2020-2021石家庄市石门实验学校八年级数学下期末第一次模拟试题(带答案)
2020-2021初二数学下期末一模试题(含答案)
B.如果两个数相等,那么它们的绝对值相等
C.两直线平行,同位角相等
D.如果两个角都是 45°,那么这两个角相等
3.如图,在四边形 ABCD 中,AB∥CD,要使得四边形 ABCD 是平行四边形,可添加的
条件不正确的是 ( )
A.AB=CD
B.BC∥AD
C.BC=AD
D.∠A=∠C
4.下列命题中,真命题是( )
D.2.5
6.三角形的三边长为 (a b)2 c2 2ab ,则这个三角形是( )
A.等边三角形
B.钝角三角形
C.直角三角形
D.锐角三角形
7.如图 2,四边形 ABCD 的对角线 AC、BD 互相垂直,则下列条件能判定四边形 ABCD
为菱形的是( )
A.BA=BC
B.AC、BD 互相平分 C.AC=BD
2.C
解析:C 【解析】 试题分析:首先写出各个命题的逆命题,再进一步判断真假. 解:A、逆命题是三个角对应相等的两个三角形全等,错误; B、绝对值相等的两个数相等,错误; C、同位角相等,两条直线平行,正确; D、相等的两个角都是 45°,错误. 故选 C.
3.C
解析:C 【解析】 【分析】 根据平行四边形的判定方法,逐项判断即可. 【详解】 ∵AB∥CD, ∴当 AB=CD 时,由一组对边平行且相等的四边形为平行四边形可知该条件正确; 当 BC∥AD 时,由两组对边分别平行的四边形为平行四边形可知该条件正确; 当∠A=∠C 时,可求得∠B=∠D,由两组对角分别相等的四边形为平行四边形可知该条件 正确; 当 BC=AD 时,该四边形可能为等腰梯形,故该条件不正确; 故选:C. 【点睛】 本题主要考查平行四边形的判定,掌握平行四边形的判定方法是解题的关键.
2020-2021石家庄市八年级数学下期末试题(含答案)
2020-2021石家庄市八年级数学下期末试题(含答案)一、选择题1.若63n是整数,则正整数n的最小值是()A.4B.5C.6D.72.顺次连接对角线互相垂直且相等的四边形各边中点所围成的四边形是()A.矩形B.菱形C.正方形D.平行四边形3.随机抽取某商场4月份5天的营业额(单位:万元)分别为3.4,2.9,3.0,3.1,2.6,则这个商场4月份的营业额大约是()A.90万元B.450万元C.3万元D.15万元4.计算4133的结果为().A.32B.23C.2D.25.对于函数y=2x+1下列结论不正确是()A.它的图象必过点(1,3)B.它的图象经过一、二、三象限C.当x>12时,y>0D.y值随x值的增大而增大6.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A.300m2B.150m2C.330m2D.450m27.如图1,四边形ABCD中,AB∥CD,∠B=90°,AC=AD.动点P从点B出发沿折线B→A→D→C方向以1单位/秒的速度运动,在整个运动过程中,△BCP的面积S与运动时间t(秒)的函数图象如图2所示,则AD等于()A .10B .89C .8D .41 8.如图,在矩形ABCD 中,对角线AC 、BD 交于点O ,以下说法不一定成立的是( )A .∠ABC=90°B .AC=BDC .OA=OBD .OA=AD 9.直角三角形中,有两条边长分别为3和4,则第三条边长是( )A .1B .5C .7D .5或7 10.如图,D 3081次六安至汉口动车在金寨境内匀速通过一条隧道(隧道长大于火车长),火车进入隧道的时间x 与火车在隧道内的长度y 之间的关系用图象描述大致是( )A .B .C .D .11.正比例函数()0y kx k =≠的函数值y 随x 的增大而增大,则y kx k =-的图象大致是( )A .B .C .D .12.如图,已知△ABC 中,AB=10 ,AC=8 ,BC = 6 ,DE 是AC 的垂直平分线,DE 交AB 于点D ,交AC 于点E ,连接CD ,则CD 的长度为( )A .3B .4C .4.8D .5二、填空题13.一次函数的图象过点()1,3且与直线21y x =-+平行,那么该函数解析式为__________.14.一艘轮船在小岛A 的北偏东60°方向距小岛80海里的B 处,沿正西方向航行3小时后到达小岛的北偏西45°的C 处,则该船行驶的速度为____________海里/时.15.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米.16.菱形的边长为5,一条对角线长为6,则该菱形的面积为__________. 17.如图所示,已知ABCD 中,下列条件:①AC =BD ;②AB =AD ;③∠1=∠2;④AB ⊥BC 中,能说明ABCD 是矩形的有______________(填写序号)18.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图6-Z -2所示,那么三人中成绩最稳定的是________.19.如图,在□ABCD 中,AE ⊥BC 于点E ,AF ⊥CD 于点F .若4AE =,6AF =,且□ABCD 的周长为40,则□ABCD 的面积为_______.20.如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需______米.三、解答题21.如图,在平行四边形ABCD 中,点E 为AD 的中点,延长CE 交BA 的延长线于点F .(1)求证:AB =AF ;(2)若BC =2AB ,∠BCD =100°,求∠ABE 的度数.22.如图,在ABC ∆中,13,23AB AC ==,点D 在AC 上,若10BD CD ==,AE 平分BAC ∠.(1)求AE 的长;(2)若F 是BC 中点,求线段EF 的长.23.在一条东西走向河的一侧有一村庄C ,河边原有两个取水点A ,B ,其中AB =AC ,由于某种原因,由C 到A 的路现在已经不通,某村为方便村民取水决定在河边新建一个取水点H (A 、H 、B 在一条直线上),并新修一条路CH ,测得CB =3千米,CH =2.4千米,HB =1.8千米.(1)问CH 是否为从村庄C 到河边的最近路?(即问:CH 与AB 是否垂直?)请通过计算加以说明;(2)求原来的路线AC 的长.24.如图,已知四边形ABCD 是平行四边形,点E ,F 分别是AB ,BC 上的点,AE =CF ,并且∠AED =∠CF D .求证:(1)△AED ≌△CFD ;(2)四边形ABCD 是菱形.25.求证:三角形的一条中位线与第三边上的中线互相平分.要求:(1)根据给出的ABC ∆和它的一条中位线DE ,在给出的图形上,请用尺规作出BC 边上的中线AF ,交DE 于点O .不写作法,保留痕迹;(2)据此写出已知,求证和证明过程.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】 63n 63n 273n ⨯7n 7n 是完全平方数,满足条件的最小正整数n 为7.【详解】 63n 273n ⨯7n 7n∴7n 7n 是完全平方数;∴n 的最小正整数值为7.故选:D .【点睛】主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.a b ab =b b a a=.解题关键是分解成一个完全平方数和一个代数式的积的形式. 2.C解析:C【解析】【分析】根据三角形中位线定理得到所得四边形的对边都平行且相等,那么其为平行四边形,再根据邻边互相垂直且相等,可得四边形是正方形.【详解】解:、、、分别是、、、的中点,,,EH=FG=BD,EF=HG=AC,四边形是平行四边形,,,,,四边形是正方形,故选:C.【点睛】本题考查的是三角形中位线定理以及正方形的判定,解题的关键是构造三角形利用三角形的中位线定理解答.3.A解析:A【解析】1(3.4 2.9 3.0 3.1 2.6)35x=++++=.所以4月份营业额约为3×30=90(万元).4.D解析:D【解析】【分析】根据二次根式的除法法则进行计算即可.【详解】原式414342 333÷=⨯==.故选:D.【点睛】本题考查二次根式的除法,掌握二次根式的除法法则是解答本题的关键.5.C解析:C【解析】【分析】利用k、b的值依据函数的性质解答即可.【详解】解:当x=1时,y=3,故A选项正确,∵函数y=2x+1图象经过第一、二、三象限,y随x的增大而增大,∴B、D正确,∵y>0,∴2x+1>0,∴x>﹣12,∴C选项错误,故选:C.【点睛】此题考查一次函数的性质,熟记性质并运用解题是关键. 6.B解析:B【解析】【分析】【详解】解:如图,设直线AB的解析式为y=kx+b,则4+=1200 {5k+b=1650k b,解得450 {600 kb==-故直线AB的解析式为y=450x﹣600,当x=2时,y=450×2﹣600=300,300÷2=150(m2)故选B.【点睛】本题考查一次函数的应用.7.B解析:B【解析】【分析】当t=5时,点P到达A处,根据图象可知AB=5;当s=40时,点P到达点D处,根据三角形BCD的面积可求出BC的长,再利用勾股定理即可求解.【详解】解:当t=5时,点P到达A处,根据图象可知AB=5,过点A作AE⊥CD交CD于点E,则四边形ABCE为矩形,∵AC=AD,∴DE=CE=12 CD,当s=40时,点P到达点D处,则S=12CD•BC=12(2AB)•BC=5×BC=40,∴BC=8,∴AD=AC22225889AB BC++=故选B.【点睛】本题以动态的形式考查了函数、等腰三角形的性质、勾股定理等知识.准确分析图象,并结合三角形的面积求出BC的长是解题的关键.8.D解析:D【解析】【分析】根据矩形性质可判定选项A、B、C正确,选项D错误.【详解】∵四边形ABCD为矩形,∴∠ABC=90°,AC=BD,OA=OB ,故选D【点睛】本题考查了矩形的性质,熟练运用矩形的性质是解决问题的关键.9.D解析:D【解析】【分析】分第三边为直角边或斜边两种情况,根据勾股定理分别求第三边.【详解】当第三边为直角边时,4为斜边,第三边;当第三边为斜边时,3和4为直角边,第三边=5,故选:D.【点睛】本题考查了勾股定理.关键是根据第三边为直角边或斜边,分类讨论,利用勾股定理求解.10.A解析:A【解析】【分析】先分析题意,把各个时间段内y与x之间的关系分析清楚,本题是分段函数,分为三段.【详解】解:根据题意可知:火车进入隧道的时间x与火车在隧道内的长度y之间的关系具体可描述为:当火车开始进入时y逐渐变大,火车完全进入后一段时间内y不变,当火车开始出来时y逐渐变小,反映到图象上应选A.故选:A.【点睛】本题考查了动点问题的函数图象,主要考查了根据实际问题作出函数图象的能力.解题的关键是要知道本题是分段函数,分情况讨论y与x之间的函数关系.11.B解析:B【解析】【分析】由于正比例函数y=kx(k≠0)函数值随x的增大而增大,可得k>0,-k<0,然后判断一次函数y=kx-k的图象经过的象限即可.【详解】解:∵正比例函数y=kx(k≠0)函数值随x的增大而增大,∴k>0,∴-k <0,∴一次函数y=kx-k 的图象经过一、三、四象限;故选:B .【点睛】本题主要考查了一次函数的图象,一次函数y=kx+b(k ≠0)中k ,b 的符号与图象所经过的象限如下:当k >0,b >0时,图象过一、二、三象限;当k >0,b <0时,图象过一、三、四象限;k <0,b >0时,图象过一、二、四象限;k <0,b <0时,图象过二、三、四象限.12.D解析:D【解析】【分析】【详解】已知AB=10,AC=8,BC=8,根据勾股定理的逆定理可判定△ABC 为直角三角形,又因DE 为AC 边的中垂线,可得DE ⊥AC ,AE=CE=4,所以DE 为三角形ABC 的中位线,即可得DE=12BC =3,再根据勾股定理求出CD=5,故答案选D. 考点:勾股定理及逆定理;中位线定理;中垂线的性质. 二、填空题13.【解析】【分析】根据两直线平行可设把点代入即可求出解析式【详解】解:∵一次函数图像与直线平行∴设一次函数为把点代入方程得:∴∴一次函数的解析式为:;故答案为:【点睛】本题考查了一次函数的图像和性质解 解析:25y x =-+【解析】【分析】根据两直线平行,可设2y x b =-+,把点()1,3代入,即可求出解析式.【详解】解:∵一次函数图像与直线21y x =-+平行,∴设一次函数为2y x b =-+,把点()1,3代入方程,得:213b -⨯+=,∴5b =,∴一次函数的解析式为:25y x =-+;故答案为:25y x =-+.【点睛】本题考查了一次函数的图像和性质,解题的关键是掌握两条直线平行,则斜率相等.14.【解析】【分析】设该船行驶的速度为x海里/时由已知可得BC=3xAQ⊥BC∠BAQ=60°∠CAQ=45°AB=80海里在直角三角形ABQ中求出AQBQ再在直角三角形AQC中求出CQ得出BC=40+解析:404033【解析】【分析】设该船行驶的速度为x海里/时,由已知可得BC=3x,AQ⊥BC,∠BAQ=60°,∠CAQ=45°,AB=80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,得出BC=40+403=3x,解方程即可.【详解】如图所示:该船行驶的速度为x海里/时,3小时后到达小岛的北偏西45°的C处,由题意得:AB=80海里,BC=3x海里,在直角三角形ABQ中,∠BAQ=60°,∴∠B=90°−60°=30°,∴AQ=12AB=40,BQ3AQ=3在直角三角形AQC中,∠CAQ=45°,∴CQ=AQ=40,∴BC=40+33x,解得:x 40403+即该船行驶的速度为404033+海里/时;40403+【点睛】本题考查的是解直角三角形,熟练掌握方向角是解题的关键.15.【解析】在Rt△ABC中AB=5米BC=3米∠ACB=90°∴AC=∴AC+BC=3+4=7米故答案是:7解析:【解析】在Rt△ABC中,AB=5米,BC=3米,∠ACB=90°,∴AC=224-=AB BC∴AC+BC=3+4=7米.故答案是:7.16.24【解析】【分析】根据菱形的性质利用勾股定理求得另一条对角线再根据菱形的面积等于两对角线乘积的一半求得菱形的面积【详解】解:如图当BD=6时∵四边形ABCD是菱形∴AC⊥BDAO=COBO=DO=解析:24【解析】【分析】根据菱形的性质利用勾股定理求得另一条对角线,再根据菱形的面积等于两对角线乘积的一半求得菱形的面积.【详解】解:如图,当BD=6时,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO=3,∵AB=5,∴AO==4,∴AC=4×2=8,∴菱形的面积是:6×8÷2=24,故答案为:24.【点睛】本题考查了菱形的面积公式,以及菱形的性质和勾股定理,关键是掌握菱形的面积等于两条对角线的积的一半.17.①④【解析】矩形的判定方法由:①有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形由此可得能使平行四边形ABCD是矩形的条件是①和④解析:①④【解析】矩形的判定方法由:①有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形,由此可得能使平行四边形ABCD是矩形的条件是①和④.18.乙【解析】【分析】通过图示波动的幅度即可推出【详解】通过图示可看出一至三次甲乙丙中乙最稳定波动最小四至五次三人基本一样故选乙【点睛】考查数据统计的知识点解析:乙【解析】【分析】通过图示波动的幅度即可推出.【详解】通过图示可看出,一至三次甲乙丙中,乙最稳定,波动最小,四至五次三人基本一样,故选乙【点睛】考查数据统计的知识点19.48【解析】∵▱ABCD的周长=2(BC+CD)=40∴BC+CD=20①∵AE⊥BC于EAF⊥CD于FAE=4AF=6∴S▱ABCD=4BC=6CD整理得BC=C D②联立①②解得CD=8∴▱ABC解析:48【解析】∵▱ABCD的周长=2(BC+CD)=40,∴BC+CD=20①,∵AE⊥BC于E,AF⊥CD于F,AE=4,AF=6,∴S▱ABCD=4BC=6CD,整理得,BC=32CD②,联立①②解得,CD=8,∴▱ABCD的面积=AF⋅CD=6CD=6×8=48.故答案为48.20.2+2【解析】【分析】地毯的竖直的线段加起来等于BC水平的线段相加正好等于AC即地毯的总长度至少为(AC+BC)【详解】在Rt△ABC中∠A=30°BC=2m ∠C=90°∴AB=2BC=4m∴AC=解析:【解析】【分析】地毯的竖直的线段加起来等于BC,水平的线段相加正好等于AC,即地毯的总长度至少为(AC+BC).【详解】在Rt △ABC 中,∠A=30°,BC=2m ,∠C=90°,∴AB=2BC=4m ,∴2223AB BC -=m ,∴3(m ).故答案为:3【点睛】本题主要考查勾股定理的应用,解此题的关键在于准确理解题中地毯的长度为水平与竖直的线段的和.三、解答题21.(1)证明见解析;(2)∠ABE =40°.【解析】【分析】(1)由四边形ABCD 是平行四边形,点E 为AD 的中点,易证得△DEC ≌△AEF (AAS ),继而可证得DC =AF ,又由DC =AB ,证得结论;(2)由(1)可知BF =2AB ,EF =EC ,然后由∠BCD =100°求得BE 平分∠CBF ,继而求得答案.【详解】证明:(1)∵四边形ABCD 是平行四边形,∴CD =AB ,CD ∥AB ,∴∠DCE =∠F ,∠FBC+∠BCD =180°,∵E 为AD 的中点,∴DE =AE .在△DEC 和△AEF 中,DCE F DEC AEF DE AE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△DEC ≌△AEF (AAS ).∴DC =AF .∴AB =AF ;(2)由(1)可知BF =2AB ,EF =EC ,∵∠BCD =100°,∴∠FBC =180°﹣100°=80°,∵BC =2AB ,∴BF =BC ,∴BE 平分∠CBF ,∴∠ABE =12∠FBC =12×80°=40° 【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质以及等腰三角形的性质,证得△DEC ≌△AEF 和△BCF 是等腰三角形是关键.22.(1)12;(2)5【解析】【分析】(1)先证明△ABD 是等腰三角形,再根据三线合一得到AE BD ⊥,利用勾股定理求得AE 的长;(2)利用三角线的中位线定理可得:12EF CD =,再进行求解. 【详解】解:(1)13AD AC CD =-=∴AB AD =∵AE 平分BAC ∠,∴5,EB ED AE BD ==⊥根据勾股定理,得12AE == (2)由(1),知EB ED =,又∵FB FC =, ∴152EF CD ==. 【点睛】 考查了三角形中位线定理,解题关键是利用三线合一和三角形的中位线.23.(1)CH 是从村庄C 到河边的最近路,理由见解析;(2)原来的路线AC 的长为2.5千米.【解析】【分析】(1)根据勾股定理的逆定理解答即可;(2)根据勾股定理解答即可【详解】(1)是,理由是:在△CHB 中,∵CH 2+BH 2=(2.4)2+(1.8)2=9BC 2=9∴CH 2+BH 2=BC 2∴CH ⊥AB ,所以CH 是从村庄C 到河边的最近路(2)设AC =x在Rt △ACH 中,由已知得AC =x ,AH =x ﹣1.8,CH =2.4由勾股定理得:AC 2=AH 2+CH 2∴x 2=(x ﹣1.8)2+(2.4)2解这个方程,得x =2.5,答:原来的路线AC 的长为2.5千米.【点睛】此题考查勾股定理及其逆定理的应用,熟练掌握基础知识是解题的关键.24.(1)证明见解析;(2)证明见解析.【解析】分析:(1)由全等三角形的判定定理ASA 证得结论;(2)由“邻边相等的平行四边形为菱形”证得结论.详解:(1)证明:∵四边形ABCD 是平行四边形,∴∠A=∠C .在△AED 与△CFD 中,A C AE CFAED CFD ===∠∠⎧⎪⎨⎪∠∠⎩, ∴△AED ≌△CFD (ASA );(2)由(1)知,△AED ≌△CFD ,则AD=CD .又∵四边形ABCD 是平行四边形,∴四边形ABCD 是菱形.点睛:考查了菱形的判定,全等三角形的判定与性质以及平行四边形的性质,解题的关键是掌握相关的性质与定理.25.(1)作线段BC 的中段线,BC 的中点为F ,连结AF 即可,见解析;(2) 见解析.【解析】【分析】(1)作BC 的垂直平分线得到BC 的中点F ,从而得到BC 边上的中线AF ;(2)写出已知、求证,连接DF 、EF ,如图,先证明EF 为AB 边的中位线,利用三角形中位线性质得到EF ∥AD ,EF=AD ,则可判断四边形ADFE 为平行四边形,从而得到DE 与AF 互相平分.【详解】解:(1)作线段BC 的中段线,BC 的中点为F ,连结AF 即可。
2020-2021八年级数学下期末一模试题(含答案)
