有机化学名词解释
大学有机化学名词解释
亲核反应有机反应的一类,电负性高的亲核基团向反应底物中的带正电的部分进攻而芳环上亲核取代反应历程使反应发生,这种反应为亲核反应。
与之相对的为亲电反应。
即在相互作用的两个体系之间,由于一个体系对另一个体系的原子核的吸引所引起的化学反应。
这些反应属于离子反应。
反应试剂在反应过程中,对与之相互作用的原子或体系给予或共享其电子对者,称为亲核试剂。
由亲核试剂如HO、:NR3、CN、H2N、…等与有机分子相互作用而发生的取代反应,称为亲核取代反应(SN)。
在亲核取代反应中,亲核试剂Nu进攻被作用物中的饱和碳原子,取代此饱和碳原子上的一个原子团L芳环上亲核取代反应历程能量变化。
Nu供给碳原子一对电子,生成新的共价键,碳原子与L之间的共价键破裂,L带着一对电子离去:Nu:+RL─→NuR+:L式中R为烷基。
Nu:和L:都带有孤电子对,它们可以是负离子或中性分子。
由亲核试剂HCN、H2O、丙二酸二乙酯等与世轭不饱和醛或酮进行的加成反应称亲核加成反应。
例如共轭不饱和酮与HCN加成,形成氰酮:亲电反应electrophilicreaction亲电反应指缺电子(对电子有亲和力)的试剂进攻另一化合物电子云密度较高(富电子)区域引起的反应。
亲电反应属于离子型反应(ionicreaction)的一种,是有机化学的基本反应之一。
[1]在相互作用的两个体系之间,由于一个体系对另一个体系的电子的吸引所引起的化学反应。
这些反应属于离子反应。
反应试剂在反应过程中,从与之相互作用的原子或体系得到或共享电子对者,称为亲电试剂(E+)。
凡由亲电试剂如HNO3、H2SO4、Cl2、Br2等与有机分子相互作用而发生的取代反应,称为亲电取代反应(SE):E++RX─→RE+X+式中R为烷基。
上述类型的正离子取代反应属于SE类型反应。
例如,CH3:MgBr与溴反应时,溴分子的正电荷部分(相当于上式中的E+)与带着一对电子的甲基反应:CH3:|MgBr+Br+|:Br-─→CH3Br+MgBr2亲电反应在芳香族化合物亲电取代反应中,亲电试剂进攻芳香环,生成σ络合物,然后离去基团变成正离子离开,离去基团在多数情况下为质子:一般,第二步的速率比第一步高(k2》k1,k)。
大学有机化学名词解释
亲核反应有机反应的一类,电负性高的亲核基团向反应底物中的带正电的部分进攻而芳环上亲核取代反应历程使反应发生,这种反应为亲核反应。
与之相对的为。
即在相互作用的两个体系之间,由于一个体系对另一个体系的原子核的吸引所引起的。
这些反应属于离子反应。
反应试剂在反应过程中,对与之相互作用的原子或体系给予或共享其电子对者,称为。
由亲核试剂如HO、:NR3、CN、H2N、…等与有机分子相互作用而发生的,称为亲核取代反应(SN)。
在亲核取代反应中,亲核试剂Nu进攻被作用物中的饱和碳原子,取代此饱和碳原子上的一个原子团L芳环上亲核取代反应历程能量变化。
Nu供给碳原子一对电子,生成新的,碳原子与L之间的共价键破裂,L带着一对电子离去:Nu:+RL─→NuR+:L式中R为烷基。
Nu:和L:都带有孤电子对,它们可以是负离子或中性分子。
由亲核试剂HCN、H2O、丙二酸二乙酯等与世轭不饱和醛或酮进行的称亲核加成反应。
例如共轭不饱和酮与HCN加成,形成氰酮:亲电反应electrophilic reaction亲电反应指缺电子(对电子有亲和力)的试剂进攻另一化合物电子云密度较高(富电子)区域引起的反应。
亲电反应属于(ionic reaction)的一种,是的基本反应之一。
[1]在相互作用的两个体系之间,由于一个体系对另一个体系的电子的吸引所引起的化学反应。
这些反应属于离子反应。
反应试剂在反应过程中,从与之相互作用的原子或体系得到或共享电子对者,称为亲电试剂(E+)。
凡由亲电试剂如HNO3、H2SO4、Cl2、Br2等与有机分子相互作用而发生的取代反应,称为亲电取代反应(SE):E++RX─→RE+X+式中R为烷基。
上述类型的正离子取代反应属于SE类型反应。
例如,CH3:MgBr与溴反应时,溴分子的正电荷部分(相当于上式中的E+)与带着一对电子的甲基反应:CH3:|MgBr+Br+|:Br-─→CH3Br+MgBr2亲电反应在芳香族化合物亲电取代反应中,亲电试剂进攻芳香环,生成σ络合物,然后离去基团变成正离子离开,离去基团在多数情况下为质子:一般,第二步的速率比第一步高(k2》k1,k)。
第十一章,第十二章,第十三章,第十四章有机化学名词解释
名词解释第十一章1.振动光谱——分子振动能级间的能量差比同一振动能级中转动能级之间能量差大100倍左右,他们大多在近红外区域内,因此称为红外光谱。
2.转动光谱——分子转动能级之间的能量差很小,转动光谱位于电磁波谱中的远红外及微波区域内。
3.红外吸收峰的位置——分子振动的频率决定分子所吸收的红外光频率。
4.红外吸收光谱——分子吸收红外光引起的振动和转动能级跃迁产生的信号。
5.红外光谱产生的条件——当一定频率的红外光照射物质时,如果分子中某一基团的振动频率正好与其相同,物质就能吸收这一频率的红外光从低能级跃迁到较高的能级,产生红外吸收光谱。
6.叁键和累积双键区——2500~2000 cm-1各种叁键基团和累积双键的伸缩振动区域7.氢键区——4000~2500cm-1含氢基团的伸缩振动区。
8.双键区——2000~1500 cm-1各种双键基团包括共轭双键以及苯基伸缩振动区域。
9.特征吸收峰——用于鉴定官能团存在的吸收峰。
10.特征谱带区——氢键,双键,叁键区的特征性强,所以4000~1500 cm-1的区域称为官能团特征频率区。
11.核磁共振谱——记录原子核对射频区电磁波的吸收,简称NMR。
12.质子磁共振谱——氢原子核共振谱,简称PMR。
13.化学位移——由于化学环境所引起的核磁共振信号位置的变化。
