( ) A .A 点处B .线段AB 的中点处C .线段AB 上,距A 点10003米处D .线段AB 上,距A 点400米处A6.关于x 的方程2(6)860a x x --+=有实数根,则整数a 的最大值是( )A .6B .7C .8D .97.甲、乙两盒中分别放入编号为1、2、3、4的形状相同的4个小球,从甲盒中任意摸出一球,再从乙盒中任意摸出一球,将两球编号数相加得到一个数,则得到数( )的概率最大. A .3B .4C .5D .68.如图,小明要测量河内小岛B 到河边公路l 的距离,在A 点测得30BAD ∠=°,在C 点测得60BCD ∠=°,又测得50AC =米,则小岛B 到公路l 的距离为( )米. A .25B.C.3D.25+9.已知圆O 的半径为R ,AB 是圆O 的直径,D 是AB 延长线上一点,DC 是圆O 的切线,C 是切点,连结AC ,若30CAB ∠=°,则BD 的长为( ) A .2RB.C .RDR 10.如图,已知Rt ABC △中,9030ABC BAC AB ∠=∠==°,°,,将ABC △绕顶点C 顺时针旋转至A B C '''△的位置,且A C B '、、三点在同一条直线上,则点A 经过的最短路线的长度是( )cm . A .8B.C .32π3D .8π3 11.如图,在Rt ABC △中,908cm 6cm ABC AB BC ∠===°,,,分别以A C 、为圆心,以2AC 的长为半径作圆,将Rt ABC △截去两个扇形,则剩余(阴影)部分的面积为( )cm 2.A .2524π4-B .25π4C .524π4-D .2524π6- 12.在同一平面直角坐标系中,反比例函数8y x=-与一次函数2y x =-+交于A B 、两点,O 为坐标原点,则AOB △的面积为( ) A .2 B .6 C .10D .8BC ADlD' '第Ⅱ卷 非选择题(共84分)注意事项:1.第Ⅱ卷共8页,用蓝黑钢笔或圆珠笔直接答在试卷上. 2.答卷前将密封线内的项目填写清楚.二、填空题(本题共5小题,共15分.只要求填写最后结果,每小题填对得3分.) 13.分解因式:227183x x ++= . 14.方程3123x x =+的解是 . 15.在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形,ABC △的三个顶点都在格点上(每个小方格的顶点叫格点).画出ABC △绕点O 逆时针旋转90°后的A B C '''△.16.如图,正方形ABCD 的边长为10,点E 在CB 的延长线上,10EB =,点P 在边CD 上运动(C 、D 两点除外),EP 与AB 相交于点F ,若CP x =,四边形FBCP 的面积为y ,则y 关于x 的函数关系式是 .17.已知边长为a 的正三角形ABC ,两顶点A B 、分别在平面直角坐标系的x 轴、y 轴的正半轴上滑动,点C 在第一象限,连结OC ,则OC 的长的最大值是 .三、解答题(本题共7小题,共69分.解答应写出文字说明、证明过程或推演步骤.) 18.(本小题满分8分)某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱.供应这种纸箱有两种方案可供选择:方案一:从纸箱厂定制购买,每个纸箱价格为4元;方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取.工厂需要一次性投入机器安装等费用16000元,每加工一个纸箱还需成本费2.4元. (1)若需要这种规格的纸箱x 个,请分别写出从纸箱厂购买纸箱的费用1y (元)和蔬菜加工厂自己加工制作纸箱的费用2y (元)关于x (个)的函数关系式;PD C BF A E(2)假设你是决策者,你认为应该选择哪种方案?并说明理由. 19.(本小题满分9分)新星公司到某大学从应届毕业生中招聘公司职员,对应聘者的专业知识、英语水平、参加社会实践与社团活动等三项进行测试或成果认定,三项的得分满分都为100分,三项的分数分别按5∶3∶2的比例记入每人的最后总分,有4位应聘者的得分如下表所示.(1)写出4位应聘者的总分;(2)就表中专业知识、英语水平、参加社会实践与社团活动等三项的得分,分别求出三项中4人所得分数的方差; (3)由(1)和(2),你对应聘者有何建议?20.(本小题满分9分)已知ABC △,延长BC 到D ,使CD BC =.取AB 的中点F ,连结FD 交AC 于点E .(1)求AEAC的值; (2)若AB a FB EC ==,,求AC 的长.21.(本小题满分10分)要对一块长60米、宽40米的矩形荒地ABCD 进行绿化和硬化.(1)设计方案如图①所示,矩形P 、Q 为两块绿地,其余为硬化路面,P 、Q 两块绿地周围的硬化路面宽都相等,并使两块绿地面积的和为矩形ABCD 面积的14,求P 、Q 两块绿地周围的硬化路面的宽. (2)某同学有如下设想:设计绿化区域为相外切的两等圆,圆心分别为1O 和2O ,且1O 到AB BC AD 、、的距离与2O 到CD BC AD 、、的距离都相等,其余为硬化地面,如图②所示,这个设想是否成立?若成立,求出圆的半径;若不成立,说明理由.ABF E CDDD图①图②22.(本小题满分10分)如图所示,圆O 是ABC △的外接圆,BAC ∠与ABC ∠的平分线相交于点I ,延长AI 交圆O 于点D ,连结BD DC 、.(1)求证:BD DC DI ==;(2)若圆O 的半径为10cm ,120BAC ∠=°,求BDC △的面积.23.(本小题满分11分)在四边形A B C D 中,A B B C D C B C A B a D C b B C ===+⊥,⊥,,,,且a b ≤.取AD 的中点P ,连结PB PC 、. (1)试判断三角形PBC 的形状;(2)在线段BC 上,是否存在点M ,使AM MD ⊥.若存在,请求出BM 的长;若不存在,请说明理由.24.(本小题满分12分)如图,在平面直角坐标系xOy 中,半径为1的圆的圆心O 在坐标原点,且与两坐标轴分别交于A B C D 、、、四点.抛物线2y ax bx c =++与y 轴交于点D ,与直线y x =交于点M N 、,且MA NC 、分别与圆O 相切于点A 和点C .(1)求抛物线的解析式;(2)抛物线的对称轴交x 轴于点E ,连结DE ,并延长DE 交圆O 于F ,求EF 的长. (3)过点B 作圆O 的切线交DC 的延长线于点P ,判断点P 是否在抛物线上,说明理由.PDCBA2009年潍坊市初中学业水平考试 数学试题(A )参考答案及评分标准一、选择题(本题共12小题,共36分.在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个,均记0分.)二、填空题(本题共5小题,共15分.只要求填写 最后结果,每小题填对得3分.)13.23(31)x + 14.9x =- 15.见右图16.15(010)2y x x =<< 17三、解答题(本题共7小题,共69分.解答应写出文字说明、证明过程或推演步骤.) 18.(本小题满分8分) 解:(1)从纸箱厂定制购买纸箱费用: 14y x = ························································································································ 2分 蔬菜加工厂自己加工纸箱费用:2 2.416000y x =+. ···································································································· 4分 (2)21(2.416000)4y y x x -=+-16000 1.6x =-,由12y y =,得:16000 1.60x -=,解得:10000x =.······································································································ 5分∴当10000x <时,12y y <,选择方案一,从纸箱厂定制购买纸箱所需的费用低. ···················································· 6分∴当10000x >时,12y y >,选择方案二,蔬菜加工厂自己加工纸箱所需的费用低.················································· 7分∴当10000x =时,12y y =,两种方案都可以,两种方案所需的费用相同.······························································· 8分19.(本小题满分9分)解:(1)应聘者A 总分为86分;应聘者B 总分为82分;应聘者C 总分为81分;应聘者D 总分为82分. ·············································································································· 4分 (2)4位应聘者的专业知识测试的平均分数185X =, 方差为:2222211[(8585)(8585)(8085)(9085)]12.54S =-+-+-+-=····················· 5分 4位应聘者的英语水平测试的平均分数287.5X =,方差为:22212.54 6.254S =⨯⨯=. ············································································· 6分 4位应聘者参加社会实践与社团活动等的平均分数为370X =, 方差为:2222231[(9070)(7070)(7070)(5070)]2004S =-+-+-+-=. ················ 7分 (3)对于应聘者的专业知识、英语水平的差距不大,但参加社会实践与社团活动等方面的差距较大,影响学生的最后成绩,将影响学生就业.学生不仅注重自己的文化知识的学习,更应注重社会实践与社团活动的开展,从而促进学生综合素质的提升. ························ 9分 20.(本小题满分9分) 解:(1)过点F 作FM AC ∥,交BC 于点M . F 为AB 的中点M ∴为BC 的中点,12FM AC =. ·················2分由FM AC ∥,得CED MFD ∠=∠,ECD FMD FMD ECD ∠=∠∴,△∽△23DC EC DM FM ∴==············································4分 22113323EC FM AC AC ∴==⨯=1233AC ACAE AC EC AC AC AC --∴===·········································································· 6分 (2)1122AB a FB AB a =∴== ,又12FB EC EC a =∴=,13332EC AC AC EC a =∴== ,. ··········································································· 9分21.(本小题满分10分)解:(1)设P Q 、两块绿地周围的硬化路面的宽都为x 米,根据题意,得:1(603)(402)60404x x -⨯-=⨯⨯ ··············································································· 3分解之,得:121030x x ==, ························································································ 5分A BF E C DM经检验,230x =不符合题意,舍去.所以,两块绿地周围的硬化路面宽都为10米. ····························································· 6分 (2)设想成立. ·········································································································· 7分 设圆的半径为r 米,1O 到AB 的距离为y 米,根据题意,得:2402260y y r =⎧⎨+=⎩·············································································································· 9分 解得:2010y r ==,.符合实际.所以,设想成立,此时,圆的半径是10米. ·······························································10分 22.(本小题满分10分) (1)证明:AI 平分BAC ∠BAD DAC BD DC ∴∠=∠∴=,·················································································· 2分BI 平分ABC ABI CBI ∠∴∠=∠,BAD DAC DBC DAC ∠=∠∠=∠ ,BAD DBC ∴∠=∠,又DBI DBC CBI DIB ABI BAD ∠=∠+∠∠=∠+∠, DBI DIB BDI ∴∠=∠∴,△为等腰三角形 BD ID BD DC DI ∴=∴==, ····················································································· 5分 (2)解:当120BAC ∠=°时,ABC △为钝角三角形, ∴圆心O 在ABC △外, 连结OB OD OC 、、,2120DOC BOD BAD ∴∠=∠=∠=°, 60DBC DCB ∴∠=∠=°,∴BDC △为正三角形.················································8分 又知10cm OB =,2sin 60210BD OB ∴==⨯=°22BDC S ∴==△ 答:BDC △的面积为cm 2. ··············································································10分 23.(本小题满分11分)解:(1)在四边形ABCD 中,AB BC ⊥,DC BC AB DC ∴⊥,∥, ∴四边形ABCD 为直角梯形(或矩形). 过点P 作PQ BC ⊥,垂足为Q ,PQ AB ∴∥, 又点P 是AD 的中点,∴点Q 是BC 的中点,PD CBA Q E M 2M 1又111()()222PQ AB CD a b BC =+=+=, PQ BQ QC ∴==, ···································································································· 3分 PQB ∴△与PQC △是全等的等腰直角三角形, 90BPC BPQ QPC PB PC ∴∠=∠+∠==°,,PBC ∴△是等腰直角三角形. ······················································································ 5分(2)存在点M 使AM MD ⊥. ·················································································· 6分 以AD 为直径,P 为圆心作圆P .