2020-2021八年级数学下期末一模试题(含答案)一、选择题1.下列各命题的逆命题成立的是( )A .全等三角形的对应角相等B .如果两个数相等,那么它们的绝对值相等C .两直线平行,同位角相等D .如果两个角都是45°,那么这两个角相等 2.已知函数y =11x x +-,则自变量x 的取值范围是( ) A .﹣1<x <1 B .x ≥﹣1且x ≠1 C .x ≥﹣1 D .x ≠13.下列命题中,真命题是( )A .两条对角线垂直的四边形是菱形B .对角线垂直且相等的四边形是正方形C .两条对角线相等的四边形是矩形D .两条对角线相等的平行四边形是矩形4.以下命题,正确的是( ).A .对角线相等的菱形是正方形B .对角线相等的平行四边形是正方形C .对角线互相垂直的平行四边形是正方形D .对角线互相垂直平分的四边形是正方形5.将一张长方形纸片按如图所示的方式折叠,,BC BD 为折痕,则CBD ∠的度数为( )A .60︒B .75︒C .90︒D .95︒6.随机抽取某商场4月份5天的营业额(单位:万元)分别为3.4,2.9,3.0,3.1,2.6,则这个商场4月份的营业额大约是( )A .90万元B .450万元C .3万元D .15万元7.若函数()0y kx k =≠的值随自变量的增大而增大,则函敷2y x k =+的图象大致是( )A.B.C.D.8.如图,以 Rt△ABC的斜边 BC为一边在△ABC的同侧作正方形 BCEF,设正方形的中心为O,连接 AO,如果 AB=4,AO=62,那么 AC 的长等于()A.12B.16C.43D.829.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9B.6C.4D.310.如图(1),四边形ABCD中,AB∥CD,∠ADC=90°,P从A点出发,以每秒1个单位长度的速度,按A→B→C→D的顺序在边上匀速运动,设P点的运动时间为t秒,△PAD的面积为S,S关于t的函数图象如图(2)所示,当P运动到BC中点时,△APD 的面积为()A.4B.5C.6D.711.某商场对上周某品牌运动服的销售情况进行了统计,如下表所示:颜色黄色绿色白色紫色红色数量(件)12015023075430经理决定本周进货时多进一些红色的,可用来解释这一现象的统计知识的()A.平均数B.中位数C.众数D.平均数与众数AB=,12.如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB的中点C'上.若6 BC=,则BF的长为( )9A.4B.32C.4.5D.5二、填空题13.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则△AEF的周长=cm.14.已知函数y=2x+m-1是正比例函数,则m=___________.15.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③关于x的方程kx﹣x=a﹣b的解是x=3;④当x>3时,y1<y2中.则正确的序号有____________.16.元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路s关于行走的时间t和函数图象,则两图象交点P的坐标是_____.17.已知数据:﹣1,4,2,﹣2,x的众数是2,那么这组数据的平均数为_____.18.(多选)在同一条道路上,甲车从A地到B地,乙车从B地到A地,两车同时出发,乙车先到达目的地,图中的折线段表示甲,乙两车之间的距离y(千米)与行驶时间x (小时)的函数关系,下列说法正确的是()A.甲乙两车出发2小时后相遇B.甲车速度是40千米/小时C.相遇时乙车距离B地100千米D.乙车到A地比甲车到B地早53小时19.已知一组数据1,2,3,4,5的方差为2,则另一组数据11,12,13,14,15的方差为___.20.某水库的水位在5小时内持续上涨,初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y米与时间x小时(0≦x≦5)的函数关系式为___三、解答题21.如图所示,在△ABC中,点O是AC上的一个动点,过点O作直线MN∥BC,设MN 交∠BCA的平分线于E,交∠BCA的外角平分线于F.(1)请猜测OE与OF的大小关系,并说明你的理由;(2)点O 运动到何处时,四边形AECF 是矩形?写出推理过程;(3)点O 运动到何处且△ABC 满足什么条件时,四边形AECF 是正方形?(写出结论即可)22.有一块矩形木板,木工采用如图的方式,在木板上截出两个面积分别为18dm 2和32dm 2的正方形木板.(1)求剩余木料的面积.(2)如果木工想从剩余的木料中截出长为1.5dm ,宽为ldm 的长方形木条,最多能截出 块这样的木条.23.某商场同时购进甲、乙两种商品共100件,其进价和售价如下表: 商品名称甲 乙 进价(元/件)40 90 售价(元/件) 60 120设其中甲种商品购进x 件,商场售完这100件商品的总利润为y 元.(Ⅰ)写出y 关于x 的函数关系式;(Ⅱ)该商场计划最多投入8000元用于购买这两种商品,①至少要购进多少件甲商品?②若销售完这些商品,则商场可获得的最大利润是多少元?24.设a 8x =-b 3x 4=+c x 2=+(1)当x 取什么实数时,a ,b ,c 都有意义;(2)若Rt △ABC 三条边的长分别为a ,b ,c ,求x 的值.25.如图,小红用一张长方形纸片ABCD 进行折纸,已知该纸片宽AB 为8cm ,长BC 为10cm .当小红折叠时,顶点D 落在BC 边上的点F 处(折痕为AE ).想一想,此时EC 有多长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】试题分析:首先写出各个命题的逆命题,再进一步判断真假.解:A、逆命题是三个角对应相等的两个三角形全等,错误;B、绝对值相等的两个数相等,错误;C、同位角相等,两条直线平行,正确;D、相等的两个角都是45°,错误.故选C.2.B解析:B【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以求解.【详解】解:根据题意得:1010 xx+≥⎧⎨-≠⎩,解得:x≥-1且x≠1.故选B.点睛:考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.3.D解析:D【解析】A、两条对角线垂直并且相互平分的四边形是菱形,故选项A错误;B、对角线垂直且相等的平行四边形是正方形,故选项B错误;C 、两条对角线相等的平行四边形是矩形,故选项C 错误;D 、根据矩形的判定定理,两条对角线相等的平行四边形是矩形,为真命题,故选项D 正确;故选D .4.A解析:A【解析】【分析】利用正方形的判定方法分别判断后即可确定正确的选项.【详解】A 、对角线相等的菱形是正方形,正确,是真命题;B 、对角线相等的平行四边形是矩形,故错误,是假命题;C 、对角线互相垂直的平行四边形是菱形,故错误,是假命题;D 、对角线互相垂直平分的四边形是菱形,故错误,是假命题,故选:A .【点睛】考查了命题与定理的知识,解题的关键是了解正方形的判定方法.5.C解析:C【解析】【分析】根据图形,利用折叠的性质,折叠前后形成的图形全等,对应角相等,利用平角定义ABC ∠+A BC '∠+E BD '∠+EBD ∠=180°,再通过等量代换可以求出CBD ∠. 【详解】解:∵长方形纸片按如图所示的方式折叠,,BC BD 为折痕∴A BC ABC '∠=∠,E BD EBD '∠=∠∵ABC ∠+A BC '∠+E BD '∠+EBD ∠=180°(平角定义)∴A BC '∠+A BC '∠+E BD '∠+E BD '∠=180°(等量代换)A BC '∠+E BD '∠=90°即CBD ∠=90°故选:C .【点睛】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.6.A解析:A【解析】1(3.4 2.9 3.0 3.1 2.6)35x =++++=.所以4月份营业额约为3×30=90(万元). 7.C解析:C【解析】【分析】根据正比例函数和一次函数的图像与性质逐项判断即可求解.【详解】∵函数()0y kx k =≠的值随自变量的增大而增大,∴k >0,∵一次函数2y x k =+,∴1k =1>0,b=2k >0,∴此函数的图像经过一、二、四象限;故答案为C.【点睛】本题考查了正比例函数和一次函数的图像与性质,熟练掌握正比例函数和一次函数的图像特点是解题的关键.8.B解析:B【解析】【分析】首选在AC 上截取4CG AB ==,连接OG ,利用SAS 可证△ABO ≌△GCO ,根据全等三角形的性质可以得到:OA OG ==AOB COG ∠=∠,则可证△AOG 是等腰直角三角形,利用勾股定理求出12AG =,从而可得AC 的长度.【详解】解:如下图所示,在AC 上截取4CG AB ==,连接OG ,∵四边形BCEF 是正方形,90BAC ∠=︒,∴OB OC =,90BAC BOC ∠=∠=︒,∴点B 、A 、O 、C 四点共圆,∴ABO ACO ∠=∠,在△ABO 和△GCO 中,{BA CGABO ACO OB OC=∠=∠=,∴△ABO ≌△GCO , ∴62OA OG ==,AOB COG ∠=∠,∵90BOC COG BOG ∠=∠+∠=︒,∴90AOG AOB BOG ∠=∠+∠=︒,∴△AOG 是等腰直角三角形, ∴()()22626212AG =+=,∴12416AC =+=.故选:B .【点睛】本题考查正方形的性质;全等三角形的判定与性质;勾股定理;直角三角形的性质.9.D解析:D【解析】【分析】已知ab =8可求出四个三角形的面积,用大正方形面积减去四个三角形的面积得到小正方形的面积,根据面积利用算术平方根求小正方形的边长.【详解】a b -由题意可知:中间小正方形的边长为:,11ab 8422=⨯=Q 每一个直角三角形的面积为:, 214ab a b 252(),∴⨯+-= 2a b 25169∴-=-=(),a b 3∴-=,故选D.【点睛】本题考查勾股定理的推导,有较多变形题,解题的关键是找出图形间面积关系,同时熟练运用勾股定理以及完全平方公式,本题属于基础题型.10.B解析:B【解析】【分析】根据函数图象和三角形面积得出AB+BC=6,CD=4,AD=4,AB=1,当P运动到BC中点时,梯形ABCD的中位线也是△APD的高,求出梯形ABCD的中位线长,再代入三角形面积公式即可得出结果.【详解】解:根据题意得:四边形ABCD是梯形,AB+BC=6,CD=10-6=4,∵12AD×CD=8,∴AD=4,又∵12AD×AB=2,∴AB=1,当P运动到BC中点时,梯形ABCD的中位线也是△APD的高,∵梯形ABCD的中位线长=12(AB+CD)=52,∴△PAD的面积1545 22;=⨯⨯=故选B.【点睛】本题考查了动点问题的函数图象、三角形面积公式、梯形中位线定理等知识;看懂函数图象是解决问题的关键.11.C解析:C【解析】试题解析:由于销售最多的颜色为红色,且远远多于其他颜色,所以选择多进红色运动装的主要根据众数.故选C.考点:统计量的选择.12.A解析:A【解析】【分析】【详解】∵点C′是AB边的中点,AB=6,∴BC′=3,由图形折叠特性知,C′F=CF=BC -BF=9-BF ,在Rt △C′BF 中,BF 2+BC′2=C′F 2,∴BF 2+9=(9-BF )2,解得,BF=4,故选A .二、填空题13.9【解析】∵四边形ABCD 是矩形∴∠ABC=90°BD=ACBO=OD∵AB=6cmBC=8cm∴由勾股定理得:(cm)∴DO=5cm∵点E F 分别是AOAD 的中点(cm)故答案为25解析:9【解析】∵四边形ABCD 是矩形,∴∠ABC =90°,BD =AC ,BO =OD ,∵AB =6cm ,BC =8cm ,∴由勾股定理得:10BD AC == (cm ),∴DO =5cm ,∵点E . F 分别是AO 、AD 的中点,1 2.52EF OD ∴== (cm ), 故答案为2.5.14.1【解析】分析:依据正比例函数的定义可得m-1=0求解即可详解:∵y =2x +m -1是正比例函数∴m-1=0解得:m=1故答案为:1点睛:本题考查了正比例函数的定义解题的关键是掌握正比例函数的定义解析:1【解析】分析:依据正比例函数的定义可得m-1=0,求解即可,详解:∵y =2x +m -1是正比例函数,∴m-1=0.解得:m=1.故答案为:1.点睛:本题考查了正比例函数的定义,解题的关键是掌握正比例函数的定义.15.①③④【解析】【分析】根据y1=kx+b 和y2=x+a 的图象可知:k <0a <0所以当x >3时相应的x 的值y1图象均低于y2的图象【详解】根据图示及数据可知:①k <0正确;②a <0原来的说法错误;③方解析:①③④【解析】【分析】根据y1=kx+b和y2=x+a的图象可知:k<0,a<0,所以当x>3时,相应的x的值,y1图象均低于y2的图象.【详解】根据图示及数据可知:①k<0正确;②a<0,原来的说法错误;③方程kx+b=x+a的解是x=3,正确;④当x>3时,y1<y2正确.故答案是:①③④.【点睛】考查一次函数的图象,考查学生的分析能力和读图能力,一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.16.(324800)【解析】【分析】根据题意可以得到关于t的方程从而可以求得点P的坐标本题得以解决【详解】由题意可得150t=240(t﹣12)解得t=32则150t=150×32=4800∴点P的坐标解析:(32,4800)【解析】【分析】根据题意可以得到关于t的方程,从而可以求得点P的坐标,本题得以解决.【详解】由题意可得,150t=240(t﹣12),解得,t=32,则150t=150×32=4800,∴点P的坐标为(32,4800),故答案为:(32,4800).【点睛】本题考查了一次函数的应用,根据题意列出方程150t=240(t﹣12)是解决问题的关键.17.【解析】试题分析:数据:﹣142﹣2x的众数是2即的2次数最多;即x=2则其平均数为:(﹣1+4+2﹣2+2)÷5=1故答案为1考点:1众数;2算术平均数解析:【解析】试题分析:数据:﹣1,4,2,﹣2,x的众数是2,即的2次数最多;即x=2.则其平均数为:(﹣1+4+2﹣2+2)÷5=1.故答案为1.考点:1.众数;2.算术平均数.18.ABD【解析】【分析】根据图象的信息依次进行解答即可【详解】A出发2h后其距离为零即两车相遇故正确;B甲的速度是千米/小时故正确;C相遇时甲行驶的路程为2×40=80km故乙车行驶路程为120千米故解析:ABD【解析】【分析】根据图象的信息依次进行解答即可.【详解】A、出发2h后,其距离为零,即两车相遇,故正确;B、甲的速度是200405=千米/小时,故正确;C、相遇时,甲行驶的路程为2×40=80km,故乙车行驶路程为120千米,故离B地80千米,故错误;D、乙车2小时行驶路程120千米,故乙的速度是120602=千米/小时,故乙车到达A地时间为20060=103小时,故乙车到A地比甲车到B地早5-103=53小时,D正确;故选:ABD.【点睛】本题考查了行程问题的数量关系速度=路程÷时间的运用,速度和的运用,解答时正确理解函数图象的数据的意义是关键.19.2【解析】试题分析:根据方差的性质当一组数据同时加减一个数时方差不变进而得出答案∵一组数据12345的方差为2∴则另一组数据1112131415的方差为2故答案为2考点:方差解析:2【解析】试题分析:根据方差的性质,当一组数据同时加减一个数时方差不变,进而得出答案.∵一组数据1,2,3,4,5的方差为2,∴则另一组数据11,12,13,14,15的方差为2.故答案为2考点:方差20.y=6+03x【解析】试题分析:根据题意可得:水库的水位=初始水位高度+每小时上升的速度×时间即y=6+03x考点:一次函数的应用解析:y=6+0.3x【解析】试题分析:根据题意可得:水库的水位=初始水位高度+每小时上升的速度×时间,即y=6+0.3x.考点:一次函数的应用.三、解答题21.(1)猜想:OE=OF,理由见解析;(2)见解析;(3)见解析.【解析】【分析】(1)猜想:OE=OF,由已知MN∥BC,CE、CF分别平分∠BCO和∠GCO,可推出∠OEC=∠OCE,∠OFC=∠OCF,所以得EO=CO=FO.(2)由(1)得出的EO=CO=FO,点O运动到AC的中点时,则由EO=CO=FO=AO,所以这时四边形AECF是矩形.(3)由已知和(2)得到的结论,点O运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时,则推出四边形AECF是矩形且对角线垂直,所以四边形AECF是正方形.【详解】(1)猜想:OE=OF,理由如下:∵MN∥BC,∴∠OEC=∠BCE,∠OFC=∠GCF,又∵CE平分∠BCO,CF平分∠GCO,∴∠OCE=∠BCE,∠OCF=∠GCF,∴∠OCE=∠OEC,∠OCF=∠OFC,∴EO=CO,FO=CO,∴EO=FO.(2)当点O运动到AC的中点时,四边形AECF是矩形.∵当点O运动到AC的中点时,AO=CO,又∵EO=FO,∴四边形AECF是平行四边形,∵FO=CO,∴AO=CO=EO=FO,∴AO+CO=EO+FO,即AC=EF,∴四边形AECF是矩形.(3)当点O运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时,四边形AECF是正方形.∵由(2)知,当点O运动到AC的中点时,四边形AECF是矩形,已知MN∥BC,当∠ACB=90°,则∠AOF=∠CO E=∠COF=∠AOE=90°,∴AC⊥EF,∴四边形AECF是正方形.【点睛】此题考查的知识点是正方形和矩形的判定及角平分线的定义,解题的关键是由已知得出EO=FO,然后根据(1)的结论确定(2)(3)的条件.22.(1)剩余木料的面积为6dm2;(2)2.【解析】【分析】(1)先确定两个正方形的边长,然后结合图形解答即可;(2)估算322的大小,结合题意解答即可.【详解】解:(1)∵两个正方形的面积分别为18dm2和32dm2,∴这两个正方形的边长分别为2dm和2dm,∴剩余木料的面积为(﹣)×=6(dm 2);(2)4<<4.5,1<2,∴从剩余的木料中截出长为1.5dm ,宽为ldm 的长方形木条,最多能截出2块这样的木条,故答案为:2.【点睛】本题考查的是二次根式的应用,掌握无理数的估算方法是解答本题的关键.23.(Ⅰ)103000y x =-+;(Ⅱ)①至少要购进20件甲商品;②售完这些商品,则商场可获得的最大利润是2800元.【解析】【分析】(Ⅰ)根据总利润=(甲的售价-甲的进价)×甲的进货数量+(乙的售价-乙的进价)×乙的进货数量列关系式并化简即可得答案;(Ⅱ)①根据总成本最多投入8000元列不等式即可求出x 的范围,即可得答案;②根据一次函数的增减性确定其最大值即可.【详解】(Ⅰ)根据题意得:()()()604012090100103000y x x x =-+--=-+则y 与x 的函数关系式为103000y x =-+.(Ⅱ)()40901008000x x +-≤,解得20x ≥.∴至少要购进20件甲商品.103000y x =-+,∵100-<,∴y 随着x 的增大而减小∴当20x =时,y 有最大值,102030002800y =-⨯+=最大.∴若售完这些商品,则商场可获得的最大利润是2800元.【点睛】本题考查一次函数的实际应用及一元一次不等式的应用,熟练掌握一次函数的性质是解题关键.24.(1)483x -≤≤;(2)x =25或2. 【解析】【分析】(1)根据二次根式的被开方数为非负数,列不等式组求解;(2)根据a 、b 、c 分别作直角三角形的斜边,由勾股定理分别求解.【详解】 解:(1)由二次根式的性质,得8034020x x x -≥⎧⎪+≥⎨⎪+≥⎩,解得48 3x-≤≤;(2)当c为斜边时,由a2+b2=c2,即8-x+3x+4=x+2,解得x=-10,当b为斜边时,a2+c2=b2,即8-x+x+2=3x+4,解得x=2,当a为斜边时,b2+c2=a2,即3x+4+x+2=8-x,解得x=2 5∵48 3x-≤≤∴x=25或2.【点睛】本题考查二次根式的性质及勾股定理的运用.在没有指定直角三角形的斜边的情况下,注意分类讨论.25.3cm.【解析】【分析】根据矩形的性质得AB=CD=8,BC=AD=10,∠B=∠C=90°,再根据折叠的性质得AF=AD=10,DE=EF,在Rt△ABF中,利用勾股定理计算出BF=6,则CF=BC﹣BF=4,设CE=x,则DE=EF=8﹣x,在Rt△CEF中利用勾股定理得到∴42+x2=(8﹣x)2,然后解方程即可.【详解】解:∵四边形ABCD为矩形,∴AB=CD=8,BC=AD=10,∠B=∠C=90°.∵长方形纸片ABCD折纸,顶点D落在BC边上的点F处(折痕为AE),∴AF=AD=10,DE=EF,在Rt△ABF中,AB=8,AF=10,∴6=∴CF=BC﹣BF=4.设CE=x,则DE=EF=8﹣x,在Rt△CEF中,∵CF2+CE2=EF2,∴42+x2=(8﹣x)2,解得x=3∴EC的长为3cm.【点睛】本题考查翻折变换(折叠问题);矩形的性质;勾股定理;方程思想的应用.。
2020-2021石家庄市初二数学下期末模拟试卷附答案