14.自旋偶合——相邻碳上氢核的相互影响。
15.硝基化合物的还原——硝基苯在强酸介质中,用金属还原时,总是得到苯胺,用催化加氢也可得到同样的结果。
16.胺的碱性——胺与氨相似,氮原子上的未共用电子对能与质子结合,形成带正电的铵离子。
17.胺——可看作氨的衍生物,即氨分子中的氢原子被烃基取代的产物。
18.胺的烃基化——与卤代烃(通常为伯卤代烃和具有活泼卤原子的芳卤化物),醇等烃基化试剂作用,胺基上的氢原子被烃基取代。
19.胺的酰基化——伯胺和仲胺作为亲核试剂可与酰卤,酸酐等酰基化试剂反应,生成N-取代酰胺和N,N-二取代酰胺。
郑州大学远程教育有机化学(问答题)
各章练习题1.名词解释:(1)有机化学:研究有机化合物的结构、性能和合成方法的一门科学。
(2)有机化合物:碳的化合物。
(3)官能团:在有机化合物分子中能体现一类化合物性质的原子或基团。
(4)共价键的键长、键角、键能: 键长:成键两原子核间距离。
键角:两个共价键在空间的夹角。
键能:以共价键结合的双原子分子裂解成原子时所吸收的能量。
2.写出氯甲烷分子中碳氯键的异裂和均裂的化学反应式。
H 3CCH 3 + Cl CH 3 + ClClH 3CCl1.解释名词:(1)同系列:具有相同分子通式和结构特征的一系列化合物。
(2)构造异构:分子式相同,分子中原子间相互连接顺序和方式不同而产生的不同化合物。
(3)构象异构:由单键的旋转而产生的异构体。
2.写出含有7个碳烷烃的同分异构体的结构并用系统命名法命名。
CH 3CH 2CH 2CH 2CH 2CH 2CH 3CH 3CH 2CH 2CH 2CHCH 3CH 3CH 3CH 2CH 2CHCH 2CH 3CH 3庚烷 2-甲基己烷 3-甲基己烷CH 3CHCH 2CHCH 3CH 3CH 3CH 3CHCHCH 2CH 3CH 3CH 3CH 3CCH 2CH 2CH 3CH 3CH 32,4-二甲基戊烷 2,3-二甲基戊烷 2,2-二甲基戊烷CH 3CH 2CHCH 2CH 3CH 2CH 3CH 3CH 2CCH 2CH 3CH 3CH 3CH 3CHCCH 3CH 3CH 3CH 33,3-二甲基戊烷 2,2,3-三甲基丁烷 3-乙基戊烷第三章 烯烃和炔烃1.写出单烯烃C 5H 8的所有同分异构体,并用系统命名法命名。
CH 2=CHCH 2CH 2CH 3CH 3CH=CHCH 2CH 31-戊烯 2-戊烯CH 2=CCH 2CH 3CH 3CH 2=CHCHCH 3CH 3CH 3CH=CCH 3CH 32-甲基-1-丁烯 3-甲基-1-丁烯 2-甲基-2-丁烯2.完成下列反应(1)CH 3CH 2C=CH 2 + HBrCH 3CH 3CH 2CCH 3BrCH 3(2)CH 3CH=CCH 2CH 334,HCH 3COOH + O=CCH 2CH 33(3)CH 3CH=CHCH 3 + H 2PtCH 3CH 2CH 2CH 3(4)CH 3CH 2C CH + AgNO 3(NH 3)CH 3CH 2C CAg + NH 4NO 3 + NH 3(5)CH 3C CH + HCl CH 3C=CH 2ClClCH 3CCH 33、用简单的化学方法鉴别戊烷、1-戊烯、1-戊炔。
化学基础有机
化学基础有机一、有机化学简介有机化学,又称为碳化合物化学,是化学科学的一个重要分支。
它主要研究含碳元素的化合物的合成、结构、性质、反应机理以及相互转化的规律。
有机化学不仅是合成具有重要实用价值的有机化合物的基础学科,同时也是化学工业的重要组成部分。
二、有机化学发展历程有机化学的发展可以追溯到古代,人类在生产和生活实践中就已经开始接触和利用有机化合物。
然而,真正意义上的有机化学的研究是从18世纪后半叶开始的。
这一时期的化学家们开始对有机化合物的结构、性质和反应机理进行系统的研究。
进入20世纪后,随着科技的不断进步,有机化学的发展取得了巨大的突破。
特别是在20世纪70年代以后,随着计算机技术和谱学分析方法的快速发展,有机化学的研究进入了分子设计和功能化的新阶段。
三、有机化学基本概念1.有机化合物:通常是指含有碳元素的化合物,但不包括碳的氧化物、碳酸盐、碳酸等无机化合物。
2.有机化学反应:是指碳与碳原子之间进行的各种化学反应,主要包括取代反应、加成反应、消除反应、重排反应等。
3.共价键:原子之间通过共享电子而形成的化学键,是有机化合物结构的基础。
4.官能团:是指一种或多种活性原子的组合,可以决定有机化合物的性质。
5.手性:是指一个物体不能与其镜像相重合的性质。
在有机化合物中,手性通常是指分子中存在手性碳原子。
四、有机化学反应类型1.取代反应:有机化合物分子中的某一原子或基团被其他原子或基团取代的反应。
2.加成反应:有机化合物分子中碳碳双键或三键发生断裂,与其它原子或基团结合生成新的化合物的反应。
3.消除反应:在一定的条件下,一分子有机物脱去一分子水或卤化氢等小分子的反应。
4.重排反应:由于基团之间的迁移或交换,使得分子的原有结构发生改变的反应。
5.聚合反应:由小分子重复生成高分子化合物的反应。
6.水解反应:水分子与有机化合物反应,使其分解成两部分或更多部分的反应。
7.氧化还原反应:涉及电子传递的氧化和还原的有机反应。
有机化学名词解释
一、化合物类名无机酸酯:醇与含氧无机酸反应失去一分子水后的生成物称为无机酸酯。
双烯烃:碳碳双键数目最少的多烯烃是二烯烃或称双烯烃。
可分为三类:两个双键连在同一个碳原子上的二烯烃称为累积二烯烃,两个双键被两个或两个以上单键隔开的二烯烃称为孤立二烯烃,两个双键被一个单键隔开的二烯烃称为共轭二烯烃。
内酯:分子内的羧基和羟基失水形成的产物称为内酯。
内酰胺:分子内的羧基和胺(氨)基失水的产物称为内酰胺。
四级铵碱:四级铵盐在强碱(KOH,NaOH)作用下生成的产物称为四级铵碱。
