热力学第二定律
解释热力学第二定律

解释热力学第二定律
热力学第二定律是热力学中的一个基本定律,也被称为熵增定律。
它提供了一个描述自然界中热现象发生方向的规律。
热力学第二定律有多种表述方式,其中最常见的是克劳修斯表述和开尔文表述。
克劳修斯表述,不可能将热量从低温物体自发地传递给高温物体,而不产生其他效果。
这个表述可以解释为,热量不会自发地从冷的物体转移到热的物体,而不产生其他变化。
例如,我们无法将热量从一个冷水杯中传递到一个热水杯中,而不使用外部能量(如加热器)。
开尔文表述,不可能通过一个循环过程将热量完全转化为功而不产生其他效果。
这个表述可以解释为,不可能通过一个循环过程将热量完全转化为有用的功而不产生其他变化。
换言之,不可能将热量全部转化为有用的能量,而不产生其他形式的能量损失。
热力学第二定律的核心思想是熵的增加。
熵是描述系统无序程度的物理量,热力学第二定律指出,一个孤立系统的熵总是趋向于增加,而不会减少。
换句话说,自然界中的过程总是朝着更高熵(更大的无序)的方向发展。
总结来说,热力学第二定律告诉我们,热现象具有一种不可逆性,热量不会自发地从冷物体传递到热物体,而且热量无法完全转化为有用的功而不产生其他形式的能量损失。
这个定律对于理解自然界中的热现象和能量转化过程非常重要。
热力学第二定律

二. 熵(entropy)S
dQ T 0 R
1 R2 R1
2
存在一个与过程 无关的状态量
( 2)
p
d Q (1) d Q T T 0 (1) ( 2)
R1 R2
0
( 2)
V
d Q ( 2) d Q ( 2) d Q 令 S2 S1 S T T T (1) (1) (1) R1 R2 R —任意可逆过程 熵增(量)
10
二 . 不可逆过程是相互沟通的 热二律的 开氏表述
功全部转换成热而不产生其 它影响的过程是不可逆的
(否则热全部转换为功而不产生其它影响成立, 这就违背了热二律的开氏说法。) 热二律的 克氏说法 有限温差热传导不可逆
开氏、克氏 表述的等价
功、热转换 的不可逆性
热传导的 不可逆性
11
实际上,一切不可逆过程都是相互沟通的。 例如: 功变热而不产生其他影 响之不可逆(开氏表述) 可导出 证明: T
25
SCu
Q吸 mc(T1 T2 ) 水恒温吸热:S水 0 T2 T2 T1 T1 S总 S水 SCu mc( 1 ln ) 0(自己证) T2 T2
dT T2 mc mc ln 0 T T1 T1
T2
[例2] 已知: 1mol理气经绝热自由膨胀体积加倍
气体
气体自由膨 胀之不可逆
T
Q T
绝热壁
A=Q 等 价
Q
气体
A=Q
设气体能 气体 T 自动收缩 导致
循环,无变化
不成立 不成立 任何一种不可逆过程的表述,都可作为热力学第 二定律的表述! 12
§4.4 卡诺定理(Carnot theorem)
热力学第二定律

第二章热力学第二定律2.1 自发变化的共同特征自发变化某种变化有自动发生的趋势,一旦发生就无需借助外力,可以自动进行,这种变化称为自发变化。
自发变化的共同特征—不可逆性任何自发变化的逆过程是不能自动进行的。
例如:(1)焦耳热功当量中功自动转变成热;(2)气体向真空膨胀(3)热量从高温物体传入低温物体;(4)浓度不等的溶液混合均匀;(5)锌片与硫酸铜的置换反应等,它们的逆过程都不能自动进行。
当借助外力,体系恢复原状后,会给环境留下不可磨灭的影响。
2.2热力学第二定律(T h e S e c o n d L a w o f T h e r m o d y n a m i c s)克劳修斯(Clausius)的说法:“不可能把热从低温物体传到高温物体,而不引起其它变化。
”开尔文(Kelvin)的说法:“不可能从单一热源取出热使之完全变为功,而不发生其它的变化。
” 后来被奥斯特瓦德(Ostward)表述为:“第二类永动机是不可能造成的”。
第二类永动机:从单一热源吸热使之完全变为功而不留下任何影响。
2.3卡诺循环与卡诺定理2.3.1卡诺循环(C a r n o t c y c l e)1824 年,法国工程师N.L.S.Carnot (1796~1832)设计了一个循环,以理想气体为工作物质,从高温T h热源吸收Q h的热量,一部分通过理想热机用来对外做功W,另一部分Q c的热量放给低温热源T c。
这种循环称为卡诺循环.1mol 理想气体的卡诺循环在pV图上可以分为四步:过程1:等温T h 可逆膨胀由 p 1V 1到p 2V 2(AB)10U ∆= 21h 1lnV W nRT V =- h 1Q W =- 所作功如AB 曲线下的面积所示。
过程2:绝热可逆膨胀由 p 2V 2T h 到p 3V 3T c (BC)20Q = ch 22,m d T V T W U C T =∆=⎰所作功如BC 曲线下的面积所示。
热力学第二定律

