青岛科技大学算法设计与分析实验报告-算法实训-背包问题

青岛科技大学算法设计与分析实验报告-算法实训-背包问题
青岛科技大学算法设计与分析实验报告-算法实训-背包问题

数据结构与算法分析2 课程设计报告书

班级

学号

姓名

指导教师庞志永

课程设计项目名称:背包问题的多项式时间近似方案

1.问题描述:

背包问题可描述为如下的整数规划形式,其中M 为背包的容量,P 为物体的价值,W 为物体的体积。

2.基本要求:

(1)在给定参数K 的条件下,设计背包问题的满足近似性能比不大于1+1/(k+1)的多项式时间近似方案,并选择适当的编程语言在计算机上实现。

(2)程序能够正常运行,计算结果正确,满足设计要求。

3.算法描述:

将装入背包的物体进行多次尝试,其方法是:

取K 为确定的非负整数,考虑背包问题的实例I 中的n 个物体的合的K 元素子集C ,|C|=K 。

(1)尝试将每个K 元素子集C 中的物体优先装入背包;

(2)利用解答背包问题的贪心算法A 将(n-K)个物体尝试装入背包。合并先装入的K 个物体和用算法A 装入的剩余物体作为算法的最终解。

过程如下:

Procedure ε-APPROX(P,W,M,n,K)

(1) P MAX =0;

(2) For all combinations C of size=K & weight≤M do

(3) P C =∑i∈C P i

(4) P MAX =max{P MAX ,P C + L(I, P, W, M, n)};

(5) End for

(6) End ε-APPROX

Procedure L(I,P,W,M,n)

(1) S 1=0; T=M - ∑i∈C W i ;

(2) For i=1 to n do

(3) If i ?C and W i ≤T then

(4) S 1=S 1+P i , T=T – W i

(5) End if

(6) End for

11max {0,1},1n i i i i n i i i Px x i n W x M

==??∈≤≤?≤??∑∑

(7) S=max{S1,max{P i| i ?C}};

(8) Return (S)

(9) End L

4.模块划分(仅供参考):

(1)输入及存储原始数据模块

(2)ε-APPROX(P,W,M,n,K)模块

(3)L(I,P,W,M,n)模块

(4)存储及输出结果模块

5.本课程设计中遇到的关键问题及其解决方法:

背包使用面向对象方法:

package knapsack;

public class Knapsack {

/** 背包重量 */

private int weight;

/** 背包物品价值 */

private int value;

/***

* 构造器

*/

public Knapsack(int weight, int value) {

this.value = value;

this.weight = weight;

}

public int getWeight() {

return weight;

}

public int getValue() {

return value;

}

public String toString() {

return"[weight: "+ weight+ "\t"+ "value: "+ value + "]";

}

}

获取最优解:

package knapsack;

import java.util.ArrayList;

import java.util.List;

import javax.swing.JOptionPane;

import algorithm.dynamicplan.Knapsack;

/**

* 背包

* 首先将最多 k件物品放人背包,

* 如果这k件物品重量大于 c,则放弃它。

* 否则,剩余的重量用来考虑将剩余物品按价值重量比递减的顺序装入。

* 通过考虑最多为 k件物品的所有可能的子集来得到最优解。

*

* @author

*

*/

public class KSMethod {

/**

* 输入及存储原始数据模块

* @param n

* @return P

*/

static List InputData(int n){

String weight = JOptionPane.showInputDialog("Input W(空格隔开):");

String value = JOptionPane.showInputDialog("Input P(空

格隔开):");

String[] values = value.split(" ");

String[] weights = weight.split(" ");

List P = new ArrayList();

for (int i = 0; i < n; i++) {

P.add(new Knapsack(Integer.valueOf(weights[i]), Integer

.valueOf(values[i])));

}

System.out.println("原始数据:");

printlist(P);

return P;

}

/**

* e-APPROX(P,W,M,n,K)模块

*

* @param bags1

* @param M

* @param n

* @param K

* @return 解

*/

static int Solve(Knapsack[] bags1, int M, int n, int K) {

List> allSubLists = getSubLists(bags1);

List P = new ArrayList();

for (Knapsack knapsack : bags1) {

P.add(knapsack);

}

int Pmax = 0;

for (List I : allSubLists) {

int weight = 0;

for (Knapsack knapsack : I) {

weight = weight + knapsack.getWeight();

}

if ((I.size() <= K) && weight <= M) {

int Pi = 0;

for (Knapsack knapsack : P) {

// i++;

if (I.contains(knapsack)) {

Pi = Pi + knapsack.getValue();

}

}

Pmax = max(Pmax, Pi + L(I, P, M, n));

}

}// end for

return Pmax;

}

/**

* L(I,P,W,M,n)模块

*

* @param I

* @param P

* @param M

* @param n

* @return

*/

static int L(List I, List P, int M, int n) {

int S = 0, S1 = 0;

int SumWi = 0;

for (Knapsack knapsack : I) {

SumWi = SumWi + knapsack.getWeight();

}

int T = M - SumWi;

for (Knapsack knapsack : P) {

int Wi = knapsack.getWeight();

int Pi = knapsack.getValue();

if ((!I.contains(knapsack)) && Wi <= T) {

S1 = S1 + Pi;

T = T - Wi;

}

}

int[] t = max(P, I);

if (t[1] + SumWi < M) {

S = max(S1, t[0]);

}

return S;

}

/**

* 遍历集合

*

* @param list

*/

static void printlist(List list) { for (Knapsack knapsack : list) {

System.out.println(knapsack);

}

}

/**

* 最大值

*

* @param a

* @param b

* @return max

*/

static int max(int a, int b) {

return a > b ? a : b;

}

/**

* 计算max{Pi|i不属于I}

*

* @param P

* @param I

* @return max

*/

static int[] max(List P, List I) { int max = 0;

int w = 0;

for (Knapsack knapsack : P) {

if (I.contains(knapsack)) {

continue;

