七年级平行线的证明练习题
七年级10道平行线证明题
七年级10道平行线证明题
平行线是初中数学中的一个重要概念,通过证明题的练习,可以帮助学生加深对平行线性质的理解。
接下来,我将为大家提供七年级10道平行线证明题,希望能够帮助大家更好地掌握平行线的性质。
1. 证明:若两条直线分别与一条直线平行,则这两条直线之间的夹角相等。
2. 证明:若两条直线被一条直线所截,使得同侧的内角之和为180度,则这两条直线平行。
3. 证明:若两条直线被一条直线截成相等的两部分,则这两条直线平行。
4. 证明:若两条平行线被一条直线截,内错角相等,外错角相等。
5. 证明:若平行线被一条直线截,同侧内角相等。
6. 证明:若平行线被一条直线截,同侧外角相等。
7. 证明:若两条直线被平行线截,同位角相等。
8. 证明:若两条直线被平行线截,同位内角相等。
9. 证明:若两条直线被平行线截,同位外角相等。
10. 证明:若两直线被平行线截,交错角相等。
通过以上10道平行线证明题的练习,相信大家对平行线的性质有了更深入的理解。
希望大家能够通过练习和思考,更好地掌握初中数学中的平行线知识,提高数学解题能力。
祝大家学业进步,取得好成绩!。
鲁教版五四制 七年级下册 第八章 平行线的有关证明 复习习题 (含答案解析)
鲁教版五四制七年级下册第八章平行线的有关证明复习习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,将一张含有30∘角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠2= 44∘,则∠1的大小为()A.14∘B.16∘C.90∘−αD.α−44∘2.如图,BE平分∠DBC,点A是BD上一点,过点A作AE∥BC交BE于点E,∠DAE=56°,则∠E的度数为()A.56°B.36°C.26°D.28°3.如图,直线a∥b,一块含60°角的直角三角板ABC(∠A=60°)按如图所示放置.若∠1=55°,则∠2的度数为( )A.105°B.110°C.115°D.120°4.如图,已知∠1+∠2=180°,∠3=55°.那么∠4的度数是()A.45°B.125°C.35°D.55°5.已知△ABC的三边分别是a、b、c,下列条件中不能判断△ABC为直角三角形的是()A.a2+b2=c2B.∠A+∠B=90°C.a=3,b=4,c=5 D.∠A:∠B:∠C=3:4:56.下列命题:①两个周长相等的三角形是全等三角形;②两个周长相等的直角三角形是全等三角形;③两个周长相等的等腰三角形是全等三角形;④两个周长相等的等边三角形是全等三角形.其中,真命题有( )A.1个B.2个C.3个D.4个7.如图,OB、OC是∠ABC、∠ACB的角平分线,∠BOC=120°,则∠A=()A.60°B.120°C.110°D.40°8.如图,将△ABC纸片沿DE折叠,使点A落在点A'处,且A'B平分∠ABC,A'C平分∠ACB,若∠BA'C=110°,则∠1+∠2的度数为()A.80°;B.90°;C.100°;D.110°;9.如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=()A.76°B.78°C.80°D.82°10.下列说法:①两点之间,线段最短;②同旁内角互补;③若AC=BC,则点C是线段AB的中点;④经过一点有且只有一条直线与这条直线平行,其中正确的说法有( ) A.1个B.2个C.3个D.4个11.如图,下列四个条件中,能判断DE//AC的是( ).A.∠3=∠4B.∠1=∠2C.∠EDC=∠EFC D.∠ACD=∠AFE12.如图,下列条件中不能判定AB∥CD的是()A.∠3=∠4B.∠1=∠5C.∠3=∠5D.∠1+∠4=180°13.已知△ABC的∠A=60°,剪去∠A后得到一个四边形,则∠1+∠2的度数为( )A.270°B.240°C.200°D.180°14.将一条两边沿平行的纸带如图折叠,若∠1=62∘,则∠2等于()A.62∘B.56∘C.45∘D.30∘15.一个正方形和两个等边三角形的位置如图所示,则∠1+∠2+∠3的度数为()A.1500B.1200C.900D.180016.一个缺角的三角形ABC残片如图所示,量得∠A=45°,∠B=60°,则这个三角形残缺前的∠C的度数为()A.75°B.65°C.55°D.45°17.如图,已知AB、CD、EF互相平行,且∠ABE =70°,∠ECD = 150°,则∠BEC 是()A.30°B.40°C.50°D.60°18.在下列命题中:①同旁内角互补;②两点确定一条直线;③两条直线相交,有且只有一个交点;④若一个角的两边分别与另一个角的两边平行,那么这两个角相等.其中属于真命题的有()A.1个B.2个C.3个D.4个19.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=24°,则∠BDC等于()A.42°B.66°C.69°D.77°20.如图,在下列条件中:①∠1=∠2;②∠BAD+∠ADC=180°;③∠ABC=∠ADC;④∠3=∠4,能判定AB∥CD 的有( )A.1个B.2个C.3个D.4个21.如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB 、CD 、AC 上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③180°﹣α﹣β,,④360°﹣α﹣β,∠AEC 的度数可能是( )A . ①②③B . ①②④C . ①③④D . ①②③④22.如图,在△ABC 中,点M 、N 是∠ABC 与∠ACB 三等分线的交点.若∠A =60°,则∠BMN 的度数为( )A . 45°B . 50°C . 60°D . 65°23.下列说法:①平方等于其本身的数有0,±1;②32xy 3是4次单项式;③将方程x−10.3−x+20.5=1.2中的分母化为整数,得10x−103−10x+205=12;④平面内有4个点,过每两点画直线,可画6条.其中正确的有( )A . 1个B . 2个C . 3个D . 4个24.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30︒角直角三角板的斜边与纸条一边重合,含45︒角的三角板的一个顶点在纸条的另一边,则1∠的度数是( )A . 14°B . 15°C . 20°D . 30°25.①如图1,AB∥CD,则∠A +∠E +∠C=180°;②如图2,AB∥CD,则∠E =∠A +∠C;③如图3,AB∥CD,则∠A +∠E-∠1=180° ; ④如图4,AB∥CD,则∠A=∠C +∠P.以上结论正确的个数是( )A . 、1个B . 2个C . 3个D . 4个26.如图,在四边形ABCD 中,对角线AC 平分∠DAB ,∠ABD=52°,∠ABC=116°,∠ACB=α°,则∠BDC 的度数为( )A . αB . 23αC . 90﹣αD . 90﹣23α27.下列说法:①两点确定一条直线;②连接两点的线段叫做两点的距离;③两点之间,线段最短;④由两条射线组成的图形叫做角;⑤若AB =BC ,则点B 是线段AC 的中点.其中正确的有( )A . 1个B . 2个C . 3个D . 4个28.如图,圆内接四边形ABCD 的边AB 过圆心O ,过点C 的切线AD 的延长线交于点E ,若点D 是弧AC 的中点,且∠ABC=70°,则∠AEC 等于( )A . 80°B . 75°C . 70°D . 65°29.已知△ABC 的三个内角为A ,B ,C 且α=A+B ,β=C+A ,γ=C+B ,则α,β,γ中,锐角的个数最多为( )A . 1B . 2C . 3D . 030.观察下列4个命题:其中真命题是( ). (1)三角形的外角和是180 ; (2)三角形的三个内角中至少有两个锐角; (3)直角三角形两锐角互余; (4)相等的角是对顶角.A . (1)(2)B . (2)(3)C . (2)(4)D . (3)(4) 31.如图,在△ABC 中,AB=AC ,CD∥AB,点E 在BC 的延长线上.若∠A=30°,则∠DCE 的大小为( )A . 30°B . 52.5°C . 75°D . 85°32.两条平行线被第三条直线所截,则下列说法错误的是()A.一对邻补角的平分线互相垂直B.一对同位角的平分线互相平行C.一对内错角的平分线互相平行D.一对同旁内角的平分线互相平行33.下列说法中正确的是()A.两条射线组成的图形叫做角B.小于平角的角可分为锐角和钝角两类C.射线就是直线D.两点之间的所有连线中,线段最短二、填空题34.(题文)如图,m∥n,∠1=110°,∠2=100°,则∠3=_______°.35.如图,在△ABC中,点O是△ABC内一点,且点O到△ABC三边的距离相等,若∠A =70°,则∠BOC=______.36.如图,四边形ABCD中,点MN分别在AB,AC上,∠C=80°,按如图方式沿着MN折叠,使FN∥CD,此时量得∠FMN=40°,则∠B的度数是_____.37.如图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5;则一定能判定AB∥CD的条件有_____(填写所有正确的序号).38.如图,把一块含有30°角(∠A=30°)的直角三角板ABC的直角顶点放在长方形桌面CDEF的一个顶点C处,桌面的另一个顶点F与三角板斜边相交于点F,如果∠1=40°,那么∠AFE=______39.如图,DA⊥CE于点A,CD∥AB,∠1=30°,则∠D=_____.40.在△ABC中,∠A:∠B:∠C=1:2:3,CD⊥AB于点D,若AB=10,则BD=_____.41.如图,已知AB∥CD,F为CD上一点,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度数为整数,则∠C的度数为_____.42.如图,在四边形ABCD中,∠A+∠B=200°,作∠ADC、∠BCD的平分线交于点O1称为第1次操作,作∠O1DC、∠O1CD的平分线交于点O2称为第2次操作,作∠O2DC、∠O2CD的平分线交于点O3称为第3次操作,…,则第5次操作后∠CO5D的度数是_____.43.在△ABC中,∠A+∠B=2∠C,则∠C=___.44.如图,在△ABC中,∠ABC、∠ACB的平分线BE、CD相交于点F,∠A=60∘,则∠BFC=______.45.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=48°,则∠AED为°.46.如图所示,在△ABC中,∠BAC=106°,EF、MN分别是AB、AC的垂直平分线,点E、M在BC上,则∠EAN=_____.47.将如图1的长方形ABCD纸片沿EF折叠得到图2,折叠后DE与BF相交于点P. 如果∠EPF=70°,则∠PEF的度数为_________ .48.下列四个命题:①对顶角相等;②内错角相等;③平行于同一条直线的两条直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等.其中真命题的是__________(填序号).49.如图,△ABE和△ACD是△ABC分别以AB、AC为对称轴翻折180°形成的,若∠1:∠2:∠3=29:4:3,则∠α的度数为_______.50.直线l1∥l2,一块含45°角的直角三角板如图放置.若∠1=85度,则∠2=________度.51.在△ABC中,∠B,∠C的平分线交于点O,若∠BOC=132°,则∠A=________度.52.在一次猜数字游戏中,小红写出如下一组数:1,65,97,43,1511…,小军猜想出的第六个数字是1813,也是正确的,根据此规律,第n个数是_____.53.如图,在△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得C′C∥AB,则∠B′AB等于_____.54.如图,在△ABC中,∠B=42°,△ABC的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=____________.55.如图,已知EF∥GH,A、D为GH上的两点,M、B为EF上的两点,延长AM于点C,AB平分∠DAC,直线DB平分∠FBC,若∠ACB=100°,则∠DBA的度数为________.56.如图,将△ABC沿DE、EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠CDO+∠CFO=88°,则∠C的度数为=___________.57.两个角的两边分别平行,一个角是50°,那么另一个角是__________.58.如图,将一张长方形纸片ABCD沿EF折叠,使顶点C,D分别落在点C′、D′处,C′E交AF于点G,若∠CEF=64°,则∠GFD′=_____________.59.在△ABC中,∠A=160°.第一步:在△ABC上方确定一点A1,使∠A1BA=∠ABC,∠A1CA=∠ACB,如图1,则∠A1的度数为__;第二步:在△A1BC 上方确定一点A2,使∠A2BA1=∠A1BA,∠A2CA1=∠A1CA,如图2.照此下去,至多能进行___步.60.如图是超市里的购物车,扶手AB与车底CD平行,∠2比∠3大10°,∠1是∠2倍,则∠2的度数是________.的201161.设三角形三个内角的度数分别为x,y,z,如果其中一个角的度数是另一个角的度数的2倍,那么我们称数对(y,z)(y≤z)是x的和谐数对.例:当x=150°时,对应的和谐数对有一个,它为(10,20);当x=66时,对应的和谐数对有二个,它们为(33,81),(38,76).当对应的和谐数对(y,z)有三个时,此时x的取值范围是____________.62.如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作,分别作∠ABE n﹣1和∠DCE n﹣1的平分线,交点为E n.若∠E n=1度,那∠BEC等于________度63.如图,AB∥CD,∠B=160°,∠D=120°,则∠E=_________.64.如图,将平行四边形ABCD沿对角线AC折叠,使点B落在点B'处,若∠1=∠2=44°,则∠B的大小为_________度.65.如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;…这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=______.66.如图,△ABC面积为1,第一次操作:分别延长AB,BC,CA至点A1,B1,C1,使A1B=AB,B1C=BC,C1A=CA,顺次连接A1,B1,C1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使A2B1=A1B1,B2 C1=B1C1,C2A1=C1A1,顺次连接A2,B2,C2,得到△A2B2C2,…按此规律,要使得到的三角形的面积超过2006,最少经过__次操作.67.如图所示,把一张长方形纸片ABCD沿EF折叠后,ED与BC的交点为G,D,C分别落在D′,C′的位置上,若∠EFG=55°,求∠1与∠2的度数.68.如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E等于___________.69.阅读:如图1所示,因为CE∥AB,所以∠1=∠A,∠2=∠B,所以∠ACD=∠1+∠2=∠A+∠B,这是一个有用的事实.请用这个结论在如图2所示的四边形ABCD内过点D引一条和边AB平行的直线,求∠A+∠B+∠C+∠ADC的度数.70.如图所示,DE∥BC,DE分别交AB、AC于D、E两点,CF是BC的延长线.若∠ADE =50°,∠ACF=110°,则∠A=________°.71.如图所示,小东和小明分别在河的两岸,他们想知道河的两岸EF和MN是否平行,每人拿来了一个测角仪和两根标杆,那么就现有的条件,小东和小明能否判断河的两岸EF和MN平行?说说你的方案.三、解答题72.如图,在△ABC中,∠B=40°,∠C=80°,AD是BC边上的高,AE平分∠BAC.(1)求∠BAE的度数;(2)求∠DAE的度数.73.如图,在△ABC中,BO、CO分别平分∠ABC和∠ACB.计算:(1)若∠A =60°,求∠BOC的度数;(2)若∠A =100°, 则∠BOC的度数是多少?(3)若∠A =120°, 则∠BOC的度数又是多少?(4)由(1)、(2)、(3),你发现了什么规律?请用一个等式将这个规律表示出来.74..如图1,AB∥CD,直线EF 交AB 于点E,交CD 于点F,点G 在CD 上,点P在直线EF 左侧,且在直线AB 和CD 之间,连接PE,PG.(1) 求证:∠EPG=∠AEP+∠PGC;∠EFC,求∠AEP 的(2) 连接EG,若EG 平分∠PEF,∠AEP+ ∠PGE=110°,∠PGC=12度数.(3) 如图2,若EF 平分∠PEB,∠PGC 的平分线所在的直线与EF 相交于点H,则∠EPG 与∠EHG之间的数量关系为.75.已知:如图,∠CDG=∠B,AD⊥BC于点D,EF⊥BC于点F,试判断∠1与∠2的关系,并说明理由.76.