热力学第二定律热力学第二定律是热力学领域中的基本定律之一,它描述了自然界中的物质运动和能量转化的方向性。
本文将详细介绍热力学第二定律的概念、原理及其在热力学系统中的应用。
1. 热力学第二定律的概念热力学第二定律是指在孤立系统中,任何自发过程都会导致熵的增加,而不会导致熵的减少。
其中,孤立系统是指与外界没有物质和能量交换的系统,熵是描述系统无序程度或混乱程度的物理量。
2. 热力学第二定律的原理热力学第二定律有多种表述形式,其中最常用的是凯尔文-普朗克表述和克劳修斯表述。
2.1 凯尔文-普朗克表述凯尔文-普朗克表述认为不可能通过单一热源从热能的完全转化形式(即热量)中提取能量,并将其完全转化为功。
该表述包括两个重要概念:热机和热泵。
热机是指将热能转化为功的设备,而热泵则是将低温热源的热量转移到高温热源的设备。
2.2 克劳修斯表述克劳修斯表述认为不可能存在这样的过程:热量从低温物体自发地传递到高温物体。
这一表述可由热力学第一定律和熵的概念推导得出。
3. 热力学第二定律的应用热力学第二定律在能量转化和机械工程领域具有广泛的应用。
以下将介绍几个实际应用。
3.1 热机效率根据热力学第二定律,热机的效率不可能达到100%,即不可能将一定量的热能完全转化为功。
热机的效率定义为输出功与输入热量之比,常用符号为η。
根据卡诺热机的理论,热机的最高效率与工作温度之差有关。
3.2 热力学循环过程热力学循环过程是指系统在经历一系列状态变化后,最终回到初始状态的过程。
根据热力学第二定律,热力学循环过程中所涉及的热机或热泵的效率不可能大于卡诺循环的效率。
3.3 等温膨胀过程等温膨胀过程是热力学第二定律的应用之一。
在等温膨胀过程中,系统与热源保持恒温接触,通过对外做功来改变系统的状态。
根据热力学第二定律,等温膨胀过程无法实现自发进行,必须进行外界功输入才能实现。
4. 热力学第二定律的发展和突破随着科学技术的发展,人们对热力学第二定律的认识不断深化。
热力学第二定律 概念及公式总结

热力学第二定律一、 自发反应-不可逆性(自发反应乃是热力学的不可逆过程)一个自发反应发生之后,不可能使系统和环境都恢复到原来的状态而不留下任何影响,也就是说自发反应是有方向性的,是不可逆的。
二、 热力学第二定律1. 热力学的两种说法:Clausius:不可能把热从低温物体传到高温物体,而不引起其它变化Kelvin :不可能从单一热源取出热使之完全变为功,而不发生其他的变化2. 文字表述: 第二类永动机是不可能造成的(单一热源吸热,并将所吸收的热完全转化为功)功 热 【功完全转化为热,热不完全转化为功】(无条件,无痕迹,不引起环境的改变) 可逆性:系统和环境同时复原3. 自发过程:(无需依靠消耗环境的作用就能自动进行的过程)特征:(1)自发过程单方面趋于平衡;(2)均不可逆性;(3)对环境做功,可从自发过程获得可用功三、 卡诺定理(在相同高温热源和低温热源之间工作的热机)ηη≤ηη (不可逆热机的效率小于可逆热机)所有工作于同温热源与同温冷源之间的可逆机,其热机效率都相同,且与工作物质无关四、 熵的概念1. 在卡诺循环中,得到热效应与温度的商值加和等于零:ηηηη+ηηηη=η 任意可逆过程的热温商的值决定于始终状态,而与可逆途径无关热温商具有状态函数的性质 :周而复始 数值还原从物理学概念,对任意一个循环过程,若一个物理量的改变值的总和为0,则该物理量为状态函数2. 热温商:热量与温度的商3. 熵:热力学状态函数 熵的变化值可用可逆过程的热温商值来衡量ηη :起始的商 ηη :终态的熵 ηη=(ηηη)η(数值上相等) 4. 熵的性质:(1)熵是状态函数,是体系自身的性质 是系统的状态函数,是容量性质(2)熵是一个广度性质的函数,总的熵的变化量等于各部分熵的变化量之和(3)只有可逆过程的热温商之和等于熵变(4)可逆过程热温商不是熵,只是过程中熵函数变化值的度量(5)可用克劳修斯不等式来判别过程的可逆性(6)在绝热过程中,若过程是可逆的,则系统的熵不变(7)在任何一个隔离系统中,若进行了不可逆过程,系统的熵就要增大,所以在隔离系统中,一切能自动进行的过程都引起熵的增大。
热力学第二定律