生物碱:从动植物体内得到的一类有强烈生理效能的含氮有机化合物。
游离生物碱绝大多数是固体,难溶于水,易溶于乙醇等有机溶剂。
天然的生物碱多半是有左旋光的手性化合物。
半缩醛或半缩酮:醇具有亲核性,在酸性催化剂如对甲苯磺酸、氯化氢的作用下,很容易和醛酮发生亲核加成,一分子醛或酮和一分子醇加成的生成物称为半缩醛或半缩酮。
有机化合物:除一氧化碳、二氧化碳、碳酸盐等少数简单含碳化合物以外的含碳化合物。
多肽:一个氨基酸的羧基与另一分子氨基酸的氨基通过失水反应,形成一个酰氨键,新生成的化合物称为肽,肽分子中的酰氨键叫做肽键。
二分子氨基酸失水形成的肽叫二肽,多个氨基酸失水形成的肽叫多肽。
杂环化合物:在有机化学中,将非碳原子统称为杂原子,最常见的杂原子是氮原子、硫原子和氧原子。
环上含有杂原子的有机物称为杂环化合物。
分为两类,具有脂肪族性质特征的称为脂杂环化合物,具有芳香特性的称为芳杂环化合物。
因为前者常常与脂肪族化合物合在一起学习,所以平时说的杂环化合物实际指的是芳杂环化合物。
杂环化合物是数目最庞大的一类有机物。
多环烷烃:含有两个或多个环的环烷烃称为多环烷烃。
第一章有机化学名词解释
名词解释1.构造式—表达原子的结合方式和次序的式子例如:CH3CH2CH2CH32.构型式—表达原子的空间连接方式和次序的式子例如:C CHCH3 HH3C3.构象式—表达未连接原子的空间相对位置的式子4.分子式—表示分子中所含的各种原子的数量5.最低系列原则—是指碳链以不同方向编号,得到两种或两种以上的不同编号系列,比较各系列不同位次,最先遇到的位次最小者,定为“最低系列”6.顺式\反式—两个相同或相似的基团处于双键的同侧叫做顺式,反之叫反式。
7.顺反异构现象—由于双键碳原子连接不通基团而形成的异构现象叫做顺反异构现象。
形成的同分异构体叫做顺反异构体。
8.顺反命名法—当烯烃双键的两个碳原子分别连有两个不同的原子或基团,并且两个双键碳原子或基团有一对或两对相同时,可采用顺反命名法。
两个相同基团位于双键同侧的叫做顺式,反之叫做反式。
例如:C CCH3H3CH H顺-2-丁烯C CCH3H3CHH反-2-丁烯9.Z、E命名法—如果两个碳原子上各自所连的优先基团处于双键的同侧,称为“Z”式构型,处于异侧的称为“E”式构型。
例如:C CC2H5CH3H3CH(Z)-3-甲基-2-戊烯10.多环烃—脂环烃分子中含有两个或两个以上的碳环的化合物. 11.环烯烃—环上有双键的脂环烃例如:环戊烯12.桥环化合物—多环烃中共用两个碳原子的双环化合物例如: CH 3CH 37,7-二甲基双环[4.1.0]庚烷13. 螺环化合物—多环烃中共用一个碳原子的双环化合物 例如: 螺[4,5]癸烷14. 桥头碳—桥环化合物中各桥共用的两个碳原子15. 螺原子—螺环化合物中两环共用的碳原子16.单环芳烃—分子中含有一个苯环的芳烃 例如:CH (CH 3)2异丙苯17. 多环芳烃—分子中含有两个或两个以上芳环的烃例如:联苯18. 酚—羟基直接连在芳环上的化合物 例如:OH苯酚19.羧酸衍生物—羧基中的羟基被其他原子或基团取代后所生成的化合物。
有机化学名词解释
名称
内容
同分异构现象
分子式相同而结构相异因而其性质也各异的不同化合物,称为同分异构体,这种现象叫做同分异构现象。
构造异构现象(constitutional isomerism)
只是分子中各原子间相互结合的顺序不同而因起的而致的异构现象,叫做构造异构现象。
共价键键长
形成共价键盘的两个原子的原子核之间,保持一定的距离,这个距离称为键长(键距)。
键的伸缩振动
只改变分子瞬时间的键长,但并不改变键角的键振动叫做键的伸缩振动。
键的弯曲振动
在不改变键长的情况下,发生了键角的改变的键振动叫做键的弯曲振动。
张力能
大多数环烷烃的燃烧热比烷烃的每个CH2的燃烧热高,这就表明环烷烃比开链烷烃具有较高的能量,这高出的能量叫做张力能。
弯曲键
环烷烃的键的电子云没有轨道轴对称,而是分布在一条曲线上,故通常称为弯曲键。
共轭效应
由共轭体系的结构所引起的键的离域及键长的改变、能量的降低或稳定性的增加的性质,是共轭体系特有的效应,因此叫做共轭效应或离域效应。。
π,π共轭效应
单双键交替的共轭体系叫做π,π共轭体系,这个体系所表现的共轭效应叫做π,π共轭效应
超共轭效应(π,σ共轭效应)
由定域于两个原子周围的π电子云和σ电子云发生离域而扩展到更多原子的周围,而降低了分子的能量,增加了分子的稳定性的离域效应,我们称这为超共轭效应或π,σ共轭效应。
P, π共轭效应
由π键的P轨道和碳正离子中sp2碳原子的空p轨道相互平行且交盖而成的离域效应,叫做P, π共轭效应。
双烯合成
共轭二烯烃和具有碳碳双键的不饱和化合物进行1,4-加成反就,生成环状化合物,这个反应叫做双烯合成。
有机、无机、分析名词解释汇总
分析化学名词解释1、分析化学:是关于研究物质的组成、含量、结构和形态等化学信息的分析方法及理论的一门科学。
2、准确度(accuracy):是指测量值与真值(真实值)接近的程度。
3绝对误差(absolute error):测量值与真实值之差称为绝对误差。
此误差可正可负。
4、相对误差(relative error):绝对误差与真实值的比值称为相对误差。
5、精密度(precision):是平行测量的各测量值之间的接近程度。
6、系统误差(systematic error):也可以称为可定误差,是由某种确定的原因造成的误差,一般有固定的方向和大小,重复测定时重复出现。
7、偶然误差(accidental error):也称为随机误差,是由偶然因素引起的误差。
偶然误差的方向和大小都是不固定的,因此,不能用加校正值的方法减免。
8、有效数字(significant figure):是指分析工作中实际上能测量到的数字。