当a b =时,四边形ABCD 为矩形,PA PD PQ ==,圆P 与BC 相切于点Q ,此时,M 点与Q 点重合,存在点M ,使得AM MD ⊥,此时1()2BM a b =+. ································································································· 7分 当a b <时,四边形ABCD 为直角梯形,AD BC >,PA PD PQ =>,圆心P 到BC 的距离PQ 小于圆P 的半径,圆P 与BC 相交,BC 上存在两点12M M ,,使AM MD ⊥, ································································ 8分过点A 作AE DC ⊥,在Rt AED △中,AE a b DE b a =+=-,,22222222AD AE DE AD a b AD =+=+=,,连结12PM PM ,,则12PM PM ==在直角三角形1PQM 中,12b aQM -===, 11BM BQ M Q a ∴=-=.同理可得:22BM BQ M Q b =+=.综上所述,在线段BC 上存在点M ,使AM MD ⊥. 当a b =时,有一点M ,2a bBM +=;当a b <时,有两点12M M ,,12BM a BM b ==,.···································································································································· 11分 24.(本小题满分12分)解:(1) 圆心O 在坐标原点,圆O 的半径为1,∴点A B C D 、、、的坐标分别为(10)(01)(10)(01)A B C D --,、,、,、, 抛物线与直线y x =交于点M N 、,且MA NC 、分别与圆O 相切于点A 和点C ,∴(11)(11)M N --,、,.······························································································· 2分 点D M N 、、在抛物线上,将(01)(11)(11)D M N --,、,、,的坐标代入 2y ax bx c =++,得:111c a b c a b c =⎧⎪-=-+⎨⎪=++⎩ 解之,得:111a b c =-⎧⎪=⎨⎪=⎩∴抛物线的解析式为:21y x x =-++. ······································································ 4分 (2)2215124y x x x ⎛⎫=-++=--+ ⎪⎝⎭∴抛物线的对称轴为12x =,12OE DE ∴===,. ····················6分连结90BF BFD ∠=,°,BFD EOD ∴△∽△,DE ODDB FD∴=,又12DE OD DB ===,,FD ∴=,5210EF FD DE ∴=-=-= ····································································· 8分 (3)点P 在抛物线上. ······························································································· 9分 设过D C 、点的直线为:y kx b =+,将点(10)(01)C D ,、,的坐标代入y kx b =+,得:11k b =-=,,∴直线DC 为:1y x =-+. ······················································································10分 过点B 作圆O 的切线BP 与x 轴平行,P 点的纵坐标为1y =-, 将1y =-代入1y x =-+,得:2x =.∴P 点的坐标为(21)-,, ··························································································· 11分 当2x =时,2212211y x x =-++=-++=-,所以,P 点在抛物线21y x x =-++上.·····································································12分 说明:解答题各小题中只给出了1种解法,其它解法只要步骤合理、解答正确均应得到相应的分数.以下是附加文档,不需要的朋友下载后删除,谢谢顶岗实习总结专题13篇第一篇:顶岗实习总结为了进一步巩固理论知识,将理论与实践有机地结合起来,按照学校的计划要求,本人进行了为期个月的顶岗实习。
山东省潍坊市中考试题

2016年山东省潍坊市中考数学试卷一、选择题:本大题共12小题,每小题3分1.(3分)(2016•潍坊)计算:20•2﹣3=()A.﹣ B.C.0 D.82.(3分)(2016•潍坊)下列科学计算器的按键中,其上面标注的符号是轴对称图形但不是中心对称图形的是()A. B.C.D.3.(3分)(2016•潍坊)如图,几何体是由底面圆心在同一条直线上的三个圆柱构成的,其俯视图是()A.B.C.D.4.(3分)(2016•潍坊)近日,记者从潍坊市统计局获悉,2016年第一季度潍坊全市实现生产总值1256.77亿元,将1256.77亿用科学记数法可表示为(精确到百亿位)()A.1.2×1011 B.1.3×1011 C.1.26×1011D.0.13×10125.(3分)(2016•潍坊)实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b6.(3分)(2016•潍坊)关于x的一元二次方程x2﹣x+sinα=0有两个相等的实数根,则锐角α等于()A.15°B.30°C.45°D.60°7.(3分)(2016•潍坊)木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是()A.B.C.D.8.(3分)(2016•潍坊)将下列多项式因式分解,结果中不含有因式a+1的是()A.a2﹣1 B.a2+a C.a2+a﹣2 D.(a+2)2﹣2(a+2)+19.(3分)(2016•潍坊)如图,在平面直角坐标系中,⊙M与x轴相切于点A(8,0),与y 轴分别交于点B(0,4)和点C(0,16),则圆心M到坐标原点O的距离是()A.10 B.8C.4D.210.(3分)(2016•潍坊)若关于x的方程+=3的解为正数,则m的取值范围是()A.m<B.m<且m≠C.m>﹣D.m>﹣且m≠﹣11.(3分)(2016•潍坊)如图,在Rt△ABC中,∠A=30°,BC=2,以直角边AC为直径作⊙O交AB于点D,则图中阴影部分的面积是()A.﹣ B.﹣ C.﹣D.﹣12.(3分)(2016•潍坊)运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是()A.x≥11 B.11≤x<23 C.11<x≤23 D.x≤23二、填空题:本大题共6小题,每小题3分13.(3分)(2016•潍坊)计算:(+)=.14.(3分)(2016•潍坊)若3x2n y m与x4﹣n y n﹣1是同类项,则m+n=.15.(3分)(2016•潍坊)超市决定招聘广告策划人员一名,某应聘者三项素质测试的成绩如表:测试项目创新能力综合知识语言表达测试成绩(分数)70 80 92将创新能力、综合知识和语言表达三项测试成绩按5:3:2的比例计入总成绩,则该应聘者的总成绩是分.16.(3分)(2016•潍坊)已知反比例函数y=(k≠0)的图象经过(3,﹣1),则当1<y<3时,自变量x的取值范围是.17.(3分)(2016•潍坊)已知∠AOB=60°,点P是∠AOB的平分线OC上的动点,点M在边OA上,且OM=4,则点P到点M与到边OA的距离之和的最小值是.18.(3分)(2016•潍坊)在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形A n B n C n C n﹣1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点B n的坐标是.三、解答题:本大题共7小题,共66分19.(6分)(2016•潍坊)关于x的方程3x2+mx﹣8=0有一个根是,求另一个根及m的值.20.(9分)(2016•潍坊)今年5月,某大型商业集团随机抽取所属的m家商业连锁店进行评估,将各连锁店按照评估成绩分成了A、B、C、D四个等级,绘制了如图尚不完整的统计图表.评估成绩n(分)评定等级频数90≤n≤100 A 280≤n<90 B70≤n<80 C 15n<70 D 6根据以上信息解答下列问题:(1)求m的值;(2)在扇形统计图中,求B等级所在扇形的圆心角的大小;(结果用度、分、秒表示)(3)从评估成绩不少于80分的连锁店中任选2家介绍营销经验,求其中至少有一家是A 等级的概率.21.(8分)(2016•潍坊)正方形ABCD内接于⊙O,如图所示,在劣弧上取一点E,连接DE、BE,过点D作DF∥BE交⊙O于点F,连接BF、AF,且AF与DE相交于点G,求证:(1)四边形EBFD是矩形;(2)DG=BE.22.(9分)(2016•潍坊)如图,直立于地面上的电线杆AB,在阳光下落在水平地面和坡面上的影子分别是BC、CD,测得BC=6米,CD=4米,∠BCD=150°,在D处测得电线杆顶端A的仰角为30°,试求电线杆的高度(结果保留根号)23.(10分)(2016•潍坊)旅游公司在景区内配置了50辆观光车共游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数.发现每天的营运规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入﹣管理费)(2)当每辆车的日租金为多少元时,每天的净收入最多?24.(12分)(2016•潍坊)如图,在菱形ABCD中,AB=2,∠BAD=60°,过点D作DE⊥AB于点E,DF⊥BC于点F.(1)如图1,连接AC分别交DE、DF于点M、N,求证:MN=AC;(2)如图2,将△EDF以点D为旋转中心旋转,其两边DE′、DF′分别与直线AB、BC相交于点G、P,连接GP,当△DGP的面积等于3时,求旋转角的大小并指明旋转方向.25.(12分)(2016•潍坊)如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.2016年山东省潍坊市中考数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分1.(3分)(2016•潍坊)计算:20•2﹣3=()A.﹣ B.C.0 D.8【分析】直接利用负整数指数幂的性质结合零指数幂的性质分析得出答案.【解答】解:20•2﹣3=1×=.故选:B.【点评】此题主要考查了负整数指数幂的性质和零指数幂的性质,正确掌握相关性质是解题关键.2.(3分)(2016•潍坊)下列科学计算器的按键中,其上面标注的符号是轴对称图形但不是中心对称图形的是()A. B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,又是中心对称图形,故此选项错误;B、不是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,又是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项正确.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.(3分)(2016•潍坊)如图,几何体是由底面圆心在同一条直线上的三个圆柱构成的,其俯视图是()A.B.C.D.【分析】根据俯视图的概念和看得到的边都应用实线表现在三视图中、看不到,又实际存在的,又没有被其他边挡住的边用虚线表现在三视图中解答即可.【解答】解:图中几何体的俯视图是C选项中的图形.故选:C.【点评】本题考查的是简单几何体的三视图,掌握主视图,左视图与俯视图分别是从物体的正面,左面,上面看得到的图形是解题的关键.4.(3分)(2016•潍坊)近日,记者从潍坊市统计局获悉,2016年第一季度潍坊全市实现生产总值1256.77亿元,将1256.77亿用科学记数法可表示为(精确到百亿位)()A.1.2×1011 B.1.3×1011 C.1.26×1011D.0.13×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将1256.77亿用科学记数法可表示为1.3×1011.故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(3分)(2016•潍坊)实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b【分析】直接利用数轴上a,b的位置,进而得出a<0,a﹣b<0,再利用绝对值以及二次根式的性质化简得出答案.【解答】解:如图所示:a<0,a﹣b<0,则|a|+=﹣a﹣(a﹣b)=﹣2a+b.故选:A.【点评】此题主要考查了二次根式的性质以及实数与数轴,正确得出各项符号是解题关键.6.(3分)(2016•潍坊)关于x的一元二次方程x2﹣x+sinα=0有两个相等的实数根,则锐角α等于()A.15°B.30°C.45°D.60°【分析】由方程有两个相等的实数根,结合根的判别式可得出sinα=,再由α为锐角,即可得出结论.【解答】解:∵关于x的一元二次方程x2﹣x+sinα=0有两个相等的实数根,∴△=﹣4sinα=2﹣4sinα=0,解得:sinα=,∵α为锐角,∴α=30°.故选B.【点评】本题考查了根的判别式以及特殊角的三角形函数值,解题的关键是求出sinα=.本题属于基础题,难度不大,解决该题型题目时,根据根的个数结合根的判别式得出方程(不等式或不等式组)是关键.7.(3分)(2016•潍坊)木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是()A.B.C.D.【分析】先连接OP,易知OP是Rt△AOB斜边上的中线,根据直角三角形斜边上的中线等于斜边的一半,可得OP=AB,由于木杆不管如何滑动,长度都不变,那么OP就是一个定值,那么P点就在以O为圆心的圆弧上.【解答】解:如右图,连接OP,由于OP是Rt△AOB斜边上的中线,所以OP=AB,不管木杆如何滑动,它的长度不变,也就是OP是一个定值,点P就在以O为圆心的圆弧上,那么中点P下落的路线是一段弧线.故选D.【点评】本题考查了轨迹,直角三角形斜边上的中线,解题的关键是知道直角三角形斜边上的中线等于斜边的一半.8.(3分)(2016•潍坊)将下列多项式因式分解,结果中不含有因式a+1的是()A.a2﹣1 B.a2+a C.a2+a﹣2 D.(a+2)2﹣2(a+2)+1【分析】先把各个多项式分解因式,即可得出结果.【解答】解:∵a2﹣1=(a+1)(a﹣1),a2+a=a(a+1),a2+a﹣2=(a+2)(a﹣1),(a+2)2﹣2(a+2)+1=(a+2﹣1)2=(a+1)2,∴结果中不含有因式a+1的是选项C;故选:C.【点评】本题考查了因式分解的意义与方法;熟练掌握因式分解的方法是解决问题的关键.9.(3分)(2016•潍坊)如图,在平面直角坐标系中,⊙M与x轴相切于点A(8,0),与y 轴分别交于点B(0,4)和点C(0,16),则圆心M到坐标原点O的距离是()A.10 B.8C.4D.2【分析】如图连接BM、OM,AM,作MH⊥BC于H,先证明四边形OAMH是矩形,根据垂径定理求出HB,在RT△AOM中求出OM即可.【解答】解:如图连接BM、OM,AM,作MH⊥BC于H.∵⊙M与x轴相切于点A(8,0),∴AM⊥OA,OA=8,∴∠OAM=∠MH0=∠HOA=90°,∴四边形OAMH是矩形,∴AM=OH,∵MH⊥BC,∴HC=HB=6,∴OH=AM=10,在RT△AOM中,OM===2.故选D.【点评】本题考查切线的性质、坐标与图形性质、垂径定理、勾股定理等知识,解题的关键是正确添加辅助线,构造直角三角形.10.(3分)(2016•潍坊)若关于x的方程+=3的解为正数,则m的取值范围是()A.m<B.m<且m≠C.m>﹣D.m>﹣且m≠﹣【分析】直接解分式方程,再利用解为正数列不等式,解不等式得出x的取值范围,进而得出答案.【解答】解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=,∵关于x的方程+=3的解为正数,∴﹣2m+9>0,级的:m<,当x=3时,x==3,解得:m=,故m的取值范围是:m<且m≠.