热力学第二定律 概念及公式总结

合集下载

第三章 热力学第二定律重要公式

第三章 热力学第二定律重要公式

第三章 热力学第二定律1. 卡诺定理卡诺热机效率hc h c h 11T T Q Q Q W−=+=−=η 卡诺定理:工作于高温热源T h 与低温热源T c 之间的热机,可逆热机效率最大。

卡诺定理推论:所有工作于高温热源T h 与低温热源T c 之间的可逆热机,其热机效率都相等,与热机的工作物质无关。

卡诺循环中,热温商之和等于零0cch h =+T Q T Q 任意可逆循环热温商之和也等于零,即0R=⎟⎟⎠⎞⎜⎜⎝⎛∑i iiT Q 或 0δR =⎟⎠⎞⎜⎝⎛∫T Q 2. 热力学第二定律的经典表述克劳休斯说法:不可能把热由低温物体传到高温物体, 而不引起其他变化。

开尔文说法:不可能从单一热源吸热使之完全转化为功, 而不发生其他变化。

热力学第二定律的各种说法的实质:断定一切实际过程都是不可逆的。

各种经典表述法是等价的。

3. 熵的定义TQ S revδd =或∫=ΔB ArevδTQ S熵是广度性质,其单位为。

系统状态变化时,要用可逆过程的热温商来衡量熵的变化值。

1K J −⋅4. 克劳修斯不等式T QS δd irrev ≥ 或 ∫≥ΔB A ir rev δT Q S 等号表示可逆,此时环境的温度T 等于系统的温度,为可逆过程中的热量;不等号表示不可逆,此时T 为环境的温度,为不可逆过程中的热量。

Q δQ δ5. 熵增原理0)d (irrev≥绝热S 或0)(irrev≥Δ绝热S 等号表示绝热可逆过程,不等号表示绝热不可逆过程。

在绝热条件下,不可能发生熵减少的过程。

0)d (irrev≥孤立S 或0)(irrev≥Δ孤立S 等号表示可逆过程或达到平衡态,不等号表示自发不可逆过程。

可以将与系统密切相关的环境部分包括在一起,作为一个隔离系统,则有:0irrev sur sys iso ≥Δ+Δ=ΔS S S6. 熵变计算的主要公式计算熵变的基本公式: ∫∫∫−=+=δ=−=Δ2 12 12 1rev12d d d d TpV H T V p UTQ S S S 上式适用于封闭系统,一切非体积功过程。

热力学第二定律 概念及公式总结

热力学第二定律 概念及公式总结

热力学第二定律一、自发反应-不可逆性(自发反应乃是热力学的不可逆过程)一个自发反应发生之后,不可能使系统和环境都恢复到原来的状态而不留下任何影响,也就是说自发反应是有方向性的,是不可逆的。

二、热力学第二定律1.热力学的两种说法:Clausius:不可能把热从低温物体传到高温物体,而不引起其它变化Kelvin:不可能从单一热源取出热使之完全变为功,而不发生其他的变化2.文字表述:第二类永动机是不可能造成的(单一热源吸热,并将所吸收的热完全转化为功)功热【功完全转化为热,热不完全转化为功】(无条件,无痕迹,不引起环境的改变)可逆性:系统和环境同时复原3.自发过程:(无需依靠消耗环境的作用就能自动进行的过程)特征:(1)自发过程单方面趋于平衡;(2)均不可逆性;(3)对环境做功,可从自发过程获得可用功三、卡诺定理(在相同高温热源和低温热源之间工作的热机)(不可逆热机的效率小于可逆热机)所有工作于同温热源与同温冷源之间的可逆机,其热机效率都相同,且与工作物质无关四、熵的概念1.在卡诺循环中,得到热效应与温度的商值加和等于零:任意可逆过程的热温商的值决定于始终状态,而与可逆途径无关热温商具有状态函数的性质:周而复始数值还原从物理学概念,对任意一个循环过程,若一个物理量的改变值的总和为0,则该物理量为状态函数2。

热温商:热量与温度的商3。

熵:热力学状态函数熵的变化值可用可逆过程的热温商值来衡量(数值上相等)4。

熵的性质:(1)熵是状态函数,是体系自身的性质是系统的状态函数,是容量性质(2)熵是一个广度性质的函数,总的熵的变化量等于各部分熵的变化量之和(3)只有可逆过程的热温商之和等于熵变(4)可逆过程热温商不是熵,只是过程中熵函数变化值的度量(5)可用克劳修斯不等式来判别过程的可逆性(6)在绝热过程中,若过程是可逆的,则系统的熵不变(7)在任何一个隔离系统中,若进行了不可逆过程,系统的熵就要增大,所以在隔离系统中,一切能自动进行的过程都引起熵的增大.若系统已处于平衡状态,则其中的任何过程一定是可逆的。