9、滴定分析法(titration analysis):是化学定量分析中重要的分析方法,这种方法是将一种已知准确浓度的试剂溶液(标准溶液),滴加到被测物质的溶液中,直到所加的试剂与被测物质按化学计量关系定量反应为止,然后根据所加的试剂溶液的浓度和体积,计算出被测物质的量。
10、化学计量点(stoichiometric point):当加入的滴定剂的量与被测物质的量之间,正好符合化学反应式所表示的计量关系时,称反应到达了化学计量点。
11、滴定终点(titration end point):在滴定时,滴定至指示剂改变颜色即停止滴定,这一点称为滴定终点。
12、滴定误差:滴定终点与化学计量点往往不一致,由这种不一致造成的误差称为滴定终点误差,简称终点误差。
13、基准物质(primary standard):是用以直接配制标准溶液或标定标准溶液浓度的物质。
14、滴定度(titer):是每毫升标准溶液相当于被测物质的量。
大学有机化学名词解释
亲核反应有机反应的一类,电负性高的亲核基团向反应底物中的带正电的部分进攻而芳环上亲核取代反应历程使反应发生,这种反应为亲核反应。
与之相对的为亲电反应。
即在相互作用的两个体系之间,由于一个体系对另一个体系的原子核的吸引所引起的化学反应。
这些反应属于离子反应。
反应试剂在反应过程中,对与之相互作用的原子或体系给予或共享其电子对者,称为亲核试剂。
由亲核试剂如HO、:NR3、CN、H2N、…等与有机分子相互作用而发生的取代反应,称为亲核取代反应(SN)。
在亲核取代反应中,亲核试剂Nu进攻被作用物中的饱和碳原子,取代此饱和碳原子上的一个原子团L芳环上亲核取代反应历程能量变化。
Nu供给碳原子一对电子,生成新的共价键,碳原子与L之间的共价键破裂,L带着一对电子离去:Nu:+RL─→NuR+:L式中R为烷基。
Nu:和L:都带有孤电子对,它们可以是负离子或中性分子。
由亲核试剂HCN、H2O、丙二酸二乙酯等与世轭不饱和醛或酮进行的加成反应称亲核加成反应。
例如共轭不饱和酮与HCN加成,形成氰酮:亲电反应electrophilic reaction亲电反应指缺电子(对电子有亲和力)的试剂进攻另一化合物电子云密度较高(富电子)区域引起的反应。
亲电反应属于离子型反应(ionic reaction)的一种,是有机化学的基本反应之一。
[1]在相互作用的两个体系之间,由于一个体系对另一个体系的电子的吸引所引起的化学反应。
这些反应属于离子反应。
反应试剂在反应过程中,从与之相互作用的原子或体系得到或共享电子对者,称为亲电试剂(E+)。
凡由亲电试剂如HNO3、H2SO4、Cl2、Br2等与有机分子相互作用而发生的取代反应,称为亲电取代反应(SE):E++RX─→RE+X+式中R为烷基。
上述类型的正离子取代反应属于SE类型反应。
例如,CH3:MgBr与溴反应时,溴分子的正电荷部分(相当于上式中的E+)与带着一对电子的甲基反应:CH3:|MgBr+Br+|:Br-─→CH3Br+MgBr2亲电反应在芳香族化合物亲电取代反应中,亲电试剂进攻芳香环,生成σ络合物,然后离去基团变成正离子离开,离去基团在多数情况下为质子:一般,第二步的速率比第一步高(k2》k1,k)。
有机化学名词解释.txt
角张力 由于键角偏离正常键角而引起的张力叫做角张力。
自旋裂分 同一类质子吸收峰增多的现象叫做裂分,裂分是邻近质子的自旋相互干扰而引起的,这种相互干扰叫做自旋偶合,由此所引起的吸收峰的裂分叫做自旋裂分。
不对称烯烃 两个双键原子上的取代基不相同的烯烃叫做不对称性烯烃。
聚合反应 由低相对分子质量的有机化合物相互作用而生成高分子化合物的反应叫做聚合反应。
重排反应 一个分子或离子在反应中发生了基团的转移和电子云密度重新分布而最后生成稳定的分子的反应,称为分子重排反应。
互变异构现象 在一般条件下,两个构造异构体可以迅速地相互转变的现象,叫做互变异构现象。
同分异构体 凡是分子式相同需结构相异的化合物叫做同分异构体
构造异构体 结构的不同是由分子中各原子的不同连结次序,或称为不同构造而引起的,叫做构造异构体。
立体异构现象 由不同的空间排列方式引起的异构现象叫做立体异构现象。
同系列 在组成上相差一个或多个CH2,且结构和性质相似的一系列化合物称为同系列。
共价键均裂 共价键断裂时均匀的裂解,也就是两个原子之间的共用电子对均匀分裂,两个原子各保留一个电子,这种方式称为键的均裂。
共价键异裂 共价键断裂时不均匀裂解,也就是在键断裂时,两个原子之间的共用电子对完全转移到其中的一个原子上,这种方式称为键的异裂。
烃 分子中只含有碳和氢两种元素的有机化合物叫做碳氢化合物,简称烃。
同分异构现象 分子式相同而结构相异因而其性质也各异的不同化合物,称为同分异构体,这种现象叫做同分异构现象。
构造异构现象(constitutional isomerism) 只是分子中各原子间相互结合的顺序不同而因起的而致的异构现象,叫做构造异构现象。
有机化学名词解释
一、化合物类名无机酸酯:醇与含氧无机酸反应失去一分子水后的生成物称为无机酸酯。
双烯烃:碳碳双键数目最少的多烯烃是二烯烃或称双烯烃。
可分为三类:两个双键连在同一个碳原子上的二烯烃称为累积二烯烃,两个双键被两个或两个以上单键隔开的二烯烃称为孤立二烯烃,两个双键被一个单键隔开的二烯烃称为共轭二烯烃。
内酯:分子内的羧基和羟基失水形成的产物称为内酯。
内酰胺:分子内的羧基和胺(氨)基失水的产物称为内酰胺。
四级铵碱:四级铵盐在强碱(KOH,NaOH)作用下生成的产物称为四级铵碱。
生物碱:从动植物体内得到的一类有强烈生理效能的含氮有机化合物。
游离生物碱绝大多数是固体,难溶于水,易溶于乙醇等有机溶剂。
天然的生物碱多半是有左旋光的手性化合物。
半缩醛或半缩酮:醇具有亲核性,在酸性催化剂如对甲苯磺酸、氯化氢的作用下,很容易和醛酮发生亲核加成,一分子醛或酮和一分子醇加成的生成物称为半缩醛或半缩酮。