故选:B.【点评】此题主要考查了分式方程的解以及不等式的解法,正确解分式方程是解题关键.11.(3分)(2016•潍坊)如图,在Rt△ABC中,∠A=30°,BC=2,以直角边AC为直径作⊙O交AB于点D,则图中阴影部分的面积是()A.﹣ B.﹣ C.﹣D.﹣【分析】连接连接OD、CD,根据S阴=S△ABC﹣S△ACD﹣(S扇形OCD﹣S△OCD)计算即可解决问题.【解答】解:如图连接OD、CD.∵AC是直径,∴∠ADC=90°,∵∠A=30°,∴∠ACD=90°﹣∠A=60°,∵OC=OD,∴△OCD是等边三角形,∵BC是切线.∴∠ACB=90°,∵BC=2,∴AB=4,AC=6,∴S阴=S△ABC﹣S△ACD﹣(S扇形OCD﹣S△OCD)=×6×2﹣×3×﹣(﹣×32)=﹣π.故选A.【点评】本题考查扇形面积公式、直角三角形30度角性质、等边三角形性质等知识,解题的关键是学会分割法求面积,属于中考常考题型.12.(3分)(2016•潍坊)运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是()A.x≥11 B.11≤x<23 C.11<x≤23 D.x≤23【分析】根据运算程序,前两次运算结果小于等于95,第三次运算结果大于95列出不等式组,然后求解即可.【解答】解:由题意得,,解不等式①得,x≤47,解不等式②得,x≤23,解不等式③得,x>11,所以,x的取值范围是11<x≤23.故选C.【点评】本题考查了一元一次不等式组的应用,读懂题目信息,理解运输程序并列出不等式组是解题的关键.二、填空题:本大题共6小题,每小题3分13.(3分)(2016•潍坊)计算:(+)=12.【分析】先把化简,再本括号内合并,然后进行二次根式的乘法运算.【解答】解:原式=•(+3)=×4=12.故答案为12.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.14.(3分)(2016•潍坊)若3x2n y m与x4﹣n y n﹣1是同类项,则m+n=.【分析】直接利用同类项的定义得出关于m,n的等式,进而求出答案.【解答】解:∵3x2n y m与x4﹣n y n﹣1是同类项,∴,解得:则m+n=+=.故答案为:.【点评】此题主要考查了同类项,正确把握同类项的定义是解题关键.15.(3分)(2016•潍坊)超市决定招聘广告策划人员一名,某应聘者三项素质测试的成绩如表:测试项目创新能力综合知识语言表达测试成绩(分数)70 80 92将创新能力、综合知识和语言表达三项测试成绩按5:3:2的比例计入总成绩,则该应聘者的总成绩是77.4分.【分析】根据该应聘者的总成绩=创新能力×所占的比值+综合知识×所占的比值+语言表达×所占的比值即可求得.【解答】解:根据题意,该应聘者的总成绩是:70×+80×+92×=77.4(分),故答案为:77.4.【点评】此题考查了加权平均数,解题的关键是熟记加权平均数的计算方法.16.(3分)(2016•潍坊)已知反比例函数y=(k≠0)的图象经过(3,﹣1),则当1<y<3时,自变量x的取值范围是﹣3<x<﹣1.【分析】根据反比例函数过点(3,﹣1)结合反比例函数图象上点的坐标特征可求出k值,根据k值可得出反比例函数在每个象限内的函数图象都单增,分别代入y=1、y=3求出x值,即可得出结论.【解答】解:∵反比例函数y=(k≠0)的图象经过(3,﹣1),∴k=3×(﹣1)=﹣3,∴反比例函数的解析式为y=.∵反比例函数y=中k=﹣3,∴该反比例函数的图象经过第二、四象限,且在每个象限内均单增.当y=1时,x==﹣3;当y=3时,x==﹣1.∴1<y<3时,自变量x的取值范围是﹣3<x<﹣1.故答案为:﹣3<x<﹣1.【点评】本题考查了反比例函数的性质以及反比例函数图象上点的坐标特征,解题的关键是求出k值.本题属于基础题,难度不大,解决该题型题目时,由点的坐标结合反比例函数图象上点的坐标特征求出k值,再根据反比例函数的性质找出去增减性是关键.17.(3分)(2016•潍坊)已知∠AOB=60°,点P是∠AOB的平分线OC上的动点,点M在边OA上,且OM=4,则点P到点M与到边OA的距离之和的最小值是2.【分析】过M作MN′⊥OB于N′,交OC于P,即MN′的长度等于点P到点M与到边OA 的距离之和的最小值,解直角三角形即可得到结论.【解答】解:过M作MN′⊥OB于N′,交OC于P,则MN′的长度等于PM+PN的最小值,即MN′的长度等于点P到点M与到边OA的距离之和的最小值,∵∠ON′M=90°,OM=4,∴MN′=OM•sin60°=2,∴点P到点M与到边OA的距离之和的最小值为2.【点评】本题考查了轴对称﹣最短路线问题,解直角三角形,正确的作出图形是解题的关键.18.(3分)(2016•潍坊)在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形A n B n C n C n﹣1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点B n的坐标是(2n﹣1,2n﹣1).【分析】先求出B1、B2、B3的坐标,探究规律后即可解决问题.【解答】解:∵y=x﹣1与x轴交于点A1,∴A1点坐标(1,0),∵四边形A1B1C1O是正方形,∴B1坐标(1,1),∵C1A2∥x轴,∴A2坐标(2,1),∵四边形A2B2C2C1是正方形,∴B2坐标(2,3),∵C2A3∥x轴,∴A3坐标(4,3),∵四边形A3B3C3C2是正方形,∴B3(4,7),∵B1(20,21﹣1),B2(21,22﹣1),B3(22,23﹣1),…,∴B n坐标(2n﹣1,2n﹣1).故答案为(2n﹣1,2n﹣1).【点评】本题考查一次函数图象上点的特征,正方形的性质等知识,解题的关键是学会从特殊到一般的探究方法,利用规律解决问题,属于中考填空题中的压轴题.三、解答题:本大题共7小题,共66分19.(6分)(2016•潍坊)关于x的方程3x2+mx﹣8=0有一个根是,求另一个根及m的值.【分析】由于x=是方程的一个根,直接把它代入方程即可求出m的值,然后由根与系数的关系来求方程的另一根.【解答】解:设方程的另一根为t.依题意得:3×()2+m﹣8=0,解得m=10.又t=﹣,所以t=﹣4.综上所述,另一个根是﹣4,m的值为10.【点评】此题考查了根与系数的关系,一元二次方程的根的定义,把方程的根代入原方程就可以确定待定系数m的值.20.(9分)(2016•潍坊)今年5月,某大型商业集团随机抽取所属的m家商业连锁店进行评估,将各连锁店按照评估成绩分成了A、B、C、D四个等级,绘制了如图尚不完整的统计图表.评估成绩n(分)评定等级频数90≤n≤100 A 280≤n<90 B70≤n<80 C 15n<70 D 6根据以上信息解答下列问题:(1)求m的值;(2)在扇形统计图中,求B等级所在扇形的圆心角的大小;(结果用度、分、秒表示)(3)从评估成绩不少于80分的连锁店中任选2家介绍营销经验,求其中至少有一家是A 等级的概率.【分析】(1)由C等级频数为15,占60%,即可求得m的值;(2)首先求得B等级的频数,继而求得B等级所在扇形的圆心角的大小;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其中至少有一家是A等级的情况,再利用概率公式求解即可求得答案.【解答】解:(1)∵C等级频数为15,占60%,∴m=15÷60%=25;(2)∵B等级频数为:25﹣2﹣15﹣6=2,∴B等级所在扇形的圆心角的大小为:×360°=28.8°=28°48′;(3)评估成绩不少于80分的连锁店中,有两家等级为A,有两家等级为B,画树状图得:∵共有12种等可能的结果,其中至少有一家是A等级的有10种情况,∴其中至少有一家是A等级的概率为:=.【点评】此题考查了列表法或树状图法求概率以及扇形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.21.(8分)(2016•潍坊)正方形ABCD内接于⊙O,如图所示,在劣弧上取一点E,连接DE、BE,过点D作DF∥BE交⊙O于点F,连接BF、AF,且AF与DE相交于点G,求证:(1)四边形EBFD是矩形;(2)DG=BE.【分析】(1)直接利用正方形的性质、圆周角定理结合平行线的性质得出∠BED=∠BAD=90°,∠BFD=∠BCD=90°,∠EDF=90°,进而得出答案;(2)直接利用正方形的性质的度数是90°,进而得出BE=DF,则BE=DG.【解答】证明:(1)∵正方形ABCD内接于⊙O,∴∠BED=∠BAD=90°,∠BFD=∠BCD=90°,又∵DF∥BE,∴∠EDF+∠BED=180°,∴∠EDF=90°,∴四边形EBFD是矩形;(2))∵正方形ABCD内接于⊙O,∴的度数是90°,∴∠AFD=45°,又∵∠GDF=90°,∴∠DGF=∠DFC=45°,∴DG=DF,又∵在矩形EBFD中,BE=DF,∴BE=DG.【点评】此题主要考查了正方形的性质以及圆周角定理和矩形的判定等知识,正确应用正方形的性质是解题关键.22.(9分)(2016•潍坊)如图,直立于地面上的电线杆AB,在阳光下落在水平地面和坡面上的影子分别是BC、CD,测得BC=6米,CD=4米,∠BCD=150°,在D处测得电线杆顶端A的仰角为30°,试求电线杆的高度(结果保留根号)【分析】延长AD交BC的延长线于E,作DF⊥BE于F,根据直角三角形的性质和勾股定理求出DF、CF的长,根据正切的定义求出EF,得到BE的长,根据正切的定义解答即可.【解答】解:延长AD交BC的延长线于E,作DF⊥BE于F,∵∠BCD=150°,∴∠DCF=30°,又CD=4,∴DF=2,CF==2,由题意得∠E=30°,∴EF==2,∴BE=BC+CF+EF=6+4,∴AB=BE×tanE=(6+4)×=(2+4)米,答:电线杆的高度为(2+4)米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.23.(10分)(2016•潍坊)旅游公司在景区内配置了50辆观光车共游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数.发现每天的营运规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入﹣管理费)(2)当每辆车的日租金为多少元时,每天的净收入最多?【分析】(1)观光车全部租出每天的净收入=出租自行车的总收入﹣管理费,根据不等关系:净收入为正,列出不等式求解即可;(2)由函数解析式是分段函数,在每一段内求出函数最大值,比较得出函数的最大值.【解答】解:(1)由题意知,若观光车能全部租出,则0<x≤100,由50x﹣1100>0,解得x>22,又∵x是5的倍数,∴每辆车的日租金至少应为25元;(2)设每辆车的净收入为y元,当0<x≤100时,y1=50x﹣1100,∵y1随x的增大而增大,∴当x=100时,y1的最大值为50×100﹣1100=3900;当x>100时,y2=(50﹣)x﹣1100=﹣x2+70x﹣1100=﹣(x﹣175)2+5025,当x=175时,y2的最大值为5025,5025>3900,故当每辆车的日租金为175元时,每天的净收入最多是5025元.【点评】本题用分段函数模型考查了一次函数,二次函数的性质与应用,解决问题的关键是弄清题意,分清收费方式.24.(12分)(2016•潍坊)如图,在菱形ABCD中,AB=2,∠BAD=60°,过点D作DE⊥AB于点E,DF⊥BC于点F.(1)如图1,连接AC分别交DE、DF于点M、N,求证:MN=AC;(2)如图2,将△EDF以点D为旋转中心旋转,其两边DE′、DF′分别与直线AB、BC相交于点G、P,连接GP,当△DGP的面积等于3时,求旋转角的大小并指明旋转方向.【分析】(1)连接BD,证明△ABD为等边三角形,根据等腰三角形的三线合一得到AE=EB,根据相似三角形的性质解答即可;(2)分∠EDF顺时针旋转和逆时针旋转两种情况,根据旋转变换的性质解答即可.【解答】(1)证明:如图1,连接BD,交AC于O,在菱形ABCD中,∠BAD=60°,AD=AB,∴△ABD为等边三角形,∵DE⊥AB,∴AE=EB,∵AB∥DC,∴==,同理,=,∴MN=AC;(2)解:∵AB∥DC,∠BAD=60°,∴∠ADC=120°,又∠ADE=∠CDF=30°,∴∠EDF=60°,当∠EDF顺时针旋转时,由旋转的性质可知,∠EDG=∠FDP,∠GDP=∠EDF=60°,DE=DF=,∠DEG=∠DFP=90°,在△DEG和△DFP中,,∴△DEG≌△DFP,∴DG=DP,∴△DGP为等边三角形,∴△DGP的面积=DG2=3,解得,DG=2,则cos∠EDG==,∴∠EDG=60°,∴当顺时针旋转60°时,△DGP的面积等于3,同理可得,当逆时针旋转60°时,△DGP的面积也等于3,综上所述,将△EDF以点D为旋转中心,顺时针或逆时针旋转60°时,△DGP的面积等于3.【点评】本题考查的是菱形的性质和旋转变换,掌握旋转的性质:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等是解题的关键.25.(12分)(2016•潍坊)如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.【分析】(1)用待定系数法求出抛物线解析式即可;(2)设点P(m,m2+2m+1),表示出PE=﹣m2﹣3m,再用S四边形AECP=S△AEC+S△APC=AC×PE,建立函数关系式,求出极值即可;(3)先判断出PF=CF,再得到∠PCF=∠EAF,以C、P、Q为顶点的三角形与△ABC相似,分两种情况计算即可.【解答】解:(1)∵点A(0,1).B(﹣9,10)在抛物线上,∴,∴,∴抛物线的解析式为y=x2+2x+1,(2)∵AC∥x轴,A(0,1)∴x2+2x+1=1,∴x1=6,x2=0,∴点C的坐标(﹣6,1),∵点A(0,1).B(﹣9,10),∴直线AB的解析式为y=﹣x+1,设点P(m,m2+2m+1)∴E(m,﹣m+1)∴PE=﹣m+1﹣(m2+2m+1)=﹣m2﹣3m,∵AC⊥EP,AC=6,∴S四边形AECP=S△AEC+S△APC=AC×EF+AC×PF=AC×(EF+PF)=AC×PE=×6×(﹣m2﹣3m)=﹣m2﹣9m=﹣(m+)2+,∵﹣6<m<0∴当m=﹣时,四边形AECP的面积的最大值是,此时点P(﹣,﹣).(3)∵y=x2+2x+1=(x+3)2﹣2,∴P(﹣3,﹣2),∴PF=y F﹣y P=3,CF=x F﹣x C=3,∴PF=CF,∴∠PCF=45°同理可得:∠EAF=45°,∴∠PCF=∠EAF,∴在直线AC上存在满足条件的Q,设Q(t,1)且AB=9,AC=6,CP=3∵以C、P、Q为顶点的三角形与△ABC相似,①当△CPQ∽△ABC时,∴,∴,∴t=﹣4,∴Q(﹣4,1)②当△CQP∽△ABC时,∴,∴,∴t=3,∴Q(3,1).【点评】此题是二次函数综合题,主要考查了待定系数法,相似三角形的性质,几何图形面积的求法(用割补法),解本题的关键是求函数解析式.。
2016年山东省潍坊市中考数学试卷-答案