热力学公式总结

热力学公式总结

热力学公式总结
一、热力学第一定律
热力学第一定律,也被称为能量守恒定律,表明在一个封闭系统中,能量不能被创造或毁灭,只能从一种形式转化为另一种形式。

公式如下:
ΔU = Q + W
其中,ΔU表示系统内能的改变,Q表示系统吸收或释放的热量,W表示系统对外界所做的功。

二、热力学第二定律
热力学第二定律表明,热量不能自发地从低温物体传递到高温物体,而不引起其他变化。

公式如下:
dS/dt ≥ 0
其中,S表示系统的熵,dS/dt表示熵的变化率。

如果dS/dt大于0,则表
示熵增加,如果dS/dt等于0,则表示熵不变。

三、理想气体状态方程
理想气体状态方程表示理想气体的压力、体积和温度之间的关系。

公式如下:PV = nRT
其中,P表示气体的压力,V表示气体的体积,n表示气体的摩尔数,R表
示气体常数,T表示气体的温度(以开尔文为单位)。

四、热力学第三定律
热力学第三定律表明,绝对零度不能通过有限的降温过程达到。

公式如下:ΔS(T→0) = 0
其中,ΔS表示系统熵的变化,T表示温度。

这个公式表明在绝对零度时,
系统的熵为零。

热力学第二定律 概念及公式总结教学总结

热力学第二定律 概念及公式总结教学总结

热力学第二定律概念及公式总结热力学第二定律一、自发反应-不可逆性(自发反应乃是热力学的不可逆过程)一个自发反应发生之后,不可能使系统和环境都恢复到原来的状态而不留下任何影响,也就是说自发反应是有方向性的,是不可逆的。

二、热力学第二定律1.热力学的两种说法:Clausius:不可能把热从低温物体传到高温物体,而不引起其它变化Kelvin:不可能从单一热源取出热使之完全变为功,而不发生其他的变化2.文字表述:第二类永动机是不可能造成的(单一热源吸热,并将所吸收的热完全转化为功)功热【功完全转化为热,热不完全转化为功】(无条件,无痕迹,不引起环境的改变)可逆性:系统和环境同时复原3.自发过程:(无需依靠消耗环境的作用就能自动进行的过程)特征:(1)自发过程单方面趋于平衡;(2)均不可逆性;(3)对环境做功,可从自发过程获得可用功三、卡诺定理(在相同高温热源和低温热源之间工作的热机)(不可逆热机的效率小于可逆热机)所有工作于同温热源与同温冷源之间的可逆机,其热机效率都相同,且与工作物质无关四、熵的概念1.在卡诺循环中,得到热效应与温度的商值加和等于零:任意可逆过程的热温商的值决定于始终状态,而与可逆途径无关热温商具有状态函数的性质:周而复始数值还原从物理学概念,对任意一个循环过程,若一个物理量的改变值的总和为0,则该物理量为状态函数2. 热温商:热量与温度的商3. 熵:热力学状态函数熵的变化值可用可逆过程的热温商值来衡量(数值上相等)4. 熵的性质:(1)熵是状态函数,是体系自身的性质 是系统的状态函数,是容量性质(2)熵是一个广度性质的函数,总的熵的变化量等于各部分熵的变化量之和(3)只有可逆过程的热温商之和等于熵变(4)可逆过程热温商不是熵,只是过程中熵函数变化值的度量(5)可用克劳修斯不等式来判别过程的可逆性(6)在绝热过程中,若过程是可逆的,则系统的熵不变(7)在任何一个隔离系统中,若进行了不可逆过程,系统的熵就要增大,所以在隔离系统中,一切能自动进行的过程都引起熵的增大。

热力学第二定律具体内容

热力学第二定律具体内容

热力学第二定律具体内容:热力学第二定律是热力学定律之一,是指热永远都只能由热处转到冷处.热力学第二定律是描述热量的传递方向的分子有规则运动的机械能可以完全转化为分子无规则运动的热能;热能却不能完全转化为机械能.此定律的一种常用的表达方式是,每一个自发的物理或化学过程总是向著熵(entropy)增高的方向发展.熵是一种不能转化为功的热能.熵的改变量等于热量的改变量除以绝对温度.高、低温度各自集中时,熵值很低;温度均匀扩散时,熵值增高.物体有秩序时,熵值低;物体无序时,熵值便增高.现在整个宇宙正在由有序趋于无序,由有规则趋于无规则,宇宙间熵的总量在增加.克劳修斯表述不可能把热量从低温物体传到高温物体而不引起其他变化.开尔文表述不可能从单一热源吸取热量,使之完全变为有用功而不产生其他影响.开尔文表述还可以表述成:第二类永动机不可能造成.若要简捷热能不能完全转化为机械能,只能从高温物体传到低温物体。

物理化学热力学第二定律总结

物理化学热力学第二定律总结

热力学第二定律1.热力学第二定律:通过热功转换的限制来研究过程进行的方向和限度。

2.热力学第二定律文字表述:第二类永动机是不可能造成的。

(从单一热源吸热使之完全变为功而不留下任何影响。

)3.热力学第二定律的本质: 一切自发过程,总的结果都是向混乱度增加的方向进行(a. 热与功转换的不可逆性; b.气体混合过程的不可逆性; c.热传导过程的不可逆性)4.热力学第二定律的数学表达式:Clausius 不等式5.卡诺循环→热机效率(即:热转化为功的限度有多大?)→卡诺定理(所有工作于同温热源和同温冷源之间的热机,其效率都不能超过可逆机,即可逆机的效率最大。