§10.8热力学第二定律一、热力学第二定律任务自然界中发生的过程总是有方向的。
热力学第二定律正是反映了自然界中热力学过程的方向性问题,是自然界经验的总结。
二、热力学第二定律的两种表述 1、开尔文表述(开氏表述):不可能制成一种循环动作的热机,只从单一热源吸取热量,使它完全变为有用功而不引起其它变化。
说明:1)前提:即工作物质必须循环动作和其它物体不发生任何变化。
2)开尔文说法是从功热转化的角度出发的,它揭示了功热转换是不可逆的,即3)开尔文表述可等价说成“第二类永动机是不可能制造出来的。
” 2、克劳修斯表述(克氏表述):热量不可能自动地从低温物体传到高温物体。
注意:1)条件:“自动地”2)表明热传递的不可逆性 3、两种表述的等效性1)开尔文说法不成立,则克劳修斯说法也不成立;若开氏说法不成立,则热机可从高温热源吸收热量Q 1,全部用来对外作功A= Q 1;这个功A 可用来驱动一台致冷机,从低温热源吸收热量Q 2,同时向高温热源放出热量Q 2+ A= Q 2+ Q 1。
两者总的效果是低温热源的热量传到了高温热源,而没产生其它影响,显然违反了克劳修斯说法。
2)克劳修斯说法不成立,则开尔文说法也不成立;若克劳修斯说法不成立,即热量可自动地从低温热源传到高温热源。
考虑一台工作于高温热源与低温热源的热机。
从高温热源吸收热量Q 1,向低温热源放出热量Q 2,则Q 2能自动地传到高温热源;两者总的效果是热机把从高温热源吸收的热量全部用来对外作功,这显然违反开氏说法。
由此,可以看出热力学第二定律的表述是多种多样的,而且不同的表述是可以相互沟通的。
三、热力学第二定律的本质 1、可逆过程与不可逆过程一个热力学系统经历一个过程P ,从状态A 变到状态B ,若能使系统进行逆向变化,从状态B 又回到状态A ,且外界也同时恢复原状,我们称过程P 为可逆过程;反之,如果用任何方法都不能使系统和外界完全复原,则称为不可逆过程。
热力学第二定律卡诺定律

• 热力学第二定律概述 • 卡诺定律的起源与原理 • 卡诺定律在热机效率中的应用 • 卡诺定律与环境保护 • 卡诺定律的现代研究与发展
01
热力学第二定律概述
定义与表述
热力学第二定律定义
热力学第二定律是描述热能和其他形式的能量之间转换的规 律,它指出不可能从单一热源吸收热量并使之完全变为功, 而不引起其他变化。
热力学第二定律在能源工程领域有着广泛的应用,例如在火力 发电、核能发电、风能发电等领域中,都需要遵循热力学第二
定律以提高能源利用效率。
制冷技术
在制冷技术领域,热力学第二定律是制冷机设计和性能评估的 重要依据,它指导人们不断改进制冷技术,提高制冷效率。
化工过程
在化工过程中,热力学第二定律用于指导化学反应过程的优化 和能效提升,通过降低能耗和提高产率来实现经济效益的提升
针对复杂系统的卡诺定律研究,需要发展更精确的理论模型和实验技术。
THANKS
感谢观看
卡诺循环
卡诺循环是理想化的一种热机工作过程,由 两个等温过程和两个绝热过程组成。
卡诺效率
卡诺效率是指卡诺热机在理想工作过程中,从高温 热源吸收的热量与向低温热源放出的热量之比。
卡诺定律
卡诺定律指出,在相同的高温热源和低温热 源之间,所有实际热机的效率都不可能超过 卡诺效率。
实际热机的效率与卡诺定律的关联
。
02
卡诺定律的起源与原理
卡诺的生平简介
卡诺(Sadi Carnot)是19世纪初的法国物理学家和工程师,出生于1796年,逝世 于1832年。他是热力学的先驱之一,对热机效率的研究有着重要贡献。
卡诺在巴黎综合理工学院学习期间,受到拉格朗日和拉普拉斯等数学家的影响, 对数学和物理学产生了浓厚兴趣。他毕业后从事军事工程工作,但始终未放弃对 热学的研究。
热力学第二定律