2016年山东省潍坊市中考数学试卷--答案解析【答案】1.B2.D3.C4.B5.A6.B7.D8.C9.D 10.B 11.A 12.C13.1214.5315.77.416.-3<x<-117.2318.(2n-1,2n-1)19.解:设方程的另一根为t.依题意得:3×(23)2+23m-8=0,解得m=10.又23t=-83,所以t=-4.综上所述,另一个根是-4,m的值为10.20.解:(1)∵C等级频数为15,占60%,∴m=15÷60%=25;(2)∵B等级频数为:25-2-15-6=2,∴B等级所在扇形的圆心角的大小为:225×360°=28.8°=28°48′;(3)评估成绩不少于80分的连锁店中,有两家等级为A,有两家等级为B,画树状图得:∵共有12种等可能的结果,其中至少有一家是A等级的有10种情况,∴其中至少有一家是A等级的概率为:1012=56.21.证明:(1)∵正方形ABCD内接于⊙O,∴∠BED=∠BAD=90°,∠BFD=∠BCD=90°,又∵DF∥BE,∴∠EDF+∠BED=180°,∴∠EDF=90°,∴四边形EBFD是矩形;(2))∵正方形ABCD内接于⊙O,∴A D的度数是90°,∴∠AFD=45°,又∵∠GDF=90°,∴∠DGF=∠DFC=45°,∴DG=DF,又∵在矩形EBFD中,BE=DF,∴BE=DG.22.解:延长AD交BC的延长线于E,作DF⊥BE于F,∵∠BCD=150°,∴∠DCF=30°,又CD=4,∴DF=2,CF= CD2−DF2=23,由题意得∠E=30°,∴EF=DFtanE=23,∴BE=BC+CF+EF=6+4,∴AB=BE×tanE=(6+43)×33=(23+4)米,答:电线杆的高度为(23+4)米.23.解:(1)由题意知,若观光车能全部租出,则0<x≤100,由50x-1100>0,∴每辆车的日租金至少应为25元;(2)设每辆车的净收入为y元,当0<x≤100时,y1=50x-1100,∵y1随x的增大而增大,∴当x=100时,y1的最大值为50×100-1100=3900;当x>100时,y2=(50-x−1005)x-1100=-15x2+70x-1100=-15(x-175)2+5025,当x=175时,y2的最大值为5025,5025>3900,故当每辆车的日租金为175元时,每天的净收入最多是5025元.24.(1)证明:如图1,连接BD,交AC于O,在菱形ABCD中,∠BAD=60°,AD=AB,∴△ABD为等边三角形,∵DE⊥AB,∴AE=EB,∵AB∥DC,∴AMMC =AEDC=12,同理,CNAN =12,∴MN=13AC;(2)解:∵AB∥DC,∠BAD=60°,∴∠ADC=120°,又∠ADE=∠CDF=30°,∴∠EDF=60°,当∠EDF顺时针旋转时,由旋转的性质可知,∠EDG=∠FDP,∠GDP=∠EDF=60°,DE=DF=3,∠DEG=∠DFP=90°,在△DEG和△DFP中,∠GDE=∠PDF ∠DEG=∠DFPDE=DF,∴△DEG≌△DFP,∴DG=DP,∴△DGP为等边三角形,∴△DGP的面积=34DG2=33,解得,DG=23,则cos∠EDG=DEDG =12,∴∠EDG=60°,∴当顺时针旋转60°时,△DGP的面积等于33,同理可得,当逆时针旋转60°时,△DGP的面积也等于33,综上所述,将△EDF以点D为旋转中心,顺时针或逆时针旋转60°时,△DGP的面积等于33.25.解:(1)∵点A(0,1).B(-9,10)在抛物线上,∴c=113×81−9b+c=10,∴b=2 c=1,∴抛物线的解析式为y=13x2+2x+1,(2)∵AC∥x轴,A(0,1)∴13x2+2x+1=1,∴x1=6,x2=0,∴点C的坐标(-6,1),∵点A(0,1).B(-9,10),∴直线AB的解析式为y=-x+1,设点P(m,13m2+2m+1)∴E(m,-m+1)∵AC⊥EP,AC=6,∴S四边形AECP=S△AEC+S△APC=1 2AC×EF+12AC×PF=12AC×(EF+PF)=12AC×PE=1 2×6×(-13m2-3m)=-m2-9m=-(m+92)2+814,∵-6<m<0∴当m=-92时,四边形AECP的面积的最大值是814,此时点P(-92,-54).(3)∵y=13x2+2x+1=13(x+3)2-2,∴P(-3,-2),∴PF=y F-y P=3,CF=x F-x C=3,∴PF=CF,∴∠PCF=45°同理可得:∠EAF=45°,∴∠PCF=∠EAF,∴在直线AC上存在满足条件的Q,设Q(t,1)且AB=92,AC=6,CP=32∵以C、P、Q为顶点的三角形与△ABC相似,①当△CPQ∽△ABC时,∴CQAC =CPAB,∴t+66=292,∴t=-4,∴Q(-4,1)②当△CQP∽△ABC时,∴CQAB =CPAC,∴92=326,∴t=3,∴Q(3,1).【解析】1.解:20•2-3=1×18=18.故选:B.直接利用负整数指数幂的性质结合零指数幂的性质分析得出答案.此题主要考查了负整数指数幂的性质和零指数幂的性质,正确掌握相关性质是解题关键.2.解:A、是轴对称图形,又是中心对称图形,故此选项错误;B、不是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,又是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项正确.故选:D.根据轴对称图形与中心对称图形的概念求解.本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.解:图中几何体的俯视图是C选项中的图形.故选:C.根据俯视图的概念和看得到的边都应用实线表现在三视图中、看不到,又实际存在的,又没有被其他边挡住的边用虚线表现在三视图中解答即可.本题考查的是简单几何体的三视图,掌握主视图,左视图与俯视图分别是从物体的正面,左面,上面看得到的图形是解题的关键.解:将1256.77亿用科学记数法可表示为1.3×1011.故选B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.解:如图所示:a<0,a-b<0,则|a|+(a−b)2=-a-(a-b)=-2a+b.故选:A.直接利用数轴上a,b的位置,进而得出a<0,a-b<0,再利用绝对值以及二次根式的性质化简得出答案.此题主要考查了二次根式的性质以及实数与数轴,正确得出各项符号是解题关键.6.解:∵关于x的一元二次方程x2-2x+sinα=0有两个相等的实数根,∴△=(−2)2-4sinα=2-4sinα=0,,解得:sinα=12∵α为锐角,∴α=30°.故选B.,再由α为锐角,即可得出结论.由方程有两个相等的实数根,结合根的判别式可得出sinα=12.本题属于基础题,难度不大,解决该题型题目时,根据根的个本题考查了根的判别式以及特殊角的三角形函数值,解题的关键是求出sinα=12数结合根的判别式得出方程(不等式或不等式组)是关键.7.解:如右图,连接OP,由于OP是Rt△AOB斜边上的中线,AB,不管木杆如何滑动,它的长度不变,也就是OP是一个定值,点P就在以O为圆心的圆弧上,那么中点P下落所以OP=12的路线是一段弧线.故选D.AB,由于木杆不管先连接OP,易知OP是Rt△AOB斜边上的中线,根据直角三角形斜边上的中线等于斜边的一半,可得OP=12如何滑动,长度都不变,那么OP就是一个定值,那么P点就在以O为圆心的圆弧上.本题考查了轨迹,直角三角形斜边上的中线,解题的关键是知道直角三角形斜边上的中线等于斜边的一半.8.解:∵a2-1=(a+1)(a-1),a2+a=a(a+1),a2+a-2=(a+2)(a-1),(a+2)2-2(a+2)+1=(a+2-1)2=(a+1)2,∴结果中不含有因式a+1的是选项C;故选:C.先把各个多项式分解因式,即可得出结果.本题考查了因式分解的意义与方法;熟练掌握因式分解的方法是解决问题的关键.9.解:如图连接BM、OM,AM,作MH⊥BC于H.∵⊙M与x轴相切于点A(8,0),∴AM⊥OA,OA=8,∴∠OAM=∠MH0=∠HOA=90°,∴四边形OAMH是矩形,∴AM=OH,∵MH⊥BC,∴HC=HB=6,∴OH=AM=10,在RT△AOM中,OM=2+OA22+102=2如图连接BM、OM,AM,作MH⊥BC于H,先证明四边形OAMH是矩形,根据垂径定理求出HB,在RT△AOM中求出OM即可.本题考查切线的性质、坐标与图形性质、垂径定理、勾股定理等知识,解题的关键是正确添加辅助线,构造直角三角形.10.解:去分母得:x+m-3m=3x-9,整理得:2x=-2m+9,解得:x=−2m+92,∵关于x的方程x+mx−3+3m3−x=3的解为正数,∴-2m+9>0,级的:m<92,当x=3时,x=−2m+92=3,解得:m=32,故m的取值范围是:m<92且m≠32.故选:B.直接解分式方程,再利用解为正数列不等式,解不等式得出x的取值范围,进而得出答案.此题主要考查了分式方程的解以及不等式的解法,正确解分式方程是解题关键.11.解:如图连接OD、CD.∵AC是直径,∴∠ADC=90°,∵∠A=30°,∴∠ACD=90°-∠A=60°,∵OC=OD,∴△OCD是等边三角形,∵BC是切线.∴∠ACB=90°,∵BC=23,∴AB=43,AC=6,∴S阴=S△ABC-S△ACD-(S扇形OCD-S△OCD)=1 2×6×23-12×3×33-(60π⋅32360-34×32)=1534-32π.故选A.连接连接OD、CD,根据S阴=S△ABC-S△ACD-(S扇形OCD-S△OCD)计算即可解决问题.本题考查扇形面积公式、直角三角形30度角性质、等边三角形性质等知识,解题的关键是学会分割法求面积,属于中考常考题型.12.解:由题意得,2x+1≤95①2(2x+1)≤95②2[2(2x+1)+1]+1>95③,解不等式①得,x≤47,解不等式②得,x≤23,解不等式③得,x>11,所以,x的取值范围是11<x≤23.故选C.根据运算程序,前两次运算结果小于等于95,第三次运算结果大于95列出不等式组,然后求解即可.本题考查了一元一次不等式组的应用,读懂题目信息,理解运输程序并列出不等式组是解题的关键.13.解:原式=3•(3+33)=3×43=12.故答案为12.先把27化简,再本括号内合并,然后进行二次根式的乘法运算.本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.14.解:∵3x2n y m与x4-n y n-1是同类项,∴2n=4−n m=n−1,解得:n=431则m+n=43+13=53.故答案为:53.直接利用同类项的定义得出关于m,n的等式,进而求出答案.此题主要考查了同类项,正确把握同类项的定义是解题关键.15.解:根据题意,该应聘者的总成绩是:70×510+80×310+92×210=77.4(分),故答案为:77.4.根据该应聘者的总成绩=创新能力×所占的比值+综合知识×所占的比值+语言表达×所占的比值即可求得.此题考查了加权平均数,解题的关键是熟记加权平均数的计算方法.16.解:∵反比例函数y=kx(k≠0)的图象经过(3,-1),∴k=3×(-1)=-3,∴反比例函数的解析式为y=−3x.∵反比例函数y=−3x中k=-3,∴该反比例函数的图象经过第二、四象限,且在每个象限内均单增.当y=1时,x=−31=-3;当y=3时,x=−33=-1.∴1<y<3时,自变量x的取值范围是-3<x<-1.故答案为:-3<x<-1.根据反比例函数过点(3,-1)结合反比例函数图象上点的坐标特征可求出k值,根据k值可得出反比例函数在每个象限内的函数图象都单增,分别代入y=1、y=3求出x值,即可得出结论.本题考查了反比例函数的性质以及反比例函数图象上点的坐标特征,解题的关键是求出k值.本题属于基础题,难度不大,解决该题型题目时,由点的坐标结合反比例函数图象上点的坐标特征求出k值,再根据反比例函数的性质找出去增减性是关键.17.解:过M作MN′⊥OB于N′,交OC于P,则MN′的长度等于PM+PN的最小值,即MN′的长度等于点P到点M与到边OA的距离之和的最小值,∵∠ON′M=90°,OM=4,∴MN′=OM•sin60°=23,∴点P到点M与到边OA的距离之和的最小值为23.过M作MN′⊥OB于N′,交OC于P,即MN′的长度等于点P到点M与到边OA的距离之和的最小值,解直角三角形即可得到结论.本题考查了轴对称-最短路线问题,解直角三角形,正确的作出图形是解题的关键.18.解:∵y=x-1与x轴交于点A1,∴A1点坐标(1,0),∵四边形A1B1C1O是正方形,∴B1坐标(1,1),∵C1A2∥x轴,∴A2坐标(2,1),∵四边形A2B2C2C1是正方形,∴B2坐标(2,3),∵C2A3∥x轴,∴A3坐标(4,3),∵四边形A3B3C3C2是正方形,∴B3(4,7),∵B1(20,21-1),B2(21,22-1),B3(22,23-1),…,∴B n坐标(2n-1,2n-1).故答案为(2n-1,2n-1).先求出B1、B2、B3的坐标,探究规律后即可解决问题.本题考查一次函数图象上点的特征,正方形的性质等知识,解题的关键是学会从特殊到一般的探究方法,利用规律解决问题,属于中考填空题中的压轴题.19.由于x=23是方程的一个根,直接把它代入方程即可求出m的值,然后由根与系数的关系来求方程的另一根.此题考查了根与系数的关系,一元二次方程的根的定义,把方程的根代入原方程就可以确定待定系数m的值.20.(2)首先求得B等级的频数,继而求得B等级所在扇形的圆心角的大小;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其中至少有一家是A等级的情况,再利用概率公式求解即可求得答案.此题考查了列表法或树状图法求概率以及扇形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.21.(1)直接利用正方形的性质、圆周角定理结合平行线的性质得出∠BED=∠BAD=90°,∠BFD=∠BCD=90°,∠EDF=90°,进而得出答案;(2)直接利用正方形的性质A D的度数是90°,进而得出BE=DF,则BE=DG.此题主要考查了正方形的性质以及圆周角定理和矩形的判定等知识,正确应用正方形的性质是解题关键.22.延长AD交BC的延长线于E,作DF⊥BE于F,根据直角三角形的性质和勾股定理求出DF、CF的长,根据正切的定义求出EF,得到BE的长,根据正切的定义解答即可.本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.23.(1)观光车全部租出每天的净收入=出租自行车的总收入-管理费,根据不等关系:净收入为正,列出不等式求解即可;(2)由函数解析式是分段函数,在每一段内求出函数最大值,比较得出函数的最大值.本题用分段函数模型考查了一次函数,二次函数的性质与应用,解决问题的关键是弄清题意,分清收费方式.24.(1)连接BD,证明△ABD为等边三角形,根据等腰三角形的三线合一得到AE=EB,根据相似三角形的性质解答即可;(2)分∠EDF顺时针旋转和逆时针旋转两种情况,根据旋转变换的性质解答即可.本题考查的是菱形的性质和旋转变换,掌握旋转的性质:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等是解题的关键.25.(1)用待定系数法求出抛物线解析式即可;(2)设点P(m,13m2+2m+1),表示出PE=-13m2-3m,再用S四边形AECP=S△AEC+S△APC=12AC×PE,建立函数关系式,求出极值即可;(3)先判断出PF=CF,再得到∠PCF=∠EAF,以C、P、Q为顶点的三角形与△ABC相似,分两种情况计算即可.此题是二次函数综合题,主要考查了待定系数法,相似三角形的性质,几何图形面积的求法(用割补法),解本题的关键是求函数解析式.。
2016年山东省潍坊市中考数学试卷(解析版)