)→从卡诺循环得到结论:热效应与温度商值的加和等于零。

→任意可逆循环热温商的加和等于零→熵的引出→熵的变化值可用可逆过程的热温商值来衡量→Clausius 不等式:d QS Tδ≥→熵增加原理(熵增加原理)→把与体系密切相关的环境也包括在一起,用来判断过程的自发性(∆S iso =∆S (体系)+∆S (环境)≥0):“>” 号为自发过程;“=” 号为可逆过程) 6.等温过程的熵变:(1)理想气体等温变化:∆S =nRln(V 2/V 1)=nRln(P 1/P 2);(2)等温等压可逆相变(若是不可逆相变,应设计可逆过程): ∆S(相变)=∆H (相变)/T(相变);(3)理想气体(或理想溶液)的等温混合过程:∆S =-R ∑n B lnx B 7. 变温过程的熵变:(1)等容变温:⎰=∆21d m ,T TV TTnC S(2)等压变温:(3):8.标准压力下,求反应温度T 时的熵变值:9.用熵作为判据时,体系必须是孤立体系,也就是说必须同时考虑体系和环境的熵变,这很不方便→有必要引入新的热力学函数,利用体系自身状态函数的变化,来判断自发变化的方向和限度。

因此引入新的函数:亥姆霍兹函数A=U-TS 与吉布斯函数G=H-TS 。

10.等温、可逆过程中,体系对外所作的最大功等于体系亥姆霍兹函数的减少值;自发变化总是朝着亥姆霍兹函数减少的方向进行。

第三章 热力学第二定律

第三章 热力学第二定律

第三章热力学第二定律基本公式卡诺定理:ηI≤ηR热力学第二定律数学表达式,Clausius不等式:ΔS A→B = ∑BATQδ≥ 0熵函数:dS = δQ R/T S = klnΩ亥姆霍兹自由能定义:F = U - TS吉布斯自由能定义:G = H -TS热力学判据:(1) 熵判据 (dS)U,V≥ 0(2) 亥姆霍兹自由能判据(dF)T,v,Wf=0 ≤ 0(3) 吉布斯自由能判据(dG)T,P,Wf=0≤ 0热力学基本关系式:dU = TdS - pdV dH = TdS + VdpdF = - SdT - pdV dG = - SdT + Vdp(∂S/∂V)T = (∂p/∂T)V(∂S/∂p)T = (∂V/∂T)pC v = T(∂S/∂T)v C p = T(∂S/∂T)p吉布斯自由能与温度的关系:Gibbs-Helmholtz公式:[∂(ΔG/T)/∂T]p = -ΔH/T2一些基本过程的ΔS、ΔG、ΔF的运算公式(W例题例1 一个理想卡诺热机在温差为100K的两个热源之间工作,若热机效率为25%,计算T1、T2和功,已知每一循环中T1热源吸热1000J,假定所作的功W以摩擦热的形式完全消失在T2热源上,求该热机每一循环后熵变和环境的熵变。

解:卡诺热机效率η = (T2 - T1)/T225% =100K/T2, T2=400K, T1 = 300K热机效率定义:η = W/Q2η = W/(Q1+ W), 25% =W/(1000J + W), W =333.3JQ2 = W/η = 333.3J/25% = 1333JΔS体 =0(热机循环一周回到原态)由题意知,热机对环境所作的功完全以摩擦热的形式释放在T2热源上。

故T2热源得到了W的热量。

放出了Q2的热量。

ΔS环 =Q环,1/T1 + Q环,2/T2 = Q1/T1 + (Q2+W)/T2=1000J/300K + (-1333+333.3)J/400K =0.83J.K -1例2 有一绝热体系,中间隔板为导热壁,右边容积为左边容积的2倍,已知气体的C V,m = 28.03 J.mol-1,试求:1mol O2 273K 2mol N2 298K(a)不抽掉隔板达平衡后的ΔS ;(b) 抽去隔板达平衡后的ΔS。