2020-2021石家庄市初二数学下期末模拟试卷附答案一、选择题1.均匀地向如图的容器中注满水,能反映在注水过程中水面高度h 随时间t 变化的函数图象是( )A .B .C .D .2.如图,矩形OABC 的顶点O 与平面直角坐标系的原点重合,点A ,C 分别在x 轴,y 轴上,点B 的坐标为(-5,4),点D 为边BC 上一点,连接OD ,若线段OD 绕点D 顺时针旋转90°后,点O 恰好落在AB 边上的点E 处,则点E 的坐标为( )A .(-5,3)B .(-5,4)C .(-5,52) D .(-5,2)3.如图,矩形ABCD 中,对角线AC BD 、交于点O .若60,8AOB BD ∠==o,则AB 的长为( )A .3B .4C .43D .54.下列命题中,真命题是( ) A .两条对角线垂直的四边形是菱形 B .对角线垂直且相等的四边形是正方形 C .两条对角线相等的四边形是矩形 D .两条对角线相等的平行四边形是矩形 5.以下命题,正确的是( ). A .对角线相等的菱形是正方形 B .对角线相等的平行四边形是正方形 C .对角线互相垂直的平行四边形是正方形D .对角线互相垂直平分的四边形是正方形6.正比例函数(0)y kx k =≠的函数值y 随x 的增大而增大,则一次函数y x k =-的图象大致是( )A .B .C .D .7.已知y =(k -3)x |k |-2+2是一次函数,那么k 的值为( ) A .3± B .3 C .3- D .无法确定 8.若函数y=(m-1)x ∣m ∣-5是一次函数,则m 的值为( )A .±1 B .-1C .1D .29.已知,,a b c 是ABC ∆的三边,且满足222()()0a b a b c ---=,则ABC ∆是( ) A .直角三角形 B .等边三角形C .等腰直角三角形D .等腰三角形或直角三角形 10.若一个直角三角形的两边长为12、13,则第三边长为( )A .5B .17C .5或17D .5或11.()23- ) A .﹣3B .3或﹣3C .9D .312.正方形具有而菱形不一定具有的性质是( )A .对角线互相平分B .每条对角线平分一组对角C .对边相等D .对角线相等二、填空题13.如图,在▱ABCD 中,∠D =120°,∠DAB 的平分线AE 交DC 于点E ,连接BE.若AE=AB ,则∠EBC 的度数为_______.14.计算:182-=______. 15.若2(3)x -=3-x ,则x 的取值范围是__________. 16.已知函数y =2x +m -1是正比例函数,则m =___________.17.计算:1822-=__________. 18.如果一组数据1,3,5,a ,8的方差是0.7,则另一组数据11,13,15,10a +,18的方差是________.19.如图,已知函数y=x+b 和y=ax+3的图象交点为P ,则不等式x+b >ax+3的解集为_____.20.我们把[a ,b]称为一次函数y =ax+b 的“特征数”.如果“特征数”是[2,n+1]的一次函数为正比例函数,则n 的值为_____.三、解答题21.2019年4月23日是第24个世界读书日.为迎接第24个世界读书日的到来,某校举办读书分享大赛活动:现有甲、乙两位同学的各项成绩如下表所示:若“推荐语”“读书心得”“读书讲座”的成绩按2:3:5确定综合成绩,则甲、乙二人谁能获胜?请通过计算说明理由 参赛者 推荐语 读书心得 读书讲座 甲 87 85 95 乙94888822.如图,在平行四边形ABCD 中,点E 为AD 的中点,延长CE 交BA 的延长线于点F .(1)求证:AB =AF ;(2)若BC =2AB ,∠BCD =100°,求∠ABE 的度数.23.如图,▱ABCD的对角线AC,BD相交于点O.E,F是AC上的两点,并且AE=CF,连接DE,BF.(1)求证:△DOE≌△BOF;(2)若BD=EF,连接DE,BF.判断四边形EBFD的形状,并说明理由.24.如图为六个大小完全相同的矩形方块组合而成的图形,请仅用无刻度的直尺分别在下列方框内完成作图:(1)在图(1)中,作与MN平行的直线AB;(2)在图(2)中,作与MN垂直的直线CD.25.先化简再求值:(a﹣22ab ba-)÷22a ba-,其中2,b=12.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】试题分析:最下面的容器较粗,第二个容器最粗,那么第二个阶段的函数图象水面高度h 随时间t的增大而增长缓慢,用时较长,最上面容器最小,那么用时最短.故选A.考点:函数的图象.2.A解析:A【解析】【分析】先判定△DBE≌△OCD,可得BD=OC=4,设AE=x,则BE=4﹣x=CD,依据BD+CD=5,可得4+4﹣x=5,进而得到AE=3,据此可得E(﹣5,3).【详解】由题可得:AO=BC=5,AB=CO=4,由旋转可得:DE=OD,∠EDO=90°.又∵∠B=∠OCD=90°,∴∠EDB+∠CDO=90°=∠COD+∠CDO,∴∠EDB=∠DOC,∴△DBE≌△OCD,∴BD=OC=4,设AE=x,则BE=4﹣x=CD.∵BD+CD=5,∴4+4﹣x=5,解得:x=3,∴AE=3,∴E(﹣5,3).故选A.【点睛】本题考查了全等三角形的判定与性质,矩形的性质以及旋转的性质的运用,解题时注意:全等三角形的对应边相等.3.B解析:B【解析】【分析】由四边形ABCD为矩形,根据矩形的对角线互相平分且相等,可得OA=OB=4,又∠AOB=60°,根据有一个角为60°的等腰三角形为等边三角形可得三角形AOB为等边三角形,根据等边三角形的每一个角都相等都为60°可得出∠BAO为60°,据此即可求得AB长.【详解】∵在矩形ABCD中,BD=8,∴AO=12AC, BO=12BD=4,AC=BD,∴AO=BO,又∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OB=4,故选B.【点睛】本题考查了矩形的性质,等边三角形的判定与性质,熟练掌握矩形的对角线相等且互相平分是解本题的关键.4.D解析:D【解析】A、两条对角线垂直并且相互平分的四边形是菱形,故选项A错误;B、对角线垂直且相等的平行四边形是正方形,故选项B错误;C、两条对角线相等的平行四边形是矩形,故选项C错误;D、根据矩形的判定定理,两条对角线相等的平行四边形是矩形,为真命题,故选项D正确;故选D.5.A解析:A【解析】【分析】利用正方形的判定方法分别判断后即可确定正确的选项.【详解】A、对角线相等的菱形是正方形,正确,是真命题;B、对角线相等的平行四边形是矩形,故错误,是假命题;C、对角线互相垂直的平行四边形是菱形,故错误,是假命题;D、对角线互相垂直平分的四边形是菱形,故错误,是假命题,故选:A.【点睛】考查了命题与定理的知识,解题的关键是了解正方形的判定方法.6.B解析:B【解析】【分析】=的函数值y随x的增大而增大判断出k的符号,再根据一次函数先根据正比例函数y kx的性质进行解答即可.【详解】解:Q正比例函数y kx=的函数值y随x的增大而增大,>,<,∴-00k k=-的图象经过一、三、四象限.∴一次函数y x k故选B.【点睛】本题考查的知识点是一次函数的图象与正比例函数的性质,解题关键是先根据正比例函数的性质判断出k的取值范围.7.C解析:C【分析】根据一次函数的定义可得k-3≠0,|k|-2=1,解答即可.【详解】一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.所以|k|-2=1,解得:k=±3,因为k-3≠0,所以k≠3,即k=-3.故选:C.【点睛】本题主要考查一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.8.B解析:B【解析】根据一次函数的概念,形如y=kx+b(k≠0,k、b为常数)的函数为一次函数,故可知m-1≠0,|m|=1,解得m≠1,m=±1,故m=-1.故选B点睛:此题主要考查了一次函数的概念,利用一次函数的一般式y=kx+b(k≠0,k、b为常数),可得相应的关系式,然后求解即可,这是一个中考常考题题,比较简单.9.D解析:D【解析】【分析】由(a-b)(a2-b2-c2)=0,可得:a-b=0,或a2-b2-c2=0,进而可得a=b或a2=b2+c2,进而判断△ABC的形状为等腰三角形或直角三角形.【详解】解:∵(a-b)(a2-b2-c2)=0,∴a-b=0,或a2-b2-c2=0,即a=b或a2=b2+c2,∴△ABC的形状为等腰三角形或直角三角形.故选:D.【点睛】本题考查了勾股定理的逆定理以及等腰三角形的判定,解题时注意:有两边相等的三角形是等腰三角形,满足a2+b2=c2的三角形是直角三角形.10.D解析:D【解析】根据告诉的两边长,利用勾股定理求出第三边即可.注意13,12可能是两条直角边也可能是一斜边和一直角边,所以得分两种情况讨论. 【详解】当12,13为两条直角边时, 第三边==,当13,12分别是斜边和一直角边时,第三边==5.故选D . 【点睛】本题考查了勾股定理的知识,题目中渗透着分类讨论的数学思想.11.D解析:D 【解析】 【分析】本题考查二次根式的化简,2(0)(0)a a a a a ⎧=⎨-<⎩….【详解】2(3)|3|3-=-=.故选D . 【点睛】本题考查了根据二次根式的意义化简.2a a ≥02a a ;当a ≤02a a .12.D解析:D 【解析】 【分析】列举出正方形具有而菱形不一定具有的所有性质,由此即可得出答案. 【详解】正方形具有而菱形不一定具有的性质是:①正方形的对角线相等,而菱形不一定对角线相等; ②正方形的四个角是直角,而菱形的四个角不一定是直角. 故选D . 【点睛】本题考查了正方形、菱形的性质,熟知正方形及菱形的性质是解决问题的关键.二、填空题13.45°【解析】【分析】由平行四边形的性质得出∠ABC=∠D=108°AB∥CD 得出∠BAD=180°﹣∠D=60°由等腰三角形的性质和三角形内角和定理求出∠ABE=75°即可得出∠EBC 的度数【详解解析:45° 【解析】 【分析】由平行四边形的性质得出∠ABC =∠D =108°,AB ∥CD ,得出∠BAD =180°﹣∠D =60°,由等腰三角形的性质和三角形内角和定理求出∠ABE =75°,即可得出∠EBC 的度数. 【详解】解:∵四边形ABCD 是平行四边形, ∴∠ABC =∠D =120°,AB ∥CD , ∴∠BAD =180°﹣∠D =60°, ∵AE 平分∠DAB , ∴∠BAE =60°÷2=30°, ∵AE =AB ,∴∠ABE =(180°﹣30°)÷2=75°, ∴∠EBC =∠ABC ﹣∠ABE =45°; 故答案为:45°. 【点睛】本题考查了平行四边形的性质、等腰三角形的性质以及三角形内角和定理,正确理解和掌握性质定理是解决本题的关键.14.【解析】【分析】先化简二次根式然后再合并同类二次根式【详解】解:=故答案为:【点睛】本题考查二次根式的减法化成最简二次根式再计算这是通常最直接的做法【解析】 【分析】先化简二次根式,然后再合并同类二次根式. 【详解】1(22-【点睛】本题考查二次根式的减法,化成最简二次根式再计算,这是通常最直接的做法.15.【解析】试题解析:∵=3﹣x∴x -3≤0解得:x≤3 解析:3x ≤【解析】﹣x,∴x-3≤0,解得:x≤3,16.1【解析】分析:依据正比例函数的定义可得m-1=0求解即可详解:∵y=2x+m-1是正比例函数∴m-1=0解得:m=1故答案为:1点睛:本题考查了正比例函数的定义解题的关键是掌握正比例函数的定义解析:1【解析】分析:依据正比例函数的定义可得m-1=0,求解即可,详解:∵y=2x+m-1是正比例函数,∴m-1=0.解得:m=1.故答案为:1.点睛:本题考查了正比例函数的定义,解题的关键是掌握正比例函数的定义.17.【解析】【分析】【详解】试题分析:先根据二次根式的性质化简根号再合并同类二次根式即可得到结果考点:二次根式的化简点评:本题属于基础应用题只需学生熟练掌握二次根式的性质即可完成【解析】【分析】【详解】试题分析:先根据二次根式的性质化简根号,再合并同类二次根式即可得到结果.==考点:二次根式的化简点评:本题属于基础应用题,只需学生熟练掌握二次根式的性质,即可完成.18.7【解析】【分析】根据题目中的数据和方差的定义可以求得所求数据的方差【详解】设一组数据135a8的平均数是另一组数据111315+1018的平均数是+10∵=07∴==07故答案为07【点睛】本题考解析:7【解析】【分析】根据题目中的数据和方差的定义,可以求得所求数据的方差.【详解】设一组数据1,3,5,a,8的平均数是x,另一组数据11,13,15,x+10,18的平均数是x+10,∵22222 (1)(3)(5)()(8)5x x x a x x-+-+-+-+-=0.7,∴222 (1110)(1310)(1810)5x x x--+--+⋯--=22222 (1)(3)(5)()(8)5x x x a x x -+-+-+-+-=0.7,故答案为0.7.【点睛】本题考查方差,解答本题的关键是明确题意,利用方差的知识解答.19.x>1【解析】试题分析:根据两直线的图象以及两直线的交点坐标来进行判断试题解析:由图知:当直线y=x+b的图象在直线y=ax+3的上方时不等式x+b>ax+3成立;由于两直线的交点横坐标为:x=1观解析:x>1【解析】试题分析:根据两直线的图象以及两直线的交点坐标来进行判断.试题解析:由图知:当直线y=x+b的图象在直线y=ax+3的上方时,不等式x+b>ax+3成立;由于两直线的交点横坐标为:x=1,观察图象可知,当x>1时,x+b>ax+3;考点:一次函数与一元一次不等式.20.﹣1【解析】【分析】根据正比例函数是截距为0的一次函数可得n+1=0进而求出n值即可【详解】∵特征数是2n+1的一次函数为正比例函数∴n+1=0解得:n=﹣1故答案为:﹣1【点睛】本题考查正比例函数解析:﹣1【解析】【分析】根据正比例函数是截距为0的一次函数可得n+1=0,进而求出n值即可.【详解】∵“特征数”是[2,n+1]的一次函数为正比例函数,∴n+1=0,解得:n=﹣1,故答案为:﹣1.【点睛】本题考查正比例函数的定义,理解新定义并掌握正比例函数的一般形式y=kx(k≠0),是解题关键.三、解答题21.甲获胜;理由见解析.【解析】【分析】根据加权平均数的计算公式列出算式,进行计算即可.【详解】甲获胜;Q 甲的加权平均成绩为87285395590.4235⨯+⨯+⨯=++(分), 乙的加权平均成绩为94288388589.2235⨯+⨯+⨯=++(分), ∵90.489.2>,∴甲获胜.【点睛】 此题考查了加权平均数的概念及应用,用到的知识点是加权平均数的计算公式,解题的关键是根据公式列出算式.22.(1)证明见解析;(2)∠ABE =40°.【解析】【分析】(1)由四边形ABCD 是平行四边形,点E 为AD 的中点,易证得△DEC ≌△AEF (AAS ),继而可证得DC =AF ,又由DC =AB ,证得结论;(2)由(1)可知BF =2AB ,EF =EC ,然后由∠BCD =100°求得BE 平分∠CBF ,继而求得答案.【详解】证明:(1)∵四边形ABCD 是平行四边形,∴CD =AB ,CD ∥AB ,∴∠DCE =∠F ,∠FBC+∠BCD =180°,∵E 为AD 的中点,∴DE =AE .在△DEC 和△AEF 中,DCE F DEC AEF DE AE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△DEC ≌△AEF (AAS ).∴DC =AF .∴AB =AF ;(2)由(1)可知BF =2AB ,EF =EC ,∵∠BCD =100°,∴∠FBC =180°﹣100°=80°,∵BC =2AB ,∴BF =BC ,∴BE 平分∠CBF ,∴∠ABE =12∠FBC =12×80°=40° 【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质以及等腰三角形的性质,证得△DEC ≌△AEF 和△BCF 是等腰三角形是关键.23.(2)证明见解析;(2)四边形EBFD 是矩形.理由见解析.【解析】分析:(1)根据SAS 即可证明;(2)首先证明四边形EBFD 是平行四边形,再根据对角线相等的平行四边形是矩形即可证明;【解答】(1)证明:∵四边形ABCD 是平行四边形,∴OA=OC ,OB=OD ,∵AE=CF ,∴OE=OF ,在△DEO 和△BOF 中, OD OB DOE BOF OE OF ⎧⎪∠∠⎨⎪⎩===,∴△DOE ≌△BOF .(2)结论:四边形EBFD 是矩形.理由:∵OD=OB ,OE=OF ,∴四边形EBFD 是平行四边形,∵BD=EF ,∴四边形EBFD 是矩形.点睛:本题考查平行四边形的性质,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.(1)见解析;(2)见解析【解析】试题分析:画图即可.试题解析:如图:25.原式=2a b a b-=+ 【解析】【分析】 括号内先通分进行分式的加减运算,然后再进行分式的乘除法运算,最后将数个代入进行计算即可.【详解】原式=()()222a ab b a a a b a b -+⨯+- =()()()2·a b a aa b a b -+- =a b a b-+, 当2,b=12时,原式221212++-2. 【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.。
2020-2021石家庄市石门实验学校高三数学下期末第一次模拟试题(带答案)
2020-2021石家庄市石门实验学校高三数学下期末第一次模拟试题(带答案)一、选择题1.若复数21iz =-,其中i 为虚数单位,则z = A .1+i B .1−iC .−1+iD .−1−i2.()62111x x ⎛⎫++ ⎪⎝⎭展开式中2x 的系数为( ) A .15B .20C .30D .353.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为A .甲、乙、丙B .乙、甲、丙C .丙、乙、甲D .甲、丙、乙 4.设i 为虚数单位,则(x +i)6的展开式中含x 4的项为( )A .-15x 4B .15x 4C .-20i x 4D .20i x 45.已知函数()2cos 2[0,]2f x x x m π=+-在上有两个零点,则m 的取值范围是A .(1,2)B .[1,2)C .(1,2]D .[l,2]6.设,a b R ∈,“0a =”是“复数a bi +是纯虚数”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件7.某校现有高一学生210人,高二学生270人,高三学生300人,用分层抽样的方法从这三个年级的学生中随机抽取n 名学生进行问卷调查,如果已知从高一学生中抽取的人数为7,那么从高三学生中抽取的人数为( ) A .7B .8C .9D .108.设A (3,3,1),B (1,0,5),C (0,1,0),AB 的中点M ,则CM =A B .532C D .29.设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P AC B --的平面角为γ,则( ) A .,βγαγ<<B .,βαβγ<<C .,βαγα<<D .,αβγβ<<10.设双曲线22221x y a b-=(0a >,0b >)的渐近线与抛物线21y x =+相切,则该双曲线的离心率等于( ) A .3B .2C .6D .511.定义运算()()a ab a b b a b ≤⎧⊕=⎨>⎩,则函数()12xf x =⊕的图象是( ). A . B .C .D .12.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 A .13B .12C .23D .34二、填空题13.曲线21y x x=+在点(1,2)处的切线方程为______________. 14.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________ 件.15.i 是虚数单位,若复数()()12i a i -+是纯虚数,则实数a 的值为 . 16.已知圆锥的侧面展开图是一个半径为2cm ,圆心角为23π的扇形,则此圆锥的高为________cm .17.已知实数x ,y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩,则32z x y =-的最小值是__________.18.高三某班一学习小组的,,,A B C D 四位同学周五下午参加学校的课外活动,在课外活动中,有一人在打篮球,有一人在画画,有一人在跳舞,另外一人在散步,①A 不在散步,也不在打篮球;②B 不在跳舞,也不在散步;③“C 在散步”是“A 在跳舞”的充分条件;④D 不在打篮球,也不在散步;⑤C 不在跳舞,也不在打篮球.以上命题都是真命题,那么D 在_________.19.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.20.ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为__________.三、解答题21.设等差数列{}n a 的前n 项和为n S ,34a =,43a S =,数列{}n b 满足:对每12,,,n n n n n n n S b S b S b *++∈+++N 成等比数列.(1)求数列{},{}n n a b 的通项公式;(2)记,n C n *=∈N证明:12+.n C C C n *++<∈N L 22.某公司培训员工某项技能,培训有如下两种方式: 方式一:周一到周五每天培训1小时,周日测试 方式二:周六一天培训4小时,周日测试公司有多个班组,每个班组60人,现任选两组(记为甲组、乙组)先培训;甲组选方式一,乙组选方式二,并记录每周培训后测试达标的人数如表:()1用方式一与方式二进行培训,分别估计员工受训的平均时间(精确到0.1),并据此判断哪种培训方式效率更高?()2在甲乙两组中,从第三周培训后达标的员工中采用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求这2人中至少有1人来自甲组的概率.23.随着“互联网+交通”模式的迅猛发展,“共享自行车”在很多城市相继出现。
2021年石家庄八年级数学下期末试卷(附答案和解释)