1、 气、液、固体的定p或定V的变T 过程
定压变温过程:由δQp=dH=nCp,mdT
得:S= 2 Qr T2 nC p,m dT ;
1T
T1 T
视C
为常
p,m
数
S
nC
p ,m n
T2 T1
(2-4-1)
定容变温过程:由δQV=dU=nCV,mdT
同理得:S
nCV ,mn
自发
S孤立 0 或 dS孤立 0平衡
(2-3-4) (2-3-5)
熵增加原理:系统经绝热过程由一状态到达另一状态, 熵值不减少;自发变化的结果,必使孤立系统的熵增加 (孤立系统中可以发生的实际过程都是自发过程)。
方向:孤立系统的熵增加
限度:孤立系统熵值达到最大——平衡态。
二、 熵增原理及平衡的熵判据
mix
S
SA nARn
S 1 yA
BnBnRARnny1VB AVAVnBRBnByRBnnyVBAV(B2V-4B-6)
∵yB < 1,∴ΔmixS > 0
结论:定T定p理气混 合过程系统熵增加
nA, V + nB, V 定温定容 nA+nB, V
AT
BT
BQir BQr S
AT
AT
得:S BQ
AT
或
dS
Q
T
不可逆 可逆
(2-3-3)
——热力学第二定律的数学表达式 依具体情况方向判据的形式
二、 熵增原理及平衡的熵判据
绝热过程,δQ=0,则有
S绝热 0
或
不可逆
dS绝热 0 可逆
第三章热力学第二定律

第三章热力学第二定律第三章 热力学第二定律(一)主要公式及其适用条件1、热机效率1211211/)(/)(/T T T Q Q Q Q W -=+=-=η式中:Q 1及Q 2分别为工质在循环过程中从高温热源T 1所吸收的热量和向低温热源T 2所放出的热量,W 为在循环过程中热机对环境所作的功。
此式适用于在两个不同温度的热源之间所进行的一切可逆循环。
2、卡诺定理的重要结论⎩⎨⎧<=+不可逆循环可逆循环,0,0//2211T Q T Q不论是何种工作物质以及在循环过程中发生何种变化,在指定的高、低温热源之间,一切要逆循环的热温商之和必等于零,一切不可逆循环的热温商之和必小于零。
3、熵的定义式TQ dS /d r def = 式中:r d Q 为可逆热,T 为可逆传热r d Q 时系统的温度。
此式适用于一切可逆过程熵变的计算。
4、克劳修斯不等式⎰⎩⎨⎧≥∆21)/d (可逆过程不可逆过程T Q S上式表明,可逆过程热温商的总和等于熵变,而不可逆过程热温商的总和必小于过程的熵变。
5、熵判据∆S (隔) = ∆S (系统) + ∆S (环境)⎩⎨⎧=>系统处于平衡态可逆过程能自动进行不可逆,,0,,0 此式适用于隔离系统。
只有隔离系统的总熵变才可人微言轻过程自动进行与平衡的判据。
在隔离系统一切可能自动进行的过程必然是向着熵增大的方向进行,绝不可能发生∆S (隔)<0的过程,这又被称为熵增原理。
6、熵变计算的主要公式⎰⎰⎰-=+==∆212121r d d d d d T p V H T V p U T Q S对于封闭系统,一切可逆过程的熵变计算式,皆可由上式导出。
(1)∆S = nC V ,m ln(T 2/T 1) + nR ln(V 2/V 1)= nC p,m ln(T 2/T 1) + nR ln(p 2/p 1)= nC V ,m ln(p 2/p 1) + nC p,m ln(V 2/V 1)上式适用于封闭系统、理想气体、C V ,m =常数、只有pVT 变化的一切过程。
热力学第二定律

Q2 e A
Q1 A e A0
克劳修斯
从数学形式上看,若一个制冷循环过程中,需 要做的功越小,致冷效能就越大;
若制冷循环中可以有A→0,那么制冷效能e、 ε就能趋于无限大!? 这相当于不用任何驱动,热量自动地从低温热 源流向高温热源。
这种现象在自然界是从未观察到的。 基于这一点,就构成了热力学第二定律的克劳 修斯表述。 热量不可能自动地从低温物体传到高温物体 我们将其简称为 { C } 表述。
一乒乓球瘪了(并不漏气),放在热水中浸 泡,它重新鼓起来,这是 “ 从单一热源吸热的系 统对外做功的过程 ” 吗?这违反热力学第二定律 吗?
球内气体的温度变了! 等温膨胀过程内能不变,吸热全部用来对外 做功,这违反热力学第二定律吗?
这不是一个循环过程!
二、克劳修斯表述
从致冷机的角度来看,不论 是为了冷却还是为了供暖,致冷 效能都是大于 1 的。致冷效能越 大,说明效率越高。
例:
普通物理学教案
系统从T1到T2 的准静态热传导过程
系统
T1+△T
T1+2△T
T1+3△T
T2
若从 T2 到 T1 只有无穷小的变化,可视为等 温热传导,这是可逆过程。
人类的活动,能创造一些在自然界中一般不发 生的过程。 比如:气缸内气体的膨胀为正向过程, 压缩过程为逆向过程。 可见在人的干预下,逆向的过程是可能进行的。 但我们现在关心的远不止这一点,我们要考察: 在人的干预下,能否发生不留下任何痕迹的逆 向过程?
热力学第二定律