(1)如图(1),AB∥CD,点P在AB,CD外部,若∠B=50°,∠D=25°,则∠BPD=°(2)如图(2),AB∥CD,点P在AB,CD内部,则∠B,∠D,∠BPD之间有何数量关系?证明你的结论.(3)在图(2)中,将直线AB绕点B按逆时针方向旋转一定角度交直线CD于点M,如图 (3),若∠BPD=90°,∠BMD=40°,求∠B+∠D的度数.77.如图,已知:点P是△ABC内一点.(1)求证:∠BPC>∠A;(2)若PB平分∠ABC,PC平分∠ACB,∠A=40°,求∠P的度数.78.如图,已知AD⊥BC,EF⊥BC于F,∠E=∠1,问AD平分∠BAC吗?请说明理由.79.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=69°,求∠DAC的度数.80.如图,在△ABC中,∠A=40°,∠B=72°,CD是AB边上的高,CE是∠ACB的平分线,DF⊥CE于F,求∠CDF的度数.81.“一带一路”让中国和世界更紧密,“中欧铁路”为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图1所示,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是每秒2度,灯B转动的速度是每秒1度.假定主道路是平行的,即PQ∥MN,且∠BAM:∠BAN=2:1.(1)填空:∠BAN=_____°;(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图2,若两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作∠ACD交PQ于点D,且∠ACD=120°,则在转动过程中,请探究∠BAC与∠BCD 的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.82.△ABC中,AD是∠BAC的平分线,AE⊥BC,垂足为E,作CF//AD,交直线AE于点F.设∠B=α,∠ACB=β.(1)若∠B=30∘,∠ACB=70∘,依题意补全图1,并直接写出∠AFC的度数;(2)如图2,若∠ACB是钝角,求∠AFC的度数(用含α,β的式子表示);(3)如图3,若∠B>∠ACB,直接写出∠AFC的度数(用含α,β的式子表示).83.如图①,已知线段AB、CD相交于点O,连结AC、BD,我们把形如图①的图形称之为“8字形”.如图②,∠CAB和∠BDC的平分线AP和DP相交于点P,并且与CD、AB 分别相交于M、N.试解答下列问题:(1)仔细观察,在图②中有___个以线段AC为边的“8字形”;(2)在图②中,若∠B=96°,∠C=100°,求∠P的度数;(3)在图②中,若∠CAP BAC,∠CDP BDC,试问∠P与∠D、∠B之间存在着怎样的数量关系,并说明理由;(4)如图③,则∠A+∠B+∠C+∠D+∠E+∠F的度数为____.84.已知直线AB∥CD.(1)如图1,直接写出∠BME、∠E、∠END的数量关系为;(2)如图2,∠BME与∠CNE的角平分线所在的直线相交于点P,试探究∠P与∠E 之间的数量关系,并证明你的结论;(3)如图3,∠ABM=1n ∠MBE,∠CDN=1n∠NDE,直线MB、ND交于点F,则∠F∠E= .85.如图,在△ABC中,AD,AE分别是△ABC的高和角平分线.(1)若∠B=30∘,∠C=50∘,求∠DAE的度数;(2)试写出∠DAE与∠C−∠B有何关系?(不必说明理由)86.如图1,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现同时将点A,B分别向上平移2个单位长度,再向右平移1个单位长度,得到A,B的对应点C,D,连接AC,BD,CD.(1)写出点C,D的坐标并求出四边形ABDC的面积;(2)在x轴上是否存在一点F,使得三角形DFC的面积是三角形DFB面积的2倍,若存在,请求出点F的坐标;若不存在,请说明理由;(3)如图2,点P是直线BD上的一个动点,连接PC,PO,当点P在直线BD上运动时,请直接写出∠OPC与∠PCD,∠POB的数量关系.87.如图,AB∥CD,E为AC上一点,∠ABE=∠AEB,∠CDE=∠CED.求证:BE⊥DE.88.如图,四边形ABCD中,∠A+∠B=200°,∠ADC、∠DCB的平分线相交于点O,求∠COD的度数.89.如图,互相垂直的两条射线OE与OF的端点O在三角板的内部,与三角板两条直角边的交点分别为点D、B.(1)填空:若∠ABO=50°,则∠ADO=;(2)若DC、BP分别是∠ADO、∠ABF的角平分线,如图1.求证:DC⊥BP;(3)若DC、BP分别分别是∠ADE、∠ABF的角平分线,如图2.猜想DC与BP的位置关系,并说明理由.90.如图①,在平面直角坐标系中,A(0,1),B(4,1),C为x轴正半轴上一点,且AC 平分∠OAB.(1)求证:∠OAC=∠OCA;(2)如图②,若分别作∠AOC的三等分线及∠OCA的外角的三等分线交于点P,即满足∠POC的大小;(3)如图③,在(2)中,若射线OP、CP猜想∠OPC 的大小,并证明你的结论(用含n的式子表示).91.(1)如图(1),已知任意三角形ABC,过点C作DE∥AB;①求证:∠DCA=∠A;②求证:∠A+∠B+∠ACB=180°;(2)如图(2),求证:∠AGF=∠AEF+∠F;(3)如图(3),AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF=150°,求∠F.92.如图①,已知线段AC∥y轴,点B在第一象限,且AO平分∠BAC,AB交y轴于G,连接OB,OC.(1)判断△AOG的形状,并予以证明;(2)若点B,C关于y轴对称,求证:AO⊥BO;(3)在(2)的条件下,如图②,点M为OA上一点,且∠ACM=45°,BM交y轴于P,若点B的坐标为(3,1),求点M的坐标.93.如图1,点D为△ABC边BC的延长线上一点.(1)若∠A:∠ABC=3:4,∠ACD=140°,求∠A的度数;(2)若∠ABC的角平分线与∠ACD的角平分线交于点M,过点C作CP⊥BM于点P.∠A;求证:∠MCP=90°−12(3)在(2)的条件下,将△MBC以直线BC为对称轴翻折得到△NBC,∠NBC的角平分线与∠NCB的角平分线交于点Q(如图2),试探究∠BQC与∠A有怎样的数量关系,请写出你的猜想并证明.94.如图:已知AB∥CD,∠ABE与∠CDE两个角的角平分线相交于F.(1)如图1,若∠E=80°,求∠BFD的度数.(2)如图2:若∠ABM=13∠ABF,∠CDM=13CDF,写出∠M和∠E之间的数量关系并证明你的结论.(3)若∠ABM=1n ∠ABF,∠CDM=1nCDF,设∠E=m°,直接用含有n、m°的代数式写出∠M=(不写过程)95.如图,在△ABC的一边AB上有一点P.(1)能否在另外两边AC和BC上各找一点M、N,使得△PMN的周长最短?若能,请画出点M、N的位置,若不能,请说明理由;(2)若∠ACB=52°,在(1)的条件下,求出∠MPN的度数.96.如图,在△ABC中,AD⊥BC,AE平分∠BAC.(1)若∠B=72°,∠C=30°,①求∠BAE的度数;②求∠DAE的度数;(2)探究:如果只知道∠B=∠C+42°,也能求出∠DAE的度数吗?若能,请你写出求解过程;若不能,请说明理由.97.97.如图,在△ABC中,∠A=20°,CD是∠BCA的平分线,△CDA中,DE是CA边上的高,又有∠EDA=∠CDB,求∠B的大小.98.如图,已知直线l1∥l2,直线l3和直线l1,l2交于点C和D,直线l3上有一点P.(1)如图1,若P点在C,D之间运动时,问∠PAC,∠APB,∠PBD之间的关系是否发生变化,并说明理由;(2)若点P在C,D两点的外侧运动时(P点与点C,D不重合,如图2和3),试直接写出∠PAC,∠APB,∠PBD之间的关系,不必写理由.99.如图,△ABC的三条角平分线相交于点I,过点I作DI⊥IC,交AC于点D.(1)如图①,求证:∠AIB=∠ADI;(2)如图②,延长BI,交外角∠ACE的平分线于点F.①判断DI与CF的位置关系,并说明理由;②若∠BAC=70°,求∠F的度数.100.如图1,点A、B在直线l1上,点C、D在直线l2上,AE平分∠BAC,CE平分∠ACD,∠EAC+∠ACE=90° .(1)请判断l1与l2的位置关系并说明理由;(2)如图2,在(1)的结论下,P为线段AC上一定点,点Q为直线CD上一动点,当点Q在射线CD上运动时(不与点C重合)∠CPQ+∠CQP与∠BAC有何数量关系?请说明理由.101.如图,已知∠1=∠2,∠3=∠4,∠5=∠A,试说明:BE∥CF.完善下面的解答过程,并填写理由或数学式:解:∵∠3=∠4(已知),∴AE∥__________(__________),∴∠EDC=∠5(__________).∵∠5=∠A(已知),∴∠EDC=__________(__________),∴DC∥AB(__________),∴∠5+∠ABC=180°(__________),即∠5+∠2+∠3=180°.∵∠1=∠2(已知),∴∠5+∠1+∠3=180°(__________),即__________+∠3=180°,∴BE∥CF(__________).102.如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC,CD上分别找一点M,N,使△AMN周长最小,求∠AMN+∠ANM的度数.103.已知:直线AB∥CD,点M、N分别在直线AB,CD上,点E为平面内一点.(1)如图,∠AME,∠E,∠ENC的数量关系是__________.(2)利用(1)的结论解决问题:如图,已知∠AME=30°,EF平分∠MEN,NP平分∠ENC,EQ∥NP,求FEQ得度数.(3)如图,点G为CD上一点,∠AMN=m∠EMN,∠GEK=m∠GEM,EH∥MN交AB于点H,直接写出∠GEK,∠BMN,∠GEH之间的数量关系.(用含m的式子表示)参考答案1.A【解析】分析:依据平行线的性质,即可得到∠2=∠3=44°,再根据三角形外角性质,可得∠3=∠1+30°,进而得出结论.详解:如图,∵矩形的对边平行,∴∠2=∠3=44°,根据三角形外角性质,可得:∠3=∠1+30°,∴∠1=44°﹣30°=14°.故选A.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.2.D【解析】分析:根据平行线的性质,可得∠DBC=56°,∠E=∠EBC,根据角平分线的定义,可得∠DBC=28°,进而得到∠E=28°.∠EBC=12详解:∵AE∥BC,∠DAE=56°,∴∠DBC=56°,∠E=∠EBC,∵BE平分∠DBC,∠DBC=28°,∴∠EBC=12∴∠E=28°,故选:D.点睛:本题主要考查了角平分线的定义和平行线的性质,熟练掌握角平分线的定义和平行线的性质是解题的关键.3.C【解析】分析:如图,首先证明∠AMO=∠2,然后运用对顶角的性质求出∠ANM=55°;借助三角形外角的性质求出∠AMO即可解决问题.详解:如图,对图形进行点标注.∵直线a∥b,∴∠AMO=∠2;∵∠ANM=∠1,而∠1=55°,∴∠ANM=55°,∴∠2=∠AMO=∠A+∠ANM=60°+55°=115°,故选C.点睛:两直线平行,同位角相等;三角形的外角等于与它不相邻的两个内角的和.4.D【解析】分析:根据同旁内角互补,两直线平行和两直线平行,同位角相等,得到∠5的度数,然后根据对顶角相等求解即可.详解:∵∠1+∠2=180°,∴CD∥EF,∴∠3=∠5,∵∠3=55°,∴∠5=55°,∴∠4=∠5=55°,故选:D.点睛:此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.5.D【解析】分析:利用直角三角形的定义和勾股定理的逆定理逐项判断即可.详解:A. a2=b2+c2,符合勾股定理的逆定理,能够判定△ABC为直角三角形,不符合题意;B. ∠A+∠B=∠C,此时∠C是直角,能够判定△ABC是直角三角形,不符合题意;C. 52=32+42,符合勾股定理的逆定理,能够判定△ABC为直角三角形,不符合题意;D. ∠A:∠B:∠C=3:4:5,那么∠A=45°、∠B=60°、∠C=75°,△ABC不是直角三角形;故选:D.点睛:此题主要考查了直角三角形的判定方法,只有三角形的三边长构成勾股数或三个内角中有一个是直角的情况下,才能判定三角形是直角三角形.6.A【解析】【分析】根据全等三角形的判定方法依次分析各选项即可做出判断.【详解】解:A.周长相等的锐角三角形的对应角不一定相等,对应边也不一定相等,假命题;B.周长相等的直角三角形对应锐角不一定相等, 对应边也不一定相等,假命题;C.周长相等的等腰三角形对应角不一定相等,对应边也不一定相等,假命题;D.两个周长相等的等边三角形的对应角一定相等,都是60°,对应边也一定相等,真命题.故选D.【点睛】本题考查了三角形判定定理的运用,命题与定理的概念.关键是掌握三角形判定定理.7.A【解析】试题解析:因为OB、OC是∠ABC、∠ACB的角平分线,所以∠ABO=∠CBO,∠ACO=∠BCO,所以∠ABO+∠ACO=∠CBO+∠BCO=180°﹣120°=60°,所以∠ABC+∠ACB=60°×2=120°,于是∠A=180°﹣120°=60°.故选A.8.A【解析】分析:连接AA′.首先求出∠BAC,再证明∠1+∠2=2∠BAC即可解决问题.详解:连接AA′.∵A'B平分∠ABC,A'C平分∠ACB,∠BA'C=110°,∴∠A′BC+∠A′CB=70°,∴∠ABC+∠ACB=140°,∴∠BAC=180°﹣140°=40°.∵∠1=∠DAA′+∠DA′A,∠2=∠EAA′+∠EA′A.∵∠DAA′=∠DA′A,∠EAA′=∠EA′A,∴∠1+∠2=2(∠DAA′+∠EAA′)=2∠BAC=80°.故选A.点睛:本题考查了三角形的内角和定理、角平分线的定义、三角形的外角的性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识,属于中考常考题型.9.B【解析】如图,分别过K、H作AB的平行线MN和RS,∵AB∥CD,∴AB∥CD∥RS∥MN,∴∠RHB=∠ABE=12∠ABK,∠SHC=∠DCF=12∠DCK,∠NKB+∠ABK=∠MKC+∠DCK=180°,∴∠BHC=180°﹣∠RHB﹣∠SHC=180°﹣1(∠ABK+∠DCK),2∠BKC=180°﹣∠NKB﹣∠MKC=180°﹣(180°﹣∠ABK)﹣(180°﹣∠DCK)=∠ABK+∠DCK﹣180°,∴∠BKC=360°﹣2∠BHC﹣180°=180°﹣2∠BHC,又∠BKC﹣∠BHC=27°,∴∠BHC=∠BKC﹣27°,∴∠BKC=180°﹣2(∠BKC﹣27°),∴∠BKC=78°,故选:B.10.A【解析】根据“两点之间,线段最短”,可知①正确;根据“两直线平行,同旁内角互补” ,可知②错误;当点C在线段AB的垂直平分线上时,满足条件AC=BC,此时点C不一定是线段AB的中点,故③错误;根据“过直线外一点,有且只有一条直线与这条直线平行”,可知④错误.所以正确的说法只有1个.故选A.点睛:本题主要考查线段公理、平行线判定、线段中点定义等知识,熟练掌握相关知识点的定义是解题的关键.11.A【解析】分析:可以从直线DE、AC的截线所组成的“三线八角”图形入手进行判断.详解:A.∵∠3=∠4,∴DE∥AC,正确;B.∵∠1=∠2,∴EF∥BC,错误;C.∵∠EDC=∠EFC,不能得出平行线的平行,错误;D.∵∠ACD=∠AFE,∴EF∥BC,错误.故选A.点睛:本题考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两条被截直线平行.12.C【解析】分析:由平行线的判定定理易知A、B都能判定AB∥CD;选项C中同旁内角相等,但不一定互补,所以不能判定AB∥CD;选项D中可得出∠1=∠5,从而判定AB∥CD.详解:∠3=∠5是同旁内角相等,但不一定互补,所以不能判定AB∥CD.故选C.点睛:本题考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.13.B【解析】【分析】三角形纸片中,剪去其中一个60°的角后变成四边形,则根据多边形的内角和等于360度即可求得∠1+∠2的度数.【详解】根据三角形的内角和定理得:四边形除去∠1,∠2后的两角的度数为180°-60°=120°,则根据四边形的内角和定理得:∠1+∠2=360°-120°=240°,故选B.【点睛】本题考查了多边形的内角和,三角形内角和定理,熟练掌握三角形内角和定理以及四边形的内角和是360度是解题的关键.14.B【解析】【分析】先根据∠1=62∘可求出∠EAB=180∘−∠1=180∘−62∘=118∘,根据AE//BF可知,∠ABF=∠1=62∘,进而可求出∠2的度数.【详解】∵∠1=62∘,∴∠EAB=180∘−∠1=180∘−62∘=118∘,∵AE//BF,∴∠ABF=∠1=62∘,∴∠2=180∘−2∠ABF=180∘−2×62∘=56∘,故选B.【点睛】本题考查的是图形翻折变换的性质及平行线的性质,熟知图形翻折变换的性质是解题的关键.15.A【解析】分析:设围成的小三角形为△ABC,分别用∠1、∠2、∠3表示出△ABC的三个内角,再利用三角形的内角和等于180°列式整理即可得解.