}

int temp = knapsack.getValue();

if (max > temp) {

max = temp;

w = knapsack.getWeight();

}

}

return new int[] { max, w };

}

/**

* 得到所有子集

*

* @param array

* @return

*/

static List> getSubLists(Knapsack[] array) {

List> allsubLists = new ArrayList>();

int max = 1 << array.length;

for (int i = 0; i < max; i++) {

List subList = new ArrayList();

int k = i;

int index = 0;

while (k > 0) {

if ((k & 1) > 0) {

subList.add(array[index]);

}

k >>= 1;

index++;

}

allsubLists.add(subList);

}

return allsubLists;

}

}

程序入口:

package knapsack;

import java.util.ArrayList;

import java.util.List;

import javax.swing.JOptionPane;

import algorithm.dynamicplan.Knapsack;

public class K7_4 {

public static void main(String[] args) {

int n =

Integer.valueOf(JOptionPane.showInputDialog("Input N:"));

int m =

Integer.valueOf(JOptionPane.showInputDialog("Input M:"));

System.out.println("背包容量:"+m);

List P=new ArrayList();

P = KSMethod.InputData(n);

int k =

Integer.valueOf(JOptionPane.showInputDialog("Input K:"));

Knapsack[] bags = P.toArray(new Knapsack[0]);

String res = null;

for (int i = 0; i < k; i++) {

res= "最优解(价值总和):"+KSMethod.Solve(bags, m, n, i);

System.out.println("当k="+i+":"+res);

}

}

}

6.运行结果及其相关描述:

要求实例中物体的数量在20—100之间。

背包容量:50

原始数据:

[weight: 1 value: 5]

[weight: 2 value: 5]

[weight: 3 value: 5]

[weight: 4 value: 5]

[weight: 5 value: 5]

[weight: 6 value: 7]

[weight: 7 value: 7]

[weight: 8 value: 8]

[weight: 9 value: 9]

[weight: 10 value: 10]

[weight: 11 value: 11]

[weight: 12 value: 12]

[weight: 13 value: 13]

[weight: 14 value: 14]

[weight: 15 value: 15]

[weight: 16 value: 16]

[weight: 17 value: 17]

[weight: 18 value: 18]

[weight: 19 value: 19]

[weight: 20 value: 20]

当k=0:最优解(价值总和):56

当k=1:最优解(价值总和):61

当k=2:最优解(价值总和):61

当k=3:最优解(价值总和):61

当k=4:最优解(价值总和):61

当k=5:最优解(价值总和):61

当k=6:最优解(价值总和):61

当k=7:最优解(价值总和):61

当k=8:最优解(价值总和):61

当k=9:最优解(价值总和):61

7.课程设计总结:

通过这次实验,深刻体会到算法的无限魅力。

算法设计与分析考试题及答案

算法设计与分析考试题 及答案 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

一、填空题(20分) 1.一个算法就是一个有穷规则的集合,其中之规则规定了解决某一特殊类型问题的一系列运算,此外,算法还应具有以下五个重要特性:确定性 有穷性 可行性 0个或多个输入 一个或多个输出 2.算法的复杂性有时间复杂性 空间复杂性之分,衡量一个算法好坏的标准是 时间复杂度高低 3.某一问题可用动态规划算法求解的显着特征是 该问题具有最优子结构性质 4.若序列X={B,C,A,D,B,C,D},Y={A,C,B,A,B,D,C,D},请给出序列X 和Y 的一个最长公共子序列{BABCD}或{CABCD}或{CADCD } 5.用回溯法解问题时,应明确定义问题的解空间,问题的解空间至少应包含一个(最优)解 6.动态规划算法的基本思想是将待求解问题分解成若干_子问题 ,先求解_子问题 ,然后从这些子问题 的解得到原问题的解。 7.以深度优先方式系统搜索问题解的算法称为回溯法 背包问题的回溯算法所需的计算时间为o(n*2n ) ,用动态规划算法所需的计算时间为o(min{nc,2n }) 9.动态规划算法的两个基本要素是最优子结构 _和重叠子问题 10.二分搜索算法是利用动态规划法实现的算法。 二、综合题(50分) 1.写出设计动态规划算法的主要步骤。 ①问题具有最优子结构性质;②构造最优值的递归关系表达式; ③最优值的算法描述;④构造最优解; 2. 流水作业调度问题的johnson 算法的思想。 ①令N 1={i|a i =b i };②将N 1中作业按a i 的非减序排序得到N 1’,将N 2中作业按b i 的非增序排序得到N 2’;③N 1’中作业接N 2’中作业就构成了满足Johnson 法则的最优调度。 3. 若n=4,在机器M1和M2上加工作业i 所需的时间分别为a i 和b i ,且 (a 1,a 2,a 3,a 4)=(4,5,12,10),(b 1,b 2,b 3,b 4)=(8,2,15,9)求4个作业的最优调度方案,并计算最优值。 步骤为:N1={1,3},N2={2,4}; N 1’={1,3}, N 2’={4,2}; 最优值为:38 4. 使用回溯法解0/1背包问题:n=3,C=9,V={6,10,3},W={3,4,4},其解空间有长度为3的0-1向量组成,要求用一棵完全二叉树表示其解空间(从根出发,左1右0),并画出其解空间树,计算其最优值及最优解。 解空间为{(0,0,0),(0,1,0),(0,0,1),(1,0,0),(0,1,1),(1,0,1), (1,1,0),(1,1,1)}。 解空间树为: 该问题的最优值为:16 最优解为:(1,1,0) 5. 设S={X 1,X 2,···,X n }是严格递增的有序集,利用二叉树的结点来存储S 中的元素,在表示S 的二叉搜索树中搜索一个元素X ,返回的结果有两种情形,(1)在二叉搜索树的内结点中找到X=X i ,其概率为b i 。(2)在二叉搜索树的叶结点中确定X ∈(X i ,X i+1),其概率为a i 。在表示S 的二叉搜索树T 中,设存储元素X i 的结点深度为C i ;叶结点(X i ,X i+1)的结点深度为d i ,则二叉搜索树T 的平均路长p 为多少假设二叉搜索树T[i][j]={X i ,X i+1,···,X j }最优值为m[i][j],W[i][j]= a i-1+b i +···+b j +a j ,则m[i][j](1<=i<=j<=n)递归关系表达式为什么 .二叉树T 的平均路长P=∑=+n i 1 Ci)(1*bi +∑=n j 0 dj *aj

