2008年宁波市初中毕业生学业考试中考数学试卷及解析

合集下载

2008年宁波市中考数学模拟试卷及答案试题试卷

2008年宁波市中考数学模拟试卷及答案试题试卷

宁波市2008年初中升学考试模拟卷数 学试 卷 Ⅰ一、选择题(本题有12小题,每小题3分,共36分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1. 9的算术平方根是 【 】 (A )±3 (B(C )3 (D )-32. 如果内切两圆的半径分别为4cm 和6cm , 则两圆的圆心距为 【 】 (A )2cm (B ) 5cm (C )10cm (D )20cm3.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是【 】(A )012=+x (B )0122=++x x (C )0322=++x x (D )0322=-+x x 4.下列计算中不正确...的是 【 】 (A )(-2)0=1(B )2-1=-2 (C )(a+b)2=a 2+2ab+b 2(D )2a 2·3a 3=6a 55.如图是由5个大小相同的正方体摆成的立方体图形,它的左视图...是【 】 (A) (B) (C) (D) 6.如图:圆的直径AB 垂直弦CD 于P ,且P 是半径OB 的中点, 6CD cm =,则直径AB 的长是【 】(A)7.一次函数5+-=x y 图象与反比例函数xy 6=图象的交点情况是【 】 (A) 只有一个交点,坐标是(2,3) (B)只有一个交点,坐标是(-1,6)(C) 有两个交点,坐标是(2,3)、(3,2) (D)没有交点 8.下列命题中的真命题是【 】(A) 对角线互相垂直的四边形是菱形 (B) 中心对称图形都是轴对称图形 (C) 两条对角线相等的梯形是等腰梯形 (D) 等腰梯形是中心对称图形9.一质点P 从距原点1个单位的A 点处向原点方向跳动,第一次跳动到OA 的中点1A 处,第二次从1A 点跳动到O 1A 的中点2A 处,第三次从2A 点跳动到O 2A 的中点3A 处,如此不断跳动下去,则第n 次跳动后,该质点到原点O 的距离为【 】x o A 4A 3A 2A 1APPPP(A) (B) n 112- (C)n+11 2⎛⎫ ⎪⎝⎭(D) n 1210.亮亮想制作一个圆锥模型,这个模型的侧面是用一个半径为9cm ,圆心角为240°的扇形铁皮制作的,再用一块圆形铁皮做底。

九年级数学毕业试题.宁波

九年级数学毕业试题.宁波

宁波市初中毕业生学业考试数学试题试题卷Ⅰ一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在3,12,0,2这四个数中,为无理数的是( ) A.3B.12C.0D.2-2.下列计算正确的是( ) A.235a a aB.224aa C.235a a a D.325a a3.2月13日,宁波舟山港45万吨原油码头首次挂靠全球最大油轮——“泰欧”轮,其中45万吨用科学记数法表示为( ) A.60.4510吨B.54.510吨C.44510吨D.44.510吨4.要使二次根式3x 有意义,则x 的取值范围是( ) A.3xB.3xC.3xD.3x5.如图所示的几何体的俯视图为( )6.一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为( ) A.12B.15C.310D.7107.已知直线m n ∥,将一块含30°角的直角三角板ABC 按如图方式放置(30ABC ∠°),其中A ,B 两点分别落在直线m ,n 上,若120∠°,则2∠的度数为( ) A.20°B.30°C.45°D.50°8.若一组数据2,3,x ,5,7的众数为7,则这组数据的中位数为( ) A.2B.3C.5D.79.如图,在Rt ABC △中,90A ∠°,22BC ,以BC 的中点O 为圆心分别与AB ,AC 相切于D ,E 两点,则DE 的长为( )A.4B.2C. D.210.抛物线2222y x x m (m 是常数)的顶点在( )A.第一象限B.第二象限C.第三象限D.第四象限11.如图,四边形ABCD 是边长为6的正方形,点E 在边AB 上,4BE ,过点E 作EF BC ∥,分别交BD ,CD 于G ,F 两点,若M ,N 分别是DG ,CE 的中点,则MN 的长为( ) A.3B.2313D.412.一个大矩形按如图方式分割成九个小矩形,且只有标号为①和②的两个小矩形为正方形,在满足条件的所有分割中,若知道九个小矩形中n 个小矩形的周长,就一定能算出这个大矩形的面积,则n 的最小值是( ) A.3B.4C.5D.6试题卷Ⅱ二、填空题(每题5分,满分20分,将答案填在答题纸上)13.实数8的立方根是 .14.分式方程21332x x 的解是 . 15.如图,用同样大小的黑色棋子按如图所示的规律摆放: 则第⑦个图案有 个黑色棋子.16.如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A 滑行至B ,已知500AB 米,则这名滑雪运动员的高度下降了 米.(参考数据:sin340.56°≈,cos340.83°≈,tan340.67°≈)17.已知ABC △的三个顶点为1,1A,1,3B,3,3C,将ABC △向右平移0m m 个单位后,ABC △某一边的中点恰好落在反比例函数3yx的图象上,则m 的值为 .18.如图,在菱形纸片ABCD 中,2AB ,60A ∠°,将菱形纸片翻折,使点A 落在CD 的中点E 处,折痕为FG ,点F ,G 分别在边AB ,AD 上,则cos EFG ∠的值为.三、解答题 (本大题共8小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.先化简,再求值:2215x xx x ,其中32x. 20.在44的方格纸中,ABC △的三个顶点都在格点上.(1)在图1中画出与ABC △成轴对称且与ABC △有公共边的格点三角形(画出一个即可); (2)将图2中的ABC △绕着点C 按顺时针方向旋转90°,画出经旋转后的三角形.21.大黄鱼是中国特有的地方性鱼类,有“国鱼”之称,由于过去滥捕等多种因素,大黄鱼资源已基本枯竭,目前,我市已培育出十余种大黄鱼品种,某鱼苗人工养殖基地对其中的四个品种“宁港”、“御龙”、“甬岱”、“象山港”共300尾鱼苗进行成活实验,从中选出成活率最高的品种进行推广,通过实验得知“甬岱”品种鱼苗成活率为80%,并把实验数据绘制成下列两幅统计图(部分信息未给出):(1)求实验中“宁港”品种鱼苗的数量;(2)求实验中“甬岱”品种鱼苗的成活数,并补全条形统计图;(3)你认为应选哪一品种进行推广?请说明理由.22.如图,正比例函数13y x的图象与反比例函数2kyx的图象交于A、B两点.点C在x轴负半轴上,AC AO,ACO△的面积为12.(1)求k的值;(2)根据图象,当12y y时,写出x的取值范围.23.5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区,已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.(1)甲种商品与乙种商品的销售单价各多少元?(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?24.在一次课题学习中,老师让同学们合作编题,某学习小组受赵爽弦图的启发,编写了下面这道题,请你来解一解:如图,将矩形ABCD 的四边BA 、CB 、DC 、AD 分别延长至E 、F 、G 、H ,使得AE CG ,BF DH ,连接EF ,FG ,GH ,HE .(1) 求证:四边形EFGH 为平行四边形;(2) 若矩形ABCD 是边长为1的正方形,且45FEB ∠°,tan 2AEH ∠,求AE 的长.25.如图,抛物线21144yx x c 与x 轴的负半轴交于点A ,与y 轴交于点B ,连结AB ,点156,2C 在抛物线上,直线AC 与y 轴交于点D .(1)求c 的值及直线AC 的函数表达式;(2)点P 在x 轴正半轴上,点Q 在y 轴正半轴上,连结PQ 与直线AC 交于点M ,连结MO 并延长交AB 于点N ,若M 为PQ 的中点.①求证:APM AON △∽△;②设点M 的横坐标为m ,求AN 的长(用含m 的代数式表示). 26.有两个内角分别是它们对角的一半的四边形叫做半对角四边形. (1)如图1,在半对角四边形ABCD 中,12BD ∠∠,12C A ∠∠,求B ∠与C ∠的度数之和; (2)如图2,锐角ABC △内接于O ⊙,若边AB 上存在一点D ,使得BD BO ,OBA ∠的平分线交OA 于点E ,连结DE 并延长交AC 于点F ,2AFE EAF ∠∠. 求证:四边形DBCF 是半对角四边形; (3)如图3,在(2)的条件下,过点D 作DG OB 于点H ,交BC 于点G ,当DH BG 时,求BGH △与ABC △的面积之比.数学浙江省宁波市中考数学试卷(解析版)一、选择题(每小题4分,共48分)1、(2017·宁波)在,,0,这四个数中,为无理数的是()A、B、C、0 D、2、(2017•宁波)下列计算正确的是()A、B、C、D、3、(2017•宁波)2月13日,宁波舟山港45万吨原油码头首次挂靠全球最大油轮——“泰欧”轮,其中45万吨用科学记数法表示为()A、吨B、吨C、吨D、吨4、(2017•宁波)要使二次根式有意义,则的取值范围是()A、B、C、D、5、(2017•宁波)如图所示的几何体的俯视图为()A、B、C、D、6、(2017•宁波)一个不透明的布袋里装有5个红球、2个白球、3个黄球,它们除颜色外其余都相同.从袋中任意找出1个球,是黄球的概率为()A、B、C、D、7、(2017•宁波)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC =30°),其中A、B两点分别落在直线m、n上.若∠1=20°,则∠2的度数为()A、20°B、30°C、45°D、50°8、(2017•宁波)若一组数据2,3,x,5,7的众数为7,则这组数据的中位数为()A、2B、3C、5D、79、(2017•宁波)如图,在Rt△ABC中,∠A=90°,BC=.以BC的中点O为圆心的圆分别与AB、AC相切于D、E两点,则的长为()A、B、C、D、10、(2017•宁波)抛物线(m是常数)的顶点在()A、第一象限B、第二象限C、第三象限D、第四象限11、(2017•宁波)如图,四边形ABCD是边长为6的正方形,点E在边AB上,BE=4,过点E作EF∥BC,分别交BD、CD于G、F两点.若M、N分别是DG、CE的中点,则MN的长为()A、3B、C、D、412、(2017•宁波)一个大矩形按如图方式分割成九个小矩形,且只有标号为①和②的两个小矩形为正方形.在满足条件的所有分割中,若知道九个小矩形中n个小矩形的周长,就一定能算出这个在大矩形的面积,则n的最小值是()A、3B、4C、5D、6二、填空题(每小题4分,共24分)13、(2017•宁波)实数的立方根是________14、(2017•宁波)分式方程的解是________15、(2017•宁波)如图,用同样大小的黑色棋子按如图所示的规律摆放:则第⑦个图案有________个黑色棋子.16、(2017•宁波)如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A滑行至B.已知AB=500米,这名滑雪运动员的高度下降了________米(参考数据:,,).17、(2017•宁波)已知△ABC的三个顶点为A ,B ,C ,将△ABC 向右平移m()个单位后,△ABC某一边的中点恰好落在反比例函数的图象上,则m的值为________.18、(2017•宁波)如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F、G分别在边AB、AD上.则cos∠EFG的值为________.三、解答题(6+8+8+10+10+10+12+14,共78分)19、(2017•宁波)先化简,再求值:,其中.20、(2017•宁波)在的方格中,△ABC的三个顶点都在格点上.(1)在图1中画出与△ABC成轴对称且与△ABC有公共边的格点三角形(画出一个即可);(2)将图2中的△ABC绕着点C按顺时针方向旋转90°,画出经旋转后的三角形.21、(2017•宁波)大黄鱼是中国特有的地方性鱼种类,有“国鱼”之称.由于过去滥捕等多种因素,大黄鱼资源已基本枯竭.目前,我市已培育出十余种大黄鱼品种.某鱼苗人工养殖基地对其中的四个品种“宁港”、“御龙”、“甬岱”、“象山港”共300尾鱼苗进行成活实验,从中选出成活率最高的品种进行推广.通过实验得知“甬岱”品种鱼苗成活率为80%,并把实验数据绘制成下列两幅统计图(部分信息未给出):(1)求实验中“宁港”品种鱼苗的数量;(2)求实验中“甬岱”品种鱼苗的成活数,并补全条形统计图;(3)你认为应选哪一品种进行推广?请说明理由.22、(2017•宁波)如图,正比例函数的图象与反比例函数的图象交于A、B两点,点C在x轴负半轴上,AC=AO,△ACO的面积为12.(1)求k的值;(2)根据图象,当时,写出自变量的取值范围.23、(2017•宁波)5月14日至15日,“一带一路”国际合作高峰论坛在北京举行.本届论坛期间,中国同30多个国家签署经贸合作协议.某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.(1)甲种商品与乙种商品的销售单价各多少元?(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?24、(2017•宁波)在一次课题学习中,老师让同学们合作编题.某学习小组受赵爽弦图的启发,编写了下面这道题,请你来解一解.如图,将矩形ABCD的四边BA、CB、DC、AD分别延长至E、F、G、H,使得AE=CG,BF=DH,连结EF、FG、GH、HE.(1)求证:四边形EFGH为平行四边形;(2)若矩形ABCD是边长为1的正方形,且∠FEB=45°,tan∠AEH=2,求AE的长.25、(2017•宁波)如图,抛物线与x轴的负半轴交于点A,与y轴交于点B,连结AB.点C 在抛物线上,直线AC与y轴交于点D.(1)求c的值及直线AC的函数表达式;(2)点P在x轴的正半轴上,点Q在y轴正半轴上,连结PQ与直线AC交于点M,连结MO并延长交AB于点N,若M为PQ的中点.①求证:△APM∽△AON;②设点M的横坐标为m,求AN的长(用含m的代数式表示).26、(2017•宁波)有两个内角分别是它们对角的一半的四边形叫做半对角四边形.(1)如图1,在半对角四边形ABCD中,∠B=∠D,∠C=∠A,求∠B与∠C的度数之和;(2)如图2,锐角△ABC内接于⊙O,若边AB上存在一点D,使得BD=BO.∠OBA的平分线交OA 于点E,连结DE并延长交AC于点F,∠AFE=2∠EAF.求证:四边形DBCF是半对角四边形;(3)如图3,在(2)的条件下,过点D作DG⊥OB于点H,交BC于点G.当DH=BG时,求△BGH 与△ABC的面积之比.答案解析部分一、<b >选择题(每小题4分,共48分)</b>1、【答案】A【考点】无理数【解析】【解答】解:无理数就是无限不循环小数。