详解:如图,∠BAC=180°﹣90°﹣∠1=90°﹣∠1,∠ABC=180°﹣60°﹣∠3=120°﹣∠3,∠ACB=180°﹣60°﹣∠2=120°﹣∠2,在△ABC中,∠BAC+∠ABC+∠ACB=180°,∴90°﹣∠1+120°﹣∠3+120°﹣∠2=180°,∴∠1+∠2+∠3=150°,故选A.点睛:本题考查了三角形的内角和定理,用∠1、∠2、∠3表示出△ABC的三个内角是解题的关键,也是本题的难点.16.A【解析】【分析】依据三角形内角和为180°,即可得到这个三角形残缺前的∠C的度数.【详解】解:∵∠A+∠B+∠C=180°,∴∠C=180°-(∠A+∠B)=180°-(45°+60°)=75°,故选:A.【点睛】本题主要考查了三角形内角和定理,三角形内角和是180°.17.B【解析】分析:根据平行线的性质,先求出∠BEF和∠CEF的度数,再求出它们的差即可.详解:∵AB∥EF,∴∠BEF=∠ABE=70°;又∵EF∥CD,∴∠CEF=180°-∠ECD=180°-150°=30°,∴∠BEC=∠BEF-∠CEF=40°.故选B.点睛:本题主要利用两直线平行,同旁内角互补以及两直线平行,内错角相等进行解题.18.B【解析】:①两直线平行,同旁内角互补,是假命题;②两点确定一条直线;是真命题;③两条直线相交,有且只有一个交点,是真命题;④若一个角的两边分别与另一个角的两边平行,那么这两个角相等或互补,是假命题.其中属于真命题的有2个.故选:B.19.C【解析】在△ABC中,∠ACB=90°,∠A=24°,∴∠B=90°-∠A=66°.∠ACB=45°,由折叠的性质可得:∠BCD=12∴∠BDC=180°-∠BCD-∠B=69°.故选C.20.B【解析】依据∠1=∠2,能判定AB∥CD;依据∠BAD+∠ADC=180°,能判定AB∥CD;依据∠ABC=∠ADC,不能判定AB∥CD;依据∠3=∠4,不能判定AB∥CD;故选:B.21.B【解析】试题解析:点E 有4种可能位置.(1)如图,由AB ∥CD , 可得1AOC DCE β∠=∠=,11AOC BAE AE C ∠=∠+∠, 1AE C βα∴∠=-.(2)如图,过2E 作AB 平行线,则由AB ∥CD ,可得2212BAE DCE αβ∠=∠=∠=∠=,, 2AE C αβ∴∠=+.(3)如图,由AB ∥CD ,可得33BOE DCE β∠=∠=, 333BAE BOE AE C ∠=∠+∠, 3AE C αβ∴∠=-.(4)如图,由AB ∥CD ,可得444360BAE AE C DCE ∠+∠+∠=︒,4360AE C αβ∴∠=︒--.AEC ∴∠的度数可能为360βααβαβαβ-+-︒--,,,.故选:D .22.B【解析】分析:过点N 作NG ⊥BC 于G ,NE ⊥BM 于E ,NF ⊥CM 于F ,根据角平分线上的点到角的两边的距离相等可得NE=NG=NF ,再根据到角的两边距离相等的点在角的平分线上判断出MN 平分∠BMC ,然后根据三角形内角和等于180°求出∠ABC+∠ACB ,再根据角的三等分求出∠MBC+∠MCB 的度数,然后利用三角形内角和定理求出∠BMC 的度数,从而得解.详解:如图,过点N作NG⊥BC于G,NE⊥BM于E,NF⊥CM于F,∵∠ABC的三等分线与∠ACB的三等分线分别交于点M、N,∴BN平分∠MBC,CN平分∠MCB,∴NE=NG,NF=NG,∴NE=NF,∴MN平分∠BMC,∴∠BMN=12∠BMC,∵∠A=60°,∴∠ABC+∠ACB=180°−∠A=180°−60°=120°,根据三等分,∠MBC+∠MCB=23(∠ABC+∠ACB)=23×120°=80°.在△BMC中,∠BMC=180°−(∠MBC+∠MCB)=180°−80°=100°.∴∠BMN=12×100°=50°;故选:B.点睛:本题考查了三角形的内角和定理:三角形内角和为180°;角平分线的性质:角平分线上的点到角两边的距离相等.熟记性质和定理是解本题的关键.23.A【解析】根据负数没有平方根,可知①不正确;根据单项式的意义,可知次数为所有字母因式的指数和,故②正确;根据分数的基本性质,可知将方程x−10.3−x+20.5=1.2中的分母化为整数,得10x−103−10x+205=1.2,故③不正确;根据两点确定一条直线,可知平面内有4个点,过每两点画直线,条数不确定:当四个点在同一直线上时,只有一条;当只有每任意三点不在同一直线上的四个点才能画6条直线,故④不正确.故选:A.点睛:本题考查了数的平方,单项式的概念,方程的分母化为整数,点与直线条数的关系.24.B【解析】分析:过A点作AB∥a,利用平行线的性质得AB∥b,所以∠1=∠2,∠3=∠4=30°,加上∠2+∠3=45°,易得∠1=15°.详解:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选:B.点睛:本题考查了平行线的性质,解题时注意:两直线平行,内错角相等.25.C【解析】①如图1,过点E作EF∥AB,因为AB∥CD,所以AB∥EF∥CD,所以∠A+∠AEF=180°,∠C+∠CEF=180°,所以∠A+∠AEC+∠C=∠A+∠AEF+∠C+∠CEF=180°+180°=360°,则①错误;②如图2,过点E作EF∥AB,因为AB∥CD,所以AB∥EF∥CD,所以∠A=∠AEF,∠C=∠CEF,所以∠A+∠C=∠AEC+∠AEF=∠AEC,则②正确;③如图3,过点E作EF∥AB,因为AB∥CD,所以AB∥EF∥CD,所以∠A+∠AEF=180°,∠1=∠CEF,所以∠A+∠AEC-∠1=∠A+∠AEC-∠CEF=∠A+∠AEF=180°,则③正确;④如图4,过点P作PF∥AB,因为AB∥CD,所以AB∥PF∥CD,所以∠A+∠APF,∠C+∠CPF,所以∠A=∠CPF+∠APC=∠C+∠APC,则④正确;故选C.。
人教版七年级下册数学平行线证明题训练
人教版七年级下册数学平行线证明题训练1.已知:如图,180BAP APD ∠+∠=︒,12∠=∠.求证:E F ∠=∠. 证明:∵180BAP APD ∠+∠=︒,(______)∵AB CD ∥.(______)∵BAP APC ∠=∠.(______)∵12∠=∠,(______)∵12BAP APC ∠-∠=∠-∠.(______)即EAP FPA ∠=∠.∵______.(______)∵E F ∠=∠.(______)2.如图,点E 在DF 上,点B 在AC 上,∵1=∵2,∵C =∵D ,试说明:AC ∵DF ,将过程补充完整.解:∵∵1=∵2(已知)∵1=∵3( )∵∵2=∵3(等量代换)∵EC ∵DB (同位角相等,两直线平行)∵∵C =∵ABD ( )又∵∵C =∵D (已知)∵∵D =∵ABD ( )∵AC ∵DF ( )3.填空:(将下面的推理过程及依据补充完整)如图,己知:CD 平分∵ACB ,AC DE ∥、CD EF ∥,求证:EF 平分∵DEB . 证明:∵CD 平分∵ACB (已知),∵∵DCA =__________________(_________________).∵AC DE ∥(已知),∵∵DCA =__________________.∵DCE CDE ∠=∠(等量代换),DCE BEF ∠=∠(_________________),∵_____________=_____________(等量代换).∵EF 平分∵DEB (_________________)4.完成下面推理过程.在括号内的横线上填上推理依据.如图,已知:AB EF ∥,EP EQ ⊥,90EQC APE ∠+∠=︒,求证:AB CD ∥. 证明:∵AB EF ∥,∵APE PEF ∠=∠(_________).∵EP EQ ⊥,∵90PEQ ∠=︒(__________).即90QEF PEF ∠+∠=︒.∵90APE QEF ∠+∠=︒∵90EQC APE ∠+∠=︒,∵EQC ∠=_________(_______).∵EF CD ∥(___________).∵AB CD ∥(_________).5.在横线上填上适当的内容,完成下面的证明.如图,∵E =∵1,∵3+∵ABC =180°,BE 是∵ABC 的角平分线,求证:DF∥AB .证明:∵BE 是∵ABC 的角平分线∵∵1=∵2(________________)又∵∵E =∵1∵∵E =∵2(___________)∵____∥____(____________________)∵∵A +∵ABC =180°(____________________)又∵∵3+∵ABC =180°∵____=____(________________)∵DF∥AB (____________________).6.在下面解答中填空.如图,,,12AB BF CD BF ⊥⊥∠=∠,试说明3E ∠=∠.解:∵,AB BF CD BF ⊥⊥(已知),∵∵ABF=∵________________=90°(垂直的定义).∵12∠=∠(已知),∵AB//EF(__________________________________).∵CD//EF(平行于同一条直线的两条直线互相平行).∠=∠(___________________________________).∵3E7.如图,已知直线AB∵CD,∵B=50°,∵BEC=25°,EC平分∵BEF.(1)请说明AB∵EF的理由;(2)求∵DCE的度数.8.如图,EF∵BC,∵1=∵C,∵2+∵3=180°,试说明∵ADC=90°.请完善解答过程,并在括号内填写相应的理论依据.解:∵∵1=∵C,(已知)∵GD∵ .()∵∵2=∵DAC.()∵∵2+∵3=180°,(已知)∵∵DAC+∵3=180°.(等量代换)∵AD∵EF.()∵∵ADC=∵.()∵EF∵BC,(已知)∵∵EFC=90°.()∵∵ADC=90°.(等量代换)60°.请问:(1)GD 与CB 有怎样的位置关系?为什么?(2)求∵ACB 的度数.10.如图,已知,12,34AB CD ∠=∠∠=∠∥,求证:D DCE ∠=∠.11.如图,在∵ABC 中,CD ∵AB ,垂足为D ,点E 在BC 上,EF ∵AB ,垂足为F .(1)CD 与EF 平行吗?请说明理由;(2)如果∵1=∵2,且∵3=110°,求∵ACB 的度数.12.如图,在∵ABC中,E、G分别是AB、AC上的点,F、D是BC上的点,连接EF、AD、DG,AD∥EF,∵1+∵2=180°.(1)说明:AB∥DG;(2)若∵2=145°,∵B=35°,说明:DG是∵ADC的平分线.13.如图,已知AB∵CD,∵2+∵3=180°,DA平分∵BDC,CE∵FE于点E,∵1=70°.(1)求证:AD∵CE;(2)求∵F AB的度数.14.如图,已知F是四边形BCDE的边BE上一点,CB与DF的延长线相交于点A,其中∵A=∵ADE.(1)若∵EDC=3∵C,求∵C的度数;(2)若∵C=∵E,求证:BE∥CD.15.如图,已知点D、E、F分别在ABC的边AB、AC、BC上,∵1+∵2=180°,∵3=∵B,请说明∵DEC+∵C= 180°的理由16.如图,在∵ABC中,点D、E分别在AB、BC上,且DE∵AC,∵1=∵2.(1)求证:AF∵BC;(2)若AC平分∵BAF,∵B=50°,求∵1的度数.17.如图,已知∵1=52°,∵2=128°,∵C=∵D.求证:∵A=∵F.18.如图,B ,E 分别是AC ,DF 上的点,180A ABF ∠+∠=︒,A F ∠=∠,求证:AC DF ∥.19.请根据条件进行推理,得出结论,并在括号内注明理由.已知,如图,AB DC ∥,直线EF 分别交AB 、CD 于点G 、H ,GM 、HN 分别平分∵BGH 与∵DHF .求证:GM HN ∥;证明:∵AB DC ∥(已知),∵∵BGH=∵DHF (__________________),∵GM 、HN 分别平分∵BGH 与∵DHF , ∵∵_____=12∵BGH ,∵_____=12∵DHF (__________________),∵∵_____=∵_____(__________________),∵GM //HN (__________________________).20.(1)(问题)如图1,若AB CD ∥,40AEP ∠=︒,50PFC ∠=︒,求EPF ∠的度数.(3)(联想拓展)如图3所示,在(2)的条件下,已知60EPF ∠=︒,120PFC ∠=︒,PEA ∠的平分线和PFC ∠的平分线交于点G ,直接写出G ∠的度数.。
平行线的判定证明题
平行线的判定证明题第一篇:平行线的判定证明题平行线的判定证明题1)两条平行线被第三条直线所截,同位角相等;(2)两条平行线被第三条直线所截,内错角相等;(3)两条平行线被第三条直线所截,同旁内角互补。
(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行;(3)两条直线被第三条直线所截,如果同旁内角相等,那么这两条直线平行。
按这个判定,绝对没错。
这两种的第一条都没有办法判定,而后两条就完全可以按照第一条来判定,最后的结果一定是对的。
2平行线的性质:(1)两条平行线被第三条直线所截,同位角相等;(2)两条平行线被第三条直线所截,内错角相等;(3)两条平行线被第三条直线所截,同旁内角互补。
平行线的判定定理:(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行;(3)两条直线被第三条直线所截,如果同旁内角相等,那么这两条直线平行。
平行线的性质:在同一平面内永不相交的两条直线叫做平行线。
平行线的判定定理:(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行;(3)两条直线被第三条直线所截,如果同旁内角相等,那么这两条直线平行。
3光学原理。
延长ge角cd于q因为∠2=∠3,所以ab∥cd由ab∥cd可得∠1=∠gqd又∠1=∠4所以∠4=∠gqd所以gq∥fh即:ge∥fh因为∠2=∠3所以ab∥cd所以角cfe=角feb所以大角hfe=大角feg所以hf∥ge4)要证明ab∥gd,只要证明∠1=∠bad即可,根据∠1=∠2,只要再证明∠2=∠bad即可证得;(2)根据ab∥cd,∠1:∠2:∠3=1:2:3即可求得三个角的度数,再根据∠eba与∠abd互补,可求得∠eba的度数,即可作出判断.解答:解:(1)证明:∵ad⊥bc,ef⊥bc(已知)∴∠efb=∠adb=90°(垂直的定义)∴ef∥ad(同位角相等,两直线平行)(2分)∴∠2=∠bad(两直线平行,同位角相等)(3分)∵∠1=∠2,(已知)∴∠1=∠bad(等量代换)∴ab∥dg.(内错角相等,两直线平行)(4分)(2)判断:ba平分∠ebf(1分)证明:∵∠1:∠2:∠3=1:2:3∴可设∠1=k,∠2=2k,∠3=3k(k>0)∵ab∥cd∴∠2+∠3=180°(2分)∴2k+3k=180°∴k=36°∴∠1=36°,∠2=72°(4分)∴∠abe=72°(平角定义)∴∠2=∠abe∴ba平分∠ebf(角平分线定义).(5分)第二篇:第五章《平行线的性质与判定》证明题专项练习桐峙中学《平行线的性质与判定》练习卷班级:姓名:号次:1.如图,ae∥bc, ae平分∠dac,试判定∠b与∠c的大小关系,并说明理由。
人教版七年级下册数学平行线证明题专题训练(含答案)