定理定律
01 定律表述
03 定律质疑
目录
02 定律解释
热力学第二定律(second law of thermodynamics),热力学基本定律之一,克劳修斯表述为:热量不能 自发地从低温物体转移到高温物体。开尔文表述为:不可能从单一热源取热使之完全转换为有用的功而不产生其 他影响。熵增原理:不可逆热力过程中熵的微增量总是大于零。在自然过程中,一个孤立系统的总混乱度(即 “熵”)不会减小。
也就是说,在孤立系统内对可逆过程,系统的熵总保持不变;对不可逆过程,系统的熵总是增加的。这个规 律叫做熵增加原理。这也是热力学第二定律的又一种表述。熵的增加表示系统从几率小的状态向几率大的状态演 变,也就是从比较有规则、有秩序的状态向更无规则,更无秩序的状态演变。熵体现了系统的统计性质。
第二定律在有限的宏观系统中也要保证如下条件: 1.该系统是线性的; 2.该系统全部是各向同性的。 另外有部分推论:比如热辐射:恒温黑体腔内任意位置及任意波长的辐射强度都相同,且在加入任意光学性 质的物体时,腔内任意位置及任意波长的辐射强度都不变。
主词条:热寂论
热寂热寂论是把热力学第二定律推广到整个宇宙的一种理论。宇宙的能量保持不变,宇宙的熵将趋于极大值, 伴随着这一进程,宇宙进一步变化的能力越来越小,一切机械的、物理的、化学的、生命的等多种多样的运动逐 渐全部转化为热运动,最终达到处处温度相等的热平衡状态,这时一切变化都不会发生,宇宙处于死寂的永恒状 态。宇宙热寂说仅仅是一种可能的猜想。
第二定律指出在自然界中任何的过程都不可能自动地复原,要使系统从终态回到初态必需借助外界的作用, 由此可见,热力学系统所进行的不可逆过程的初态和终态之间有着重大的差异,这种差异决定了过程的方向,人 们就用状态函数熵来描述这个差异,从理论上可以进一步证明:
热力学第二定律的数学表达式

热力学第二定律的数学表达式
热力学第二定律的数学表达式是:ds≥δQ/T。
热力学第二定律的数学表达式:ds ≥δQ/T,又称克劳修斯不等式。
由克劳修斯不等式知,将体系熵变量的大小与过程热温熵值进行比较就可以判断过场可逆与否。
对于绝热可逆过程,ds=δQ/T=0。
热力学第二定律是热力学基本定律之一,克劳修斯表述为:热量不能自发地从低温物体转移到高温物体。
热力学第二定律的意义:
热力学第二定律的数学表达式表明所有可逆循环的克劳修斯积分值都等于零,所有不可逆循环的克劳修斯积分值都小于零。
故本不等式可作为判断一切任意循环是否可逆的依据。
应用克劳修斯不等式还可推出如下的重要结论,即任何系统或工质经历一个不可逆的绝热过程之后,其熵值必将有所增大。
热力学第二方程定律

热力学第二定律是自然界的基本定律之一,描述了能量转换过程的方向性和效率极限。
该定律有几种不同的表述方式,但核心思想是一致的,主要包括以下几个方面:
1. 克劳修斯表述(Clausius Statement):
热量不能自发地从低温体传到高温体。
这意味着热量只能从高温区域流向低温区域,如果没有外部工作或其他能量的消耗,热量不能自行从低温物体流向高温物体。
2. 开尔文表述(Kelvin-Planck Statement):
不可能从单一热源吸取热量并完全转化为功,而不产生其他影响或在任何循环过程中不对外界做功。
也就是说,不存在一种装置可以从单一热源吸收热量并在没有任何废热排放的情况下,将其全部转化为有用的功,这就是所谓的第二类永动机是不可能存在的。
3. 熵增原理(Entropy Principle):
在一个封闭(孤立)系统中,自发过程总是伴随着熵(S)的增加。
在不可逆过程中,系统的总熵永远不会减小,而在平衡状态下,系统的熵达到极大值。
这
里的熵可以理解为系统无序度或混乱程度的一个度量。
综合起来,热力学第二定律揭示了能量转换过程的自发性,即自然过程总是倾向于向熵更大的状态发展,并限制了能源转换的效率上限。
它阐述了能量在转换过程中不可避免的存在浪费,而且这种浪费是向着增加系统总熵的方向进行的。
热力学第二定律公式

热力学第二定律公式
热力学第二定律是一种基本的物理定律,它描述了物质在发生热力学过程时所表现出的一般性规律。
它的公式表达式为ΔS ≥ δQ/T,其中ΔS代表热力学系统的熵增量,δQ代表系统受到的热量,T代表系统的绝对温度。
它的定义如下:当一个物质在发生热力学过程时,物质的熵增量ΔS必须大于系统受到的热量δQ除以系统的绝对温度T,即ΔS ≥ δQ/T。
这一定律表明,当物质发生热力学过程时,物质的熵总是在增加,而不会减少,即熵增量ΔS必须大于等于零,而不能小于零。
当一个物质发生热力学过程时,熵增量ΔS可能会大于δQ/T,这表明物质的熵增量不仅是由外加的热量所决定,还受到系统的温度影响,即熵增量也受到温度的影响,这也是热力学第二定律的一个重要内容。
热力学第二定律是一个重要的物理定律,它描述了物质在发生热力学过程时的一般规律,即物质的熵总是在增加,而不会减少,而且熵增量的大小也受到系统的温度的影响。
鉴于热力学第二定律的重要性,它已经成为热力学研究的基础,它在很多热力学相关问题的研究中都发挥着重要作用。
热力学第二定律 概念及公式总结