2008年北仑区初中数学毕业生学业考试模拟试题

2008年北仑区初中数学毕业生学业考试模拟试题

正面北仑区2008年初中毕业生学业考试数学模拟卷一、 选择题(每小题3分,共36分)相反数为 ( ) A .5 B .-5 C .15 D .15- 2.图中几何体的主视图是 ( )3.下列事件中确定事件是 ( ) A .掷一枚均匀的硬币,正面朝上 B .买一注福利彩票一定会中奖C .把4个球放入三个抽屉中,其中一个抽屉中至少有2个球D .掷一枚六个面分别标有1,2,3,4,5,6的骰子,骰子停止转动后奇数点朝上 4.据统计:截止到2007年初,某某地区现有民办股份制幼儿园近1500所,在园幼儿人数达24.3万,用科学记数法表示24.3万应记为 ( ) A .243000 B. ×104 C. ×105 D. 0.243×1065.3X 扑克牌如图(1)所示放在桌子上,小敏把其中一X 旋转180º后得到如图(2)所示,则她所旋转的牌从左数起是 ( )A .第一XB .第二XC .第三XD .第四X 6.不等式组⎩⎨⎧>->-03042x x 的解集为 ( )A .x >2B .x <3C .x >2或 x <-3D .2<x <3A B C D7.某地区七、八月份天气较为炎热,小华对其中连续十天每天的最高气温进行统计,依次得到以下一组数据:34,35,36,34,36,37,37,36,37,37(单位℃).则这组数据的中位数和众数分别是 ( )8.若反比例函数ky x =的图象经过点(-1,2),则这个函数的图象一定经过点 ( ) A .(2,-1) B .(12-,2) C .(-2,-1) D .(12,2)9.已知如图,C 为⊙O 上一点,∠ACB=40°,若D 为弦AB 的中点,则∠AOD 的度数为 ( )A .40°B .50°C .80°D .20°10.一次函数y=ax+b 与二次函数y=ax 2+bx+c 在同一坐标系中的图像可能是 ( )11.将图2所示各X 平面三角形网格纸片沿线段折起,可以得到如图1所示的立体图形的是( )12.如图,以正方形ABCD 的边CD 为一边,在正方形ABCD 内作等边△CDE ,BE 交AC 于点M ,则∠AMD 的度数为( )。

2008年浙江省中考数学试卷

2008年浙江省中考数学试卷

浙江省2008年初中毕业生学业考试数学试题卷考生须知:1. 全卷共4页,有3大题,24小题. 满分为150分,考试时间120分钟.2. 本卷答案必须做在答题纸的对应位置上,做在试题卷上无效.3. 请考生将姓名、准考证号填写在答题纸的对应位置上.并认真核对答题纸上粘贴的条形码的“姓名、准考证号”与考生本人姓名、准考证号是否一致.4. 作图时,可先使用2B 铅笔,确定后必须使用0.5毫米及以上的黑色签字笔涂黑. 温馨提示:请仔细审题,细心答题,相信你一定会有出色的表现! 参考公式:二次函数y =ax 2+bx +c 图象的顶点坐标是)44,2(2ab ac ab --.试 卷 Ⅰ说明:本卷共有1大题,10小题,每小题4分,共40分.请用2B 铅笔在“答题纸”上将你认为正确的选项对应的小方框涂黑、涂满.一、选择题(请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分) 1. 计算-2+3的结果是A .1B .-1C .-5D .-62.据统计,2007年义乌中国小商品城市场全年成交额约为348.4亿元,连续第17次蝉联全国批发市场榜首.近似数348.4亿元的有效数字的个数是A.3个 B. 4个 C.5个 D .6个3.国家实行一系列惠农政策后,农村居民收入大幅度增加.下表是2003年至2007年我市农村居民年人均收入情况(单位:元),则这几年我市农村居民年人均收入的中位数是A .6969元B .7735元C .8810元D .10255元 4.下列四个几何体中,主视图、左视图、俯视图都是圆的几何体是 A.正方体 B.圆锥 C.球D .圆柱5.不等式组312840x x ->⎧⎨-⎩,≤的解集在数轴上表示为6.已知A ∠、B ∠互余,A ∠比B ∠大30 .设A ∠、B ∠的度数分别为x、y ,下列方程组中符合题意的是 A .180,30x y x y +=⎧⎨=-⎩ B . 180,30x y x y +=⎧⎨=+⎩ C .90,30x y x y +=⎧⎨=+⎩ D .90,30x y x y +=⎧⎨=-⎩1 02 A . 1 0 2 B . 1 0 2 C . 1 0 2 D .7.大课间活动在我市各校蓬勃开展.某班大课间活动抽查了20名学生每分钟跳绳次数,获得如下数据(单位:次):50,63,77,83,87,88,89,91,93,100,102,111,117,121, 130, 133,146, 158, 177,188.则跳绳次数在90~110这一组的频率是 A .0.1 B .0.2 C .0.3 D .0.7 8.下列命题中,真命题是A .两条对角线垂直的四边形是菱形B .对角线垂直且相等的四边形是正方形C .两条对角线相等的四边形是矩形D .两条对角线相等的平行四边形是矩形 9.圆锥的底面半径为3cm ,母线为9cm ,则圆锥的侧面积为 A .6π2cm B .9π2cm C .12 π2cm D .27π2cm10.已知:二次函数()220y ax bx a b a =+++≠的图像为下列图像之一,则a 的值为A .-1B . 1C . -3D . -4试 卷 Ⅱ说明:本卷共有2大题,14小题,共110分. 答题请用0.5毫米及以上的黑色签字笔书写在“答题纸”的对应位置上.二、填空题(本题有6小题,每小题5分,共30分) 11.因式分解:24xy x -= ▲ .12.近年来,义乌市对外贸易快速增长.右图是根据我市2004年至2007年出口总额绘制的条形统计图,观察统计图可 得在这期间我市年出口总额的极差是 ▲ 亿美元. 13.函数1y x a=-,当2x =时没有意义,则a 的值为 ▲ .14.如图,若//A B C D ,E F 与A B C D 、分别相交于点E F 、,E P 与EF D ∠的平分线相交于点P ,且60EFD ∠=,EP FP BEP ⊥∠=,则 ▲ 度.15.李老师给出了一个函数,甲、乙、丙三位学生分别指出这个函数的一个特征.甲:它的图像经过第一象限;乙:它的图像也经过第二象限;丙:在第一象限内函数值y 随x 增大而增大.在你 学过的函数中,写出一个满足上述特征的函数解析式 ▲ . 16.如图,直角梯形纸片ABCD ,AD ⊥AB ,AB =8,AD =CD =4,点E 、F 分别在线段AB 、AD 上,将△AEF 沿EF 翻折,点A 的落点记为P .(1)当AE =5,P 落在线段CD 上时,PD = ▲ ;(2)当P 落在直角梯形ABCD 内部时,PD 的最小值等于 ▲ .三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12(12题图)D分,第24题14分,共80分) 17.(1)计算:6045-+;(2)解方程:1321xx =+18. 如图,小明用一块有一个锐角为30 的直角三角板测量树高,已知小明离树的距离为4米,DE 为1.68米,那么这棵树大约有多高?(精确到0.1米)19. “一方有难,八方支援”.四川汶川大地震牵动着全国人民的心,我市某医院准备从甲、乙、丙三位医生和A 、B 两名护士中选取一位医生和一名护士支援汶川. (1)若随机选一位医生和一名护士,用树状图(或列表法)表示所有可能出现的结果; (2)求恰好选中医生甲和护士A 的概率.20.已知:如图△ABC 内接于⊙O ,O H AC ⊥于H ,过A 点的切线与OC 的延长线交于点D ,30B ∠=0,O H = (1)A O C ∠的度数;(2)劣弧 A C 的长(结果保留π);(3)线段AD 的长(结果保留根号).21.义乌市是一个“车轮上的城市”,截止2007年底全市汽车拥有量为114508辆.己知2005年底全市汽车拥有量为72983辆.请解答如下问题:(1)2005年底至2007年底我市汽车拥有量的年平均增长率?(结果精确到0.1%)(2)为保护城市环境,要求我市到2009年底汽车拥有量不超过158000辆,据估计从2007年底起,此后每年报废的汽车数量是上年底汽车拥有量的4%,那么每年新增汽车数量最多不超过多少辆?(假定每年新增汽车数量相同,结果精确到个位) 22.已知:等腰三角形OAB 在直角坐标系中的位置如图,点A的坐标为(3-),点B 的坐标为(-6,0).(1)若三角形OAB 关于y 轴的轴对称图形是三角形O A B '',请直接写出A 、B 的对称点A 'B '、的坐标; (2)若将三角形O A B 沿x 轴向右平移a 个单位,此时点A恰好落在反比例函数y x=的图像上,求a 的值;(3)若三角形O A B 绕点O 按逆时针方向旋转α度(090α<<).①当α=30时点B 恰好落在反比例函数k y x=的图像上,求k 的值.②问点A 、B 能否同时落在①中的反比例函数的图像上,若能,求出α的值;若不能,请说明理由.23.如图1,四边形ABCD 是正方形,G 是CD 边上的一个动点(点G 与C 、D 不重合),以CG 为一边在正方形ABCD 外作正方形CEFG ,连结BG ,DE .我们探究下列图中线段BG 、线段DE 的长度关系及所在直线的位置关系:(1)①猜想如图1中线段BG 、线段DE 的长度关系及所在直线的位置关系;②将图1中的正方形CEFG 绕着点C 按顺时针(或逆时针)方向旋转任意角度α,得到如图2、如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断.(2)将原题中正方形改为矩形(如图4—6),且AB=a,BC=b,CE=ka,CG=kb (a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图5为例简要说明理由.(3)在第(2)题图5中,连结D G、B E,且a=3,b=2,k=12,求22BE DG+的值.24.如图1所示,直角梯形OABC的顶点A、C分别在y轴正半轴与x轴负半轴上.过点B、C作直线l.将直线l平移,平移后的直线l与x轴交于点D,与y轴交于点E.(1)将直线l向右平移,设平移距离CD为t(t≥0),直角梯形OABC被直线l扫过的面积(图中阴影部份)为s,s关于t的函数图象如图2所示,OM为线段,MN为抛物线的一部分,NQ为射线,N点横坐标为4.①求梯形上底AB的长及直角梯形OABC的面积;②当42<<t时,求S关于t的函数解析式;(2)在第(1)题的条件下,当直线l向左或向右平移时(包括l与直线BC重合),在直.线.AB..上是否存在点P,使PDE∆为等腰直角三角形?若存在,请直接写出所有满足条件的点P的坐标;若不存在,请说明理由.浙江省2008年初中毕业生学业考试数学参考答案和评分细则一、选择题(本题有10小题,每小题4分,共40分)二、填空题(本题有6小题,每小题5分,共30分)11.(2)(2)x y y +- 12. 8.04 13. 214.060 15. 形如2(0,0),(0,0)y kx b k b y ax bx c a b =+>>=++>> 16.(1)2 (2)8三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分) 17. 解:6045-+=222-+(每项算对各给1分)3分=2.5……………………………………………………………………………… 1分(2.)321x x =+ ………………………………………………………………………1分1x = ……………………………………………………………………………2分 经检验:1x =是原方程的解 …………………………………………………1分18. 解: 0tan 30=4C D …………………………………………………………3分C D=…………2分 C E1.68 4.0+≈ ……2分∴ 这棵树的高大约有4.0米高. ……………………………………………………1分19. 解:(1)用列表法或树状图表示所有可能结果如下:………………………………4分 (1)列表法: (2)树状图:(2)P (恰好选中医生甲和护士A )=16………………………………………3分∴恰好选中医生甲和护士A 的概率是16……………………………………1分D20.解:(1)060AOC ∠= ………………………………2分(2)在三角形AOC 中,O H A C ⊥ ∴ 01030O H A O C O S == ……………………1分 ∴ A C 的长= 6010101801803n r πππ⨯⨯==……1分∴ A C 的长是103π………………………………………………1分(3) ∵AD 是切线 ∴AD O A ⊥ …………………………………………1分∵060AOC ∠=∴AD =…………………………………………………1分 ∴线段AD的长是……………………………………………………1分21.解:(1)设年平均增长率为x ,根据题意得:272893(1)114508x +=………3分 解得1x ≈0.2526,2x ≈ 2.2526- (不合题意,舍去) …………………………1分 ∴所求的年平均增长率约为25.3%. ……………………………………………1分(2)设每年新增汽车为x 辆,根据题意得:[]114508(14%)(14%)158000x x -+-+≤……………………………………3分解得26770.12x ≤ ………………………………………………………1分∴每年新增汽车最多不超过26770辆 …………………………………1分 22.解:(1)3),(6,0)A B '' ………(每个点坐标写对各得2分)…………4分(2) ∵3y =∴3x=…1分∴x =…………………1分∴a =…………………2分(3) ① ∵030α=∴相应B 点的坐标是(3)--………………………………1分 ∴.k =…………………………………………………1分 ② 能 ………………………………………………………1分 当060α=时,相应A ,B点的坐标分别是(3),(3,----,经经验:它们都在y x=的图像上∴060α= ……………………………………………………………1分23.解:(1)①,BG DE BG DE =⊥ ……………………………………………………2分②,BG DE BG DE =⊥仍然成立 …………………………………………1分 在图(2)中证明如下∵四边形A B C D 、四边形A B C D 都是正方形 ∴ B C C D =,C G C E =, 090BCD ECG ∠=∠=∴B C G D C E ∠=∠……………………………………………………1分∴B C G D C E ∆≅∆ (SAS )………………………………………………1分∴BG D E = C B G C D E∠=∠ 又∵B H C D H O ∠=∠ 090CBG BHC ∠+∠= ∴090CDE DHO ∠+∠= ∴090DOH ∠=∴B G D E ⊥ ………………………………………………1分(2)B G D E ⊥成立,BG D E =不成立 ……………………………………2分简要说明如下∵四边形A B C D 、四边形C E F G 都是矩形,且A B a =,B C b =,C G kb =,C E ka =(a b ≠,0k >) ∴B C C G b D CC Ea==,090BCD ECG ∠=∠=∴B C G D C E ∠=∠∴B C G D C E ∆∆ ………………………………………………1分∴C B G C D E ∠=∠又∵B H C D H O ∠=∠ 090CBG BHC ∠+∠=∴090CDE DHO ∠+∠= ∴090DOH ∠=∴B G D E ⊥ …………………………………………………………1分(3)∵B G D E ⊥ ∴22222222BE DG OB OE OG OD BD GE +=+++=+又∵3a =,2b =,k =12∴ 222222365231()24B D G E +=+++= ………………………………………1分∴22654BE D G += ………………………………………………1分24.解:(1)①2A B = ………………………………………………………………2分842O A ==,4O C =,S梯形OABC=12 ……………………………………2分②当42<<t 时,直角梯形OABC 被直线l 扫过的面积=直角梯形OABC 面积-直角三角开DOE 面积2112(4)2(4)842S t tt t =--⨯-=-+-………………………………4分(2) 存在 …………………………………………………………………………1分123458(12,4),(4,4),(,4),(4,4),(8,4)3P P P P P ---…(每个点对各得1分)……5分对于第(2)题我们提供如下详细解答(评分无此要求).下面提供参考解法二: ① 以点D 为直角顶点,作1PP x ⊥轴Rt ODE ∆ 在中,2O E O D =∴,设2O D b O E b ==,.1Rt O D E Rt P PD ∆≈∆,(图示阴影)b ∴=,28b =,在上面二图中分别可得到P 点的生标为P (-12,4)、P (-4,4)E 点在0点与A 点之间不可能; ② 以点E 为直角顶点同理在②二图中分别可得P 点的生标为P (-83,4)、P (8,4)E 点在0点下方不可能.③ 以点P 为直角顶点同理在③二图中分别可得P 点的生标为P (-4,4)(与①情形二重合舍去)、P (4,4), E 点在A 点下方不可能.综上可得P 点的生标共5个解,分别为P (-12,4)、P (-4,4)、P (-83,4)、P (8,4)、P (4,4).下面提供参考解法二:以直角进行分类进行讨论(分三类): 第一类如上解法⑴中所示图22P DE y x b ∠=+为直角:设直线:,D 此时(-b,o),E(O,2b) 的中点坐标为b (-,b)2,直线D E 的中垂线方程:1()22b y b x -=-+,令4y =得3(8,4)2b P -DE ==得2332640b b -+=解得 121883b b P P ==∴=3b ,将之代入(-8,4)(4,4)、22(4,4)P -; 第二类如上解法②中所示图22E DE y x b ∠=+为直角:设直线:,D 此时(-b,o),E(O,2b),直线P E 的方程:122y x b =-+,令4y =得(48,4)P b -.由已知可得P E D E =即=22(28)b b =-解之得 ,123443b b P P ==∴=,将之代入(4b-8,4)(8,4)、48(,4)3P -第三类如上解法③中所示图22D DE y x b ∠=+为直角:设直线:,D 此时(-b,o),E(O,2b) ,直线P D 的方程:1()2y x b =-+,令4y =得(8,4)P b --.由已知可得PD D E =即=12544b b PP ==-∴=,将之代入(-b-8,4)(-12,4)、 6(4,4)P -(6(4,4)P -与2P 重合舍去). 综上可得P 点的生标共5个解,分别为P (-12,4)、P (-4,4)、P (-83,4)、P (8,4)、P (4,4).事实上,我们可以得到更一般的结论: 如果得出A B a O C b ==、、O A h =、设b a k h-=,则P 点的情形如下直角分类情形 1k ≠1k =P ∠为直角1(,)P h h1(,)P h h -2(,)P h h - E ∠为直角3(,)1hk P h k -+2(,)2h P h -4(,)1hk P h k -D ∠为直角5((1),)P h k h -+ 3(0,)P h 6((1),)P h k h --4(2,)P h h -。