人教版七年级下册数学平行线证明题专题训练 1.如图,已知∠1+∠2=180°,且∠3=∠B .(1)求证:∠AFE =∠ACB ;(2)若CE 平分∠ACB ,且∠2=110°,∠3=50°,求∠ACB 的度数.2.如图,点D 、F 在线段AB 上,点E 、G 分别在线段BC 和AC 上,CD EF ∥,12∠=∠.(1)求证: DG BC ∥;(2)若DG 是角ADC ∠的平分线,385∠=︒,且:9:10DCE DCG ∠∠=,请说明AB 和CD 怎样的位置关系?3.如图,已知BE AO ∥,12∠=∠,OE OA ⊥于点O ,那么4∠与5∠有什么数量关系?为什么?4.如图所示,已知CD 平分ACB ∠,12∠=∠,那么B 与4∠相等吗?完成下面的填空.CD 平分ACB ∠(已知)2∴∠=∠______(______), 12∠=∠(已知), ∴∠______1=∠(______),∴______∥______(______),4B ∴∠=∠(______). 5.如图,在四边形ABCD 中,AD BC ∥,连接BD ,点E 在BC 边上,点F 在DC 边上,且12∠=∠.(1)求证:EF BD ∥.(2)若DB 平分ABC ∠,130A ∠=︒,70C ∠=︒,求CFE ∠的度数.6.如图,D ,E ,G 分别是AB ,AC ,BC 边上的点,12180∠+∠=︒,3B ∠=∠.(1)请说明∥DE BC 的理由;7.已知如图,已知∠1=∠2,∠C =∠D .(1)判断BD 与CE 是否平行,并说明理由;(2)当∠A =30°时,求∠F 的大小.8.如图所示,已知BE FG ∥,12∠=∠.求证∥DE BC .9.推理填空:如图,CF 交BE 于点H ,AE 交CF 于点D ,∠1=∠2,∠3=∠C ,∠ABH =∠DHE ,求证:BE ∠AF .证明:∠∠ABH =∠DHE (已知),∠_______(_____________),∠∠3+______=180°(_______).∠∠3=∠C (已知),∠∠C +________=180°(_________),∠AD ∠BC (___________),∠∠2=∠E (___________).∠∠1=∠2(已知),∠∠1=∠E (等量代换).∠BE ∠AF (内错角相等,两直线平行).10.如图,AB 、CD 是两条直线,BMN CNM ∠=∠,12∠=∠.请说明E F ∠=∠的理由.11.如图,MN BC ∥,BD DC ⊥,1260∠=∠=︒,DC 是NDE ∠的平分线(1)AB 与DE 平行吗?请说明理由;(2)试说明ABC C ∠=∠;(3)求ABD ∠的度数.12.如图,AD 与BE 相交于F ,∠A =∠C ,∠1与∠2互补.(1)试说明:AB CE ∥;(2)若∠1=85°,∠E =26°,求∠A 的度数.13.已知,点A ,B 在直线EF 上,∠1+∠2=180°,DB 平分∠CDA ,CD ∠AB .(1)求证:AD ∠BC ;(2)若∠DAB =52°,求∠BDC 的度数.14.如图,已知180BAD ADC ∠+∠=︒,AE 平分BAD ∠,交CD 于点F ,交BC 的延长线于点E ,DG 交BC 的延长线于点G ,CFE AEB ∠=∠.(1)若87B ∠=︒,求DCG ∠的度数;(2)AD 与BC 是什么位置关系?请说明理由;(3)若DAB α∠=,DGC β∠=,直接写出α,β满足什么数量关系时AE DG ∥.15.已知:如图,D ,E ,F 分别是AB ,AC ,BC 上的点,DE ∠BC ,∠ADE =∠EFC ,求证:∠1=∠2.16.如图,直线EF分别与直线AB,CD相交于点A,C,AD平分∠BAC,交CD于点D,若∠1=∠2,且∠ADC=54°.(1)直线AB、CD平行吗?为什么?(2)求∠1的度数.17.如图,AE∠BC,FG∠BC,∠1=∠2,求证:AB∠CD.18.如图,已知DG∠BC,AC∠BC,EF∠AB,∠1=∠2,求证:CD∠AB19.如图,已知AD∠BC,FG∠BC,垂足分别为D,G.且∠1=∠2,猜想:DE与AC 有怎样的关系?说明理由.20.(1)如图1,AB∠CD,∠A=38°,∠C=50°,求∠APC的度数.(提示:作PE∠AB).(2)如图2,AB∠DC,当点P在线段BD上运动时,∠BAP=∠α,∠DCP=∠β,求∠CPA与∠α,∠β之间的数量关系,并说明理由.(3)在(2)的条件下,如果点P在段线OB上运动,请你直接写出∠CPA与∠α,∠β之间的数量关系______.参考答案:1.证明:∠∠1+∠2=180°,∠1+∠FDE =180°,∠∠FDE =∠2,∠∠3+∠FEC +∠FDE =180°,∠2+∠B +∠ECB =180°,∠B =∠3, ∠∠FEC =∠ECB ,∠EF ∥ BC ,∠∠AFE =∠ACB ;(2)解:∠∠3=∠B ,∠3=50°,∠∠B =50°,∠∠2+∠B +∠ECB =180°,∠2=110°,∠∠ECB =20°,∠CE 平分∠ACB ,∠∠ACB =2∠ECB =40°.2.(1)证明∠CD EF ∥,∠2DCB =∠∠,又∠12∠=∠,∠1DCB ∠=∠,∠DG BC ∥;(2)CD AB ⊥,理由如下:由(1 )知DG BC ∥,∠385∠=︒,∠180395BCG ∠=︒-∠=︒,∠:9:10DCE DCG ∠∠=, ∠9954519DCE ∠=︒⨯=︒, ∠DG BC ∥,∠45CDG ∠=︒,∠DG 是ADC ∠的平分线, ∠290ADC CDG ∠=∠=︒, ∠CD AB ⊥.3.解:∠4与∠5互余,理由:∠OE ∠OA ,∠∠AOE =90°,即∠2+∠3=90°, ∠∠1+∠2+∠3+∠4=180°, ∠∠1+∠4=90°∠∠1=∠2,∠∠2+∠4=90°,∠BE AO ∥,∠∠2=∠5, ∠∠5+∠4=90°,即∠4与∠5互余. 4.【详解】 CD 平分ACB ∠(已知)23∴∠=∠(角平分线的定义),12∠=∠(已知), 31∴∠=∠(等量代换),DE BC ∴∥(内错角相等,两直线平行),4B ∴∠=∠(两直线平行,同位角相等). 5.(1)证明:AD BC (已知), 1∴∠=∠DBC (两直线平行,内错角相等), 12∠=∠,2DBC ∴∠=∠(等量代换),EF BD ∴∥(同位角相等,两直线平行). (2)AD BC (已知),180ABC A ∴∠+∠=(两直线平行,同旁内角互补), 130A ∠=(已知), 50ABC ∴∠=, DB 平分 ABC ∠(已知), 1252DBC ABC ∴∠=∠=, 225DBC ∴∠=∠=,在 CFE 中,2180CFE C ∠+∠+∠=(三角形内角和定理),70C ∠=,85CFE ∴∠=.6.(1)解:∠12180∠+∠=︒,1DFG ∠=∠, ∠2180DFG ∠+∠=︒,∠AB EG ∥,∠B EGC ∠=∠.又∠3B ∠=∠,∠3EGC ∠=∠,∠∥DE BC ;(2)∠DE 平分ADC ∠,∠ADE EDC ∠=∠.∠∥DE BC ,∠B ADE EDC ∠=∠=∠,∠22B ∠=∠,2180ADE EDC ∠+∠+∠=︒, ∠2180B B B ∠+∠+∠=︒, ∠45B ∠=︒,∠2290B ∠=∠=︒,∠CD AB ⊥,∠AB EG∥,⊥.∠CD EG7.(1)BD∠CE,理由如下:∠∠1=∠2,∠2=∠3,∠∠1=∠3,∠BD∠CE;(2)∠BD∠CE,∠∠C=∠4,∠∠C=∠D,∠∠D=∠4,∠AC∠DF,∠∠A=∠F=30°.8.∥证明:∠BE FG∠2CBE∠=∠(两直线平行,同位角相等)又∠12∠=∠∠1CBE∠=∠DE BC(内错角相等,两直线平行)-∠∥9.证明:∠∠ABH=∠DHE(已知),∠AB∠CF(同位角相等,两直线平行),∠∠3+∠ADC=180°(两直线平行,同旁内角互补),∠∠3=∠C(已知),∠∠C+∠ADC=180°(等量代换),∠AD∠BC(同旁内角互补,两直线平行),∠∠2=∠E(两直线平行,内错角相等).∠∠1=∠2(已知),∠∠1=∠E(等量代换),∠BE∠AF(内错角相等,两直线平行).故答案为:AB∠CF,同位角相等,两直线平行;∠ADC,两直线平行,同旁内角互补;∠ADC,等量代换;同旁内角互补,两直线平行;两直线平行,内错角相等.10.∵∠BMN=∠CNM(已知),∠AB CD(内错角相等,两直线平行).∠∠AMN=∠MND(两直线平行,内错角相等).∠∠1=∠2(已知),∠∠EMN=∠MNF(等式性质).∥(内错角相等,两直线平行).∠ME NF∠∠E=∠F(两直线平行,内错角相等),11.(1)解:AB DE∥,理由如下:∥,∠MN BC∠∠ABC=∠1=60°.又∠∠1=∠2,∠∠ABC=∠2,∠AB∠DE.(2)解:∠MN∠BC,∠∠NDE+∠2=180°,∠∠NDE=180°-∠2=180°-60°=120°.∠DC是∠NDE的平分线,∠1602∠=∠=∠=︒EDC NDC NDE.∠MN∠BC,∠∠C=∠NDC=60°,∠∠ABC=∠C.(3)解:∠ADC=180°-∠NDC=180°-60°=120°,∠BD∠DC,∠∠BDC=90°,∠∠ADB=∠ADC-∠BDC=120°-90°=30°.∠MN∠BC,∠∠DBC=∠ADB=30°,∠∠ABC=∠C=60°,∠∠ABD=30°12.(1)证明:∠∠1与∠2互补,∠AD BC∥,∠∠ADE=∠C,∠∠A=∠C,∠∠A=∠ADE,∠AB CE∥;(2)解:∠∠1与∠2互补,∠1=85°,∠∠2=180º-85º=95º,∠AB CE∥,∠E=26º,∠∠ABE=∠E=26º,∠∠ABC=∠ABE+∠2=26º+95º=121º,∠AD BC ∥,∠∠A =180º-∠ABC =180º-121º=59º.13.(1)∠∠1+∠2=180°,点A ,B 在直线EF 上, ∠∠1+∠DAB =180°,∠∠2=∠DAB ,∠AD ∠BC ;(2)∠CD ∠AB ,∠DAB =52°,∠∠CDA =180°﹣∠DAB =180°﹣52°=128°, ∠DB 平分∠CDA ,∠∠BDC 12=∠CDA =64°. 14.(1)解:∠180BAD ADC ∠+∠=︒,∠AB CD ∥,∠87B DCG ∠=∠=︒.(2)解:AD 与BC 是的位置关系为:AD BC ∥,理由如下: ∠AE 平分BAD ∠,∠BAE DAE ∠=∠,∠180BAD ADC ∠+∠=︒,∠AB CD ∥,∠BAE CFE ∠=∠,∠AEB CFE ∠=∠,∠∠AEB =∠BAE =∠DAE ,∠AD BC ∥.(3)解:α与β的数量关系为:12αβ=,理由如下:当AE DG∥时,AEB DGCβ∠=∠=,由(2)中推导可知,1122 AEB EAD BADα∠=∠=∠=,∠12αβ=.15.证明:∠DE∠BC,∠∠ADE=∠ABC.∠∠ADE=∠EFC,∠∠ABC=∠EFC.∠AB∠EF.∠∠1=∠2.16.(1)解:AB CD∥,理由:∠∠1=∠2,∠1=∠DCA,∠∠2=∠DCA,∠AB CD∥(2)解:∠∠ADC=54°,AB CD∥,∠∠DAB=∠ADC=54°,∠AD平分∠BAC,∠∠BAC=2∠DAB=108°,∠∠2=180°-∠BAC=72°,∠∠1=72°.17.直线平行可得AB∠CD.【详解】证明:如图,设BC与AE、GF分别交于点M、N.∠AE∠BC,FG∠BC,∠∠AMB=∠GNB=90°,∠AE∠FG,∠∠A=∠1;又∠∠2=∠1,∠∠A=∠2,∠AB∠CD.18.证明:∠ DG∠BC,AC∠BC(已知),∠ ∠DGB=∠ACB=90°(垂直的定义),∠ DG∠AC(同位角相等,两直线平行).∠ ∠2=∠ACD(两直线平行,内错角相等).∠ ∠1=∠2(已知),∠ ∠1=∠ACD(等量代换),∠ EF∠CD(同位角相等,两直线平行).∠ ∠AEF=∠ADC(两直线平行,同位角相等).∠ EF∠AB(已知),∠ ∠AEF=90°(垂直的定义),∠ ∠ADC=90°(等量代换).∠ CD∠AB(垂直的定义).19.DE∠AC.理由如下:∠AD∠BC,FG∠BC,∠∠ADG=∠FGC=90°,∠AD∠FG,∠∠1=∠CAD,∠∠1=∠2,∠∠CAD=∠2,∠DE∠AC.20.(1)如图1,过P作PE∠AB,∠AB∠CD,∠PE∠AB∠CD,∠∠A=∠APE,∠C=∠CPE,∠∠A=38°,∠C=50°,∠∠APE=38°,∠CPE=50°,∠∠APC=∠APE+∠CPE=38°+50°=88°;(2)∠APC=∠α+∠β,理由是:如图2,过P作PE∠AB,交AC于E,∠AB∠CD,∠AB∠PE∠CD,∠∠APE=∠PAB=∠α,∠CPE=∠PCD=∠β,∠∠APC=∠APE+∠CPE=∠α+∠β;(3)如图3,过P作PE∠AB,交AC于E,∠AB∠CD,∠AB∠PE∠CD,∠∠PAB=∠APE=∠α,∠PCD=∠CPE=∠β,∠∠APC=∠CPE-∠APE,∠∠APC=∠β-∠α.故答案为:∠APC=∠β-∠α.。
平行线的判定练习题(有答案)
亲爱的朋友,很高兴能在此相遇!欢迎您阅读文档平行线的判定练习题(有答案),这篇文档是由我们精心收集整理的新文档。
相信您通过阅读这篇文档,一定会有所收获。
假若亲能将此文档收藏或者转发,将是我们莫大的荣幸,更是我们继续前行的动力。
平行线的判定练习题(有答案)篇一:(913)平行线的判定专项练习60题(有答案)ok平行线的判定专项练习60题(有答案)1.已知:如图,BE平分∠ABC,∠1=∠2.求证:BC∥DE.2.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.3.如图所示,AB⊥BC,BC⊥CD,BF和CE是射线,并且∠1=∠2,试说明BF∥CE.4.如图,AB⊥BC,∠1+∠2=90°,∠2=∠3,求证:BE∥DF.5.如图,OP平分∠MON,A、B分别在OP、OM上,∠BOA=∠BAO,那么AB平行于ON吗?若平行,请写出证明过程;若不平行,请说明理由.6.已知:如图,∠1=∠2,∠A=∠C.求证:AE∥BC.平行线的判定---第1页共1页7.已知,如图B、D、A在一直线上,且∠D=∠E,∠ABE=∠D+∠E,BC是∠ABE的平分线,求证:DE∥BC.8.如图,已知∠AEC=∠A+∠C,试说明:AB∥CD.9.如图,已知AC∥ED,EB平分∠AED,∠1=∠2,求证:AE∥BD.10.如图,直线AB、CD与直线EF相交于E、F,已知:∠1=105°,∠2=75°,求证:AB∥CD.11.如图,∠D=∠A,∠B=∠FCB,求证:ED∥CF.12.如图,已知AB⊥BC,CD⊥BC,∠1=∠2,求证:EB∥FC.平行线的判定---第2页共2页13.如图所示所示,已知BE是∠B的平分线,交AC于E,其中∠1=∠2,那么DE∥BC吗?为什么?14.如图,已知∠C=∠D,DB∥EC.AC与DF平行吗?试说明你的理由.15.如图,AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,求证:AE∥BF.16.如图,已知AB∥CD,∠1=∠2,求证:BE∥CF.17.已知∠BAD=∠DCB,∠1=∠3,求证:AD∥BC.18.如图,AD是三角形ABC的角平分线,DE∥CA,并且交AB 与点E,∠1=∠2,DF与AB是否平行?为什么?平行线的判定---第3页共3页19.如图,已知:∠C=∠DAE,∠B=∠D,那么AB平行于DF 吗?请说明理由.20.如图,已知点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?说明理由.21.已知∠1的度数是它补角的3倍,∠2等于45°,那么AB∥CD吗?为什么?22.已知:如图,BDE是一条直线,∠ABD=∠CDE,BF平分∠ABD,DG平分∠CDE,求证:BF∥DG.23.如图,四边形ABCD中,∠A=∠C=90°,BF、DE分别平分∠ABC、∠ADC.判断DE、BF是否平行,并说明理由.24.如图,若∠CAB=∠CED+∠CDE,求证:AB∥CD.25.如图,CD⊥AB,GF⊥AB,∠1=∠2.试说明DE∥BC.平行线的判定---第4页共4页26.如图所示,∠CAD=∠ACB,∠D=90°,EF⊥CD.试说明:∠AEF=∠B.27.已知:如图所示,C,P,D三点在同一条直线上,∠BAP+∠APD=180°,∠E=∠F,求证:∠1=∠2.28.如图,∠D=∠1,∠E=∠2,DC⊥EC.求证:AD∥BE.29.如图,在四边形ABCD中,∠A=∠C,BE平分∠ABC,DF平分∠ADC,试说明BE∥DF.30.已知:如图,∠1=∠2,∠A=∠F,则∠C与∠D相等吗?试说明理由.31.如图,在四边形ABCD中,∠A=∠C=90°,∠1=∠2,∠3=∠4,求证:BE∥DF.平行线的判定---第5页共5页篇二:七年级平行线的判定与性质练习题带答案平行线测试题姓名:一、选择题1.下列命题中,不正确的是____[]A.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行B.两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行C.两条直线被第三条直线所截,那么这两条直线平行D.如果两条直线都和第三条直线平行,那么这两条直线也互相平行2.如图,可以得到DE∥BC的条件是______[](2题)(5题)(3题)(7题)(8题)A.∠ACB=∠BACB.∠ABC+∠BAE=180°C.∠ACB+∠BAD=180°D.∠ACB=∠BAD3.如图,直线a、b被直线c所截,现给出下列四个条件:(1)∠1=∠2(2)∠3=∠6(3)∠4+∠7=180°(4)∠5+∠8=180°,其中能判定a∥b的条件是_________[]A.(1)(3)B.(2)(4)C.(1)(3)(4)D.(1)(2)(3)(4) 4.一辆汽车在笔直的公路上行驶,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是________[]A.第一次向右拐40°,第二次向左拐40°B.第一次向右拐50°,第二次向左拐130°C.第一次向右拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐130°5.如图,如果∠1=∠2,那么下面结论正确的是_________.[] A.AD∥BCB.AB∥CDC.∠3=∠4D.∠A=∠C6.同一平面内有四条直线a、b、c、d,若a∥b,a⊥c,b⊥d,则直线c、d的位置关系为()A.互相垂直B.互相平行C.相交D.无法确定7.如图,在平行四边形ABCD中,下列各式不一定正确的是()A.∠1+∠2=180°B.∠2+∠3=180°C.∠3+∠4=180°D.∠2+∠4=180°8.如图,AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC的度数为()A.30°B.60°C.90°D.120°二、填空题9.如图,由下列条件可判定哪两条直线平行,并说明根据.(1)∠1=∠2,.(2)∠A=∠3,.(3)∠ABC+∠C=180°.10.如果两条直线被第三条直线所截,一组同旁内角的度数之比为3∶2,差为36°,那么这两条直线的位置关系是________.11.同垂直于一条直线的两条直线_______.同一平面内,不重合的两直线的位置关系是。
(完整)七年级上册平行线经典题型及答案解析(经典)
