LaunchPad(MSP430G2553)_官方例程__汉语注释

合集下载

LaunchPad使用说明

LaunchPad使用说明

CCS5.1的详细安装步骤参考CCS5.1User`s guide for MSP430.pdf,现在有破解版的CCS5.1。
Code Composer Studio (CCS5.1)
Workspace
Project 1
Project 2 Project 3 Settings and preferences

USI with I2C and SPI support USCI with I2C, SPI and UART support Inverting and non-inverting inputs Selectable RC output filter Output to Timer_A2 capture input Interrupt capability
GPIO Code Example
P1DIR |= BIT0; //设置 P1.0为输出 P1OUT |= BIT0; //P1.0 输出高电平
For GPIO 中断相关寄存器
详细的参考MSP430x2xxFamily user guide.pdf
主要内容
LaunchPad实验板介绍
开发环境介绍
LaunchPad的应用
演示LaunchPad的电容触摸板
详细参考:430BOOST-SENSE1.pdf
LaunchPad应用1
• 基于心电图的心率监测仪(EKG-Based Heart-Rate Monitor Implementation on the LaunchPad Using the MSP430G2452MCU)
Link
Project Project Project Source files
Link

msp430g2553 LauchPad & JLX12864G-086-PC

msp430g2553 LauchPad & JLX12864G-086-PC

else i++; } } void display_string_5x7(u8 y,u8 x,u8 *text) { u8 i=0; u8 addrHigh,addrMid,addrLow; while(text[i]>0x00) { if((text[i]>=0x20)&&(text[i]<=0x7e)) { u8 fontbuf[8]; fontaddr=(text[i]-0x20); fontaddr=(u32)(fontaddr*8); fontaddr=(u32)(fontaddr+0x3bfc0); addrHigh=(fontaddr&0xff0000)>>16; addrMid =(fontaddr&0xff00)>>8; /*地址的中 8 位,共 24 位*/ addrLow =fontaddr&0xff; /*地址的低 8 位,共 24 位*/ get_n_bytes_data_from_ROM(addrHigh,addrMid,addrLow,fontbuf,8); display_graphic_5x7(y,x,fontbuf); i+=1; x+=8; } else i++; } } //******写指令******* void write_com(u8 com) { char i; CS_H; //delay(1); CS_L; RS_L; SCK_L; for(i=0;i<8;i++) { if(com&BIT7) SDA_H; else SDA_L; SCK_L;
// 本 程 序 所 用 芯 片 msp430g2553 LauchPad , 也 适 用 其 他 msp430 , 液 晶 屏 为 //JLX12864G-086-PC(大家可以淘宝一下获取液晶资料), 带字库,通过串行传输,刚刚调 //试验成功,和大家分享一下! #include<msp430g2553.h> typedef unsigned char u8; typedef unsigned int u16; typedef unsigned long int u32; const u8 graphic[]; const u8 jiong1[]={/*-- 文字: 囧 --*/ /*-- 宋体 12; 此字体下对应的点阵为:宽 x 高=16x16 --*/ 0x00,0xFE,0x82,0x42,0xA2,0x9E,0x8A,0x82,0x86,0x8A,0xB2,0x62,0x02,0xFE,0x00,0x00, 0x00,0x7F,0x40,0x40,0x7F,0x40,0x40,0x40,0x40,0x40,0x7F,0x40,0x40,0x7F,0x00,0x00}; const u8 lei1[]={/*-- 文字: 畾 --*/ /*-- 宋体 12; 此字体下对应的点阵为:宽 x 高=16x16 --*/ 0x80,0x80,0x80,0xBF,0xA5,0xA5,0xA5,0x3F,0xA5,0xA5,0xA5,0xBF,0x80,0x80,0x80,0x00, 0x7F,0x24,0x24,0x3F,0x24,0x24,0x7F,0x00,0x7F,0x24,0x24,0x3F,0x24,0x24,0x7F,0x00}; //接口 u32 fontaddr=0; #define CS_H P1OUT|=BIT0 #define CS_L P1OUT&=~BIT0 //片选有效 #define RST_H P1OUT|=BIT1 #define RST_L P1OUT&=~BIT1 //复位有效 #define RS_H P1OUT|=BIT2 //传数据 #define RS_L P1OUT&=~BIT2 //传命令 #define SDA_H P1OUT|=BIT3 //数据信号 #define SDA_L P1OUT&=~BIT3 #define SCK_H P1OUT|=BIT4 //时钟信号 #define SCK_L P1OUT&=~BIT4 //**********字库 IC********** #define ROM_CS_H P1OUT|=BIT5 //CS# #define ROM_CS_L P1OUT&=~BIT5 #define ROM_SCK_H P2OUT|=BIT0//SCK #define ROM_SCK_L P2OUT&=~BIT0 #define ROM_OUT_H P2OUT|=BIT1//SO #define ROM_OUT_L P2OUT&=~BIT1 #define ROM_IN_H P2OUT|=BIT2 //SI #define ROM_IN_L P2OUT&=~BIT2 void delay(u16 n_ms); void write_com(u8 com); void write_dat(u8 dat); void init_lcd(); void clear_screen();

launchpad入门指南翻译材料

launchpad入门指南翻译材料

无锡职业技术学院翻译要求:英文-小四号字,单倍行距,首行缩进2个字符,不能定义文档网格,约3000英文单词中文-小四号字,单倍行距,首行缩进2个字符,不能定义文档网格MSP430 Value LineLaunchPad Development KitIntroductionAs applications continue to advance, 8-bit microcontrollers are struggling to meet the growing demand for higher performance and ultra-low power to support evolving product designs. Texas Instruments introduced the affordable 16-bitMSP430™ MCU V alue Line to meet the changing market dynamics and requirements faced by typical low-cost 8-bit MCU developers. Taking the next step in providing a low-cost solution to the shortcomings of 8-bit MCUs, TI created the MSP430 MCUV alue Line LaunchPad development kit to jump start application designs and provide a low-cost tool for developers of all experience levels. This overview will provide an introduction to the features and functionality of LaunchPad as well as everything included in the $4.30 kit.As the number of competitors grow and the time for taking products to market shrinks, the microcontroller (MCU) industry is being stretched by two opposing, but equally strong vectors. The growing demand for higher performance and ultra-low power functionality is matched only by an aggressive need for lower and lower price points. This is especially clear in low-cost applications that utilize 8-bit MCUs. To increase performance without breaking the bank, developers of low-cost 8-bit MCUs must migrate to higher performance 16-bit MCUs that are available at affordable price points.In high volume and quick turnover markets such as consumer and personal electronics, the need for a highly differentiated MCU, while maintaining aggressive price points, is a constant struggle. For instance, the market for 3D glasses has exploded in the recent months, both on the big and small screen. As this market trend moves up and to the right, developers are hard at work in creating technological solutions that provide a unique and immersive experience while remaining affordable. By providing more affordable solutions, developers hope to minimize the risks and barriers associated with new and fast moving markets.For many, this barrier to success is prohibited by a limited MCU core. Many developers of 8-bit MCUs have completely exhausted the full capabilities of their MCU due to limited data throughput and inefficient interfacing with higher resolution analog and digital peripherals. To enable increased functionality and improve feature sets of existing projects, developers must migrate to higher performance 16-bit MCUs.The MSP430 MCU V alue Line series provides a migration path for many of these constrained 8-bit MCU developers. At no additional cost, the affordableMSP430 MCU V alue Line devices offer a 16-bit architecture, higher precision timers and improved peripheral integration and interfacing, enabling improved performance and lower power consumption. The implementation of 16-bit MCUs enable up to 10 times improved performance and 10 times lower power when compared to manylow-cost 8-bit applications. Currently, the MSP430 MCU V alue Line series offers 27 ultra-low power 16-bit devices that offer varying levels of analog integration, communication modules and package types. At 100K unit volumes, MSP430 MCUV alue Line devices start at just $0.25 USD, ensuring that developers do not have to sacrifice price for improved performance. Additionally, the MSP430 MCU V alue Line series will continue to grow to more than 100 devices through the second half of 2011.This roadmap will introduce higher memory sizes, more package options and additional integrated analog and digital peripherals.To make the transition from 8- to 16-bit MCUs more seamless, Texas Instruments (TI) listened to the requirements of developers and created the newMSP430 MCU V alue Line LaunchPad development kit. Furthering the commitment to add performance and value to MCU designs with the MSP430 MCU V alue Line, TI introduced LaunchPad to lower the barrier of entry for developers new to 16-bit architectures, or those new to MCU design, in general. The LaunchPad kit is TI’s simple, yet thorough, introduction to 16-bit MCU development, offering all of the hardware and software a developer needs to get started for just $4.30 USD. Within minutes of opening the LaunchPad kit, users can begin interfacing with pushbuttons, LEDs and the on-chip peripherals of the MSP430 MCU V alue Line devices. See Figure 1 below:△Figure 1For just $4.30, the LaunchPad kit includes a development board with an integrated USB-powered flash emulation tool for programming and debugging any of the existing MSP430 MCU V alue Line devices. Any MSP430G2xx MCU in a DIP package can be dropped into the DIP target socket of LaunchPad, which allows easy evaluation of any MSP430 MCU V alue Line device. The flexible target socket allowsdevelopers to remove their freshly programmed and debugged MSP430G2xx MCU to be plugged into a custom breadboard or PCB so that customers are not constrained to the form factor of the LaunchPad board. Alternatively, developers can use LaunchPad as a standalone system, by leaving the MSP430G2xx device plugged into the board to leverage on-board and programmable push buttons and LEDs. Additionally, every pin of the MSP430G2xx device is fully accessible, allowing easy interfacing of external components or custom daughter cards.Also provided in the kit are free, downloadable software compilers and debuggers including TI’s own eclipse-based Code Composer Studio™ version 4 and IAR Embedded Workbench Kickstart. These independent development environments (IDEs) are full featured and are completely compatible with LaunchPad and theMSP430 MCU V alue Line devices available today. This complements the hardware features of the LaunchPad board by providing a complete software component as well. Using either IDE, users can then leverage MSP430 MCU code examples, open source projects and other free online resources, which can be accessed on LaunchPad’s Wiki page, /launchpadwiki.The unlimited access to the LaunchPad Wiki promotes collaboration and simple sharing of solutions and ideas, making LaunchPad a complete development environment. This active and growing online community supplements the hardware and software components of the LaunchPad package and provides instant support, projects and helpful hints that will be shared through the Wiki pages and E2E™ forums.To fully benefit from 16-bit architecture and ultra-low power performance, the MSP430 MCU V alue Line series and LaunchPad development kit offers a complete and simple introduction to quicken developers’ time to market. By providing 16-bit performance at 8-bit price points, and complete development tools for just $4.30, TI would like to welcome both new and experienced users to the world of high performance and affordable MCU development.△Figure 2. $4.30 LaunchPad kit offers the hardware and software needed to start developing applications, and is backed by an active online community to quicken time to market.MSP430价值链LaunchPad开发工具包引言随着应用程序的持续发展,8位微控制器难以满足日益增产的需求更高的性能和低功耗的支持不断变化的产品设计。

MSP430G2553学习笔记(数据手册)概要

MSP430G2553学习笔记(数据手册)概要

MSP430G2553学习笔记(数据手册)MSP430G2553性能参数(DIP-20) 工作电压范围:1.8~3.6V。

5种低功耗模式。

16位的RISC结构,62.5ns指令周期。

超低功耗:运行模式-230µA;待机模式-0.5µA;关闭模式-0.1µA;可以在不到1µs的时间里超快速地从待机模式唤醒。

基本时钟模块配置:具有四种校准频率并高达16MHz的内部频率;内部超低功耗LF振荡器;32.768KHz晶体;外部数字时钟源。

两个16 位Timer_A,分别具有三个捕获/比较寄存器。

用于模拟信号比较功能或者斜率模数(A/D)转换的片载比较器。

带内部基准、采样与保持以及自动扫描功能的10位200-ksps 模数(A/D)转换器。

16KB闪存,512B的RAM。

16个I/O口。

注意:MSP430G2553无P3口!MSP430G2553的时钟基本时钟系统的寄存器DCOCTL-DCO控制寄存器DCOxDCO频率选择控制1MODxDCO频率校正选择,通常令MODx=0注意:在MSP430G2553上电复位后,默认RSEL=7,DCO=3,通过数据手册查得DCO频率大概在0.8~1.5MHz之间。