【中考12年】浙江省宁波市2002-中考数学试题分类解析 专题11 圆

【中考12年】浙江省宁波市2002-中考数学试题分类解析 专题11 圆

宁波市2002-2013年中考数学试题分类解析专题11 圆一、选择题1. (2003年浙江宁波3分)如图,PA切⊙O于点A,割线PBC交⊙O于点B、C,已知PB=BC=3,则PA的长是【】2. (2004年浙江宁波3分)如图,PA切⊙O于A,割线PBC经过圆心O,交⊙O于B、C两点,若PA=4,PB=2,则tan∠P的值为【】【答案】B。

【考点】切线的性质,切割线定理,锐角三角函数定义。

【分析】∵PA,PB分别是⊙O的切线和割线,∴PA2=PB•PC。

∵PA=4,PB=2,∴PC=8,BC=6。

∴OB=3。

连接OA,则∠OAP=90°。

∴OA3tan PPA4∠==。

故选B。

3. (2005年浙江宁波3分)如图,圆和圆的位置关系是【】4. (2005年浙江宁波3分)边长分别为3,4,5的三角形的内切圆半径与外接圆半径的比为【】A.1∶5B.2∶5C.3∶5D.4∶55. (2006年浙江宁波大纲卷3分)已知∠BAC=45°,一动点O在射线AB上运动(点O与点A不重合),设OA=x,如果半径为1的⊙O与射线AC有公共点,那么x的取值范围是【】6. (2007年浙江宁波3分)已知两圆的半径分别为3和5,圆心距为4,则这两圆的位置关系是【】(A)内切 (B)外切 (C)相交 (D)相离7. (2008年浙江宁波3分)已知半径分别为5cm和8cm的两圆相交,则它们的圆心距可能是【】A.1cm B.3cm C.10cm D.15cm8. (2010年浙江宁波3分)两圆的半径分别为3和5,圆心距为7,则两圆的位置关系是【】A、内切B、相交C、外切D、外离9. (2011年浙江宁波3分)如图,⊙O1 的半径为1,正方形ABCD的边长为6,点O2为正方形ABCD 的中心,O1O2垂直AB于P点,O1O2 =8.若将⊙O1绕点P按顺时针方向旋转360°,在旋转过程中,⊙O1 与正方形ABCD的边只有一个公共点的情况一共出现【】【答案】B。