热力学第二定律 概念及公式总结

热力学第二定律 概念及公式总结
三、卡诺定理(在相同高温热源和低温热源之间工作的热机)
(不可逆热机的效率小于可逆热机)
所有工作于同温热源与同温冷源之间的可逆机,其热机效率都相同,且与工作物质无关
四、熵的概念
1.在卡诺循环中,得到热效应与温度的商值加和等于零:
任意可逆过程的热温商的值决定于始终状态,而与可逆途径无关
热温商具有状态函数的性质 :周而复始 数值还原
五、克劳修斯不等式与熵增加原理
不可逆过程中,熵的变化量大于热温商
1.某一过程发生后,体系的热温商小于过程的熵变,过程有可能进行不可逆过程
2.某一过程发生后,热温商等于熵变,则该过程是可逆过程
3.热温商大于熵变的过程是不可能发生的
4.热力学第二定律的数学表达式:
5. 隔离系统中, (一个隔离系统的熵永不减少)
6.熵增加原理:
7.隔离系统中有: 【根据熵增加原理知,若从体系的熵值变化量判断过程一定是自发过程,那么该过程一定是隔离系统】
六、热力学基本方程式与T-S图
1.热力学基本方程:
2.根据热二定律基本方程得: 可逆过程中有
3.绝热可逆过程:
七、 熵变的计算
1.等温过程中熵的变化值:
(1)理想气体等温可逆变化: 、 、
从物理学概念,对任意一个循环过程,若一个物理量的改变值的总和为0,则该物理量为状态函数
2.热温商:热量与温度的商
3. 熵:热力学状态函数 熵的变化值可用可逆过程的热温商值来衡量 (数值上相等)
4. 熵的性质:
(1)熵是状态函数,是体系自身的性质是系统的状态函数,是容量性质
(2)熵是一个广度性质的函数,总的熵的变化量等于各部分熵的变化量之和
(2)等温、等压可逆相变:
I :在标准压力下,任何物质之间的熔沸点之间的相变为可逆相变;

第三章热力学第二定律

第三章热力学第二定律

第三章热力学第二定律第三章 热力学第二定律(一)主要公式及其适用条件1、热机效率1211211/)(/)(/T T T Q Q Q Q W -=+=-=η式中:Q 1及Q 2分别为工质在循环过程中从高温热源T 1所吸收的热量和向低温热源T 2所放出的热量,W 为在循环过程中热机对环境所作的功。

此式适用于在两个不同温度的热源之间所进行的一切可逆循环。

2、卡诺定理的重要结论⎩⎨⎧<=+不可逆循环可逆循环,0,0//2211T Q T Q不论是何种工作物质以及在循环过程中发生何种变化,在指定的高、低温热源之间,一切要逆循环的热温商之和必等于零,一切不可逆循环的热温商之和必小于零。

3、熵的定义式TQ dS /d r def = 式中:r d Q 为可逆热,T 为可逆传热r d Q 时系统的温度。

此式适用于一切可逆过程熵变的计算。

4、克劳修斯不等式⎰⎩⎨⎧≥∆21)/d (可逆过程不可逆过程T Q S上式表明,可逆过程热温商的总和等于熵变,而不可逆过程热温商的总和必小于过程的熵变。

5、熵判据∆S (隔) = ∆S (系统) + ∆S (环境)⎩⎨⎧=>系统处于平衡态可逆过程能自动进行不可逆,,0,,0 此式适用于隔离系统。

只有隔离系统的总熵变才可人微言轻过程自动进行与平衡的判据。

在隔离系统一切可能自动进行的过程必然是向着熵增大的方向进行,绝不可能发生∆S (隔)<0的过程,这又被称为熵增原理。

6、熵变计算的主要公式⎰⎰⎰-=+==∆212121r d d d d d T p V H T V p U T Q S对于封闭系统,一切可逆过程的熵变计算式,皆可由上式导出。

(1)∆S = nC V ,m ln(T 2/T 1) + nR ln(V 2/V 1)= nC p,m ln(T 2/T 1) + nR ln(p 2/p 1)= nC V ,m ln(p 2/p 1) + nC p,m ln(V 2/V 1)上式适用于封闭系统、理想气体、C V ,m =常数、只有pVT 变化的一切过程。

热力学第二定律及其应用

热力学第二定律及其应用

热力学第二定律及其应用热力学第二定律是热力学中最基本的定律之一,在热力学中具有很重要的地位。

它描述了热量不可能自发地从低温物体传递到高温物体,也描述了热机转换热能成为功的效率上限。

在这篇文章中,我们将会探究热力学第二定律及其应用。

1. 热力学第二定律的概念热力学第二定律是一个非常有意思的概念。

它告诉我们,在热量传递中,热量自发地从高温物体流向低温物体。

这个过程是不可逆的,也就是说,它根本不可能反过来。

这一点有什么实际的应用呢?在工业生产中,为了生产出一些物品,要通过一系列的化学反应来完成。

通常这些反应都需要耗费能量,并且会放出热量。

如果我们想要将这些热量利用起来,转化为能量,我们就需要使用热机。

然而,热机转换热能成为功是有很大限制的。

根据热力学第二定律,热机最高只能将能量转换成功的一部分,另一部分则会成为废热散发到周围环境中。

这就是为什么汽车引擎等热机设备在运行的时候会产生很多废热的原因了。

2. 热力学第二定律的表达式热力学第二定律有不同的表达方式,在这里我们来介绍一下热力学中常用的两个表达式,分别是卡诺热机效率公式和熵增原理。

卡诺热机效率公式:卡诺热机是一种理想化的热机,在热力学中被普遍用来探讨热机的效率问题。

卡诺热机效率公式是:$$\eta = 1-\frac{T_c}{T_h}$$其中,$\eta$为热机效率,$T_h$为热源温度,$T_c$为冷却温度。

这个公式告诉我们,当热源温度和冷却温度固定的时候,热机的效率是固定的。

这个效率上限就是这个公式所描述的。

熵增原理:热力学第二定律中的另一个表达方式是熵增原理。

它告诉我们,一个孤立的系统中的熵总是会增加,永远不会减少。

这个定律可以形式化地表达为:$$\Delta S \ge \frac{\Delta Q}{T}$$其中,$\Delta S$是系统内外熵的变化,$\Delta Q$是系统热量变化,$T$是温度。