BCSCTL1-基本时钟控制寄存器1XT2OFF不用管,因为MSP430G2553内部没有XT2提供的HF时钟XTS不用管,默认复位后的0值即可DIV Ax设置ACLK的分频数00 /101 /210 /411 /8RSELxDCO频率选择控制2BCSCTL2-基本时钟控制寄存器2SELMxMCLK的选择控制位00 DCOCLK01 DCOCLK10 LFXT1CLK或者VLOCLK11 LFXT1CLK或者VLOCLK DIVMx设置MCLK的分频数00 /101 /210 /411 /8SELSSMCLK的选择控制位0 DCOCLK1 LFXT1CLK或者VLOCLK DIVSx设置SMCLK的分频数00 /101 /210 /411 /8DCORDCO直流发生电阻选择,此位一般设00 内部电阻1 外部电阻BCSCTL3-基本时钟控制寄存器3XT2Sx不用管LFXT1Sx00 LFXT1选为32.768KHz晶振01 保留10 VLOCLK11 外部数字时钟源XCAPxLFXT1晶振谐振电容选择00 1pF01 6pF10 10pF11 12.5pFmsp430g2553.h中基本时钟系统的内容/************************************************************* Basic Clock Module************************************************************/#define __MSP430_HAS_BC2__ /* Definition to show that Module is available */SFR_8BIT(DCOCTL); /* DCO Clock Frequency Control */SFR_8BIT(BCSCTL1); /* Basic Clock System Control 1 */SFR_8BIT(BCSCTL2); /* Basic Clock System Control 2 */SFR_8BIT(BCSCTL3); /* Basic Clock System Control 3 */#define MOD0 (0x01) /* Modulation Bit 0 */#define MOD1 (0x02) /* Modulation Bit 1 */#define MOD2 (0x04) /* Modulation Bit 2 */#define MOD3 (0x08) /* Modulation Bit 3 */#define MOD4 (0x10) /* Modulation Bit 4 */#define DCO0 (0x20) /* DCO Select Bit 0 */#define DCO1 (0x40) /* DCO Select Bit 1 */#define DCO2 (0x80) /* DCO Select Bit 2 */#define RSEL0 (0x01) /* Range Select Bit 0 */#define RSEL1 (0x02) /* Range Select Bit 1 */#define RSEL2 (0x04) /* Range Select Bit 2 */#define RSEL3 (0x08) /* Range Select Bit 3 */#define DIVA0 (0x10) /* ACLK Divider 0 */#define DIVA1 (0x20) /* ACLK Divider 1 */#define XTS (0x40) /* LFXTCLK 0:Low Freq. / 1: High Freq. */ #define XT2OFF (0x80) /* Enable XT2CLK */#define DIVA_0 (0x00) /* ACLK Divider 0: /1 */#define DIVA_1 (0x10) /* ACLK Divider 1: /2 */#define DIVA_2 (0x20) /* ACLK Divider 2: /4 */#define DIVA_3 (0x30) /* ACLK Divider 3: /8 */#define DIVS0 (0x02) /* SMCLK Divider 0 */#define DIVS1 (0x04) /* SMCLK Divider 1 */#define SELS (0x08) /* SMCLK Source Select 0:DCOCLK /1:XT2CLK/LFXTCLK */#define DIVM0 (0x10) /* MCLK Divider 0 */#define DIVM1 (0x20) /* MCLK Divider 1 */#define SELM0 (0x40) /* MCLK Source Select 0 */#define SELM1 (0x80) /* MCLK Source Select 1 */#define DIVS_0 (0x00) /* SMCLK Divider 0: /1 */#define DIVS_1 (0x02) /* SMCLK Divider 1: /2 */#define DIVS_2 (0x04) /* SMCLK Divider 2: /4 */#define DIVS_3 (0x06) /* SMCLK Divider 3: /8 */#define DIVM_0 (0x00) /* MCLK Divider 0: /1 */#define DIVM_1 (0x10) /* MCLK Divider 1: /2 */#define DIVM_2 (0x20) /* MCLK Divider 2: /4 */#define DIVM_3 (0x30) /* MCLK Divider 3: /8 */#define SELM_0 (0x00) /* MCLK Source Select 0: DCOCLK */#define SELM_1 (0x40) /* MCLK Source Select 1: DCOCLK */#define SELM_2 (0x80) /* MCLK Source Select 2: XT2CLK/LFXTCLK */#define SELM_3 (0xC0) /* MCLK Source Select 3: LFXTCLK */#define LFXT1OF (0x01) /* Low/high Frequency Oscillator Fault Flag */#define XT2OF (0x02) /* High frequency oscillator 2 fault flag */#define XCAP0 (0x04) /* XIN/XOUT Cap 0 */#define XCAP1 (0x08) /* XIN/XOUT Cap 1 */#define LFXT1S0 (0x10) /* Mode 0 for LFXT1 (XTS = 0) */#define LFXT1S1 (0x20) /* Mode 1 for LFXT1 (XTS = 0) */#define XT2S0 (0x40) /* Mode 0 for XT2 */#define XT2S1 (0x80) /* Mode 1 for XT2 */#define XCAP_0 (0x00) /* XIN/XOUT Cap : 0 pF */#define XCAP_1 (0x04) /* XIN/XOUT Cap : 6 pF */#define XCAP_2 (0x08) /* XIN/XOUT Cap : 10 pF */#define XCAP_3 (0x0C) /* XIN/XOUT Cap : 12.5 pF */#define LFXT1S_0 (0x00) /* Mode 0 for LFXT1 : Normal operation */ #define LFXT1S_1 (0x10) /* Mode 1 for LFXT1 : Reserved */#define LFXT1S_2 (0x20) /* Mode 2 for LFXT1 : VLO */#define LFXT1S_3 (0x30) /* Mode 3 for LFXT1 : Digital input signal */#define XT2S_0 (0x00) /* Mode 0 for XT2 : 0.4 - 1 MHz */#define XT2S_1 (0x40) /* Mode 1 for XT2 : 1 - 4 MHz */#define XT2S_2 (0x80) /* Mode 2 for XT2 : 2 - 16 MHz */#define XT2S_3 (0xC0) /* Mode 3 for XT2 : Digital input signal */基本时钟系统例程(DCO)MSP430G2553在上电之后默认CPU执行程序的时钟MCLK来自于DCO时钟。

msp430g2553数据手册中文版

msp430g2553数据手册中文版

28 引脚
24 TSSOP 封
LF,

-
1
DCO,
VLO
20 引脚
16 TSSOP 封

16
20 引脚 PDIP 封装
24
32 引脚 QFN 封装
28 引脚
24 TSSOP 封
LF,

-
1
DCO,
VLO
20 引脚
16 TSSOP 封

16
20 引脚 PDIP 封装
24
32 引脚 QFN 封装
28 引脚
3
MSP430G2x53 MSP430G2x13
ZHCS178E – APRIL 2011 – REVISED JANUARY 2012

器件引出脚配置、MSP430G2x13 和 MSP430G2x53、20 引脚器件、 TSSOP 和 PDIP 封装
DVCC 1 P1.0/TA0CLK/ACLK/A0/CA0 2 P1.1/TA0.0/UCA0RXD/UCA0SOMI/A1/CA1 3 P1.2/TA0.1/UCA0TXD/PUCA0SIMO/A2/CA2 4 P1.3/ADC10CLK/CAOUT/VREF-/VEREF-/A3/CA3 5 P1.4/SMCLK/UCB0STE/UCA0CLK/VREF+/VEREF+/A4/CA4/TCK 6 P1.5/TA0.0/UCB0CLK/UCA0STE/A5/CA5/TMS 7
P2.0/TA1.0 8 P2.1/TA1.1 9 P2.2/TA1.1 10
N20 PW20 (TOP VIEW)
20 DVSS 19 XIN/P2.6/TA0.1 18 XOUT/P2.7 17 TEST/SBWTCK 16 RST/NMI/SBWTDIO 15 P1.7/CAOUT/UCB0SIMO/UCB0SDA/A7/CA7/TDO/TDI 14 P1.6/TA0.1/UCB0SOMI/UCB0SCL/A6/CA6/TDI/TCLK 13 P2.5/TA1.2 12 P2.4/TA1.2 11 P2.3/TA1.0

MSP430G2553用户手册中文

MSP430G2553用户手册中文

时钟
I/O 封装类型
16
512 2x TA3
8
8
512 2x TA3
8
4
256 2x TA3
8
2
256 2x TA3
8
1
256 2x TA3
8
24
32 引脚 QFN 封装
28 引脚
24 TSSOP 封
LF,

-
1
DCO,
VLO
20 引脚
16 TSSOP 封

16
20 引脚 PDIP 封装
24
32 引脚 QFN 封装

16
20 引脚 PDIP 封装
24
32 引脚 QFN 封装
28 引脚 24 TSSOP 封

20 引脚 16 TSSOP 封

16
20 引脚 PDIP 封装
(1) 要获得最新的封装和订购信息,请见本文档末端的封装选项,或者访问德州仪器 (TI) 的网站。 (2) 封装图样、热数据和符号可登录 /packaging获取。
P3.1/TA1.0 8 P3.0/TA0.2 9 P2.0/TA1.0 10 P2.1/TA1.1 11 P2.2/TA1.1 12 P3.2/TA1.1 13 P3.3/TA1.2 14
24 TSSOP 封
LF,

-
1
DCO,
VLO
20 引脚
16 TSSOP 封

16
20 引脚 PDIP 封装
24
32 引脚 QFN 封装
28 引脚
24 TSSOP 封
LF,

-
1
DCO,
VLO

MSP-EXP430Launchpad实验指南参考代码

MSP-EXP430Launchpad实验指南参考代码

MSP-EXP430Launchpad 实验指南参考代码附录本附录为MSP-EXP430Launchpad实验指南中各章节涉及示例程序的完整参考代码。

目录第三章 (2)3.5 (2)3.6 (5)第五章 (11)5.1.1 (11)5.1.2 (13)5.1.3 (14)5.1.4 (17)5.1.5 (18)5.1.6 (21)5.2.1 (22)5.2.2 (22)5.2.3 (25)5.2.4 (27)5.3.1 (29)5.3.2 (30)5.4.1 (30)5.4.2 (31)5.4.3 (34)5.5.1 (38)5.5.2 (42)5.5.3 (53)5.5.4 (53)5.5.5 (54)第六章 (58)6.1.3 (58)6.1.4 (59)6.2.3 (62)6.3.3 光照度检测模块程序设计 (65)6.4.3 (67)6.5.3 (73)6.6.3 (75)6.6.4 (77)第三章3.5Flash使用的代码样例#include "msp430g2553.h"/****************************************************g2553有4个数据段,每个数据段有64bytes,共256bytesD:0x1000 -- 0x003FC:0x1040 -- 0x107FB:0x1080 -- 0x10BFA:0x10C0 -- 0x10FF****************************************************/#define uint unsigned int#define uchar unsigned char#define SegA 0x010C0#define SegB 0x01080#define SegC 0x01040#define SegD 0x01000#define SegSize 64/********************Flash初始化********************/void FlashInit(){FCTL2=FWKEY+FSSEL_2+FN1; //选择SMLCK作为时钟源,二分频}/********************Flash检测忙********************/void FlashCheckBusy(){while(BUSY==(FCTL3&BUSY)); //检测是否忙}/********************Flash段擦除*******************/void FlashErase(int SegX){_DINT(); //关闭总中断FlashCheckBusy(); //检测Flash是否处于忙状态FCTL3=FWKEY; //lock=0开锁FCTL1=FWKEY+ERASE; //使能段擦除*((int *)SegX)=0x00; //段擦除--空写FlashCheckBusy(); //检测Flash是否处于忙状态FCTL3=FWKEY|LOCK; //上锁return;}/********************Flash写字节********************/ void FlashWriteChar(uint addr,char wdata){_DINT(); //关闭总中断FlashCheckBusy(); //检测Flash是否处于忙状态FCTL3=FWKEY; //lock=0开锁FCTL1=FWKEY+WRT; //写使能*((uchar *)addr)=wdata; //将wdata存入addr变量地址中 FCTL1=FWKEY; //写关闭FCTL3=FWKEY+LOCK; //上锁return;}/********************Flash读字节********************/ char FlashReadChar(uint addr){char rdata;rdata=*(char*)addr; //读取addr所指地址的值return rdata;}/********************Flash写字********************/void FlashWriteWord(uint addr,uint wdata){_DINT(); //关闭总中断FlashCheckBusy(); //检测忙,若忙,则等待FCTL3=FWKEY; //lock=0开锁FCTL1=FWKEY+WRT; //写使能*((uint *)addr)=wdata; //向地址addr处写入wdataFCTL1=FWKEY; //写关闭FCTL3=FWKEY+LOCK; //上锁return;}/********************Flash读字********************/uint FlashReadWord(uint addr){uint rdata;rdata=*(uint *)addr; //读取变量addr地址的值return rdata;}/********************Flash修改字节********************/void FlashModifyChar(uint SegX,char AddrNum,char wdata){char i,TempArry[SegSize];for(i=0;i<SegSize;i++) //读入内存{TempArry[i]=*(uint *)(SegX+i);}TempArry[AddrNum]= wdata; //在数组中的某一位置AddrNum写入wdata FlashErase(SegX); //段擦除FCTL3=FWKEY; //lock=0开锁FCTL1=FWKEY+WRT; //准备写for(i=0;i<SegSize;i++) //向段中重新写数组{*(uint *)(SegX+i)=TempArry[i];}FCTL1=FWKEY; //写关闭FCTL3=FWKEY+LOCK; //上锁}/********************Flash批量写********************/void FlashBurstWrite(int SegX,int *pStr){int i;FlashErase(SegX); //段擦除FCTL3=FWKEY; //lock=0,开锁FCTL1=FWKEY+WRT; //写使能for(i=0;i<2*sizeof(pStr);i++) //将数组内容写入段中{*(uchar *)(SegX+i)=*(pStr+i);}FCTL1=FWKEY; //写关闭FCTL3=FWKEY+LOCK; //上锁}main(){char ReadChar;uint ReadWord;int p[]={'a','b','c','d'};WDTCTL=WDTPW+WDTHOLD; //关闭看门狗P1DIR=0xff; //P1口设为输出,闲置的I/O不悬空P2DIR=0xff; //P2口设为输出,闲置的I/O不悬空P1OUT=0xff; //P1口输出1P2OUT=0xff; //P2口输出1FlashInit(); //Flash初始化FlashErase(SegD);FlashWriteChar(0x01007,0x12); //向地址01008h写入12hReadChar=FlashReadChar(0x01007); //读取地址01008h的值FlashWriteWord(0x01008,0x3456); //向地址01009h和0100Ah依次写入56h和34hReadWord=FlashReadWord(0x01008); //读取从地址01009h起的一个字FlashWriteChar(0x01017,ReadChar); //向地址01018h写入12hFlashWriteWord(0x01018,ReadWord); //向地址01019h和0101Ah依次写入56h和34hFlashBurstWrite(SegC,p); //向SegD段从地址0110h依次写入a、b、c、dFlashModifyChar(SegB,0x02,0xef); //将地址0112h和0113h内容改为e和f _BIS_SR(CPUOFF); //关闭CPU}3.61. USCI模块串行异步通信例程以MSP430G2553的USCI模块串行异步通信操作为例,介绍串口寄存器配置及收发程序处理过程。