一、自发反应-不可逆性(自发反应乃是热力学的不可逆过程)一个自发反应发生之后,不可能使系统和环境都恢复到原来的状态而不留下任何影响,也就是说自发反应是有方向性的,是不可逆的。
二、热力学第二定律1.热力学的两种说法:Clausius:不可能把热从低温物体传到高温物体,而不引起其它变化Kelvin:不可能从单一热源取出热使之完全变为功,而不发生其他的变化2.文字表述:第二类永动机是不可能造成的(单一热源吸热,并将所吸收的热完全转化为功)功热【功完全转化为热,热不完全转化为功】(无条件,无痕迹,不引起环境的改变)可逆性:系统和环境同时复原3.自发过程:(无需依靠消耗环境的作用就能自动进行的过程)特征:(1)自发过程单方面趋于平衡;(2)均不可逆性;(3)对环境做功,可从自发过程获得可用功三、卡诺定理(在相同高温热源和低温热源之间工作的热机)(不可逆热机的效率小于可逆热机)所有工作于同温热源与同温冷源之间的可逆机,其热机效率都相同,且与工作物质无关四、熵的概念1.在卡诺循环中,得到热效应与温度的商值加和等于零:任意可逆过程的热温商的值决定于始终状态,而与可逆途径无关热温商具有状态函数的性质:周而复始数值还原从物理学概念,对任意一个循环过程,若一个物理量的改变值的总和为0,则该物理量为状态函数2. 热温商:热量与温度的商3. 熵:热力学状态函数熵的变化值可用可逆过程的热温商值来衡量(数值上相等)4. 熵的性质:(1)熵是状态函数,是体系自身的性质是系统的状态函数,是容量性质(2)熵是一个广度性质的函数,总的熵的变化量等于各部分熵的变化量之和(3)只有可逆过程的热温商之和等于熵变(4)可逆过程热温商不是熵,只是过程中熵函数变化值的度量(5)可用克劳修斯不等式来判别过程的可逆性(6)在绝热过程中,若过程是可逆的,则系统的熵不变(7)在任何一个隔离系统中,若进行了不可逆过程,系统的熵就要增大,所以在隔离系统中,一切能自动进行的过程都引起熵的增大。
热力学第二定律.

S f
2 dQ 1T
系统熵的变化量与熵流之差定义为熵产,用“Sg”表示
Sg S2 S1 S f
(S2 S1) S f Sg
熵流是由于系统与外界的发生热交换而引起的,其取 值可正可负可为零,而熵产是过程不可逆性的度量, 可逆过程熵产为零,不可逆过程熵产大于零,任何过 程的熵产不可能小于零。
• (2)若把此热机当制冷机使用,同样由克劳修斯积分 判断
Q Q1 Q2 2000 800 0.585 kJ / K 0
T T1 T2 973 303
工质经过任意不可逆循环,克劳修斯积分必小于零, 因此循环不能进行。
• 若使制冷循环能从冷源吸热800kJ,假设至少 耗功Wmin,根据孤立系统熵增原理有△Siso=0:
因为工质恢复到原来状态,所以工质熵变
△SE=0
对热源而言,由于热源放热,所以
SH
Q1 T1
2000 973
2.055 kJ / K
• 对冷源而言,冷源吸热
S L
Q2 T2
800 303
2.64 k J
/K
代入得:
Siso (2.055) 2.64 0 0.585 kJ / K 0
2 Q
1T
对于微元过程:
ds
(
dq T
) re v
或 dS
dQ
( T
) re v
mds
由于熵是状态参数,所以不论过程是否可逆,熵 变只由初终状态决定。
可逆与不可逆的情况
S2
S1
2 1
Q
T
热力学第二定律