2016年山东省潍坊市中考数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分1.计算:20•2﹣3=()A.﹣B.C.0 D.8【考点】负整数指数幂;零指数幂.【分析】直接利用负整数指数幂的性质结合零指数幂的性质分析得出答案.【解答】解:20•2﹣3=1×=.故选:B.2.下列科学计算器的按键中,其上面标注的符号是轴对称图形但不是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,又是中心对称图形,故此选项错误;B、不是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,又是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项正确.故选:D.3.如图,几何体是由底面圆心在同一条直线上的三个圆柱构成的,其俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据俯视图的概念和看得到的边都应用实线表现在三视图中、看不到,又实际存在的,又没有被其他边挡住的边用虚线表现在三视图中解答即可.【解答】解:图中几何体的俯视图是C选项中的图形.故选:C.4.近日,记者从潍坊市统计局获悉,2016年第一季度潍坊全市实现生产总值1256.77亿元,将1256.77亿用科学记数法可表示为(精确到百亿位)()A.1.2×1011B.1.3×1011C.1.26×1011D.0.13×1012【考点】科学记数法与有效数字.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将1256.77亿用科学记数法可表示为1.3×1011.故选B.5.实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b【考点】二次根式的性质与化简;实数与数轴.【分析】直接利用数轴上a,b的位置,进而得出a<0,a﹣b<0,再利用绝对值以及二次根式的性质化简得出答案.【解答】解:如图所示:a<0,a﹣b<0,则|a|+=﹣a﹣(a﹣b)=﹣2a+b.故选:A.6.关于x的一元二次方程x2﹣x+sinα=0有两个相等的实数根,则锐角α等于()A.15° B.30° C.45° D.60°【考点】根的判别式;特殊角的三角函数值.【分析】由方程有两个相等的实数根,结合根的判别式可得出sinα=,再由α为锐角,即可得出结论.【解答】解:∵关于x的一元二次方程x2﹣x+sinα=0有两个相等的实数根,∴△=﹣4sinα=2﹣4sinα=0,解得:sinα=,∵α为锐角,∴α=30°.故选B.7.木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是()A.B.C.D.【考点】轨迹;直角三角形斜边上的中线.【分析】先连接OP,易知OP是Rt△AOB斜边上的中线,根据直角三角形斜边上的中线等于斜边的一半,可得OP=AB,由于木杆不管如何滑动,长度都不变,那么OP就是一个定值,那么P点就在以O为圆心的圆弧上.【解答】解:如右图,连接OP,由于OP是Rt△AOB斜边上的中线,所以OP=AB,不管木杆如何滑动,它的长度不变,也就是OP是一个定值,点P就在以O为圆心的圆弧上,那么中点P下落的路线是一段弧线.故选D.8.将下列多项式因式分解,结果中不含有因式a+1的是()A.a2﹣1 B.a2+a C.a2+a﹣2 D.(a+2)2﹣2(a+2)+1【考点】因式分解的意义.【分析】先把各个多项式分解因式,即可得出结果.【解答】解:∵a2﹣1=(a+1)(a﹣1),a2+a=a(a+1),a2+a﹣2=(a+2)(a﹣1),(a+2)2﹣2(a+2)+1=(a+2﹣1)2=(a+1)2,∴结果中不含有因式a+1的是选项C;故选:C.9.如图,在平面直角坐标系中,⊙M与x轴相切于点A(8,0),与y轴分别交于点B(0,4)和点C(0,16),则圆心M到坐标原点O的距离是()A.10 B.8C.4D.2【考点】切线的性质;坐标与图形性质.【分析】如图连接BM、OM,AM,作MH⊥BC于H,先证明四边形OAMH是矩形,根据垂径定理求出HB,在RT△AOM中求出OM即可.【解答】解:如图连接BM、OM,AM,作MH⊥BC于H.∵⊙M与x轴相切于点A(8,0),∴AM⊥OA,OA=8,∴∠OAM=∠MH0=∠HOA=90°,∴四边形OAMH是矩形,∴AM=OH,∵MH⊥BC,∴HC=HB=6,∴OH=AM=10,在RT△AOM中,OM===2.故选D.10.若关于x的方程+=3的解为正数,则m的取值范围是()A.m<B.m<且m≠C.m>﹣D.m>﹣且m≠﹣【考点】分式方程的解.【分析】直接解分式方程,再利用解为正数列不等式,解不等式得出x的取值范围,进而得出答案.【解答】解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=,∵关于x 的方程+=3的解为正数, ∴﹣2m+9>0,级的:m <,当x=3时,x==3,解得:m=,故m 的取值范围是:m <且m ≠.故选:B .11.如图,在Rt △ABC 中,∠A=30°,BC=2,以直角边AC 为直径作⊙O 交AB 于点D ,则图中阴影部分的面积是( )A .﹣B .﹣C .﹣D .﹣【考点】扇形面积的计算;含30度角的直角三角形.【分析】连接连接OD 、CD ,根据S 阴=S △ABC ﹣S △ACD ﹣(S 扇形OCD ﹣S △OCD )计算即可解决问题.【解答】解:如图连接OD 、CD .∵AC 是直径,∴∠ADC=90°,∵∠A=30°,∴∠ACD=90°﹣∠A=60°,∵OC=OD ,∴△OCD 是等边三角形,∵BC 是切线.∴∠ACB=90°,∵BC=2,∴AB=4,AC=6,∴S 阴=S △ABC ﹣S △ACD ﹣(S 扇形OCD ﹣S △OCD )=×6×2﹣×3×﹣(﹣×32)=﹣π.故选A .12.运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是()A.x≥11 B.11≤x<23 C.11<x≤23 D.x≤23【考点】一元一次不等式组的应用.【分析】根据运算程序,前两次运算结果小于等于95,第三次运算结果大于95列出不等式组,然后求解即可.【解答】解:由题意得,,解不等式①得,x≤47,解不等式②得,x≤23,解不等式③得,x>11,所以,x的取值范围是11<x≤23.故选C.二、填空题:本大题共6小题,每小题3分13.计算:(+)=12.【考点】二次根式的混合运算.【分析】先把化简,再本括号内合并,然后进行二次根式的乘法运算.【解答】解:原式=•(+3)=×4=12.故答案为12.14.若3x2n y m与x4﹣n y n﹣1是同类项,则m+n=.【考点】同类项.【分析】直接利用同类项的定义得出关于m,n的等式,进而求出答案.【解答】解:∵3x2n y m与x4﹣n y n﹣1是同类项,∴,解得:则m+n=+=.故答案为:.的总成绩是77.4分.【考点】加权平均数.【分析】根据该应聘者的总成绩=创新能力×所占的比值+综合知识×所占的比值+语言表达×所占的比值即可求得.【解答】解:根据题意,该应聘者的总成绩是:70×+80×+92×=77.4(分),故答案为:77.4.16.已知反比例函数y=(k≠0)的图象经过(3,﹣1),则当1<y<3时,自变量x的取值范围是﹣3<x<﹣1.【考点】反比例函数的性质;反比例函数图象上点的坐标特征.【分析】根据反比例函数过点(3,﹣1)结合反比例函数图象上点的坐标特征可求出k值,根据k值可得出反比例函数在每个象限内的函数图象都单增,分别代入y=1、y=3求出x值,即可得出结论.【解答】解:∵反比例函数y=(k≠0)的图象经过(3,﹣1),∴k=3×(﹣1)=﹣3,∴反比例函数的解析式为y=.∵反比例函数y=中k=﹣3,∴该反比例函数的图象经过第二、四象限,且在每个象限内均单增.当y=1时,x==﹣3;当y=3时,x==﹣1.∴1<y<3时,自变量x的取值范围是﹣3<x<﹣1.故答案为:﹣3<x<﹣1.17.已知∠AOB=60°,点P是∠AOB的平分线OC上的动点,点M在边OA上,且OM=4,则点P到点M与到边OA的距离之和的最小值是2.【考点】轴对称-最短路线问题.【分析】过M作MN′⊥OB于N′,交OC于P,即MN′的长度等于点P到点M与到边OA 的距离之和的最小值,解直角三角形即可得到结论.【解答】解:过M作MN′⊥OB于N′,交OC于P,则MN′的长度等于PM+PN的最小值,即MN′的长度等于点P到点M与到边OA的距离之和的最小值,∵∠ON′M=90°,OM=4,∴MN′=OM•sin60°=2,∴点P到点M与到边OA的距离之和的最小值为2.18.在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、,使得点A1、A2、A3、…在直线l上,点C1、正方形A2B2C2C1、…、正方形A n B n C n C n﹣1C2、C3、…在y轴正半轴上,则点B n的坐标是(2n﹣1,2n﹣1).【考点】一次函数图象上点的坐标特征;正方形的性质.【分析】先求出B1、B2、B3的坐标,探究规律后即可解决问题.【解答】解:∵y=x﹣1与x轴交于点A1,∴A1点坐标(1,0),∵四边形A1B1C1O是正方形,∴B1坐标(1,1),∵C1A2∥x轴,∴A2坐标(2,1),∵四边形A2B2C2C1是正方形,∴B2坐标(2,3),∵C2A3∥x轴,∴A3坐标(4,3),∵四边形A3B3C3C2是正方形,∴B3(4,7),∵B1(20,21﹣1),B2(21,22﹣1),B3(22,23﹣1),…,∴B n坐标(2n﹣1,2n﹣1).故答案为(2n﹣1,2n﹣1).三、解答题:本大题共7小题,共66分19.关于x的方程3x2+mx﹣8=0有一个根是,求另一个根及m的值.【考点】根与系数的关系.【分析】由于x=是方程的一个根,直接把它代入方程即可求出m的值,然后由根与系数的关系来求方程的另一根.【解答】解:设方程的另一根为t.依题意得:3×()2+m﹣8=0,解得m=10.又t=﹣,所以t=﹣4.综上所述,另一个根是﹣4,m的值为10.20.今年5月,某大型商业集团随机抽取所属的m家商业连锁店进行评估,将各连锁店按A B C D(1)求m的值;(2)在扇形统计图中,求B等级所在扇形的圆心角的大小;(结果用度、分、秒表示)(3)从评估成绩不少于80分的连锁店中任选2家介绍营销经验,求其中至少有一家是A 等级的概率.【考点】列表法与树状图法;频数(率)分布表;扇形统计图.【分析】(1)由C等级频数为15,占60%,即可求得m的值;(2)首先求得B等级的频数,继而求得B等级所在扇形的圆心角的大小;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其中至少有一家是A等级的情况,再利用概率公式求解即可求得答案.【解答】解:(1)∵C等级频数为15,占60%,∴m=15÷60%=25;(2)∵B等级频数为:25﹣2﹣15﹣6=2,∴B等级所在扇形的圆心角的大小为:×360°=28.8°=28°48′;(3)评估成绩不少于80分的连锁店中,有两家等级为A,有两家等级为B,画树状图得:∵共有12种等可能的结果,其中至少有一家是A等级的有10种情况,∴其中至少有一家是A等级的概率为:=.21.正方形ABCD内接于⊙O,如图所示,在劣弧上取一点E,连接DE、BE,过点D 作DF∥BE交⊙O于点F,连接BF、AF,且AF与DE相交于点G,求证:(1)四边形EBFD是矩形;(2)DG=BE.【考点】正方形的性质;矩形的判定;圆周角定理.【分析】(1)直接利用正方形的性质、圆周角定理结合平行线的性质得出∠BED=∠BAD=90°,∠BFD=∠BCD=90°,∠EDF=90°,进而得出答案;(2)直接利用正方形的性质的度数是90°,进而得出BE=DF,则BE=DG.【解答】证明:(1)∵正方形ABCD内接于⊙O,∴∠BED=∠BAD=90°,∠BFD=∠BCD=90°,又∵DF∥BE,∴∠EDF+∠BED=180°,∴∠EDF=90°,∴四边形EBFD是矩形;(2))∵正方形ABCD内接于⊙O,∴的度数是90°,∴∠AFD=45°,又∵∠GDF=90°,∴∠DGF=∠DFC=45°,∴DG=DF,又∵在矩形EBFD中,BE=DF,∴BE=DG.22.如图,直立于地面上的电线杆AB,在阳光下落在水平地面和坡面上的影子分别是BC、CD,测得BC=6米,CD=4米,∠BCD=150°,在D处测得电线杆顶端A的仰角为30°,试求电线杆的高度(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】延长AD交BC的延长线于E,作DF⊥BE于F,根据直角三角形的性质和勾股定理求出DF、CF的长,根据正切的定义求出EF,得到BE的长,根据正切的定义解答即可.【解答】解:延长AD交BC的延长线于E,作DF⊥BE于F,∵∠BCD=150°,∴∠DCF=30°,又CD=4,∴DF=2,CF==2,由题意得∠E=30°,∴EF==2,∴BE=BC+CF+EF=6+4,∴AB=BE×tanE=(6+4)×=(2+4)米,答:电线杆的高度为(2+4)米.23.旅游公司在景区内配置了50辆观光车共游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数.发现每天的营运规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入﹣管理费)(2)当每辆车的日租金为多少元时,每天的净收入最多?【考点】二次函数的应用.【分析】(1)观光车全部租出每天的净收入=出租自行车的总收入﹣管理费,根据不等关系:净收入为正,列出不等式求解即可;(2)由函数解析式是分段函数,在每一段内求出函数最大值,比较得出函数的最大值.【解答】解:(1)由题意知,若观光车能全部租出,则0<x≤100,由50x﹣1100>0,解得x>22,又∵x是5的倍数,∴每辆车的日租金至少应为25元;(2)设每辆车的净收入为y元,当0<x≤100时,y1=50x﹣1100,∵y1随x的增大而增大,∴当x=100时,y1的最大值为50×100﹣1100=3900;当x>100时,y2=(50﹣)x﹣1100=﹣x2+70x﹣1100=﹣(x﹣175)2+5025,当x=175时,y2的最大值为5025,5025>3900,故当每辆车的日租金为175元时,每天的净收入最多是5025元.24.如图,在菱形ABCD中,AB=2,∠BAD=60°,过点D作DE⊥AB于点E,DF⊥BC于点F.(1)如图1,连接AC分别交DE、DF于点M、N,求证:MN=AC;(2)如图2,将△EDF以点D为旋转中心旋转,其两边DE′、DF′分别与直线AB、BC相交于点G、P,连接GP,当△DGP的面积等于3时,求旋转角的大小并指明旋转方向.【考点】旋转的性质;菱形的性质.【分析】(1)连接BD,证明△ABD为等边三角形,根据等腰三角形的三线合一得到AE=EB,根据相似三角形的性质解答即可;(2)分∠EDF顺时针旋转和逆时针旋转两种情况,根据旋转变换的性质解答即可.【解答】(1)证明:如图1,连接BD,交AC于O,在菱形ABCD中,∠BAD=60°,AD=AB,∴△ABD为等边三角形,∵DE⊥AB,∴AE=EB,∵AB∥DC,∴==,同理,=,∴MN=AC;(2)解:∵AB∥DC,∠BAD=60°,∴∠ADC=120°,又∠ADE=∠CDF=30°,∴∠EDF=60°,当∠EDF顺时针旋转时,由旋转的性质可知,∠EDG=∠FDP,∠GDP=∠EDF=60°,DE=DF=,∠DEG=∠DFP=90°,在△DEG和△DFP中,,∴△DEG≌△DFP,∴DG=DP,∴△DGP为等边三角形,∴△DGP的面积=DG2=3,解得,DG=2,则cos∠EDG==,∴∠EDG=60°,∴当顺时针旋转60°时,△DGP的面积等于3,同理可得,当逆时针旋转60°时,△DGP的面积也等于3,综上所述,将△EDF以点D为旋转中心,顺时针或逆时针旋转60°时,△DGP的面积等于3.25.如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P时直线AC下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)用待定系数法求出抛物线解析式即可;(2)设点P(m,m2+2m+1),表示出PE=﹣m2﹣3m,再用S四边形AECP=S△AEC+S△APC=AC×PE,建立函数关系式,求出极值即可;(3)先判断出PF=CF,再得到∠PCF=∠EAF,以C、P、Q为顶点的三角形与△ABC相似,分两种情况计算即可.【解答】解:(1)∵点A(0,1).B(﹣9,10)在抛物线上,∴,∴,∴抛物线的解析式为y=x2+2x+1,(2)∵AC∥x轴,A(0,1)∴x2+2x+1=1,∴x1=6,x2=0,∴点C的坐标(﹣6,1),∵点A(0,1).B(﹣9,10),∴直线AB的解析式为y=﹣x+1,设点P(m,m2+2m+1)∴E(m,﹣m+1)∴PE=﹣m+1﹣(m2+2m+1)=﹣m2﹣3m,∵AC⊥EP,AC=6,∴S四边形AECP=S△AEC+S△APC=AC×EF+AC×PF=AC×(EF+PF)=AC×PE=×6×(﹣m2﹣3m)=﹣m2﹣9m=﹣(m+)2+,∵﹣6<m<0∴当m=﹣时,四边形AECP的面积的最大值是,此时点P(﹣,﹣).(3)∵y=x2+2x+1=(x+3)2﹣2,∴P(﹣3,﹣2),∴PF=y F﹣y P=3,CF=x F﹣x C=3,∴PF=CF,∴∠PCF=45°同理可得:∠EAF=45°,∴∠PCF=∠EAF,∴在直线AC上存在满足条件的Q,设Q(t,1)且AB=9,AC=6,CP=3∵以C、P、Q为顶点的三角形与△ABC相似,①当△CPQ∽△ABC时,∴,∴,∴t=﹣4,∴Q(﹣4,1)②当△CQP∽△ABC时,∴,∴,∴t=3,∴Q(3,1).2016年7月11日。
山东省潍坊市临朐县、昌邑县2016届九年级中考一模数学试题解析(解析版)