2021年石家庄八年级数学下期末试卷(附答案和解释)实用精品文献资料分享A. 6月1日 B. 6月2日 C. 6月3日 D. 6月5日 3.下列命题中正确的是() A.有一组邻边相等的四边形是菱形 B.有一个角是直角的平行四边形是矩形 C.对角线垂直的平行四边形是正方形 D.一组对边平行的四边形是平行四边形4.如果点A(?2,a)在函数y=?x+3的图象上,那么a的值等于() A. ?7 B. 3 C. ?1 D. 4 5.如图,点O为四边形ABCD内任意一点,E,F,G,H分别为OA,OB,OC,OD的中点,则四边形EFGH的周长为()A. 9 B. 12 C. 18 D.不能确定 6.如果点P(?2,b)和点Q(a,?3)关于x 轴对称,则a+b的值是() A. ?1 B. 1 C. ?5 D. 5 7.某学习小组将要进行一次统计活动,下面是四位同学分别设计的活动序号,其中正确的是() A.实际问题→收集数据→表示数据→整理数据→统计分析合理决策 B.实际问题→表示数据→收集数据→整理数据→统计分析合理决策 C.实际问题→收集数据→整理数据→表示数据→统计分析合理决策 D.实际问题→整理数据→收集数据→表示数据→统计分析合理决策 8.某人出去散步,从家里出发,走了20min,到达一个离家900m的阅报亭,看了10min报纸后,用了15min返回家里,下面图象中正确表示此人离家的距离y(m)与时间x(min)之家关系的是() A. B. C. D. 9.如图,已知一次函数y=ax+b和y=kx的图象相交于点P,则根据图象可得二元一次方程组的解是()A. B. C. D. 10.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()实用精品文献资料分享A.(?,1) B.(?1,) C.(,1) D.(?,?1) 11.关于一次函数y=?2x+3,下列结论正确的是() A.图象过点(1,?1) B.图象经过一、二、三象限 C. y随x的增大而增大 D.当x>时,y<0 12.如图,矩形ABCD中,AB=8,AD=6,将矩形ABCD绕点B按顺时针方向旋转后得到矩形A′BC′D′.若边A′B交线段CD于H,且BH=DH,则DH的值是()A. B. C. D.二、认真填一填(本大题共6个小题,每小题3分,共18分.请把答案写在横线上) 13.下列调查中,适合用抽样调查的为(填序号).①了解全班同学的视力情况;②了解某地区中学生课外阅读的情况;③了解某市百岁以上老人的健康情况;④日光灯管厂要检测一批灯管的使用寿命. 14.在函数y=中,自变量x的取值范围是. 15.如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为.16.如图,把△ABC经过一定的变换得到△A′B′C′,如果△ABC上点P的坐标为(a,b),那么点P变换后的对应点P′的坐标为.17.如图,在?ABCD中,对角线AC平分∠BAD,MN与AC交于点O,M,N分别在AB,CD上,且AM=CN,连接BO.若∠DAC=28°,则∠OBC的度数为°.18.如图,一次函数y=kx+b(k≠0)的图象经过点M(3,2),且与一次函数y=?2x+4的图象交于点N.若对于一次函数y=kx+b(k≠0),当y随x的增大而增大时,则点N的横坐标的取值范围是.三、细心解答(本大题共4个小题,19、20每小题16分,21、22每小题16分,共28分) 19.在一次夏令营活动中,老师将一份行动计划藏在没有任何标记的点C处,只告诉大家两个标志点A,B的坐标分别为(?3,1)、(?2,?3),以及点C的坐标为(3,2)(单位:km).(1)请在图中建立直角坐标系并确定点C的位置;(2)若同学们打算从点B处直接赶往C处,请用方位角和距离描述点C相实用精品文献资料分享对于点B的位置.20.某学校为了了解八年级400名学生期末考试的体育测试成绩,从中随机抽取了部分学生的成绩(满分40分,而且成绩均为整数),绘制了频数分布表与频数分布直方图(如图).分组频数频率 15.5~20.5 6 0.10 20.5~25.5 a 0.20 25.5~30.5 180.30 30.5~35.5 15 b 35.5~40.5 9 0.15 请结合图表信息解答下列问题:(1)a= ,b= ;(2)补全频数分布直方图;(3)该问题中的样本容量是多少?答:;(4)如果成绩在30分以上(不含30分)的同学属于优良,请你估计该校八年级约有多少人达到优良水平?21.如图,一个正比例函数与一个一次函数的图象交于点A(3,4),其中一次函数与y轴交于B点,且OA=OB.(1)求这两个函数的表达式;(2)求△AOB的面积S.22.如图,四边形ABCD的对角线AC,BD交于点O,已知O是BD的中点,BE=DF,AF∥CE.(1)求证:四边形AECF是平行四边形;(2)若OA=OD,则四边形ABCD是什么特殊四边形?请证明你的结论. 23.某公司营销人员的工资由部分组成,一部分为基本工资,每人每月1500元;另一部分是按月销售量确定的奖励工资,每销售1件产品奖励10元.设营销员李亮月销售产品x件,他应得的工资为y元.(1)写出y与x之间的函数关系式;(2)若李亮某月的工资为2860元,那么他这个月销售了多少件产品?24.有一项工作,由甲、乙合作完成,工作一段时间后,甲改进了技术,提高了工作效率,设甲的工作量为y甲(单位:件),乙的工作量为y乙(单位:件),甲、乙合作完成的工作量为y(单位:件),工作时间为x(单位:时).y与x之间的部分函数图象如图1所示,y乙与x之间的部分函数图象如图2所示.(1)图1中,点A所表示的实际意义是.(2)甲改进技术前的工作效率是件/时,改进及术后的工作效率是件/时;(3)求工作几小时,甲、乙完成的工作量相等.25.已知直线y=kx+3(1?k)(其中k为常数,k≠0),k取不同数值时,可得不同直线,请探究这些直线的共同特征.实践操作(1)实用精品文献资料分享当k=1时,直线l1的解析式为,请在图1中画出图象;当k=2时,直线l2的解析式为,请在图2中画出图象;探索发现(2)直线y=kx+3(1?k)必经过点(,);类比迁移(3)矩形ABCD如图2所示,若直线y=kx+k?2(k≠0)分矩形ABCD的面积为相等的两部分,请在图中直接画出这条直线.26.?ABCD的对角线AC,BD交于点O,∠AOD=60°,∠ADO=90°,BD=12,点P是AO上一动点,点Q是OC上一动点(P,Q不与端点重合),且AP=OQ,连接BQ,DP.(1)线段PQ的长为;(2)设△PDO的面积为S1,△QBD的面积为S2,S1+S2的值是否发生变化?若不变,求出这个不变的值;若变化,请说明随着AP的增大,S1+S2的值是如何变化的;(3)DP+BQ的最小值是.2021-2021学年河北省石家庄市八年级(下)期末数学试卷参考答案与试题解析一、请你仔细选一选(本大题共12个小题,每小题2分,共24分.在每个小题给出的四个选项中,只有一项是正确的,请把正确选项的代码填在题后的括号内) 1.如图,下列各点在阴影区域内的是()A.(3,2) B.(?3,2) C.(3,?2) D.(?3,?2)考点:点的坐标.分析:应先判断出阴影区域在第一象限,进而判断在阴影区域内的点.解答:解:观察图形可知:阴影区域在第一象限, A、(3,2)在第一象限,故正确; B、(?3,2)在第二象限,故错误; C、(3,?2)在第四象限,故错误; D、(?3,?2)在第三象限,故错误.故选A.点评:解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负. 2.如图是某城市6月份1日至7日每天的最高、最低气温的折线统计图,在这7天中,日温差最大的一天是()A. 6月1日 B. 6月2日 C. 6月3日 D. 6月5日考点:折线统计图.专题:数形结合.分析:根据折线统计图得到6月份1日至7日每天的最高和最低气温,然后计算每日的温差,实用精品文献资料分享再比较大小即可.解答:解:1日的温差为24?12=12(℃),2日的温差为25?13=12(℃),3日的温差为26?15=11(℃),4日的温差为25?14=11(℃),5日的温差为25?12=13(℃),6日的温差为27?17=10(℃),7日的温差为26?16=10(℃),所以5日的温差最大.故选D.点评:本题考查了折线统计图:折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化. 3.下列命题中正确的是() A.有一组邻边相等的四边形是菱形 B.有一个角是直角的平行四边形是矩形 C.对角线垂直的平行四边形是正方形 D.一组对边平行的四边形是平行四边形考点:命题与定理.分析:利用特殊四边形的判定定理对个选项逐一判断后即可得到正确的选项.解答:解:A、一组邻边相等的平行四边形是菱形,故选项错误; B、正确; C、对角线垂直的平行四边形是菱形,故选项错误; D、两组对边平行的四边形才是平行四边形,故选项错误.故选:B.点评:本题考查了命题与定理的知识,解题的关键是牢记特殊的四边形的判定定理,难度不大,属于基础题. 4.如果点A(?2,a)在函数y=?x+3的图象上,那么a的值等于() A. ?7 B. 3 C. ?1 D. 4考点:一次函数图象上点的坐标特征.专题:计算题.分析:把点A的坐标代入函数解析式,即可得a的值.解答:解:根据题意,把点A的坐标代入函数解析式,得:a=?×(?2)+3=4,故选D.点评:本题考查了一次函数图象上点的坐标特征,是基础题型. 5.如图,点O为四边形ABCD内任意一点,E,F,G,H分别为OA,OB,OC,OD的中点,则四边形EFGH的周长为() A. 9 B. 12 C. 18 D.不能确定考点:中点四边形.分析:由三角形中位线定理可得EF=AB,FG=BC,HG=DC,EH=AD,再根据题目给出的已知数据即可求出四边形EFGH的周长.解答:解:∵E,F分别为OA,OB的中点,∴EF是△AOB的中位线,∴EF=AB=3,同理可得:FG=BC=5,HG=DC=6,EH=AD=4,∴四边形EFGH的周长为=3+5+6+4=18,故选C.点评:本题考查感谢您的阅读,祝您生活愉快。
2020-2021八年级数学下期末一模试题含答案
2020-2021八年级数学下期末一模试题含答案一、选择题1.当12a <<时,代数式2(2)1a a -+-的值为( ) A .1B .-1C .2a-3D .3-2a2.如图,将正方形OABC 放在平面直角坐标系中,O 是原点,点A 的坐标为(1,),则点C 的坐标为( )A .(-,1)B .(-1,)C .(,1)D .(-,-1)3.如图,矩形ABCD 的对角线AC 与数轴重合(点C 在正半轴上),5AB =,12BC =,若点A 在数轴上表示的数是-1,则对角线AC BD 、的交点在数轴上表示的数为( )A .5.5B .5C .6D .6.54.以下命题,正确的是( ). A .对角线相等的菱形是正方形 B .对角线相等的平行四边形是正方形 C .对角线互相垂直的平行四边形是正方形 D .对角线互相垂直平分的四边形是正方形5.如图,在平行四边形ABCD 中,ABC ∠和BCD ∠的平分线交于AD 边上一点E ,且4BE =,3CE =,则AB 的长是( )A .3B .4C .5D .2.56.如图,O 是矩形ABCD 对角线AC 的中点,M 是AD 的中点,若BC =8,OB =5,则OM 的长为( )A .1B .2C .3D .47.如图,一次函数y =mx +n 与y =mnx (m ≠0,n ≠0)在同一坐标系内的图象可能是( )A .B .C .D .8.二次根式()23-的值是( ) A .﹣3 B .3或﹣3 C .9 D .3 9.直角三角形中,有两条边长分别为3和4,则第三条边长是( )A .1B .5C .7D .5或710.无论m 为任何实数,关于x 的一次函数y =x +2m 与y =-x +4的图象的交点一定不在( )A .第一象限B .第二象限C .第三象限D .第四象限11.如图,在▱ABCD 中,AB =6,BC =8,∠BCD 的平分线交AD 于点E ,交BA 的延长线于点F ,则AE +AF 的值等于( )A .2B .3C .4D .612.如图,在正方形ABCD 中,点E 、F 分别在BC 、CD 上,△AEF 是等边三角形,连接AC 交EF 于点G ,下列结论:①15BAE DAF ∠=∠=o ;②AG=3GC ;③BE +DF =EF ;④2CEF ABE S S ∆∆=.其中正确的是( )A .①②③B .①③④C .①②④D .①②③④二、填空题13.如图,在正方形ABCD的外侧,作等边△ADE,则∠AEB=_________°.a-是同类二次根式,则a=_____.14.45与最简二次根式32115.若x<2,化简22)(+|3﹣x|的正确结果是__.x-16.已知y关于x的函数图象如图所示,则当y<0时,自变量x的取值范围是______.17.如图,边长为3的正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG,EF交AD于点H,那么DH的长是______.18.A、B、C三地在同一直线上,甲、乙两车分别从A,B两地相向匀速行驶,甲车先出发2小时,甲车到达B地后立即调头,并将速度提高10%后与乙车同向行驶,乙车到达A 地后,继续保持原速向远离B的方向行驶,经过一段时间后两车同时到达C地,设两车之间的距离为y(千米),甲行驶的时间x(小时).y与x的关系如图所示,则B、C两地相距_____千米.19.已知点M(1,a)和点N(2,b)是一次函数y=-2x+1图象上的两点,则a与b的大小关系是_________.20.一组数据1,2,3,x,5的平均数是3,则该组数据的方差是_____.三、解答题21.已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF(1)求证:BE = DF ;(2)连接AC 交EF 于点O ,延长OC 至点M ,使OM = OA ,连接EM 、FM .判断四边形AEMF 是什么特殊四边形?并证明你的结论.22.国家规定“中小学生每天在校体育活动时间不低于1小时”.为此,某市就“每天在校体育活动时间”的问题随机抽样调查了321名初中学生.根据调查结果将学生每天在校体育活动时间t (小时)分成A ,B ,C ,D 四组,并绘制了统计图(部分).A 组:0.5tB <组:0.51tC <„组:1 1.5tD <„组: 1.5t …请根据上述信息解答下列问题: (1)C 组的人数是 ;(2)本次调查数据的中位数落在 组内;(3)若该市约有12840名初中学生,请你估算其中达到国家规定体育活动时间的人数大约有多少.23.甲、乙两车分别从相距480km 的A 、B 两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C 地,甲车到达C 地停留1小时,因有事按原路原速返回A 地.乙车从B 地直达A 地,两车同时到达A 地.甲、乙两车距各自出发地的路程y (千米)与甲车出发所用的时间x (小时)的关系如图,结合图象信息解答下列问题: (1)乙车的速度是 千米/时,t = 小时;(2)求甲车距它出发地的路程y 与它出发的时间x 的函数关系式,并写出自变量的取值范围;(3)直接写出乙车出发多长时间两车相距120千米.24.在某旅游景区上山的一条小路上,有一些断断续续的台阶,下图是其中的甲、乙两段台阶的示意图,图中的数字表示每一级台阶的高度(单位:cm).请你用所学过的有关统计知识,回答下列问题(数据:15,16,16,14,14,15的方差22 3S=甲,数据:11,15,18,17,10,19的方差235 3S=乙:(1)分别求甲、乙两段台阶的高度平均数;(2)哪段台阶走起来更舒服?与哪个数据(平均数、中位数、方差和极差)有关?(3)为方便游客行走,需要陈欣整修上山的小路,对于这两段台阶路.在总高度及台阶数不变的情况下,请你提出合理的整修建议.25.我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;平均数(分)中位数(分)众数(分)初中部85高中部 85100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好; (3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】分析:首先由 2(2)a -=|a-2|,即可将原式化简,然后由1<a <2,去绝对值符号,继而求得答案. 详解:∵1<a <2,∴2(2)a -=|a-2|=-(a-2), |a-1|=a-1,∴2(2)a -+|a-1|=-(a-2)+(a-1)=2-1=1. 故选A .点睛:此题考查了二次根式的性质与化简以及绝对值的性质,解答本题的关键在于熟练掌握二次根式的性质.2.A解析:A 【解析】试题分析:作辅助线构造出全等三角形是解题的关键,也是本题的难点.如图:过点A 作AD ⊥x 轴于D ,过点C 作CE ⊥x 轴于E ,根据同角的余角相等求出∠OAD=∠COE ,再利用“角角边”证明△AOD 和△OCE 全等,根据全等三角形对应边相等可得OE=AD ,CE=OD ,然后根据点C 在第二象限写出坐标即可.∴点C 的坐标为 (-,1)故选A .考点:1、全等三角形的判定和性质;2、坐标和图形性质;3、正方形的性质.3.A解析:A 【解析】 【分析】连接BD交AC于E,由矩形的性质得出∠B=90°,AE=12AC,由勾股定理求出AC,得出OE,即可得出结果.【详解】连接BD交AC于E,如图所示:∵四边形ABCD是矩形,∴∠B=90°,AE=12 AC,∴222251213AB BC+=+=,∴AE=6.5,∵点A表示的数是-1,∴OA=1,∴OE=AE-OA=5.5,∴点E表示的数是5.5,即对角线AC、BD的交点表示的数是5.5;故选A.【点睛】本题考查了矩形的性质、勾股定理、实数与数轴;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.4.A解析:A【解析】【分析】利用正方形的判定方法分别判断后即可确定正确的选项.【详解】A、对角线相等的菱形是正方形,正确,是真命题;B、对角线相等的平行四边形是矩形,故错误,是假命题;C、对角线互相垂直的平行四边形是菱形,故错误,是假命题;D、对角线互相垂直平分的四边形是菱形,故错误,是假命题,故选:A.【点睛】考查了命题与定理的知识,解题的关键是了解正方形的判定方法.5.D解析:D【解析】【分析】由▱ABCD中,∠ABC和∠BCD的平分线交于AD边上一点E,易证得△ABE,△CDE是等腰三角形,△BEC是直角三角形,则可求得BC的长,继而求得答案.【详解】∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,AD=BC,∴∠AEB=∠CBE,∠DEC=∠BCE,∠ABC+∠DCB=90°,∵BE,CE分别是∠ABC和∠BCD的平分线,∴∠ABE=∠CBE=12∠ABC,∠DCE=∠BCE=12∠DCB,∴∠ABE=∠AEB,∠DCE=∠DEC,∠EBC+∠ECB=90°,∴AB=AE,CD=DE,∴AD=BC=2AB,∵BE=4,CE=3,∴5==,∴AB=12BC=2.5.故选D.【点睛】此题考查了平行四边形的性质、等腰三角形的判定与性质以及直角三角形的性质.注意证得△ABE,△CDE是等腰三角形,△BEC是直角三角形是关键.6.C解析:C【解析】【分析】由O是矩形ABCD对角线AC的中点,可求得AC的长,然后运用勾股定理求得AB、CD 的长,又由M是AD的中点,可得OM是△ACD的中位线,即可解答.【详解】解:∵O是矩形ABCD对角线AC的中点,OB=5,∴AC=2OB=10,∴CD=AB6,∵M是AD的中点,∴OM=12CD=3.故答案为C.【点睛】本题考查了矩形的性质、直角三角形的性质以及三角形中位线的性质,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.7.C解析:C【解析】【分析】根据m、n同正,同负,一正一负时利用一次函数的性质进行判断.【详解】解:①当mn>0时,m、n同号,y=mnx过一三象限;同正时,y=mx+n经过一、二、三象限,同负时,y=mx+n过二、三、四象限;②当mn<0时,m、n异号,y=mnx过二四象限,m>0,n<0时,y=mx+n经过一、三、四象限;m<0,n>0时,y=mx+n过一、二、四象限;故选:C.【点睛】本题考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键.8.D解析:D【解析】【分析】本题考查二次根式的化简,(0)(0)a aa a⎧=⎨-<⎩….【详解】|3|3=-=.故选D.【点睛】本题考查了根据二次根式的意义化简.a≥0a;当a≤0a.9.D解析:D【解析】【分析】分第三边为直角边或斜边两种情况,根据勾股定理分别求第三边.【详解】当第三边为直角边时,4为斜边,第三边;当第三边为斜边时,3和4为直角边,第三边=5,故选:D.【点睛】本题考查了勾股定理.关键是根据第三边为直角边或斜边,分类讨论,利用勾股定理求解.10.C解析:C【解析】由于直线y=-x+4的图象不经过第三象限.因此无论m 取何值,直线y=x+2m 与y=-x+4的交点不可能在第三象限. 故选C .11.C解析:C 【解析】 【分析】 【详解】解:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AD=BC=8,CD=AB=6, ∴∠F=∠DCF , ∵∠C 平分线为CF , ∴∠FCB=∠DCF , ∴∠F=∠FCB , ∴BF=BC=8, 同理:DE=CD=6,∴AF=BF−AB=2,AE=AD−DE=2 ∴AE+AF=4 故选C12.C解析:C 【解析】 【分析】易证Rt ABE Rt ADF V V ≌,从而得到BE DF =,求得15BAE DAF ∠=∠=︒;进而得到CE CF =,判断出AC 是线段EF 的垂直平分线,在Rt AGF n 中,利用正切函数证得②正确;观察得到BE GE ≠,判断出③错误;设BE x =,CE y =,在Rt ABE V 中,运用勾股定理就可得到2222x xy y +=,从而可以求出CEF V 与ABE V 的面积比. 【详解】∵四边形ABCD 是正方形,AEF V 是等边三角形,∴90B BCD D AB BC DC AD AE AF EF ∠=∠=∠=︒=====,,. 在Rt ABE V 和Rt ADF V 中,AB ADAE AF⎧⎨⎩==∴()Rt ABE Rt ADF HL V V ≌. ∴BE DF =,∠BAE =∠DAF∴()()1190601522BAE DAF BAD EAF ∠=∠=∠-∠=︒-︒=︒ 故①正确;∵BE DF BC DC ==,,∴CE BC BE DC DF CF =-=-=, ∵AE AF =,CE CF =, ∴AC 是线段EF 的垂直平分线, ∵90ECF ∠=︒, ∴GC GE GF ==, 在Rt AGF n 中,∵tan tan 60AG AGAFG GF GC∠=︒===∴AG =,故②正确; ∵BE DF GE GF ==,,15BAE ∠=︒,30GAE ∠=︒,90B AGE ∠=∠=︒ ∴BE GE ≠∴BE DF EF +≠,故③错误; 设BE x =,CE y =,则CF CE y ==,AB BC x y AE EF ==+====,.在Rt ABE V 中,∵90B ∠=︒,AB x y BE x AE =+==,,,∴222())x y x ++=. 整理得:2222x xy y +=. ∴CEF S V :ABE S V11CE ?CF :AB?BE 22⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭()()•:?CE CF AB BE ==2y :()x y x ⎡⎤+⎣⎦()()2222:2:1x xy x xy =++=.