1、如图,∠1=∠2,∠3=110°,求∠4.2、如图,AB ∥CD ,AE 交CD 于点C ,DE ⊥AE ,垂足为E ,∠A=37°,求∠D 的度数.3、如图,AB ,CD 是两根钉在木板上的平行木条,将一根橡皮筋固定在A ,C 两点,点E 是橡皮筋上的一点,拽动E点将橡皮筋拉紧后,请你探索∠A ,∠AEC ,∠C 之间具有怎样的关系并说明理由。
(提示:先画出示意图,再说明理由)提示:这是一道结论开放的探究性问题,由于E 点位置的不确定性,可引起对E 点不同位置的分类讨论。
本题可分为AB ,CD 之间或之外。
结论:①∠AEC =∠A +∠C ②∠AEC +∠A +∠C =360°③∠AEC =∠C -∠A④∠AEC =∠A -∠C ⑤∠AEC =∠A -∠C ⑥∠AEC =∠C -∠A .4、如图,将三角板的直角顶点放在直角尺的一边上,∠1=30°,∠2=50°,则∠3的度数为( )A 、80B 、50C 、30D 、205、将一个直角三角板和一把直尺如图放置,如果∠α=43°,则∠β的度数是( )A 、43°B 、47°C 、30°D 、60°6、如图,点A 、B 分别在直线CM 、DN 上,CM ∥DN .(1)如图1,连结AB ,则∠CAB +∠ABD = ;(2)如图2,点错误!未找到引用源。
是直线CM 、DN 内部的一个点,连结错误!未找到引用源。
、错误!未找到引用源。
.求证:错误!未找到引用源。
=360°;(3)如图3,点错误!未找到引用源。
、错误!未找到引用源。
是直线CM 、DN 内部的一个点,连结错误!未找到引用源。
、错误!未找到引用源。
、错误!未找到引用源。
.试求错误!未找到引用源。
的度数;(4)若按以上规律,猜想并直接写出错误!未找到引用源。
…错误!未找到引用源。
人教版七年级下册数学平行线的判定及性质证明题训练(含答案)
人教版七年级下册数学平行线的判定及性质证明题训练(含答案)1.如图,三角形ABC 中,点D 在AB 上,点E 在BC 上,点F ,G 在AG 上,连接,,DG BG EF .己知12∠=∠,3180ABC ∠+∠=︒,求证:∥BG EF .将证明过程补充完整,并在括号内填写推理依据.证明:∵_____________(已知)∴∥DG BC (_______________________)∴.CBG ∠=________(____________________)∵12∠=∠(已知)∴2∠=________(等量代换)∴∥BG EF (___________________)2.如图,已知12∠=∠,A F ∠=∠,试说明C D ∠=∠的理由.解:把1∠的对顶角记作3∠,所以13∠=∠(对顶角相等).因为12∠=∠(已知),所以23∠∠=( ),所以 ∥ ( ).(请继续完成接下去的说理过程)3.如图,CD ∥AB ,点O 在直线AB 上,OE 平分∠BOD ,OF ⊥OE ,∠D =110°,求∠DOF 的度数.4.如图,DH 交BF 于点E ,CH 交BF 于点G ,12∠=∠,34∠=∠,5B ∠=∠.试判断CH 和DF 的位置关系并说明理由.5.已知:如图,直线DE//AB.求证:∠B+∠D=∠BCD.6.如图,已知AB CD∥,BE平分ABC∠,CE平分BCD∠,求证1290∠+∠=︒.证明:∵BE平分ABC∠(已知),∴2∠=(),同理1∠=,∴1122∠+∠=,又∵AB CD∥(已知)∴ABC BCD∠+∠=(),∴1290∠+∠=︒.7.请把下列证明过程及理由补充完整(填在横线上):已知:如图,BC,AF是直线,AD∥BC,∠1=∠2,∠3=∠4.求证:AB∥CD.证明:∵AD∥BC(已知),∴∠3=().∵∠3=∠4(已知),∴∠4=().∵∠1=∠2(已知),∴∠1+∠CAF=∠2+∠CAF().即∠BAF=.∴∠4=∠BAF.().∴AB∥CD().8.如图,已知∠A=120°,∠FEC=120°,∠1=∠2,试说明∠FDG=∠EFD.请补全证明过程,即在下列括号内填上结论或理由.解:∵∠A=120°,∠FEC=120°(已知),∴∠A=().∴AB∥().又∵∠1=∠2(已知),∴EF ∥ ( ).∴∠FDG =∠EFD ( ).9.在三角形ABC 中,CD AB ⊥于D ,F 是BC 上一点,FH AB ⊥于H ,E 在AC 上,EDC BFH ∠=∠.(1)如图1,求证:∥DE BC ;(2)如图2,若90ACB ∠=︒,请直接写出图中与ECD ∠互余的角,不需要证明.10.已知:如图,直线MN HQ ∥,直线MN 交EF ,PO 于点A ,B ,直线HQ 交EF ,PO 于点D ,C ,DG 与OP 交于点G ,若1103∠=︒,277∠=︒,396∠=︒.(1)求证:EF OP ∥;(2)请直接写出CDG ∠的度数.11.如图直线a b ∥,直线EF 与,a b 分别和交于点,,A B AC AB AC ⊥、交直线b 于点C .(1)若160∠=︒,直接写出2∠= ;(2)若3,4,5AC AB BC ===,则点B 到直线AC 的距离是 ;(3)在图中直接画出并求出点A 到直线BC 的距离.12.如图,已知AB CD ,BE 平分∠ABC ,∠CDE = 150°,求∠C 的度数.13.如图,在ABC 中,CD 平分ACB ∠交AB 于D ,EF 平分AED ∠交AB 于F ,已知ADE B ∠=∠,求证:EF CD ∥.14.已知:如图,AB ∥CD ∥EF ,点G 、H 、M 分别在AB 、CD 、EF 上.求证:GHM AGH EMH ∠∠∠=+.15.如图所示,点B 、E 分别在AC 、DF 上,BD 、CE 均与AF 相交,A F ∠=∠,C D ∠=∠,求证:12∠=∠.16.如图,在ABC 中,DE ∥AC ,DF ∥AB .(1)判断∠A 与∠EDF 之间的大小关系,并说明理由.(2)求∠A +∠B +∠C 的度数.17.已知:如图,ABC 中,点D 、E 分别在AB 、AC 上,EF 交DC 于点F ,32180∠+∠=︒ ,1B ∠=∠.(1)求证:∥DE BC ;(2)若DE 平分ADC ∠,33B ∠=∠,求2∠的度数.18.如图,AB ∥DG ,∠1+∠2=180°.(1)试说明:AD ∥EF ;(2)若DG 是∠ADC 的平分线,∠2=142°,求∠B 的度数.19.问题情境:如图1,AB CD ∥,130PAB ∠=︒,120PCD ∠=︒,求APC ∠的度数.小明的思路是:如图2,过P 作PE AB ∥,通过平行线性质,可得APC ∠=______.问题迁移:如图3,AD BC ∥,点P 在射线OM 上运动,ADP α∠=∠,BCP β∠=∠.(1)当点P 在A 、B 两点之间运动时,CPD ∠、α∠、β∠之间有何数量关系?请说明理由.(2)如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你直接写出CPD ∠、α∠、β∠之间有何数量关系.20.直线AB CD∠.∥,直线EF分别交AB、CD于点M、N,NP平分MND(1)如图1,若MR平分EMB∠,则MR与NP的位置关系是.∠,则MR与NP有怎样的位置关系?请说明理由.(2)如图2,若MR平分AMN(3)如图3,若MR平分BMN∠,则MR与NP有怎样的位置关系?请说明理由.参考答案:1.解:证明:∵3180ABC ∠+∠=︒(已知)∴∥DG BC (同旁内角互补,两直线平行)∴.1CBG ∠=∠(两直线平行,内错角相等)∵12∠=∠(已知)∴2CBG ∠=∠(等量代换)∴∥BG EF (同位角相等,两直线平行)2.解:把1∠的对顶角记作3∠,所以13∠=∠(对顶角相等).因为12∠=∠(已知),所以23∠∠=(等量代换),所以//BD CE (同位角相等,两直线平行),所以4C ∠=∠(两直线平行,同位角相等),又因为A F ∠=∠,所以//DF AC (同位角相等,两直线平行),所以4D ∠=∠(两直线平行,内错角相等),所以C D ∠=∠(等量代换).故答案为:等量代换;BD ;CE ;同位角相等,两直线平行.3.解:∵CD AB ∥∴110DOB D ∠=∠=︒∵OE 平分∠BOD ∴1552DOE DOB ∠=∠=︒ 又∵OF ⊥OE∴90EOF ∠=︒∴905535DOF EOF DOE ∠=∠-∠=︒-︒=︒故答案为:35︒4.解:CH DF,理由如下:∵34∠=∠,∴CD BF,∴5180BED∠+∠=︒,∵5B∠=∠,∴180B BED∠+∠=︒,∴BC DH,∴2H∠=∠,∵12∠=∠,∴1H∠=∠,∴CH DF.5.证明:过点C作CF∥AB,∴∠B=∠BCF,∵DE//AB.CF∥AB,∴CF∥DE,∴∠D=∠DCF,∴∠BCD=∠BCF+∠DCF=∠B+∠D.6.证明:∵BE平分∠ABC(已知),∴∠2=12∠ABC(角平分线的定义),同理∠1=12∠BCD,∴∠1+∠2=12(∠ABC+∠BCD),又∵AB∥CD(已知)∴∠ABC +∠BCD =180°(两直线平行,同旁内角互补 ),∴∠1+∠2=90°. 故答案为:12∠ABC ;角平分线的定义;12∠BCD ;(∠ABC +∠BCD );180°;两直线平行,同旁内角互补.7.证明:∵AD ∥BC (已知),∴∠3=∠CAD (两直线平行,内错角相等).∵∠3=∠4(已知),∴∠4=∠CAD (等量代换).∵∠1=∠2(已知),∴∠1+∠CAF =∠2+∠CAF (等式的性质).即∠BAF =∠CAD .∴∠4=∠BAF .(等量代换).∴AB ∥CD (同位角相等,两直线平行).8.解:∵∠A =120°,∠FEC =120°(已知),∴∠A =∠FEC (等量代换),∴AB ∥EF (同位角相等,两直线平行),又∵∠1=∠2(已知),∴AB ∥CD (内错角相等,两直线平行),∴EF ∥CD (平行于同一条直线的两直线互相平行),∴∠FDG =∠EFD (两直线平行,内错角相等),故答案为:∠FEC ;等量代换;EF ;同位角相等,两直线平行;内错角相等,两直线平行;CD ;平行于同一条直线的两直线互相平行;两直线平行,内错角相等.9.证明:∵CD AB ⊥,FH AB ⊥,∴//CD FH ,∴BCD BFH ∠=∠.∵EDC BFH ∠=∠,∴BCD EDC ∠=∠,∴//ED BC .(2)与ECD ∠互余的角有:EDC BCD BFH A ∠∠∠∠,,,.证明:∵//ED BC ,∴90DEC ACB ∠=∠=︒,EDC BCD ∠=∠,∴90ECD EDC ∠+∠=︒,90ECD BCD ∠+∠=︒.∵//CD FH ,∴BCD BFH ∠=∠,∴90ECD BFH ∠+∠=︒.∵CD AB ⊥,∴90ACD A ∠+∠=︒,即90ECD A ∠+∠=︒.综上,可知与ECD ∠互余的角有:EDC BCD BFH A ∠∠∠∠,,,.10.解:(1)∵1103∠=︒,∴77∠=︒ABC ,∵277∠=︒,∴2ABC ∠=∠,∴EF OP ∥;(2)∵MN HQ ∥,EF OP ∥,∴1103∠=∠=∠=︒FDC FAB ,3180∠+∠=︒FDG ,∵396∠=︒,∴180********∠=︒-∠=︒-︒=︒FDG ,∴1038419∠=∠-∠=︒-︒=︒CDG FDC FDG .11.解:(1)∵a b ∥,∴12180BAC ∠+∠+∠=︒,∵AC AB ⊥,160∠=︒,∴230∠=︒,故答案为:30︒;(2)∵AC AB⊥,∴点B到直线AC的距离为线段4AB=,故答案为:4;(3)如图所示:过点A作AD BC⊥,点A到直线BC的距离为线段AD的长度,∵AC AB⊥,∴ABC∆为直角三角形,∴1122ABCS AC AB BC AD∆=⨯⨯=⨯⨯,即1134522AD ⨯⨯=⨯⨯,解得:125 AD=,∴点A到直线BC的距离为125.12.解:∵∠CDE=150°,∴∠CDB=180°-∠CDE=30°,又∵AB CD,∴∠ABD=∠CDB=30°,∵BE平分∠ABC,∴∠ABC=2∠ABD=60°,∵AB CD,∴∠C=180°-∠ABC=120°.13.证明:ADE B∠=∠(已知),DE//BC∴(同位角相等,两直线平行),ACB AED∴∠=∠(两直线平行,同位角相等),CD 平分ACB ∠,EF 平分AED ∠(已知),12ACD ACB ∴∠=∠,12AEF AED ∠=∠(角平分线的定义), ACD AEF ∴∠=∠(等量代换).EF //CD ∴(同位角相等,两直线平行).14.证明:∵AB ∥CD (已知)∴1AGH ∠=∠(两直线平行,内错角相等) 又 ∵CD ∥EF (已知)∴2EMH ∠=∠,(两直线平行,内错角相等) ∵12GHM ∠∠∠=+(已知)∴GHM AGH EMH ∠∠∠=+(等式性质)15.证明:∵A F ∠=∠,∴AC DF ∥,∴ABD D ∠=∠,又∵C D ∠=∠,∴ABD C ∠=∠,∴DB CE ∥,∴13∠=∠,∵23∠∠=,∴12∠=∠.16.(1)两角相等,理由如下:∵DE ∥AC ,∴∠A =∠BED (两直线平行,同位角相等).∵DF ∥AB ,∴∠EDF =∠BED (两直线平行,内错角相等), ∴∠A =∠EDF (等量代换).(2)∵DE ∥AC ,∴∠C =∠EDB (两直线平行,同位角相等).∵DF ∥AB ,∴∠B =∠FDC (两直线平行,同位角相等).∵∠EDB +∠EDF +∠FDC =180°,∴∠A +∠B +∠C =180°(等量代换).17.解:(1)∵32180∠+∠=︒,∠2+∠DFE =180°, ∴∠3=∠DFE ,∴EF //AB ,∴∠ADE =∠1,又∵1B ∠=∠,∴∠ADE =∠B ,∴DE //BC ,(2)∵DE 平分ADC ∠,∴∠ADE =∠EDC ,∵DE //BC ,∴∠ADE =∠B ,∵33B ∠=∠∴∠5+∠ADE +∠EDC =3B B B ∠+∠+∠=180°, 解得:36B ∠=︒,∴∠ADC =2∠B =72°,∵EF //AB ,∴∠2=∠ADC =180°-108°=72°,18.(1)∵AB ∥DG ,∴∠BAD =∠1,∵∠1+∠2=180°,∴∠BAD +∠2=180°.∵AD ∥EF .(2)∵∠1+∠2=180°且∠2=142°,∴∠1=38°,∵DG 是∠ADC 的平分线,∴∠CDG =∠1=38°,∵AB ∥DG ,∴∠B =∠CDG =38°.19.解:问题情境:∵AB ∥CD ,PE ∥AB ,∴PE ∥AB ∥CD ,∴∠A +∠APE =180°,∠C +∠CPE =180°,∵∠P AB =130°,∠PCD =120°,∴∠APE =50°,∠CPE =60°,∴∠APC =∠APE +∠CPE =50°+60°=110°;(1)CPD αβ∠=∠+∠;过点P 作PQ AD ∥,又因为AD BC ∥,所以PQ AD BC ∥∥,则ADP DPE ∠=∠,BCP CPE ∠=∠,所以CPD DPE CPE ADP BCP ∠=∠+∠=∠+∠;(2)情况1:如图所示,当点P 在B 、O 两点之间时,过P 作PE ∥AD ,交ON 于E ,∵AD ∥BC ,∴AD ∥BC ∥PE ,∴∠DPE =∠ADP =∠α,∠CPE =∠BCP =∠β, ∴∠CPD =∠DPE -∠CPE =∠α-∠β,情况2:如图所示,点P 在射线AM 上时,过P 作PE ∥AD ,交ON 于E ,∵AD ∥BC ,∴AD ∥BC ∥PE ,∴∠DPE =∠ADP =∠α,∠CPE =∠BCP =∠β, ∴∠CPD =∠CPE -∠DPE =∠β-∠α20.(1)如题图1,AB CD ∥EMB END ∴∠=∠MR 平分EMB ∠,NP 平分MND ∠.11,22EMR EMB ENP END ∴∠=∠∠=∠ EMR ENP ∴∠=∠∴MR ∥NP ;(2)如题图2,AB CD ∥AMN END ∴∠=∠MR 平分AMN ∠,NP 平分MND ∠.11,22RMN AMN ENP END ∴∠=∠∠=∠ RMN ENP ∴∠=∠∴MR ∥NP ;(3)如图,设,MR PN 交于点Q ,过点Q 作QG AB ∥AB CD ∥180BMN END ∴∠+∠=︒,QG CD ∥ ,MQG BMR GQN PND ∴∠=∠∠=∠ MR 平分BMN ∠,NP 平分MND ∠.11,22BMR BMN PND END ∴∠=∠∠=∠ 90BMR PND ∴∠+∠=︒90MQN MQG NQG ∴∠=∠+∠=︒ ∴MR ⊥NP ;。
人教版七年级数学下册平行线的判定练习题含答案
【分析】先根据切线的性质得出BC⊥AB,再根据平行线的判定得出 ,再根据平行线分线段成比例,得出 ,根据点O是AB的中点, cm,求出OD,即可得出结果.
【详解】解:∵ 切⊙O于 ,
∴BC⊥AB,
∵DO⊥AB,
∴ ,
∴ ,
∵点O是AB的中点,
∴ ,
∴ ,
∵ cห้องสมุดไป่ตู้,
∴OD=4cm,
∵OA=OD,
【详解】解:A、∵∠1=∠2,
∴AD BC(内错角相等,两直线平行),故此选项不符合题意;
B、∵∠BAD+∠ABC=180°,
∴AD BC(同旁内角互补,两直线平行),故此选项不符合题意;
C、∵∠3=∠4,
∴AD BC(内错角相等,两直线平行),故此选项不符合题意;
D、∵∠ABD=∠BDC,
∴AB CD(内错角相等,两直线平行),故此选项符合题意;
故选:D.
【点睛】此题主要考查了平行线的判定,熟记平行线的判定定理是解题关键.
6.D
【分析】根据平行线的判定逐一判定即可.