2.[多选]关于热力学定律,下列说法正确的是
()
A.为了增加物体的内能,必须对物体做功或向它传递热量
B.对某物体做功,必定会使该物体的内能增加
C.可以从单一热源吸收热量,使之完全变为功
D.不可能使热量从低温物体传向高温物体
E.功转变为热的实际宏观过程是不可逆过程
解析:改变内能的方法有做功和热传递两种,所以为了增加物 体的内能,必须对物体做功或向它传递热量,A 项正确;对物 体做功的同时物体向外界放热,则物体的内能可能不变或减小, B 项错误;根据热力学第二定律可知,在对外界有影响的前提 下,可以从单一热源吸收热量,使之完全变为功,C 项正确; 在有外界做功的条件下,可以使热量从低温物体传递到高温物 体,D 项错误;根据热力学第二定律可知,E 项正确。 答案:ACE
热力学第二定律与热力学第一定律比较
1.热力学第一定律与热力学第二定律的区别与联系 热力学第一定律揭示了做功和传热对改变物体内能的 规律关系ΔU=W+Q,指明内能不但可以转移,而且 还能跟其他形式的能相互转化。热力学第一定律是能 量守恒定律在热学中的一种表述形式,是从能的角度
区 揭示不同物质运动形式相互转化的可能性 别 热力学第二定律揭示了大量分子参与的宏观过程的方
(1)高温物体热热量量QQ不能能自自发发传传给给低温物体
(2)功不能能 自发自地发且地不 完能 全完转全化转为化为热
(3)气体体积V1
能自发膨胀到 不能自发收缩到
气体体积V2(较大)
(4)不同气体A和B
能自发混合成 不能自发分离成
混合气体AB
4.热力学第二定律的其他描述 (1)一切宏观自然过程的进行都具有方向性。 (2)气体向真空的自由膨胀是不可逆的。 (3)第二类永动机是不可能制成的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四节热力学第二定律
基础夯实
1.第二类永动机不可能制成,是因为()
A.违背了能量的守恒定律
B.热量总是从高温物体传递到低温物体
C.机械能不能全部转化为内能
D.内能不能全部转化为机械能,同时不引起其他变化
答案:D
解析:第二类永动机的设想并不违背能量守恒定律,但却违背了涉及热量的能量转化过程是有方向性的规律。
故选项A错;在引起其他变化的情况下,热量可由低温物体非自发地传递到高温物体。
故B错。
机械能可以全部转化为内能。
2.下列哪些过程具有方向性()
A.热传导过程
B.机械能向内能的转化过程
C.气体的扩散过程
D.气体向真空中的膨胀
答案:ABCD
解析:这四个过程都是与热现象有关的宏观过程,根据热力学第二定律的基本内涵,它们都是不可逆的,具有方向性。
3.关于热机的效率,下列说法正确的是()
A.有可能达到80% B.有可能达到100%
C.有可能超过80% D.一定能达到100%
答案:AC
解析:根据热力学第二定律,热机效率永远也达不到100%。
4.(2012·葫芦岛市一中高二检测)关于热力学定律,下列说法正确的是()
A.在一定条件下物体的温度可以降到0K
B.物体从单一热源吸收的热量可全部用于做功
C.吸收了热量的物体,其内能一定增加
D.压缩气体总能使气体的温度升高
答案:B
5.下列宏观过程能用热力学第二定律解释的是()
A.大米和小米混合后小米能自发地填充到大米空隙中而经过一段时间大米、小米不会自动分开
B.将一滴红墨水滴入一杯清水中,会均匀扩散到整杯水中,经过一段时间,墨水和清水不会自动分开
C.冬季的夜晚,放在室外的物体随气温的降低,不会由内能自发地转化为机械能而动起来
D.随着节能减排措施的不断完善,最终也不会使汽车热机的效率达到100%
答案:BCD
解析:热力学第二定律反映的是与热现象有关的宏观过程的方向性的规律,A不属于热现象,A错;由热力学第二定律可知B、C、D正确。
6.如图所示,为电冰箱的工作原理示意图,压缩机工作时,强迫制冷剂在冰箱内外的管道中不断循环,在蒸发器中制冷剂汽化吸收箱体内的热量,经过冷凝器时制冷剂液化,放出热量到箱体外。
下列说法正确的是()
A.热量可以自发地从冰箱内传到冰箱外
B.电冰箱的制冷系统能够不断地把冰箱内的热量传到外界,是因为其消耗了电能
C.电冰箱的工作原理不违反热力学第一定律
D.电冰箱的工作原理违反热力学第一定律
答案:BC
解析:热力学第一定律是热现象中内能与其他形式能的转化规律,是能的转化和守恒定律的具体表现,适用于所有的热学过程,故C正确,D错误;再根据热力学第二定律,热量不能自发地从低温物体传到高温物体,必须借助于其他系统做功,A错误,B正确,故选B、C。
7.什么是第二类永动机?为什么第二类永动机不可能造成?
答案:能够从单一热源吸收热量并把它全部用来做功,而不引起其他变化的热机称为第二类永动机。
第二类永动机不可能制成的原因是因为机械能和内能转化过程具有方向性,尽管机械能可以全部转化