算法设计与分析(作业三)

算法设计与分析实验报告 学院信息科学与技术学院 专业班级软件工程3班 学号 20122668 姓名王建君 指导教师尹治本 2014年10月

实验四 矩阵相乘次序 一、问题提出 用动态规划算法解矩阵连乘问题。给定n 个矩阵{A 1,A 2,…,A n },其中A i 与A i+1是可乘的,i=1,2,…,n-1。要算出这n 个矩阵的连乘积A 1A 2…A n 。由于矩阵乘法满足结合律,故计算矩阵的连乘积可以有许多不同的计算次序。这种计算次序可以用加括号的方式来确定。若一个矩阵连乘积的计算次序完全确定,也就是说该连乘积已完全加括号,则可以依此次序反复调用2个矩阵相乘的标准算法计算出矩阵连乘积。完全加括号的矩阵连乘积可递归地定义为: (1)单个矩阵是完全加括号的; (2)矩阵连乘积A 是完全加括号的,则A 可表示为2个完全加括号的矩阵连乘积B 和C 的乘积并加括号,即A=(BC)。 例如,矩阵连乘积A 1A 2A 3A 4有5种不同的完全加括号的方式:(A 1(A 2(A 3A 4))),(A 1((A 2A 3)A 4)),((A 1A 2)(A 3A 4)),((A 1(A 2A 3))A 4),(((A 1A 2)A 3)A 4)。每一种完全加括号的方式对应于一个矩阵连乘积的计算次序,这决定着作乘积所需要的计算量。若A 是一个p ×q 矩阵,B 是一个q ×r 矩阵,则计算其乘积C=AB 的标准算法中,需要进行pqr 次数乘。 (3)为了说明在计算矩阵连乘积时,加括号方式对整个计算量的影响,先考察3个矩阵{A 1,A 2,A 3}连乘的情况。设这三个矩阵的维数分别为10×100,100×5,5×50。加括号的方式只有两种:((A 1A 2)A 3),(A 1(A 2A 3)),第一种方式需要的数乘次数为10×100×5+10×5×50=7500,第二种方式需要的数乘次数为100×5×50+10×100×50=75000。第二种加括号方式的计算量时第一种方式计算量的10倍。由此可见,在计算矩阵连乘积时,加括号方式,即计算次序对计算量有很大的影响。于是,自然提出矩阵连乘积的最优计算次序问题,即对于给定的相继n 个矩阵{A 1,A 2,…,A n }(其中矩阵Ai 的维数为p i-1×p i ,i =1,2,…,n ),如何确定计算矩阵连乘积A 1A 2…A n 的计算次序(完全加括号方式),使得依此次序计算矩阵连乘积需要的数乘次数最少。 二、求解思路 本实验采用动态规划算法解矩阵连乘积的最优计算次序问题。本实验的算法思路是: 1)计算最优值算法MatrixChain():建立两张表(即程序中的**m 和**s ,利用二维指针存放),一张表存储矩阵相乘的最小运算量,主对角线上的值为0,依次求2个矩阵、3个矩阵…、直到n 个矩阵相乘的最小运算量,其中每次矩阵相乘的最小运算量都在上一次矩阵相乘的最小运算量的基础上求得,最后一次求得的值即为n 个矩阵相乘的最小运算量;另一张表存储最优断开位置。 2)输出矩阵结合方式算法Traceback():矩阵结合即是给矩阵加括号,打印出矩阵结合方式,由递归过程Traceback()完成。分三种情况: (1)只有一个矩阵,则只需打印出A1; (2)有两个矩阵,则需打印出(A1A2); (3)对于矩阵数目大于2,则应该调用递归过程Traceback()两次,构造出最优加括号方式。 三、算法复杂度 该算法时间复杂度最高为)(n 3 O 。 四、实验源代码

算法设计与分析 吕国英 习题答案第四章

算法设计与分析(第二版)主编:吕国英 习题答案 第四章 1. #include int main(void) { int buf[100]; int n; int i,j,k; scanf("%d",&n); for(i=0;i=10) { buf[j+1]+=buf[j]/10; buf[j]=buf[j]%10; } } for(i=n-1;i>=0;i--) printf("%d",buf[i]); printf("\n"); return 0; } 2. #include int main(void) { int n=2; int i;

for(i=1;i<=9;i++) { n=(n+2)*2; } printf("%d\n",n); return 0; } 3. #include int main(void) { int a=54; int n; int m; printf("计算机先拿3张牌\n"); a=a-3; while(a>=0) { printf("还剩%d张牌\n",a); printf("你拿几张?请输入:"); scanf("%d",&n); if(n>4||n<1||n>a) { printf("错误!重新拿牌\n"); continue; } a=a-n; printf("还剩%d张牌\n",a); if(a==0) break; m=5-n; printf("计算机拿%d\n",m); a=a-m; } return 0; } 4. #include int d; int a1,a2; int fun(int n); int main(void) { int n;