MSP430G2553寄存器的中文注释

MSP430G2553寄存器的中文注释

MSP430寄存器中文注释---P1/2口(带中断功能)/************************************************************ * DIGITAL I/O Port1/2 寄存器定义有中断功能************************************************************/ #define P1IN_ 0x0020 /* P1 输入寄存器 */const sfrb P1IN = P1IN_;#define P1OUT_ 0x0021/* P1 输出寄存器 */ sfrb P1OUT = P1OUT_;#define P1DIR_ 0x0022 /* P1 方向选择寄存器 */sfrb P1DIR = P1DIR_;#define P1IFG_ 0x0023 /* P1 中断标志寄存器*/sfrb P1IFG = P1IFG_;#define P1IES_ 0x0024 /* P1 中断边沿选择寄存器*/ sfrb P1IES = P1IES_;#define P1IE_ 0x0025 /* P1 中断使能寄存器 */sfrb P1IE = P1IE_;#define P1SEL_ 0x0026 /* P1 功能选择寄存器*/sfrb P1SEL = P1SEL_;#define P2IN_ 0x0028 /* P2 输入寄存器 */const sfrb P2IN = P2IN_;#define P2OUT_ 0x0029 /* P2 输出寄存器*/sfrb P2OUT = P2OUT_;#define P2DIR_ 0x002A /* P2 方向选择寄存器*/ sfrb P2DIR = P2DIR_;#define P2IFG_ 0x002B /* P2 中断标志寄存器 */sfrb P2IFG = P2IFG_;#define P2IES_ 0x002C /* P2 中断边沿选择寄存器 */ sfrb P2IES = P2IES_;#define P2IE_ 0x002D /* P2 中断使能寄存器 */sfrb P2IE = P2IE_;#define P2SEL_ 0x002E /* P2 功能选择寄存器 */sfrb P2SEL = P2SEL_;MSP430寄存器中文注释---P3/4口(无中断功能)/************************************************************* DIGITAL I/O Port3/4寄存器定义无中断功能************************************************************/#define P3IN_ 0x0018 /* P3 输入寄存器 */const sfrb P3IN = P3IN_;#define P3OUT_ 0x0019 /* P3 输出寄存器 */sfrb P3OUT = P3OUT_;#define P3DIR_ 0x001A /* P3 方向选择寄存器 */sfrb P3DIR = P3DIR_;#define P3SEL_ 0x001B /* P3 功能选择寄存器*/sfrb P3SEL = P3SEL_;#define P4IN_ 0x001C /* P4 输入寄存器 */const sfrb P4IN = P4IN_;#define P4OUT_ 0x001D /* P4 输出寄存器 */sfrb P4OUT = P4OUT_;#define P4DIR_ 0x001E /* P4 方向选择寄存器 */sfrb P4DIR = P4DIR_;#define P4SEL_ 0x001F /* P4 功能选择寄存器 */sfrb P4SEL = P4SEL_;/************************************************************* DIGITAL I/O Port5/6 I/O口寄存器定义PORT5和6 无中断功能************************************************************/#define P5IN_ 0x0030 /* P5 输入寄存器 */const sfrb P5IN = P5IN_;#define P5OUT_ 0x0031 /* P5 输出寄存器*/sfrb P5OUT = P5OUT_;#define P5DIR_ 0x0032 /* P5 方向选择寄存器*/ sfrb P5DIR = P5DIR_;#define P5SEL_ 0x0033 /* P5 功能选择寄存器*/ sfrb P5SEL = P5SEL_;#define P6IN_ 0x0034 /* P6 输入寄存器 */const sfrb P6IN = P6IN_;#define P6OUT_ 0x0035 /* P6 输出寄存器*/sfrb P6OUT = P6OUT_;#define P6DIR_ 0x0036 /* P6 方向选择寄存器*/ sfrb P6DIR = P6DIR_;#define P6SEL_ 0x0037 /* P6 功能选择寄存器*/ sfrb P6SEL = P6SEL_;MSP430寄存器中文注释--- 硬件乘法器/************************************************************硬件乘法器的寄存器定义************************************************************/ #define MPY_ 0x0130 /* 无符号乘法 */sfrw MPY = MPY_;#define MPYS_ 0x0132 /* 有符号乘法*/sfrw MPYS = MPYS_;#define MAC_ 0x0134 /* 无符号乘加 */sfrw MAC = MAC_;#define MACS_ 0x0136 /* 有符号乘加 */sfrw MACS = MACS_;#define OP2_ 0x0138 /* 第二乘数 */sfrw OP2 = OP2_;#define RESLO_ 0x013A /* 低6位结果寄存器 */sfrw RESLO = RESLO_;#define RESHI_ 0x013C /* 高6位结果寄存器 */sfrw RESHI = RESHI_;#define SUMEXT_ 0x013E /*结果扩展寄存器*/const sfrw SUMEXT = SUMEXT_;MSP430寄存器中文注释---看门狗和定时器/************************************************************* 看门狗定时器的寄存器定义************************************************************/#define WDTCTL_ 0x0120sfrw WDTCTL = WDTCTL_;#define WDTIS0 0x0001 /*选择WDTCNT的四个输出端之一*/#define WDTIS1 0x0002 /*选择WDTCNT的四个输出端之一*/#define WDTSSEL 0x0004 /*选择WDTCNT的时钟源*/#define WDTCNTCL 0x0008 /*清除WDTCNT端: 为1时从0开始计数*/#define WDTTMSEL 0x0010 /*选择模式0: 看门狗模式; 1: 定时器模式*/#define WDTNMI 0x0020 /*选择NMI/RST 引脚功能 0:为 RST; 1:为NMI*/#define WDTNMIES 0x0040 /*WDTNMI=1时.选择触发延 0:为上升延 1:为下降延*/ #define WDTHOLD 0x0080 /*停止看门狗定时器工作 0:启动;1:停止*/#define WDTPW 0x5A00 /* 写密码:高八位*//* SMCLK= 1MHz定时器模式 */#define WDT_MDLY_32 WDTPW+WDTTMSEL+WDTCNTCL /*TSMCLK*2POWER15=32ms 复位状态 */#define WDT_MDLY_8 WDTPW+WDTTMSEL+WDTCNTCL+WDTIS0 /*TSMCLK*2POWER13=8.192ms " */#define WDT_MDLY_0_5 WDTPW+WDTTMSEL+WDTCNTCL+WDTIS1 /*TSMCLK*2POWER9=0.512ms " */#define WDT_MDLY_0_064 WDTPW+WDTTMSEL+WDTCNTCL+WDTIS1+WDTIS0 /*TSMCLK*2POWER6=0.512ms " *//* ACLK=32.768KHz 定时器模式*/#define WDT_ADLY_1000 WDTPW+WDTTMSEL+WDTCNTCL+WDTSSEL /* TACLK*2POWER15=1000ms " */#define WDT_ADLY_250 WDTPW+WDTTMSEL+WDTCNTCL+WDTSSEL+WDTIS0 /* TACLK*2POWER13=250ms " */#define WDT_ADLY_16 WDTPW+WDTTMSEL+WDTCNTCL+WDTSSEL+WDTIS1 /* TACLK*2POWER9=16ms " */#define WDT_ADLY_1_9 WDTPW+WDTTMSEL+WDTCNTCL+WDTSSEL+WDTIS1+WDTIS0 /* TACLK*2POWER6=1.9ms " *//* SMCLK=1MHz看门狗模式 */#define WDT_MRST_32 WDTPW+WDTCNTCL /* TSMCLK*2POWER15=32ms 复位状态*/#define WDT_MRST_8 WDTPW+WDTCNTCL+WDTIS0 /* TSMCLK*2POWER13=8.192ms " */#define WDT_MRST_0_5 WDTPW+WDTCNTCL+WDTIS1 /* TSMCLK*2POWER9=0.512ms " */#define WDT_MRST_0_064 WDTPW+WDTCNTCL+WDTIS1+WDTIS0 /* TSMCLK*2POWER6=0.512ms " *//* ACLK=32KHz看门狗模式 */#define WDT_ARST_1000 WDTPW+WDTCNTCL+WDTSSEL /* TACLK*2POWER15=1000ms " */#define WDT_ARST_250 WDTPW+WDTCNTCL+WDTSSEL+WDTIS0 /* TACLK*2POWER13=250ms " */#define WDT_ARST_16 WDTPW+WDTCNTCL+WDTSSEL+WDTIS1 /* TACLK*2POWER9=16ms " */#define WDT_ARST_1_9 WDTPW+WDTCNTCL+WDTSSEL+WDTIS1+WDTIS0 /* TACLK*2POWER6=1.9ms " */MSP430寄存器中文注释---A/D采样寄存器定义/************************************************************* ADC12 A/D采样寄存器定义************************************************************//*ADC12转换控制类寄存器*/#define ADC12CTL0_ 0x0;' /* ADC12 Control 0 */sfrw ADC12CTL0 = ADC12CTL0_;#define ADC12CTL1_ 0x01A2 /* ADC12 Control 1 */sfrw ADC12CTL1 = ADC12CTL1_;/*ADC12中断控制类寄存器*/#define ADC12IFG_ 0x01A4 /* ADC12 Interrupt Flag */sfrw ADC12IFG = ADC12IFG_;#define ADC12IE_ 0x01A6 /* ADC12 Interrupt Enable */sfrw ADC12IE = ADC12IE_;#define ADC12IV_ 0x01A8 /* ADC12 Interrupt Vector Word */sfrw ADC12IV = ADC12IV_;/*ADC12存贮器类寄存器*/#define ADC12MEM_ 0x0140 /* ADC12 Conversion Memory */#ifndef __IAR_SYSTEMS_ICC#define ADC12MEM ADC12MEM_ /* ADC12 Conversion Memory (for assembler) */ #else#define ADC12MEM ((int*) ADC12MEM_) /* ADC12 Conversion Memory (for C) */ #endif#define ADC12MEM0_ ADC12MEM_ /* ADC12 Conversion Memory 0 */sfrw ADC12MEM0 = ADC12MEM0_;#define ADC12MEM1_ 0x0142 /* ADC12 Conversion Memory 1 */sfrw ADC12MEM1 = ADC12MEM1_;#define ADC12MEM2_ 0x0144 /* ADC12 Conversion Memory 2 */sfrw ADC12MEM2 = ADC12MEM2_;#define ADC12MEM3_ 0x0146 /* ADC12 Conversion Memory 3 */sfrw ADC12MEM3 = ADC12MEM3_;#define ADC12MEM4_ 0x0148 /* ADC12 Conversion Memory 4 */sfrw ADC12MEM4 = ADC12MEM4_;#define ADC12MEM5_ 0x014A /* ADC12 Conversion Memory 5 */sfrw ADC12MEM5 = ADC12MEM5_;#define ADC12MEM6_ 0x014C /* ADC12 Conversion Memory 6 */sfrw ADC12MEM6 = ADC12MEM6_;#define ADC12MEM7_ 0x014E /* ADC12 Conversion Memory 7 */sfrw ADC12MEM7 = ADC12MEM7_;#define ADC12MEM8_ 0x0150 /* ADC12 Conversion Memory 8 */sfrw ADC12MEM8 = ADC12MEM8_;#define ADC12MEM9_ 0x0152 /* ADC12 Conversion Memory 9 */sfrw ADC12MEM9 = ADC12MEM9_;#define ADC12MEM10_ 0x0154 /* ADC12 Conversion Memory 10 */sfrw ADC12MEM10 = ADC12MEM10_;#define ADC12MEM11_ 0x0156 /* ADC12 Conversion Memory 11 */sfrw ADC12MEM11 = ADC12MEM11_;#define ADC12MEM12_ 0x0158 /* ADC12 Conversion Memory 12 */sfrw ADC12MEM12 = ADC12MEM12_;#define ADC12MEM13_ 0x015A /* ADC12 Conversion Memory 13 */sfrw ADC12MEM13 = ADC12MEM13_;#define ADC12MEM14_ 0x015C /* ADC12 Conversion Memory 14 */sfrw ADC12MEM14 = ADC12MEM14_;#define ADC12MEM15_ 0x015E /* ADC12 Conversion Memory 15 */sfrw ADC12MEM15 = ADC12MEM15_;/*ADC12存贮控制类寄存器*/#define ADC12MCTL_ 0x0080 /* ADC12 Memory Control */#ifndef __IAR_SYSTEMS_ICC#define ADC12MCTL ADC12MCTL_ /* ADC12 Memory Control (for assembler) */#else#define ADC12MCTL ((char*) ADC12MCTL_) /* ADC12 Memory Control (for C) */ #endif#define ADC12MCTL0_ ADC12MCTL_ /* ADC12 Memory Control 0 */sfrb ADC12MCTL0 = ADC12MCTL0_;#define ADC12MCTL1_ 0x0081 /* ADC12 Memory Control 1 */sfrb ADC12MCTL1 = ADC12MCTL1_;#define ADC12MCTL2_ 0x0082 /* ADC12 Memory Control 2 */sfrb ADC12MCTL2 = ADC12MCTL2_;#define ADC12MCTL3_ 0x0083 /* ADC12 Memory Control 3 */sfrb ADC12MCTL3 = ADC12MCTL3_;#define ADC12MCTL4_ 0x0084 /* ADC12 Memory Control 4 */sfrb ADC12MCTL4 = ADC12MCTL4_;#define ADC12MCTL5_ 0x0085 /* ADC12 Memory Control 5 */sfrb ADC12MCTL5 = ADC12MCTL5_;#define ADC12MCTL6_ 0x0086 /* ADC12 Memory Control 6 */sfrb ADC12MCTL6 = ADC12MCTL6_;#define ADC12MCTL7_ 0x0087 /* ADC12 Memory Control 7 */sfrb ADC12MCTL7 = ADC12MCTL7_;#define ADC12MCTL8_ 0x0088 /* ADC12 Memory Control 8 */sfrb ADC12MCTL8 = ADC12MCTL8_;#define ADC12MCTL9_ 0x0089 /* ADC12 Memory Control 9 */sfrb ADC12MCTL9 = ADC12MCTL9_;#define ADC12MCTL10_ 0x008A /* ADC12 Memory Control 10 */sfrb ADC12MCTL10 = ADC12MCTL10_;#define ADC12MCTL11_ 0x008B /* ADC12 Memory Control 11 */sfrb ADC12MCTL11 = ADC12MCTL11_;#define ADC12MCTL12_ 0x008C /* ADC12 Memory Control 12 */sfrb ADC12MCTL12 = ADC12MCTL12_;#define ADC12MCTL13_ 0x008D /* ADC12 Memory Control 13 */sfrb ADC12MCTL13 = ADC12MCTL13_;#define ADC12MCTL14_ 0x008E /* ADC12 Memory Control 14 */sfrb ADC12MCTL14 = ADC12MCTL14_;#define ADC12MCTL15_ 0x008F /* ADC12 Memory Control 15 */sfrb ADC12MCTL15 = ADC12MCTL15_;/* ADC12CTL0 内8位控制寄存器位*/#define ADC12SC 0x001 /*采样/转换控制位*/#define ENC 0x002 /* 转换允许位*/#define ADC12TOVIE 0x004 /*转换时间溢出中断允许位*/#define ADC12OVIE 0x008 /*溢出中断允许位*/#define ADC12ON 0x010 /*ADC12内核控制位*/#define REFON 0x020 /*参考电压控制位*/#define REF2_5V 0x040 /*内部参考电压的电压值选择位 '0'为1.5V; '1'为2.5V*/ #define MSH 0x080 /*多次采样/转换位*/#define MSC 0x080 /*多次采样/转换位*//*SHT0 采样保持定时器0 控制ADC12的结果存贮器MEM0~MEM7的采样周期*/#define SHT0_0 0*0x100 /*采样周期=TADC12CLK*4 */#define SHT0_1 1*0x100 /*采样周期=TADC12CLK*8 */#define SHT0_2 2*0x100 /*采样周期=TADC12CLK*16 */#define SHT0_3 3*0x100 /*采样周期=TADC12CLK*32 */#define SHT0_4 4*0x100 /*采样周期=TADC12CLK*64 */#define SHT0_5 5*0x100 /*采样周期=TADC12CLK*96 */#define SHT0_6 6*0x100 /*采样周期=TADC12CLK*128 */#define SHT0_7 7*0x100 /*采样周期=TADC12CLK*192 */#define SHT0_8 8*0x100 /*采样周期=TADC12CLK*256 */#define SHT0_9 9*0x100 /*采样周期=TADC12CLK*384 */#define SHT0_10 10*0x100 /*采样周期=TADC12CLK*512 */#define SHT0_11 11*0x100 /*采样周期=TADC12CLK*768 */#define SHT0_12 12*0x100 /*采样周期=TADC12CLK*1024 */#define SHT0_13 13*0x100 /*采样周期=TADC12CLK*1024 */ #define SHT0_14 14*0x100 /*采样周期=TADC12CLK*1024*/ #define SHT0_15 15*0x100 /*采样周期=TADC12CLK*1024 */ /*SHT1 采样保持定时器1 控制ADC12的结果存贮器MEM8~MEM15的采样周期*/#define SHT1_0 0*0x100 /*采样周期=TADC12CLK*4 */#define SHT1_1 1*0x100 /*采样周期=TADC12CLK*8 */#define SHT1_2 2*0x100 /*采样周期=TADC12CLK*16 */#define SHT1_3 3*0x100 /*采样周期=TADC12CLK*32 */#define SHT1_4 4*0x100 /*采样周期=TADC12CLK*64 */#define SHT1_5 5*0x100 /*采样周期=TADC12CLK*96 */#define SHT1_6 6*0x100 /*采样周期=TADC12CLK*128 */ #define SHT1_7 7*0x100 /*采样周期=TADC12CLK*192 */ #define SHT1_8 8*0x100 /*采样周期=TADC12CLK*256 */ #define SHT1_9 9*0x100 /*采样周期=TADC12CLK*384 */ #define SHT1_10 10*0x100 /*采样周期=TADC12CLK*512 */ #define SHT1_11 11*0x100 /*采样周期=TADC12CLK*768 */ #define SHT1_12 12*0x100 /*采样周期=TADC12CLK*1024 */ #define SHT1_13 13*0x100 /*采样周期=TADC12CLK*1024 */ #define SHT1_14 14*0x100 /*采样周期=TADC12CLK*1024 */ #define SHT1_15 15*0x100 /*采样周期=TADC12CLK*1024 *//* ADC12CTL1 内8位控制寄存器位*/#define ADC12BUSY 0x0001 /*ADC12忙标志位*/#define CONSEQ_0 0*2 /*单通道单次转换*/#define CONSEQ_1 1*2 /*序列通道单次转换*/#define CONSEQ_2 2*2 /*单通道多次转换*/#define CONSEQ_3 3*2 /*序列通道多次转换*/#define ADC12SSEL_0 0*8 /*ADC12内部时钟源*/#define ADC12SSEL_1 1*8 /*ACLK*/#define ADC12SSEL_2 2*8 /*MCLK*/#define ADC12SSEL_3 3*8 /*SCLK*/#define ADC12DIV_0 0*0x20 /*1分频*/#define ADC12DIV_1 1*0x20 /*2分频*/#define ADC12DIV_2 2*0x20 /*3分频*/#define ADC12DIV_3 3*0x20 /*4分频*/#define ADC12DIV_4 4*0x20 /*5分频*/#define ADC12DIV_5 5*0x20 /*6分频*/#define ADC12DIV_6 6*0x20 /*7分频*/#define ADC12DIV_7 7*0x20 /*8分频*/#define ISSH 0x0100 /*采样输入信号反向与否控制位*/#define SHP 0x0200 /*采样信号(SAMPCON)选择控制位*/#define SHS_0 0*0x400 /*采样信号输入源选择控制位 ADC12SC*/#define SHS_1 1*0x400 /*采样信号输入源选择控制位 TIMER_A.OUT1*/ #define SHS_2 2*0x400 /*采样信号输入源选择控制位 TIMER_B.OUT0*/ #define SHS_3 3*0x400 /*采样信号输入源选择控制位 TIMER_B.OUT1*/ /*转换存贮器地址定义位*/#define CSTARTADD_0 0*0x1000 /*选择MEM0首地址*/#define CSTARTADD_1 1*0x1000 /*选择MEM1首地址*/#define CSTARTADD_2 2*0x1000 /*选择MEM2首地址*/#define CSTARTADD_3 3*0x1000 /*选择MEM3首地址*/#define CSTARTADD_4 4*0x1000 /*选择MEM4首地址*/#define CSTARTADD_5 5*0x1000 /*选择MEM5首地址*/#define CSTARTADD_6 6*0x1000 /*选择MEM6首地址*/#define CSTARTADD_7 7*0x1000 /*选择MEM7首地址*/#define CSTARTADD_8 8*0x1000 /*选择MEM8首地址*/#define CSTARTADD_9 9*0x1000 /*选择MEM9首地址*/#define CSTARTADD_10 10*0x1000 /*选择MEM10首地址*/#define CSTARTADD_11 11*0x1000 /*选择MEM11首地址*/#define CSTARTADD_12 12*0x1000 /*选择MEM12首地址*/#define CSTARTADD_13 13*0x1000 /*选择MEM13首地址*/#define CSTARTADD_14 14*0x1000 /*选择MEM14首地址*/#define CSTARTADD_15 15*0x1000 /*选择MEM15首地址*//* ADC12MCTLx */#define INCH_0 0 /*选择模拟量通道0 A0 */#define INCH_1 1 /*选择模拟量通道0 A1*/#define INCH_2 2 /*选择模拟量通道0 A2*/#define INCH_3 3 /*选择模拟量通道0 A3*/#define INCH_4 4 /*选择模拟量通道0 A4*/#define INCH_5 5 /*选择模拟量通道0 A5*/#define INCH_6 6 /*选择模拟量通道0 A6*/#define INCH_7 7 /*选择模拟量通道0 A7*/#define INCH_8 8 /*VEREF+*/#define INCH_9 9 /*VEREF-*/#define INCH_10 10 /*片内温度传感器的输出*/#define INCH_11 11 /*(AVCC-AVSS)/2*/#define INCH_12 12 /*(AVCC-AVSS)/2*/#define INCH_13 13 /*(AVCC-AVSS)/2*/#define INCH_14 14 /*(AVCC-AVSS)/2*/#define INCH_15 15 /*(AVCC-AVSS)/2*//*参考电压源选择位*/#define SREF_0 0*0x10 /*VR+ = AVCC; VR- = AVSS*/#define SREF_1 1*0x10 /*VR+ = VREF+; VR- = AVSS*/ #define SREF_2 2*0x10 /*VR+ = VEREF+; VR- = AVSS*/ #define SREF_3 3*0x10 /*VR+ = VEREF+; VR- = AVSS*/ #define SREF_4 4*0x10 /*VR+ = AVCC; VR- = VREF-*/ #define SREF_5 5*0x10 /*VR+ = VREF+; VR- = VREF-*/ #define SREF_6 6*0x10 /*VR+ = VEREF+; VR- = VREF-*/ #define SREF_7 7*0x10 /*VR+ = VEREF+; VR- = VREF-*/#define EOS 0x80 /*序列结束选择位*/MSP430寄存器中文注释----串口寄存器/************************************************************* USART 串口寄存器"UCTL","UTCTL","URCTL"定义的各个位可串口1 串口2公用************************************************************//* UCTL 串口控制寄存器*/#define PENA 0x80 /*校验允许位*/#define PEV 0x40 /*偶校验为0时为奇校验*/#define SPB 0x20 /*停止位为2 为0时停止位为1*/#define CHAR 0x10 /*数据位为8位为0时数据位为7位*/#define LISTEN 0x08 /*自环模式(发数据同时在把发的数据接收回来)*/#define