有机化合物:除一氧化碳、二氧化碳、碳酸盐等少数简单含碳化合物以外的含碳化合物。
多肽:一个氨基酸的羧基与另一分子氨基酸的氨基通过失水反应,形成一个酰氨键,新生成的化合物称为肽,肽分子中的酰氨键叫做肽键。
二分子氨基酸失水形成的肽叫二肽,多个氨基酸失水形成的肽叫多肽。
杂环化合物:在有机化学中,将非碳原子统称为杂原子,最常见的杂原子是氮原子、硫原子和氧原子。
环上含有杂原子的有机物称为杂环化合物。
分为两类,具有脂肪族性质特征的称为脂杂环化合物,具有芳香特性的称为芳杂环化合物。
因为前者常常与脂肪族化合物合在一起学习,所以平时说的杂环化合物实际指的是芳杂环化合物。
杂环化合物是数目最庞大的一类有机物。
多环烷烃:含有两个或多个环的环烷烃称为多环烷烃。
共轭烯烃:单双键交替出现的体系称为共轭体系,含共轭体系的多烯烃称为共轭烯烃。
纤维二糖:是由两分子葡萄糖通过1,4 两位上的羟基失水而来的,纤维二糖是B-糖苷。
纤维素:由多个纤维二糖聚合而成的大分子。
多稀烃:含有多于一个碳碳双键的烯烃称为多稀烃。
有机化学名词解释
有机物-特点多数有机化合物主要含有碳、氢两种元素,此外也常含有氧、氮、硫、卤素、磷等。
部分有机物来自植物界,但绝大多数是以石油、天然气、煤等作为原料,通过人工合成的方法制得。
和无机物相比,有机物数目众多,可达几百万种。
有机化合物的碳原子的结合能力非常强,互相可以结合成碳链或碳环。
碳原子数量可以是1、2个,也可以是几千、几万个,许多有机高分子化合物甚至可以有几十万个碳原子。
此外,有机化合物中同分异构现象非常普遍,这也是造成有机化合物众多的原因之一。
有机化合物除少数以外,一般都能燃烧。
和无机物相比,它们的热稳定性比较差,有机物结构式电解质受热容易分解。
有机物的熔点较低,一般不超过400℃。
有机物的极性很弱,因此大多不溶于水。
有机物之间的反应,大多是分子间反应,往往需要一定的活化能,因此反应缓慢,往往需要催化剂等手段。
而且有机物的反应比较复杂,在同样条件下,一个化合物往往可以同时进行几个不同的反应,生成不同的产物。
有机物-历史“有机”这历史性名词,可追塑至19世纪,当时被认为有机化合物只能以生物经vis vitalis(life-force 生命力)合成。
此理论基于有机物与“无机”的基本分别,无机物是不会被生命力合成而来。
但后来这理论被推翻,Friedrich W?hler 以氰酸钾及硫酸铵合成尿素(一个有机物)。
一般而言,有机化合物定义为化合物中有碳氢键而无机化合物则没有。
因此碳酸(H2CO3)是无机化合物,但是蚁酸 (HCOOH 第一个脂肪酸)则是有机化合物。
有机物-分类按照碳链结合形式的不同,有机化合物基本可以分为:脂肪族化合物:(或开链族化合物):碳原子和碳原子之间形成一条开放的链,可以是直链也可以带支链;碳环族化合物:碳原子连接成环状脂环族:碳原子和碳原子之间形成一条封闭的环状链,也可以带支链;芳香族:碳原子和碳原子之间形成一条封闭的环状链,但各碳原子之间的结合是单键和双键互相交错的;杂环族:碳原子和碳原子之间形成一条封闭的环状链,但其中某些碳原子被其他元素的原子取代。
有机化学名词解释
自旋裂分
同一类质子吸收峰增多的现象叫做裂分,裂分是邻近质子的自旋相互干扰而引起的,这种相互干
扰叫做自旋偶合,由此所引起的吸收峰的裂分叫做自旋裂分。
键的弯曲振动
在不改变键长的情况下,发生了键角的改变的键振动叫做键的弯曲振动。
张力能
大多数环烷烃的燃烧热比烷烃的每个 CH2 的燃烧热高,这就表明环烷烃比开链烷烃具有较高的 能量,这高出的能量叫做张力能。
弯曲键
环烷烃的键的电子云没有轨道轴对称,而是分布在一条曲线上,故通常称为弯曲键。
角张力
由于键角偏离正常键角而引起的张力叫做角张力。
双烯合成
共轭二烯烃和具有碳碳双键的不饱和化合物进行 1,4-加成反就,生成环状化合物,这个反应叫 做双烯合成。
亲双烯体
以双烯合成中,能和共轭二烯烃反应的重键化合物叫做亲双烯体。
红外活性
当分子振动而改变了分子的偶极矩时,它就能吸收红外辐射,也就是就具有了红外活性。
键的伸缩振动
只改变分子瞬时间的键长,但并不改变键角的键振动叫做键的伸缩振动。
内容 分子式相同而结构相异因而其性质也各异的不同化合物,称为同分异构体,这种现象叫做同分异 构现象。 只是分子中各原子间相互结合的顺序不同而因起的而致的异构现象,叫做构造异构现象。
形成共价键盘的两个原子的原子核之间,保持一定的距离,这个距离称为键长(键距)。 共价键有方向性,因此任何一个两价以上的原子,与其他原子所形成的两个共价键之间都有一个 夹角,这个夹角就叫做键角。 共价键形成时,有能量释出而使体系的能量降低,反之,共价键断裂时则必须从外界吸收能量, 这个能量叫做能 ,一个共价键离解所需要的能量也叫做。 正电中心或负电中心的电荷 q 与两个电荷中心之间的距离 d 的乘积叫做偶极矩 μ。μ=q×d 共价键断裂时均匀的裂解,也就是两个原子之间的共用电子对均匀分裂,两个原子各保留一个电 子,这种方式称为键的均裂。 共价键断裂时不均匀裂解,也就是在键断裂时,两个原子之间的共用电子对完全转移到其中的一 个原子上,这种方式称为键的异裂。 分子中只含有碳和氢两种元素的有机化合物叫做碳氢化合物,简称烃。 凡是分子式相同需结构相异的化合物叫做同分异构体 结构的不同是由分子中各原子的不同连结次序,或称为不同构造而引起的,叫做构造异构体。 由不同的空间排列方式引起的异构现象叫做立体异构现象。 在组成上相差一个或多个 CH2,且结构和性质相似的一系列化合物称为同系列。 由于围绕单键旋转,而引起的分子中各原子在空间的不同排布方式称为构象。 像乙烷的重叠式构象要趋向最稳定的交叉式构象而产生的键的扭转张力,叫做扭转张力。 对反应进行全面详细描述和理论解释叫做反应历程。 过渡态与反应物之间的能量差是形成过渡态所必需的最低能量,也是能使这个反应进行所需要的 最低能量,叫做活化能。 化学反应中,反应物和产物之间的键离解能量差就称为反应热。 像烯烃这样具有供电性能(亲核性能),而容易受到带正电的亲电性质点的攻击而引起的加成反 应,这种反应就叫做亲电加成反应 具有亲电性能的试剂叫做亲电试剂。 带正电的碳离子就叫做碳正离子。 因某一原子式基团的电负性而引起电子云沿着键链向某一方向移动的效应叫做诱导效应。 两个双键原子上的取代基不相同的烯烃叫做不对称性烯烃。 由低相对分子质量的有机化合物相互作用而生成高分子化合物的反应叫做聚合反应。 一个分子或离子在反应中发生了基团的转移和电子云密度重新分布而最后生成稳定的分子的反 应,称为分子重排反应。