算法设计与分析考试题及答案

1.一个算法就是一个有穷规则的集合,其中之规则规定了解决某一特殊类型问题的一系列运算,此外,算法还应具有以下五个重要特性:_________,________,________,__________,__________。 2.算法的复杂性有_____________和___________之分,衡量一个算法 好坏的标准是______________________。 3.某一问题可用动态规划算法求解的显著特征是 ____________________________________。 4.若序列X={B,C,A,D,B,C,D},Y={A,C,B,A,B,D,C,D},请给出序列X 和Y的一个最长公共子序列_____________________________。 5.用回溯法解问题时,应明确定义问题的解空间,问题的解空间至少应包含___________。 6.动态规划算法的基本思想是将待求解问题分解成若干____________,先求解___________,然后从这些____________的解得到原问题的解。 7.以深度优先方式系统搜索问题解的算法称为_____________。 8.0-1背包问题的回溯算法所需的计算时间为_____________,用动态规划算法所需的计算时间为____________。 9.动态规划算法的两个基本要素是___________和___________。 10.二分搜索算法是利用_______________实现的算法。 二、综合题(50分) 1.写出设计动态规划算法的主要步骤。 2.流水作业调度问题的johnson算法的思想。

算法设计与分析实验三

实验三分治算法(2) 一、实验目的与要求 1、熟悉合并排序算法(掌握分治算法) 二、实验题 1、问题陈述: 对所给元素存储于数组中和存储于链表中两中情况,写出自然合并排序算法. 2、解题思路: 将待排序元素分成大小大相同的两个集合,分别对两个集合进行排序,最终将排好序的子集合合并成为所要求的排好序的集合.自然排序是通过一次扫描待排元素中自然排好序的子数组,再进行子数组的合并排序. 三、实验步骤 程序代码: #include const int N=100;//定义不可变常量N //各个函数的声明 void ScanTarget(int target[], int n, int head[], int tail[]); int CountHead(int head[]); void MergeSort(int a[], int head[], int tail[], int m); void MergePass(int x[], int y[], int s, int a[], int b[], int m); void Merge(int c[], int d[], int l, int m, int r); //主函数的定义 void main() { char a; do {

int target[N],head[N],tail[N]; int i=0,n,m; for(; i>n; cout<<"请输入需要排序的数列:" <>target[i]; ScanTarget(target,n,head,tail); m=CountHead(head);//调用求长度的函数 MergeSort(target,head,tail,m);//调用归并排序函数 cout<<"排序后:"<>a; } while(a!='n' && a!='N'); } void ScanTarget(int target[], int n, int head[], int tail[])//定义扫描待排数组的函数;{ int i,j=0,k=0; head[k]=0;

算法设计与分析实验报告

本科实验报告 课程名称:算法设计与分析 实验项目:递归与分治算法 实验地点:计算机系实验楼110 专业班级:物联网1601 学号: 05 学生姓名:俞梦真 指导教师:郝晓丽 2018年 05月 04 日 实验一递归与分治算法 实验目的与要求

1.进一步熟悉C/C++语言的集成开发环境; 2.通过本实验加深对递归与分治策略的理解和运用。 实验课时 2学时 实验原理 分治(Divide-and-Conquer)的思想:一个规模为n的复杂问题的求解,可以划分成若干个规模小于n的子问题,再将子问题的解合并成原问题的解。 需要注意的是,分治法使用递归的思想。划分后的每一个子问题与原问题的性质相同,可用相同的求解方法。最后,当子问题规模足够小时,可以直接求解,然后逆求原问题的解。 实验题目 1.上机题目:格雷码构造问题 Gray码是一个长度为2n的序列。序列无相同元素,每个元素都是长度为n的串,相邻元素恰好只有一位不同。试设计一个算法对任意n构造相应的Gray码(分治、减治、变治皆可)。 对于给定的正整数n,格雷码为满足如下条件的一个编码序列。 (1)序列由2n个编码组成,每个编码都是长度为n的二进制位串。 (2)序列中无相同的编码。 (3)序列中位置相邻的两个编码恰有一位不同。 2.设计思想: 根据格雷码的性质,找到他的规律,可发现,1位是0 1。两位是00 01 11 10。三位是000 001 011 010 110 111 101 100。n位是前n-1位的2倍个。N-1个位前面加0,N-2为倒转再前面再加1。 3.代码设计: 归式,就是如何将原问题划分成子问题。 2.递归出口,递归终止的条件,即最小子问题的求解,可以允许多个出口。 3.界函数,问题规模变化的函数,它保证递归的规模向出口条件靠拢(2)递归与非递归之间如何实现程序的转换? (3)分析二分查找和快速排序中使用的分治思想。 答: 1.一般根据是否需要回朔可以把递归分成简单递归和复杂递归,简单递归一般就是根据递归式来找出递推公式(这也就引申出分治思想和动态规划)。 2.复杂递归一般就是模拟系统处理递归的机制,使用栈或队列等数据结构保存回朔点来求解。 (4)分析二次取中法和锦标赛算法中的分治思想。 二次取中法:使用快速排序法中所采用的分划方法,以主元为基准,将一个表划分为左右两个子表,左子表中的元素均小于主元,右子表中的元素均大于主元。主元的选择是将表划分为r

算法分析与设计

专业: 班级: 学号: 姓名: 日期: 2014年 11月 10日

48476Λn n 111+++=。 2、q(n ,m)=q(n ,n),m>=n 。 最大加数n1实际上不能大于n ,因此,q(1,m)=1。 3、q(n ,n)=1+q(n ,n-1)。 正整数n 的划分由n1=n 的划分和n1<=n-1的划分组成。 4、q(n ,m)= q(n ,m-1)+q(n-m ,m),n>m>1。 正整数n 的最大加数n1不大于m 的划分由n1=m 的划分和n1<=m-1的划分组成。 (2)、算法描述 public class 张萌 { /** * @param args */ public static void main(String[] args) { // TODO Auto-generated method stub System.out .println(q (2,2)); } public static int q(int n,int m) { if ((n<1)||(m<1)) return 0; if ((n==1)||(m==1)) return 1; if (n