SYNC 0x04 /*同步模式为0异步模式*/#define MM 0x02 /*为1时地址位多机协议(异步) 主机模式(同步);为0时线路空闲多机协议(异步) 从机模式(同步)*/#define SWRST 0x01 /*控制位*//* UTCTL 串口发送控制寄存器*/#define CKPH 0x80 /*时钟相位控制位(只同步方式用)为1时时钟UCLK延时半个周期*/#define CKPL 0x40 /*时钟极性控制位为1时异步与UCLK相反;同步下降延有效*/#define SSEL1 0x20 /*时钟源选择位:与SSEL0组合为0,1,2,3四种方式*/#define SSEL0 0x10 /*"0"选择外部时钟,"1"选择辅助时钟,"2","3"选择系统子时钟 */#define URXSE 0x08 /*接收触发延控制位(只在异步方式下用)*/#define TXWAKE 0x04 /*多处理器通信传送控制位(只在异步方式下用)*/#define STC 0x02 /*外部引脚STE选择位为0时为4线模式为1时为3线模式*/ #define TXEPT 0x01 /*发送器空标志*//* URCTL 串口接收控制寄存器同步模式下只用两位:FE和OE*/#define FE 0x80 /*帧错标志*/#define PE 0x40 /*校验错标志位*/#define OE 0x20 /*溢出标志位*/#define BRK 0x10 /*打断检测位*/#define URXEIE 0x08 /*接收出错中断允许位*/#define URXWIE 0x04 /*接收唤醒中断允许位*/#define RXWAKE 0x02 /*接收唤醒检测位*/#define RXERR 0x01 /*接收错误标志位*//************************************************************* USART 0 串口0寄存器定义************************************************************/#define U0CTL_ 0x0070 /* UART 0 Control */sfrb U0CTL = U0CTL_;#define U0TCTL_ 0x0071 /* UART 0 Transmit Control */ sfrb U0TCTL = U0TCTL_;#define U0RCTL_ 0x0072 /* UART 0 Receive Control */ sfrb U0RCTL = U0RCTL_;#define U0MCTL_ 0x0073 /* UART 0 Modulation Control */ sfrb U0MCTL = U0MCTL_;#define U0BR0_ 0x0074 /* UART 0 Baud Rate 0 */sfrb U0BR0 = U0BR0_;#define U0BR1_ 0x0075 /* UART 0 Baud Rate 1 */sfrb U0BR1 = U0BR1_;#define U0RXBUF_ 0x0076 /* UART 0 Receive Buffer */ const sfrb U0RXBUF = U0RXBUF_;#define U0TXBUF_ 0x0077 /* UART 0 Transmit Buffer */ sfrb U0TXBUF = U0TXBUF_;/* Alternate register names */#define UCTL0_ 0x0070 /* UART 0 Control */sfrb UCTL0 = UCTL0_;#define UTCTL0_ 0x0071 /* UART 0 Transmit Control */ sfrb UTCTL0 = UTCTL0_;#define URCTL0_ 0x0072 /* UART 0 Receive Control */ sfrb URCTL0 = URCTL0_;#define UMCTL0_ 0x0073 /* UART 0 Modulation Control */ sfrb UMCTL0 = UMCTL0_;#define UBR00_ 0x0074 /* UART 0 Baud Rate 0 */sfrb UBR00 = UBR00_;#define UBR10_ 0x0075 /* UART 0 Baud Rate 1 */sfrb UBR10 = UBR10_;#define RXBUF0_ 0x0076 /* UART 0 Receive Buffer */ const sfrb RXBUF0 = RXBUF0_;#define TXBUF0_ 0x0077 /* UART 0 Transmit Buffer */ sfrb TXBUF0 = TXBUF0_;#define UCTL_0_ 0x0070 /* UART 0 Control */sfrb UCTL_0 = UCTL_0_;#define UTCTL_0_ 0x0071 /* UART 0 Transmit Control */ sfrb UTCTL_0 = UTCTL_0_;#define URCTL_0_ 0x0072 /* UART 0 Receive Control */ sfrb URCTL_0 = URCTL_0_;#define UMCTL_0_ 0x0073 /* UART 0 Modulation Control */ sfrb UMCTL_0 = UMCTL_0_;#define UBR0_0_ 0x0074 /* UART 0 Baud Rate 0 */sfrb UBR0_0 = UBR0_0_;#define UBR1_0_ 0x0075 /* UART 0 Baud Rate 1 */sfrb UBR1_0 = UBR1_0_;#define RXBUF_0_ 0x0076 /* UART 0 Receive Buffer */ const sfrb RXBUF_0 = RXBUF_0_;#define TXBUF_0_ 0x0077 /* UART 0 Transmit Buffer *//************************************************************* USART 1 串口1寄存器定义************************************************************/#define U1CTL_ 0x0078 /* UART 1 Control */sfrb U1CTL = U1CTL_;#define U1TCTL_ 0x0079 /* UART 1 Transmit Control */ sfrb U1TCTL = U1TCTL_;#define U1RCTL_ 0x007A /* UART 1 Receive Control */ sfrb U1RCTL = U1RCTL_;#define U1MCTL_ 0x007B /* UART 1 Modulation Control */ sfrb U1MCTL = U1MCTL_;#define U1BR0_ 0x007C /* UART 1 Baud Rate 0 */sfrb U1BR0 = U1BR0_;#define U1BR1_ 0x007D /* UART 1 Baud Rate 1 */sfrb U1BR1 = U1BR1_;#define U1RXBUF_ 0x007E /* UART 1 Receive Buffer */ const sfrb U1RXBUF = U1RXBUF_;#define U1TXBUF_ 0x007F /* UART 1 Transmit Buffer */ sfrb U1TXBUF = U1TXBUF_;#define UCTL1_ 0x0078 /* UART 1 Control */sfrb UCTL1 = UCTL1_;#define UTCTL1_ 0x0079 /* UART 1 Transmit Control */ sfrb UTCTL1 = UTCTL1_;#define URCTL1_ 0x007A /* UART 1 Receive Control */ sfrb URCTL1 = URCTL1_;#define UMCTL1_ 0x007B /* UART 1 Modulation Control */ sfrb UMCTL1 = UMCTL1_;#define UBR01_ 0x007C /* UART 1 Baud Rate 0 */#define UBR11_ 0x007D /* UART 1 Baud Rate 1 */sfrb UBR11 = UBR11_;#define RXBUF1_ 0x007E /* UART 1 Receive Buffer */ const sfrb RXBUF1 = RXBUF1_;#define TXBUF1_ 0x007F /* UART 1 Transmit Buffer */ sfrb TXBUF1 = TXBUF1_;#define UCTL_1_ 0x0078 /* UART 1 Control */sfrb UCTL_1 = UCTL_1_;#define UTCTL_1_ 0x0079 /* UART 1 Transmit Control */ sfrb UTCTL_1 = UTCTL_1_;#define URCTL_1_ 0x007A /* UART 1 Receive Control */ sfrb URCTL_1 = URCTL_1_;#define UMCTL_1_ 0x007B /* UART 1 Modulation Control */ sfrb UMCTL_1 = UMCTL_1_;#define UBR0_1_ 0x007C /* UART 1 Baud Rate 0 */sfrb UBR0_1 = UBR0_1_;#define UBR1_1_ 0x007D /* UART 1 Baud Rate 1 */sfrb UBR1_1 = UBR1_1_;#define RXBUF_1_ 0x007E /* UART 1 Receive Buffer */ const sfrb RXBUF_1 = RXBUF_1_;#define TXBUF_1_ 0x007F /* UART 1 Transmit Buffer */ sfrb TXBUF_1 = TXBUF_1_;MSP430寄存器中文注释---P1/2口(带中断功能)/************************************************************* DIGITAL I/O Port1/2 寄存器定义有中断功能************************************************************/#define P1IN_ 0x0020 /* P1 输入寄存器 */const sfrb P1IN = P1IN_;#define P1OUT_ 0x0021 /* P1 输出寄存器 */sfrb P1OUT = P1OUT_;#define P1DIR_ 0x0022 /* P1 方向选择寄存器 */sfrb P1DIR = P1DIR_;#define P1IFG_ 0x0023 /* P1 中断标志寄存器*/sfrb P1IFG = P1IFG_;#define P1IES_ 0x0024 /* P1 中断边沿选择寄存器*/ sfrb P1IES = P1IES_;#define P1IE_ 0x0025 /* P1 中断使能寄存器 */sfrb P1IE = P1IE_;#define P1SEL_ 0x0026 /* P1 功能选择寄存器*/sfrb P1SEL = P1SEL_;#define P2IN_ 0x0028 /* P2 输入寄存器 */const sfrb P2IN = P2IN_;#define P2OUT_ 0x0029 /* P2 输出寄存器 */sfrb P2OUT = P2OUT_;#define P2DIR_ 0x002A /* P2 方向选择寄存器 */ sfrb P2DIR = P2DIR_;#define P2IFG_ 0x002B /* P2 中断标志寄存器 */sfrb P2IFG = P2IFG_;#define P2IES_ 0x002C /* P2 中断边沿选择寄存器 */ sfrb P2IES = P2IES_;#define P2IE_ 0x002D /* P2 中断使能寄存器 */sfrb P2IE = P2IE_;#define P2SEL_ 0x002E /* P2 功能选择寄存器 */sfrb P2SEL = P2SEL_;MSP430寄存器中文注释---P3/4口(无中断功能)/************************************************************ * DIGITAL I/O Port3/4寄存器定义无中断功能************************************************************/#define P3IN_ 0x0018 /* P3 输入寄存器 */const sfrb P3IN = P3IN_;#define P3OUT_ 0x0019 /* P3 输出寄存器 */sfrb P3OUT = P3OUT_;#define P3DIR_ 0x001A /* P3 方向选择寄存器 */sfrb P3DIR = P3DIR_;#define P3SEL_ 0x001B /* P3 功能选择寄存器*/sfrb P3SEL = P3SEL_;#define P4IN_ 0x001C /* P4 输入寄存器 */const sfrb P4IN = P4IN_;#define P4OUT_ 0x001D /* P4 输出寄存器 */sfrb P4OUT = P4OUT_;#define P4DIR_ 0x001E /* P4 方向选择寄存器 */sfrb P4DIR = P4DIR_;#define P4SEL_ 0x001F /* P4 功能选择寄存器 */sfrb P4SEL = P4SEL_;/************************************************************ * DIGITAL I/O Port5/6 I/O口寄存器定义PORT5和6 无中断功能************************************************************/#define P5IN_ 0x0030 /* P5 输入寄存器 */const sfrb P5IN = P5IN_;#define P5OUT_ 0x0031 /* P5 输出寄存器*/sfrb P5OUT = P5OUT_;#define P5DIR_ 0x0032 /* P5 方向选择寄存器*/sfrb P5DIR = P5DIR_;#define P5SEL_ 0x0033 /* P5 功能选择寄存器*/sfrb P5SEL = P5SEL_;#define P6IN_ 0x0034 /* P6 输入寄存器 */const sfrb P6IN = P6IN_;#define P6OUT_ 0x0035 /* P6 输出寄存器*/sfrb P6OUT = P6OUT_;#define P6DIR_ 0x0036 /* P6 方向选择寄存器*/sfrb P6DIR = P6DIR_;#define P6SEL_ 0x0037 /* P6 功能选择寄存器*/sfrb P6SEL = P6SEL_;MSP430寄存器中文注释--- 硬件乘法器/************************************************************ 硬件乘法器的寄存器定义************************************************************/#define MPY_ 0x0130 /* 无符号乘法 */sfrw MPY = MPY_;#define MPYS_ 0x0132 /* 有符号乘法*/sfrw MPYS = MPYS_;#define MAC_ 0x0134 /* 无符号乘加 */sfrw MAC = MAC_;#define MACS_ 0x0136 /* 有符号乘加 */sfrw MACS = MACS_;#define OP2_ 0x0138 /* 第二乘数 */sfrw OP2 = OP2_;#define RESLO_ 0x013A /* 低6位结果寄存器 */sfrw RESLO = RESLO_;#define RESHI_ 0x013C /* 高6位结果寄存器 */sfrw RESHI = RESHI_;#define SUMEXT_ 0x013E /*结果扩展寄存器 */const sfrw SUMEXT = SUMEXT_;MSP430寄存器中文注释---看门狗和定时器/************************************************************* 看门狗定时器的寄存器定义************************************************************/#define WDTCTL_ 0x0120sfrw WDTCTL = WDTCTL_;#define WDTIS0 0x0001 /*选择WDTCNT的四个输出端之一*/#define WDTIS1 0x0002 /*选择WDTCNT的四个输出端之一*/#define WDTSSEL 0x0004 /*选择WDTCNT的时钟源*/#define WDTCNTCL 0x0008 /*清除WDTCNT端: 为1时从0开始计数*/#define WDTTMSEL 0x0010 /*选择模式 0: 看门狗模式; 1: 定时器模式*/#define WDTNMI 0x0020 /*选择NMI/RST 引脚功能 0:为 RST; 1:为NMI*/#define WDTNMIES 0x0040 /*WDTNMI=1时.选择触发延 0:为上升延 1:为下降延*/ #define WDTHOLD 0x0080 /*停止看门狗定时器工作 0:启动;1:停止*/#define WDTPW 0x5A00 /* 写密码:高八位*//* SMCLK= 1MHz定时器模式 */#define WDT_MDLY_32 WDTPW+WDTTMSEL+WDTCNTCL /* TSMCLK*2POWER15=32ms 复位状态 */#define WDT_MDLY_8 WDTPW+WDTTMSEL+WDTCNTCL+WDTIS0 /* TSMCLK*2POWER13=8.192ms " */#define WDT_MDLY_0_5 WDTPW+WDTTMSEL+WDTCNTCL+WDTIS1 /* TSMCLK*2POWER9=0.512ms " */#define WDT_MDLY_0_064 WDTPW+WDTTMSEL+WDTCNTCL+WDTIS1+WDTIS0 /* TSMCLK*2POWER6=0.512ms " *//* ACLK=32.768KHz 定时器模式*/#define WDT_ADLY_1000 WDTPW+WDTTMSEL+WDTCNTCL+WDTSSEL /* TACLK*2POWER15=1000ms " */#define WDT_ADLY_250 WDTPW+WDTTMSEL+WDTCNTCL+WDTSSEL+WDTIS0 /* TACLK*2POWER13=250ms " */#define WDT_ADLY_16 WDTPW+WDTTMSEL+WDTCNTCL+WDTSSEL+WDTIS1 /*TACLK*2POWER9=16ms " */#define WDT_ADLY_1_9 WDTPW+WDTTMSEL+WDTCNTCL+WDTSSEL+WDTIS1+WDTIS0 /* TACLK*2POWER6=1.9ms " *//* SMCLK=1MHz看门狗模式 */#define WDT_MRST_32 WDTPW+WDTCNTCL /* TSMCLK*2POWER15=32ms 复位状态 */#define WDT_MRST_8 WDTPW+WDTCNTCL+WDTIS0 /* TSMCLK*2POWER13=8.192ms " */#define WDT_MRST_0_5 WDTPW+WDTCNTCL+WDTIS1 /* TSMCLK*2POWER9=0.512ms " */#define WDT_MRST_0_064 WDTPW+WDTCNTCL+WDTIS1+WDTIS0 /* TSMCLK*2POWER6=0.512ms " *//* ACLK=32KHz看门狗模式 */#define WDT_ARST_1000 WDTPW+WDTCNTCL+WDTSSEL /* TACLK*2POWER15=1000ms " */#define WDT_ARST_250 WDTPW+WDTCNTCL+WDTSSEL+WDTIS0 /* TACLK*2POWER13=250ms " */#define WDT_ARST_16 WDTPW+WDTCNTCL+WDTSSEL+WDTIS1 /* TACLK*2POWER9=16ms " */#define WDT_ARST_1_9 WDTPW+WDTCNTCL+WDTSSEL+WDTIS1+WDTIS0 /* TACLK*2POWER6=1.9ms " */MSP430寄存器中文注释---A/D采样寄存器定义/************************************************************* ADC12 A/D采样寄存器定义************************************************************//*ADC12转换控制类寄存器*/#define ADC12CTL0_ 0x0;' /* ADC12 Control 0 */sfrw ADC12CTL0 = ADC12CTL0_;#define ADC12CTL1_ 0x01A2 /* ADC12 Control 1 */sfrw ADC12CTL1 = ADC12CTL1_;/*ADC12中断控制类寄存器*/#define ADC12IFG_ 0x01A4 /* ADC12 Interrupt Flag */sfrw ADC12IFG = ADC12IFG_;#define ADC12IE_ 0x01A6 /* ADC12 Interrupt Enable */sfrw ADC12IE = ADC12IE_;#define ADC12IV_ 0x01A8 /* ADC12 Interrupt Vector Word */sfrw ADC12IV = ADC12IV_;/*ADC12存贮器类寄存器*/#define ADC12MEM_ 0x0140 /* ADC12 Conversion Memory */#ifndef __IAR_SYSTEMS_ICC#define ADC12MEM ADC12MEM_ /* ADC12 Conversion Memory (for assembler) */ #else#define ADC12MEM ((int*) ADC12MEM_) /* ADC12 Conversion Memory (for C) */ #endif#define ADC12MEM0_ ADC12MEM_ /* ADC12 Conversion Memory 0 */sfrw ADC12MEM0 = ADC12MEM0_;#define ADC12MEM1_ 0x0142 /* ADC12 Conversion Memory 1 */sfrw ADC12MEM1 = ADC12MEM1_;#define ADC12MEM2_ 0x0144 /* ADC12 Conversion Memory 2 */sfrw ADC12MEM2 = ADC12MEM2_;#define ADC12MEM3_ 0x0146 /* ADC12 Conversion Memory 3 */sfrw ADC12MEM3 = ADC12MEM3_;#define ADC12MEM4_ 0x0148 /* ADC12 Conversion Memory 4 */sfrw ADC12MEM4 = ADC12MEM4_;#define ADC12MEM5_ 0x014A /* ADC12 Conversion Memory 5 */sfrw ADC12MEM5 = ADC12MEM5_;#define ADC12MEM6_ 0x014C /* ADC12 Conversion Memory 6 */sfrw ADC12MEM6 = ADC12MEM6_;#define ADC12MEM7_ 0x014E /* ADC12 Conversion Memory 7 */sfrw ADC12MEM7 = ADC12MEM7_;#define ADC12MEM8_ 0x0150 /* ADC12 Conversion Memory 8 */sfrw ADC12MEM8 = ADC12MEM8_;#define ADC12MEM9_ 0x0152 /* ADC12 Conversion Memory 9 */sfrw ADC12MEM9 = ADC12MEM9_;#define ADC12MEM10_ 0x0154 /* ADC12 Conversion Memory 10 */sfrw ADC12MEM10 = ADC12MEM10_;#define ADC12MEM11_ 0x0156 /* ADC12 Conversion Memory 11 */sfrw ADC12MEM11 = ADC12MEM11_;#define ADC12MEM12_ 0x0158 /* ADC12 Conversion Memory 12 */sfrw ADC12MEM12 = ADC12MEM12_;#define ADC12MEM13_ 0x015A /* ADC12 Conversion Memory 13 */sfrw ADC12MEM13 = ADC12MEM13_;#define ADC12MEM14_ 0x015C /* ADC12 Conversion Memory 14 */sfrw ADC12MEM14 = ADC12MEM14_;#define ADC12MEM15_ 0x015E /* ADC12 Conversion Memory 15 */sfrw ADC12MEM15 = ADC12MEM15_;/*ADC12存贮控制类寄存器*/#define ADC12MCTL_ 0x0080 /* ADC12 Memory Control */#ifndef __IAR_SYSTEMS_ICC#define ADC12MCTL ADC12MCTL_ /* ADC12 Memory Control (for assembler) */#else#define ADC12MCTL ((char*) ADC12MCTL_) /* ADC12 Memory Control (for C) */ #endif#define ADC12MCTL0_ ADC12MCTL_ /* ADC12 Memory Control 0 */sfrb ADC12MCTL0 = ADC12MCTL0_;#define ADC12MCTL1_ 0x0081 /* ADC12 Memory Control 1 */sfrb ADC12MCTL1 = ADC12MCTL1_;#define ADC12MCTL2_ 0x0082 /* ADC12 Memory Control 2 */sfrb ADC12MCTL2 = ADC12MCTL2_;#define ADC12MCTL3_ 0x0083 /* ADC12 Memory Control 3 */sfrb ADC12MCTL3 = ADC12MCTL3_;#define ADC12MCTL4_ 0x0084 /* ADC12 Memory Control 4 */sfrb ADC12MCTL4 = ADC12MCTL4_;#define ADC12MCTL5_ 0x0085 /* ADC12 Memory Control 5 */sfrb ADC12MCTL5 = ADC12MCTL5_;#define ADC12MCTL6_ 0x0086 /* ADC12 Memory Control 6 */sfrb ADC12MCTL6 = ADC12MCTL6_;#define ADC12MCTL7_ 0x0087 /* ADC12 Memory Control 7 */sfrb ADC12MCTL7 = ADC12MCTL7_;#define ADC12MCTL8_ 0x0088 /* ADC12 Memory Control 8 */sfrb ADC12MCTL8 = ADC12MCTL8_;#define ADC12MCTL9_ 0x0089 /* ADC12 Memory Control 9 */sfrb ADC12MCTL9 = ADC12MCTL9_;#define ADC12MCTL10_ 0x008A /* ADC12 Memory Control 10 */sfrb ADC12MCTL10 = ADC12MCTL10_;#define ADC12MCTL11_ 0x008B /* ADC12 Memory Control 11 */sfrb ADC12MCTL11 = ADC12MCTL11_;#define ADC12MCTL12_ 0x008C /* ADC12 Memory Control 12 */sfrb ADC12MCTL12 = ADC12MCTL12_;#define ADC12MCTL13_ 0x008D /* ADC12 Memory Control 13 */sfrb ADC12MCTL13 = ADC12MCTL13_;#define ADC12MCTL14_ 0x008E /* ADC12 Memory Control 14 */sfrb ADC12MCTL14 = ADC12MCTL14_;#define ADC12MCTL15_ 0x008F /* ADC12 Memory Control 15 */sfrb ADC12MCTL15 = ADC12MCTL15_;/* ADC12CTL0 内8位控制寄存器位*/#define ADC12SC 0x001 /*采样/转换控制位*/#define ENC 0x002 /* 转换允许位*/#define ADC12TOVIE 0x004 /*转换时间溢出中断允许位*/#define ADC12OVIE 0x008 /*溢出中断允许位*/#define ADC12ON 0x010 /*ADC12内核控制位*/#define REFON 0x020 /*参考电压控制位*/#define REF2_5V 0x040 /*内部参考电压的电压值选择位 '0'为1.5V; '1'为2.5V*/ #define MSH 0x080 /*多次采样/转换位*/#define MSC 0x080 /*多次采样/转换位*//*SHT0 采样保持定时器0 控制ADC12的结果存贮器MEM0~MEM7的采样周期*/。