这个式子告诉我们,如果一个孤立的系统中的熵增加,那么这个系统中的温度也会增加。

物理学中的热力学第二定律知识点

物理学中的热力学第二定律知识点

物理学中的热力学第二定律知识点热力学第二定律是热力学的基本定律之一,它描述了热量的传递方式以及自然界中不可逆过程的方向性。

本文将介绍热力学第二定律的基本概念、表述方式以及其应用领域。

一、热力学第二定律的基本概念热力学第二定律是关于热力学过程不可逆性的一个重要定律。

它主要包含以下几个基本概念:1. 热机热机是将热能转化为机械能的装置,例如汽车发动机和蒸汽机等。

热机的工作过程既有可逆过程,也有不可逆过程。

2. 热源和冷源热源是指能够提供热量的物体或系统,通常温度较高;而冷源是指能够吸收热量的物体或系统,通常温度较低。

3. 热量的传递热量的传递可以通过传导、对流和辐射等方式实现。

无论哪种方式,热量总是从高温物体流向低温物体。

二、热力学第二定律的表述方式热力学第二定律可以通过多种形式进行表述,其中常见的包括以下几种方式:1. 克劳修斯表述克劳修斯表述(Clausius statement)认为,不可能自发地把热量从低温物体传递给高温物体,而不引起其他效应。

2. 开尔文表述开尔文表述(Kelvin statement)认为,不可能从单一热源吸热,完全转化为功而无余热放出。

3. 普朗克表述普朗克表述(Planck statement)将热力学第二定律表述为熵的不减原理,即任何孤立系统的熵都不会减少。

三、热力学第二定律的应用领域热力学第二定律在许多领域都有重要应用,以下列举几个常见的应用领域:1. 热机效率热力学第二定律对热机效率的理论上限进行了限制。

热机效率是指工作输出与热量输入之比,根据卡诺热机的理论,最高效率可达到1-T2/T1,其中T1和T2分别为热机的高温热源和低温热源的温度。

2. 熵增定律根据热力学第二定律,孤立系统内的熵总是增加的。

这一原理被广泛应用于化学反应、生物学和工程领域等。

3. 热泵和制冷系统热力学第二定律为热泵和制冷系统的工作原理提供了理论基础。

热泵是将热量从低温区域传递到高温区域的装置,而制冷系统则是将热量从低温区域排出以降低温度。

物理化学第三章热力学第二定律主要公式及其适用条件

物理化学第三章热力学第二定律主要公式及其适用条件

第三章 热力学第二定律主要公式及使用条件1. 热机效率1211211/)(/)(/T T T Q Q Q Q W -=+=-=η式中1Q 和2Q 分别为工质在循环过程中从高温热源T 1吸收的热量和向低温热源T 2放出的热。

W 为在循环过程中热机中的工质对环境所作的功。

此式适用于在任意两个不同温度的热源之间一切可逆循环过程。

2. 卡诺定理的重要结论2211//T Q T Q +⎩⎨⎧=<可逆循环不可逆循环,,00任意可逆循环的热温商之和为零,不可逆循环的热温商之和必小于零。

3. 熵的定义4. 克劳修斯不等式d S {//Q T Q T =>δ, δ, 可逆不可逆5. 熵判据a mb s y s i s o S S S ∆+∆=∆{0, 0, >=不可逆可逆 式中iso, sys 和amb 分别代表隔离系统、系统和环境。

在隔离系统中,不可逆过程即自发过程。

可逆,即系统内部及系统与环境之间皆处于平衡态。

在隔离系统中,一切自动进行的过程,都是向熵增大的方向进行,这称之为熵增原理。

此式只适用于隔离系统。

6. 环境的熵变rd δ/S Q T =ambys amb amb amb //S T Q T Q s -==∆7. 熵变计算的主要公式222r 111δd d d d Q U p V H V p S T T T+-∆===⎰⎰⎰ 对于封闭系统,一切0=W δ的可逆过程的S ∆计算式,皆可由上式导出(1),m 2121ln(/)ln(/)V S nC T T nR V V ∆=+,m 2112ln(/)ln(/)p S nC T T nR p p ∆=+,m 21,m 21ln(/)ln(/)V p S nC p p nC V V ∆=+上式只适用于封闭系统、理想气体、,m V C 为常数,只有pVT 变化的一切过程(2) T 2112l n (/)l n (/)S n R V V n R p p ∆== 此式使用于n 一定、理想气体、恒温过程或始末态温度相等的过程。