有机名词解释
有机化学的基本概念一、化合物类名1无机酸酯:醇与含氧无机酸反应失去一分子水后的生成物称为无机酸酯。
2双烯烃:碳碳双键数目最少的多烯烃是二烯烃或称双烯烃。
可分为三类:两个双键连在同一个碳原子上的二烯烃称为累积二烯烃,两个双键被两个或两个以上单键隔开的二烯烃称为孤立二烯烃,两个双键被一个单键隔开的二烯烃称为共轭二烯烃。
3内酯:分子内的羧基和羟基失水形成的产物称为内酯。
4内酰胺:分子内的羧基和胺(氨)基失水的产物称为内酰胺。
5四级铵碱:四级铵盐在强碱(KOH,NaOH)作用下生成的产物称为四级铵碱。
6生物碱:从动植物体内得到的一类有强烈生理效能的含氮有机化合物。
游离生物碱绝大多数是固体,难溶于水,易溶于乙醇等有机溶剂。
天然的生物碱多半是有左旋光的手性化合物。
7半缩醛或半缩酮:醇具有亲核性,在酸性催化剂如对甲苯磺酸、氯化氢的作用下,很容易和醛酮发生亲核加成,一分子醛或酮和一分子醇加成的生成物称为半缩醛或半缩酮。
8有机化合物:除一氧化碳、二氧化碳、碳酸盐等少数简单含碳化合物以外的含碳化合物。
9多肽:一个氨基酸的羧基与另一分子氨基酸的氨基通过失水反应,形成一个酰氨键,新生成的化合物称为肽,肽分子中的酰氨键叫做肽键。
二分子氨基酸失水形成的肽叫二肽,多个氨基酸失水形成的肽叫多肽。
10杂环化合物:在有机化学中,将非碳原子统称为杂原子,最常见的杂原子是氮原子、硫原子和氧原子。
环上含有杂原子的有机物称为杂环化合物。
分为两类,具有脂肪族性质特征的称为脂杂环化合物,具有芳香特性的称为芳杂环化合物。
因为前者常常与脂肪族化合物合在一起学习,所以平时说的杂环化合物实际指的是芳杂环化合物。
杂环化合物是数目最庞大的一类有机物。
11多环烷烃:含有两个或多个环的环烷烃称为多环烷烃。
12共轭烯烃:单双键交替出现的体系称为共轭体系,含共轭体系的多烯烃称为共轭烯烃。
13纤维二糖:是由两分子葡萄糖通过1,4两位上的羟基失水而来的,纤维二糖是B-糖苷。
第一章有机化学名词解释
名词解释1.构造式—表达原子的结合方式和次序的式子例如:CH3CH2CH2CH32.构型式—表达原子的空间连接方式和次序的式子例如:C CHCH3 HH3C3.构象式—表达未连接原子的空间相对位置的式子4.分子式—表示分子中所含的各种原子的数量5.最低系列原则—是指碳链以不同方向编号,得到两种或两种以上的不同编号系列,比较各系列不同位次,最先遇到的位次最小者,定为“最低系列”6.顺式\反式—两个相同或相似的基团处于双键的同侧叫做顺式,反之叫反式。
7.顺反异构现象—由于双键碳原子连接不通基团而形成的异构现象叫做顺反异构现象。
形成的同分异构体叫做顺反异构体。
8.顺反命名法—当烯烃双键的两个碳原子分别连有两个不同的原子或基团,并且两个双键碳原子或基团有一对或两对相同时,可采用顺反命名法。
两个相同基团位于双键同侧的叫做顺式,反之叫做反式。
例如:C CCH3H3CH H顺-2-丁烯C CCH3H3CHH反-2-丁烯9.Z、E命名法—如果两个碳原子上各自所连的优先基团处于双键的同侧,称为“Z”式构型,处于异侧的称为“E”式构型。
例如:C CC2H5CH3H3CH(Z)-3-甲基-2-戊烯10.多环烃—脂环烃分子中含有两个或两个以上的碳环的化合物. 11.环烯烃—环上有双键的脂环烃例如:环戊烯12.桥环化合物—多环烃中共用两个碳原子的双环化合物例如: CH 3CH 37,7-二甲基双环[4.1.0]庚烷13. 螺环化合物—多环烃中共用一个碳原子的双环化合物 例如: 螺[4,5]癸烷14. 桥头碳—桥环化合物中各桥共用的两个碳原子15. 螺原子—螺环化合物中两环共用的碳原子16.单环芳烃—分子中含有一个苯环的芳烃 例如:CH (CH 3)2异丙苯17. 多环芳烃—分子中含有两个或两个以上芳环的烃例如:联苯18. 酚—羟基直接连在芳环上的化合物 例如:OH苯酚19.羧酸衍生物—羧基中的羟基被其他原子或基团取代后所生成的化合物。
构象名词解释有机化学
构象名词解释有机化学有机化学是研究有机物质的化学性质、合成方法和反应机理的科学学科。
有机物质是由碳、氢、氧、氮、硫、磷等元素构成的化合物,是地球上包括生物体以及其产物在内的一类极其丰富的化学物质。
有机化学的起源可追溯到18世纪末至19世纪初的时期。
当时,化学家发现许多有机物质可以从生物体中提取出来,如脂肪、糖类和蛋白质等。
同时,人们还发现许多天然物质,如植物提取物和动物组织中的化合物,也具有丰富的化学性质。
这些研究促使化学家开始深入研究这些天然有机物的结构和性质,并试图从非生物源中合成这些有机化合物。
有机化学的发展受益于19世纪中叶克米特爾和F.莱宾斯基的理论突破。
克米特爾提出了化学键理论,认为化学键是由原子之间的电子对组成的。
F.莱宾斯基则提出了莱宾斯基规则,用于解释有机化合物中的化学键形成和反应。
这些理论的提出促进了有机化学的进一步发展。
有机化学的研究重点在于有机化合物的结构和反应。
有机化合物的结构可以通过分析其分子组成和化学键的排列来确定。
由于碳原子具有四个价电子,因此可以形成多种不同的化学键,包括单键、双键、三键和芳香性键等。