2008年浙江省宁波市中考数学试卷

2008年浙江省宁波市中考数学试卷

2008年浙江省宁波市中考数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)比大的实数是()A.﹣5B.0C.3D.2.(3分)下列运算正确的是()A.x3+x3=x6B.2x•3x2=6x3C.(2x)3=6x3D.(2x2+x)÷x=2x3.(3分)下列事件是不确定事件的是()A.宁波今年国庆节当天的最高气温是35℃B.在一个装着白球和黑球的袋中摸球,摸出红球C.抛掷一石头,石头终将落地D.有一名运动员奔跑的速度是20米/秒4.(3分)如图,已知∠1=∠2=∠3=55°,则∠4的度数是()A.110°B.115°C.120°D.125°5.(3分)2008年5月12日,四川汶川发生了特大地震.震后,国内外纷纷向灾区捐物捐款,截至5月26日12时,捐款达308.76亿元.把它用科学记数法表示为()A.30.876×109元B.3.0876×1010元C.0.30876×1011元D.3.0876×1011元6.(3分)如图,正方形ABOC的边长为2,反比例函数y过点A,则k的值是()A.﹣4B.4C.﹣2D.27.(3分)在平面直角坐标系中,点(﹣3,2)关于原点对称的点是()A.(2,﹣3)B.(﹣3,﹣2)C.(3,2)D.(3,﹣2)8.(3分)已知圆锥的母线长为5cm,底面半径为3cm,则圆锥的表面积为()A.15πcm2B.24πcm2C.30πcm2D.39πcm29.(3分)已知半径分别为5cm和8cm的两圆相交,则它们的圆心距可能是()A.1cm B.3cm C.10cm D.15cm10.(3分)由一些完全相同的小立方块搭成的几何体的三视图如图所示,那么搭成这个几何体所用的小立方块的个数是()A.8B.7C.6D.511.(3分)甲、乙、丙三个同学排成一排拍照,则甲排在中间的概率是()A.B.C.D.12.(3分)如图,某电信公司提供了A,B两种方案的移动通讯费用y(元)与通话时间x (元)之间的关系,则以下说法错误的是()A.若通话时间少于120分,则A方案比B方案便宜20元B.若通话时间超过200分,则B方案比A方案便宜12元C.若通讯费用为60元,则B方案比A方案的通话时间多D.若两种方案通讯费用相差10元,则通话时间是145分或185分二、填空题(共6小题,每小题3分,满分18分)13.(3分)计算:3﹣2﹣(﹣3)0=.14.(3分)若实数x,y满足,则xy的值是.15.(3分)分解因式:2x2﹣12x+18=.16.(3分)课外活动小组测量学校旗杆的高度.如图,当太阳光线与地面成35°时,测得旗杆AB在地面上的投影BC长为23.5米,则旗杆AB的高度约是米(精确到0.1米).17.(3分)宁波市2008年初中毕业生学业考试各科的满分值如下表.若把表中各科满分值按比例绘成扇形统计图,则表示数学学科的扇形的圆心角应是度(结果保留3个有效数字).18.(3分)如图,菱形OABC中,∠A=120°,OA=1,将菱形OABC绕点O按顺时针方向旋转90°,则图中由弧BB′,B′A′,弧A′C,CB围成的阴影部分的面积是.(结果保留根号)三、解答题(共8小题,满分66分)19.(6分)化简:20.(6分)解不等式组:①<.21.(6分)(1)如图1,△ABC中,∠C=90°,请用直尺和圆规作一条直线,把△ABC分割成两个等腰三角形(不写作法,但须保留作图痕迹).(2)已知内角度数的两个三角形如图2,图3所示.请你判断,能否分别画一条直线把它们分割成两个等腰三角形?若能,请写出分割成的两个等腰三角形顶角的度数.22.(9分)2008年8月8日,第29届奥运会将在北京举行.现在,奥运会门票已在世界各地开始销售,下图是奥运会部分项目的门票价格:(1)从以上统计图可知,同一项目门票价格相差很大,分别求出篮球项目门票价格的极差和跳水项目门票价格的极差;(2)求出这6个奥运会项目门票最高价的平均数,中位数和众数;(3)田径比赛将在国家体育场“鸟巢”进行,“鸟巢”内共有观众座位9.1万个.从安全角度考虑,正式比赛时将留出0.6万个座位.某场田径赛,组委会决定向奥运赞助商和相关部门赠送1.5万张门票,其余门票全部售出.若售出的门票中最高价门票占10%至15%,其他门票的平均价格是300元,你估计这场比赛售出的门票收入约是多少万元?请说明理由.23.(8分)如图,平行四边形ABCD中,AB=4,点D的坐标是(0,8),以点C为顶点的抛物线y=ax2+bx+c经过x轴上的点A,B.(1)求点A,B,C的坐标;(2)若抛物线向上平移后恰好经过点D,求平移后抛物线的解析式.24.(9分)如图,点C是半圆O的半径OB上的动点,作PC⊥AB于C.点D是半圆上位于PC左侧的点,连接BD交线段PC于E,且PD=PE.(1)求证:PD是⊙O的切线;(2)若⊙O的半径为,PC,设OC=x,PD2=y.①求y关于x的函数关系式;当时,求tan B的值.25.(10分)2008年5月1日,目前世界上最长的跨海大桥﹣﹣杭州湾跨海大桥通车了.通车后,苏南A地到宁波港的路程比原来缩短了120千米.已知运输车速度不变时,行驶时间将从原来的3时20分缩短到2时.(1)求A地经杭州湾跨海大桥到宁波港的路程.(2)若货物运输费用包括运输成本和时间成本,已知某车货物从A地到宁波港的运输成本是每千米1.8元,时间成本是每时28元,那么该车货物从A地经杭州湾跨海大桥到宁波港的运输费用是多少元?(3)A地准备开辟宁波方向的外运路线,即货物从A地经杭州湾跨海大桥到宁波港,再从宁波港运到B地.若有一批货物(不超过10车)从A地按外运路线运到B地的运费需8320元,其中从A地经杭州湾跨海大桥到宁波港的每车运输费用与(2)中相同,从宁波港到B地的海上运费对一批不超过10车的货物计费方式是:一车800元,当货物每增加1车时,每车的海上运费就减少20元,问这批货物有几车?26.(12分)如图,把一张标准纸一次又一次对开,得到“2开”纸,“4开”纸,“8开”纸,“16开”纸….已知标准纸的短边长为a.(1)如图2,把这张标准纸对开得到的“16开”张纸按如下步骤折叠:第一步:将矩形的短边AB与长边AD对齐折叠,点B落在AD上的点B'处,铺平后得折痕AE;第二步:将长边AD与折痕AE对齐折叠,点D正好与点E重合,铺平后得折痕AF.则AD:AB的值是,AD,AB的长分别是,;(2)“2开”纸,“4开”纸,“8开”纸的长与宽之比是否都相等?若相等,直接写出这个比值;若不相等,请分别计算它们的比值;(3)如图3,由8个大小相等的小正方形构成“L”型图案,它的四个顶点E,F,G,H 分别在“16开”纸的边AB,BC,CD,DA上,求DG的长;(4)已知梯形MNPQ中,MN∥PQ,∠M=90°,MN=MQ=2PQ,且四个顶点M,N,P,Q都在“4开”纸的边上,请直接写出2个符合条件且大小不同的直角梯形的面积.2008年浙江省宁波市中考数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.(3分)比大的实数是()A.﹣5B.0C.3D.【解答】解:四个选项中,因为是正数,所以A,B首先可以排除;D中,同是根号里的数,大的则大,所以D也不是;故选:C.2.(3分)下列运算正确的是()A.x3+x3=x6B.2x•3x2=6x3C.(2x)3=6x3D.(2x2+x)÷x=2x【解答】解:A、应为x3+x3=2x3,故本选项错误;B、2x•3x2=6x3,正确;C、应为(2x)3=23x3=8x3,故本选项错误;D、应为(2x2+x)÷x=2x+1,故本选项错误.故选:B.3.(3分)下列事件是不确定事件的是()A.宁波今年国庆节当天的最高气温是35℃B.在一个装着白球和黑球的袋中摸球,摸出红球C.抛掷一石头,石头终将落地D.有一名运动员奔跑的速度是20米/秒【解答】解:A、宁波今年国庆节还没有过,当天的最高气温是35℃还不能确定,属于不确定事件;B、在一个装着白球和黑球的袋中摸球,不可能摸出红球,是确定事件;C、抛掷﹣石头,石头终将落地,这也是确定事件;D、运动员奔跑的速度是20米/秒,则百米速度为5秒,这是不可能的,超过了人的极限.是不可能事件.故选:A.4.(3分)如图,已知∠1=∠2=∠3=55°,则∠4的度数是()A.110°B.115°C.120°D.125°【解答】解:∵∠1=∠2,∠5=∠1(对顶角相等),∴∠2=∠5,∴a∥b(同位角相等,得两直线平行);∴∠3=∠6=55°(两直线平行,内错角相等),故∠4=180°﹣55°=125°(邻补角互补).故选:D.5.(3分)2008年5月12日,四川汶川发生了特大地震.震后,国内外纷纷向灾区捐物捐款,截至5月26日12时,捐款达308.76亿元.把它用科学记数法表示为()A.30.876×109元B.3.0876×1010元C.0.30876×1011元D.3.0876×1011元【解答】解:先把308.76亿元转化成308.76×108元,然后再用科学记数法记数记为3.0876×1010元.故选:B.6.(3分)如图,正方形ABOC的边长为2,反比例函数y过点A,则k的值是()A.﹣4B.4C.﹣2D.2【解答】解:因为图象在第二象限,所以k<0,根据反比例函数系数k的几何意义可知|k|=2×2=4,所以k=﹣4.故选:A.7.(3分)在平面直角坐标系中,点(﹣3,2)关于原点对称的点是()A.(2,﹣3)B.(﹣3,﹣2)C.(3,2)D.(3,﹣2)【解答】解:根据两个点关于原点对称,则横、纵坐标都是原数的相反数,得点(﹣3,2)关于原点对称的点是(3,﹣2).故选:D.8.(3分)已知圆锥的母线长为5cm,底面半径为3cm,则圆锥的表面积为()A.15πcm2B.24πcm2C.30πcm2D.39πcm2【解答】解:底面半径为3cm,则底面周长=6πcm,圆锥的侧面面积6π×5=15πcm2,底面面积=9πcm2,∴圆锥的表面积=15π+9π=24πcm2.故选B.9.(3分)已知半径分别为5cm和8cm的两圆相交,则它们的圆心距可能是()A.1cm B.3cm C.10cm D.15cm【解答】解:∵8﹣5=3,8+5=13,∴相交时,3<圆心距<13,∴只有C中10cm满足.故选:C.10.(3分)由一些完全相同的小立方块搭成的几何体的三视图如图所示,那么搭成这个几何体所用的小立方块的个数是()A.8B.7C.6D.5【解答】解:综合主视图,俯视图,左视图,底层有6个正方体,第二层有两个正方体,所以搭成这个几何体所用的小立方块的个数是8,故选A.11.(3分)甲、乙、丙三个同学排成一排拍照,则甲排在中间的概率是()A.B.C.D.【解答】解:甲、乙、丙三个同学排成一排拍照有以下可能:甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,全部6种情况,只有2种甲在中间,所以甲排在中间的概率是,也就是.故选:C.12.(3分)如图,某电信公司提供了A,B两种方案的移动通讯费用y(元)与通话时间x (元)之间的关系,则以下说法错误的是()A.若通话时间少于120分,则A方案比B方案便宜20元B.若通话时间超过200分,则B方案比A方案便宜12元C.若通讯费用为60元,则B方案比A方案的通话时间多D.若两种方案通讯费用相差10元,则通话时间是145分或185分【解答】解:A方案的函数解析式为:y A <>;B方案的函数解析式为:y B <>;当B方案为50元,A方案是40元或者60元时,两种方案通讯费用相差10元,将y A=40或60代入,得x=145分或195分,故D错误;观察函数图象可知A、B、C正确.故选:D.二、填空题(共6小题,每小题3分,满分18分)13.(3分)计算:3﹣2﹣(﹣3)0=.【解答】解:原式114.(3分)若实数x,y满足,则xy的值是﹣2.【解答】解:∵,∴,解得,∴xy=﹣2.15.(3分)分解因式:2x2﹣12x+18=2(x﹣3)2.【解答】解:2x2﹣12x+18,=2(x2﹣6x+9),=2(x﹣3)2.故答案为:2(x﹣3)2.16.(3分)课外活动小组测量学校旗杆的高度.如图,当太阳光线与地面成35°时,测得旗杆AB在地面上的投影BC长为23.5米,则旗杆AB的高度约是16.5米(精确到0.1米).【解答】解:tan C,∴AB=tan C×BC=tan35°×23.5≈16.5(米).17.(3分)宁波市2008年初中毕业生学业考试各科的满分值如下表.若把表中各科满分值按比例绘成扇形统计图,则表示数学学科的扇形的圆心角应是70.8度(结果保留3个有效数字).【解答】解:表示数学学科的扇形的圆心角360°≈70.8度.答案:70.8°18.(3分)如图,菱形OABC中,∠A=120°,OA=1,将菱形OABC绕点O按顺时针方向旋转90°,则图中由弧BB′,B′A′,弧A′C,CB围成的阴影部分的面积是.(结果保留根号)【解答】解:连接OB、OB′菱形OABC中,∠A=120°,OA=1,∴∠AOC=60°,∠COA′=30°,∴S△CBO=S△C′B′O AO•2CO•sin60°,S扇形OCA′,S扇形OBB′;∴阴影部分的面积(2).三、解答题(共8小题,满分66分)19.(6分)化简:【解答】解:原式(2分)(4分).(6分)20.(6分)解不等式组:①<.【解答】解:解不等式①,得x≥﹣1,(2分)解不等式,得x<3,(4分)∴原不等式组的解是﹣1≤x<3.(6分)21.(6分)(1)如图1,△ABC中,∠C=90°,请用直尺和圆规作一条直线,把△ABC分割成两个等腰三角形(不写作法,但须保留作图痕迹).(2)已知内角度数的两个三角形如图2,图3所示.请你判断,能否分别画一条直线把它们分割成两个等腰三角形?若能,请写出分割成的两个等腰三角形顶角的度数.【解答】解:(1)如图,直线CE即为所求.(2)图2能画一条直线分割成两个等腰三角形,分割成的两个等腰三角形的顶角分别是132°和84度.图3不能分割成两个等腰三角形.22.(9分)2008年8月8日,第29届奥运会将在北京举行.现在,奥运会门票已在世界各地开始销售,下图是奥运会部分项目的门票价格:(1)从以上统计图可知,同一项目门票价格相差很大,分别求出篮球项目门票价格的极差和跳水项目门票价格的极差;(2)求出这6个奥运会项目门票最高价的平均数,中位数和众数;(3)田径比赛将在国家体育场“鸟巢”进行,“鸟巢”内共有观众座位9.1万个.从安全角度考虑,正式比赛时将留出0.6万个座位.某场田径赛,组委会决定向奥运赞助商和相关部门赠送1.5万张门票,其余门票全部售出.若售出的门票中最高价门票占10%至15%,其他门票的平均价格是300元,你估计这场比赛售出的门票收入约是多少万元?请说明理由.【解答】解:(1)篮球项目门票价格的极差是1000﹣50=950(元),跳水项目门票价格的极差是500﹣60=440(元);(2)这6个奥运会项目门票最高价的平均数是(1000+500+800×4)=783(元),中位数为800(元),众数为800(元).(3)(答案不唯一,合理即正确,如2520万元),理由如下:售出的门票共9.1﹣0.6﹣1.5=7(万张),这场比赛售出的门票最低收入为:7×10%×800+(7﹣7×10%)×300=2450(万元),这场比赛售出的门票最高收入为:7×15%×800+(7﹣7×15%)×300=2625(万元).故这场比赛售出的门票收入约2537(万元),答:这场比赛售出的门票收入约2537万元.23.(8分)如图,平行四边形ABCD中,AB=4,点D的坐标是(0,8),以点C为顶点的抛物线y=ax2+bx+c经过x轴上的点A,B.(1)求点A,B,C的坐标;(2)若抛物线向上平移后恰好经过点D,求平移后抛物线的解析式.【解答】解:(1)在平行四边形ABCD中,CD∥AB且CD=AB=4,点D的坐标是(0,8),∴点C的坐标为(4,8)(1分)设抛物线的对称轴与x轴相交于点H,则AH=BH=2,(2分)∴点A,B的坐标为A(2,0),B(6,0),C(4,8).(2)由抛物线y=ax2+bx+c的顶点为C(4,8),可设抛物线的解析式为y=a(x﹣4)2+8,(5分)把A(2,0)代入上式,解得a=﹣2.(6分)设平移后抛物线的解析式为y=﹣2(x﹣4)2+8+k,把(0,8)代入上式得k=32,(7分)∴平移后抛物线的解析式为y=﹣2(x﹣4)2+40,(8分)即y=﹣2x2+16x+8.24.(9分)如图,点C是半圆O的半径OB上的动点,作PC⊥AB于C.点D是半圆上位于PC左侧的点,连接BD交线段PC于E,且PD=PE.(1)求证:PD是⊙O的切线;(2)若⊙O的半径为,PC,设OC=x,PD2=y.①求y关于x的函数关系式;当时,求tan B的值.【解答】(1)证明:连接OD.∵OB=OD,∴∠OBD=∠ODB.∵PD=PE,∴∠PDE=∠PED.∠PDO=∠PDE+∠ODE=∠PED+∠OBD=∠BEC+∠OBD=90°,∴PD⊥OD.∴PD是⊙O的切线.(2)解:①连接OP.在Rt△POC中,OP2=OC2+PC2=x2+192.在Rt△PDO中,PD2=OP2﹣OD2=x2+144.∴y=x2+144(0≤x).(x取值范围不写不扣分)当x时,y=147,∴PD,(8分)∴EC,∵CB,∴在Rt△ECB中,tan B.25.(10分)2008年5月1日,目前世界上最长的跨海大桥﹣﹣杭州湾跨海大桥通车了.通车后,苏南A地到宁波港的路程比原来缩短了120千米.已知运输车速度不变时,行驶时间将从原来的3时20分缩短到2时.(1)求A地经杭州湾跨海大桥到宁波港的路程.(2)若货物运输费用包括运输成本和时间成本,已知某车货物从A地到宁波港的运输成本是每千米1.8元,时间成本是每时28元,那么该车货物从A地经杭州湾跨海大桥到宁波港的运输费用是多少元?(3)A地准备开辟宁波方向的外运路线,即货物从A地经杭州湾跨海大桥到宁波港,再从宁波港运到B地.若有一批货物(不超过10车)从A地按外运路线运到B地的运费需8320元,其中从A地经杭州湾跨海大桥到宁波港的每车运输费用与(2)中相同,从宁波港到B地的海上运费对一批不超过10车的货物计费方式是:一车800元,当货物每增加1车时,每车的海上运费就减少20元,问这批货物有几车?【解答】解:(1)设A地经杭州湾跨海大桥到宁波港的路程为x千米,由题意得,解得x=180.∴A地经杭州湾跨海大桥到宁波港的路程为180千米.(2)1.8×180+28×2=380(元),∴该车货物从A地经杭州湾跨海大桥到宁波港的运输费用为380元.(3)设这批货物有y车,由题意得y[800﹣20×(y﹣1)]+380y=8320,整理得y2﹣60y+416=0,解得y1=8,y2=52(不合题意,舍去),∴这批货物有8车.26.(12分)如图,把一张标准纸一次又一次对开,得到“2开”纸,“4开”纸,“8开”纸,“16开”纸….已知标准纸的短边长为a.(1)如图2,把这张标准纸对开得到的“16开”张纸按如下步骤折叠:第一步:将矩形的短边AB与长边AD对齐折叠,点B落在AD上的点B'处,铺平后得折痕AE;第二步:将长边AD与折痕AE对齐折叠,点D正好与点E重合,铺平后得折痕AF.则AD:AB的值是,AD,AB的长分别是a,;(2)“2开”纸,“4开”纸,“8开”纸的长与宽之比是否都相等?若相等,直接写出这个比值;若不相等,请分别计算它们的比值;(3)如图3,由8个大小相等的小正方形构成“L”型图案,它的四个顶点E,F,G,H 分别在“16开”纸的边AB,BC,CD,DA上,求DG的长;(4)已知梯形MNPQ中,MN∥PQ,∠M=90°,MN=MQ=2PQ,且四个顶点M,N,P,Q都在“4开”纸的边上,请直接写出2个符合条件且大小不同的直角梯形的面积.【解答】解:(1),,;(2)相等,比值为;(3)设DG=x在矩形ABCD中,∠B=∠C=∠D=90°∵∠HGF=90°∴∠DHG=∠CGF=90°﹣∠DGH∴△HDG∽△GCF∴∴CF=2DG=2x同理∠BEF=∠CFG∵EF=FG∴△FBE≌△GCF∴BF=CG a﹣x∵CF+BF=BC∴解得,即;(4)a2,a2.。