一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,错选、不选或多选均记0分)1.某种计算机完成一次基本运算所用的时间约为0.0000000015s ,把0.0000000015用科学记数法可表示为( )A .0.15×10-8B .0.15×10-9C .1.5×10-8D .1.5×10-9【答案】D.【解析】试题解析:0.0000000015=1.5×10-9,故选D .考点:科学记数法—表示较小的数.2.下列运算正确的是( )A .(2a 2)3=6a 6B .-a 2b 2•3ab 3=-3a 2b 5C .1baa b b a +=--- D .21111a a a -=-+【答案】C.【解析】考点:1.分式的加减法;2.幂的乘方与积的乘方;3.单项式乘单项式;4.分式的乘除法.3.一个全透明的正方体上面放有一根黑色的金属丝(如图),那么金属丝在左视图中的形状是()【答案】B.【解析】试题解析:从左边看到的现状是B中图形,故选B.考点:简单组合体的三视图.4.已知:,则a与b的关系是()A.ab=1 B.a+b=0 C.a-b=0 D.a2=b2【答案】A.【解析】考点:分母有理化.5.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.当气球内的气压大于120kPa时,气球将爆炸.为了安全起见,气球的体积应()A.不小于54m3 B.小于54m3 C.不小于45m3 D.小于45m3【答案】C. 【解析】试题解析:设球内气体的气压P(kPa)和气体体积V(m3)的关系式为P=kv,∵图象过点(1.6,60)∴k=96即P=96v在第一象限内,P随V的增大而减小,∴当P≤120时,V=96P≥45.故选C.考点:反比例函数的应用.6.如图,⊙O是△ABC的内切圆,切点分别是D、E、F,已知∠A=100°,∠C=30°,则∠DFE的度数是()A.55° B.60° C.65° D.70°【答案】C.【解析】试题解析:∵∠A=100°,∠C=30°,∴∠B=50°,∵∠BDO=∠BEO,∴∠DOE=130°,∴∠DFE=65°.故选C.考点:三角形的内切圆与内心.7.一艘轮船由海平面上A地出发向南偏西40°的方向行驶40海里到达B地,再由B地向北偏西20°的方向行驶40海里到达C地,则A、C两地相距()A.30海里 B.40海里 C.50海里 D.60海里【答案】B.【解析】试题解析:由题意得∠ABC=60°,AB=BC∴△ABC是等边三角形∴AC=AB=40海里.故选B.考点:1.等边三角形的判定与性质;2.方向角.8.在一次自行车越野赛中,甲乙两名选手行驶的路程y(千米)随时间x(分)变化的图象(全程)如图,根据图象判定下列结论不正确的是()A.甲先到达终点 B.前30分钟,甲在乙的前面C.第48分钟时,两人第一次相遇 D.这次比赛的全程是28千米【答案】D.【解析】试题解析:A、由横坐标看,甲用时86分,乙用时96分,甲先到达终点,说法正确;B、由横坐标看,在30分钟以前,说明用相同的时间,甲走的路程多于乙的路程,那么甲在乙的前面,说法正确;C、由图象上两点(30,10),(66,14)可得线段AB的解析式为y=12093x ,那么由图象可得路程为12时,出现交点,当y=12时,x=48,说法正确;D、乙是匀速运动,速度为:12÷48=14,那么全程为14×96=24千米,说法错误;故选D.考点:函数的图象.9.关于x的一元二次方程2x2-4xsinα+1=0有两个相等的实数根,则锐角α的度数是()A.30° B.45° C.60° D.90°【答案】B.【解析】试题解析:∵关于x的一元二次方程2x2-4xsinα+1=0有两个相等的实数根,∴△=(-4sinα)2-4×2×1=0,∴sin2α=12,即sinα,可得锐角α=45°.故选B.考点:1.根的判别式;2.特殊角的三角函数值.10.如图,如果从半径为9cm的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为()A.6cm B.cm C.8cm D.cm 【答案】B.【解析】试题解析:∵从半径为9cm的圆形纸片剪去13圆周的一个扇形,∴剩下的扇形的角度=360°×23=240°,∴留下的扇形的弧长=2409180π⨯=12π,∴圆锥的底面半径r=122ππ=6cm,∴圆锥的高==cm.故选B.考点:1.弧长的计算;2.勾股定理.11.如图,有一块矩形纸片ABCD,AB=8,AD=6,将纸片折叠,使得AD边落在AB边上,折痕为AE,再将△AED 沿DE向右翻折,AE与BC的交点为F,则△CEF的面积为()A.12B.98C.2 D.4【答案】C.【解析】试题解析:∵AB=8,AD=6,纸片折叠,使得AD边落在AB边上,∴DB=8-6=2,∠EAD=45°,又∵△AED沿DE向右翻折,AE与BC的交点为F,∴AB=AD-DB=6-2=4,△ABF为等腰直角三角形,∴BF=AB=4,∴CF=BC-BF=6-4=2,而EC=DB=2,12×2×2=2.故选C.考点:翻折变换(折叠问题).12.若实数m满足222(1)0mm++=,则下列对m值的估计正确的是()A.-2<m<-1 B.-1<m<0 C.0<m<1 D.1<m<2 【答案】A.【解析】试题解析:∵222(1)0mm++=,∴m2+2+4m=0,∴m2+2=-4m,∴方程的解可以看作是函数y=m2+2与函数y=-4m,作函数图象如图,在第二象限,函数y=m2+2的y值随m的增大而减小,函数y=-4m的y值随m的增大而增大,当m=-2时y=m2+2=4+2=6,y=-4m=-42-=2,∵6>2,∴交点横坐标大于-2,当m=-1时,y=m2+2=1+2=3,y=-4m=-41-=4,∵3<4,∴交点横坐标小于-1,∴-2<m<-1.故选A.考点:1.二次函数的图象;2.反比例函数的图象.二、填空题(本大题共6小题,共18分,只要求填写最后结果,每小题填对得3分)13.为了让人们感受丢弃塑料袋对环境造成的影响,某班环保小组的六名同学记录了自已家中一周内丢弃的塑料袋的数量,结果如下(单位:个):33,25,28,26,25,31,如果该班有45名学生,那么根据提供的数据估计该周全班同学各家总共丢弃塑料袋的数量约为个.【答案】1260.【解析】试题解析:(33+25+28+26+25+31)÷6×45=1260(个).考点:1.算术平均数;2.用样本估计总体.14.已知关于x的不等式组321x ax-≥⎧⎨-≥-⎩的整数解共有5个,则a的取值范围是.【答案】-3<a≤-2.【解析】试题解析:不等式组解得:a≤x≤2,∵不等式组的整数解有5个为2,1,0,-1,-2,∴-3<a≤-2.考点:一元一次不等式组的整数解.15.因式分解:(x2+4)2-16x2= .【答案】(x+2)2(x-2)2.【解析】试题解析:(x2+4)2-16x2=(x2+4+4x)(x2+4-4x)=(x+2)2(x-2)2.考点:因式分解-运用公式法.16.如图,AB是⊙O的直径,点C在⊙O上,∠BAC=30°,点P在线段OB上运动.设∠ACP=x,则x的取值范围是.【答案】30°≤x≤90°.【解析】试题解析:①当P在O点时,∵OA=OC∴∠ACP=∠BAC=30°;当P在B点时,∵圆的直径所对的圆周角为直角,∴∠ACP=90°;∴30°≤x≤90°.考点:圆周角定理.17.如图,n 个边长为1的相邻正方形的一边均在同一直线上,点M 1,M 2,M 3,…M n 分别为边B 1B 2,B 2B 3,B 3B 4,…,B n B n+1的中点,△B 1C 1M 1的面积为S 1,△B 2C 2M 2的面积为S 2,…△B n C n M n 的面积为S n ,则S n = .(用含n 的式子表示)【答案】14(21)n -. 【解析】试题解析:∵n 个边长为1的相邻正方形的一边均在同一直线上,点M 1,M 2,M 3,…M n 分别为边B 1B 2,B 2B 3,B 3B 4,…,B n B n+1的中点,∴S 1=12×B 1C 1×B 1M 1=12×1×12=14, S △B1C1M2=12×B 1C 1×B 1M 2=12×1×32=34, S △B1C1M3=12×B 1C 1×B 1M 3=12×1×52=54, S △B1C1M4=12×B 1C 1×B 1M 4=12×1×72=74, S △B1C1Mn =12×B 1C 1×B 1M n =12×1×212n -=214n -, ∵B n C n ∥B 1C 1,∴△B n C n M n ∽△B 1C 1M n ,∴S △BnCnMn :S △B1C1Mn =(1n n nB M B M )2=(12212n -)2, 即S n :214n - =21(21)n -,∴S n =14(21)n -. 考点:相似三角形的判定与性质.18.如图,边长等于4的正方形ABCD 两个顶点A 与D 分别在x 轴和y 轴上滑动(A 、D 都不与坐标原点O 重合),作CE⊥x 轴,垂足为E ,当OA 等于 时,四边形OACE 面积最大.【答案】.【解析】试题解析:∵四边形ABCD 是正方形,∴DA=DC,∠ADC=90°.∵∠AOD=90°,CE⊥y 轴,∴∠AOD=∠DEC=90°,∠ADO=∠DCE=90°-∠CDE.在△AOD 和△DEC 中,AOD DEC ADO DCE DA DC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOD≌△DEC,∴AO=DE,OD=EC .设OA=x ,OD=y ,则有DE=OA=x ,CE=OD=y ,x 2+y 2=16,∴S 四边形OECA =12(x+y )2=12(x 2+y 2+2xy ) =12(16+2xy ) =8+xy =8+12 [x 2+y 2-(x-y )2]=8+12[16-(x-y )2] =16-12(x-y )2 当x=y 时,S 四边形OECA 取到最大值,此时= 考点:1.全等三角形的判定与性质;2.坐标与图形性质;3.二次函数的最值;4.正方形的性质.三、解答题(本大题共6小题,共66分,解答要写出必要的文字说明、证明过程或演算步骤)19.已知关于x的一元二次方程2(21)10m x --+=有两个不相等的实数根.(1)求m 的取值范围;(2)当111m m+=的值. 【答案】(1)m <1且m≠12.(2)-3. 【解析】试题分析:在与一元二次方程有关的求值问题中,必须满足下列条件:①二次项系数不为零;②在有两个不相等的实数根下必须满足△=b 2-4ac >0.另外,对第(2)小题:依据212m m =+-,利用转换解出所求的值,要注意验证所求结果是否符合题意.> 试题解析:(1)根据题意列出方程组2(4(21)0210m m -⎧-⎪≠--⎪⎨⎩> 解之得m <1且m≠12. (2)∵111m m +=∴212m m =+-=11-2=9-=±3又由(1)得m<1且m≠1 2<0因此应舍去3=-3考点:根的判别式.20.某电脑公司现有A、B、C三种型号的甲品牌电脑和D,E两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌电脑中各选购一种型号的电脑.(1)写出所有选购方案(利用树状图或列表方法表示);(2)如果(1)中各种选购方案被选中的可能性相同,那么A型号电脑被选中的概率是多少?(3)现知希望中学购买甲、乙两种品牌电脑共36台(价格如图所示),恰好用了10万元人民币,其中甲品牌电脑为A型号电脑,求购买的A型号电脑有几台.【答案】(1)见解析;(2)13;(3)希望中学购买了7台A型号电脑.【解析】试题分析:(1)依据题意先用列表法或画树状图法,列出所有可能的结果,然后根据概率公式求出该事件的概率;(2)(3)根据题意列出方程求解则可.试题解析:(1)列表如图:有6种可能结果:(A,D),(A,E),(B,D),(B,E),(C,D),(C,E);(2)因为选中A型号电脑有2种方案,即(A,D)(A,E),所以A型号电脑被选中的概率是13;(3)由(2)可知,当选用方案(A,D)时,设购买A型号、D型号电脑分别为x,y台,根据题意,得36 60005000100000 x yx y+=⎧⎨+=⎩解得80116xy=-⎧⎨=⎩,经检验不符合实际,舍去;当选用方案(A,E)时,设购买A型号、E型号电脑分别为a,b台,根据题意,得36 60002000100000 a ba b+=⎧⎨+=⎩解得729 ab=⎧⎨=⎩.所以希望中学购买了7台A型号电脑.考点:1.列表法与树状图法;2.二元一次方程组的应用.21.如图,AB是⊙O的直径,点C是⊙O上一点,∠BAC的平分线AD交⊙O于点D,过点D垂直于AC的直线交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)如果AD=5,AE=4,求AC长.【答案】(1)证明见解析;(2)74.【解析】试题分析:(1)连接OD,由AD为角平分线,得到一对角相等,再由OA=OD,得到一对角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行可得AE与OD平行,由两直线平行同旁内角互补,得到∠E与∠EDO互补,再由∠E为直角,可得∠EDO为直角,即DE为圆O的切线,得证;(2)连接BD,过点A作AF⊥AC,由AB为圆O的直径,根据直径所对的圆周角为直角,得到∠ADB为直角,在直角三角形ABD中,利用锐角三角函数定义得到cos∠DAB的值,又在直角三角形AED中,由AE及AD的长,利用锐角三角函数定义求出cos∠EAD的值,由∠EAD=∠DAB,得到cos∠EAD=cos∠DAB,得出cos∠DAB 的值,即可求出直径AB的长,由勾股定理和垂径定理即可求出AC长.试题解析:(1)连接OD,如图1所示:∵AD为∠CAB的平分线,∴∠CAD=∠BAD,又∵OA=OD,∴∠BAD=ODA,∴∠CAD=∠ODA,∴AC∥OD,∴∠E+∠EDO=180°,又∵AE⊥ED,即∠E=90°,∴∠EDO=90°,则ED为圆O的切线;(2)连接BD,如图2所示,过点A作AF⊥AC,∵AB为圆O的直径,∴∠ADB=90°,在Rt△ABD中,cos∠DAB=AD AB,在Rt△AED中,AE=4,AD=5,∴cos∠EAD=45AEAD=,又∠EAD=∠DAB,∴cos∠DAB=cos∠EAD=45 ADAB=,则AB=54AD=254,即圆的直径为254,∴AO=25 8,∵∠E=∠EDO=∠EFO=90°,∴四边形EFOD是矩形,∴OF=DE=3,78=,∴AC=2AF=74.考点:1.切线的判定;2.相似三角形的判定与性质.22.家用电灭蚊器的发热部分使用了PTC发热材料,它的电阻R(kΩ)随温度t(℃)(在一定范围内)变化的大致图象如图所示.通电后,发热材料的温度在由室温10℃上升到30℃的过程中,电阻与温度成反比例关系,且在温度达到30℃时,电阻下降到最小值;随后电阻随温度升高而增加,温度每上升1℃,电阻增加415kΩ.(1)求当10≤t≤30时,R和t之间的关系式;(2)求温度在30℃时电阻R的值;并求出t≥30时,R和t之间的关系式;(3)家用电灭蚊器在使用过程中,温度在什么范围内时,发热材料的电阻不超过6 kΩ?【答案】(1)R=60t ;(2)温度在30℃时,电阻R=2(k Ω).当t≥30时,R=415t-6;(3)温度在10℃~45℃时,电阻不超过6k Ω.【解析】试题分析:(1)设关系为R=k t,将(10,6)代入求k ; (2)将t=30℃代入关系式中求R’,由题意得R=R’+415(t-30); (3)将R=6代入R=R’+415(t-30)求出t . 试题解析:(1)∵温度在由室温10℃上升到30℃的过程中,电阻与温度成反比例关系,∴可设R 和t 之间的关系式为R=k t , 将(10,6)代入上式中得:6=10k , k=60.故当10≤t≤30时,R=60t; (2)将t=30℃代入上式中得:R=,R=2.∴温度在30℃时,电阻R=2(k Ω).∵在温度达到30℃时,电阻下降到最小值;随后电阻随温度升高而增加,温度每上升1℃,电阻增加415k Ω, ∴当t≥30时, R=2+415(t-30)=415t-6; (3)把R=6(k Ω),代入R=415t-6得,t=45(℃), 所以,当t≥30时, R=2+415(t-30)=415t-6; 温度在10℃~45℃时,电阻不超过6k Ω.考点:反比例函数的应用.23.在平面直角坐标系中,已知等腰梯形ABCD的三个顶点A(-2,0),B(6,0),C(4,6),对角线AC与BD相交于点E.(1)求E的坐标;(2)若M是x轴上一动点,求MC+MD的最小值;(3)在y轴正半轴上求点P,使以P、B、C为顶点的三角形为等腰三角形.【答案】(1) 点E的坐标为(2,4);(2) ;(3) 点P的坐标为:(0,6+),(0,6-),(0,2),(0,43).