∴CEF ABE 2S S =V V ,故④正确; 综上:①②④正确 故选:C. 【点睛】本题考查了正方形的性质、等边三角形的性质、全等三角形的判定与性质、勾股定理等知识,而采用整体思想(把2x xy +看成一个整体)是解决本题的关键.二、填空题13.15°【解析】【分析】【详解】解:由题意可知:是等腰三角形故答案为解析:15° 【解析】 【分析】 【详解】解:由题意可知:90,60.BAD DAE ∠=∠=oo.AB AD AE ==150.BAE o∴∠= ABE △是等腰三角形 15.AEB ∴∠=o 故答案为15.o14.3【解析】【分析】先将化成最简二次根式然后根据同类二次根式得到被开方数相同可得出关于的方程解出即可【详解】解:∵与最简二次根式是同类二次根式∴解得:故答案为:【点睛】本题考查了最简二次根式的化简以及解析:3 【解析】 【分析】化成最简二次根式,然后根据同类二次根式得到被开方数相同可得出关于a 的方程,解出即可. 【详解】=与最简二次根式∴215a -=,解得:3a = 故答案为:3 【点睛】本题考查了最简二次根式的化简以及同类二次根式等知识点,能够正确得到关于a 的方程是解题的关键.15.5-2x 【解析】【分析】本题首先根据题意得出x-203-x0然后根据绝对值的性质进行化简从而得出答案【详解】解:+|3﹣x|=+|3﹣x|∵x<2∴x -203-x0∴原式=2-x+3-x=5-2x 故解析:5-2x 【解析】 【分析】本题首先根据题意得出x-2<0,3-x >0,然后根据绝对值的性质进行化简,从而得出答案. 【详解】解:﹣x|=2x -+|3﹣x| ∵x <2∴x -2<0,3-x >0 ∴原式=2-x+3-x=5-2x 故答案为:5-2x 【点睛】本题主要考查的就是二次根式的化简. 2的区别,第一个a 的取值范围为全体实数,第二个a 的取值范围为非负数,第一个的运算结果为a ,然后根据a 的正负性进行去绝对值,第二个的运算结果就是a.本题我们知道原式=x 2-+3x -,然后根据x 的取值范围进行化简.16.﹣1<x <1或x >2【解析】【分析】观察图象和数据即可求出答案【详解】y <0时即x 轴下方的部分∴自变量x 的取值范围分两个部分是−1<x <1或x >2【点睛】本题考查的是函数图像熟练掌握图像是解题的关键解析:﹣1<x <1或x >2. 【解析】 【分析】观察图象和数据即可求出答案. 【详解】y <0时,即x 轴下方的部分,∴自变量x 的取值范围分两个部分是−1<x <1或x >2. 【点睛】本题考查的是函数图像,熟练掌握图像是解题的关键.17.【解析】【分析】思路分析:把所求的线段放在构建的特殊三角形内【详解】如图所示连接HCDF 且HC 与DF 交于点P ∵正方形ABCD 绕点C 按顺时针方向旋转30°后得到正方形EFCG ∴∠BCF=∠DCG=30【解析】 【分析】思路分析:把所求的线段放在构建的特殊三角形内 【详解】如图所示.连接HC 、DF ,且HC 与DF 交于点P∵正方形ABCD 绕点C 按顺时针方向旋转30°后得到正方形EFCG ∴∠BCF=∠DCG=30°,FC =DC ,∠EFC=∠ADC=90° ∠BCG=∠BCD+∠DCG=90°+30°=120°∠DCF=∠BCG -∠BCF -∠DCG=120°-30°-30°=60° ∴△DCF 是等边三角形,∠DFC=∠FDC=60° ∴∠EFD=∠ADF=30°,HF=HD∴HC 是FD 的垂直平分线,∠FCH=∠DCH=12∠DCF=30° 在Rt △HDC 中,HD=DC·tan ∠3∵正方形ABCD 的边长为3 ∴HD=DC·tan ∠DCH=3×tan30°33 试题点评:构建新的三角形,利用已有的条件进行组合.18.【解析】【分析】根据题意和函数图象中的数据可以求得甲乙两车的速度再根据路程=速度×时间即可解答本题【详解】解:设甲车的速度为a 千米/小时乙车的速度为b 千米/小时解得∴AB 两地的距离为:80×9=72解析:【解析】 【分析】根据题意和函数图象中的数据,可以求得甲乙两车的速度,再根据“路程=速度×时间”,即可解答本题. 【详解】解:设甲车的速度为a 千米/小时,乙车的速度为b 千米/小时,(62)()560(62)(96)a b b a -⨯+=⎧⎨-=-⎩,解得8060a b =⎧⎨=⎩, ∴A 、B 两地的距离为:80×9=720千米, 设乙车从B 地到C 地用的时间为x 小时, 60x =80(1+10%)(x+2﹣9), 解得,x =22,则B 、C 两地相距:60×22=1320(千米) 故答案为:1320.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.19.a>b【解析】【分析】【详解】解:∵一次函数y=﹣2x+1中k=﹣2∴该函数中y随着x的增大而减小∵1<2∴a>b故答案为a>b【点睛】本题考查一次函数图象上点的坐标特征解析:a>b【解析】【分析】【详解】解:∵一次函数y=﹣2x+1中k=﹣2,∴该函数中y随着x的增大而减小,∵1<2,∴a>b.故答案为a>b.【点睛】本题考查一次函数图象上点的坐标特征.20.2【解析】【分析】先用平均数是3可得x的值再结合方差公式计算即可【详解】平均数是3(1+2+3+x+5)解得:x=4∴方差是S2(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)21解析:2【解析】【分析】先用平均数是3可得x的值,再结合方差公式计算即可.【详解】平均数是315=(1+2+3+x+5),解得:x=4,∴方差是S215=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]15=⨯10=2.故答案为2.【点睛】本题考查了平均数和方差的概念,解题的关键是牢记方差的计算公式,难度不大.三、解答题21.(1)证明见解析;(2)四边形AEMF是菱形,证明见解析.【解析】【分析】(1)求简单的线段相等,可证线段所在的三角形全等,即证△ABE≌△ADF;(2)由于四边形ABCD是正方形,易得∠ECO=∠FCO=45°,BC=CD;联立(1)的结论,可证得EC=CF ,根据等腰三角形三线合一的性质可证得OC (即AM )垂直平分EF ;已知OA=OM ,则EF 、AM 互相平分,再根据一组邻边相等的平行四边形是菱形,即可判定四边形AEMF 是菱形. 【详解】(1)证明:∵四边形ABCD 是正方形, ∴AB=AD ,∠B=∠D=90°, 在Rt △ABE 和Rt △ADF 中, ∵AD ABAF AE ⎧⎨⎩==,∴Rt △ADF ≌Rt △ABE (HL ) ∴BE=DF ;(2)四边形AEMF 是菱形,理由为: 证明:∵四边形ABCD 是正方形,∴∠BCA=∠DCA=45°(正方形的对角线平分一组对角), BC=DC (正方形四条边相等), ∵BE=DF (已证),∴BC-BE=DC-DF (等式的性质), 即CE=CF , 在△COE 和△COF 中,CE CF ACB ACD OC OC ⎪∠⎪⎩∠⎧⎨===, ∴△COE ≌△COF (SAS ), ∴OE=OF , 又OM=OA ,∴四边形AEMF 是平行四边形(对角线互相平分的四边形是平行四边形), ∵AE=AF ,∴平行四边形AEMF 是菱形.22.(1)141;(2)C ;(3)估算其中达到国家规定体育活动时间的人数大约有8040 人. 【解析】 【分析】(1)C 组的人数为总人数减去各组人数;(2))根据中位数的概念即中位数应是第161个数据,即可得出答案;(3)首先计算样本中达国家规定体育活动时间的频率,再进一步估计总体达国家规定体育活动时间的人数. 【详解】(1)C 组人数为321(2010060)141-++=(人),故答案为:141;(2)本次调查数据的中位数是第161个数据,而第161个数据落在C组,所以本次调查数据的中位数落在C组内,故答案为:C.(3)估算其中达到国家规定体育活动时间的人数大约有14160 128408040321+⨯=(人).【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n 为偶数,位于中间两个数的平均数就是中位数.23.(1)60,3;(2)y=120t(0≤t≤3);y=120(3<t≤4);y=-120t+840(4<t≤7);(3)83小时或4小时或6小时.【解析】【分析】(1)首先根据图示,可得乙车的速度是60千米/时,然后根据路程÷速度=时间,用两地之间的距离除以乙车的速度,求出乙车到达A地用的时间是多少;最后根据路程÷时间=速度,用两地之间的距离除以甲车往返AC两地用的时间,求出甲车的速度,再用360除以甲车的速度,求出t的值是多少即可.(2)根据题意,分3种情况:①当0≤x≤3时;②当3<x≤4时;③4<x≤7时;分类讨论,求出甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围即可.(3)根据题意,分3种情况:①甲乙两车相遇之前相距120千米;②当甲车停留在C地时;③两车都朝A地行驶时;然后根据路程÷速度=时间,分类讨论,求出乙车出发多长时间两车相距120千米即可.【详解】解:(1)根据图示,可得乙车的速度是60千米/时,甲车的速度=720÷6=120(千米/小时)∴t=360÷120=3(小时).故答案为:60;3;(2)①当0≤x≤3时,设y=k1x,把(3,360)代入,可得3k1=360,解得k1=120,∴y=120x(0≤x≤3).②当3<x≤4时,y=360.③4<x≤7时,设y=k2x+b,把(4,360)和(7,0)代入,可得224360{70k b k b +=+=,解得2120{840k b =-= ∴y=﹣120x+840(4<x≤7).(3)①÷+1=300÷180+1=53+1=83(小时)②当甲车停留在C 地时, ÷60 =240÷6 =4(小时)③两车都朝A 地行驶时,设乙车出发x 小时后两车相距120千米, 则60x ﹣[120(x ﹣1)﹣360]=120, 所以480﹣60x=120, 所以60x=360, 解得x=6.综上,可得乙车出发83小时、4小时、6小时后两车相距120千米.【点睛】本题考查一次函数的应用.24.(1)甲台阶高度的平均数15,乙台阶高度的平均数15;(2)甲段路走起来更舒服一些;(3)每个台阶高度均为15cm ,游客行走更舒服. 【解析】分析:(1)根据图中所给的数据,利用平均数公式求解即可; (2)根据平均数、中位数、方差和极差的特征回答即可;(3)结合方差,要使台阶路走起来更舒服,就得让方差变得更小,据此提出合理性的整修建议.详解:(1)甲台阶高度的平均数:(15+16+16+14+14+15)÷6=15, 乙台阶高度的平均数:(11+15+18+17+10+19)÷6=15. (2)甲段路走起来更舒服一些,因为它的台阶高度的方差小.(3)每个台阶高度均为15cm (原平均数)使得方差为0,游客行走更舒服.点睛:本题主要考查中位数的概念、平均数计算公式以及方差的计算.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定.反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.在本题中,根据题意求出方差,进而利用方差的意义进行分析即可. 25.(1)高中部8580100【解析】解:(1)填表如下:平均数(分)中位数(分)众数(分)初中部858585高中部8580100∵两个队的平均数都相同,初中部的中位数高, ∴在平均数相同的情况下中位数高的初中部成绩好些. (3)∵,222222S 7085100851008575858085160=-+-+-+-+-=高中队()()()()(),∴2S 初中队<2S 高中队,因此,初中代表队选手成绩较为稳定.(1)根据成绩表加以计算可补全统计表.根据平均数、众数、中位数的统计意义回答. (2)根据平均数和中位数的统计意义分析得出即可. (3)分别求出初中、高中部的方差比较即可.。
2020-2021初二数学下期末一模试题及答案
2020-2021初二数学下期末一模试题及答案一、选择题1.若代数式1x +有意义,则x 的取值范围是( ) A .x >﹣1且x≠1B .x≥﹣1C .x≠1D .x≥﹣1且x≠12.如图,在平行四边形ABCD 中,ABC ∠和BCD ∠的平分线交于AD 边上一点E ,且4BE =,3CE =,则AB 的长是( )A .3B .4C .5D .2.53.三角形的三边长为22()2a b c ab +=+,则这个三角形是( ) A .等边三角形 B .钝角三角形 C .直角三角形 D .锐角三角形 4.若点P 在一次函数的图像上,则点P 一定不在( )A .第一象限B .第二象限C .第三象限D .第四象限5.已知一次函数y=-0.5x+2,当1≤x≤4时,y 的最大值是( ) A .1.5B .2C .2.5D .-66.如图2,四边形ABCD 的对角线AC 、BD 互相垂直,则下列条件能判定四边形ABCD为菱形的是( )A .BA =BCB .AC 、BD 互相平分 C .AC =BD D .AB ∥CD7.如图,一次函数y =mx +n 与y =mnx (m ≠0,n ≠0)在同一坐标系内的图象可能是( )A .B .C .D .8.如图(1),四边形ABCD 中,AB ∥CD ,∠ADC =90°,P 从A 点出发,以每秒1个单位长度的速度,按A →B →C →D 的顺序在边上匀速运动,设P 点的运动时间为t 秒,△PAD 的面积为S ,S 关于t 的函数图象如图(2)所示,当P 运动到BC 中点时,△APD 的面积为( )A .4B .5C .6D .79.函数的自变量取值范围是( ) A .x ≠0B .x >﹣3C .x ≥﹣3且x ≠0D .x >﹣3且x ≠010.如图,在矩形ABCD 中,对角线AC 、BD 交于点O ,以下说法不一定成立的是( )A .∠ABC=90°B .AC=BDC .OA=OBD .OA=AD11.一列火车由甲市驶往相距600km 的乙市,火车的速度是200km/时,火车离乙市的距离s(单位:km)随行驶时间t(单位:小时)变化的关系用图象表示正确的是( )A .B .C .D .12.如图,函数y =ax +b 和y =kx 的图像交于点P ,关于x ,y 的方程组0y ax b kx y -=⎧⎨-=⎩的解是( )A .23x y =-⎧⎨=-⎩B .32x y =-⎧⎨=⎩C .32x y =⎧⎨=-⎩D .32x y =-⎧⎨=-⎩二、填空题13.如图,在▱ABCD 中,∠D =120°,∠DAB 的平分线AE 交DC 于点E ,连接BE.若AE=AB,则∠EBC的度数为_______.14.函数x____.15.4x-x的取值范围是__________.16.如果将直线y=3x-1平移,使其经过点(0,2),那么平移后所得直线的表达式是______.17.2019x-x的取值范围是_____.18.若一个多边形的内角和是900º,则这个多边形是边形.19.已知数据:﹣1,4,2,﹣2,x的众数是2,那么这组数据的平均数为_____.20.一组数据1,2,3,x,5的平均数是3,则该组数据的方差是_____.三、解答题21.2019年4月23日是第24个世界读书日.为迎接第24个世界读书日的到来,某校举办读书分享大赛活动:现有甲、乙两位同学的各项成绩如下表所示:若“推荐语”“读书心得”“读书讲座”的成绩按2:3:5确定综合成绩,则甲、乙二人谁能获胜?请通过计算说明理由参赛者推荐语读书心得读书讲座甲878595乙94888822.(127118312;(2)32125223.为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉.经市场调查,甲种花卉的种植费用y(元)与种植面积()2x m之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0300x ≤≤和300x >时,y 与x 的函数关系式;(2)广场上甲、乙两种花卉的种植面积共21200m ,若甲种花卉的种植面积不少于2200m ,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植费用最少?最少总费用为多少元?24.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,BE=2DE ,延长DE 到点F ,使得EF=BE ,连接CF .(1)求证:四边形BCFE 是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE 的面积.25.如图,已知菱形ABCD ,AB=AC ,E 、F 分别是BC 、AD 的中点,连接AE 、CF . (1)求证:四边形AECF 是矩形; (2)若AB=6,求菱形的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】此题需要注意分式的分母不等于零,二次根式的被开方数是非负数.【详解】依题意,得x+1≥0且x-1≠0,解得x≥-1且x≠1.故选A.【点睛】本题考查了二次根式有意义的条件和分式有意义的条件.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.2.D解析:D【解析】【分析】由▱ABCD中,∠ABC和∠BCD的平分线交于AD边上一点E,易证得△ABE,△CDE是等腰三角形,△BEC是直角三角形,则可求得BC的长,继而求得答案.【详解】∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,AD=BC,∴∠AEB=∠CBE,∠DEC=∠BCE,∠ABC+∠DCB=90°,∵BE,CE分别是∠ABC和∠BCD的平分线,∴∠ABE=∠CBE=12∠ABC,∠DCE=∠BCE=12∠DCB,∴∠ABE=∠AEB,∠DCE=∠DEC,∠EBC+∠ECB=90°,∴AB=AE,CD=DE,∴AD=BC=2AB,∵BE=4,CE=3,∴5==,∴AB=12BC=2.5.故选D.【点睛】此题考查了平行四边形的性质、等腰三角形的判定与性质以及直角三角形的性质.注意证得△ABE,△CDE是等腰三角形,△BEC是直角三角形是关键.3.C【解析】 【分析】利用完全平方公式把等式变形为a 2+b 2=c 2,根据勾股定理逆定理即可判断三角形为直角三角形,可得答案. 【详解】∵22()2a b c ab +=+, ∴a 2+2ab+b 2=c 2+2ab , ∴a 2+b 2=c 2,∴这个三角形是直角三角形, 故选:C . 【点睛】本题考查了勾股定理的逆定理,如果一个三角形的两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形,最长边所对的角为直角.4.C解析:C 【解析】 【分析】根据一次函数的性质进行判定即可. 【详解】一次函数y=-x+4中k=-1<0,b>0,所以一次函数y=-x+4的图象经过二、一、四象限, 又点P 在一次函数y=-x+4的图象上, 所以点P 一定不在第三象限, 故选C. 【点睛】本题考查了一次函数的图象和性质,熟练掌握是解题的关键.y=kx+b :当 k>0,b>0时,函数的图象经过一,二,三象限;当 k>0,b<0时,函数的图象经过一,三,四象限;当 k<0,b>0时,函数的图象经过一,二,四象限;当 k<0,b<0时,函数的图象经过二,三,四象限.5.A解析:A 【解析】 【分析】根据一次函数的系数k=-0.5<0,可得出y 随x 值的增大而减小,将x=1代入一次函数解析式中求出y 值即可. 【详解】在一次函数y=-0.5x+2中k=-0.5<0, ∴y 随x 值的增大而减小,∴当x=1时,y取最大值,最大值为-0.5×1+2=1.5,故选A.【点睛】本题考查了一次函数的性质,牢记“k<0,y随x的增大而减小”是解题的关键.6.B解析:B【解析】【分析】【详解】解:对角线互相垂直平分的四边形为菱形.已知对角线AC、BD互相垂直,则需添加条件:AC、BD互相平分故选:B7.C解析:C【解析】【分析】根据m、n同正,同负,一正一负时利用一次函数的性质进行判断.【详解】解:①当mn>0时,m、n同号,y=mnx过一三象限;同正时,y=mx+n经过一、二、三象限,同负时,y=mx+n过二、三、四象限;②当mn<0时,m、n异号,y=mnx过二四象限,m>0,n<0时,y=mx+n经过一、三、四象限;m<0,n>0时,y=mx+n过一、二、四象限;故选:C.【点睛】本题考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键.8.B解析:B【解析】【分析】根据函数图象和三角形面积得出AB+BC=6,CD=4,AD=4,AB=1,当P运动到BC中点时,梯形ABCD的中位线也是△APD的高,求出梯形ABCD的中位线长,再代入三角形面积公式即可得出结果.【详解】解:根据题意得:四边形ABCD是梯形,AB+BC=6,CD=10-6=4,∵12AD×CD=8,∴AD=4,又∵12AD×AB=2,∴AB=1,当P运动到BC中点时,梯形ABCD的中位线也是△APD的高,∵梯形ABCD的中位线长=12(AB+CD)=52,∴△PAD的面积1545 22;=⨯⨯=故选B.【点睛】本题考查了动点问题的函数图象、三角形面积公式、梯形中位线定理等知识;看懂函数图象是解决问题的关键.9.B解析:B【解析】【分析】【详解】由题意得:x+3>0,解得:x>-3.故选B.10.D解析:D【解析】【分析】根据矩形性质可判定选项A、B、C正确,选项D错误.【详解】∵四边形ABCD为矩形,∴∠ABC=90°,AC=BD,OA=OB ,故选D【点睛】本题考查了矩形的性质,熟练运用矩形的性质是解决问题的关键.11.A解析:A【解析】【分析】首先写出函数的解析式,根据函数的特点即可确定.【详解】由题意得:s与t的函数关系式为s=600-200t,其中0≤t≤3,所以函数图象是A.故选A.