有机化学研究者通过使用多种分析技术,如红外光谱、质谱和核磁共振等,来确定有机化合物的结构和确认其纯度。
有机化合物在自然界中存在于各种形式,如生物体中的蛋白质、脂肪和糖类等。
有机化学家通过合成方法,可以将这些天然有机物质合成出来,从而扩大其应用范围。
有机合成是有机化学的一个重要分支,研究如何合成复杂的有机分子。
合成有机化合物的方法主要包括取代反应、加成反应、消旋反应和缩合反应等。
有机化学的应用广泛涉及医药、材料科学和能源领域。
医药化学是有机化学在药物研究和开发中的应用。
通过有机化学的方法,可以合成出具有特定结构和生物活性的分子,用于治疗疾病。
例如,许多抗癌药物、抗生素和心血管药物等都是由有机化学家合成出来的。
材料科学是研究和开发新材料的学科。
有机化学在材料科学中的应用主要涉及高分子材料、纳米材料和光电材料等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、化合物类名无机酸酯:醇与含氧无机酸反应失去一分子水后的生成物称为无机酸酯。
双烯烃:碳碳双键数目最少的多烯烃是二烯烃或称双烯烃。
可分为三类:两个双键连在同一个碳原子上的二烯烃称为累积二烯烃,两个双键被两个或两个以上单键隔开的二烯烃称为孤立二烯烃,两个双键被一个单键隔开的二烯烃称为共轭二烯烃。
内酯:分子内的羧基和羟基失水形成的产物称为内酯。
内酰胺:分子内的羧基和胺(氨)基失水的产物称为内酰胺。
四级铵碱:四级铵盐在强碱(KOH,NaOH)作用下生成的产物称为四级铵碱。
生物碱:从动植物体内得到的一类有强烈生理效能的含氮有机化合物。
游离生物碱绝大多数是固体,难溶于水,易溶于乙醇等有机溶剂。
天然的生物碱多半是有左旋光的手性化合物。
半缩醛或半缩酮:醇具有亲核性,在酸性催化剂如对甲苯磺酸、氯化氢的作用下,很容易和醛酮发生亲核加成,一分子醛或酮和一分子醇加成的生成物称为半缩醛或半缩酮。
有机化合物:除一氧化碳、二氧化碳、碳酸盐等少数简单含碳化合物以外的含碳化合物。
多肽:一个氨基酸的羧基与另一分子氨基酸的氨基通过失水反应,形成一个酰氨键,新生成的化合物称为肽,肽分子中的酰氨键叫做肽键。
二分子氨基酸失水形成的肽叫二肽,多个氨基酸失水形成的肽叫多肽。
杂环化合物:在有机化学中,将非碳原子统称为杂原子,最常见的杂原子是氮原子、硫原子和氧原子。
环上含有杂原子的有机物称为杂环化合物。
分为两类,具有脂肪族性质特征的称为脂杂环化合物,具有芳香特性的称为芳杂环化合物。
因为前者常常与脂肪族化合物合在一起学习,所以平时说的杂环化合物实际指的是芳杂环化合物。
杂环化合物是数目最庞大的一类有机物。
多环烷烃:含有两个或多个环的环烷烃称为多环烷烃。
共轭烯烃:单双键交替出现的体系称为共轭体系,含共轭体系的多烯烃称为共轭烯烃。
纤维二糖:是由两分子葡萄糖通过1,4 两位上的羟基失水而来的,纤维二糖是B-糖苷。
纤维素:由多个纤维二糖聚合而成的大分子。
多稀烃:含有多于一个碳碳双键的烯烃称为多稀烃。
亚硫酸氢钠加成物:亚硫酸氢钠可以和醛或某些活泼的酮的羰基发生加成反应,生成稳定的加成产物,该产物称为亚硫酸氢钠加成物。
交酯:二分子α-羟基酸受热失水形成的双内酯称为交酯。
肟:醛或酮与羟胺反应形成的产物称为肟。
卤代烃:烃分子中的氢被卤素取代后的化合物称为卤代烃。
一般用RX 表示。
X表示卤素(F、Cl、Br、I)。
麦芽糖:是由两分子葡萄糖通过1,4 两位上的羟基失水而来的,麦芽糖是a a-糖苷。
芳香族化合物:具有一种特殊的性质——芳香性的碳环化合物称为芳香族化合物。
芳香硝基化合物:硝基与苯环直接相连的化合物称为芳香硝基化合物。
炔化物:末端炔烃与强碱反应形成的金属化合物称为炔化物。
周边共轭体系化合物:在环状共轭多烯的环内引入一个或若干个原子,使环内原子与若干个成环的碳原子以单键相连,这样的化合物称为周边共轭体系化合物。
金属有机化合物:分子中存在着碳金属键的化合物。
苯炔:比苯少两个氢的化合物,故又称去氢苯。
单环烷烃:只含有一个环的环烷烃称为单环烷烃,单环烷烃的通式为CnH2n,与单烯烃互为同分异构体。
环烷烃按环的大小分为:①小环,三、四元环;②普通环,五、六、七元环;③中环,八至十一元环;④大环,十二元环以上。
炔烃:含有碳碳叁键的烃称为炔烃。
油脂:高级脂肪酸的甘油酯,一般在室温是液体的称为油,是固体或半固体的称为脂。
官能团:各类烃的衍生物都具有自己特有的化学性质,这些特有的化学性质主要是由取代氢原子的原子或原子团所决定的,在化学上将这种决定化合物化学特性的原子或原子团称为官能团。
轮烯:一类单双键交替出现的环状烃类化合物。
甾族化合物:是指含有环戊并全氢化菲基本骨架(简称甾环)的一大类化合物。
这类化合物通常都含有二个角甲基和一个烃基。
环烷烃:分子中含有环状结构的烷烃叫环烷烃。
又称为脂环化合物。
烃:由碳和氢两种原子组成的有机化合物称为烃。
烃的衍生物:烃分子中的一个或几个氢原子被其它元素的原子或原子团取代后的生成物称为烃的衍生物。
氢碳酸:烃可以看作是一个氢碳酸,碳上的氢以正离子离解下来的能力代表了氢碳酸的酸性强弱。
可以用pKa 值来表示,pKa值越小,酸性越强。
唑:含有两个杂原子,且其中至少有一个是氮原子的五元杂环体系称为唑。
异噁唑、异噻唑和吡唑可以分别看作是呋喃、噻吩、吡咯环上 2 位的CH 换成了氮原子,因此称它们为1,2-唑。
噁唑、噻唑、咪唑可以分别看作是呋喃、噻吩、吡咯环上 3 位的CH 换成了氮原子,因此称它们为1,3-唑。
胺:氨上的氢被烃基取代后的物质称为胺。
氧化胺:过氧化氢或过酸氧化三级胺生成的产物称为氧化胺。
原甲酸:甲酸的水合物称为原甲酸。
脂肪族化合物:碳原子互相连接成链状的化合物称为开链化合物。
因这类化合物最初是从动物脂肪中获取的,所以也称为脂肪族化合物。