算法设计与分析实验报告

算法设计与分析课程实验项目目录 学生姓名:学号: *实验项目类型:演示性、验证性、综合性、设计性实验。 *此表由学生按顺序填写。 本科实验报告专用纸

课程名称算法设计与分析成绩评定 实验项目名称蛮力法指导教师 实验项目编号 201 实验项目类型设计实验地点机房 学生姓名学号 学院信息科学技术学院数学系信息与计算科学专业级 实验时间 2012年 3月 1 日~6月30日温度24℃ 1.实验目的和要求: 熟悉蛮力法的设计思想。 2.实验原理和主要内容: 实验原理:蛮力法常直接基于问题的描述和所涉及的概念解决问题。 实验内容:以下题目任选其一 1).为蛮力字符串匹配写一段可视化程序。 2).写一个程序,实现凸包问题的蛮力算法。 3).最著名的算式谜题是由大名鼎鼎的英国谜人给出的: S END +MORE MONEY . 这 里有两个前提假设:第一,字母和十进制数字之间一一对应,也就是每个字母只代表一个数字,而且不同的字母代表不同的数字;第二,数字0不出现在任何数的最左边。求解一个字母算术意味着找到每个字母代表的是哪个数字。请注意,解可能并不是唯一的,不同人的解可能并不相同。 3.实验结果及分析: (将程序和实验结果粘贴,程序能够注释清楚更好。) 本科实验报告专用纸(附页) 该算法程序代码如下:

#include "" #include "" int main(int argc, char* argv[]) { int x[100],y[100]; int a,b,c,i,j,k,l,m,n=0,p,t1[100],num; int xsat[100],ysat[100]; printf("请输入点的个数:\n"); scanf("%d",&num); getchar(); clock_t start,end; start=clock(); printf("请输入各点坐标:\n"); for(l=0;l

算法设计与分析C++语言描述(陈慧南版)课后答案

第一章 15P 1-3. 最大公约数为1。快1414倍。 主要考虑循环次数,程序1-2的while 循环体做了10次,程序1-3的while 循环体做了14141次(14142-2循环) 若考虑其他语句,则没有这么多,可能就601倍。 第二章 32P 2-8.(1)画线语句的执行次数为 log n ????。(log )n O 。划线语句的执行次数应该理解为一格整体。 (2)画线语句的执行次数为 111 (1)(2) 16 j n i i j k n n n ===++= ∑∑∑。3()n O 。 (3 )画线语句的执行次数为 。O 。 (4)当n 为奇数时画线语句的执行次数为 (1)(3) 4 n n ++, 当n 为偶数时画线语句的执行次数为2 (2)4 n +。2()n O 。 2-10.(1)当1n ≥时,225825n n n -+≤,所以,可选5c =,01n =。 对于0n n ≥,22 ()5825f n n n n =-+≤,所以,22 582()n n n -+=O 。 (2)当8n ≥时,2222 582524n n n n n -+≥-+≥,所以,可选4c =,08n =。对于0n n ≥, 22()5824f n n n n =-+≥,所以,22582()n n n -+=Ω。 (3)由(1)、(2)可知,取14c =,25c =,08n =,当0n n ≥时,有22212582c n n n c n ≤-+≤,所以 22582()n n n -+=Θ。 2-11. (1) 当3n ≥时,3 log log n n n <<,所以()20log 21f n n n n =+<,3 ()log 2g n n n n =+>。可选21 2 c = ,03n =。对于0n n ≥,()()f n cg n ≤,即()(())f n g n =O 。注意:是f (n )和g (n )的关系。 (2)当4n ≥时,2 log log n n n <<,所以2 2 ()/log f n n n n =<,2 2 ()log g n n n n =≥。可选1c =,04n =。对于0n n ≥,2 ()()f n n cg n <≤,即()(())f n g n =O 。 (3)因为log log(log )()(log ) n n f n n n ==,()/log log 2n g n n n n ==。当4n ≥时,log(log )()n f n n n =≥,

《算法设计与分析》实验一

学号1607070212 《算法设计与分析》 实验报告一 学生姓名张曾然 专业、班级16软件二班 指导教师唐国峰 成绩 计算机与信息工程学院软件工程系 2018 年9 月19 日

实验一:递归策略运用练习 一、实验目的 本次实验是针对递归算法的算法设计及应用练习,旨在加深学生对该算法原理的理解,提高学生运用该算法解决问题的能力。 二、实验步骤与要求 1.实验前复习课程所学知识以及阅读和理解指定的课外阅读材料; 2.学生独自完成实验指定内容; 3.实验结束后,用统一的实验报告模板编写实验报告。 4.提交说明: (1)电子版提交说明: a 需要提交Winrar压缩包,文件名为“《算法设计与分析》实验一_学号_姓名”, 如“《算法设计与分析》实验一_09290101_张三”。 b 压缩包内为一个“《算法设计与分析》实验一_学号_姓名”命名的顶层文件夹, 其下为两个文件夹,一个文件夹命名为“源程序”,另一个文件夹命名为“实验 报告电子版”。其下分别放置对应实验成果物。 (2)打印版提交说明: a 不可随意更改模板样式。 b 字体:中文为宋体,大小为10号字,英文为Time New Roman,大小为10号 字。 c 行间距:单倍行距。 (3)提交截止时间:2018年10月10日16:00。 三、实验项目 1.运用递归策略设计算法实现下述题目的求解过程。 题目列表如下: 【必做题】 (1)运动会开了N天,一共发出金牌M枚。第一天发金牌1枚加剩下的七分之一枚,第二天发金牌2枚加剩下的七分之一枚,第3天发金牌3枚加剩下的七分之一枚,以后每天都照此办理。到了第N天刚好还有金牌N枚,到此金牌全部发完。编程求N和M。 (2)国王分财产。某国王临终前给儿子们分财产。他把财产分为若干份,然后给第一个儿子一份,再加上剩余财产的1/10;给第二个儿子两份,再加上剩余财产的1/10;……;给第i 个儿子i份,再加上剩余财产的1/10。每个儿子都窃窃自喜。以为得到了父王的偏爱,孰不知国王是“一碗水端平”的。请用程序回答,老国王共有几个儿子?财产共分成了多少份?