浙江省宁波市江东区08-09学年度第二学期初三数学期始考试卷及答案

浙江省宁波市江东区08-09学年度第二学期初三数学期始考试卷及答案

2008学年第二学期初三数学期始考试卷一、选择题:本大题共12小题,每小题3分,共36分,1. 已知⊙O 的半径为r ,圆心O 到直线l 的距离为d ,若直线l 与⊙O 有唯一的一个交点,则下列结论正确的是( ) A.d ≤ r B.d ≥ r C.d =r D.d <r2. 下列各说法中:① 圆的每一条直径都是它的对称轴; ② 长度相等的两条弧是等弧 ;③ 相等的弦所对的弧也相等; ④ 同弧所对的圆周角相等; ⑤ 90°的圆周角所对的弦是直径; ⑥ 任何一个三角形都有唯一的外接圆;其中正确的有() A .3个 B .4个 C .5个 D .6个 3.若如图所示的两个四边形相似,则α∠的度数是( )A .60B .87C .75D .120 4.如图,AB 是⊙O 的直径,AB =4,AC 是弦, AC =23,∠AOC = ( ) A .150° B .140° C .130° D .120°5.如图1是一个小正方体的侧面展开图,小正方体从如图2所示的位置 依次翻到第1格、第2格、第3格,这时小正方体朝上面的字是( )A .和B .谐C .社D .会图1 ;图2 6.将点(53)P ,向下平移1个单位后,落在函数ky x=的图象上,则k 的值为( ) A.10k =B.12k =C.18k = D.20k =7.将函数y kx k =+与函数ky x=的大致图象画在同一坐标系中,正确的函数图象是( )8.如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切,切点为D 。

如果∠A =35°,那么∠C 等于( )x y O x y O B . xy OC .xyO 60 75α60 138第3题图 图1 图2 DO CB Axy0 3-A 、20°B 、30°C 、35°D 、55°9、如图,已知△ABC 的六个元素,则下面甲、乙、丙三角形中和△ABC 全等的图形是( )a bcACB 50°72°58°甲a c50°乙ca 50°a丙72°50°A .甲和乙B .乙和丙C .只有乙D .只有丙 10.如图,直线AB 切圆O 于点C ,OAC OBC ∠=∠, 则下列结论错误的是( )A .OC 是ABO △中AB 边上的高 B .OC 所在直线是ABO △的对称轴C .AC BC >D .OC 是AOB ∠的平分线11.已知函数2y ax bx c =++的图象如图所示,那么关于x 的方程220ax bx c +++=的根的情况是( )A .无实数根B .有两个相等实数根C .有两个异号实数根D .有两个同号不等实数根12.如图,在梯形ABCD 中,AD ∥BC ,∠B =90°,AD =1,AB =23, BC =2,P 是BC 边上的一个动点(点P 与点B 不重合),DE ⊥AP 于点E 。

2008年宁波中考科学试卷(含答案)

2008年宁波中考科学试卷(含答案)

宁波市2008年初中毕业生学业考试科学试题考生须知:1.全卷分试题卷I、试题卷Ⅱ和答题卷。

试题卷共八页,有四个大题,39个小题。

满分为150分,考试时间为120分钟。

2.请将姓名、准考证号分别填写在试题卷和答题卷的规定位置上。

3.答题时,把试题卷I的答案在答题卷l上对应的选项位置用2B铅笔涂黑、涂满。

将试题卷Ⅱ答案用黑色字迹钢笔或签字笔书写,答案必须按照题号顺序在答题卷Ⅱ各题目规定区域内作答.做在试题卷上或超出答题卷区域书写的答案无效。

4.本卷可能用到的相对原子质量:H:1 C:12 O:16 Cl:35.5 Fe:56 常用数据:g=9.8N/kg c=4.2×103J/(kg·℃)水试题卷l一、选择题(本大题共20小题,每小题3分,共60分。

请选出每小题中一个符合题意的选项。

不选、多选、错选均不给分)1.小科同学在校气象日活动中作了如下记录,其中属于描述气候特征的是A.夏季我市普遍高温B.昨天我市气压较高C.今天我市多云转阴D.明天我市可能有雨2.“冰红茶”和“苹果汁”等饮料均属于A.单质B.化合物C.纯净物D.混合物3下列电路正确的是4.t℃时,向硝酸钾饱和溶液中加入一定量的水后(温度不变),该溶液A.仍为饱和溶液B.溶质的质量变小C.溶质的溶解度不变D.溶质的质量分数不变5.如图所示为我国自行研制的“北斗一号系统”示意图,该系统已具有国内全天候导航、定位及通讯服务等功能。

该系统在传递信息过程中主要依靠A.电磁波B.超声波C.次声波D.光导纤维6.2007年12月3日,在国务院办公厅下发的《关于限制生产销售使用塑料购物袋的通知》中指出,由2008年6月1日起,在所有超市、商场、集贸市场等商品零售场所实行塑料购物袋有偿使用制度,一律不得免费提供塑料购物袋。

下列对落实通知精神的理解,错误的是A.禁止生产、销售、使用塑料购物袋B.提倡使用竹篮等传统物品代替塑料购物袋C.提高废塑料的回收利用水平D.研制、使用可降解的材料,如“玉米塑料”等7.如图所示是推土机清除积雪时的情景,下列说法正确的是A.推土机的车轮缠绕铁链是为了减小摩擦B.推土机的车轮很宽是为了增大对地面的压强C.推土机对地面的压力就是它本身的重力D.推土机提升雪的过程中用到了杠杆原理8.科学家正在积极探索利用太阳能分解水来获得氢能源,以解决人类面临的能源危机。

宁波中考数学试题及答案(完整版)-中考.doc

宁波中考数学试题及答案(完整版)-中考.doc

:2016年宁波中考数学试题及答案(完整版)-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。

学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。

适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。

适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。

适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。

适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。

适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第二节:说明文专题课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。

该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。

适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)第二节:说明文专题课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。

2008年全国各地中考数学试卷及详细答案

2008年全国各地中考数学试卷及详细答案

常州市二00六年初中毕业、升学统一考试数 学注意事项:1、全卷共8页,满分120分,考试时间120分钟。

2、答卷前将密封线内的项目填写清楚,并将座位号填写在试卷规定的位置上。

3、用蓝色或黑色钢笔、圆珠笔将答案直接填写在试卷上。

4、考生在答题过程中,可以使用CZ1206、HY82型函数计算器,若试题计算结果没有要求取近似值,则计算结果取精确值(保留根号和π)。

一、填空题(本大题每个空格1分,共18分,把答案填写在题中横线上) 1.3的相反数是 ,5-的绝对值是 ,9的平方根是 。

2.在函数1-=xy 中,自变量x 的取值范围是 ;若分式12--x x 的值为零,则=x 。

3.若α∠的补角是120°,则α∠= °,=αcos 。

4.某校高一新生参加军训,一学生进行五次实弹射击的成绩(单位:环)如下:8,6,10,7,9,则这五次射击的平均成绩是 环,中位数 环,方差是 环2。

5.已知扇形的圆心角为120°,半径为2cm ,则扇形的弧长是 cm ,扇形的面积是 2cm 。

6.已知反比例函数()0≠=k xky 的图像经过点(1,2-),则这个函数的表达式是 。

当0 x 时,y 的值随自变量x 值的增大而 (填“增大”或“减小”)7、如图,在△ABC 中,D 、E 分别是AB 和AC 的中点,F 是BC 延长线上的一点,DF 平分CE 于点G ,1=CF ,则 =BC ,△ADE 与△ABC 的周长之比为 ,△CFG 与△BFD 的面积之比为 。

8.如图,小亮从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A 点时,一共走了 米。

二、选择题(下列各题都给出代号为A 、B 、C 、D 的四个答案,其中有且只有一个是正确的,把正确答案的代号填在题后【 】内,每小题2分,共18分) 9.下列计算正确的是 【 】 A .123=-x x B .2x x x =∙ C .2222x x x =+ D .()423a a -=-第7题B第8题10.如图,已知⊙O 的半径为5mm ,弦mm AB 8=,则圆心O 到AB 的距离是 【 】A .1 mmB .2 mmC .3 mmD .4 mm 11.小刘同学用10元钱买两种不同的贺卡共8张,单价分别是1元与2元,设1元的贺卡为x 张,2元的贺卡为y 张,那么x 、y 所适合的一个方程组是 【 】A .⎪⎩⎪⎨⎧=+=+8102y x y xB .⎪⎩⎪⎨⎧=+=+1028102y x y x C .⎩⎨⎧=+=+8210y x y x D .⎩⎨⎧=+=+1028y x y x 12.刘翔为了备战2008年奥运会,刻苦进行110米跨栏训练,为判断他的成绩是否稳定,教练对他10次训练的成绩进行统计分析,则教练需了解刘翔这10次成绩的【 】 A .众数 B .方差 C .平均数 D .频数 13、图1表示正六棱柱形状的高大建筑物,图2中的阴影部分表示该建筑物的俯视图,P 、Q 、M 、N 表示小明在地面上的活动区域,小明想同时看到该建筑物的三个侧面,他应在【 】A .P 区域B .Q 区域C .M 区域D .N 区域14、下列左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为 【 】224113第14题ABCD15.锐角三角形的三个内角是∠A 、∠B 、∠C ,如果B A ∠+∠=∠α,C B ∠+∠=∠β,A C ∠+∠=∠γ,那么α∠、β∠、γ∠这三个角中 【 】A .没有锐角B .有1个锐角C .有2个锐角D .有3个锐角 16、如果0,0,0 b a b a +,那么下列关系式中正确的是 【 】 A .a b b a -- B .b b a a -- C .a b a b -- D .a b b a --17.已知:如图1,点G 是BC 的中点,点H 在AF 上,动点P 以每秒2cm 的速度沿图1的边线运动,运动路径为:H F E D C G →→→→→,相应的△ABP 的面积)(2cm y 关于运动时间)(s t 的函数图像如图2,若cm AB 6=,则下列四个结论中正确的个数有第10题第13题图2图1【 】图1F C①图1中的BC 长是8cm ②图2中的M 点表示第4秒时y 的值为242cm ③图1中的CD 长是4cm ④图2中的N 点表示第12秒时y 的值为182cm A .1个 B .2个 C .3个 D .4个三、解答题(本大题共2小题,共20分,解答应写出演算步骤) 18.(本小题满分10分)计算或化简:(1)03260tan 33⎪⎭⎫⎝⎛-+︒+ (2)2422---m m m19.(本小题满分10分)解方程或解不等式组: (1)x x 211=- (2)⎩⎨⎧-≥+≤-1)1(212x x x四、解答题(本大题共2小题,共12分,解答应写出证明过程) 20.(本小题满分5分)已知:如图,在四边形ABCD 中,AC 与BD 相交与点O ,AB ∥CD ,CO AO =, 求证:四边形ABCD 是平行四边形。