脂环族化合物:与脂肪族化合物性质类似的一类碳环化合物称为脂环族化合物。
桥环烷烃:两个环共用两个或多个碳原子的多环烷烃称为桥环烷烃.脂肪族重氮化合物:通式为R2CN2,其中最重要的是重氮甲烷,它的分子式是CH2N2。
氨基酸:羧酸分子中烃基上的一个或几个氢原子被氨基取代后生成的化合物称为氨基酸。
根据氨基和羧基的相对位置,氨基酸可以分为a-氨基酸、b-氨基酸、r-氨基酸等。
根据氨基酸分子中羧基与氨基的相对数目,氨基酸可以分为中性氨基酸、酸性氨基酸和碱性氨基酸。
酚:羟基直接与苯环相连的化合物称为酚。
烷烃:由碳和氢两种元素组成、碳与碳均以单键相连的一大类化合物。
烯烃:含有碳碳双键的碳氢化合物称为烯烃。
淀粉:是多种植物的碳水化合物的储藏物。
淀粉这个生物高分子在水解时,首先生成麦芽糖,麦芽糖再进一步水解,都变为葡萄糖,因此淀粉也可以看作是葡萄糖的聚合体。
植物淀粉用热水处理后分为两部分,叫作直链淀粉和支链淀粉。
普通淀粉颗粒内大约含有80%的支链淀粉和20%的直链淀粉。
萜类化合物:广泛分布于植物、昆虫、微生物等动植物体内的一类有机化合物。
在生物体内,萜类化合物是由乙酰辅酶A(简写为CH3COSCoA)转化而来的。
萜类化合物在结构上可以看作是两个或两个以上的异戊二烯分子以头尾相连的方式结合起来的。
黄原酸:烷氧基硫代甲酸称为黄原酸α−羟腈:醛或酮与HCN 加成的产物称为α−羟腈。
烯酮:含有结构的化合物称为烯酮,它可以看作是羧酸发生分子内失水(失去羧羟基和a-氢)形成的,因此也可以看作是分子内的酸酐。
酚醛树脂:苯酚在碱性催化剂(氨、氢氧化钠、碳酸钠)或者酸催化剂的作用下,都能与甲醛缩合并生成高相对分子质量的物质。
该物质称为酚醛树脂。
集合环烷烃:环系各以环上一个碳原子用单键直接相连而成的多环烷烃称为集合环烷烃。
链烷烃:分子中没有环的烷烃称为链烷烃,其通式为CnH2n+2,n 为碳原子数。
酮:碳原子与氧原子用双键相连的基团称为羰基。
羰基碳与两个烃基相连的化合物称为酮(R2C=O),酮分子中的羰基也称为酮基。
羧酸:分子中具有羧基(-COOH)的化合物称为羧酸。
羧酸衍生物:羧基中的羟基被卤素、羧酸根、烷氧基或胺基置换后产生酰卤、酸酐、酯或酰胺。
这些化合物统称为羧酸衍生物。
碳环化合物:碳原子互相连接成环的化合物称为碳环化合物。
金羊盐:氧利用孤对电子与质子结合形成钅羊盐。
缩硫醛和缩硫酮:乙二硫醇和醛酮反应生成的产物称为缩硫醛、缩硫酮。
缩醛或缩酮:一分子醛或酮和两分子醇反应,失去一分子水后生成的产物称为缩醛和缩酮。
醇:脂肪烃分子中的氢原子或芳香烃侧链上的氢原子被羟基取代后的化合物称为醇。
羟基是醇的官能团。
醌:含有共轭环己二烯二酮结构的一类化合物称为醌。
最简单的醌是苯醌,有邻苯醌和对苯醌。
醚:水分子中的两个氢原子均被烃基取代的化合物称为醚。
醚类化合物都含有醚键(C−O−C)。
两个烃基相同的醚称为对称醚,也叫简单醚。
两个烃基不相同的醚称为不对称醚,也叫混合醚。
醛:碳原子与氧原子用双键相连的基团称为羰基。
羰基碳与氢和烃基相连的化合物称为醛(RCHO),结构中的(-CHO)称为醛基。
糖:多羟基的醛、酮或经简单水解能生成这类醛酮的化合物称为糖。
分为三类1.不能再被简单地水解成为更小的糖分子的糖类称为单糖。
2.由两个到十个左右的单糖失水而成的糖类称为寡糖,也称为低聚糖。
3.十个以上甚至几百、几千个单糖失水而成的糖类称为多糖。
糖二酸:醛糖的醛基和羟甲基均被氧化成羧基后形成的产物称为糖二酸。
糖苷:环状糖的半缩醛羟基能与另一分子化合物中的羟基、氨基或硫羟基等失水,生成的失水产物称为糖苷,也称为配糖体。
醛或酮的水合物:水是亲核试剂,在酸性条件下,可以和醛或酮发生亲核加成反应,形成的加成产物称为醛或酮的水合物。
糖脎:苯肼与糖反应生成的产物称为糖脎。
糖酸:醛糖的醛基被氧化成羧基后的化合物称为糖酸。
糖醇:醛糖的醛基被还原成羟甲基后的化合物称为糖醇。
螺环烷烃:单环之间共用一个碳原子的多环烷烃称为螺环烷烃。
二、同分异构体几何异构体:因双键或成环碳原子的单键不能自由旋转而引起的异构体称为几何异构体,也称为顺反异构体。
互变异构体:因分子中某一原子在两个位置迅速移动而产生的官能团异构体称为互变异构体。
互变异构体是一种特殊的官能团异构体。
立体异构体:分子中原子或原子团互相连接次序相同、但空间排列不同而引起的异构体称为立体异构体。
同分异构体:分子式相同而结构不同的化合物称为同分异构体,也称为结构异构体。
同分异构现象:分子式相同而结构不同的现象称为同分异构现象。
价键异构体:因分子中某些价键的分布发生了改变,与此同时也改变了分子的几何形状,从而引起的异构体称为价键异构体。
位置异构体:官能团在碳链或碳环上的位置不同而产生的异构体称为位置异构体。
构型异构体:因键长、键角、分子内有双键、有环等原因引起的立体异构体称为构型异构体。
一般来讲,构型异构体之间不能或很难互相转换。
官能团异构体:因分子中所含官能团的种类不同所产生的异构体称为官能团异构体。
构造异构体:因分子中原子的连结次序不同或者键合性质不同引起的异构体称为构造异构体。
构象异构体:仅由于单键的旋转而引起的立体异构体称为构象异构体。
有时也称为旋转异构体。
由于旋转的角度可以是任意的,单键旋转360˚可以产生无数个构象异构体。
通常以稳定的有限几种构象来代表它们。
旋光异构体:因分子中没有反轴对称性而引起的具有不同旋光性能的立体异构体称为旋光异构体。
碳架异构体:因碳架不同产生的异构体称为碳架异构体。
三、化学键三中心两电子键:采用三个原子共用一对电子的方式成键,称为三中心两电子键。
化学键:将分子中的原子结合在一起的作用力称为化学键。
共价键:两个或多个原子通过共用电子对而产生的一种化学键称为共价键。
电负性相差在0~0.6 个单位之间形成共价键;电负性相差在0.6~1.7 个单位之间的形成极性共价键。