MSP430G2553手册解读

MSP430G2553手册解读

MSP430G2XX外设
• 欠压复位
– 可在上电和断电期间提供正确的复位信号 – 功耗包含于MCU最低功耗时(LPM4)所消耗电流之中
• 串行通信
– 支持 I2C 和 SPI 的 USI – 支持 I2C、SPI 以及 UART 的 USCI
• Comparator_A+
– – – – 可设定反相和同相输入 可选的 RC 输出滤波器 可直接输出至 Timer_A2 捕获输入 具有中断能力
LaunchPad 开发板上各部分介绍
USB 仿真器接口
片上仿真器模块 6针 eZ430 连接器 外置晶体接口 芯片引出脚 MSP430器件和插座
P1.3 按钮
LED和跳线 P1.0 & P1.6
电源连接器 复位按钮
MSP430系列功能框图
MSP430G2XX 无Port3
低压、 电源复 位保护
VLO Min. Puls Filter ACLK Peripherals
32768Hz
OSC_Fault
辅助时钟
MCLK CPU
主系统时钟
16MHz Biblioteka CO SMCLK Peripherals
子系统时钟
上电后: MCLK 和 SMCLK 由DCOCLK 提 供(约1.1 MHz) ACLK 由 LFXT1CLK 提供(LF 模式,6pF内部负载电容)
• 。此外,其还可提供板上Flash 仿真工具, 以直接连接至PC 轻松进行编程、调试和评 估。 • MSP-EXP430G2 采用IAR Embedded Workbench 集成开发环境(IDE) 或Code Composer Studio (CCS)编写、下载和调试 应用。 • 可提供板上Flash 仿真工具,以直接连接至 PC 轻松进行编程、调试和评估。