热力学第二定律知识点总结

热力学第二定律知识点总结

热力学第二定律知识点总结热力学是研究能量转化和能量传递规律的学科,其中热力学第二定律是热力学的核心和基础。

热力学第二定律描述了自然界中热量如何传递的方向和限制。

本文将对热力学第二定律的几个重要知识点进行总结。

一、热力学第二定律的表述热力学第二定律有多种表述形式,其中最为常见的是克劳修斯表述和开尔文表述。

克劳修斯表述指出,不能将能量从低温物体传递到高温物体而不引起其他变化。

换句话说,热量只能从高温物体传递到低温物体,不可能自发地从低温物体移动到高温物体中。

开尔文表述则强调了热力学第二定律的实际应用,它指出热量不可能从自发流动的热源中完全转化为功,一定会有一部分热量转化为无用的热量,最终导致热能的不可逆损失。

二、熵的概念熵是描述热力学系统混乱程度或无序程度的物理量。

熵的增加表示系统的混乱度增加,而熵的减少则表示系统的混乱度减少。

根据热力学第二定律,孤立系统的熵总是会增加,不可能自发减少。

根据熵的定义,我们可以得出一个结论:任何自发过程都会伴随着熵的增加。

这也是为什么自发发生的过程是不可逆的原因之一。

熵的增加导致能量的不可逆转化,使得系统无法恢复到原来的状态。

三、热机效率和热泵效率热机效率是指热机从热源中吸收的热量与做功所消耗的热量之比。

根据热力学第二定律,热机效率的上限由克劳修斯表述给出,即热机效率不能超过1减去低温热源与高温热源的温度比之间的比值。

热泵效率是指热泵从低温热源中吸收的热量与提供给高温热源的热量之比。

热泵效率的上限同样由克劳修斯表述限制。

四、热力学不可逆性热力学第二定律揭示了热力学过程的不可逆性。

不可逆性的存在使得热流只能从高温物体传递到低温物体,而不能反向流动。

不可逆性还导致了热机效率和热泵效率的存在上限。

热力学第二定律的不可逆性在自然界广泛存在,如热传导、功的转化等过程都受到了不可逆性的约束。

能量的不可逆流动使得一部分能量转化为无用的热量,增加了能量损失。

五、热力学第二定律的应用热力学第二定律在工程和科学研究中有着广泛的应用。

热力学第二定律公式

热力学第二定律公式

热力学第二定律公式
热力学第二定律是一种基本的物理定律,它描述了物质在发生热力学过程时所表现出的一般性规律。

它的公式表达式为ΔS ≥ δQ/T,其中ΔS代表热力学系统的熵增量,δQ代表系统受到的热量,T代表系统的绝对温度。

它的定义如下:当一个物质在发生热力学过程时,物质的熵增量ΔS必须大于系统受到的热量δQ除以系统的绝对温度T,即ΔS ≥ δQ/T。

这一定律表明,当物质发生热力学过程时,物质的熵总是在增加,而不会减少,即熵增量ΔS必须大于等于零,而不能小于零。

当一个物质发生热力学过程时,熵增量ΔS可能会大于δQ/T,这表明物质的熵增量不仅是由外加的热量所决定,还受到系统的温度影响,即熵增量也受到温度的影响,这也是热力学第二定律的一个重要内容。

热力学第二定律是一个重要的物理定律,它描述了物质在发生热力学过程时的一般规律,即物质的熵总是在增加,而不会减少,而且熵增量的大小也受到系统的温度的影响。

鉴于热力学第二定律的重要性,它已经成为热力学研究的基础,它在很多热力学相关问题的研究中都发挥着重要作用。

热力学第二定律 概念及公式总结

热力学第二定律 概念及公式总结

一、自发反应-不可逆性(自发反应乃是热力学的不可逆过程)一个自发反应发生之后,不可能使系统和环境都恢复到原来的状态而不留下任何影响,也就是说自发反应是有方向性的,是不可逆的。