计算机算法设计与分析习题及答案

计算机算法设计与分析习 题及答案 Prepared on 24 November 2020

《计算机算法设计与分析》习题及答案 一.选择题 1、二分搜索算法是利用( A )实现的算法。 A、分治策略 B、动态规划法 C、贪心法 D、回溯法 2、下列不是动态规划算法基本步骤的是( A )。 A、找出最优解的性质 B、构造最优解 C、算出最优解 D、定义最优解 3、最大效益优先是(A )的一搜索方式。 A、分支界限法 B、动态规划法 C、贪心法 D、回溯法 4. 回溯法解旅行售货员问题时的解空间树是( A )。 A、子集树 B、排列树 C、深度优先生成树 D、广度优先生成树 5.下列算法中通常以自底向上的方式求解最优解的是(B )。 A、备忘录法 B、动态规划法 C、贪心法 D、回溯法 6、衡量一个算法好坏的标准是( C )。 A 运行速度快 B 占用空间少 C 时间复杂度低 D 代码短 7、以下不可以使用分治法求解的是( D )。 A 棋盘覆盖问题 B 选择问题 C 归并排序 D 0/1背包问题 8. 实现循环赛日程表利用的算法是(A )。 A、分治策略 B、动态规划法 C、贪心法 D、回溯法 9.下面不是分支界限法搜索方式的是(D )。 A、广度优先 B、最小耗费优先 C、最大效益优先 D、深度优先

10.下列算法中通常以深度优先方式系统搜索问题解的是(D )。 A、备忘录法 B、动态规划法 C、贪心法 D、回溯法 11.备忘录方法是那种算法的变形。( B ) A、分治法 B、动态规划法 C、贪心法 D、回溯法 12.哈夫曼编码的贪心算法所需的计算时间为(B )。 A、O(n2n) B、O(nlogn) C、O(2n) D、O(n) 13.分支限界法解最大团问题时,活结点表的组织形式是(B )。 A、最小堆 B、最大堆 C、栈 D、数组 14.最长公共子序列算法利用的算法是(B)。 A、分支界限法 B、动态规划法 C、贪心法 D、回溯法 15.实现棋盘覆盖算法利用的算法是(A )。 A、分治法 B、动态规划法 C、贪心法 D、回溯法 16.下面是贪心算法的基本要素的是(C )。 A、重叠子问题 B、构造最优解 C、贪心选择性质 D、定义最优解 17.回溯法的效率不依赖于下列哪些因素( D ) A.满足显约束的值的个数 B. 计算约束函数的时间 C.计算限界函数的时间 D. 确定解空间的时间 18.下面哪种函数是回溯法中为避免无效搜索采取的策略(B ) A.递归函数 B.剪枝函数 C。随机数函数 D.搜索函数 19. (D)是贪心算法与动态规划算法的共同点。

《算法设计与分析》递归算法典型例题

算法递归典型例题 实验一:递归策略运用练习 三、实验项目 1.运用递归策略设计算法实现下述题目的求解过程。 题目列表如下: (1)运动会开了N天,一共发出金牌M枚。第一天发金牌1枚加剩下的七分之一枚,第二天发金牌2枚加剩下的七分之一枚,第3天发金牌3枚加剩下的七分之一枚,以后每天都照此办理。到了第N天刚好还有金牌N枚,到此金牌全部发完。编程求N和M。 (2)国王分财产。某国王临终前给儿子们分财产。他把财产分为若干份,然后给第一个儿子一份,再加上剩余财产的1/10;给第二个儿子两份,再加上剩余财产的1/10;……;给第i 个儿子i份,再加上剩余财产的1/10。每个儿子都窃窃自喜。以为得到了父王的偏爱,孰不知国王是“一碗水端平”的。请用程序回答,老国王共有几个儿子?财产共分成了多少份? 源程序: (3)出售金鱼问题:第一次卖出全部金鱼的一半加二分之一条金鱼;第二次卖出乘余金鱼的三分之一加三分之一条金鱼;第三次卖出剩余金鱼的四分之一加四分之一条金鱼;第四次卖出剩余金鱼的五分之一加五分之一条金鱼;现在还剩下11条金鱼,在出售金鱼时不能把金鱼切开或者有任何破损的。问这鱼缸里原有多少条金鱼? (4)某路公共汽车,总共有八站,从一号站发轩时车上已有n位乘客,到了第二站先下一半乘客,再上来了六位乘客;到了第三站也先下一半乘客,再上来了五位乘客,以后每到一站都先下车上已有的一半乘客,再上来了乘客比前一站少一个……,到了终点站车上还有乘客六人,问发车时车上的乘客有多少? (5)猴子吃桃。有一群猴子摘来了一批桃子,猴王规定每天只准吃一半加一只(即第二天吃剩下的一半加一只,以此类推),第九天正好吃完,问猴子们摘来了多少桃子? (6)小华读书。第一天读了全书的一半加二页,第二天读了剩下的一半加二页,以后天天如此……,第六天读完了最后的三页,问全书有多少页? (7)日本著名数学游戏专家中村义作教授提出这样一个问题:父亲将2520个桔子分给六个儿子。分完后父亲说:“老大将分给你的桔子的1/8给老二;老二拿到后连同原先的桔子分1/7给老三;老三拿到后连同原先的桔子分1/6给老四;老四拿到后连同原先的桔子分1/5给老五;老五拿到后连同原先的桔子分1/4给老六;老六拿到后连同原先的桔子分1/3给老大”。结果大家手中的桔子正好一样多。问六兄弟原来手中各有多少桔子? 四、实验过程 (一)题目一:…… 1.题目分析 由已知可得,运动会最后一天剩余的金牌数gold等于运动会举行的天数由此可倒推每一 天的金牌剩余数,且每天的金牌数应为6的倍数。 2.算法构造 设运动会举行了N天, If(i==N)Gold[i]=N; Else gold[i]=gold[i+1]*7/6+i;