msp430g2553例程大全

msp430g2553例程大全

MSPG2553 例程1.//************************************************************************* *****// LaunchPad Lab2 - Software Toggle P1.0,//// MSP430G2xx2// -----------------// /|\| XIN|-// | | |// --|RST XOUT|-// | |// | P1.0|-->LED////************************************************************************* *****#include <msp430g2553.h>void main(void){WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timerif (CALBC1_1MHZ == 0xFF || CALDCO_1MHZ == 0xFF){while(1); // If calibration constants erased, trap CPU!!}// Configure Basic ClockBCSCTL1 = CALBC1_1MHZ; // Set rangeDCOCTL = CALDCO_1MHZ; // Set DCO step + modulationBCSCTL3 |= LFXT1S_2; // Set LFXT1P1DIR = BIT6; // P1.6 output (green LED)P1OUT = 0; // LED offIFG1 &= ~OFIFG; // Clear OSCFault flagBCSCTL2 |=SELM_1 + DIVM_0; // Set MCLKfor(;;){P1OUT = BIT6; // P1.6 on (green LED)_delay_cycles(100);P1OUT = 0; // green LED off_delay_cycles(5000);}}2.//************************************************************************* *****// LaunchPad Lab3 - Software Port Interrupt Service//// MSP430G2xx2// -----------------// /|\| XIN|-// | | |// --|RST XOUT|-// /|\ | |// --o--|P1.3 P1.0|-->LED// \|/////************************************************************************* *****#include <msp430g2553.h>void main(void){WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timerP1DIR |= BIT0; // Set P1.0 to output directionP1IES |= BIT3; // P1.3 Hi/lo edgeP1IFG &= ~BIT3; // P1.3 IFG clearedP1IE |= BIT3; // P1.3 interrupt enabled_BIS_SR(LPM4_bits + GIE); // Enter LPM4 w/interrupt }// Port 1 interrupt service routine#pragma vector=PORT1_VECTOR__interrupt void Port_1(void){if (P1IFG & BIT3){P1OUT ^= BIT0; // P1.0 = toggleP1IFG &= ~BIT3; // P1.3 IFG cleared }}3.//************************************************************************* *****// LaunchPad Lab5 - ADC10, Sample A10 Temp and Convert to oC and oF//// MSP430G2452// -----------------// /|\| XIN|-// | | |// --|RST XOUT|-// | |// |A10 |////************************************************************************* *****#include "msp430g2553.h"long temp;long IntDegF;long IntDegC;void main(void){WDTCTL = WDTPW + WDTHOLD; // Stop WDT//Configure ADC10ADC10CTL1 = INCH_10 + ADC10DIV_3; // Choose ADC Channel as Temp SensorADC10CTL0 = SREF_1 + ADC10SHT_3 + REFON + ADC10ON + ADC10IE;//Choose ADC Ref source__enable_interrupt(); // Enable interrupts.TACCR0 = 30; // Delay to allow Ref to settleTACCTL0 |= CCIE; // Compare-mode interrupt.TACTL = TASSEL_2 | MC_1; // TACLK = SMCLK, Up mode.LPM0; // Wait for delay.TACCTL0 &= ~CCIE; // Disable timer Interrupt__disable_interrupt();while(1){ADC10CTL0 |= ENC + ADC10SC; // Sampling and conversion start__bis_SR_register(LPM0_bits + GIE); // LPM0 with interrupts enabled// oF = ((A10/1024)*1500mV)-923mV)*1/1.97mV = A10*761/1024 - 468temp = ADC10MEM;IntDegF = ((temp - 630) * 761) / 1024;// oC = ((A10/1024)*1500mV)-986mV)*1/3.55mV = A10*423/1024 - 278temp = ADC10MEM;IntDegC = ((temp - 673) * 423) / 1024;__no_operation(); // SET BREAKPOINT HERE}}// ADC10 interrupt service routine#pragma vector=ADC10_VECTOR__interrupt void ADC10_ISR (void){__bic_SR_register_on_exit(LPM0_bits); // Clear CPUOFF bit from 0(SR)}#pragma vector=TIMER0_A0_VECTOR__interrupt void ta0_isr(void){TACTL = 0;__bic_SR_register_on_exit(LPM0_bits); // Clear CPUOFF bit from 0(SR)}4.//************************************************************************* *****// MSP430F20xx Demo - Basic Clock, Output Buffered SMCLK, ACLK and MCLK/10 //// Description: Buffer ACLK on P2.0, default SMCLK(DCO) on P1.4 and MCLK/10 on // P1.5.// ACLK = LFXT1 = VLO, MCLK = SMCLK = default DCO// //* External watch crystal installed on XIN XOUT is required for ACLK *////// MSP430F20xx// -----------------// /|\| XIN|-// | | |// --|RST XOUT|-// | |// | P1.4/SMCLK|-->SMCLK = Default DCO// | P1.5|-->MCLK/10 = DCO/10// | P1.0/ACLK|-->ACLK = VLO//// M. Buccini / L. Westlund// Texas Instruments Inc.// October 2005// Built with IAR Embedded Workbench Version: 3.40A//************************************************************************* *****#include <msp430x20x3.h>unsigned char s;void main(void){WDTCTL = WDTPW +WDTHOLD; // Stop Watchdog TimerBCSCTL3 |= LFXT1S_2; // LFXT1 = VLO//DCOCTL = 0;//BCSCTL1 = CALBC1_16MHZ;//DCOCTL = CALBC1_16MHZ;P1DIR |= 0x31; // P1.0,5 and P1.4 outputsP1SEL |= 0x11; // P1.0,4 ACLK/VLO, SMCLK/DCO output//SMCLK Sub-System Main Clk,ACLK和SMCLK可以通过复用引脚输出,MCLK 不能直接输出体现, MCLK可以配置为VLO或者DCOwhile(1){P1OUT |= 0x20; // P1.5 = 1, 通过开关P1.5来体现MCLK,这两条指令的周期大概为SMCLK的1/10P1OUT &= ~0x20;//20;}}5.//************************************************************************* *****// MSP430xG46x Demo - FLL+, Runs Internal DCO at 8MHz// Description: This program demonstrates setting the internal DCO to run at// 8MHz with auto-calibration by the FLL+.// ACLK = LFXT1 = 32768Hz, MCLK = SMCLK = DCO = (121+1) x 2 x ACLK = 7995392Hz// //* An external watch crystal between XIN & XOUT is required for ACLK *////// MSP430xG461x// -----------------// /|\| XIN|-// | | | 32kHz// --|RST XOUT|-// | |// | P1.1|--> MCLK = 8MHz// | |// | P1.5|--> ACLK = 32kHz// | |//// K. Quiring/ M. Mitchell// Texas Instruments Inc.// October 2006// Built with IAR Embedded Workbench Version: 3.41A//************************************************************************* ****#include <msp430xG46x.h>void main(void){WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timerFLL_CTL0 |= DCOPLUS + XCAP18PF; // DCO+ set, freq = xtal x D x N+1 SCFI0 |= FN_4; // x2 DCO freq, 8MHz nominal DCOSCFQCTL = 121; // (121+1) x 32768 x 2 = 7.99 MHzP1DIR = 0x22; // P1.1 & P1.5 to output directionP1SEL = 0x22; // P1.1 & P1.5 to output MCLK & ACLKwhile(1); // Loop in place}6.//************************************************************************* ***// MSP430xG46x Demo - Flash In-System Programming, Copy SegA to SegB//// Description: This program first erases flash seg A, then it increments all// values in seg A, then it erases seg B, then copies seg A to seg B.// Assumed MCLK 550kHz - 900kHz.// //* Set Breakpoint on NOP in the Mainloop to avoid Stressing Flash *////// MSP430xG461x// -----------------// /|\| XIN|-// | | |// --|RST XOUT|-// | |//// M. Mitchell// Texas Instruments Inc.// Feb 2005// Built with IAR Embedded Workbench Version: 3.21A//************************************************************************* *****#include <msp430xG46x.h>char value; // 8-bit value to write to segment A// Function prototypesvoid write_SegA (char value);void copy_A2B (void);void main(void){WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timerFCTL2 = FWKEY + FSSEL0 + FN0; // MCLK/2 for Flash Timing Generatorvalue = 0; // Initialize valuewhile(1) // Repeat forever{write_SegA(value++); // Write segment A, increment valuecopy_A2B(); // Copy segment A to B_NOP(); // SET BREAKPOINT HERE}}void write_SegA (char value){char *Flash_ptr; // Flash pointerunsigned int i;Flash_ptr = (char *) 0x1080; // Initialize Flash pointerFCTL1 = FWKEY + ERASE; // Set Erase bitFCTL3 = FWKEY; // Clear Lock bit*Flash_ptr = 0; // Dummy write to erase Flash segmentFCTL1 = FWKEY + WRT; // Set WRT bit for write operationfor (i=0; i<128; i++){*Flash_ptr++ = value; // Write value to flash}FCTL1 = FWKEY; // Clear WRT bitFCTL3 = FWKEY + LOCK; // Set LOCK bit}void copy_A2B (void){char *Flash_ptrA; // Segment A pointerchar *Flash_ptrB; // Segment B pointerunsigned int i;Flash_ptrA = (char *) 0x1080; // Initialize Flash segment A pointerFlash_ptrB = (char *) 0x1000; // Initialize Flash segment B pointerFCTL1 = FWKEY + ERASE; // Set Erase bitFCTL3 = FWKEY; // Clear Lock bit*Flash_ptrB = 0; // Dummy write to erase Flash segment B FCTL1 = FWKEY + WRT; // Set WRT bit for write operationfor (i=0; i<128; i++){*Flash_ptrB++ = *Flash_ptrA++; // Copy value segment A to segment B}FCTL1 = FWKEY; // Clear WRT bitFCTL3 = FWKEY + LOCK; // Set LOCK bit}7.//************************************************************************* *****// MSP430xG46x Demo - Software Port Interrupt on P1.0 from LPM4//// Description: A hi/low transition on P1.0 will trigger P1_ISR which,// toggles P2.1. Normal mode is LPM4 ~ 0.1uA. LPM4 current can be measured// with the LED removed, all unused P1.x/P2.x configured as output or inputs// pulled high or low, and ensure the P2.0 interrupt input does not float.// ACLK = 32.768kHz, MCLK = SMCLK = default DCO//// MSP430xG461x// -----------------// /|\| |// | | |// --|RST |// /|\ | |// --o--|P1.0 P2.1|-->LED// \|///// K. Quiring/ M. Mitchell// Texas Instruments Inc.// October 2006// Built with IAR Embedded Workbench Version: 3.41A//************************************************************************* *****#include <msp430xG46x.h>void main(void){WDTCTL = WDTPW + WDTHOLD; // Stop WDTFLL_CTL0 |= XCAP14PF; // Configure load capsP2DIR = BIT1; // Set P2.1 to output directionP1IES = BIT0; // H-L transitionP1IE = BIT0; // Enable interrupt_BIS_SR(LPM4_bits + GIE); // LPM4, enable interrupts}// Port 1 interrupt service routine#pragma vector=PORT1_VECTOR__interrupt void Port1_ISR (void){unsigned volatile int i;for (i=10000; i>0; i--); // Debounce delayP1IFG &= ~BIT0; // Clear P1IFGif ((P1IN & 0x01) == 0)P2OUT ^= 0x02; // Toggle P2.1 using exclusive-OR}8.//************************************************************************* *****// MSP430xG46x Demo - Software Port Interrupt on P1.0 from LPM4//// Description: A hi/low transition on P1.0 will trigger P1_ISR which,// toggles P2.1. Normal mode is LPM4 ~ 0.1uA. LPM4 current can be measured// with the LED removed, all unused P1.x/P2.x configured as output or inputs// pulled high or low, and ensure the P2.0 interrupt input does not float.// ACLK = 32.768kHz, MCLK = SMCLK = default DCO//// MSP430xG461x// -----------------// /|\| |// | | |// --|RST |// /|\ | |// --o--|P1.0 P2.1|-->LED// \|///// K. Quiring/ M. Mitchell// Texas Instruments Inc.// October 2006// Built with IAR Embedded Workbench Version: 3.41A//************************************************************************* *****#include <msp430xG46x.h>void main(void){WDTCTL = WDTPW + WDTHOLD; // Stop WDTFLL_CTL0 |= XCAP14PF; // Configure load capsP2DIR = BIT1; // Set P2.1 to output directionP1IES = BIT0; // H-L transitionP1IE = BIT0; // Enable interrupt_BIS_SR(LPM4_bits + GIE); // LPM4, enable interrupts}// Port 1 interrupt service routine#pragma vector=PORT1_VECTOR__interrupt void Port1_ISR (void){unsigned volatile int i;for (i=10000; i>0; i--); // Debounce delayP1IFG &= ~BIT0; // Clear P1IFGif ((P1IN & 0x01) == 0)P2OUT ^= 0x02; // Toggle P2.1 using exclusive-OR}9.//************************************************************************* *****// MSP430xG46x Demo - USCI_A0, 115200 UART Echo ISR, DCO SMCLK// (modified code example "msp430xG46x_uscia0_uart_01_115k.c")//// Description: Echo a received character, RX ISR used. Normal mode is LPM0.// USCI_A0 RX interrupt triggers TX Echo.// Baud rate divider with 1048576hz = 1048576/115200 = ~9.1 (009h|01h)// ACLK = LFXT1 = 32768Hz, MCLK = SMCLK = default DCO = 32 x ACLK = 1048576Hz// //* An external watch crystal between XIN & XOUT is required for ACLK *////// MSP430FG4619// -----------------// /|\| XIN|-// | | | 32kHz// --|RST XOUT|-// | |// | P2.5/UCA0RXD|<------------// | | 115200 - 8N1// | P2.4/UCA0TXD|------------>//// Texas Instruments Inc.// October 2006// Built with IAR Embedded Workbench Version: 3.41A//************************************************************************* *****#include "msp430xG46x.h"void main(void){volatile unsigned int i;WDTCTL = WDTPW+WDTHOLD; // Stop WDTFLL_CTL0 |= XCAP14PF; // Configure load capsdo{IFG1 &= ~OFIFG; // Clear OSCFault flagfor (i = 0x47FF; i > 0; i--); // Time for flag to set}while ((IFG1 & OFIFG)); // OSCFault flag still set?P2SEL |= 0x030; // P2.4,5 = USCI_A0 RXD/TXDUCA0CTL1 |= UCSSEL_2; // SMCLKUCA0BR0 = 18;0x09; // 1MHz 115200UCA0BR1 = 0;0x00; // 1MHz 115200UCA0MCTL = 0;0x02; // ModulationUCA0CTL1 &= ~UCSWRST; // **Initialize USCI state machine**IE2 |= UCA0RXIE; // Enable USCI_A0 RX interrupt_BIS_SR(LPM0_bits + GIE); // Enter LPM0, interrupts enabled}// Echo back RXed character, confirm TX buffer is ready first#pragma vector=USCIAB0RX_VECTOR__interrupt void USCIA0RX_ISR (void){while(!(IFG2&UCA0TXIFG));UCA0TXBUF = UCA0RXBUF; // TX -> RXed character}10./************************************************************************** ***** MSP-EXP430G2-LaunchPad User Experience Application** 1. Device starts up in LPM3 + blinking LED to indicate device is alive* + Upon first button press, device transitions to application mode* 2. Application Mode* + Continuously sample ADC Temp Sensor channel, compare result against* initial value* + Set PWM based on measured ADC offset: Red LED for positive offset, Green* LED for negative offset* + Transmit temperature value via TimerA UART to PC* + Button Press --> Calibrate using current temperature* Send character '� via UART, notifying PC******************************************************************************/ #include "msp430g2553.h"#define LED0 BIT0#define LED1 BIT6#define LED_DIR P1DIR#define LED_OUT P1OUT#define BUTTON BIT3#define BUTTON_OUT P1OUT#define BUTTON_DIR P1DIR#define BUTTON_IN P1IN#define BUTTON_IE P1IE#define BUTTON_IES P1IES#define BUTTON_IFG P1IFG#define BUTTON_REN P1REN#define TXD BIT1 // TXD on P1.1 #define RXD BIT2 // RXD on P1.2#define APP_STANDBY_MODE 0#define APP_APPLICATION_MODE 1#define TIMER_PWM_MODE 0#define TIMER_UART_MODE 1#define TIMER_PWM_PERIOD 2000#define TIMER_PWM_OFFSET 20#define TEMP_SAME 0#define TEMP_HOT 1#define TEMP_COLD 2#define TEMP_THRESHOLD 5// Conditions for 9600/4=2400 Baud SW UART, SMCLK = 1MHz#define Bitime_5 0x05*4 // ~ 0.5 bit length + small adjustment#define Bitime 13*4//0x0D#define UART_UPDA TE_INTERV AL 1000unsigned char BitCnt;unsigned char applicationMode = APP_STANDBY_MODE;unsigned char timerMode = TIMER_PWM_MODE;unsigned char tempMode;unsigned char calibrateUpdate = 0;unsigned char tempPolarity = TEMP_SAME;unsigned int TXByte;/* Using an 8-value moving average filter on sampled ADC values */long tempMeasured[8];unsigned char tempMeasuredPosition=0;long tempAverage;long tempCalibrated, tempDifference;void InitializeLeds(void);void InitializeButton(void);void PreApplicationMode(void); // Blinks LED, waits for button pressvoid ConfigureAdcTempSensor(void);void ConfigureTimerPwm(void);void ConfigureTimerUart(void);void Transmit(void);void InitializeClocks(void);void main(void){unsigned int uartUpdateTimer = UART_UPDATE_INTERV AL;unsigned char i;WDTCTL = WDTPW + WDTHOLD; // Stop WDTInitializeClocks();InitializeButton();InitializeLeds();PreApplicationMode(); // Blinks LEDs, waits for button press/* Application Mode begins */applicationMode = APP_APPLICATION_MODE;ConfigureAdcTempSensor();ConfigureTimerPwm();__enable_interrupt(); // Enable interrupts./* Main Application Loop */while(1){ADC10CTL0 |= ENC + ADC10SC; // Sampling and conversion start__bis_SR_register(CPUOFF + GIE); // LPM0 with interrupts enabled/* Moving average filter out of 8 values to somewhat stabilize sampled ADC */tempMeasured[tempMeasuredPosition++] = ADC10MEM;if (tempMeasuredPosition == 8)tempMeasuredPosition = 0;tempAverage = 0;for (i = 0; i < 8; i++)tempAverage += tempMeasured[i];tempAverage >>= 3; // Divide by 8 to get averageif ((--uartUpdateTimer == 0) || calibrateUpdate ){ConfigureTimerUart();if (calibrateUpdate){TXByte = 248; // A character with high value, outside of temp rangeTransmit();calibrateUpdate = 0;TXByte = (unsigned char)( ((tempAverage - 630) * 761) / 1024 );Transmit();uartUpdateTimer = UART_UPDATE_INTERV AL;ConfigureTimerPwm();}tempDifference = tempAverage - tempCalibrated;if (tempDifference < -TEMP_THRESHOLD){tempDifference = -tempDifference;tempPolarity = TEMP_COLD;LED_OUT &= ~ LED1;}elseif (tempDifference > TEMP_THRESHOLD){tempPolarity = TEMP_HOT;LED_OUT &= ~ LED0;}else{tempPolarity = TEMP_SAME;TACCTL0 &= ~CCIE;TACCTL1 &= ~CCIE;LED_OUT &= ~(LED0 + LED1);}if (tempPolarity != TEMP_SAME){tempDifference <<= 3;tempDifference += TIMER_PWM_OFFSET;TACCR1 = ( (tempDifference) < (TIMER_PWM_PERIOD-1) ? (tempDifference) : (TIMER_PWM_PERIOD-1) );TACCTL0 |= CCIE;TACCTL1 |= CCIE;}}void PreApplicationMode(void){LED_DIR |= LED0 + LED1;LED_OUT |= LED0; // To enable the LED toggling effect LED_OUT &= ~LED1;BCSCTL1 |= DIV A_1; // ACLK/2BCSCTL3 |= LFXT1S_2; // ACLK = VLOTACCR0 = 1200; //TACTL = TASSEL_1 | MC_1; // TACLK = SMCLK, Up mode. TACCTL1 = CCIE + OUTMOD_3; // TACCTL1 Capture Compare TACCR1 = 600;__bis_SR_register(LPM3_bits + GIE); // LPM0 with interrupts enabled}void ConfigureAdcTempSensor(void){unsigned char i;/* Configure ADC Temp Sensor Channel */ADC10CTL1 = INCH_10 + ADC10DIV_3; // Temp Sensor ADC10CLK/4 ADC10CTL0 = SREF_1 + ADC10SHT_3 + REFON + ADC10ON + ADC10IE;__delay_cycles(1000); // Wait for ADC Ref to settleADC10CTL0 |= ENC + ADC10SC; // Sampling and conversion start __bis_SR_register(CPUOFF + GIE); // LPM0 with interrupts enabled tempCalibrated = ADC10MEM;for (i=0; i < 8; i++)tempMeasured[i] = tempCalibrated;tempAverage = tempCalibrated;}void ConfigureTimerPwm(void){timerMode = TIMER_PWM_MODE;TACCR0 = TIMER_PWM_PERIOD; //TACTL = TASSEL_2 | MC_1; // TACLK = SMCLK, Up mode. TACCTL0 = CCIE;TACCTL1 = CCIE + OUTMOD_3; // TACCTL1 Capture Compare TACCR1 = 1;}void ConfigureTimerUart(void){timerMode = TIMER_UART_MODE; // Configure TimerA0 UART TXCCTL0 = OUT; // TXD Idle as MarkTACTL = TASSEL_2 + MC_2 + ID_3; // SMCLK/8, continuous modeP1SEL |= TXD + RXD; //P1DIR |= TXD; //}// Function Transmits Character from TXBytevoid Transmit(){BitCnt = 0xA; // Load Bit counter, 8data + ST/SP while (CCR0 != TAR) // Prevent async captureCCR0 = TAR; // Current state of TA counterCCR0 += Bitime; // Some time till first bitTXByte |= 0x100; // Add mark stop bit to TXByteTXByte = TXByte << 1; // Add space start bitCCTL0 = CCIS0 + OUTMOD0 + CCIE; // TXD = mark = idlewhile ( CCTL0 & CCIE ); // Wait for TX completion}// Timer A0 interrupt service routine#pragma vector=TIMER0_A0_VECTOR__interrupt void Timer_A (void){if (timerMode == TIMER_UART_MODE){CCR0 += Bitime; // Add Offset to CCR0if (CCTL0 & CCIS0) // TX on CCI0B?{if ( BitCnt == 0)CCTL0 &= ~ CCIE; // All bits TXed, disable interrupt else{CCTL0 |= OUTMOD2; // TX Spaceif (TXByte & 0x01)CCTL0 &= ~ OUTMOD2; // TX MarkTXByte = TXByte >> 1;BitCnt --;}}}else{if (tempPolarity == TEMP_HOT)LED_OUT |= LED1;if (tempPolarity == TEMP_COLD)LED_OUT |= LED0;TACCTL0 &= ~CCIFG;}}#pragma vector=TIMER0_A1_VECTOR__interrupt void ta1_isr(void){TACCTL1 &= ~CCIFG;if (applicationMode == APP_APPLICATION_MODE)LED_OUT &= ~(LED0 + LED1);elseLED_OUT ^= (LED0 + LED1);}void InitializeClocks(void){BCSCTL1 = CALBC1_1MHZ; // Set rangeDCOCTL = CALDCO_1MHZ;BCSCTL2 &= ~(DIVS_3); // SMCLK = DCO / 8 = 1MHz }void InitializeButton(void) // Configure Push Button{BUTTON_DIR &= ~BUTTON;BUTTON_OUT |= BUTTON;BUTTON_REN |= BUTTON;BUTTON_IES |= BUTTON;BUTTON_IFG &= ~BUTTON;BUTTON_IE |= BUTTON;}void InitializeLeds(void){LED_DIR |= LED0 + LED1;LED_OUT &= ~(LED0 + LED1);}/* ************************************************************** Port Interrupt for Button Press* 1. During standby mode: to exit and enter application mode* 2. During application mode: to recalibrate temp sensor* *********************************************************** */#pragma vector=PORT1_VECTOR__interrupt void PORT1_ISR(void){BUTTON_IFG = 0;BUTTON_IE &= ~BUTTON; /* Debounce */WDTCTL = WDT_ADL Y_250;IFG1 &= ~WDTIFG; /* clear interrupt flag */IE1 |= WDTIE;if (applicationMode == APP_APPLICATION_MODE){tempCalibrated = tempAverage;calibrateUpdate = 1;}else{applicationMode = APP_APPLICATION_MODE; // Switch from STANDBY to APPLICATION MODE__bic_SR_register_on_exit(LPM3_bits);}}#pragma vector=WDT_VECTOR__interrupt void WDT_ISR(void){IE1 &= ~WDTIE; /* disable interrupt */IFG1 &= ~WDTIFG; /* clear interrupt flag */WDTCTL = WDTPW + WDTHOLD; /* put WDT back in hold state */BUTTON_IE |= BUTTON; /* Debouncing complete */ }// ADC10 interrupt service routine#pragma vector=ADC10_VECTOR__interrupt void ADC10_ISR (void){__bic_SR_register_on_exit(CPUOFF); // Return to active mode}。