二、热力学第二定律1.热力学的两种说法:Clausius:不可能把热从低温物体传到高温物体,而不引起其它变化Kelvin:不可能从单一热源取出热使之完全变为功,而不发生其他的变化2.文字表述:第二类永动机是不可能造成的(单一热源吸热,并将所吸收的热完全转化为功)功热【功完全转化为热,热不完全转化为功】(无条件,无痕迹,不引起环境的改变)可逆性:系统和环境同时复原3.自发过程:(无需依靠消耗环境的作用就能自动进行的过程)特征:(1)自发过程单方面趋于平衡;(2)均不可逆性;(3)对环境做功,可从自发过程获得可用功三、卡诺定理(在相同高温热源和低温热源之间工作的热机)(不可逆热机的效率小于可逆热机)所有工作于同温热源与同温冷源之间的可逆机,其热机效率都相同,且与工作物质无关四、熵的概念1.在卡诺循环中,得到热效应与温度的商值加和等于零:任意可逆过程的热温商的值决定于始终状态,而与可逆途径无关热温商具有状态函数的性质:周而复始数值还原从物理学概念,对任意一个循环过程,若一个物理量的改变值的总和为0,则该物理量为状态函数2. 热温商:热量与温度的商3. 熵:热力学状态函数熵的变化值可用可逆过程的热温商值来衡量(数值上相等)4. 熵的性质:(1)熵是状态函数,是体系自身的性质是系统的状态函数,是容量性质(2)熵是一个广度性质的函数,总的熵的变化量等于各部分熵的变化量之和(3)只有可逆过程的热温商之和等于熵变(4)可逆过程热温商不是熵,只是过程中熵函数变化值的度量(5)可用克劳修斯不等式来判别过程的可逆性(6)在绝热过程中,若过程是可逆的,则系统的熵不变(7)在任何一个隔离系统中,若进行了不可逆过程,系统的熵就要增大,所以在隔离系统中,一切能自动进行的过程都引起熵的增大。

热力学第二定律公式

热力学第二定律公式

热力学第二定律公式
热力学第二定律描述了热能在任何发生物理或化学变化时的按照
规律运动,它是解释物理学中温度变化的关于热能运动的定律。

热力
学第二定律公式简单地表示为热能流动时,它对热源和汇合处的统一性。

其公式为dQ=TdS,其中dQ为热能流动的量,T是温度,dS是热能的熵变。

热力学第二定律是必需有一种热源,即热源处的守恒量需要大于
汇合处的守恒量,以实现传递和传导热能,即利用从热源处至汇合处
之间自然属性的压力。

而TdS,T代表温度,dS代表熵,熵是表示一个热站热量流动的量,它使得熵的变量影响热流的大小。

所以在TdS(T
温度的熵变)的影响下,熵增加量越大,热流量就越大,熵减小量越大,热流越小。

热力学第二定律告诉我们,任何热能运动的原理,其变化只能从
热源处至汇合处,而不是相反。

它也让我们明白,只有熵变才会影响
热流,熵变越大热流也越大,熵变越小热流也越小。

因此,我们可以
从历史和实验中考察物种热量和熵的定义,进而了解它们变化的规律。

热力学第二定律 概念及公式总结

热力学第二定律 概念及公式总结

热力学第二定律一、自发反应-不可逆性(自发反应乃是热力学的不可逆过程)一个自发反应发生之后,不可能使系统和环境都恢复到原来的状态而不留下任何影响,也就是说自发反应是有方向性的,是不可逆的。

二、热力学第二定律1.热力学的两种说法:Clausius:不可能把热从低温物体传到高温物体,而不引起其它变化Kelvin:不可能从单一热源取出热使之完全变为功,而不发生其他的变化2.文字表述:第二类永动机是不可能造成的(单一热源吸热,并将所吸收的热完全转化为功)功热【功完全转化为热,热不完全转化为功】(无条件,无痕迹,不引起环境的改变)可逆性:系统和环境同时复原3.自发过程:(无需依靠消耗环境的作用就能自动进行的过程)特征:(1)自发过程单方面趋于平衡;(2)均不可逆性;(3)对环境做功,可从自发过程获得可用功三、卡诺定理(在相同高温热源和低温热源之间工作的热机)(不可逆热机的效率小于可逆热机)所有工作于同温热源与同温冷源之间的可逆机,其热机效率都相同,且与工作物质无关四、熵的概念1.在卡诺循环中,得到热效应与温度的商值加和等于零:任意可逆过程的热温商的值决定于始终状态,而与可逆途径无关热温商具有状态函数的性质 :周而复始数值还原从物理学概念,对任意一个循环过程,若一个物理量的改变值的总和为0,则该物理量为状态函数2. 热温商:热量与温度的商3。

熵:热力学状态函数熵的变化值可用可逆过程的热温商值来衡量(数值上相等)4.熵的性质:(1)熵是状态函数,是体系自身的性质是系统的状态函数,是容量性质(2)熵是一个广度性质的函数,总的熵的变化量等于各部分熵的变化量之和(3)只有可逆过程的热温商之和等于熵变(4)可逆过程热温商不是熵,只是过程中熵函数变化值的度量(5)可用克劳修斯不等式来判别过程的可逆性(6)在绝热过程中,若过程是可逆的,则系统的熵不变(7)在任何一个隔离系统中,若进行了不可逆过程,系统的熵就要增大,所以在隔离系统中,一切能自动进行的过程都引起熵的增大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热力学第二定律
一、 自发反应-不可逆性(自发反应乃是热力学的不可逆过程)
一个自发反应发生之后,不可能使系统和环境都恢复到原来的状态而不留下任何影响,也就是说自发反应是有方向性的,是不可逆的。