【解析】试题分析:(1)作EF⊥AB,根据已知,可得出OD=6,FB=4,OF=2,然后,根据相似,即可求出EF的长,即可得出点E的坐标;(2)作点D关于x轴的对称点D′,则D′的坐标为(0,-6),根据两点间的距离公式,算出即可;(3)设点P(0,y),y>0,分三种情况,①PC=BC;②PB=BC;③PB=PC;解答出即可;试题解析:(1)作EF⊥AB,∴BF EF OB OD=,∵梯形ABCD是等腰梯形,∴AE=BE,∴在等腰三角形ABE中,AF=BF,∵A(-2,0),B(6,0),C(4,6),∴点D的坐标为(0,6),∴OD=6,FB=4,OF=2,∴466EF =,∴EF=4,∴点E的坐标为(2,4);(2)由题意可得,点D关于x轴的对称点D′的坐标为(0,-6),CD′与x轴的交点为M,∴此时,MC+MD=CD′为最小值,=(3)设点P(0,y),y>0,分三种情况,①PC=BC;∴42+(6-y)2=22+62,解得,y=6±;②PB=BC;∴62+y2=22+62,解得,y=2,y=-2(舍去);③PB=PC;∴62+y2=42+(6-y)2,解得,y=43;综上,点P的坐标为:(0,6+),(0,6-),(0,2),(0,43).考点:1.等腰梯形的性质;2.坐标与图形性质;3.等腰三角形的判定;4.轴对称-最短路线问题.24.如图,已知直线112y x=-+交坐标轴于A、B点,以线段AB为边向上作正方形ABCD,过点A、D、C的抛物线与直线的另一个交点为E.(1)求点C、D的坐标(2)求抛物线的解析式(3)若抛物线与正方形沿射线AB下滑,直至点C落在x轴上时停止,求抛物线上C、E两点间的抛物线所扫过的面积.【答案】(1)C(3,2),D(1,3);(2)y=-56x2+176x+1;(3)10.【解析】试题分析:(1)分别过C、D两点作x轴、y轴的垂线,利用三角形全等的关系可确定C、D两点的坐标;(2)根据A、C、D三点的坐标求抛物线解析式;(3)由平移的性质可判断线段CE所扫过的部分为平行四边形,CC′为底,BC为高,由此求出C、E两点间的抛物线所扫过的面积.试题解析:(1)如图,分别过C、D两点作x轴、y轴的垂线,垂足为M、N,由直线AB的解析式得AO=1,OB=2,由正方形的性质可证△ADN≌△BAO≌△CBM,∴DN=BM=AO=1,AN=CM=BO=2,∴C(3,2),D(1,3);(2)设抛物线解析式为y=ax2+bx+c,将A(0,1),C(3,2),D(1,3)三点坐标代入,得19323ca b ca b c=⎧⎪++=⎨⎪++=⎩,解得561761abc⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,∴y=-56x2+176x+1;(3)∵=由△BCC′∽△AOB,得12 BC AOCC OB==',由割补法可知,抛物线上C、E两点间的抛物线所扫过的面积=S▱CEE′C,即抛物线上C、E两点间的抛物线所扫过的面积为10.考点:1.二次函数综合题;2.点的坐标;3.待定系数法求二次函数解析式;4.平移的性质.。
2016年潍坊市中考模拟试题二解析(数学)

2016年潍坊市初中学业水平模拟考试(二)数 学 试 题一、选择题(本大题共12小题,共36分. 在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分. 错选、不选或多选均记零分.)1.在1--2⎛⎫⎪⎝⎭,1-2,01-2⎛⎫ ⎪⎝⎭)A. 1--2⎛⎫⎪⎝⎭B.1-2 C. 01-2⎛⎫⎪⎝⎭D.2.如图所示是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是( )3.数据301,298,302,300,299的方差与极差分别是( )A. 2,2B. 4,2C. 1,4D. 2,44.下列四个图形中,其中是轴对称图形,且对称轴的条数为2的图形的个数是( ) A.4B.3C.2D.15.下列运算正确的是( )A .()23622x y 4x y=B C . 632a a a ÷= D .426a a a += 6.如图,两个完全相同的三角尺ABC 和DEF 在直线l 上滑动.可以添加一个条件,使四边形CBFE 为菱形.下列选项中错误的是( )A. BD=AEB.CB=BFC. BE ⊥CFD.BA 平分∠CBF7. 如图A 、B 、C 、D 四个点均在⊙O 上,∠AOD=70°,AO ∥DC ,则∠B 的度数是( )A. 40°B. 45°C.50°D. 55°8.1有意义,则函数1y k x =+和21y kx+=的图象可能是( )A. B. C. D.9.如图,下面是利用尺规作∠AOB 的角平分线OC 的作法:①以O 为圆心,适当长为半径画弧,分别交OA ,OB 于点D ,E ;②分别以D ,E 为圆心,大于21DE 的长为半径画弧,两弧在∠AOB 内交于一点C ;③画射线OC 。
能说明射线OC 是∠AOB 的角平分线的依据是( )A.SASB.SSSC.ASAD. AAS10.如图,在Rt △ABC 中,∠ACB=90°,∠BAC=60°.把△ABC 绕点A 按顺时针方向旋转60°后得到A B C,,。
潍坊市中考数学试卷含答案解析(版)

潍坊市中考数学试卷含答案解析(版)潍坊市中考数学试卷含答案解析(版)一、选择题(共30小题,每小题4分,共120分)1. (3x – 1)(2x + 3)的乘积等于下列哪个多项式?A) 6x^2 + 7x – 3B) 6x^2 - 7x + 3C) 6x^2 - 7x - 3D) 6x^2 + 7x + 3答案:A解析:使用分配律展开,得到(3x * 2x + 3x * 3 - 1 * 2x - 1 * 3),整理得6x^2 + 7x - 3。
2. 以下三个指数恒等式中正确的是:A) (2^3)^4 = 2^7B) (2^2)^3 = 2^6C) (2^4)^3 = 2^12D) (2^5)^2 = 2^10答案:B解析:根据指数的乘法法则,我们将幂相乘。
(2^2)^3 = 2^(2*3) = 2^6。
3. 简化根式√12 + 2√27 - 3√48的结果是:A) 5√2B) 2√5C) 3√2D) 4√3答案:B解析:将根式依次应用化简公式,√12 + 2√27 - 3√48 = 2√3 + 2(3√3) - 3(4√3) = 2√3 + 6√3 - 12√3 = -4√3。
根式√3可化简为√3 * 1 = √3。
4. 若正整数a、b满足a:b = 4:5,且a+b=180,那么a的值等于:A) 100B) 80C) 60D) 48答案:B解析:根据题意得到的等式是a/b = 4/5,将其转化为a = (4/5) * b。
将a + b = 180代入,得到(4/5) * b + b = 180,化简得到b = 80,代入a = (4/5) * b,可得到a = 64。
因此,a的值等于80。
5. 若平行四边形ABCD中,∠A = 80°,则∠C的度数是:A) 80°B) 100°C) 120°D) 140°答案:B解析:平行四边形的对角线互相平分,所以∠C = 180° - ∠A = 180°- 80° = 100°。
2016年潍坊数学中考讲解

评定等级 A B C D
频数 2
15 6
连接BD ∵BAD 90 BD为o的直径 BED BCD 90 又∵DF∥ BE EDF 90 四边形EBFD是矩形
22
23
空白演示
考点2:弧长及扇形面积公式——阴影面积的计算
求阴影部分面积的常用方法: 1.公式法:扇形、特殊四边形等,可直接利用公式计算; 2.和差法:
S阴影=S△ODC-S扇形DOE
考点2:弧长及扇形面积公式——阴影面积的计算
3.等积变换法:通过对图形的平移、旋转、对称等变换为规则图形。
(1)全等三角形转换
(2)轴对称转换S阴影=S来自形DOFS阴影=S扇形BOC
考点2:弧长及扇形面积公式——阴影面积的计算
(3)平移转换
(4)等底等高等积转换
S阴影=S△OBC
考点2:弧长及扇形面积公式——阴影面积的计算
4.整体思想
评估成绩 n(分) 90≤n≤100 80≤n<90 70≤n<80 n<70
2016年山东省潍坊市中考真题数学

A.
B.
C.
D. 解析:如图,
连接 OP,由于 OP 是 Rt△AOB 斜边上的中线, 所以 OP=
1 AB,不管木杆如何滑动,它的长度不变,也就是 OP 是一个定值,点 P 就在以 O 2
为圆心的圆弧上,那么中点 P 下落的路线是一段弧线. 答案:D. 8.将下列多项式因式分解,结果中不含有因式 a+1 的是( 2 A.a -1 2 B.a +a 2 C.a +a-2 2 D.(a+2) -2(a+2)+1 解析:先把各个多项式分解因式,即可得出结果. 2 ∵a -1=(a+1)(a-1), 2 a +a=a(a+1), 2 a +a-2=(a+2)(a-1), 2 2 2 (a+2) -2(a+2)+1=(a+2-1) =(a+1) . ∴结果中不含有因式 a+1 的是选项 C. 答案:C. )
A.
B.
C.
D. 解析: 根据俯视图的概念和看得到的边都应用实线表现在三视图中、 看不到, 又实际存在的, 又没有被其他边挡住的边用虚线表现在三视图中解答即可. 图中几何体的俯视图是 C 选项中的图形. 答案:C. 4.近日, 记者从潍坊市统计局获悉, 2016 年第一季度潍坊全市实现生产总值 1256.77 亿元, 将 1256.77 亿用科学记数法可表示为(精确到百亿位)( ) 11 A.1.2×10 11 B.1.3×10 11 C.1.26×10 12 D.0.13×10 n 解析: 科学记数法的表示形式为 a×10 的形式, 其中 1≤|a|<10, n 为整数.确定 n 的值时, 要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数 绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数. 11 将 1256.77 亿用科学记数法可表示为 1.3×10 . 答案:B.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年山东省潍坊市中考数学试卷一、选择题:本大题共12小题,每小题3分1.计算:20•2﹣3=()A.﹣B.C.0 D.82.下列科学计算器的按键中,其上面标注的符号是轴对称图形但不是中心对称图形的是()A.B.C.D.3.如图,几何体是由底面圆心在同一条直线上的三个圆柱构成的,其俯视图是()A.B.C.D.4.近日,记者从潍坊市统计局获悉,2016年第一季度潍坊全市实现生产总值1256.77亿元,将1256.77亿用科学记数法可表示为(精确到百亿位)()A.1.2×1011B.1.3×1011C.1.26×1011D.0.13×10125.实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b6.关于x的一元二次方程x2﹣x+sinα=0有两个相等的实数根,则锐角α等于()A.15° B.30° C.45° D.60°7.木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是()A.B.C.D.8.将下列多项式因式分解,结果中不含有因式a+1的是()A.a2﹣1 B.a2+a C.a2+a﹣2 D.(a+2)2﹣2(a+2)+19.如图,在平面直角坐标系中,⊙M与x轴相切于点A(8,0),与y轴分别交于点B(0,4)和点C(0,16),则圆心M到坐标原点O的距离是()A.10 B.8C.4D.210.若关于x的方程+=3的解为正数,则m的取值范围是()A.m<B.m<且m≠C.m>﹣D.m>﹣且m≠﹣11.如图,在Rt△ABC中,∠A=30°,BC=2,以直角边AC为直径作⊙O交AB于点D,则图中阴影部分的面积是()A.﹣B.﹣C.﹣D.﹣12.运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是()A.x≥11 B.11≤x<23 C.11<x≤23 D.x≤23二、填空题:本大题共6小题,每小题3分13.计算:(+)=.14.若3x2n y m与x4﹣n y n﹣1是同类项,则m+n=.15.超市决定招聘广告策划人员一名,某应聘者三项素质测试的成绩如表:测试项目创新能力综合知识语言表达测试成绩(分数)70 80 92将创新能力、综合知识和语言表达三项测试成绩按5:3:2的比例计入总成绩,则该应聘者的总成绩是分.16.已知反比例函数y=(k≠0)的图象经过(3,﹣1),则当1<y<3时,自变量x的取值范围是.17.已知∠AOB=60°,点P是∠AOB的平分线OC上的动点,点M在边OA上,且OM=4,则点P到点M与到边OA的距离之和的最小值是.18.在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形A n B n C n C n,使得点A1、A2、A3、…在直线l上,点C1、﹣1C2、C3、…在y轴正半轴上,则点B n的坐标是.三、解答题:本大题共7小题,共66分19.关于x的方程3x2+mx﹣8=0有一个根是,求另一个根及m的值.20.今年5月,某大型商业集团随机抽取所属的m家商业连锁店进行评估,将各连锁店按照评估成绩分成了A、B、C、D四个等级,绘制了如图尚不完整的统计图表.评估成绩n(分)评定等级频数90≤n≤100 A 280≤n<90 B70≤n<80 C 15n<70 D 6根据以上信息解答下列问题:(1)求m的值;(2)在扇形统计图中,求B等级所在扇形的圆心角的大小;(结果用度、分、秒表示)(3)从评估成绩不少于80分的连锁店中任选2家介绍营销经验,求其中至少有一家是A 等级的概率.21.正方形ABCD内接于⊙O,如图所示,在劣弧上取一点E,连接DE、BE,过点D 作DF∥BE交⊙O于点F,连接BF、AF,且AF与DE相交于点G,求证:(1)四边形EBFD是矩形;(2)DG=BE.22.如图,直立于地面上的电线杆AB,在阳光下落在水平地面和坡面上的影子分别是BC、CD,测得BC=6米,CD=4米,∠BCD=150°,在D处测得电线杆顶端A的仰角为30°,试求电线杆的高度(结果保留根号)23.旅游公司在景区内配置了50辆观光车共游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数.发现每天的营运规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入﹣管理费)(2)当每辆车的日租金为多少元时,每天的净收入最多?24.如图,在菱形ABCD中,AB=2,∠BAD=60°,过点D作DE⊥AB于点E,DF⊥BC于点F.(1)如图1,连接AC分别交DE、DF于点M、N,求证:MN=AC;(2)如图2,将△EDF以点D为旋转中心旋转,其两边DE′、DF′分别与直线AB、BC相交于点G、P,连接GP,当△DGP的面积等于3时,求旋转角的大小并指明旋转方向.25.如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P时直线AC下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.2016年山东省潍坊市中考数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分1.计算:20•2﹣3=()A.﹣B.C.0 D.8【考点】负整数指数幂;零指数幂.【分析】直接利用负整数指数幂的性质结合零指数幂的性质分析得出答案.【解答】解:20•2﹣3=1×=.故选:B.2.下列科学计算器的按键中,其上面标注的符号是轴对称图形但不是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,又是中心对称图形,故此选项错误;B、不是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,又是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项正确.故选:D.3.如图,几何体是由底面圆心在同一条直线上的三个圆柱构成的,其俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据俯视图的概念和看得到的边都应用实线表现在三视图中、看不到,又实际存在的,又没有被其他边挡住的边用虚线表现在三视图中解答即可.【解答】解:图中几何体的俯视图是C选项中的图形.故选:C.4.近日,记者从潍坊市统计局获悉,2016年第一季度潍坊全市实现生产总值1256.77亿元,将1256.77亿用科学记数法可表示为(精确到百亿位)()A.1.2×1011B.1.3×1011C.1.26×1011D.0.13×1012【考点】科学记数法与有效数字.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将1256.77亿用科学记数法可表示为1.3×1011.故选B.5.