MSP430G2553寄存器资料讲解

MSP430G2553寄存器资料讲解

MSP430G2553学习笔记常用赋值运算符:清除:&=~ ,置位:|= ,测试:&= ,取反:^= ,看门狗模块:WDT(看门狗)WDTCTL 看门狗定时器控制寄存器15--8 7 6 5 4 3 2 1 0口令HOLD NMIES NMI TMSEL CNTCL SSEL IS1 IS0IS1,IS0 选择看门狗定时器的定时输出,T是WDTCNT的输入时钟源周期0 T x 2(15)1 T x 2(13)2 T x 2(9)3 T x 2(6)SSEL 选择WDTCNT的时钟源0 SMCLK1 ACLKIS0、IS1、SSEL可确定WDT定时时间,WDT只能定时8种和时钟源相关的时间WDT可选的定时时间(晶体为32768HZ,SMCLK=1MHZ)SSEL IS1 IS0 定时时间/ms0 1 1 0.056 Tsmclk x 2(6)0 1 0 0.5 Tsmclk x 2(9)1 1 1 1.9 Taclk x 2(6)0 0 1 8 Tsmclk x 2(13)1 1 0 16 Taclk x 2(9)0 0 0 32 Tsmclk x 2(15)(PUC复位后的值)1 0 1 250 Taclk x 2(13)1 0 0 1000 Taclk x 2(15)CNTCL当该位为1时,清除WDTCNTTMSEL 工作模式选择0 看门狗模式1 定时器模式NMI 选择RST/NMI引脚功能,在PUC后被复位0 RST/NMI引脚为复位端1 RST/NMI引脚为边沿触发的非屏蔽中断输入NMIES 选择中断的边沿触发方式0 上升沿触发NMI中断1 下降沿触发NMI中断HOLD 停止看门狗定时器工作,降低功耗0 WDT功能激活1 时钟禁止输入,计数停止WDT(看门狗)配置语句WDTCTL=WDTPW+WDTHOLD;//将WDTPW+WDTHOLD赋值给WDTCTL,关闭看门狗定时器控制寄存器(Stop watchdogtimer)IE1 |= WDTIE;//使能WDT中断WDTCTL = WDT_ADL Y_1000;//WDT 1 s / 4间隔计时器WDTCTL = WDTPW + WDTHOLD + WDTNMI + WDTNMIES;//WDTCTL 由高8位口令和低8位控制命令组成,要写入操作WDT的控制命令,出于安全原因必须先正确写入高字节看门狗口令。