浙江省宁波市2008-2009学年下学期九年级数学质量分析测试及答案

浙江省宁波市2008-2009学年下学期九年级数学质量分析测试及答案

2008学年度第二学期九年级质量分析测试数学试卷一、选择题(本题共12个小题,每小题3分,满分36分) 1.-5的相反数是( )A 、5B 、-5C 、15 D 、15-2.在函数1x y -=中,自变量x 的取值范围是( )A 、x ≥-1B 、x ≠1C 、x ≥1D 、x ≤13.圆锥侧面展开图可能是下列图中的( )4.下列计算错误..的是( ) A 、14772⨯= B 、60523÷= C 、9258a a a += D 、3223-=5.袋中有3个红球,2个白球,若从袋中任意摸出1个球,则摸出白球的概率是( )A 、15B 、25C 、23D 、136.关于x 的不等式12-≤-a x 的解集如图所示,则a 的取值是( )A 、0B 、—3C 、—2D 、—17.一个半径长为6 cm 的半圆围成一个圆锥的侧面,则此圆锥的底面半径为( ).A 、2 cmB 、3 cmC 、4 cmD 、6 cm 8.为了弘扬雷锋精神,某中学准备在校园内建造一座高2m 的雷锋人体雕像,向全体师生征集设计方案。

小兵同学查阅了有关资料,了解到黄金分割数常用于人体雕像的设计中。

如图是小兵同学根据黄金分割数设计的雷锋人体雕像的方案,其中雷锋人体雕像下部的设计高度(精确到0.01m)是( )。

A 、0.62mB 、0.76mC 、1.24mD 、1.62m9.一个几何体是由若干个相同的正方体组成的,其主视图和A 、B 、C 、D 、小资料雕像上部(腰部以上)与下部(腰部以下)的高度之比等于下部与全部的高度比,这一比值是黄金分割数。

(第8题图)主视图 左视图左视图如图所示,则这个几何体最多..可由多少个这样的正方体组成?( ) A、12个 B、13个 C、14个 D、18个10.如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为( )A、2cmC、D、11.下列四个函数中,y 随x 增大而减小的是( )A 、y=2xB 、y=―2x+5C 、y=―3x D 、y=―x 2+2x ―1 12.如图,半圆的直径AB=10cm ,弦AC=6cm ,把AC 沿直线AD 对折恰好与AB 重合,则AD 的长为( )A、 B、 C、 D 、8cm二、填空题(本题共6个小题,每小题3分,满分18分)13.把12500取两个有效数字的近似数用科学记数法表示为 . 14.将32x xy -分解因式的结果为 . 15.单独使用正三角形、正方形、正六边形、正八边形四种地砖,不能镶嵌(密铺)地面的是 .16.两圆有多种位置关系,图中不存在的位置关系是 .17.若方程322x mx x-=--无解,则m =______. 18.如图:梯形ABCD 中AD ∥BC ,∠D=Rt ∠,BC=CD=6,∠ABE=450,点E 在DC上,AE ,BC 的延长线相交于点F ,若AE=5,则S △ADE 的值是 三、解答题(第19~21题各6分,22、23题8分,24、25题10分,,26题12分,共66分)19.计算:0212sin 45-+20.解方程:11322xx x-=---21.认真观察图(21.1)的4个图中阴影部分构成的图案,回答下列问题:(1)请写出这四个图案都具有的两个共同特征.特征1:_________________________________________________;图(21.1)特征2:_________________________________________________.(2)请在图(21.2)中设计出你心中最美丽的图案,使它也具备你所写出的上述特征22.将A B C D ,,,四人随机分成甲、乙两组参加羽毛球比赛,每组两人.(1)A 在甲组的概率是多少?(2)A B ,都在甲组的概率是多少?23.如图,在直角坐标平面内,O 为原点,点A 的坐标为(100),,点B 在第一象限内,5BO =,3sin 5BOA =∠.求:(1)点B 的坐标;(2)cos BAO ∠的值.24.如图,ABCD 是边长为1的正方形,其中⌒DE 、⌒EF 、⌒FG 的圆心依次是点A 、B 、C .(1)求点D 沿三条圆弧运动到G 所经过的路线长; (2)判断直线GB 与DF 的位置关系,并说明理由.25.某班到毕业时共结余经费1800元,班委会决定拿出不少于270元但不超过300元的资金为老师购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件文化衫或一本相册作为纪念图(21.2)FG EBA品.已知每件文化衫比每本相册贵9元,用200元恰好可以买到2件文化衫和5本相册. (1)求每件文化衫和每本相册的价格分别为多少元?(2)有几购买文化衫和相册的方案?哪种方案用于购买老师纪念品的资金更充足?26.如图,在平面直角坐标系中,矩形OABC 的顶点O 为原点,E 为AB 上一点,把CBE △沿CE 折叠,使点B 恰好落在OA 边上的点D 处,点A D ,的坐标分别为(50),和(30),. (1)求点C 的坐标;(2)求DE 所在直线的解析式;(3)设过点C的抛物线22(0)y x c b =++<与直线BC 的另一个交点为M ,问在该抛物线上是否存在点G ,使得CMG △为等边三角形.若存在,求出点G 的坐标;若不存在,请说明理由.初三数学参考答案一.选择题(每小题3分,共36分)二.填空题(每小题3分,共18分)13. 41.310⨯14. x(x+y)(x-y)15. 正八边形 16. 内切 17. 1 18. 6 三.解答题(第19~21题各6分,22、23题8分,24、25题10分,,26题12分,共66分)19.原式11)22=-+⨯3分11=+······································································· 5分 2=. ························································································ 6分 20.方程两边同乘(2)x -,得1(1)3(2)x x =----. 2分解这个方程,得2x =. ································································ 4分 检验:当2x =时,20x -=,所以2x =是增根,原方程无解. ·········· 6分21. (1)特征1:都是轴对称图形;特征2:都是中心对称图形;特征3:这些图形的面积都等于4个单位面积;等 ····················································································· 4分 (2)满足条件的图形有很多,只要画正确一个,都可以得满分. ······················ 6分22.总共有6种结果,(1)所有的结果中,满足A 在甲组的结果有3种,所以A 在甲组的概率是12,(4分)(2)满足A B ,都在甲组的结果有1种,A B ,都在甲组的概率是16.(8分)23. 解:(1)如图2,作BH OA ⊥,垂足为H ,在Rt OHB △中,5BO =,3sin 5BOA ∠=,3BH ∴=. 4OH ∴=. ∴点B 的坐标为(43),.(4分) (2)10OA =,4OH =,6AH ∴=. 在Rt AHB △中,3BH =,AB ∴=cos 5AH BAO AB ∴∠==.(8分) 24.90190290311801801802(1)(123)3πππππ⨯⨯⨯++=++= (5分) (2)易证BCG DCF ≅可得F G ∠=∠090F FDC ∠+∠= 090G FDC ∴∠+∠=BG DF ∴⊥(10分)25. (1)设文化衫和相册的价格分别为x 元和y 元,则 ········································· 1分925200x y x y -=⎧⎨+=⎩ ···························································································· 3分 解得3526x y =⎧⎨=⎩答:文化衫和相册的价格分别为35元和26元. ··················································· 5分 (2)设购买文化衫t 件,则购买相册(50)t -本,则15003526(50)1530t t +-≤≤ ······································································· 7分 解得20023099t ≤≤t 为正整数,23t ∴=,24,25,即有三种方案. ··········································· 8分 第一种方案:购文化衫23件,相册27本,此时余下资金293元;第二种方案:购文化衫24件,相册26本,此时余下资金284元; 第三种方案:购文化衫25件,相册25本,此时余下资金275元; ··························· 9分 所以第一种方案用于购买教师纪念品的资金更充足. ············································ 10分26. (1)根据题意,得53CD CB OA OD ====,, 90COD =∠,4OC ∴==.FG D EBAx∴点C 的坐标是(04),;(4分)(2)4AB OC ==,设AE x =, 则4DE BE x ==-,532AD OA OD =-=-=,在Rt DEA △中,222DE AD AE =+.222(4)2x x ∴-=+.解之,得32x =, 即点E 的坐标是352⎛⎫ ⎪⎝⎭,.设DE 所在直线的解析式为y kx b =+,30352k b k b +=⎧⎪∴⎨+=⎪⎩,,解之,得3494k b ⎧=⎪⎪⎨⎪=-⎪⎩,.DE ∴所在直线的解析式为3944y x =-;(8分) (3)点(04)C ,在抛物线22y x c =+上,4c ∴=.即抛物线为224y x =++.假设在抛物线224y x =++上存在点G ,使得CMG △为等边三角形,根据抛物线的对称性及等边三角形的性质,得点G 一定在该抛物线的顶点上. 设点G 的坐标为()m n ,,224m ∴=-=-⨯,22424)323428b n ⨯⨯--==⨯,即点G 的坐标为23238b ⎛⎫- ⎪ ⎪⎝⎭,.设对称轴4x =-与直线CB 交于点F ,与x 轴交于点H .则点F 的坐标为44⎛⎫- ⎪⎪⎝⎭,. 00b m <∴>,,点G 在y 轴的右侧,4CF m ==-,2232334488b b FH FG -==-=,.22CM CG CF ===-,∴在Rt CGF △中,222CG CF FG =+,22223248b ⎛⎫⎛⎫⎛⎫-=-+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.解之,得2(0)b b =-<..m ∴==,2323582b n -==. ∴点G 的坐标为52⎫⎪⎪⎝⎭,.∴在抛物线224(0)y x b =++<上存在点G 522⎛⎫⎪ ⎪⎝⎭,,使得CMG △为等边三角形.(12分)。

2008年中考数学试题及答案解析

2008年中考数学试题及答案解析

C.通常情况下,抛出的篮球会下落
D.阴天就一定会下雨
A.
5.一次函数 y kx b 的图象如图所示,当 y 0 时, x 的取
值范围是(
A. x 0

B. x 0
C. 253104 亩
B.
C. (2,1) D. (1,2)
C. x 2
6.若等腰三角形中有一个角等于 50 ,则这个等腰三角形的顶角的度数为( )
22.小刚和小明两位同学玩一种游戏.游戏规则为:两人各执“象、虎、鼠”三张牌,同 时各出一张牌定胜负,其中象胜虎、虎胜鼠、鼠胜象,若两人所出牌相同,则为平局.例 如,小刚出象牌,小明出虎牌,则小刚胜;又如,两人同时出象牌,则两人平局. (1)一次出牌小刚出“象”牌的概率是多少?
(2)如果用 A,, B C 分别表示小刚的象、虎、鼠三张牌,用 A1 , B1 , C1 分别表示小明
10.分解因式: 2m3 8m
11.已知 △ABC 中, A 60 , ABC , ACB 的平分线交于点 O ,
则 BOC 的度数为