【点睛】本题主要考查函数的图象的知识点,解答时应看清函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.12.D解析:D【解析】【分析】根据两图象的交点坐标满足方程组,方程组的解就是交点坐标.【详解】由图可知,交点坐标为(﹣3,﹣2),所以方程组的解是32 xy=-⎧⎨=-⎩.故选D.【点睛】本题考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.二、填空题13.45°【解析】【分析】由平行四边形的性质得出∠ABC=∠D=108°AB∥CD 得出∠BAD=180°﹣∠D=60°由等腰三角形的性质和三角形内角和定理求出∠ABE=75°即可得出∠EBC的度数【详解解析:45°【解析】【分析】由平行四边形的性质得出∠ABC=∠D=108°,AB∥CD,得出∠BAD=180°﹣∠D=60°,由等腰三角形的性质和三角形内角和定理求出∠ABE=75°,即可得出∠EBC的度数.【详解】解:∵四边形ABCD是平行四边形,∴∠ABC=∠D=120°,AB∥CD,∴∠BAD=180°﹣∠D=60°,∵AE平分∠DAB,∴∠BAE=60°÷2=30°,∵AE=AB,∴∠ABE=(180°﹣30°)÷2=75°,∴∠EBC=∠ABC﹣∠ABE=45°;故答案为:45°.【点睛】本题考查了平行四边形的性质、等腰三角形的性质以及三角形内角和定理,正确理解和掌握性质定理是解决本题的关键.14.【解析】【分析】由根式的被开方数大于等于0分式的分母不等于0联立不等式组求解x 的取值即可【详解】根据题意得解得故答案为:【点睛】本题考查了函数的定义域及其求法函数的定义域就是使函数解析式有意义的自变解析:0x >. 【解析】 【分析】由根式的被开方数大于等于0,分式的分母不等于0联立不等式组求解x 的取值即可. 【详解】根据题意得,00x x ≥⎧⎨≠⎩解得,0x >故答案为:0x >. 【点睛】本题考查了函数的定义域及其求法,函数的定义域,就是使函数解析式有意义的自变量的取值范围,是基础题.15.x≥4【解析】分析:根据二次根式有意义的条件列出不等式解不等式即可详解:由题意得x −4⩾0解得x ⩾4故答案为x ⩾4点睛:此题考查二次根式有意义的条件二次根式有意义的条件是被开方部分大于或等于零二次根解析:x≥4 【解析】分析:根据二次根式有意义的条件列出不等式,解不等式即可. 详解:由题意得,x−4⩾0, 解得,x ⩾4, 故答案为x ⩾4.点睛:此题考查二次根式有意义的条件,二次根式有意义的条件是被开方部分大于或等于零,二次根式无意义的条件是被开方部分小于0.16.【解析】【分析】根据平移不改变k 的值可设平移后直线的解析式为y=3x+b 然后将点(02)代入即可得出直线的函数解析式【详解】解:设平移后直线的解析式为y=3x+b 把(02)代入直线解析式得2=b 解得 解析:32y x =+【解析】 【分析】根据平移不改变k 的值可设平移后直线的解析式为y=3x+b ,然后将点(0,2)代入即可得出直线的函数解析式. 【详解】解:设平移后直线的解析式为y=3x+b . 把(0,2)代入直线解析式得2=b , 解得 b=2.所以平移后直线的解析式为y=3x+2.故答案为:y=3x+2.【点睛】本题考查一次函数图象与几何变换,待定系数法求一次函数的解析式,掌握直线y=kx+b (k≠0)平移时k的值不变是解题的关键.17.x>2019【解析】【分析】根据二次根式的定义进行解答【详解】在实数范围内有意义即x-20190所以x的取值范围是x2019【点睛】本题考查了二次根式的定义熟练掌握二次根式的定义是本题解题关键解析:x>2019【解析】【分析】根据二次根式的定义进行解答.【详解】x-2019≥ 0,所以x的取值范围是x≥ 2019.【点睛】本题考查了二次根式的定义,熟练掌握二次根式的定义是本题解题关键.18.七【解析】【分析】根据多边形的内角和公式列式求解即可【详解】设这个多边形是边形根据题意得解得故答案为【点睛】本题主要考查了多边形的内角和公式熟记公式是解题的关键解析:七【解析】【分析】n-⋅︒,列式求解即可.根据多边形的内角和公式()2180【详解】设这个多边形是n边形,根据题意得,()2180900n-⋅︒=︒,n=.解得7故答案为7.【点睛】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.19.【解析】试题分析:数据:﹣142﹣2x的众数是2即的2次数最多;即x=2则其平均数为:(﹣1+4+2﹣2+2)÷5=1故答案为1考点:1众数;2算术平均数解析:【解析】试题分析:数据:﹣1,4,2,﹣2,x的众数是2,即的2次数最多;即x=2.则其平均数为:(﹣1+4+2﹣2+2)÷5=1.故答案为1.考点:1.众数;2.算术平均数.20.2【解析】【分析】先用平均数是3可得x的值再结合方差公式计算即可【详解】平均数是3(1+2+3+x+5)解得:x=4∴方差是S2(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)21解析:2【解析】【分析】先用平均数是3可得x 的值,再结合方差公式计算即可.【详解】平均数是315=(1+2+3+x +5),解得:x =4, ∴方差是S 215=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]15=⨯10=2. 故答案为2.【点睛】本题考查了平均数和方差的概念,解题的关键是牢记方差的计算公式,难度不大.三、解答题21.甲获胜;理由见解析.【解析】【分析】根据加权平均数的计算公式列出算式,进行计算即可.【详解】甲获胜;Q 甲的加权平均成绩为87285395590.4235⨯+⨯+⨯=++(分), 乙的加权平均成绩为94288388589.2235⨯+⨯+⨯=++(分), ∵90.489.2>,∴甲获胜.【点睛】 此题考查了加权平均数的概念及应用,用到的知识点是加权平均数的计算公式,解题的关键是根据公式列出算式.22.(1 (2【解析】【分析】(1)把每一个二次根式都化成最简二次根式,然后再对同类二次根式进行合并即可得;(2)根据二次根式乘除法的法则进行计算即可.【详解】(1)原式=13⨯ ;(2)原式=11245⨯⨯⨯=110 【点睛】本题考查了二次根式的混合运算,熟练掌握运算法则是解题的关键.23.(1)()()130,03008015000.300x x y x x ⎧≤≤⎪=⎨+>⎪⎩;(2)应分配甲种花卉种植面积为2800m ,乙种花卉种植面积为2400m ,才能使种植总费用最少,最少总费用为119000元.【解析】分析:(1)由图可知y 与x 的函数关系式是分段函数,待定系数法求解析式即可. (2)设甲种花卉种植为 a m 2,则乙种花卉种植(12000-a )m 2,根据实际意义可以确定a 的范围,结合种植费用y (元)与种植面积x (m 2)之间的函数关系可以分类讨论最少费用为多少.详解:(1)()()130,03008015000.300x x y x x ⎧≤≤⎪=⎨+>⎪⎩(2)设甲种花卉种植面积为2am ,则乙种花卉种植面积为()21200a m -. ()200,21200a a a ≥⎧∴⎨≤-⎩200800a ∴≤≤. 当200300a ≤<时,()1130100120030120000W a a a =+-=+.当200a =时,min 126000W =元.当300800a ≤≤时,()2801500010020013500020W a a a =++-=-.当800a =时,min 119000W =元.119000126000<Q ,∴当800a =时,总费用最低,最低为119000元.此时乙种花卉种植面积为21200800400()m -=.答:应分配甲种花卉种植面积为2800m ,乙种花卉种植面积为2400m ,才能使种植总费用最少,最少总费用为119000元.点睛:本题是看图写函数解析式并利用解析式解决问题的题目,考查分段函数的表达和分类讨论的数学思想.24.(1)见解析;(2)见解析【解析】【分析】(1)从所给的条件可知,DE 是△ABC 中位线,所以DE ∥BC 且2DE=BC ,所以BC 和EF 平行且相等,所以四边形BCFE 是平行四边形,又因为BE=FE ,所以四边形BCFE 是菱形.(2)因为∠BCF=120°,所以∠EBC=60°,所以菱形的边长也为4,求出菱形的高面积就可.【详解】解:(1)证明:∵D 、E 分别是AB 、AC 的中点,∴DE ∥BC 且2DE=BC .又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC.∴四边形BCFE是平行四边形.又∵BE=FE,∴四边形BCFE是菱形.(2)∵∠BCF=120°,∴∠EBC=60°.∴△EBC是等边三角形.∴菱形的边长为4,高为∴菱形的面积为4×25.(1)证明见解析;(2)【解析】试题分析:(1)首先证明△ABC是等边三角形,进而得出∠AEC=90°,四边形AECF是平行四边形,即可得出答案;(2)利用勾股定理得出AE的长,进而求出菱形的面积.试题解析:(1)∵四边形ABCD是菱形,∴AB=BC,又∵AB=AC,∴△ABC是等边三角形,∵E是BC的中点,∴AE⊥BC,∴∠AEC=90°,∵E、F分别是BC、AD的中点,∴AF=12AD,EC=12BC,∵四边形ABCD是菱形,∴AD∥BC且AD=BC,∴AF∥EC且AF=EC,∴四边形AECF是平行四边形,又∵∠AEC=90°,∴四边形AECF是矩形;(2)在Rt△ABE中,AE==,所以,S菱形ABCD考点:1.菱形的性质;2..矩形的判定.。
(石家庄市专用)2020-2021学年八年级数学下学期期末必刷卷(冀教版) (原卷版)
石家庄市2021年八年级(下)数学期末必刷卷考试时间:100分钟总分:120分一、选择题(本大题有16个小题,共42分.1~6小题各2分,7~16小题各3分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(本题2分)x 的取值范围是( ) A .x >1 B .x >﹣1C .x≥1D .x≥﹣12.(本题2分)下列曲线反映了变量y 随变量x 之间的关系,其中y 是x 的函数的是( )A .B .C .D .3.(本题2分)某校举办“汉字听写大赛”,7名学生进入决赛,他们所得分数互不相同,比赛共设3个获奖名额,某学生知道自己的分数后,要判断自己能否获奖,他应该关注的统计量是( ) A .平均数B .中位数C .众数D .方差4.(本题2分)下列各组数中,不能作为直角三角形的三边长的是( ) A .3,4,5B .6,8,10C .5,5,6D .5,12,135.(本题2分)关于函数y =-kx(k <0) 下列说法错误的是( ) A .它是正比例函数 B .图象经过点(1,-k) C .图象经过第一、三象限D .当x >0时,y <06.(本题2分)下列说法正确的是( )A a =-,则 a 0<B a =,则a 0>C24=D.5a b7.(本题3分)实数a、b的结果是()A.a﹣2b B.﹣a C.a D.﹣2a+b8.(本题3分)如图,在△ABC中,BF、CF分别平分∠ABC和∠ACB,过点F作EG∥BC分别交于点AB、AC于点E、G.若AB=9,BC=10,AC=11,则△AEG的周长为()A.15 B.20 C.21 D.199.(本题3分)一个直角三角形的两条边分别是9和40,则第三边的平方是()A.1681 B.1781 C.1519或1681 D.151910.(本题3分)某校师生植树节积极参加以组为单位的植树活动,七个小组植树情况如下:则本组数据的众数与中位数分别为()A.5,4 B.6,5 C.7,6 D.5,511.(本题3分)若一次函数y=kx+b(k,b为常数,且k≠0)的图象经过A(0,﹣1),B(1,1),则不等式kx+b﹣1<0的解集为()A.x<0 B.x>0 C.x>1 D.x<112.(本题3分)下列命题是真命题的是()A .平移不改变图形的形状和大小,而旋转改变图形的形状和大小;B .在平面直角坐标系中,一个点向右平移2个单位,则纵坐标加2;C .在成中心对称的两个图形中,连接对称点的线段都被对称中心平分;D .三角形三边垂直平分线的交点到这个三角形三边的距离相等;13.(本题3分)如图,矩形ABCD 的面积为10cm 2,它的两条对角线交于点O 1,以AB 、AO 1为两邻边作平行四边形ABC 1O 1,平行四边形ABC 1O 1的对角线交于点O 2,同样以AB 、AO 2为两邻边作平行四边形ABC 2O 2,…,依此类推,则平行四边形ABC n O n 的面积为( )A .210ncm 2B .1102n cm 2 C .12n cm 2 D .102n cm 214.(本题3分)小明从家骑车上学,先匀速上坡到达A 地后再匀速下坡到达学校,所用的时间与路程如图所示,如果返回时,上、下坡速度仍然保持不变,那么他从学校回到家需要的时间是( )A .9分钟B .12分钟C .8分钟D .10分钟15.(本题3分)5月1日至7日,我市每日最高气温如图所示,则下列说法错误的是( )A .中位数是33C ︒B .众数是33C ︒C .平均数是197C 7︒ D .4日至5日最高气温下降幅度较大16.(本题3分)下列各组数中,是勾股数的为( ) A .1,1,2 B .1.5,2,2.5C .7,24,25D .6,12,13二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有2个空,每空3分)17.(本题3分)方程=___________.18.(本题3分)一次函数y kx b =+(0k ≠,k ,b 是常数)的图像如图所示.则关于x 的方程4kx b +=的解是_______.19.(本题6分)如图,Rt △ABC ,∠ACB =90°,AC =6,BC =8,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将BC 沿CF 翻折,使点B 落在CD 的延长线上的点B ′处,两条折痕与斜边AB 分别交于点E 、F ,则线段CE 的长等于_________,线段BF 的长等于_________.三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.(本题8分)计算:|﹣+(–1)2019.21.(本题8分)如图,矩形ABCD中,AD=8,AB=4,将此矩形折叠,使点B与点D重合,折痕为EF,连接BE、DF,以B为原点建立平面直角坐标系,使BC、BA边分别在x轴和y轴的正半轴上.(1)试判断四边形BFDE的形状,并说明理由;(2)求直线EF的解析式.22.(本题9分)为了让同学们了解自己的体育水平,初二1班的体育刘老师对全班45名学生进行了一次体育模拟测试(得分均为整数),成绩满分为10分,1班的体育委员根据这次测试成绩,制作了统计图和分析表如下:初二1班体育模拟测试成绩分析表根据以上信息,解答下列问题:(1)这个班共有男生________人,共有女生________人;(2)补全初二1班体育模拟测试成绩分析表;(3)你认为在这次体育测试中,1班的男生队、女生队哪个表现更突出一些?并写出一条支持你的看法的理由.23.(本题9分)如图1,在Rt ABC ∆中,90306ACB ABC AC ∠=︒∠=︒=,,,D 是AB 的中点P 是射线CD 上一个动点,联结PB ,过点B 作PB 的垂线,交射线CD 于Q .(1)如图2,如果点P 与点D 重合,求证:2PQ PC =; (2)如图3,如果BP BQ =,求PQ 的长;(3)设CP x BP y ==,,求y 关于x 的函数关系式,并写出x 的取值范围.24.(本题10分)快车和慢车都从甲地驶向乙地,两车同时出发行在同一条公路上,途中快车休息1小时后加速行驶比慢车提前0.5小时到达目的地,慢车没有体息整个行驶过程中保持匀速不变.设慢车行驶的时间为x 小时,快车行驶的路程为y 1千米,慢车行驶的路程为y 2千米,图中折线OAEC 表示y 1与x 之间的函数关系,线段OD 表示y 2与x 之间的函数关系,请解答下列问题:(1)甲、乙两地相距千米,快车休息前的速度是千米/时、慢车的速度是千米/时;(2)求图中线段EC所表示的y1与x之间的函数表达式;(3)线段OD与线段EC相交于点F,直接写出点F的坐标,并解释点F的实际意义.25.(本题10分)在新型冠状病毒肆虐之际,一方有难,八方支援.某医院医用防护口罩库存告急,某公司准备购进一批医用防护口罩捐赠到该医院.已知1个A型口罩和2个B型口罩共需32元;2个A型口罩和一个B型口罩共需28元.(1)求一个A型口罩和一个B型口罩的售价各是多少元?(2)某公司准备购进这两种型号的口罩共500个,其中A型口罩数量不少于330个,且不多于B型口罩的2倍,请设计出最省钱的方案.26.(本题12分)如图,正方形ABCD中,点E为AB上一动点(不与A、B重合).将△EBC沿CE翻折至△EFC,延长EF交边AD于点G.(1)连结AF,若AF∥CE.证明:点E为AB的中点;(2)证明:GF=GD;(3)若AD=10,设EB=x,GD=y,求y与x的函数关系式.。
2020年石家庄市初二数学下期末模拟试卷(附答案)
2020年石家庄市初二数学下期末模拟试卷(附答案)一、选择题1.直角三角形两直角边长为a ,b ,斜边上高为h ,则下列各式总能成立的是( )A .ab=h 2B .a 2+b 2=2h 2C .111a b h+= D .222111a b h+= 2.若等腰三角形的底边长为6,底边上的中线长为4,则它的腰长为( )A .7B .6C .5D .4 3.均匀地向如图的容器中注满水,能反映在注水过程中水面高度h 随时间t 变化的函数图象是( )A .B .C .D .4.一次函数111y k x b =+的图象1l 如图所示,将直线1l 向下平移若干个单位后得直线2l ,2l 的函数表达式为222y k x b =+.下列说法中错误的是( )A .12k k =B .12b b <C .12b b >D .当5x =时,12y y >5.已知正比例函数y kx =(k ≠0)的图象如图所示,则在下列选项中k 值可能是( )A .1B .2C .3D .46.已知一次函数y=-0.5x+2,当1≤x≤4时,y 的最大值是( )A.1.5B.2C.2.5D.-6 7.对于函数y=2x+1下列结论不正确是()A.它的图象必过点(1,3)B.它的图象经过一、二、三象限C.当x>12时,y>0D.y值随x值的增大而增大8.在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的()A.众数B.平均数C.中位数D.方差9.若正比例函数的图象经过点(,2),则这个图象必经过点().A.(1,2)B.(,)C.(2,)D.(1,)10.二次根式()23-的值是()A.﹣3B.3或﹣3C.9D.311.下列运算正确的是()A.235+=B.32﹣2=3C.236⨯=D.632÷=12.如图,一个工人拿一个2.5米长的梯子,底端A放在距离墙根C点0.7米处,另一头B点靠墙,如果梯子的顶部下滑0.4米,梯子的底部向外滑()米A.0.4B.0.6C.0.7D.0.8二、填空题13.如图,在正方形ABCD的外侧,作等边△ADE,则∠AEB=_________°.14.在函数41xyx-=+中,自变量x的取值范围是______.15.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则△AEF的周长=cm.16.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,∠AOB=120°,CE//BD ,DE//AC ,若AD=5,则四边形CODE 的周长______.17.已知函数y =2x +m -1是正比例函数,则m =___________.18.如图,已知ABC ∆中,10AB =,8AC =,6BC =,DE 是AC 的垂直平分线,DE 交AB 于点D ,连接CD ,则=CD ___19.如图,在□ABCD 中,AE ⊥BC 于点E ,AF ⊥CD 于点F .若4AE =,6AF =,且□ABCD 的周长为40,则□ABCD 的面积为_______.20.如图,矩形ABCD 的边AD 长为2,AB 长为1,点A 在数轴上对应的数是-1,以A 点为圆心,对角线AC 长为半径画弧,交数轴于点E ,则这个点E 表示的实数是_______三、解答题21.如图,菱形ABCD 中,对角线AC 、BD 交于O 点,DE ∥AC ,CE ∥BD .(1)求证:四边形OCED为矩形;(2)在BC上截取CF=CO,连接OF,若AC=16,BD=12,求四边形OFCD的面积.22.如图,点B、E、C、F在一条直线上,AB=DF,AC=DE,BE=FC.(1)求证:△ABC≌△DFE;(2)连接AF、BD,求证:四边形ABDF是平行四边形.23.如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.24.如图①,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB(1)求证:△BCP≌△DCP;(2)求证:∠DPE=∠ABC;(3)把正方形ABCD改为菱形,其它条件不变(如图②),若∠ABC=58°,则∠DPE=度.25.如图,在平行四边形ABCD 中,已知点E 在AB 上,点F 在CD 上,且AE CF =.求证:DE BF =.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】【详解】解:根据直角三角形的面积可以导出:斜边c=ab h. 再结合勾股定理:a 2+b 2=c 2.进行等量代换,得a 2+b 2=222a b h , 两边同除以a 2b 2, 得222111a b h +=. 故选D . 2.C解析:C【解析】【分析】【详解】∵等腰三角形ABC 中,AB =AC ,AD 是BC 上的中线,∴BD =CD =12BC =3, AD 同时是BC 上的高线,∴AB 22AD BD +故它的腰长为5.故选C.3.A解析:A【解析】试题分析:最下面的容器较粗,第二个容器最粗,那么第二个阶段的函数图象水面高度h 随时间t 的增大而增长缓慢,用时较长,最上面容器最小,那么用时最短.故选A . 考点:函数的图象.4.B解析:B【解析】【分析】根据两函数图象平行k 相同,以及平移规律“左加右减,上加下减”即可判断【详解】∵将直线1l 向下平移若干个单位后得直线2l ,∴直线1l ∥直线2l ,∴12k k =,∵直线1l 向下平移若干个单位后得直线2l ,∴12b b >,∴当x 5=时,12y y >故选B .【点睛】本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.5.B解析:B【解析】由图象可得2535k k <⎧⎨>⎩ ,解得5532k << ,故符合的只有2;故选B. 6.A解析:A【分析】根据一次函数的系数k=-0.5<0,可得出y随x值的增大而减小,将x=1代入一次函数解析式中求出y值即可.【详解】在一次函数y=-0.5x+2中k=-0.5<0,∴y随x值的增大而减小,∴当x=1时,y取最大值,最大值为-0.5×1+2=1.5,故选A.【点睛】本题考查了一次函数的性质,牢记“k<0,y随x的增大而减小”是解题的关键.7.C解析:C【解析】【分析】利用k、b的值依据函数的性质解答即可.【详解】解:当x=1时,y=3,故A选项正确,∵函数y=2x+1图象经过第一、二、三象限,y随x的增大而增大,∴B、D正确,∵y>0,∴2x+1>0,∴x>﹣12,∴C选项错误,故选:C.【点睛】此题考查一次函数的性质,熟记性质并运用解题是关键.8.D解析:D【解析】【分析】方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好。