实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b【考点】二次根式的性质与化简;实数与数轴.【分析】直接利用数轴上a,b的位置,进而得出a<0,a﹣b<0,再利用绝对值以及二次根式的性质化简得出答案.【解答】解:如图所示:a<0,a﹣b<0,则|a|+=﹣a﹣(a﹣b)=﹣2a+b.故选:A.6.关于x的一元二次方程x2﹣x+sinα=0有两个相等的实数根,则锐角α等于()A.15° B.30° C.45° D.60°【考点】根的判别式;特殊角的三角函数值.【分析】由方程有两个相等的实数根,结合根的判别式可得出sinα=,再由α为锐角,即可得出结论.【解答】解:∵关于x的一元二次方程x2﹣x+sinα=0有两个相等的实数根,∴△=﹣4sinα=2﹣4sinα=0,解得:sinα=,∵α为锐角,∴α=30°.故选B.7.木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是()A.B.C.D.【考点】轨迹;直角三角形斜边上的中线.【分析】先连接OP,易知OP是Rt△AOB斜边上的中线,根据直角三角形斜边上的中线等于斜边的一半,可得OP=AB,由于木杆不管如何滑动,长度都不变,那么OP就是一个定值,那么P点就在以O为圆心的圆弧上.【解答】解:如右图,连接OP,由于OP是Rt△AOB斜边上的中线,所以OP=AB,不管木杆如何滑动,它的长度不变,也就是OP是一个定值,点P就在以O为圆心的圆弧上,那么中点P下落的路线是一段弧线.故选D.8.将下列多项式因式分解,结果中不含有因式a+1的是()A.a2﹣1 B.a2+a C.a2+a﹣2 D.(a+2)2﹣2(a+2)+1【考点】因式分解的意义.【分析】先把各个多项式分解因式,即可得出结果.【解答】解:∵a2﹣1=(a+1)(a﹣1),a2+a=a(a+1),a2+a﹣2=(a+2)(a﹣1),(a+2)2﹣2(a+2)+1=(a+2﹣1)2=(a+1)2,∴结果中不含有因式a+1的是选项C;故选:C.9.如图,在平面直角坐标系中,⊙M与x轴相切于点A(8,0),与y轴分别交于点B(0,4)和点C(0,16),则圆心M到坐标原点O的距离是()A.10 B.8C.4D.2【考点】切线的性质;坐标与图形性质.【分析】如图连接BM、OM,AM,作MH⊥BC于H,先证明四边形OAMH是矩形,根据垂径定理求出HB,在RT△AOM中求出OM即可.【解答】解:如图连接BM、OM,AM,作MH⊥BC于H.∵⊙M与x轴相切于点A(8,0),∴AM⊥OA,OA=8,∴∠OAM=∠MH0=∠HOA=90°,∴四边形OAMH是矩形,∴AM=OH,∵MH⊥BC,∴HC=HB=6,∴OH=AM=10,在RT△AOM中,OM===2.故选D.10.若关于x的方程+=3的解为正数,则m的取值范围是()A.m<B.m<且m≠C.m>﹣D.m>﹣且m≠﹣【考点】分式方程的解.【分析】直接解分式方程,再利用解为正数列不等式,解不等式得出x的取值范围,进而得出答案.【解答】解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=,∵关于x 的方程+=3的解为正数, ∴﹣2m+9>0,级的:m <,当x=3时,x==3,解得:m=, 故m 的取值范围是:m <且m ≠.故选:B .11.如图,在Rt △ABC 中,∠A=30°,BC=2,以直角边AC 为直径作⊙O 交AB 于点D ,则图中阴影部分的面积是( )A .﹣B .﹣C .﹣D .﹣【考点】扇形面积的计算;含30度角的直角三角形.【分析】连接连接OD 、CD ,根据S 阴=S △ABC ﹣S △ACD ﹣(S 扇形OCD ﹣S △OCD )计算即可解决问题.【解答】解:如图连接OD 、CD .∵AC 是直径,∴∠ADC=90°,∵∠A=30°,∴∠ACD=90°﹣∠A=60°,∵OC=OD ,∴△OCD 是等边三角形,∵BC 是切线.∴∠ACB=90°,∵BC=2,∴AB=4,AC=6,∴S 阴=S △ABC ﹣S △ACD ﹣(S 扇形OCD ﹣S △OCD )=×6×2﹣×3×﹣(﹣×32) =﹣π.故选A .12.运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是()A.x≥11 B.11≤x<23 C.11<x≤23 D.x≤23【考点】一元一次不等式组的应用.【分析】根据运算程序,前两次运算结果小于等于95,第三次运算结果大于95列出不等式组,然后求解即可.【解答】解:由题意得,,解不等式①得,x≤47,解不等式②得,x≤23,解不等式③得,x>11,所以,x的取值范围是11<x≤23.故选C.二、填空题:本大题共6小题,每小题3分13.计算:(+)=12.【考点】二次根式的混合运算.【分析】先把化简,再本括号内合并,然后进行二次根式的乘法运算.【解答】解:原式=•(+3)=×4=12.故答案为12.14.若3x2n y m与x4﹣n y n﹣1是同类项,则m+n=.【考点】同类项.【分析】直接利用同类项的定义得出关于m,n的等式,进而求出答案.【解答】解:∵3x2n y m与x4﹣n y n﹣1是同类项,∴,解得:则m+n=+=.故答案为:.15.超市决定招聘广告策划人员一名,某应聘者三项素质测试的成绩如表:测试项目创新能力综合知识语言表达测试成绩(分数)70 80 92将创新能力、综合知识和语言表达三项测试成绩按5:3:2的比例计入总成绩,则该应聘者的总成绩是77.4分.【考点】加权平均数.【分析】根据该应聘者的总成绩=创新能力×所占的比值+综合知识×所占的比值+语言表达×所占的比值即可求得.【解答】解:根据题意,该应聘者的总成绩是:70×+80×+92×=77.4(分),故答案为:77.4.16.已知反比例函数y=(k≠0)的图象经过(3,﹣1),则当1<y<3时,自变量x的取值范围是﹣3<x<﹣1.【考点】反比例函数的性质;反比例函数图象上点的坐标特征.【分析】根据反比例函数过点(3,﹣1)结合反比例函数图象上点的坐标特征可求出k值,根据k值可得出反比例函数在每个象限内的函数图象都单增,分别代入y=1、y=3求出x值,即可得出结论.【解答】解:∵反比例函数y=(k≠0)的图象经过(3,﹣1),∴k=3×(﹣1)=﹣3,∴反比例函数的解析式为y=.∵反比例函数y=中k=﹣3,∴该反比例函数的图象经过第二、四象限,且在每个象限内均单增.当y=1时,x==﹣3;当y=3时,x==﹣1.∴1<y<3时,自变量x的取值范围是﹣3<x<﹣1.故答案为:﹣3<x<﹣1.17.已知∠AOB=60°,点P是∠AOB的平分线OC上的动点,点M在边OA上,且OM=4,则点P到点M与到边OA的距离之和的最小值是2.【考点】轴对称-最短路线问题.【分析】过M作MN′⊥OB于N′,交OC于P,即MN′的长度等于点P到点M与到边OA 的距离之和的最小值,解直角三角形即可得到结论.【解答】解:过M作MN′⊥OB于N′,交OC于P,则MN′的长度等于PM+PN的最小值,即MN′的长度等于点P到点M与到边OA的距离之和的最小值,∵∠ON′M=90°,OM=4,∴MN′=OM•sin60°=2,∴点P到点M与到边OA的距离之和的最小值为2.18.在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、,使得点A1、A2、A3、…在直线l上,点C1、正方形A2B2C2C1、…、正方形A n B n C n C n﹣1C2、C3、…在y轴正半轴上,则点B n的坐标是(2n﹣1,2n﹣1).【考点】一次函数图象上点的坐标特征;正方形的性质.【分析】先求出B1、B2、B3的坐标,探究规律后即可解决问题.【解答】解:∵y=x﹣1与x轴交于点A1,∴A1点坐标(1,0),∵四边形A1B1C1O是正方形,∴B1坐标(1,1),∵C1A2∥x轴,∴A2坐标(2,1),∵四边形A2B2C2C1是正方形,∴B2坐标(2,3),∵C2A3∥x轴,∴A3坐标(4,3),∵四边形A3B3C3C2是正方形,∴B3(4,7),∵B1(20,21﹣1),B2(21,22﹣1),B3(22,23﹣1),…,∴B n坐标(2n﹣1,2n﹣1).故答案为(2n﹣1,2n﹣1).三、解答题:本大题共7小题,共66分19.关于x的方程3x2+mx﹣8=0有一个根是,求另一个根及m的值.【考点】根与系数的关系.【分析】由于x=是方程的一个根,直接把它代入方程即可求出m的值,然后由根与系数的关系来求方程的另一根.【解答】解:设方程的另一根为t.依题意得:3×()2+m﹣8=0,解得m=10.又t=﹣,所以t=﹣4.综上所述,另一个根是﹣4,m的值为10.20.今年5月,某大型商业集团随机抽取所属的m家商业连锁店进行评估,将各连锁店按照评估成绩分成了A、B、C、D四个等级,绘制了如图尚不完整的统计图表.评估成绩n(分)评定等级频数90≤n≤100 A 280≤n<90 B70≤n<80 C 15n<70 D 6根据以上信息解答下列问题:(1)求m的值;(2)在扇形统计图中,求B等级所在扇形的圆心角的大小;(结果用度、分、秒表示)(3)从评估成绩不少于80分的连锁店中任选2家介绍营销经验,求其中至少有一家是A 等级的概率.【考点】列表法与树状图法;频数(率)分布表;扇形统计图.【分析】(1)由C等级频数为15,占60%,即可求得m的值;(2)首先求得B等级的频数,继而求得B等级所在扇形的圆心角的大小;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其中至少有一家是A等级的情况,再利用概率公式求解即可求得答案.【解答】解:(1)∵C等级频数为15,占60%,∴m=15÷60%=25;(2)∵B等级频数为:25﹣2﹣15﹣6=2,∴B等级所在扇形的圆心角的大小为:×360°=28.8°=28°48′;(3)评估成绩不少于80分的连锁店中,有两家等级为A,有两家等级为B,画树状图得:∵共有12种等可能的结果,其中至少有一家是A等级的有10种情况,∴其中至少有一家是A等级的概率为:=.21.正方形ABCD内接于⊙O,如图所示,在劣弧上取一点E,连接DE、BE,过点D 作DF∥BE交⊙O于点F,连接BF、AF,且AF与DE相交于点G,求证:(1)四边形EBFD是矩形;(2)DG=BE.【考点】正方形的性质;矩形的判定;圆周角定理.【分析】(1)直接利用正方形的性质、圆周角定理结合平行线的性质得出∠BED=∠BAD=90°,∠BFD=∠BCD=90°,∠EDF=90°,进而得出答案;(2)直接利用正方形的性质的度数是90°,进而得出BE=DF,则BE=DG.【解答】证明:(1)∵正方形ABCD内接于⊙O,∴∠BED=∠BAD=90°,∠BFD=∠BCD=90°,又∵DF∥BE,∴∠EDF+∠BED=180°,∴∠EDF=90°,∴四边形EBFD是矩形;(2))∵正方形ABCD内接于⊙O,∴的度数是90°,∴∠AFD=45°,又∵∠GDF=90°,∴∠DGF=∠DFC=45°,∴DG=DF,又∵在矩形EBFD中,BE=DF,∴BE=DG.22.如图,直立于地面上的电线杆AB,在阳光下落在水平地面和坡面上的影子分别是BC、CD,测得BC=6米,CD=4米,∠BCD=150°,在D处测得电线杆顶端A的仰角为30°,试求电线杆的高度(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】延长AD交BC的延长线于E,作DF⊥BE于F,根据直角三角形的性质和勾股定理求出DF、CF的长,根据正切的定义求出EF,得到BE的长,根据正切的定义解答即可.【解答】解:延长AD交BC的延长线于E,作DF⊥BE于F,∵∠BCD=150°,∴∠DCF=30°,又CD=4,∴DF=2,CF==2,由题意得∠E=30°,∴EF==2,∴BE=BC+CF+EF=6+4,∴AB=BE×tanE=(6+4)×=(2+4)米,答:电线杆的高度为(2+4)米.23.旅游公司在景区内配置了50辆观光车共游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数.发现每天的营运规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入﹣管理费)(2)当每辆车的日租金为多少元时,每天的净收入最多?【考点】二次函数的应用.【分析】(1)观光车全部租出每天的净收入=出租自行车的总收入﹣管理费,根据不等关系:净收入为正,列出不等式求解即可;(2)由函数解析式是分段函数,在每一段内求出函数最大值,比较得出函数的最大值.【解答】解:(1)由题意知,若观光车能全部租出,则0<x≤100,由50x﹣1100>0,解得x>22,又∵x是5的倍数,∴每辆车的日租金至少应为25元;(2)设每辆车的净收入为y元,当0<x≤100时,y1=50x﹣1100,∵y1随x的增大而增大,∴当x=100时,y1的最大值为50×100﹣1100=3900;当x>100时,y2=(50﹣)x﹣1100=﹣x2+70x﹣1100=﹣(x﹣175)2+5025,当x=175时,y2的最大值为5025,5025>3900,故当每辆车的日租金为175元时,每天的净收入最多是5025元.24.如图,在菱形ABCD中,AB=2,∠BAD=60°,过点D作DE⊥AB于点E,DF⊥BC于点F.(1)如图1,连接AC分别交DE、DF于点M、N,求证:MN=AC;(2)如图2,将△EDF以点D为旋转中心旋转,其两边DE′、DF′分别与直线AB、BC相交于点G、P,连接GP,当△DGP的面积等于3时,求旋转角的大小并指明旋转方向.【考点】旋转的性质;菱形的性质.【分析】(1)连接BD,证明△ABD为等边三角形,根据等腰三角形的三线合一得到AE=EB,根据相似三角形的性质解答即可;(2)分∠EDF顺时针旋转和逆时针旋转两种情况,根据旋转变换的性质解答即可.【解答】(1)证明:如图1,连接BD,交AC于O,在菱形ABCD中,∠BAD=60°,AD=AB,∴△ABD为等边三角形,∵DE⊥AB,∴AE=EB,∵AB∥DC,∴==,同理,=,∴MN=AC;(2)解:∵AB∥DC,∠BAD=60°,∴∠ADC=120°,又∠ADE=∠CDF=30°,∴∠EDF=60°,当∠EDF顺时针旋转时,由旋转的性质可知,∠EDG=∠FDP,∠GDP=∠EDF=60°,DE=DF=,∠DEG=∠DFP=90°,在△DEG和△DFP中,,∴△DEG≌△DFP,∴DG=DP,∴△DGP为等边三角形,∴△DGP的面积=DG2=3,解得,DG=2,则cos∠EDG==,∴∠EDG=60°,∴当顺时针旋转60°时,△DGP的面积等于3,同理可得,当逆时针旋转60°时,△DGP的面积也等于3,综上所述,将△EDF以点D为旋转中心,顺时针或逆时针旋转60°时,△DGP的面积等于3.25.如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P时直线AC下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)用待定系数法求出抛物线解析式即可;=S△AEC+S△APC=(2)设点P(m,m2+2m+1),表示出PE=﹣m2﹣3m,再用S四边形AECPAC×PE,建立函数关系式,求出极值即可;(3)先判断出PF=CF,再得到∠PCF=∠EAF,以C、P、Q为顶点的三角形与△ABC相似,分两种情况计算即可.【解答】解:(1)∵点A(0,1).B(﹣9,10)在抛物线上,∴,∴,∴抛物线的解析式为y=x2+2x+1,(2)∵AC∥x轴,A(0,1)∴x2+2x+1=1,∴x1=6,x2=0,∴点C的坐标(﹣6,1),∵点A(0,1).B(﹣9,10),∴直线AB的解析式为y=﹣x+1,设点P(m,m2+2m+1)∴E(m,﹣m+1)∴PE=﹣m+1﹣(m2+2m+1)=﹣m2﹣3m,∵AC⊥EP,AC=6,∴S四边形AECP=S△AEC+S△APC=AC×EF+AC×PF=AC×(EF+PF)=AC×PE=×6×(﹣m2﹣3m)=﹣m2﹣9m=﹣(m+)2+,∵﹣6<m<0∴当m=﹣时,四边形AECP的面积的最大值是,此时点P(﹣,﹣).(3)∵y=x2+2x+1=(x+3)2﹣2,∴P(﹣3,﹣2),∴PF=y F﹣y P=3,CF=x F﹣x C=3,∴PF=CF,∴∠PCF=45°同理可得:∠EAF=45°,∴∠PCF=∠EAF,∴在直线AC上存在满足条件的Q,设Q(t,1)且AB=9,AC=6,CP=3∵以C、P、Q为顶点的三角形与△ABC相似,①当△CPQ∽△ABC时,∴,∴,∴t=﹣4,∴Q(﹣4,1)②当△CQP∽△ABC时,∴,∴,∴t=3,∴Q(3,1).第21页(共22页)2016年7月11日第22页(共22页)。