12.如图所示,菱形 ABCD 中,对角线 AC,BD 相交于点 O ,若再补 B
充一个条件能使菱形 ABCD 成为正方形,则这个条件是
填一个条件即可).
的象、虎、鼠三张牌,那么一次出牌小刚胜小明的概率是多少?用列表法或画树状图(树
形图)法加以说明.
小刚
ABC
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资0配不料置仅试技可卷术以要是解求指决,机吊对组顶电在层气进配设行置备继不进电规行保范空护高载高中与中资带资料负料试荷试卷下卷问高总题中体2资2配,料置而试时且卷,可调需保控要障试在各验最类;大管对限路设度习备内题进来到行确位调保。整机在使组管其高路在中敷正资设常料过工试程况卷中下安,与全要过,加度并强工且看作尽护下可关都能于可地管以缩路正小高常故中工障资作高料;中试对资卷于料连继试接电卷管保破口护坏处进范理行围高整,中核或资对者料定对试值某卷,些弯审异扁核常度与高固校中定对资盒图料位纸试置,卷.编保工写护况复层进杂防行设腐自备跨动与接处装地理置线,高弯尤中曲其资半要料径避试标免卷高错调等误试,高方要中案求资,技料编术试写5交、卷重底电保要。气护设管设装备线备置4高敷、调动中设电试作资技气高,料术课中并3试中、件资且卷包管中料拒试含路调试绝验线敷试卷动方槽设技作案、技术,以管术来及架避系等免统多不启项必动方要方式高案,中;为资对解料整决试套高卷启中突动语然过文停程电机中气。高课因中件此资中,料管电试壁力卷薄高电、中气接资设口料备不试进严卷行等保调问护试题装工,置作合调并理试且利技进用术行管,过线要关敷求运设电行技力高术保中。护资线装料缆置试敷做卷设到技原准术则确指:灵导在活。分。对线对于盒于调处差试,动过当保程不护中同装高电置中压高资回中料路资试交料卷叉试技时卷术,调问应试题采技,用术作金是为属指调隔发试板电人进机员行一,隔变需开压要处器在理组事;在前同发掌一生握线内图槽部纸内故资,障料强时、电,设回需备路要制须进造同行厂时外家切部出断电具习源高题高中电中资源资料,料试线试卷缆卷试敷切验设除报完从告毕而与,采相要用关进高技行中术检资资查料料和试,检卷并测主且处要了理保解。护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

浙江省2008年初中毕业生学业考试数学绍兴市试卷及答案word版

浙江省2008年初中毕业生学业考试数学绍兴市试卷及答案word版

某某省2008年初中毕业生学业考试某某市试卷数学试卷Ⅰ(选择题,共40分)一、选择题(本大题有10小题,每小题4分,共40分.请选出每小题中一个符合题意的正确选项,不选、多选、错选,均不给分) 1.下列计算结果等于1的是( ) A .(2)(2)-+-B .(2)(2)---C .2(2)-⨯-D .(2)(2)-÷-2.下列各图中,为轴对称图形的是( )3.如图,沿虚线EF 将ABCD 剪开,则得到的四边形ABFE 是( )A .梯形B .平行四边形C .矩形D .菱形 4.在一次射击测试中,甲、乙、丙、丁的平均环数均相同,而方差分别为8.7,6.5,9.1,7.7,则这四人中,射击成绩最稳定的是( )A .甲B .乙C .丙D .丁5.将如右图所示的Rt ABC △绕直角边AC 旋转一周,所得几何体的主视图是( )6.如图,量角器外缘边上有A P Q ,,三点,它们所表示的读数分别是180,70,30,则PAQ ∠的大小为( ) A .10B .20C .30D .407.已知点11()x y ,,22()x y ,均在抛物线21y x =-上,下列说法中正确的是( ) A .若12y y =,则12x x =B .若12x x =-,则12y y =-C .若120x x <<,则12y y >D .若120x x <<,则12y y >8.将一X 纸第一次翻折,折痕为AB (如图1),第二次翻折,折痕为PQ (如图2),第三次翻折使PA 与PQ 重合,折痕为PC (如图3),第四次翻折使PB 与PA 重合,折痕为PD (如图4).此时,如果将纸复原到图1的形状,则CPD ∠的大小是( )A .B .C .D . AB C (第5题图)A .B .C .D .DCFB A (第3题图) EA .120B .90C .60D .459.兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为,一级台阶高为,如图所示,若此时落在地面上的影长为4.4米,则树高为( ) A . B . C . D .10.本学期实验中学组织开展课外兴趣活动,各活动小班根据实际情况确定了计划组班人数,并发动学生自愿报名,报名人数与计划人数的前5位情况如下:小班名称 奥数 写作 舞蹈 篮球 航模 报名人数 215 201 154 76 65 小班名称 奥数 舞蹈 写作 合唱 书法 计划人数120100908070若用同一小班的报名人数与计划人数的比值大小来衡量进入该班的难易程度,则由表中数据,可预测( ) A .奥数比书法容易 B .合唱比篮球容易 C .写作比舞蹈容易 D .航模比书法容易试卷Ⅱ(非选择题,共110分)二、填空题(本大题有6小题,每小题5分,共30分.将答案填在题中横线上) 11.奥运会国家体育场“鸟巢”的建筑面积为258000平方米, 那么258000用科学记数法可表示为. 12.分解因式32232x y x y xy -+=.13.如图,已知函数y x b =+和3y ax =+的图象交点为P , 则不等式3x b ax +>+的解集为.14.若买2支圆珠笔、1本日记本需4元;买1支圆珠笔、2本日记 本需5元,则买4支圆珠笔、4本日记本需元.15.如图,轮椅车的大小两车轮(在同一平面上)与地面的触点A B ,O (第13题图)x y 1 P y=x+by=ax+3 (第9题图)(第15题图)A B(第11题图)间距离为80cm ,两车轮的直径分别为136cm ,16cm ,则此两车轮的圆心相距cm .16.如图中的圆均为等圆,且相邻两圆外切,圆心连线构成正三角形,记各阴影部分面积从左到右依次为1S ,2S ,3S ,…,n S ,则124:S S 的值等于.三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题12分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(1)计算:1122323tan 30--+--;(2)解方程:122x x=-.18.在平面直角坐标系中,已知OAB △,(03)A -,,(20)B -,.(1)将OAB △关于点(10)P ,对称,在图1中画出对称后的图形,并涂黑;(2)将OAB △先向右平移3个单位,再向上平移2个单位,在图2中画出平移后的图形,并涂黑.19.地震发生后,一支专业搜救队驱车前往灾区救援.如图,汽车在一条南北走向的公路上向北行驶,当在A 处时,车载GPS (全球卫星定位系统)显示村庄C 在北偏西25方向,汽车以35km/h 的速度前行2h 到达B 处,GPS 显示村庄C 在北偏西52方向. (1)求B 处到村庄C 的距离; (2)求村庄C 到该公路的距离.(结果精确到0.1km )(参考数据:sin 260.4384≈ ,cos 260.8988≈ ,sin520.7880≈ ,(第16题图)(n +1)个图y x O B A P (第18题图)yx O BA图1 图2cos520.6157≈ )20.开学前,小明去商场买书包,商场在搞促销活动,买一只书包可以送2支笔和1本书. (1)若有3支不同笔可供选择,其中黑色2支,红色1支,试用树状图表示小明依次抽取2支笔的所有可能情况,并求出抽取的2支笔均是黑色的概率;(2)若有6本不同书可供选择,要在其中抽1本,请你帮助小明设计一种用替代物模拟抽书的方法.21.在城关中学开展的“我为某某地震灾区献爱心”捐书活动中,校团委为了了解九年级同学的捐书情况,用简单的随机抽样方法从九年级的10个班中抽取50名同学,对这50名同学所捐的书进行分类统计后,绘制了如下统计表:(1)在右图中,补全这50名同学捐书情况的频数分布直方图;(2)若九年级共有475名同学,请你估计九年级同学的捐书总册数及学辅类书的册数.学 类(第21题图)捐书情况频数分布直方图 普类 辅 类 育 类 它 种类ANB C(第19题图)22.定义[]p q ,为一次函数y px q =+的特征数.(1)若特征数是[]22k -,的一次函数为正比例函数,求k 的值;(2)设点A B ,分别为抛物线()(2)y x m x =+-与x y ,轴的交点,其中0m >,且OAB △的面积为4,O 为原点,求图象过A B ,两点的一次函数的特征数.23.学完“几何的回顾”一章后,老师布置了一道思考题: 如图,点M N ,分别在正三角形ABC 的BC CA ,边上, 且BM CN =,AM BN ,交于点Q .求证:60BQM =∠. (1)请你完成这道思考题;(2)做完(1)后,同学们在老师的启发下进行了反思,提出 了许多问题,如:①若将题中“BM CN =”与“60BQM =∠”的位置交换,得到的是否仍是真命题? ②若将题中的点M N ,分别移动到BC CA ,的延长线上,是否仍能得到60BQM =∠? ③若将题中的条件“点M N ,分别在正三角形ABC 的BC CA ,边上”改为“点M N ,分别在正方形ABCD 的BC CD ,边上”,是否仍能得到60BQM =∠?……请你作出判断,在下列横线上填写“是”或“否”:①;②;③.并对②,③的判断,选择一个给出证明.ACNQMB(第23题图)24.将一矩形纸片OABC 放在平面直角坐标系中,(00)O ,,(60)A ,,(03)C ,.动点Q 从点O 出发以每秒1个单位长的速度沿OC 向终点C 运动,运动23秒时,动点P 从点A 出发以相等的速度沿AO 向终点O 运动.当其中一点到达终点时,另一点也停止运动.设点P 的运动时间为t (秒).(1)用含t 的代数式表示OP OQ ,;(2)当1t 时,如图1,将OPQ △沿PQ 翻折,点O 恰好落在CB 边上的点D 处,求点D 的坐标;(3)连结AC ,将OPQ △沿PQ 翻折,得到EPQ △,如图2.问:PQ 与AC 能否平行?PE 与AC 能否垂直?若能,求出相应的t 值;若不能,说明理由.图1(第24题图)某某省2008年初中毕业生学业考试某某市试卷数学参考答案一、选择题(本大题有10题,满分40分) 1.D 2.C 3.A 4.B 5.A 6.B 7.D 8.B 9.C 10.B二、填空题(本大题有6题,满分30分) 11.52.5810⨯12.2()xy x y - 13.1x >14.1215.10016.197三、解答题(本大题有8题,满分80分) 17.(本题满分8分) 解:(1)原式1323232=+⨯=. (2)原方程可化为24x x -=,4x ∴=.经检验,原方程的根为4x =. 18.(本题满分8分)19.(本题满分8分)解:过C 作CD AB ⊥,交AB 于D . (1)52CBD ∠=,26A ∠=,26BCA ∴∠=,70BC AB ∴==,即B 处到村庄C 的距离为70km . (2)在Rt CBD △中,sin52CD CB =⨯700.7880=⨯55.2≈.即村庄C 到该公路的距离约为.x图1x图2ANBC解:(1)用12A A ,分别表示2支黑色笔,B 表示红色笔,树状图为:第一次抽取第二次抽取2163P ∴==. (2)方法不唯一,例举一个如下: 记6本书分别为12345P P P P P ,,,,,6P . 用普通的正方体骰子掷1次,规定:掷得的点数为1,2,3,4,5,6分别代表抽得的书为12345P P P P P ,,,,,6P . 21.(本题满分10分) 解:(1)如下图.(2)50名同学捐书平均数为5605011.2÷=, 47511.25320∴⨯=,14053201330560⨯=, 即可估计九年级同学的捐书为5320册,学辅类书1330册.文 学 类 捐书情况频数分布直方图 科普类 学辅 类 体育 类 其它 种类解:(1)特征数为[22]k -,的一次函数为22y x k =+-,20k ∴-=, 2k ∴=.(2)抛物线与x 轴的交点为12(0)(20)A m A -,,,, 与y 轴的交点为(02)B m -,.若14OBA S =△,则1242m m =,2m =; 若24OBA S =△,则12242m =,2m =.∴当2m =时,满足题设条件.∴此时抛物线为(2)(2)y x x =+-.它与x 轴的交点为(20)(20)-,,,, 与y 轴的交点为(04)-,,∴一次函数为24y x =--或24y x =-, ∴特征数为[24]--,或[24]-,.23.(本题满分12分) 解:(1)证明:BM NC =,ABM BCN ∠=∠,AB BC =, ABM BCN ∴△≌△, BAM CBN ∴∠=∠,60BQM BAQ ABQ MBQ ABQ ∴∠=∠+∠=∠+∠=.(2)①是;②是;③否. ②的证明:如图,120ACM BAN ∠=∠=,CM AN =,AC AB =,ACM BAN ∴△≌△, AMC BNA ∴∠=∠,NQA NBC BMQ ∴∠=∠+∠18060120NBC BNA =∠+∠=-=, 60BQM ∴∠=.③的证明:如图,BM CN =,AB BC =, Rt Rt ABM BCN ∴△≌△,AMB BNC ∴∠=∠.又90NBM BNC ∠+∠=,ACNQMB(第23题图)AC QMB(第②题图)N D N90QBM QMB ∴∠+∠=,90BQM ∴∠=,即60BQM ∠≠.24.(本题满分14分) 解:(1)6OP t =-,23OQ t =+.(2)当1t =时,过D 点作1DD OA ⊥,交OA 于1D ,如图1, 则53DQ QO ==,43QC =, 1CD ∴=,(13)D ∴,. (3)①PQ 能与AC 平行. 若PQ AC ∥,如图2,则OP OAOQ OC=, 即66233t t -=+,149t ∴=,而703t ≤≤, 149t ∴=.②PE 不能与AC 垂直.若PE AC ⊥,延长QE 交OA 于F ,如图3,则23335t QF OQ QFACOC +==.23QF t ⎫∴=+⎪⎭.EF QF QE QF OQ ∴=-=-图1word11 /11 2233t t ⎫⎛⎫=+-+⎪ ⎪⎭⎝⎭21)1)3t =+. 又Rt Rt EPF OCA △∽△,PE OC EF OA∴=,63261)3t t -∴=⎛⎫+ ⎪⎝⎭,3.45t ∴≈,而703t ≤≤,t ∴不存在.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