2020-2021初二数学下期末第一次模拟试题含答案(1)
2020-2021初二数学下期末第一次模拟试题含答案(1)一、选择题1.如图,将正方形OABC 放在平面直角坐标系中,O 是原点,点A 的坐标为(1,),则点C 的坐标为( )A .(-,1)B .(-1,)C .(,1)D .(-,-1)2.顺次连接对角线互相垂直且相等的四边形各边中点所围成的四边形是( )A .矩形B .菱形C .正方形D .平行四边形3.已知△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,下列条件不能判断△ABC 是直角三角形的是( ) A .b 2﹣c 2=a 2B .a :b :c =3:4:5C .∠A :∠B :∠C =9:12:15D .∠C =∠A ﹣∠B4.估计()-⋅1230246的值应在( ) A .1和2之间 B .2和3之间C .3和4之间D .4和5之间5.已知正比例函数y kx =(k ≠0)的图象如图所示,则在下列选项中k 值可能是( )A .1B .2C .3D .46.12(751348 ) A .6B .3C .3D .127.如图,O 是矩形ABCD 对角线AC 的中点,M 是AD 的中点,若BC =8,OB =5,则OM 的长为( )A .1B .2C .3D .48.如图,以数轴的单位长度线段为边作一个正方形,以表示数1的点为圆心,正方形对角线长为半径画弧,交数轴于点A ,则点A 表示的数是( )A .-2B .﹣1+2C .﹣1-2D .1-29.如图,D 3081次六安至汉口动车在金寨境内匀速通过一条隧道(隧道长大于火车长),火车进入隧道的时间x 与火车在隧道内的长度y 之间的关系用图象描述大致是( )A .B .C .D .10.某商场对上周某品牌运动服的销售情况进行了统计,如下表所示: 颜色黄色绿色白色紫色红色数量(件)12015023075430经理决定本周进货时多进一些红色的,可用来解释这一现象的统计知识的( ) A .平均数B .中位数C .众数D .平均数与众数11.将根24cm 的筷子,置于底面直径为15cm ,高8cm 的圆柱形水杯中,设筷子露在杯子外面的长度hcm ,则h 的取值范围是( )A .h 17cm ≤B .h 8cm ≥C .7cm h 16cm ≤≤D .15cm h 16cm ≤≤12.如图,四边形ABCD 是菱形,∠ABC =120°,BD =4,则BC 的长是( )A .4B .5C .6D .43二、填空题13.如图,在ABC 中,AC BC =,点D E ,分别是边AB AC ,的中点,延长DE 到点F ,使DE EF =,得四边形ADCF .若使四边形ADCF 是正方形,则应在ABC 中再添加一个条件为__________.14.将一次函数y=3x ﹣1的图象沿y 轴向上平移3个单位后,得到的图象对应的函数关系式为__. 15.函数y =21xx -中,自变量x 的取值范围是_____. 16.若x <2,化简22)x -(+|3﹣x|的正确结果是__.17.如图,在平面直角坐标系xOy 中,点(0,6)C ,射线//x CE 轴,直线y x b =-+交线段OC 于点B ,交x 轴于点A ,D 是射线CE 上一点.若存在点D ,使得ABD △恰为等腰直角三角形,则b 的值为_______.18.已知()()1,32,1A B -、,点P 在y 轴上,则当y 轴平分APB ∠时,点P 的坐标为______. 19.如图所示,已知ABCD 中,下列条件:①AC =BD ;②AB =AD ;③∠1=∠2;④AB ⊥BC中,能说明ABCD 是矩形的有______________(填写序号)20.如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需______米.三、解答题21.如图,▱ABCD的对角线AC,BD相交于点O.E,F是AC上的两点,并且AE=CF,连接DE,BF.(1)求证:△DOE≌△BOF;(2)若BD=EF,连接DE,BF.判断四边形EBFD的形状,并说明理由.22.已知:如图,在平行四边形ABCD中,E、F是对角线AC上的两点,且AE=CF.求证:∠EBF=∠EDF.23.如图①,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB(1)求证:△BCP≌△DCP;(2)求证:∠DPE=∠ABC;(3)把正方形ABCD改为菱形,其它条件不变(如图②),若∠ABC=58°,则∠DPE=度.24.甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A 地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,结合图象信息解答下列问题:(1)乙车的速度是千米/时,t=小时;(2)求甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围;(3)直接写出乙车出发多长时间两车相距120千米.25.某公司开发出一款新的节能产品,该产品的成本价为6元件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试营销,售价为9元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象,图中的折线ODE表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少4件,(1)请直接写出y与x之间的函数关系式;(2)日销售利润不低于960元的天数共有多少天?试销售期间,日销售最大利润是多少元?(3)工作人员在统计的过程中发现,有连续两天的销售利润之和为1980元,请你算出是哪两天.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】试题分析:作辅助线构造出全等三角形是解题的关键,也是本题的难点.如图:过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,根据同角的余角相等求出∠OAD=∠COE,再利用“角角边”证明△AOD和△OCE全等,根据全等三角形对应边相等可得OE=AD,CE=OD,然后根据点C在第二象限写出坐标即可.∴点C的坐标为(-,1)故选A.考点:1、全等三角形的判定和性质;2、坐标和图形性质;3、正方形的性质.2.C解析:C【解析】【分析】根据三角形中位线定理得到所得四边形的对边都平行且相等,那么其为平行四边形,再根据邻边互相垂直且相等,可得四边形是正方形.【详解】解:、、、分别是、、、的中点,,,EH=FG=BD,EF=HG=AC,四边形是平行四边形,,,,,四边形是正方形,故选:C.【点睛】本题考查的是三角形中位线定理以及正方形的判定,解题的关键是构造三角形利用三角形的中位线定理解答.3.C解析:C【解析】【分析】根据勾股定理逆定理可判断出A、B是否是直角三角形;根据三角形内角和定理可得C、D 是否是直角三角形.【详解】A、∵b2-c2=a2,∴b2=c2+a2,故△ABC为直角三角形;B、∵32+42=52,∴△ABC为直角三角形;C、∵∠A:∠B:∠C=9:12:15,151807591215C︒︒∠=⨯=++,故不能判定△ABC是直角三角形;D、∵∠C=∠A-∠B,且∠A+∠B+∠C=180°,∴∠A=90°,故△ABC为直角三角形;故选C.【点睛】考查勾股定理的逆定理的应用,以及三角形内角和定理.判断三角形是否为直角三角形,可利用勾股定理的逆定理和直角三角形的定义判断.4.B解析:B【解析】【分析】先利用分配律进行计算,然后再进行化简,根据化简的结果即可确定出值的范围.【详解】(==2,而,所以2<2<3,所以估计(2和3之间,故选B.【点睛】本题主要考查二次根式的混合运算及估算无理数的大小,熟练掌握运算法则以及“夹逼法”是解题的关键.5.B解析:B【解析】由图象可得2535kk<⎧⎨>⎩,解得5532k<<,故符合的只有2;故选B.6.D解析:D【解析】【分析】【详解】12===.故选:D.7.C解析:C【分析】由O是矩形ABCD对角线AC的中点,可求得AC的长,然后运用勾股定理求得AB、CD 的长,又由M是AD的中点,可得OM是△ACD的中位线,即可解答.【详解】解:∵O是矩形ABCD对角线AC的中点,OB=5,∴AC=2OB=10,∴CD=AB6,∵M是AD的中点,∴OM=12CD=3.故答案为C.【点睛】本题考查了矩形的性质、直角三角形的性质以及三角形中位线的性质,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.8.D解析:D【解析】【分析】【详解】∵边长为1=∴∵A在数轴上原点的左侧,∴点A表示的数为负数,即1故选D9.A解析:A【解析】【分析】先分析题意,把各个时间段内y与x之间的关系分析清楚,本题是分段函数,分为三段.【详解】解:根据题意可知:火车进入隧道的时间x与火车在隧道内的长度y之间的关系具体可描述为:当火车开始进入时y逐渐变大,火车完全进入后一段时间内y不变,当火车开始出来时y逐渐变小,反映到图象上应选A.故选:A.本题考查了动点问题的函数图象,主要考查了根据实际问题作出函数图象的能力.解题的关键是要知道本题是分段函数,分情况讨论y与x之间的函数关系.10.C解析:C【解析】试题解析:由于销售最多的颜色为红色,且远远多于其他颜色,所以选择多进红色运动装的主要根据众数.故选C.考点:统计量的选择.11.C解析:C【解析】【分析】观察图形,找出图中的直角三角形,利用勾股定理解答即可.【详解】首先根据圆柱的高,知筷子在杯内的最小长度是8cm,则在杯外的最大长度是24-8=16cm;再根据勾股定理求得筷子在杯内的最大长度是(如图)AC=2222AB BC+=+=17,则在杯外的最小长度是24-17=7cm,158所以h的取值范围是7cm≤h≤16cm,故选C.【点睛】本题考查了勾股定理的应用,注意此题要求的是筷子露在杯外的取值范围.主要是根据勾股定理求出筷子在杯内的最大长度.12.A解析:A【解析】【分析】根据菱形的性质可知对角线平分对角,从而可知∠ABD=∠CBD=60°,从而可知△BCD是等边三角形,进而可知答案.【详解】∵∠ABC=120°,四边形ABCD是菱形∴∠CBD=60°,BC=CD∴△BCD是等边三角形∵BD=4∴BC=4故答案选A.【点睛】本题考查的是菱形的性质,能够掌握菱形的性质是解题的关键.二、填空题13.答案不唯一如∠ACB=90°或∠BAC=45°或∠B=45°【解析】【分析】先证明四边形ADCF是平行四边形再证明AC=DF即可再利用∠ACB=90°得出答案即可【详解】∠ACB=90°时四边形AD解析:答案不唯一,如∠ACB=90°或∠BAC=45°或∠B=45°【解析】【分析】先证明四边形ADCF是平行四边形,再证明AC=DF即可,再利用∠ACB=90°得出答案即可.【详解】∠ACB=90°时,四边形ADCF是正方形,理由:∵E是AC中点,∴AE=EC,∵DE=EF,∴四边形ADCF是平行四边形,∵AD=DB,AE=EC,∴DE=12 BC,∴DF=BC,∵CA=CB,∴AC=DF,∴四边形ADCF是矩形,点D. E分别是边AB、AC的中点,∴DE//BC,∵∠ACB=90°,∴∠AED=90°,∴矩形ADCF是正方形.故答案为∠ACB=90°.【点睛】此题考查正方形的判定,解题关键在于掌握判定法则14.y=3x+2【解析】【详解】将一次函数y=3x﹣1的图象沿y轴向上平移3个单位后可得y=3x﹣1+3=3x+2故答案为y=3x+2解析:y=3x+2.【解析】【详解】将一次函数y=3x﹣1的图象沿y轴向上平移3个单位后,可得y=3x﹣1+3=3x+2.故答案为y=3x+2.15.x≠1【解析】【分析】根据分式有意义的条件即可解答【详解】函数y=中自变量x的取值范围是x﹣1≠0即x≠1故答案为:x≠1【点睛】本题考查了函数自变量的取值范围当函数表达式是分式时要注意考虑分式的分解析:x≠1【解析】【分析】根据分式有意义的条件即可解答.【详解】函数y=21xx-中,自变量x的取值范围是x﹣1≠0,即x≠1,故答案为:x≠1.【点睛】本题考查了函数自变量的取值范围,当函数表达式是分式时,要注意考虑分式的分母不能为0.16.5-2x【解析】【分析】本题首先根据题意得出x-203-x0然后根据绝对值的性质进行化简从而得出答案【详解】解:+|3﹣x|=+|3﹣x|∵x<2∴x-203-x0∴原式=2-x+3-x=5-2x故解析:5-2x【解析】【分析】本题首先根据题意得出x-2<0,3-x>0,然后根据绝对值的性质进行化简,从而得出答案.【详解】解:﹣x|=2x-+|3﹣x|∵x<2∴x-2<0,3-x>0∴原式=2-x+3-x=5-2x故答案为:5-2x【点睛】本题主要考查的就是二次根式的化简.()2a 的区别,第一个a 的取值范围为全体实数,第二个a 的取值范围为非负数,第一个的运算结果为a ,然后根据a 的正负性进行去绝对值,第二个的运算结果就是a.本题我们知道原式=x 2-+3x -,然后根据x 的取值范围进行化简.17.3或6【解析】【分析】先表示出AB 坐标分①当∠ABD=90°时②当∠ADB=90°时③当∠DAB=90°时建立等式解出b 即可【详解】解:①当∠ABD=90°时如图1则∠DBC+∠ABO=90°∴∠D解析:3或6【解析】【分析】先表示出A 、B 坐标,分①当∠ABD=90°时,②当∠ADB=90°时,③当∠DAB=90°时,建立等式解出b 即可.【详解】解:①当∠ABD=90°时,如图1,则∠DBC+∠ABO=90°,,∴∠DBC=∠BAO ,由直线y x b =-+交线段OC 于点B ,交x 轴于点A 可知OB=b ,OA=b , ∵点C (0,6),∴OC=6,∴BC=6-b ,在△DBC 和△BAO 中,DBC BAO DCB AOB BD AB ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△DBC ≌△BAO (AAS ),∴BC=OA ,即6-b=b ,∴b=3;②当∠ADB=90°时,如图2,作AF ⊥CE 于F ,同理证得△BDC ≌△DAF ,∴CD=AF=6,BC=DF ,∵OB=b,OA=b,∴BC=DF=b-6,∵BC=6-b,∴6-b=b-6,∴b=6;③当∠DAB=90°时,如图3,作DF⊥OA于F,同理证得△AOB≌△DFA,∴OA=DF,∴b=6;综上,b的值为3或6,故答案为3或6.【点睛】本题考查了一次函数图像上点的坐标特征,等腰直角三角形的性质,三角形全等的判定和性质,作辅助线构建求得三角形上解题的关键.18.【解析】【分析】作点A关于y轴对称的对称点求出点的坐标再求出直线的解析式将代入直线解析式中即可求出点P的坐标【详解】如图作点A关于y 轴对称的对称点∵点A关于y轴对称的对称点∴设直线的解析式为将点和点0,5解析:()【解析】【分析】x=作点A关于y轴对称的对称点A',求出点A'的坐标,再求出直线BA'的解析式,将0代入直线解析式中,即可求出点P 的坐标.【详解】如图,作点A 关于y 轴对称的对称点A '∵()1,3A ,点A 关于y 轴对称的对称点A '∴()1,3A '-设直线BA '的解析式为y kx b =+将点()1,3A '-和点()2,1B -代入直线解析式中312k b k b =-+⎧⎨=-+⎩解得2,5k b ==∴直线BA '的解析式为25y x =+将0x =代入25y x =+中解得5y =∴()0,5P故答案为:()0,5.【点睛】本题考查了坐标点的问题,掌握角平分线的性质、轴对称的性质、一次函数的性质是解题的关键.19.①④【解析】矩形的判定方法由:①有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形由此可得能使平行四边形ABCD 是矩形的条件是①和④解析:①④【解析】矩形的判定方法由:①有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形,由此可得能使平行四边形ABCD 是矩形的条件是①和④.20.2+2【解析】【分析】地毯的竖直的线段加起来等于BC 水平的线段相加正好等于AC 即地毯的总长度至少为(AC+BC )【详解】在Rt △ABC 中∠A=30°BC=2m ∠C=90°∴AB=2BC=4m ∴AC=解析:2+23【解析】【分析】地毯的竖直的线段加起来等于BC ,水平的线段相加正好等于AC ,即地毯的总长度至少为(AC+BC ).【详解】在Rt △ABC 中,∠A=30°,BC=2m ,∠C=90°,∴AB=2BC=4m ,∴2223AB BC -=m ,∴3(m ).故答案为:3【点睛】本题主要考查勾股定理的应用,解此题的关键在于准确理解题中地毯的长度为水平与竖直的线段的和.三、解答题21.(2)证明见解析;(2)四边形EBFD 是矩形.理由见解析.【解析】分析:(1)根据SAS 即可证明;(2)首先证明四边形EBFD 是平行四边形,再根据对角线相等的平行四边形是矩形即可证明;【解答】(1)证明:∵四边形ABCD 是平行四边形,∴OA=OC ,OB=OD ,∵AE=CF ,∴OE=OF ,在△DEO 和△BOF 中,OD OB DOE BOF OE OF ⎧⎪∠∠⎨⎪⎩===,∴△DOE ≌△BOF .(2)结论:四边形EBFD是矩形.理由:∵OD=OB,OE=OF,∴四边形EBFD是平行四边形,∵BD=EF,∴四边形EBFD是矩形.点睛:本题考查平行四边形的性质,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.证明见解析.【解析】【分析】先连接BD,交AC于O,由于AB=CD,AD=CB,根据两组对边相等的四边形是平行四边形,可知四边形ABBCD是平行四边形,于是OA=OC,OB=OD,而AF=CF,根据等式性质易得OE=OF,再根据对角线互相平分的四边形是平行四边形可证四边形DEBF是平行四边形,于是∠EBF=∠FDE.【详解】解:连结BD,交AC于点O.∵四边形ABCD是平行四边形,∴OB=OD,OA=OC.∵AE=CF,∴OE=OF,∴四边形BFDE是平行四边形,∴∠EBF=∠EDF.23.(1)详见解析(2)详见解析(3)58【解析】【分析】(1)根据正方形的四条边都相等可得BC=DC,对角线平分一组对角可得∠BCP=∠DCP,然后利用“边角边”证明即可.(2)根据全等三角形对应角相等可得∠CBP=∠CDP,根据等边对等角可得∠CBP=∠E,然后求出∠DPE=∠DCE,再根据两直线平行,同位角相等可得∠DCE=∠ABC,从而得证.(3)根据(2)的结论解答:与(2)同理可得:∠DPE=∠ABC=58°.【详解】解:(1)证明:在正方形ABCD 中,BC=DC ,∠BCP=∠DCP=45°,∵在△BCP 和△DCP 中,BC DCBCP DCP PC PC=⎧⎪∠=∠⎨⎪=⎩,∴△BCP ≌△DCP (SAS ).(2)证明:由(1)知,△BCP ≌△DCP ,∴∠CBP=∠CDP .∵PE=PB ,∴∠CBP=∠E .∴∠CDP=∠E .∵∠1=∠2(对顶角相等),∴180°﹣∠1﹣∠CDP=180°﹣∠2﹣∠E ,即∠DPE=∠DCE .∵AB ∥CD ,∴∠DCE=∠ABC .∴∠DPE=∠ABC .(3)解:在菱形ABCD 中,BC=DC ,∠BCP=∠DCP ,在△BCP 和△DCP 中,BC DCBCP DCPPC PC=⎧⎪∠=∠⎨⎪=⎩∴△BCP ≌△DCP (SAS ),∴∠CBP=∠CDP ,∵PE=PB ,∴∠CBP=∠E ,∴∠DPE=∠DCE ,∵AB ∥CD ,∴∠DCE=∠ABC ,∴∠DPE=∠ABC=58°,故答案为:58.24.(1)60,3;(2)y=120t(0≤t≤3);y=120(3<t≤4);y=-120t+840(4<t≤7);(3)83小时或4小时或6小时.【解析】【分析】(1)首先根据图示,可得乙车的速度是60千米/时,然后根据路程÷速度=时间,用两地之间的距离除以乙车的速度,求出乙车到达A 地用的时间是多少;最后根据路程÷时间=速度,用两地之间的距离除以甲车往返AC 两地用的时间,求出甲车的速度,再用360除以甲车的速度,求出t 的值是多少即可.(2)根据题意,分3种情况:①当0≤x≤3时;②当3<x≤4时;③4<x≤7时;分类讨论,求出甲车距它出发地的路程y 与它出发的时间x 的函数关系式,并写出自变量的取值范围即可.(3)根据题意,分3种情况:①甲乙两车相遇之前相距120千米;②当甲车停留在C 地时;③两车都朝A 地行驶时;然后根据路程÷速度=时间,分类讨论,求出乙车出发多长时间两车相距120千米即可.【详解】解:(1)根据图示,可得乙车的速度是60千米/时,甲车的速度=720÷6=120(千米/小时) ∴t=360÷120=3(小时). 故答案为:60;3;(2)①当0≤x≤3时,设y=k 1x ,把(3,360)代入,可得3k 1=360,解得k 1=120,∴y=120x (0≤x≤3).②当3<x≤4时,y=360.③4<x≤7时,设y=k 2x+b ,把(4,360)和(7,0)代入,可得224360{70k b k b +=+=,解得2120{840k b =-= ∴y=﹣120x+840(4<x≤7).(3)①÷+1=300÷180+1=53+1=83(小时) ②当甲车停留在C 地时,÷60=240÷6=4(小时)③两车都朝A 地行驶时,设乙车出发x 小时后两车相距120千米,则60x ﹣[120(x ﹣1)﹣360]=120,所以480﹣60x=120,所以60x=360,解得x=6.综上,可得乙车出发83小时、4小时、6小时后两车相距120千米.【点睛】本题考查一次函数的应用.25.(1)20(018)4432(1830)x xyx x<≤≤⎧=⎨-+≤⎩;(2)试销售期间,日销售最大利润是1080元;(3)连续两天的销售利润之和为1980元的是第16,17两天和第25,26两天.【解析】【分析】(1)根据点D的坐标利用待定系数法即可求出线段OD的函数关系式,根据第23天销售了340件,结合时间每增加1天日销售量减少4件,即可求出线段DE的函数关系式,联立两函数关系式求出交点D的坐标,此题得解;(2)分0≤x≤18和18<x≤30,找出关于x的一元一次不等式,解之即可得出x的取值范围,有起始和结束时间即可求出日销售利润不低于960元的天数,再根据点D的坐标结合日销售利润=单件利润×日销售数,即可求出日销售最大利润;(3) 设第x天和第(x+1)天的销售利润之和为1980元,据此列出方程,根据取值范围解答即可.【详解】(1)20(018),4432(1830).x xyx x≤≤⎧=⎨-+≤⎩<(2)当0≤x≤18时,根据题意得,(9﹣6)×20x≥960,解得:x≥16;当18<x≤30时,根据题意得,(9﹣6)×(-4x+432)≥960,解得:x≤28.∴16≤x≤28. 28-16+1=13(天),∴日销售利润不低于960元的天数共有13天.由20x=-4x+432解得,x=18,当x=18时,y=20x=360,∴点D的坐标为(18,360),∴日最大销售量为360件,360×(9-6)=1080(元),∴试销售期间,日销售最大利润是1080元.(3)设第x天和第(x+1)天的销售利润之和为1980元.∵1980÷(9﹣6)=660<340×2,∴x<17,或x+1>23,当x<17时,根据题意可得20x+20(x+1)=660,解得x=16,符合,当x+1>23时,-4x+432-4(x+1)+432=660,解得x=25,符合,∴连续两天的销售利润之和为1980元的是第16,17两天和第25,26两天.【点睛】本题考查了一次函数的应用、待定系数法一次函数解析式,解题的关键是利用待定系数法求出OD的函数关系式以及依照数量关系找出DE的函数关系式.。