《算法设计与分析》考试题目及答案

《算法分析与设计》期末复习题 一、选择题 1.应用Johnson法则的流水作业调度采用的算法是(D) A. 贪心算法 B. 分支限界法 C.分治法 D. 动态规划算法 塔问题如下图所示。现要求将塔座A上的的所有圆盘移到塔座B上,并仍按同样顺序叠置。移动圆盘时遵守Hanoi塔问题的移动规则。由此设计出解Hanoi塔问题的递归算法正确的为:(B) " ; | A. void hanoi(int n, int A, int C, int B) 《 { if (n > 0) { hanoi(n-1,A,C, B); move(n,a,b); hanoi(n-1, C, B, A); B. void hanoi(int n, int A, int B, int C) { if (n > 0) { hanoi(n-1, A, C, B); ] move(n,a,b); hanoi(n-1, C, B, A); } C. void hanoi(int n, int C, int B, int A) { if (n > 0) { hanoi(n-1, A, C, B); move(n,a,b); hanoi(n-1, C, B, A); } }

3. 动态规划算法的基本要素为(C ) A. 最优子结构性质与贪心选择性质 B .重叠子问题性质与贪心选择性质 C .最优子结构性质与重叠子问题性质 D. 预排序与递归调用 4. 算法分析中,记号O 表示(B ), 记号Ω表示(A ), 记号Θ表示(D )。 … A.渐进下界 B.渐进上界 C.非紧上界 D.紧渐进界 E.非紧下界 5. 以下关于渐进记号的性质是正确的有:(A ) A.f (n)(g(n)),g(n)(h(n))f (n)(h(n))=Θ=Θ?=Θ B. f (n)O(g(n)),g(n)O(h(n))h(n)O(f (n))==?= C. O(f(n))+O(g(n)) = O(min{f(n),g(n)}) D. f (n)O(g(n))g(n)O(f (n))=?= D. void hanoi(int n, int C, int A, int B) { if (n > 0) { | hanoi(n-1, A, C, B); move(n,a,b); hanoi(n-1, C, B, A); }

《算法设计与分析》实验报告

算法设计与分析课程实验项目目录 学生:学号: *实验项目类型:演示性、验证性、综合性、设计性实验。 *此表由学生按顺序填写。

本科实验报告专用纸 课程名称算法设计与分析成绩评定 实验项目名称蛮力法指导教师 实验项目编号实验项目类型设计实验地点机房 学生学号 学院信息科学技术学院数学系信息与计算科学专业级 实验时间2012年3月1 日~6月30日温度24℃ 1.实验目的和要求: 熟悉蛮力法的设计思想。 2.实验原理和主要容: 实验原理:蛮力法常直接基于问题的描述和所涉及的概念解决问题。 实验容:以下题目任选其一 1).为蛮力字符串匹配写一段可视化程序。 2).写一个程序,实现凸包问题的蛮力算法。 3).最著名的算式谜题是由大名鼎鼎的英国谜人 H.E.Dudeney(1857-1930)给出的: S END +MORE MONEY . 这里有两个前提假设: 第一,字母和十进制数字之间一一对应,也就是每个字母只代表一个数字,而且不同的字母代表不同的数字;第二,数字0不出现在任何数的最左边。求解一个字母算术意味着找到每个字母代表的是哪个数字。请注意,解可能并不是唯一的,不同人的解可能并不相同。3.实验结果及分析: (将程序和实验结果粘贴,程序能够注释清楚更好。)

该算法程序代码如下: #include "stdafx.h" #include "time.h" int main(int argc, char* argv[]) { int x[100],y[100]; int a,b,c,i,j,k,l,m,n=0,p,t1[100],num; int xsat[100],ysat[100]; printf("请输入点的个数:\n"); scanf("%d",&num); getchar(); clock_t start,end; start=clock(); printf("请输入各点坐标:\n"); for(l=0;l

《计算机算法设计与分析》习题及答案.doc

《计算机算法设计与分析》习题及答案 一.选择题 1、二分搜索算法是利用( A )实现的算法。 A、分治策略 B、动态规划法 C、贪心法 D、回溯法 2、下列不是动态规划算法基本步骤的是( A )。 A、找出最优解的性质 B、构造最优解 C、算出最优解 D、定义最优解 3、最大效益优先是( A )的一搜索方式。 A、分支界限法 B、动态规划法 C、贪心法 D、回溯法 4. 回溯法解旅行售货员问题时的解空间树是( A )。 A、子集树 B、排列树 C、深度优先生成树 D、广度优先生成树 5.下列算法中通常以自底向上的方式求解最优解的是( B )。 A、备忘录法 B、动态规划法 C、贪心法 D、回溯法 6、衡量一个算法好坏的标准是( C )。 A 运行速度快 B 占用空间少 C 时间复杂度低 D 代码短 7、以下不可以使用分治法求解的是( D )。 A 棋盘覆盖问题 B 选择问题 C 归并排序 D 0/1背包问题 8. 实现循环赛日程表利用的算法是( A )。 A、分治策略 B、动态规划法 C、贪心法 D、回溯法 9.下面不是分支界限法搜索方式的是( D )。 A、广度优先 B、最小耗费优先 C、最大效益优先 D、深度优先 10.下列算法中通常以深度优先方式系统搜索问题解的是( D )。 A、备忘录法 B、动态规划法 C、贪心法 D、回溯法 11.备忘录方法是那种算法的变形。( B ) A、分治法 B、动态规划法 C、贪心法 D、回溯法 12.哈夫曼编码的贪心算法所需的计算时间为( B )。 A、O(n2n) B、O(nlogn) C、O(2n) D、O(n) 13.分支限界法解最大团问题时,活结点表的组织形式是( B )。 A、最小堆 B、最大堆 C、栈 D、数组 14.最长公共子序列算法利用的算法是( B )。 A、分支界限法 B、动态规划法 C、贪心法 D、回溯法 15.实现棋盘覆盖算法利用的算法是( A )。 A、分治法 B、动态规划法 C、贪心法 D、回溯法 16.下面是贪心算法的基本要素的是( C )。 A、重叠子问题 B、构造最优解 C、贪心选择性质 D、定义最优解 17.回溯法的效率不依赖于下列哪些因素( D ) A.满足显约束的值的个数 B. 计算约束函数的时间 C.计算限界函数的时间 D. 确定解空间的时间 18.下面哪种函数是回溯法中为避免无效搜索采取的策略( B ) A.递归函数 B.剪枝函数 C。随机数函数 D.搜索函数 19. ( D )是贪心算法与动态规划算法的共同点。