MSP430G2553_官方例程(加注释版)

MSP430G2553_官方例程(加注释版)
// ACLK = LFXT1 = 32768Hz, MCLK = SMCLK = DCO = (121+1) x 2 x ACLK = 7995392Hz
// MSP430F20xx Demo - Basic Clock, Output Buffered SMCLK, ACLK and MCLK/10
//
// Description: Buffer ACLK on P2.0, default SMCLK(DCO) on P1.4 and MCLK/10 on
}
#pragma vector=TIMER0_A0_VECTOR
__interrupt void ta0_isr(void)
{
TACTL = 0;
__bic_SR_register_on_exit(LPM0_bits); // Clear CPUOFF bit from 0(SR)
}
4.
//******************************************************************************
P1OUT = 0;// green LED off
_delay_cycles(5000);
}
}
2.
//******************************************************************************
// LaunchPad Lab3 - Software Port Interrupt Service
{
WDTCTL = WDTPW + WDTHOLD; // Stop WDT
//Configure ADC10

MSP430G2553数据手册

MSP430G2553数据手册

8
512 2x TA3
8
8
256 2x TA3
8
8
256 2x TA3
8
8
256 2x TA3
8
8
512 2x TA3
8
-

USCI A0/B0
时钟
I/O 封装类型
24 32-QFN
28 引脚
24 TSSOP 封
LF,DC

1
O,VL
20 引脚
O
16 TSSOP 封

16
20 引脚 PDIP 封装
LF,DC

1
O,VL
20 引脚
O
16 TSSOP 封

16
20 引脚 PDIP 封装
24 32-QFN
28 引脚
24 TSSOP 封
LF,DC

1
O,VL
20 引脚
O
16 TSSOP 封

16
20 引脚 PDIP 封装
24 32-QFN
28 引脚
24 TSSOP 封
LF,DC

1
O,VL
20 引脚
3
MSP430G2x53 MSP430G2x13
ZHCS178D – APRIL 2011 – REVISED NOVEMBER 2011

器件引出脚配置、MSP430G2x13 和 MSP430G2x53、20 引脚器件、 TSSOP 和 PDIP 封装
DVCC 1 P1.0/TA0CLK/ACLK/A0/CA0 2 P1.1/TA0.0/UCA0RXD/UCA0SOMI/A1/CA1 3 P1.2/TA0.1/UCA0TXD/PUCA0SIMO/A2/CA2 4 P1.3/ADC10CLK/CAOUT/VREF-/VEREF-/A3/CA3 5 P1.4/SMCLK/UCB0STE/UCA0CLK/VREF+/VEREF+/A4/CA4/TCK 6 P1.5/TA0.0/UCB0CLK/UCA0STE/A5/CA5/TMS 7

MSP-EXP430Launchpad实验指南参考代码

MSP-EXP430Launchpad实验指南参考代码

MSP-EXP430Launchpad 实验指南参考代码附录本附录为MSP-EXP430Launchpad实验指南中各章节涉及示例程序的完整参考代码。

目录第三章 (1)3.5 (1)3.6 (4)第五章 (10)5.1.1 (10)5.1.2 (12)5.1.3 (13)5.1.4 (16)5.1.5 (17)5.1.6 (20)5.2.1 (21)5.2.2 (21)5.2.3 (24)5.2.4 (26)5.3.1 (28)5.3.2 (29)5.4.1 (29)5.4.2 (30)5.4.3 (33)5.5.1 (37)5.5.2 (41)5.5.3 (52)5.5.4 (52)5.5.5 (53)第六章 (57)6.1.3 (57)6.1.4 (58)6.2.3 (61)6.3.3 光照度检测模块程序设计 (64)6.4.3 (66)6.5.3 (72)6.6.3 (74)6.6.4 (76)第三章3.5Flash使用的代码样例#include "msp430g2553.h"/****************************************************g2553有4个数据段,每个数据段有64bytes,共256bytesD:0x1000 -- 0x003FC:0x1040 -- 0x107FB:0x1080 -- 0x10BFA:0x10C0 -- 0x10FF****************************************************/#define uint unsigned int#define uchar unsigned char#define SegA 0x010C0#define SegB 0x01080#define SegC 0x01040#define SegD 0x01000#define SegSize 64/********************Flash初始化********************/void FlashInit(){FCTL2=FWKEY+FSSEL_2+FN1; //选择SMLCK作为时钟源,二分频}/********************Flash检测忙********************/void FlashCheckBusy(){while(BUSY==(FCTL3&BUSY)); //检测是否忙}/********************Flash段擦除*******************/void FlashErase(int SegX){_DINT(); //关闭总中断FlashCheckBusy(); //检测Flash是否处于忙状态FCTL3=FWKEY; //lock=0开锁FCTL1=FWKEY+ERASE; //使能段擦除*((int *)SegX)=0x00; //段擦除--空写FlashCheckBusy(); //检测Flash是否处于忙状态FCTL3=FWKEY|LOCK; //上锁return;}/********************Flash写字节********************/ void FlashWriteChar(uint addr,char wdata){_DINT(); //关闭总中断FlashCheckBusy(); //检测Flash是否处于忙状态FCTL3=FWKEY; //lock=0开锁FCTL1=FWKEY+WRT; //写使能*((uchar *)addr)=wdata; //将wdata存入addr变量地址中 FCTL1=FWKEY; //写关闭FCTL3=FWKEY+LOCK; //上锁return;}/********************Flash读字节********************/ char FlashReadChar(uint addr){char rdata;rdata=*(char*)addr; //读取addr所指地址的值return rdata;}/********************Flash写字********************/void FlashWriteWord(uint addr,uint wdata){_DINT(); //关闭总中断FlashCheckBusy(); //检测忙,若忙,则等待FCTL3=FWKEY; //lock=0开锁FCTL1=FWKEY+WRT; //写使能*((uint *)addr)=wdata; //向地址addr处写入wdataFCTL1=FWKEY; //写关闭FCTL3=FWKEY+LOCK; //上锁return;}/********************Flash读字********************/uint FlashReadWord(uint addr){uint rdata;rdata=*(uint *)addr; //读取变量addr地址的值return rdata;}/********************Flash修改字节********************/void FlashModifyChar(uint SegX,char AddrNum,char wdata){char i,TempArry[SegSize];for(i=0;i<SegSize;i++) //读入存{TempArry[i]=*(uint *)(SegX+i);}TempArry[AddrNum]= wdata; //在数组中的某一位置AddrNum写入wdata FlashErase(SegX); //段擦除FCTL3=FWKEY; //lock=0开锁FCTL1=FWKEY+WRT; //准备写for(i=0;i<SegSize;i++) //向段中重新写数组{*(uint *)(SegX+i)=TempArry[i];}FCTL1=FWKEY; //写关闭FCTL3=FWKEY+LOCK; //上锁}/********************Flash批量写********************/void FlashBurstWrite(int SegX,int *pStr){int i;FlashErase(SegX); //段擦除FCTL3=FWKEY; //lock=0,开锁FCTL1=FWKEY+WRT; //写使能for(i=0;i<2*sizeof(pStr);i++) //将数组容写入段中{*(uchar *)(SegX+i)=*(pStr+i);}FCTL1=FWKEY; //写关闭FCTL3=FWKEY+LOCK; //上锁}main(){char ReadChar;uint ReadWord;int p[]={'a','b','c','d'};WDTCTL=WDTPW+WDTHOLD; //关闭看门狗P1DIR=0xff; //P1口设为输出,闲置的I/O不悬空P2DIR=0xff; //P2口设为输出,闲置的I/O不悬空P1OUT=0xff; //P1口输出1P2OUT=0xff; //P2口输出1FlashInit(); //Flash初始化FlashErase(SegD);FlashWriteChar(0x01007,0x12); //向地址01008h写入12hReadChar=FlashReadChar(0x01007); //读取地址01008h的值FlashWriteWord(0x01008,0x3456); //向地址01009h和0100Ah依次写入56h和34hReadWord=FlashReadWord(0x01008); //读取从地址01009h起的一个字FlashWriteChar(0x01017,ReadChar); //向地址01018h写入12hFlashWriteWord(0x01018,ReadWord); //向地址01019h和0101Ah依次写入56h和34hFlashBurstWrite(SegC,p); //向SegD段从地址0110h依次写入a、b、c、dFlashModifyChar(SegB,0x02,0xef); //将地址0112h和0113h容改为e和f_BIS_SR(CPUOFF); //关闭CPU}3.61. USCI模块串行异步通信例程以MSP430G2553的USCI模块串行异步通信操作为例,介绍串口寄存器配置及收发程序处理过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

//
//
MSP430xG461x
//
-----------------
//
/|\| 32kHz
//
--|RST
XOUT|-
//
|
|
//
|
P1.1|--> MCLK = 8MHz
//
|
|
//
|
P1.5|--> ACLK = 32kHz
//
|
|
//
//*************************************************************************
while(1);
// 循环到此
}
6.
//*************************************************************************
// MSP430xG46x 演示 - Flash 在系统编程,复制世嘉 SegB // / /说明:此程序首先擦除闪烁赛格 A,那么它的增量 / /赛格一个值,然后擦除赛格 B,然后复制赛格一个赛格 B。 //假设的 MCLK 的 550kHz - 900kHz 的。 / / / /* NOP 指令集在主循环中断点,以避免强调的 Flash *//
2.
//*************************************************************************
// LaunchPad Lab3 - Software Port Interrupt Service 软件端口的中断服务
//
MSP430G2xx2
P1OUT ^= BIT0; P1IFG &= ~BIT3; } }
// P1.0 切换 // P1.3 IFG 清除
3.
//*************************************************************************
// LaunchPad Lab5 - ADC10, Sample A10 Temp and Convert to oC and oF ADC10,样品 A10 的温度和转换
//明确 CPUOFF 位从 0(SR)
#pragma vector=TIMER0_A0_VECTOR __interrupt void ta0_isr(void) {
TACTL = 0; __bic_SR_register_on_exit(LPM0_bits); }
//明确 CPUOFF 位从 0(SR)
#include <msp430xG46x.h>
void main(void) {
WDTCTL = WDTPW + WDTHOLD; FLL_CTL0 |= DCOPLUS + XCAP18PF; N+1 SCFI0 |= FN_4; SCFQCTL = 121; P1DIR = 0x22; P1SEL = 0x22;
//采样和转换启动 // LPM0 与中断功能
// oF = ((A10/1024)*1500mV)-923mV)*1/1.97mV = A10*761/1024 - 468 temp = ADC10MEM; IntDegF = ((temp - 630) * 761) / 1024;
// oC = ((A10/1024)*1500mV)-986mV)*1/3.55mV = A10*423/1024 - 278 temp = ADC10MEM; IntDegC = ((temp - 673) * 423) / 1024;
//停止看门狗定时器 // DCO+ set, 频率 = xtal x D x
// x2 DCO freq, 8MHz nominal DCO // (121+1) x 32768 x 2 = 7.99 MHz
// P1.1 口和 P1.5 的输出方向 // P1.1 口和 P1.5 的输出 MCLK 和 ACLK
#include <msp430g2553.h>
void main(void) {
WDTCTL = WDTPW + WDTHOLD;
//停止看门狗定时器
if (CALBC1_1MHZ == 0xFF || CALDCO_1MHZ == 0xFF)
{
while(1);
//如果校准常数擦除,捕获的 CPU!!
}
// Configure Basic Clock BCSCTL1 = CALBC1_1MHZ; DCOCTL = CALDCO_1MHZ; BCSCTL3 |= LFXT1S_2;
//设置范围 //集检查官步+调制 // 设置 LFXT1
P1DIR = BIT6; P1OUT = 0;
//P1.6 输出(绿色 LED) // LED 关
// 使能中断。 // Delay to allow Ref to settle 延迟让价解决
//比较模式中断。 // TACLK= SMCLK,最多的模式。 //等待延迟。 //禁用定时器中断
__disable_interrupt();
while(1) {
ADC10CTL0 |= ENC + ADC10SC; __bis_SR_register(LPM0_bits + GIE);
long temp; long IntDegF; long IntDegC;
void main(void)
{
WDTCTL = WDTPW + WDTHOLD;
// Stop WDT
//Configure ADC10
ADC10CTL1 = INCH_10 + ADC10DIV_3;
// 选择 ADC 通道温度传感器
MSP430G2xx2
//
-----------------
//
|\|
XIN|-
//
||
|
//
--|RST
XOUT|-
//
|
|
//
|
P1.0|-->LED
//*************************************************************************
LaunchPad 官方例程(无修改)
1.
//*************************************************************************
// LaunchPad Lab2 - Software Toggle P1.0, 软件切换的 P1.0,
//
//
-----------------
//
/|\|
XIN|-
//
||
|
//
--|RST
XOUT|-
// /|\ |
|
//
--o--|P1.3
P1.0|-->LED
// \|/
//
//*************************************************************************
ADC10CTL0 = SREF_1 + ADC10SHT_3 + REFON + ADC10ON + ADC10IE; // 选 择 ADC 号源
__enable_interrupt(); TACCR0 = 30; TACCTL0 |= CCIE; TACTL = TASSEL_2 | MC_1; LPM0; TACCTL0 &= ~CCIE;
//
MSP430F20xx
//
-----------------
//
/|\|
XIN|-
//
||
|
//
--|RST
XOUT|-
//
|
|
//
|
P1.4/SMCLK|-->SMCLK = Default DCO
//
|
P1.5|-->MCLK/10 = DCO/10
//
|
P1.0/ACLK|-->ACLK = VLO
//*************************************************************************
#include <msp430x20x3.h>
unsigned char s;
void main(void) {
WDTCTL = WDTPW +WDTHOLD; BCSCTL3 |= LFXT1S_2; //DCOCTL = 0; //BCSCTL1 = CALBC1_16MHZ; //DCOCTL = CALBC1_16MHZ; P1DIR |= 0x31;
_BIS_SR(LPM4_bits + GIE); }
//进入 LPM4 中断
// Port 1 interrupt service routine 端口 1 中断服务程序
#pragma vector=PORT1_VECTOR __interrupt void Port_1(void) {
if (P1IFG & BIT3) {
4.
//************************************************************************* // MSP430F20xx 演示 - 基本时钟,输出缓冲 SMCLK,ACLK 和 MCLK/10/ / //说明:缓冲区 ACLK 从 P2.0,P1.4 脚和 MCLK/10 默认 SMCLK(DCO) / / P1.5 的。 // ACLK= LFXT1= VLO 的,个 MCLK= SMCLK=默认的 DCO / / / /*安装辛 XOUT 之间的外部晶体需要 ACLK* / /
相关文档
最新文档