【详解】解:A.由 不能推理出 ,故不符合题意;
B.由 不能推理出 ,故不符合题意;
C.由 不能推理出 ,故不符合题意;
D. ∵∠4+∠5=180°时能推出 ,又∵∠1=∠5,∴由 能推理出 ,故符合题意;
∴∠1=()
又∵AC⊥BC于C,EF⊥BC于F(已知)
∴EF ()
∴∠2=()
∴∠1=∠2()
13.如图,四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,则BE与DF有何位置关系?试说明理由.
14.如图,已知AC⊥BC于点C,∠B=70º,∠ACD=20º.
2023年人教版七年级下册数学第五章平行线证明题专项训练
2023年人教版七年级下册数学第五章平行线证明题专项训练1.推理填空如图,已知∠BCD+∠B=180˚,AE平分∠BAD,CD与AE相交于点F,∠CFE=∠E.求证:AD∥BC.证明∵AE平分∠BAD(已知),∴∠1=∠2(),∵∠BCD+∠B=180˚∴AB∥CD(),∴∠1= (),∵∠CFE=∠E(已知),∴∠1=∠E(),∴∠2= ,∴AD∥BC().2.已知:如图,点AA,BB,CC,DD在一条直线上,CCCC与BBBB交于点H,1∠=∠,ACM∥DN.求证:M N∠=∠.3.如图,已知AB∥CD,CF为∠ACD的平分线,∠A=110°,∠EFC=35°.求证:EF∥CD.请将下面的证明过程补充完整.证明:∵AB∥CD,(已知)∴∠+∠ACD=180°.( )∵∠A=110°,(已知)∴∠ACD= °.(等量代换)∵CF为∠ACD的平分线,(已知)∴∠FCD=12∠=35°.(角平分线定义)∵∠EFC=35°,(已知)∴∠FCD=∠EFC,(等量代换)∴EF∥CD.( )4.已知:如图,∠1=∠2,∠3=∠BB ,∠4=∠5.试说明:AADD ∥EEEE .请完成下列填空.解:因为∠1=∠2,所以______∥AABB .所以∠3=______(____________).又因为∠3=∠BB ,所以B ∠=______. 所以______∥BBCC (_____________).所以∠5=∠DDDDEE ,又因为∠4=∠5,所以∠4=∠DDDDEE ,所以AADD ∥EEEE .5.在下面的括号内,填上推理的根据.如图,已知3A ∠=∠,DE BC ⊥,AABB ⊥BBCC .求证DDEE 平分CDB ∠.证明:∵DE BC ⊥,AABB ⊥BBCC (已知)∴∠DDEECC =∠AABBCC =90°(垂直的定义)∴DDEE ∥AABB (________________________)∴∠2=∠3(________________________)∠1=________________________(两直线平行,同位角相等)又∵3A ∠=∠(已知) ∴∠_______=∠__________(________________________)∴DDEE 平分CDB ∠6.完成推理填空.如图,AB ⊥BF ,CD ⊥BF ,∠1=∠2,试说明∠3=∠E .证明:∵AB ⊥BF ,CD ⊥BF (已知),∴∠ABD =∠CDF =90°(垂直定义),∴AABB ∥CCDD (同位角相等,两直线平行).∵∠1=∠2(已知),∴______∥______(______),∴CCDD ∥EEEE (______),∴∠3=∠E (______).7.如图,∠B+∠BAD=180°,∠1=∠2.求证:AB∥C D.请将下面的证明过程补充完整.证明:∵∠B+∠BAD=180°(已知),∠1+∠BAD=180°(),∴∠1=∠B().∵∠1=∠2(已知),∴∠2=().∴AB∥CD().8.如图,已知:在△ABC中,点D是AC边上一点,过点D作DF∥AB交BC于点F,点E为AB边上一点,连接DE、若∠FDE=∠B,∠C=90°,求证:DE⊥A C.证明:∵DF∥AB(已知),∴∠FDE=∠(两直线平行,内错角相等).∠FDE=∠B(已知),∴∠=∠(等量代换).∴∥(同位角相等,两直线平行).∴∠=∠C(两直线平行,同位角相等).又∵∠C=90°(已知),∴∠ADE=90°(等量代换).∴DE⊥AC().9.如图,已知CCDD∥EEFF,∠EEDDCC=∠BBEEFF,试说明DE BC∥的理由.10.如图,已知AB∥CD,EG平分∠BEF,FH平分∠CFE,求证:EG∥HF.请将过程补充完整.证明:AB∥CD(已知)∴∠BEF=______,(____________)又∵EG平分∠BEF,FH平分∠CFE(已知)∴∠1=12∠BBEEEE,∠2=______,(____________)∴∠1=∠2,(____________)∴EG∥HF.(____________)11.如图,直线AABB、CCDD交于点O,OOEE为∠BBOODD的平分线,OOEE⊥OOEE,CG//OOEE,且∠CC=30°.∠的度数;(1)求AOE(2)判断∠AAOOEE与∠DDOOEE的大小关系,并说明理由.12.如图,E,G是分别是AB,AC上的点,F,D是BC上的点,连接EF,AD,DG,如果AB∥DG,∠1+∠2=180°.(1)判断AD与EF的位置关系,并说明理由;(2)若DG是∠ADC的平分线,∠2=145°,求∠B的度数.13.如图,已知AB ∥CD ,∠B =∠D .(1)求证:AD ∥BE(2)若∠1=∠2=60°,∠BAC =3∠EAC ,求∠DAF 的度数.14.如图,在三角形ABC 中,∠AABBCC =90°,将△AABBCC 沿射线BC 方向 平移,得到△DDEEEE ,A ,B ,C 的对应点分别是D ,E ,F ,AD ∥BF .(1)请说明∠DDAACC =∠EE ;(2)若BBCC =6cccc ,当AADD =2EECC 时,求AD 的长.15.如图,AABB ∥CCDD ,AE 平分∠BBAADD ,CD 与AE 相交于点F ,CFE E ∠=∠.求证:∠AADDCC =∠DDCCEE .完成下列证明,并在括号填上理由:证明:∵AABB ∥CCDD (已知)∴∠BBAAEE =∠CCEEEE (______)又∵AE 平分∠BBAADD (______)∴∠BBAAEE =∠______∴∠CCEEEE =∠DDAAEE (______)又∵CFE E ∠=∠, ∴∠DDAAEE =∠EE (______)∴______∥BBEE (______)∴∠AADDCC =∠DDCCEE (______)16.已知:如图,AABB∥CCDD,∠1=∠2.试说明:BBEE∥CCEE.请按照下列说明过程填空.解:∵AABB∥CCDD,根据________________________________∴∠AABBCC=________.∵∠1=∠2,∴∠AABBCC−∠1=________−∠2,即∠EEBBCC=________.根据________________________________∴BBEE∥CCEE.17.如图,已知∠1+∠BBDDEE=180°,∠2+∠4=180°.(1)证明:AADD∥EEEE;∠=°,求∠BBAACC的度数.(2)若∠3=90°,414018.如图,AABB//CCDD,∠AA=∠CC,BE平分∠AABBCC交AADD的延长线于点EE,(1)证明:AADD//BBCC;(2)若∠AADDCC=118°,求∠EE的度数.19.如图,已知∠1+∠2=180°,CCDD∥AABB.求证:3∠=∠A20.如图,在三角形AABBCC中,点DD,EE在BBCC边上,点EE在AABB边上,点FF在AACC边上,EEEE与FFDD的延长线交于点H,∠1=∠BB,∠2+∠3=180°.(1)请写出EEDD与AADD的位置关系,并说明理由;(2)若∠DDFFCC=58°,且∠DD=∠4+10°,求∠DD的度数。
七年级10道平行线证明题
七年级10道平行线证明题
以下是七年级的10道平行线证明题:
题目:已知直线AB与CD相交于点O,且∠AOC = ∠BOD。
求证:AB ∥ CD。
题目:在直线AB上取一点O,作射线OC,使∠AOC = ∠BOC。
求证:OA ∥ OC。
题目:已知∠1 = ∠2,∠2 = ∠3,且∠1和∠3是内错角。
求证:AB ∥ CD。
题目:在△ABC中,若∠A = ∠B,则BC边上的中线AD等于BC的一半。
求证:AD ∥ BC。
题目:已知∠1 = ∠2,∠3 = ∠4,且∠1和∠3是同位角。
求证:EF ∥ GH。
题目:在梯形ABCD中,若AD ∥ BC,且∠A = ∠B,求证:梯形ABCD是等腰梯形。
题目:在△ABC中,若∠C = 90°,且AC = BC,D为AB的中点。
求证:CD ⊥ AB。
题目:已知∠1 + ∠2 = 180°,∠2 + ∠3 = 180°,求证:AB ∥ CD。
题目:在△ABC中,若∠A = ∠B = ∠C,则△ABC是等边三角形。
求证:AB ∥ BC ∥ CA。
题目:已知∠1 = ∠2,∠3 = ∠4,且∠1和∠3是同旁内角。
求证:EF ∥ GH。
这些题目涵盖了平行线的多种性质和判定方法,通过练习这些题目,学生可以加深对平行线概念的理解,提高解题能力。
七年级数学平行线经典证明题打印
七年级数学平行线经典证明题打印(总1页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除2平行线经典证明题二、填空题:8.把一副三角板按如图方式放置,则两条斜边所形成的钝角α=_______度.13.如图,把长方形ABCD 沿EF 对折,若∠1=500,则∠AEF 的度数等于 14.如图,已知AB ∥CD ,∠1=100°,∠2=120°,则∠α=____ 三、计算证明题:15.如图,在四边形ABCD 中,∠A=104°-∠2,∠ABC=76°+∠2,BD ⊥CD 于D ,EF ⊥CD 于F ,求证∠1=∠2,试说明理由.16..如图,CD ∥AB ,∠DCB=70°,∠CBF=20°,∠EFB=130°,问直线EF 与AB 有怎样的位置关系,为什么17.已知:如图23,AD 平分∠BAC ,点F 在BD 上,FE ∥AD 交AB 于G ,交CA 的延长线于E ,求证:∠AGE =∠E 。
18. 如图,AB ∥DE,∠1=∠ACB,∠CAB=21∠BAD,试说明:AD ∥BC.19.已知:如图22,CB ⊥AB ,CE 平分∠BCD ,DE 平分∠CDA,∠1+∠2=90°,求证:DA ⊥AB.20.如图,已知∠D = 90°,∠1 = ∠2,EF ⊥CD ,问:∠B 与∠AEF 是否相等?若相等,请说明理由。
21.如图,已知:E 、F 分别是AB 和CD 上的点,DE 、AF 分别交BC 于G 、H ,∠A=∠D ,∠1=∠2,求证:∠B=∠C .22.已知:如图8,AB ∥CD ,求证:∠BED=∠B-∠D 。
23.已知:∠1=∠2,∠3=∠4,∠5=∠6.求证:AD ∥BC.24.如图,直线l 与m 相交于点C ,∠C=∠β,AP 、BP 交于点P ,且∠PAC=∠α,∠PBC=∠γ, 求证:∠APB=α+∠β+∠γ.25已知:如图:∠AHF +∠FMD =180°,GH 平分∠AHM ,MN 平分∠DMH 。
专题02 平行线的判定与性质(原卷版)七年级数学下册
专题02平行线的判定与性质1.(2022秋•项城市期末)如图,已知∠B=∠ADE,∠EDC=∠GFB,GF⊥AB,求证:CD⊥AB.把以下证明过程补充完整,并在括号内填写理由或数学式.证明:∵∠B=∠ADE(已知)∴∥()∴∠EDC=∠DCB()又∠EDC=∠GFB(已知)∴∠DCB=(等量代换)∴∥()2.(2023秋•道里区校级期中)将下面的解答过程补充完整:如图,已知DE∥BC,EF平分∠CED,∠A=∠CFE,那么EF与AB平行吗?为什么?解:因为DE∥BC(已知),所以∠DEF=∠CFE(①),因为EF平分∠CED(已知),所以∠DEF=②(角平分线的定义),所以∠CFE=∠CEF(③),因为∠A=∠CFE(已知),所以∠A=④(等量代换),所以EF∥AB(⑤).3.(2022秋•尤溪县期末)如图,∠1+∠2=180°,∠B=∠3.(1)求证:DE∥BC;(2)若∠C=76°,∠AED=2∠3,求∠CEF的度数.4.(2023秋•怀宁县期中)如图,已知EF∥CD,数学课上,老师请同学们根据图形特征添加一个关于角的条件,使得∠BEF=∠CDG,并给出证明过程.小明添加的条件:∠B=∠ADG.请你帮小明将下面的证明过程补充完整.证明:∵EF∥CD()∴∠BEF=()∵∠B=∠ADG(添加条件)∴BC∥()∴∠CDG=()∴∠BEF=∠CDG().5.(2022秋•长春期末)请把以下证明过程补充完整,并在下面的括号内填上推理理由:已知:如图,∠1=∠2,∠A=∠D.求证:∠B=∠C证明:∵∠1=∠2,(已知)又:∵∠1=∠3,∴∠2=,(等量代换)∴AE∥FD∴∠A=∠BFD∵∠A=∠D(已知)∴∠D=(等量代换)∴∥CD∴∠B=∠C.6.(2022秋•闽清县期末)如图,AB∥CD,E是BC的延长线上的一点,AE交CD于点F,∠1=∠2,∠3=∠4.求证:(1)∠B=∠D;(2)AD∥BE.7.(2023春•石城县期末)如图,已知∠ABC=180°﹣∠A,BD⊥CD于D,EF⊥CD于E.(1)求证:AD∥BC;(2)若∠ADB=36°,求∠EFC的度数.8.(2022秋•淇县期末)如图,已知AD∥FE,∠1=∠2.(1)试说明DG∥AC;(2)若∠BAC=70°,求∠AGD的度数.9.(2022秋•禅城区期末)已知:如图,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DF∥CA,∠FDE=∠A;(1)求证:DE∥BA.(2)若∠BFD=∠BDF=2∠EDC,求∠B的度数.30.(2023春•驿城区校级期末)如图,AB∥DG,∠1+∠2=180°.(1)试说明:AD∥EF;(2)若DG是∠ADC的平分线,∠2=142°,求∠B的度数.11.(2023秋•香坊区校级期中)完成下面推理过程,并在括号里填写推理依据:如图,已知:AB∥EF,EP⊥EQ,∠EQC+∠APE=90°,求证:AB∥CD.证明:∵AB∥EF(已知),∴∠APE=,∵EP⊥EQ(已知),∴∠PEQ=90°),即∠QEF+∠PEF=90°,∴∠QEF+∠APE=90°,∵∠EQC+∠APE=90°(已知),∴∠EQC=(),∴EF∥(),又∵AB∥EF,∴AB∥CD().12.(2022秋•邓州市期末)如图,点M在CD上,已知∠BAM+∠AMD=180°,AE平分∠BAM,MF平分∠AMC,请说明AE∥MF的理由.解:因为∠BAM+∠AMD=180°(),∠AMC+∠AMD=180°(),所以∠BAM=∠AMC().因为AE平分∠BAM,所以().因为MF平分∠AMC,所以,得(),所以().13.(2022秋•桐柏县期末)完成下面推理过程.如图:已知,∠A=112°,∠ABC=68°,BD⊥DC于点D,EF⊥DC于点F,求证:∠1=∠2.证明:∵∠A=112°,∠ABC=68°(已知)∴∠A+∠ABC=180°∴AD∥BC()∴∠1=()∵BD⊥DC,EF⊥DC(已知)∴∠BDF=90°,∠EFC=90°()∴∠BDF=∠EFC=90°∴BD∥EF()∴∠2=()∴∠1=∠2()14.(2023秋•天山区校级期中)已知,GP平分∠BGH,HP平分∠GHD,∠GPH=90°.(1)求证:AB∥CD;(2)若∠AGE=60°,求∠4的度数.15.(2023春•覃塘区期末)如图:已知,∠HCO=∠EBC,∠BHC+∠BEF=180°.(1)求证:EF∥BH;(2)若BH平分∠EBO,EF⊥AO于F,∠HCO=64°,求∠CHO的度数.16.(2023春•新化县期末)如图,点E,F分别在AB,CD上,AF⊥CE,垂足为点O.已知∠1=∠B,∠A+∠2=90°.(1)求证:AB∥CD;(2)若AF=12,BF=5,AB=13,求点F到直线AB的距离.17.(2023春•温州月考)如图,已知∠1=∠3,∠2=∠B.(1)试判断DE与BC的位置关系,并说明理由;(2)若DE平分∠ADC,∠1=3∠B,求∠EFC的度数.18.(2023春•仙居县期末)如图是一个汉字“互”字,其中,AB∥CD,HF∥GE,∠HGE=∠HFE,M、H、G三点在同一直线上,N、E、F三点在同一直线上.求证:(1)GH∥EF;(2)∠CMH=∠BNE.19.(2022秋•东阳市期末)如图,长方形纸片ABCD中,G、H分别是AB、CD边上的动点,连GH,将长方形纸片ABCD沿着GH翻折,使得点B,C分别落在点E,F位置.(1)若∠BGH=110°,求∠AGE的度数.(2)若∠FHD=20°,求∠CHG的度数.(3)已知∠BGH和∠CHG始终互补,若∠BGH=α,请直接写出∠FHC的度数(含α的代数式).20.(2023春•金牛区校级期中)如图1,直线GH与直线l1,l2分别交于B,A两点,点C在直线l2上,射线AD平分∠BAC交直线l1于点E,∠GBE=2∠BAE.(1)求证:直线l1∥l2;(2)如图2,点Q在直线l1上(B点左侧),AM平分∠BAQ交l1于点M,过点M作MN⊥AD交AD于点N,请猜想∠BQA与∠AMN的关系;并证明你的结论;(3)若点P是线段AB上一点,射线EP交直线l2于点F,∠GBE=130°.