算法设计与分析实验报告 统计数字问题

算法设计与分析实验报告 实验名称统计数字问题评分 实验日期年月日指导教师 姓名专业班级学号 一.实验要求 1、掌握算法的计算复杂性概念。 2、掌握算法渐近复杂性的数学表述。 3、掌握用C++语言描述算法的方法。 4.实现具体的编程与上机实验,验证算法的时间复杂性函数。 二.实验内容 统计数字问题 1、问题描述 一本书的页码从自然数1 开始顺序编码直到自然数n。书的页码按照通常的习惯编排,每个页码都不含多余的前导数字0。例如,第6 页用数字6 表示,而不是06 或006 等。数字计数问题要求对给定书的总页码n,计算出书的全部页码中分别用到多少次数字0,1,2, (9) 2、编程任务 给定表示书的总页码的10 进制整数n (1≤n≤109) 。编程计算书的全部页码中分别用到多少次数字0,1,2, (9) 三.程序算法 将页码数除以10,得到一个整数商和余数,商就代表页码数减余数外有多少个1—9作为个位数,余数代表有1—余数本身这么多个数作为剩余的个位数,此外,商还代表1—商本身这些数出现了10次,余数还代表剩余的没有计算的商的大小的数的个数。把这些结果统计起来即可。 四.程序代码 #include int s[10]; //记录0~9出现的次数 int a[10]; //a[i]记录n位数的规律 void sum(int n,int l,int m) { if(m==1) {

int zero=1; for(int i=0;i<=l;i++) //去除前缀0 { s[0]-=zero; zero*=10; } } if(n<10) { for(int i=0;i<=n;i++) { s[i]+=1; } return; }//位数为1位时,出现次数加1 //位数大于1时的出现次数 for(int t=1;t<=l;t++)//计算规律f(n)=n*10^(n-1) { m=1;int i; for(i=1;i

南京邮电大学算法设计实验报告——动态规划法

实验报告 (2009/2010学年第一学期) 课程名称算法分析与设计A 实验名称动态规划法 实验时间2009 年11 月20 日指导单位计算机学院软件工程系 指导教师张怡婷 学生姓名丁力琪班级学号B07030907 学院(系) 计算机学院专业软件工程

实验报告 实验名称动态规划法指导教师张怡婷实验类型验证实验学时2×2实验时间2009-11-20一、实验目的和任务 目的:加深对动态规划法的算法原理及实现过程的理解,学习用动态规划法解决实际应用中的最长公共子序列问题。 任务:用动态规划法实现求两序列的最长公共子序列,其比较结果可用于基因比较、文章比较等多个领域。 要求:掌握动态规划法的思想,及动态规划法在实际中的应用;分析最长公共子序列的问题特征,选择算法策略并设计具体算法,编程实现两输入序列的比较,并输出它们的最长公共子序列。 二、实验环境(实验设备) 硬件:计算机 软件:Visual C++

三、实验原理及内容(包括操作过程、结果分析等) 1、最长公共子序列(LCS)问题是:给定两个字符序列X={x1,x2,……,x m}和Y={y1,y2,……,y n},要求找出X和Y的一个最长公共子序列。 例如:X={a,b,c,b,d,a,b},Y={b,d,c,a,b,a}。它们的最长公共子序列LSC={b,c,d,a}。 通过“穷举法”列出所有X的所有子序列,检查其是否为Y的子序列并记录最长公共子序列并记录最长公共子序列的长度这种方法,求解时间为指数级别的,因此不可取。 2、分析LCS问题特征可知,如果Z={z1,z2,……,z k}为它们的最长公共子序列,则它们一定具有以下性质: (1)若x m=y n,则z k=x m=y n,且Z k-1是X m-1和Y n-1的最长公共子序列; (2)若x m≠y n且x m≠z k,则Z是X m-1和Y的最长公共子序列; (3)若x m≠y n且z k≠y n,则Z是X和Y的最长公共子序列。 这样就将求X和Y的最长公共子序列问题,分解为求解较小规模的问题: 若x m=y m,则进一步分解为求解两个(前缀)子字符序列X m-1和Y n-1的最长公共子序列问题; 如果x m≠y n,则原问题转化为求解两个子问题,即找出X m-1和Y的最长公共子序列与找出X 和Y n-1的最长公共子序列,取两者中较长者作为X和Y的最长公共子序列。 由此可见,两个序列的最长公共子序列包含了这两个序列的前缀的最长公共子序列,具有最优子结构性质。 3、令c[i][j]保存字符序列X i={x1,x2,……,x i}和Y j={y1,y2,……,y j}的最长公共子序列的长度,由上述分析可得如下递推式: 0 i=0或j=0 c[i][j]= c[i-1][j-1]+1 i,j>0且x i=y j max{c[i][j-1],c[i-1][j]} i,j>0且x i≠y j 由此可见,最长公共子序列的求解具有重叠子问题性质,如果采用递归算法实现,会得到一个指数时间算法,因此需要采用动态规划法自底向上求解,并保存子问题的解,这样可以避免重复计算子问题,在多项式时间内完成计算。 4、为了能由最优解值进一步得到最优解(即最长公共子序列),还需要一个二维数组s[][],数组中的元素s[i][j]记录c[i][j]的值是由三个子问题c[i-1][j-1]+1,c[i][j-1]和c[i-1][j]中的哪一个计算得到,从而可以得到最优解的当前解分量(即最长公共子序列中的当前字符),最终构造出最长公共子序列自身。

相关文档
最新文档