为内能,但内能却不能全部转化为机械能,而不引起其他变化。
8.制冷机是一种利用工作物质,使热量从低温物体传到高温物体的装置,通过制冷机的工作可以使一定空间内的物体温度低于环境温度并维持低温状态。
夏天,将房间一台正在工作的电冰箱的门打开,试分析这是否可以降低室内的平均温度?为什么?
答案:不会降低室内的平均温度。
若将一台正在工作的电冰箱的门打开,尽管可以不断向室内释放冷气,但同时冰箱的箱体向室内散热,就整个房间来说,由于外界通过导线不断有能量输入,室内的温度会不断升高。
能力提升
1.如图中汽缸内盛有定量的理想气体,汽缸壁是导热的,缸外环境保持恒温,活塞与汽缸壁的接触是光滑的,但不漏气。
现将活塞杆与外界连接,使其缓慢地向右移动,这样气体将等温膨胀并通过杆对外做功。
若已知理想气体的内能只与温度有关,则下列说法正确的是()
A.气体是从单一热源吸热,全用来对外做功,因此此过程违反热力学第二定律
B.气体从单一热源吸热,但并未全用来对外做功,所以此过程不违反热力学第二定律
C.气体是从单一热源吸热,全用来对外做功,但此过程不违反热力学第二定律
D.ABC三种说法都不对
答案:C
解析:热力学第二定律从机械能与内能转化过程的方向性来描述是:不可能从单一热源吸收热量并把它全部用来做功,而不引起其他变化。
本题中如果没有外界的帮助,比如外力拉动活塞杆使活塞向右移动,使气体膨胀对外做功,导致气体温度略微降低,是不可能从外界吸收热量的,即这一过程虽然是气体从单一热源吸热,全用来对外做功,但引起了其他变化,所以此过程不违反热力学第二定律。
2.我们绝不会看到:一个放在水平地面上的物体,靠降低温度,可以把内能自发地转化为动能,使这个物体运动起来。
其原因是()
A.这违反了能量守恒定律
B.在任何条件下内能都不可能转化为机械能,只有机械能才会转化为内能
C.机械能和内能的转化过程具有方向性,内能转化成机械能是有条件的
D.以上说法均不正确
答案:C
解析:机械能和内能可以相互转化,但必须通过做功来实现。
由热力学第二定律可知,内能不可能全部转化成机械能,同时不引起其他变化。
3.(德州高二检测)关于第二类永动机,下列说法正确的是() A.没有冷凝器,只有单一的热源,能将从单一热源吸收的热量全部用来做功,而不引起其他变化的热机叫做第二类永动机B.第二类永动机违反了能量守恒定律,所以不可能制成
C.第二类永动机不可能制成,说明机械能可以全部转化为内能,
内能却不可能全部转化为机械能
D.第二类永动机不可能制成,说明机械能可以全部转化为内能,内能却不可能全部转化为机械能,同时不引起其他变化
答案:AD
解析:根据第二类永动机的定义可知A选项正确,第二类永动机不违反能量守恒定律,而是违反热力学第二定律,所以B选项错误。
机械能可以全部转化为内能,内能在引起其他变化时可能全部转化为机械能,C选项错误,D选项正确。
所以,该题的正确答案是A、D。
4.有以下说法:
A.气体的温度越高,分子的平均动能越大
B.即使气体的温度很高,仍有一些分子的运动速度是非常小的C.对物体做功不可能使物体的温度升高
D.如果气体分子间的相互作用力小到可以忽略不计,则气体的内能只与温度有关
E.一由不导热的器壁做成的容器,被不导热的隔板分成甲、乙两室。
甲室中装有一定质量的温度为T的气体,乙室为真空,如图所示,提起隔板,让甲室中的气体进入乙室,若甲室中气体的内能只与温度有关,则提起隔板后当气体重新达到平衡时,其温度仍为T
F.空调机作为制冷机使用时,使热量从温度较低的室内送到温度较高的室外,所以制冷机的工作是不遵守热力学第二定律的G.对于一定量的气体,当其温度降低时,速度大的分子数目减小,速率小的分子数目增加
H.从单一热源吸取热量使之全部变成有用的机械功是不可能的其中正确的是________。
答案:ABEG
5.热力学第二定律常见的表述有以下两种:
第一种表述:不可能使热量由低温物体传递到高温物体,而不引起其他变化;
第二种表述;不可能从单一热源吸收热量并把它全部用来做功,而不引起其他变化。
(a)是根据热力学第二定律的第一种表述画出的示意图;外界对制冷机做功,使热量从低温物体传递到高温物体。
请你根据第二种表述完成示意图(b)。
根据你的理解,热力学第二定律的实质是______。
答案:如图所示,
实质:一切与热现象有关的宏观过程都具有方向性。
6.一种冷暖两用型空调,铭牌标注:输入功率1kW,制冷能力1.2×104kJ/h,制热能力1.3×104kJ/h。
这样,该空调在制热时,每消耗1J电能,将放出3J多热量,是指标错误还是能量不守恒?
答案:都不是。
空调制冷(制热)靠压缩机做功,从室内(室外)吸收热量放到室外(室内)。
在制热时,放出的热量等于消耗的电能与从室外吸收的热量之和,完全可以大于电能消耗。
这既不违背热力学第
一定律,也不违背热力学第二定律。