点N在射线AD上,且满足∠EBN=∠EFC连接BN,请补全图形,探究∠BNA与∠FEA满足的等量关系,并证明.21.(2023春•义乌市校级期中)今年除夕夜长江两岸的灯光秀璀璨夺目,照亮山城的山水桥梁城市楼阁,人民欢欣鼓舞.观看表演的小语同学发现两岸的灯光运动是有规律的,如图1所示,灯A射出的光线从AQ开始顺时针旋转至AP便立即回转,灯B射出的光线从BM开始顺时针旋转至BN便立即回转,两灯不停旋转.假设长江两岸是平行的,即PQ∥MN,点A在PQ上,B、C、D在MN上,连接AB、AC、AD,已知AC平分∠BAP,AD平分∠CAP.(1)如图1,若∠ABD=40°,则∠CAQ=;(2)如图2,在PQ上另有一点E,连接CE交AD于点F,点G在MN上,连接AG,若∠CAG=∠CAE,∠EFD+∠DAG=180°,试证明:EC∥AB.(3)如图3,已知灯A射出的光线旋转的速度是每秒10°,灯B射出的光线旋转的速度是每秒30°,若灯B射出的光线从BM出发先转动2秒,灯A射出的光线才从AQ出发开始转动,设灯A转动的时间为t秒,在转动过程中,当0≤t≤12时,请直接写出灯A射出的光线与灯B射出的光线相交且互相垂直时的时间t的值.22.(2022秋•萍乡期末)已知点A在射线CE上,∠C=∠ADB.(1)如图1,若AD∥BC,求证:AC∥BD;(2)如图2,若BD⊥BC,垂足为B,BD交CE于点G,请探究∠DAE与∠C的数量关系,写出你的探究结论,并说明理由;(3)如图3,在(2)的条件下,过点D作DF∥BC交射线CE于点F,当∠BAC=∠BAD,∠DFE=8∠DAE时,求∠BAD的度数.23.(2022秋•鲤城区校级期末)如图①,已知AB∥CD,一条直线分别交AB、CD于点E、F,∠EFB=∠B,FH⊥FB,点Q在BF上,连接QH.(1)已知∠EFD=70°,求∠B的度数;(2)求证:FH平分∠GFD.(3)在(1)的条件下,若∠FQH=30°,将△FHQ绕着点F顺时针旋转,如图②,若当边FH转至线段EF上时停止转动,记旋转角为α,请求出当α为多少度时,QH与△EBF某一边平行?(4)在(3)的条件下,直接写出∠DFQ与∠GFH之间的关系.24.(2023秋•香坊区校级期中)如图1,直线MN与直线AB、CD分别交于点E、F,∠1+∠2=180°.(1)求证:AB∥CD;(2)如图2,∠BEF与∠EFD的角平分线交于点P,延长EP交CD于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,∠HPQ=45°,K是GH上一点,连接PK,作PQ平分∠EPK,若∠PHG=15°,求∠QPK的度数.25.(2023秋•吉林期中)如图①,直角三角形DEF与直角三角形ABC的斜边在同一直线上,∠ACB=∠E=90°,∠EDF=36°,∠ABC=40°,CD平分∠ACB,将△DEF绕点D按逆时针方向旋转,如图②,记∠ADF为α(0°<α<180°),在旋转的过程中:(1)当∠α=°时,DE∥BC,当∠α=°时,DE⊥BC;(2)如图③,当顶点C在△DEF的内部时,边DF、DE分别交BC、AC的延长线于点M、N.①求出此时∠α的度数范围;②∠1与∠2的度数和是否变化?若不变,请直接写出∠1与∠2的度数和;若变化,请说明理由.。
七年级数学平行线的性质专项练习题
七年级数学平行线的性质专项练习题【例1】如图,点D,E在AC上,点F,G分别在BC,AB上,且DDDD∥BBBB,∠1=∠2.(1)求证:DDBB∥EEEE;(2)若EF⊥AC,∠1=50°,求∠ADG的度数.【变式1-1】已知:如图,AAEE⊥BBBB,EEDD⊥BBBB,∠BBEEAA=∠EEDDBB,∠DD=∠AABBBB+50°,∠BBBBDD= 70°.(1)求证:AABB∥BBDD;(2)求∠BB的度数.【变式1-2】如图,△ABC中,∠BAC的角平分线交BC于D,点F在BA的延长线上,点E 在线段CD上,EF与AC相交于点G,且∠BBDDAA+∠BBEEDD=180°.(1)求证:AADD∥EEEE;(2)若点H在FE的延长线上,且∠EDH=∠C,则∠F与∠H相等吗?请说明理由.【变式1-3】(2022·湖北·武汉市新洲区阳逻街第一初级中学三模)如图,已知AADD⊥BBBB,EEEE⊥BBBB,∠1=∠2.(1)求证:EEEE∥AADD;(2)求证:∠BBAABB+∠AADDDD=180°.【例2】如图,∠1=∠2,∠AA=∠DD.求证:∠BB=∠BB.(请把下面证明过程补充完整)证明:∵1=∠2(已知)又∵∠1=∠3(____________)∴∠2=∠3(____________)∴AAEE∥EEDD(_____________)∴∠AA=∠_____(______________)∵∠AA=∠DD(已知)∴∠DD=∠BBEEDD(等量代换)∴_____∥BBDD(__________________)∴∠BB=∠BB(____________)【变式2-1】阅读并完成下面的证明过程:已知:如图,AABB∥EEEE,∠1=∠2,BBEE、BBEE分别平分∠AABBBB和∠BBBBDD,求证:BBEE⊥BBEE.证明:∵BBEE、BBEE分别平分∠AABBBB和∠BBBBDD.∴∠AABBEE=∠EEBBBB=12∠AABBBB∠2=________=12∠BBBBDD(角平分线定义)又∵∠1=∠2,∴∠1=∠EEBBDD()∴EEEE∥BBDD()又∵AABB∥EEEE(已知)∴________________()∴∠AABBBB+∠BBBBDD=180°()∴∠AABBEE+∠2=12(∠AABBBB+∠BBBBDD)=90°,又∵AABB∥EEEE,∴∠AABBEE=∠BBEEEE()∴∠BBEEEE+∠1=90°,∴∠BBEEBB=90°,∴BBEE⊥BBEE()【变式2-2】完成下面证明过程并写出推理根据:已知:如图所示,∠BBAABB与∠AABBDD互补,∠1=∠2.求证:∠EE=∠EE.证明:∵∠BBAABB与∠AABBDD互补(已知),即∠BBAABB+∠AABBDD=180°,∴____________∥_____________(_____________________),∴∠BBAABB=∠AABBBB(_____________________).又∵∠1=∠2,∴∠BBAABB-∠1=∠AABBBB-∠2(等式的性质),即∠3=∠4,∴____________∥_____________(_____________________),∴∠EE=∠EE(_____________________).【变式2-3】推理填空:完成下面的证明过程.如图,已知∠1+∠2=180°,∠B=∠DEF,求证:.DE∥BC证明:∵∠1+∠2=180°()∠2=∠3(_______________________________)∴∠1+∠3=180°∴______∥______(_____________________________)∴∠B=______(________________________________)∵∠B=∠DEF(已知)∴∠DEF=_______ (_______________________)∴DE∥BC()【例3】如图,含有30°角的直角三角板的两个顶点EE、EE放在一个长方形的对边上,点EE为直角顶点,∠EEEEDD=30°,延长EEDD交BBDD于点BB,如果∠3=65°,那么∠2的度数是()A.100°B.105°C.115°D.120°【变式3-1】将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠2;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是()A.1 B.2 C.3 D.4【变式3-2】将一块直角三角板AABBBB∠AABBBB=30°,AA,BB两点分别落在直线mm、nn上,∠1=20°,添加下列哪一个条件可使直线mm∥nn()A.∠2=20°B.∠2=30°C.∠2=45°D.∠2=50°【变式3-3】小明把一副三角板按如图所示方式摆放,直角边CD与直角边AB相交于点F,斜边DDEE∥BBBB,∠B=30°,∠E=45°,则∠CFB的度数是()A.95° B.115° C.105° D.125°【例4】如图,aa∥bb,一块含45°的直角三角板的一个顶点落在直线b上,若∠1=58°54′,则∠2的度数为()A.103°6′B.104°6′C.103°54′D.104°54′【变式4-1】用一块含60°角的直角三角板和一把直尺按图中所示的方式放置,其中直尺的直角顶点与三角板的60°角顶点重合,直尺两边分别与三角板的两条直角边相交,若∠1= 50°,则∠2的度数为()A.25° B.22.5° C.20° D.15°【变式4-2】如图,AB∥CD,将一副直角三角板作如下摆放,∠GEF=60°,∠MNP=45°.下列结论:①GE∥MP;②∠EFN=150°;③∠BEF=75°;④∠AEG=∠PMN.其中正确的是_______.【变式4-3】如图所示,将一直角三角板放在AB,CD两条平行线之间:(1)图甲中,容易求得∠1+∠2=90°,请直接写出图乙中∠1,∠2的数量关系;(2)请问图丙中∠1,∠2的数量关系是什么?并加以说明;(3)请直接写出图丁中∠1,∠2的数量关系.【例5】如图①,AB∥CD,M为平面内一点,若BM⊥MC,则易证∠ABM与∠DCM互余.(1)如图②,AB∥CD.点M在射线EA上运动,猜想点M在点A和D之间时,∠BMC与∠ABM、∠DCM之间的数量关系,并证明.(2)在(1)的条件下,当点M在射线EA的其它位置上时(不与点E,A,D重合)请直接写出∠BMC与∠ABM、∠DCM之间的数量关系.【变式5-1】(2022·辽宁·兴城市第二初级中学七年级阶段练习)已知,点A,点B分别在线段MN,PQ上,且∠ACB-∠MAC=∠CBP.(1)如图1,求证:MN∥PQ;(2)分别过点A和点C作直线AG、CH使AG∥CH,以点B为顶点的直角∠DBI的两边分别与直线CH,AG交于点F和点E,如图2,试判断∠CFB、∠BEG之间的数量关系,并证明;(3)在(2)的条件下,若BD和AE恰好分别平分∠CBP和∠CAN,并且∠ACB=80°,求∠CFB 的度数.(直接写出答案)【变式5-2】(2022·湖北·宜昌市第九中学七年级期中)如图,∠1=∠2,∠DD=∠BBCCDD.(1)求证:AADD∥NNDD;(2)若∠AA+∠DDDDDD=180°,试探索:∠AANNBB,∠NNBBDD,∠1的数量关系;(3)在(2)的条件下,若∠AANNBB:∠BBNNDD=2:1,∠1=100°,∠NNBBDD=130°,求∠AA的度数.【变式5-3】(2022·湖北·潜江市高石碑镇第一初级中学七年级期中)如图1,AB∥CD,直线AE分别交AB、CD于点A、E.点F是直线AE上一点,连结BF,BP平分∠ABF,EP平分∠AEC,BP与EP交于点P.(1)若点F是线段AE上一点,且BF⊥AE,求∠P的度数;(2)若点F是直线AE上一动点(点F与点A不重合),请写出∠P与∠AFB之间的数量关系并证明.【例6】实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.如图1,一束光线m射到平面镜a上,被a反射后的光线为n,则入射光线m、反射光线n与平面镜a所夹的锐角∠1=∠2.(1)如图2,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b反射.若被b反射出的光线n与光线m平行,且∠1=50°,则∠2=°,∠3=°.(2)请你猜想:当射到平面镜a上的光线m,经过平面镜a、b的两次反射后,入射光线m与反射光线n平行时,两平面镜a、b间的夹角∠3的大小是否为定值?若是定值,请求出∠3,若不是定值,请说明理由.(3)如图3,两面镜子的夹角为α°(0<α<90),进入光线与离开光线的夹角为β°(0<β<90).试探索α与β的数量关系,并说明理由.【变式6-1】如图,直线AB∥CD,点M,N分别在直线AABB,BBDD上,H为直线BBDD下方一点.(1)如图1,CCDD和NNDD相交于点H,求证:∠CCDDNN=∠AACCDD−∠BBNNDD.(温馨提示:可过点H作AABB的平行线)(2)延长DDNN至点G,∠BBCCDD的平分线CCEE和∠DDNNDD的平分线NNEE相交于点E,DDCC与BBDD相交于点F.①如图2,若∠BBCCEE=50°,∠EENNDD=30°,求∠CCDDNN的度数;②如图2,当点F在点N左侧时,若∠BBCCEE的度数为xx°,∠EENNDD的度数为yy°,且xx+yy的值是一个定值,请问∠CCDDNN的度数是否会随x的变化而发生改变?若不变,求出∠CCDDNN的度数;若变化,请说明理由.③如图3,当点N在点F左侧时,②中其他条件不变,请问∠CCDDNN的度数是否会随x的变化而发生改变?若不变,直接写出....∠CCDDNN的度数;若变化,请说明理由.【变式6-2】如图1,点A、D分别在射线BM、CN线上,BM∥CN,BM⊥BC于点B,AE 平分∠BAD交BC于点E,连接DE,∠1+∠2=90°.(1)求证:AE⊥ED;(2)求证:DE平分∠ADC;(3)如图2,∠EAM和∠EDN的平分线交于点F,试猜想∠F的值是否为定值,若是,请予以证明;若不是,请说明理由.【变式6-3】直线CCNN与直线AABB、BBDD分别相交于点EE、EE,∠CCEEBB与∠BBEECC互补(1)如图1,试判断直线AABB与直线BBDD的位置关系,并说明理由.(2)如图2,∠BBEEEE与∠EEEEDD的平分线交于点BB,EEBB的延长线与BBDD交于点DD,DD是CCNN上一点,且DDDD⊥EEDD,求证:PF∥GH.(3)如图3,在(2)的条件下,连接BBDD,KK是DDDD上一点,使∠BBDDKK=∠DDBBKK,作BBPP平分∠EEBBKK,求证:∠DDBBPP的大小是定值.【例7】如图,已知AABB//BBDD,若按图中规律继续划分下去,则∠1+∠2+⋯+∠nn等于()A.nn•1800B.2nn•1800C.(nn−1)•1800D.(nn−1)2•1800【变式7-1】如图,已知直线AAEE,BBEE被直线AABB所截,且AAEE//BBEE,AABB1,BBBB1分别平分∠EEAABB,∠EEBBAA;AABB2,BBBB2分别平分∠BBAABB1和∠AABBBB1;AABB3,BBBB3分别平分∠BBAABB2,∠AABBBB2…依次规律,得点BB nn,则∠BB nn的度数为()A.90−902nn B.180−902nn−1C.902nn−1D.1802nn【变式7-2】如图(1)(2)(3)中,都满足AB∥CD.试求:(1)图(1)中∠A+∠C的度数,并说明理由.(2)图(2)中∠A+∠APC+∠C的度数,并说明理由.(3)图(3)中∠A+∠AEF+∠EFC+∠C的度数,并简要说明理由.(4)按上述规律,∠A+……+∠C(共有n个角相加)的和为【变式7-3】阅读并探究下列问题.(1)如图①,将长方形纸片剪两刀,其中AABB∥BBDD,则∠2与∠1、∠3有何关系?请进行证明.(2)如图②,将长方形纸片剪四刀,其中AABB∥BBDD,则∠1、∠2、∠3、∠4、∠5的关系为 .(3)如图③,将长方形纸片剪2016刀,其中AABB∥BBDD,则共剪出个角.若将剪出的角(∠A、∠C除外)分别用∠E1、∠E2、∠E3…表示,则被剪出的这些角的关系为 .(4)如图④,直线AABB∥BBDD,∠EF=∠HMN=x°,∠FGH=3x°,∠CNP=y°|2xx+yy−102|+�xx+yy−72=0由上述结论求∠GHM的度数.【例8】综合与实践:折纸中的数学知识背景我们在七年级上册第四章《几何图形初步》中探究了简单图形折叠问题,并进行了简单的计算与推理.七年级下册第五章我们学习了平行线的性质与判定,今天我们继续探究:折纸中的数学﹣﹣长方形纸条的折叠与平行线.知识初探(1)如图1,长方形纸条ABGH中,AABB∥DDDD,AADD∥BBDD,∠A=∠B=∠G=∠H=90°,将长方形纸条沿直线CD折上,点A落在A'处,点B落在B'处,B'C交AH于点E,若∠ECG=70°,则∠CDE=;类比再探(2)如图2,在图1的基础上将∠HEC对折,点H落在直线EC上的H'处,点G落在G'处得到折痕EF,则折痕EF与CD有怎样的位置关系?说明理由;(3)如图3,在图2的基础上,过点G'作BG的平行线MN,请你猜想∠ECF和∠H'G'M的数量关系,并说明理由.【变式8-1】如图,已知四边形纸片AABBBBDD,∠BB=∠DD=90°,点EE在AADD边上,把纸片按图中所示的方式折叠,使点DD落在BBBB边上的点EE处,折痕为BBEE.(1)试判定AABB与EEEE的位置关系,并说明理由;(2)如果∠AA=100°,求∠DDEEBB的度数.【变式8-2】学习了平行线以后,小明想出了用纸折平行线的方法,他将一张如图1所示的纸片,其中AADD//BBBB,先按如图2所示的方法折叠,折痕为CCNN;(CCBB′与AADD相交于点BB)然后按如图3的方法折叠,折痕为BBPP(AA′BB与BB′CC落在一条直线上).(1)在图2的折叠过程中,若∠1=130°,求∠2的度数(2)如图3,小明认为在折叠过程中,产生的折痕CCNN与BBPP平行,请把小明的思考步骤补充完整.