宁波市2008年初中毕业生学业考试数学试题一、选择题(每小题3分,共36分,在每小题给出的四个选项中,只有一项符合题目要求) 1( ) A .5-B .0C .3D2.下列运算正确的是( ) A .336x x x +=B .23236x x x =C .33(2)6x x =D .2(2)2x x x x +÷= 3.下列事件是不确定事件的是( )A .宁波今年国庆节当天的最高气温是35℃B .在一个装着白球和黑球的袋中摸球,摸出红球C .抛掷一石头,石头终将落地D .有一名运动员奔跑的速度是20米/秒4.如图,已知12355===∠∠∠,则4∠的度数是( ) A .110B .115C .120D .1255.2008年5月12日,四川汶川发生了特大地震.震后,国内外纷纷向灾区捐物捐款,截至5月26日12时,捐款达308.76亿元.把它用科学记数法表示为( ) A .930.87610⨯元B .103.087610⨯元 C .110.3087610⨯元D .113.087610⨯元6.如图,正方形ABOC 的边长为2,反比例函数ky x=过点A , 则k 的值是( ) A .2 B .2-C .4D .4-7.在平面直角坐标系中,点(32)-,关于原点对称的点是( ) A .(23)-,B .(32)--,C .(32),D .(32)-,8.已知圆锥的母线长为5,底面半径为3,则圆锥的表面积...为( ) A .15π B .24π C .30π D .39π9.已知半径分别为5cm 和8cm 的两圆相交,则它们的圆心距可能是( ) A .1cm B .3cm C .10cm D .15cm10.由一些完全相同的小立方块搭成的几何体的三视图如图所示,那么搭成这个几何体所用的小立方块的个数是( )A .8B .7C .6D .511.甲、乙、丙三个同学排成一排拍照,则甲排在中间的概率 是( ) (第4题)4132(第6题)(第10题)俯视图左视图主视图A .16B .14C .13D .1212.如图,某电信公司提供了A B ,两种方案的移动通讯费用y (元)与通话时间x (元)之间的关系,则以下说法错误..的是( ) A .若通话时间少于120分,则A 方案比B 方案便宜20元B .若通话时间超过200分,则B 方案比A 方案便宜12元C .若通讯费用为60元,则B 方案比A 方案的通话时间多D .若两种方案通讯费用相差10元,则通话时间是145分或185分试题卷Ⅱ二、填空题(每小题3分,共18分) 13.计算203(3)---= .14.若实数x y ,2(0y =,则xy 的值是 .15.分解因式221218x x -+= .16.课外活动小组测量学校旗杆的高度.如图,当太阳光线与地面成35时,测得旗杆AB 在地面上的投影BC 长为23.5米,则旗杆AB的高度约是 米(精确到0.1米)17若把表中各科满分值按比例绘成扇形统计图,则表示数学科学的扇形的圆心角应是 度(结果保留3个有效数字).18.如图,菱形OABC 中,120A =∠,1OA =,将菱形OABC 绕点O 按顺时针方向旋转90,则图中由BB ',B A '',A C ',CB围成的阴影部分的面积是 .三、解答题(第19~21题各6分,22题9分,23题8分,24题9分,25题10分,26题12分,共66分)19.化简22111a a aa a ++---.20.解不等式组3(2)41 1.2x x x ++⎧⎪⎨-<⎪⎩≥,(第12题)(第16题) ' '(第18题)21.(1)如图1,ABC △中,90C =∠,请用直尺和圆规作一条直线,把ABC △分割成两个等腰三角形(不写作法,但须保留作图痕迹).(2)已知内角度数的两个三角形如图2、图3所示.请你判断,能否分别画一条直线把它们分割成两个等腰三角形?若能,请写出分割成的两个等腰三角形顶角的度数.22.2008年8月8日,第29届奥运会将在北京举行.现在,奥运会门票已在世界各地开始销售,下图是奥运会部分项目的门票价格:(1)从以上统计图可知,同一项目门票价格相差很大,分别求出篮球项目门票价格的极差和跳水项目门票价格的极差.(2)求出这6个奥运会项目门票最高价的平均数、中位数和众数.(3)田径比赛将在国家体育场“鸟巢”进行,“鸟巢”内共有观众座位9.1万个.从安全角度考虑,正式比赛时将留出0.6万个座位.某场田径赛,组委会决定向奥运赞助商和相关部门赠送还1.5万张门票,其余门票全部售出.若售出的门票中最高价门票占10%至15%,其他门票的平均价格是300元,你估计这场比赛售出的门票收入约是多少万元?请说明理由.23.如图,ABCD 中,4AB =,点D 的坐标是(08),,以点C 为顶点的抛物线2y ax bx c =++经过x 轴上的点A B ,.(1)求点A B C ,,的坐标.(2)若抛物线向上平移后恰好经过点D ,求平移后抛物线的解析式.(第21题)A B C 图1 A B C 图2 24° 24° 84° AB C图3104° 52°24.如图,点C 是半圆O 的半径OB 上的动点,作PC AB ⊥于C .点D 是半圆上位于PC 左侧的点,连结BD 交线段PC 于E ,且PD PE =. (1)求证:PD 是O 的切线.(2)若O的半径为PC =设2OC x PD y ==,. ①求y 关于x 的函数关系式.②当x =,求tan B 的值.25.2008年5月1日,目前世界上最长的跨海大桥——杭州湾跨海大桥通车了.通车后,苏南A 地到宁波港的路程比原来缩短了120千米.已知运输车速度不变时,行驶时间将从原来的3时20分缩短到2时.(1)求A 地经杭州湾跨海大桥到宁波港的路程.(2)若货物运输费用包括运输成本和时间成本,已知某车货物从A 地到宁波港的运输成本是每千米1.8元,时间成本是每时28元,那么该车货物从A 地经杭州湾跨海大桥到宁波港的运输费用是多少元?(3)A 地准备开辟宁波方向的外运路线,即货物从A 地经杭州湾跨海大桥到宁波港,再从宁波港运到B 地.若有一批货物(不超过10车)从A 地按外运路线运到B 地的运费需8320元,其中从A 地经杭州湾跨海大桥到宁波港的每车运输费用与(2)中相同,从宁波港到B 地的海上运费对一批不超过10车的货物计费方式是:一车800元,当货物每增加1车时,每车的海上运费就减少20元,问这批货物有几车?26.如图1,把一张标准纸一次又一次对开,得到“2开”纸、“4开”纸、“8开”纸、“16开”纸….已知标.准纸..的短边长为a . (1)如图2,把这张标准纸对开得到的“16开”张纸按如下步骤折叠:第一步 将矩形的短边AB 与长边AD 对齐折叠,点B 落在AD 上的点B '处,铺平后得折痕AE ;第二步 将长边AD 与折痕AE 对齐折叠,点D 正好与点E 重合,铺平后得折痕AF .则:AD AB 的值是 ,AD AB ,的长分别是 , . (2)“2开”纸、“4开”纸、“8开”纸的长与宽之比是否都相等?若相等,直接写出这个比值;若不相等,请分别计算它们的比值.(3)如图3,由8个大小相等的小正方形构成“L ”型图案,它的四个顶点E F G H ,,,分别(第24题)在“16开”纸的边AB BC CD DA ,,,上,求DG 的长.(4)已知梯形MNPQ 中,MN PQ ∥,90M =∠,2MN MQ PQ ==,且四个顶点M N P Q ,,,都在“4开”纸的边上,请直接写出2个符合条件且大小不同的直角梯形的面积.宁波市二2008年初中毕业生学业考试数学试题参考答案及评分标准一、选择题(每小题3分,共36分)三、解答题(共66分)注:1.阅卷时应按步计分,每步只设整分;2.如有其它解法,只要正确,都可参照评分标准,各步相应给分. 19.解:原式1(1)1(1)(1)a a a a a a ++=--+- ···································································· 2分 111a aa a +=--- ············································································· 4分 11a =- ······················································································ 6分 20.解:解不等式(1),得1x -≥. ······································································· 2分 解不等式(2),得3x <.····················································································· 4分∴原不等式组的解是13x -<≤. ···································································· 6分ABCD BCA D EGHF FE B '4开2开8开16开 图1图2图3(第26题)a21.解:(1)如图,直线CM 即为所求··············································································· 3分(作图正确,不写结论不扣分) (2)图2能画一条直线分割成两个等腰三角形, ························································ 4分 分割成的两个等腰三角形的顶角分别是132和84.·············································· 5分 图3不能分割成两个等腰三角形. ····································································· 6分 22.解:(1)篮球项目门票价格的极差是100050950-=(元) ······································ 1分 跳水项目门票价格的极差是50060440-=(元) ···················································· 2分 (2)这6个奥运会项目门票最高价的平均数是11(10005008004)78363++⨯=(元) ···································································· 4分(写成783.33,783.3或783都不扣分)中位数800元,众数800元. ·············································································· 6分 (3)(答案不唯一,合理即正确,如2520万元),理由如下: ··············································· 7分 售出的门票共9.10.6 1.57--=(万张) ································································ 8分 这场比赛售出的门票最低收入为:710800(7710)3002450⨯⨯+-⨯⨯=%%(万元)这场比赛售出的门票最高收入为:715800(7715)3002625⨯⨯+-⨯⨯=%%(万元) ········ 9分 23.解:(1)在ABCD 中,CD AB ∥且4CD AB ==,∴点C 的坐标为(48), ····················································································· 1分 设抛物线的对称轴与x 轴相交于点H , 则2AH BH ==, ··························································································· 2分∴点A B ,的坐标为(20)(60)A B ,,,. ······························································· 4分 (2)由抛物线2y ax bx c =++的顶点为(48)C ,,可设抛物线的解析式为2(4)8y a x =-+, ···························································· 5分 把(20)A ,代入上式,解得2a =-.································································································ 6分 设平移后抛物线的解析式为22(4)8y x k =--++把(08),代入上式得32k = ··············································································· 7分 ∴平移后抛物线的解析式为22(4)40y x =--+. ················································ 8分即22168y x x =-++.B CA MC B A M 或24.解:(1)连结OD , OB OD =,OBD ODB ∴∠=∠. ····················································································· 1分 PD PE =,PDE PED ∴∠=∠. ····················································································· 2分 PDO PDE ODE ∠=∠+∠ PED OBD =∠+∠ BEC OBD =∠+∠90=,PD OD ∴⊥. ······························································································ 3分 PD ∴是圆O 的切线. ···················································································· 4分 (2)①连结OP , 在Rt POC △中,222OP OC PC =+2192x =+. ··························································································· 5分 在Rt PDO △中,222PD OP OD =- ························································································· 6分 2144x =+.2144(0y x x ∴=+≤≤. ······································ 7分(x 取值范围不写不扣分)②当x =,147y =,PD ∴=······························································································· 8分EC ∴=,而CB =在Rt ECB △中,1tan 3CE B CB ==.·························································································· 9分 25.解:(1)设A 地经杭州湾跨海大桥到宁波港的路程为x 千米,由题意得1201023x x+=, ····················································································· 2分 解得180x =.A ∴地经杭州湾跨海大桥到宁波港的路程为180千米. ·········································· 4分 (2)1.8180282380⨯+⨯=(元),∴该车货物从A 地经杭州湾跨海大桥到宁波港的运输费用为380元.························ 6分(3)设这批货物有y 车,由题意得[80020(1)]3808320y y y -⨯-+=, ······················································ 8分 整理得2604160y y -+=,解得18y =,252y =(不合题意,舍去), ·································································· 9分∴这批货物有8车. ····················································································· 10分26.解144a a ,,. ··············································································· 3分(2)相等,. ··························· 5分(无“相等”不扣分有“相等”,比值错给1分) (3)设DG x =,在矩形ABCD 中,90B C D ∠=∠=∠=,90HGF ∠=,90DHG CGF DGH ∴∠=∠=-∠,HDG GCF ∴△∽△,12DG HG CF GF ∴==, 22CF DG x ∴==. ······················································································ 6分 同理BEF CFG ∠=∠. EF FG =, FBE GCF ∴△≌△,14BF CG a x ∴==-. ·················································································· 7分 CF BF BC +=,1244x a x a ∴+-=, ··················································································· 8分解得14x a =.即14DG a =. ························································································ 9分 (4)2316a , ···································································································· 10分2278a -. 12分。

相关文档
最新文档