二、 热力学第二定律
1. 热力学的两种说法:
Clausius:不可能把热从低温物体传到高温物体,而不引起其它变化
Kelvin :不可能从单一热源取出热使之完全变为功,而不发生其他的变化
2. 文字表述: 第二类永动机是不可能造成的(单一热源吸热,并将所吸收的热完全转化为功)
功 热 【功完全转化为热,热不完全转化为功】
(无条件,无痕迹,不引起环境的改变) 可逆性:系统和环境同时复原
3. 自发过程:(无需依靠消耗环境的作用就能自动进行的过程)
特征:(1)自发过程单方面趋于平衡;(2)均不可逆性;(3)对环境做功,可从自发过程获得可用功
三、 卡诺定理(在相同高温热源和低温热源之间工作的热机)
ηη≤ηη (不可逆热机的效率小于可逆热机)
所有工作于同温热源与同温冷源之间的可逆机,其热机效率都相同,且与工作物质无关
四、 熵的概念
1. 在卡诺循环中,得到热效应与温度的商值加和等于零:ηηηη+η
ηηη=η 任意可逆过程的热温商的值决定于始终状态,而与可逆途径无关
热温商具有状态函数的性质 :周而复始 数值还原
从物理学概念,对任意一个循环过程,若一个物理量的改变值的总和为0,则该物理量为状态函数
2. 热温商:热量与温度的商
3. 熵:热力学状态函数 熵的变化值可用可逆过程的热温商值来衡量
ηη :起始的商 ηη :终态的熵 ηη=(ηηη)η
(数值上相等) 4. 熵的性质:
(1)熵是状态函数,是体系自身的性质 是系统的状态函数,是容量性质
(2)熵是一个广度性质的函数,总的熵的变化量等于各部分熵的变化量之和
(3)只有可逆过程的热温商之和等于熵变
(4)可逆过程热温商不是熵,只是过程中熵函数变化值的度量
(5)可用克劳修斯不等式来判别过程的可逆性
(6)在绝热过程中,若过程是可逆的,则系统的熵不变
(7)在任何一个隔离系统中,若进行了不可逆过程,系统的熵就要增大,所以在隔离系统中,一切能自动进行的过程都引起熵的增大。

若系统已处于平衡状态,则其中的任何过程一定是可逆的。

五、克劳修斯不等式与熵增加原理
不可逆过程中,熵的变化量大于热温商 ηηη→η−(∑ηηηηηηη)η>0
1. 某一过程发生后,体系的热温商小于过程的熵变,过程有可能进行不可逆过程
2. 某一过程发生后,热温商等于熵变,则该过程是可逆过程
3. 热温商大于熵变的过程是不可能发生的
4. 热力学第二定律的数学表达式:ηηη→η−∑ηηηηη≥η
5. 隔离系统中,ηη≥ηηη
(一个隔离系统的熵永不减少)
6. 熵增加原理: ηη
7. 隔离系统中有:ⅆηⅈηη=
ηηηηη+ηηηηη
≥0 【根据熵增加原理知,若从
体系的熵值变化量判断过程一定是自发过程,那么该过程一定是隔离系统】
六、
热力学基本方程式与T-S 图
1. 热力学基本方程:ηⅆη=ηη+ηηη
2. 根据热二定律基本方程得: 可逆过程中有ηη=ηηη
3. 绝热可逆过程:ⅆη=0
七、 熵变的计算
1.等温过程中熵的变化值:
(1)理想气体等温可逆变化:ηη=0、ηη=−ηηηη、
ηη=ηη
η=−ηηηηη=ηηηηη2η1=ηηηηη2η1
(2)等温、等压可逆相变: ηη=ηηη
I :在标准压力下,任何物质之间的熔沸点之间的相变为可逆相变;
II : 任意温度下,饱和蒸气压下的相变为可逆相变
(3)理想气体等温、等压混合过程:ηηηηη=−η∑ηηηηηηη
八、 熵和能量退降(系统中能量的一部分失去了做功的能力)
1.热和功即使数量相等,但“质量”不等,功是“高质量”的能量;
2.高温热源的热与低温热源的热,即使数量相同,但“质量”相同
九、赫姆霍兹自由能和吉布斯自由能:
1.赫姆霍兹自由能:ⅆη−ηη
ηηηη≥η
若系统的初始与终了的温度与环境的温度相等,则有:
−ηη=−ⅆ(η−ηη) 定义 : η≝η−ηη
(在等温过程中,一个封闭系统所能做的最大功等于其赫姆霍兹自由能的减少)
若系统在等温、等容且无其它功的情况下,ηη≤η
(ⅆη)η,η,ηη=η≤η
在等温等压的条件下,一个封闭系统所能做的最大非膨胀功等于其吉布斯自由能的减少
十、变化的方向与平衡条件
1. 熵判据:ηη≥η(隔离、绝热)(ⅆη)η,η≥η
≤η
2.赫姆霍兹自由能判据:(ⅆη)η,η,η
η=η
≤η
3.吉布斯自由能判据:(ⅆη)η,η,η
η=η
Welcome !!! 欢迎您的下载,资料仅供参考!。

相关文档
最新文档