由折叠可知,∠BB′CCNN=∠BBCCNN=12∠BBCCBB′;∠AA′BBPP=∠AABBPP=12∠AABBAA′;∵AABB//BBBB∴∠AABBAA′=∠BBCCBB′;(①)∴② =③ (等量代换)∴BBPP//CCNN.(内错角相等,两直线平行)【变式8-3】(2022·广东佛山·七年级期末)某公司技术人员用“沿直线AB折叠检验塑胶带两条边缘线a、b是否互相平行”.(1)如图1,测得∠1=∠2,可判定a∥b吗?请说明理由;(2)如图2,测得∠1=∠2,且∠3=∠4,可判定a∥b吗?请说明理由;(3)如图3,若要使a∥b,则∠1与∠2应该满足什么关系式?请说明理由.【例9】一辆汽车在笔直的公路上行驶,两次拐弯后,在与原方向相反的方向上平行行驶,则这两次拐弯的角度应为()A.第一次向右拐38°,第二次向左拐142°B.第一次向左拐38°,第二次向右拐38°C.第一次向左拐38°,第二次向左拐142°D.第一次向右拐38°,第二次向右拐40°【变式9-1】一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,则两次拐弯的角度可以是()A.第一次向右拐40°,第二次向左拐140° B.第一次向左拐40°,第二次向右拐40° C.第一次向左拐40°,第二次向右拐140° D.第一次向右拐40°,第二次向右拐40°【变式9-2】如图,防城港市的一条公路修到海边时,需要拐弯绕海而过,如果第一次拐角是∠AA=130°,第二次拐的角是∠BB=160°,第三次拐的角是∠BB,这时的道路恰好和第一次拐之前的道路平行,则∠BB度数为______.【变式9-3】如图所示,一条公路修到湖边时,需要拐弯绕湖而过,第一次拐的角∠AA=110°,第二次拐的角∠B=145°,则第三次拐的角∠BB=__________时,道路BBEE才能恰好与AADD平行.【例10】结合“爱市西,爱生活,会创新”的主题,某同学设计了一款“地面霓虹探测灯”,增加美观的同时也为行人的夜间行路带去了方便.他的构想如下:在平面内,如图1所示,灯AA射线从AACC开始顺时针旋转至AANN便立即回转,灯BB射线从BBBB开始顺时针旋转至BBPP便立即回转,两灯不停交叉照射巡视.若灯AA转动的速度是每秒2度,灯BB转动的速度是每秒1度.假定主道路是平行的,即BBPP//CCNN∠BBAACC:∠BBAANN=2:1.(1)填空:∠AABBBB=______°;(2)若灯BB射线先转动60秒,灯AA射线才开始转动,在灯BB射线到达BBPP之前,AA灯转动几秒,两灯的光束互相平行?(3)如图2,若两灯同时转动,在灯AA射线到达AANN之前,若射出的光束交于点BB,过BB作∠AABBDD 交BBPP于点DD,且∠AABBDD=120°,则在转动过程中,请探究∠BBAABB与∠BBBBDD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.【变式10-1】(1)如图1,将一副直角三角板按照如图方式放置,其中点C、D、A、F在同一条直线上,两条直角边所在的直线分别为CCNN、BBPP,∠BBAABB=30°,∠DDEEEE=45°.AABB与DDEE相交于点O,则∠BBBBEE的度数是__________;(2)将图1中的三角板AABBBB和三角板DDEEEE分别绕点B、F按各自的方向旋转至如图2所示位置,其中BBAA平分∠CCBBBB,求∠BBEEAA的度数;(3)将如图1位置的三角板AABBBB绕点B顺时针旋转一周,速度为每秒10°,在此过程中,经过_________秒边AABB与边DDEE互相平行.【变式10-2】嘉嘉和琪琪在用一副三角尺研究数学问题:一副三角尺分别有一个角为直角,其余角度如图1所示,AB=DE,经研究发现(1)如图2,当AB与DE重合时,∠CDF=°;(2)如图3,将图2中△ABC绕B点顺时针旋转一定度使得∠CEF=156°,则∠AED=°;拓展(3)如图4,继续旋转使得AC垂直DE于点G,此时AC与EF位置关系,此时∠AED=°;探究(4)如图5,图6∥DF图5中此时∠AED=°,图6中此时∠AED=°.【变式10-3】如图1,PQ∥MN,点A,B分别在MN,QP上,∠BAM=2∠BAN,射线AM绕A点顺时针旋转至AN便立即逆时针回转,射线BP绕B点顺时针旋转至BQ便立即逆时针回转.射线AM转动的速度是每秒2度,射线BP转动的速度是每秒1度.(1)直接写出∠PPBBAA的大小为_______;(2)射线AM、BP转动后对应的射线分别为AE、BF,射线BF交直线MN于点F,若射线BP比射线AM先转动30秒,设射线AM转动的时间为t(0<t<180)秒,求t为多少时,直线BF∥直线AE?(3)如图2,若射线BP、AM同时转动m(0<m<90)秒,转动的两条射线交于点C,作∠ACD=120°,点D在BP上,请探究∠BAC与∠BCD的数量关系.。
人教版七年级下学期数学-5.2平行线及其判定(练习题)
人教版七年级下学期数学-5.2平行线及其判定一、单选题1.如图,下列条件能判定的是()A.∠1=∠2B.∠2=∠4C.∠1=∠4D.∠1+∠3=180°2.如图,,要使//,则的大小是()A.B.C.D.3.如图,平分,平分,下列选项能判断∥的是()A.B.C.D.4.如图,O是直线AB上一点,OE平分∠BOD,OF⊥OE,∠D=110°,添加一个条件,仍不能判定AB∥CD,添加的条件可能是()A.∠BOE=55°B.∠DOF=35°C.∠BOE+∠AOF=90°D.∠AOF=35°5.如图1,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3B.∠2=∠3C.∠4=∠5D.∠2+∠4=180°6.下列说法错误的个数是()①经过一点有且只有一条直线与已知直线平行;②垂直于同一条直线的两条直线互相平行;③直线外一点到这条直线的垂线段,叫做这个点到直线的距离;④同一平面内不相交的两条直线叫做平行线.A.1个B.2个C.3个D.4个7.下列尺规作图不能得到平行线的是()A.B.C.D.8.一副直角三角尺叠放如图1所示,现将含角的三角尺ADE固定不动,将含角的三角尺ABC绕顶点顺时针转动,使两块三角尺至少有一组边互相平行,如图2,当时,,则)其他所有可能符合条件的度数为()A.和B.和C.和D.以上都有可能二、填空题9.如图,木工师傅经常用一把直角尺画出两条平行的直线与.这样做运用的数学知识是.10.如图,要使AD//BF,则需要添加的条件是(写一个即可).11.如图,直线a与直线b、c分别相交于点A、B,当∠1=时,c∥b.12.如图,写出能判定AB∥CD的一对角的数量关系:.13.如图,添加一个你认为合适的条件使.三、综合题14.如图,射线平外,且.求证:.15.如图,B,F,E,C在同一条直线上,∠A=∠D.(1)若∠A=78°,∠C=47°,求∠BFD的度数.(2)若∠AEB+∠BFD=180°,求证:AB∥CD.16.如图1,直线与交于点,锐角,.(1)求证:;(2)若为直线上一点(不与点重合),的平分线与的平分线所在的直线交于点.①如图2,,为射线上一点,请补全图形并求的度数;②的度数为▲(用含的式子表示).17.已知BC∥OA,∠B=∠A=100°,试回答下列问题:(1)如图(1),求证:OB∥AC.(2)如图(2),若点E,F在BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF,试求∠EOC 的度数.(3)在图(2)的条件下,若平行移动AC,如图(3),那么∠OCB∶∠OFB的值是否会发生变化?若变化,试说明理由;若不变,求出这个比值.18.三角板是学习数学的重要工具,将一副三角板的直角顶点C按如图所示的方式叠放在一起,当时,且点E在直线AC的上方时,解决下列问题∶(友情提示∶∠A=60°,∠D=30°,∠B=∠E=45°)(1)①若∠DCE=45°,求∠ACB;②若∠ACB=140°,求∠DCE;(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由;(3)这两块三角板是否存在一组边互相平行?若存在,请直接写出∠ACE的所有可能的值(不必说明理由);若不存在,请说明理由.答案解析部分1.【答案】A【解析】【解答】解:由∠1=∠2可得a∥b,故A符合题意;由∠2=∠4可得c∥d,故B不符合题意;∠1与∠4不是三线八角,故C不符合题意;由∠1+∠3=180°可得c∥d,故D不符合题意;故答案为:A.【分析】根据平行线的判定定理逐一判断即可.2.【答案】C【解析】【解答】当,则,故答案为:C.【分析】根据平行线的判定定理:同位角相等两直线平行,即可得出答案.3.【答案】D【解析】【解答】解:平分,.平分,,,当时,,同旁内角互补,两直线平行.故答案为:D.【分析】先根据角平分线的定义得出,,再根据平行线的判定定理得出当时,,从而得出结论。
鲁教版七年级平行线的有关证明-证明的必要性练习50题及参考答案(难度系数0.37)
七年级平行线的有关证明-证明的必要性(难度系数0.37)一、单选题(共8题;共16分)1.某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分,某小组比赛结束后,甲、乙,丙、丁四队分别获得第一,二,三,四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是()A. 甲B. 甲与丁C. 丙D. 丙与丁【答案】B【考点】推理与论证2.一个大矩形按如图方式分割成九个小矩形,且只有标号为①和②的两个小矩形为正方形.在满足条件的所有分割中,若知道九个小矩形中n个小矩形的周长,就一定能算出这个在大矩形的面积,则n的最小值是()A. 3B. 4C. 5D. 6【答案】A【考点】推理与论证3.一同学在n天假期中观察:(1)下了7次雨,在上午或下午;(2)当下午下雨时,上午是晴天;(3)一共有5个下午是晴天;(4)一共有6个上午是晴天。
则n最小为()A. 7B. 9C. 10D. 11.【答案】B【考点】推理与论证4.七年级(1)班的四位同学参加数学知识竞赛活动,分别获得第一、二、三、四名,大家猜测谁得第几名时,明明说:“甲得第一,乙得第二”;文文说:“甲得第二,丁得第四”;凡凡说:“丙得第二,丁得第三”.名次公布后,他们每人只猜对一半,那么甲、乙、丙、丁的名次顺序为()A. 甲、乙、丙、丁B. 甲、丙、乙、丁C. 甲、丁、乙、丙D. 甲、丙、丁、乙【答案】B【考点】推理与论证5.如图A,B,C是固定在桌面上的三根立柱,其中A柱上穿有三个大小不同的圆片,下面的直径总比上面的大.现想将这三个圆片移动到B柱上,要求每次只能移动一片(叫移动一次),被移动的圆片只能放入A,B,C三个柱之一且较大的圆片不能叠在小片的上面,那么完成这件事情至少要移动圆片的次数是( )A. 6B. 7C. 8D. 9【答案】B【考点】推理与论证6.某校八年级四个班的代表队准备举行篮球赛.甲、乙、丙三位同学预测比赛的结果如下:甲说:“802班得冠军,804班得第三”;乙说:“801班得第四,803班得亚军”;丙说:“803班得第三,804班得冠军”赛后得知,三人都只猜对了一半,则得冠军的是()A. 801班B. 802班C. 803班D. 804班【答案】B【考点】推理与论证7.甲、乙、丙三人进行乒乓球比赛,规则是:两人比赛,另一人当裁判,输者将在下一局中担任裁判,每一局比赛没有平局.已知甲、乙各比赛了4局,丙当了3次裁判.问第2局的输者是()A. 甲B. 乙C. 丙D. 不能确定【答案】C【考点】推理与论证8.如图,已知甲、乙两车分别从A、B两地同时相向出发,它们第1次相遇时距离B地54千米,甲、乙两车分别到达B、A两地后立即调头,它们第2次相遇时距离B地48千米,则A、B两地相距()千米.A. 102B. 103C. 104D. 105【答案】 D【考点】推理与论证二、填空题(共2题;共5分)9.字母a,b,c,d各代表正方形、线段、正三角形、圆四个图形中的一种,将它们两两组合,并用字母连接表示,如表是三种组合与连接的对应表,由此可推断图形的连接方式为________.【答案】a⊕c【考点】推理与论证10.参加2008年北京第29届奥运会的A,B,C,D四名运动员国籍各不相同,分别是美,韩,法,日.当然这里的名字顺序不一定与上面写的国籍顺序相同.已知:A和美国运动员都是排球运动员,B和日本运动员都是柔道运动员且比韩国运动员高,C不是排球运动员,则A是________ ,B是________ ,C是________ ,D是________【答案】韩国;法国;日本;美国【考点】推理与论证三、解答题(共39题;共195分)11.A、B、C、D四个小孩在院子里踢球,把房间的窗玻璃打破了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级平行线的证明练习题(8)
1、已知∠1与∠2是对顶角,且∠1=30º,则∠2= 。
2、如果两个锐角的和是,则这两个角互为余角,如果两个角的和是,则这两个角互为补角。
3、若∠1=30º,则它的余角是,它的补角是。
4、若∠1=50º,则它的余角是,它的补角是。
5、若∠2=110º,则它的补角是,它的补角的余角是。
6、若∠1与∠2互余,∠3和∠2互补,且∠3=120º,那么∠1= 。
7、在同一平面内,两条直线的位置关系有和两种。
8、平面内,过一点一条直线与已知直线垂直。
9、直线外一点与直线上各点连接的所有线段中,最短。
10.如图,若直线a,b被直线c所截,在所构成的八个角中指出,下列各对角之间是属于哪种特殊位
置关系的角?
(1)∠1与∠3是;(2)∠5与∠7是 _;
(3)∠1与∠5是;(4)∠5与∠3是;
(5)∠5与∠4是;(6)∠8与∠4是;
(7)∠4与∠6是 _;(8)∠6与∠3是;
(9)∠3与∠7是;(10)∠6与∠2是 _.
11、如图,∠1 =∠2=55°,∠3等于多少度?直线AB、CD平行吗?说明你的理由。
解:AB∥CD.
理由:∵∠1=∠2=55° (已知)
∴∠3= = (对顶角相等)
∴∠1=∠3 (等量代换)
∴∥(同位角相等,两直线平行)12、如图,在△ABC中,∠B=38°,∠C=62°,AD是△ABC的角平分线,求∠ADB的度数。
13、如图所示。
(1) ∠1与是同位角。
(2) ∠1与是同旁内角。
(3) ∠1与是内错角。
14、如图所示,
(1)∵∠1=∠4 (已知)
∴∥ ( )
(2)∵∠2=∠4 (已知)
∴∥ ( )
(3)∵∠1+∠3=1800 (已知)
∴∥ ( )
15、推理填空:
(1)∵∠A =∠(已知),
∴AC∥ED();
(2)∵∠2 =∠(已知),
∴AC∥ED();
(3)∵∠A +∠= 180°(已知),
∴AB∥FD();
(4)∵∠2 +∠= 180°(已知),
∴AC∥ED()。
C
D
B
A
16、填空并在括号中填理由:
(1)由∠ABD =∠CDB得∥();
(2)由∠CAD =∠ACB得∥();
(3)由∠CBA +∠BAD = 180°得∥()。
17、如图:
(1)∵∠1 =∠2(已知),
∴∥();
(2)∵∠2 =∠M(已知),
∴∥();
(3)∵∠2 +∠3 = 180°(已知),
∴∥();
18、如果AB∥CD,∠1 =∠2,那么EF∥AB平行吗?说说你的理由。
解:∵∠1 =∠2(已知),
∴∥();
又∵AB∥CD(已知),
∴∥();
19、已知直线a∥b,直线c∥d,∠1=107°,求°∠2,∠3的度数。
解:∵a∥b(已知),
∴∠2=∠1 = °();
又∵c∥d(已知),
∴∠1+∠3 = °();
∴∠3 = °—∠1= °—°= °
20、已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?
并写出推理的根据.
(1)如果∠2=∠3,那么___________.( )
(2)如果∠2=∠5,那么____________.( )
(3)如果∠2+∠1=180°,那么____________.( )
(4)如果∠5=∠3,那么____________.( )
(5)如果∠4+∠6=180°,那么____________.( )
(6)如果∠6=∠3,那么____________.( ) 21、已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.
(1)∵∠B=∠3(已知),
∴______∥______.( )
(2)∵∠1=∠D(已知),
∴______∥______.( )
(3)∵∠2=∠A(已知),
∴______∥______.( )
(4)∵∠B+∠BCE=180°(已知),
∴______∥______.( )
22、已知一个角的补角是这个角的余角的4倍,求这个角.
23、用科学记数法表示下列个数
(1)45 000 000 000 000 000=
(2)155 000 000 000 000 000 000=
(3) 0.000 000 000 7=
(4) 0.000 000 001 235=
24、36的算术平方根是,平方根是。
25、36的平方根是,算术平方根是。
26、已知(x+1)2 + ︱y-1︱+5
z =0,求 2(xy - 5xy2)-(3xy2-xy)+z的值。