2021-2022年石家庄市八年级数学下期末第一次模拟试题及答案(1)
一、选择题1.如图,平行四边形ABCD 的对角线交于点O ,且AB =5,△OCD 的周长为21,则对角线AC 与BD 的和是( )A .16B .21C .32D .422.如图,在四边形ABCD 中,90,32,7A AB AD ︒∠===,点,M N 分别为线段,BC AB 上的动点(含端点,但点M 不与点B 重合),点,E F 分别为,DM MN 的中点,则EF 长度的最大值为( )A .7B .2.5C .5D .3.5 3.如图,在□ABCD 中,AB =4,BC =6,AC 的垂直平分线交AD 于点E ,则△CDE 的周长是( )A .7B .10C .11D .12 4.下列运算中,正确的是( )A .211a a a+=+ B .21111a a a -⋅=-+ C .1b a a b b a +=-- D .0.22100.7710++=--a b a b a b a b5.H7N9病毒直径为30纳米,已知1纳米=0.000 000 001米.用科学记数法表示这个病毒直径的大小,正确的是( )A .93010-⨯米B .83.010-⨯米C .103.010-⨯米D .90.310-⨯米 6.在一只不透明的口袋中放入红球5个,黑球1个,黄球n 个,这些球除颜色不同外,其它无任何差别.搅匀后随机从中摸出一个恰好是黄球的概率为13,则放入口袋中的黄球总数n 是( )A .3B .4C .5D .67.下列因式分解正确的是( )A .x 2+1=(x +1)2B .x 2+2x ﹣1=(x ﹣1)2C .2x 2﹣2=2(x +1)(x ﹣1)D .x 2﹣x +2=x (x ﹣1)+2 8.将3-a b ab 进行因式分解,正确的是( )A .()2a a b b -B .()21ab a -C .()()11ab a a +-D .()21ab a - 9.已知23m n a =+,23n m a =+,m n ≠,则222m mn n ++的值为( )A .9B .6C .4D .无法确定 10.如图,线段AD 由线段AB 绕点A 按逆时针方向旋转90得到,EFG ∆由ABC ∆沿CB 方向平移得到,且直线EF 过点D .则BDF ∠=( )A .30B .45C .50D .6011.某次足球赛中,32支足球队将分为8个小组进行单循环比赛,小组比赛规则如下:胜一场得3分,平一场得1分,负一场得0分,若小组赛中某队的积分为5分,则该队必是( ).A .两胜一负B .一胜两平C .五平一负D .一胜一平一负 12.如图的网格中,每个小正方形的边长为1,A ,B ,C 三点均在格点上,结论错误的是( )A .5B .∠BAC=90°C .ABC S 10=D .点A 到直线BC 的距离是2 二、填空题13.如图,在OABC 中,对角线,AC BD 相交于点,O AE BD ⊥于点,E CF BD ⊥于点,F 连接,AF CE ,给出下列结论:;AF CE OE OF ==①②;DE BF =③;④图中共有八对全等三角形.其中正确结论的序号是______.14.已知平行四边形ABCD 中,∠A 的平分线交BC 于点E ,若AB =AE ,则∠BAD =_____度.15.若55||11m m m m m --⋅=--,则m =_______. 16.计算:()1211x xx x x ⎡⎤-⋅=⎢⎥+-⎣⎦______. 17.分解因式:4a 2-4a+1=______.18.在平面直角坐标系中,以原点为中心,把点A(4,5)逆时针旋转180°,得到的点B 的坐标为_______.19.不等式组2x a x >⎧⎨>⎩的解为2x >,则a 的取值范围是______. 20.如图,80AOB ∠=︒,OC 平分AOB ∠,如果射线OA 上的点E 满足OCE △是等腰三角形,那么OEC ∠的度数为________.三、解答题21.已知,在四边形ABCD 中,160A C ︒∠+∠=,BE ,DF 分别为四边形ABCD 的外角CBN ∠,MDC ∠的平分线.(1)如图1,若//BE DF ,求C ∠的度数;(2)如图2,若BE ,DF 交于点G ,且//BE AD ,//DF AB ,求C ∠的度数. 22.(1)因式分解:3xy 3﹣6x 2y 2+3x 3y .(2)解分式方程:221x x --+1=﹣342x -. 23.(1)计算:2()()a a b a b +--; (2)因式分解:2250a -.24.如图,在平面直角坐标系中,ABC 的顶点坐标分别为(1,3)A ,(3,6)B ,(0,5)C .(正方形网格的每个小正方形的边长都是1个单位长度)(1)ABC 平移后,点A 的对应点1A 的坐标为(5,3),画出平移后的111A B C △; (2)画出111A B C △绕点1A 旋转180︒得到的22A B C 1△;(3)ABC 绕点P ( )旋转180︒也可以得到22A B C 1△,连接CP ,2C P ,并求CP 在旋转过程中所扫过的面积.25.某商店销售10台A 型和20台B 型电脑的利润为4000元,销售20台A 型和10台B 型电脑的利润为3500元.(1)求每台A 型电脑和B 型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B 型电脑的进货量不超过A 型电脑的2倍,设购进A 型电脑x 台,这100台电脑的销售总利润为y 元;①求y 关于x 的函数关系式;②该商店购进A 型、B 型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A 型电脑出厂价下调(0100)m m <<元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.26.如图,∠BAC=∠DAE=90°,AB=AC,AD=AE,BE、CD交于F.(1)求证:BE=CD;(2)连接CE,若BE=CE,求证:从“①DE⊥AC”、“②DE∥AB”中选择一个填入(2)中,并完成证明【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】首先由平行四边形的性质可求出CD的长,由条件△OCD的周长为21,即可求出OD+OC的长,再根据平行四边的对角线互相平分即可求出平行四边形的两条对角线的和.【详解】解:∵四边形ABCD是平行四边形,∴AB=CD=5,OA=OC,OB=OD,∵△OCD的周长为21,∴OD+OC=21﹣5=16,∵BD=2DO,AC=2OC,∴BD+AC=2(OD+OC)=32,故选:C.【点睛】本题考查了平行四边形的基本性质,并利用性质解题.平行四边形的基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.2.B解析:B【分析】连接BD 、ND ,由勾股定理得可得BD=5,由三角形中位线定理可得EF=12DN ,当DN 最长时,EF 长度的最大,即当点N 与点B 重合时,DN 最长,由此即可求得答案.【详解】连接BD 、ND ,由勾股定理得,BD=()()2222732AD AB +=+=5∵点E 、F 分别为DM 、MN 的中点,∴EF=12DN , 当DN 最长时,EF 长度的最大,∴当点N 与点B 重合时,DN 最长,∴EF 长度的最大值为12BD=2.5, 故选B .【点睛】本题考查了勾股定理,三角形中位线定理,正确分析、熟练掌握和灵活运用相关知识是解题的关键.3.B解析:B【分析】由平行四边形的性质得出DC=AB=4,AD=BC=6,由线段垂直平分线的性质得出AE=CE ,得出△CDE 的周长=AD+DC ,即可得出结果.【详解】∵四边形ABCD 是平行四边形,∴DC=AB=4,AD=BC=6,∵AC 的垂直平分线交AD 于点E ,∴AE=CE ,∴△CDE 的周长=DE+CE+DC=DE+AE+DC=AD+DC=6+4=10;故选:B .【点睛】本题考查了平行四边形的性质、线段垂直平分线的性质、三角形周长的计算;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.4.D解析:D【分析】根据分式的运算法则及分式的性质逐项进行计算即可.【详解】A :211a a a a+=+,故不符合题意; B :()()21111111111a a a a a a a a a a-+--⋅=⋅==-++,故不符合题意; C :1b a b a a b b a a b a b +=-=-----,故不符合题意; D :0.22100.7710++=--a b a b a b a b,故不符合题意; 故选:D .【点睛】本题考查分式的性质及运算,熟练掌握分式的性质及运算法则是解题的关键.5.B解析:B【分析】由于1纳米=10-9米,则30纳米=30×10-9米,然后根据幂的运算法则计算即可.【详解】解:1纳米=0.000 000 001米=10-9米,30纳米=30×10-9米=3×10-8米.故选:B .【点睛】本题考查了科学记数法-表示较小的数:用a×10n (1≤a <10,n 为负整数)表示较小的数. 6.A解析:A【分析】根据概率公式列出关于n 的分式方程,解方程即可得.【详解】 解:根据题意可得51n n ++=13, 解得:n =3,经检验n =3是分式方程的解,即放入口袋中的黄球总数n =3,故选:A .【点睛】此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 7.C解析:C【分析】根据因式分解的定义及方法对各项分解得到结果,即可作出判断.【详解】解:A 、原式不能分解,不符合题意;B 、原式不能分解,不符合题意;C 、原式=2(x 2﹣1)=2(x +1)(x ﹣1),符合题意;D 、原式不能分解,不符合题意,故选:C .【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 8.C解析:C【分析】多项式3-a b ab 有公因式ab ,首先用提公因式法提公因式ab ,提公因式后,得到多项式()21x -,再利用平方差公式进行分解.【详解】()()()32111a b ab ab a ab a a -=-=+-,故选C .【点睛】此题主要考查了了提公因式法和平方差公式综合应用,解题关键在于因式分解时通常先提公因式,再利用公式,最后再尝试分组分解;9.A解析:A【分析】将已知的两个方程相减,求得m+n 的值,再将所求代数式分解成完全平方式,再整体代入计算.【详解】∵23m n a =+,23n m a =+,∴2233m n n m -=-,∴()()30m n m n m n +-+-=,∴()()30m n m n -++=,∵m n ≠,∴30m n ++=,m n+=-,∴3∴2222++=+=-=,m mn n m n2()(3)9故选:A.【点睛】本题主要考查了求代数式的值,因式分解的应用,平方差公式、完全平方公式的应用,关键是由已知求得m+n的值.10.B解析:B【分析】由旋转的性质得,AD=AB,∠ABD=45°,再由平移的性质即可得出结论.【详解】解:∵线段AD是由线段AB绕点A按逆时针方向旋转90°得到,∴∠DAB=90°,AD=AB,∴∠ABD=45°,∵△EFG是△ABC沿CB方向平移得到,∴AB∥EF,∴∠BDF=∠ABD=45°;故选B【点睛】此题主要考查了图形的平移与旋转,平行线的性质,等腰直角三角形的判定和性质. 11.B解析:B【分析】根据题意,每个小组有4支球队,每支球队都要进行三场比赛,设该球队胜场数为x,平局数为y(x,y均是非负整数),则有y=5-3x,且0≤y≤3,由此即可求得x、y的值.【详解】由已知易得:每个小组有4支球队,每支球队都要进行三场比赛,设该球队胜场数为x,平局数为y,∵该球队小组赛共积5分,∴y=5-3x,又∵0≤y≤3,∴0≤5-3x≤3,∵x、y都是非负整数,∴x=1,y=2,即该队在小组赛胜一场,平二场,故选:B.【点睛】读懂题意,设该队在小组赛中胜x场,平y场,知道每支球队在小组赛要进行三场比赛,并由题意得到y=5-3x及0≤y≤3是解答本题的关键.12.C解析:C【分析】根据勾股定理以及其逆定理和三角形的面积公式逐项分析即可得到问题答案.【详解】解:=A 正确,不符合题意;∵AC=BC 5===,∴22252025AC AB BC +=+==,∴△ACB 是直角三角形,∴∠CAB=90°,故选项B 正确,不符合题意;S △ABC 111442421345222=⨯-⨯⨯-⨯⨯-⨯⨯=,故选项C 错误,符合题意; 点A 到直线BC 的距离2552AC AB BC ===,故选项D 正确,不符合题意; 故选:C .【点睛】本题考查了勾股定理以及逆定理的运用,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么 222+=a b c .熟记勾股定理的内容是解题得关键.二、填空题13.①②③【分析】根据平行四边形的性质全等三角形的判定和性质及中心对称的性质进行判断即可【详解】解:在中于点于点四边形是平行四边形故①②正确即故③正确∵和是中心对称图形点是对称中心易证∴共10对全等三角解析:①②③【分析】根据平行四边形的性质,全等三角形的判定和性质及中心对称的性质进行判断即可.【详解】解:在OABC 中,,,AB CD AD BC == BD DB =,()ABD CDB SSS ∴≌, ABD CDB S ∴△△=S ,AE BD ⊥于点E ,CF BD ⊥于点F ,1122BD AE BD CF ∴=,//AE CFAE CF ∴=,∴四边形AECF 是平行四边形,,AF CE OE OF ∴== ,故①②正确,OB OD =,OD OE OB OF ∴+=+,即DE BF =,故③正确,∵,,OA OC OB OD OE OF ===,ABCD ∴和AECF 是中心对称图形,点O 是对称中心,易证,,,ADC CBA ABD CDB AOB COD AOD COB △≌△△≌△△≌△△≌△ , ,,,AEF CFE AFC CEA AOF COE COF AOE △≌△△≌△△≌△△≌△,,,,ABE CDF AFD CEB ABF CDE AED CFB △≌△△≌△△≌△△≌△,∴共10对全等三角形,故④错误;故答案为:①②③【点睛】本题是平行四边形的综合题,考查了平行四边形的判定和性质,全等三角形的判定和性质,中心对称的性质等知识,正确理解中心对称的性质是解本题的关键.14.120【分析】由平行四边形的性质和已知条件易证△ABE 为等边三角形则∠BAE =60°进而可求出∠BAD 的度数【详解】解:∵四边形ABCD 是平行四边形∴AD ∥BC ∴∠EAD =∠AEB ∵AE 平分∠BAD解析:120【分析】由平行四边形的性质和已知条件易证△ABE 为等边三角形,则∠BAE =60°,进而可求出∠BAD 的度数.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠EAD =∠AEB ,∵AE 平分∠BAD ,∴∠BAE =∠EAD ,∴∠BAE =∠AEB ,∴AB =EB ,∵AB =AE ,∴AB =AE =BE ,∴△ABE 是等边三角形,∴∠BAE =60°,∴∠BAD =2∠BAE =120°,故答案为:120.【点睛】本题主要考查了平行四边形的性质、平行线的性质、角平分线的定义以及等边三角形的判定和性质,正确证明△ABE 是等边三角形是解题关键.15.5或-1【分析】分m-5=0和m-5≠0两种情况分别求解【详解】解:若m-5=0∴m=5若m-5≠0∵∴∴m=-1或1(舍)故答案为:5或-1【点睛】本题考查了等式的性质分式有意义的条件解题的关键是解析:5或-1【分析】分m-5=0和m-5≠0两种情况分别求解.【详解】解:若m-5=0,∴m=5,若m-5≠0, ∵55||11m m m m m --⋅=--, ∴||1m =, ∴m=-1或1(舍),故答案为:5或-1.【点睛】本题考查了等式的性质,分式有意义的条件,解题的关键是注意分类讨论.16.【分析】先把括号里的分式通分再相减然后运用分式乘法进行计算即可【详解】解:===故答案为:【点睛】本题考查了分式的混合运算掌握正确的运算顺序和运算法则是解题关键 解析:11x + 【分析】先把括号里的分式通分,再相减,然后运用分式乘法进行计算即可.【详解】 解:()1211x x x x x ⎡⎤-⋅⎢⎥+-⎣⎦, =()12(1)11x x x x x x x ⎡⎤+-⋅⎢⎥++-⎣⎦,=1(1)1x x x x x -⋅+-, =11x +, 故答案为:11x +. 【点睛】本题考查了分式的混合运算,掌握正确的运算顺序和运算法则是解题关键.17.【分析】根据完全平方公式的特点:两项平方项的符号相同另一项是两底数积的2倍本题可用完全平方公式分解因式【详解】解:故答案为【点睛】本题考查用完全平方公式法进行因式分解能用完全平方公式法进行因式分解的 解析:2(21)a -【分析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,本题可用完全平方公式分解因式.【详解】解:22441(21)a a a -+=-.故答案为2(21)a -.【点睛】本题考查用完全平方公式法进行因式分解,能用完全平方公式法进行因式分解的式子的特点需熟练掌握. 18.【分析】作AC ⊥x 轴于CBD ⊥x 轴于D 由点A(45)逆时针旋转180°得到的点B 推出OA=OB 点AOB 在同一直线上证明△AOC ≌△BOD 得到OD=OC=4BD=AC=5根据点B 在第三象限确定坐标【详解析:()45--,【分析】作AC ⊥x 轴于C ,BD ⊥x 轴于D ,由点A(4,5)逆时针旋转180°,得到的点B 推出OA=OB ,点A 、O 、B 在同一直线上,证明△AOC ≌△BOD ,得到OD=OC=4,BD=AC=5,根据点B 在第三象限,确定坐标.【详解】作AC ⊥x 轴于C ,BD ⊥x 轴于D ,∵点A (4,5),∴OC=4,AC=5,∵点A(4,5)逆时针旋转180°,得到的点B ,∴OA=OB ,点A 、O 、B 在同一直线上,∴∠AOC=∠BOD ,∵∠ACO=∠BDO=90︒,∴△AOC ≌△BOD ,∴OD=OC=4,BD=AC=5,∵点B 在第三象限,∴B (-4,-5),故答案为:(-4,-5)..【点睛】此题考查旋转的性质,全等三角形的判定及性质,直角坐标系中点的坐标,正确证得△AOC ≌△BOD 是解题的关键.19.【分析】根据不等式组的公共解集即可确定a 的取值范围【详解】由不等式组的解为可得故答案为:【点睛】本题主要考查了不等式组的解法关键是熟练掌握不等式组解集的确定:同大取大;同小取小;大小小大中间找;大大 解析:2a ≤【分析】根据不等式组的公共解集即可确定a 的取值范围.【详解】由不等式组2x a x >⎧⎨>⎩的解为2x >, 可得2a ≤.故答案为:2a ≤.【点睛】本题主要考查了不等式组的解法,关键是熟练掌握不等式组解集的确定:同大取大;同小取小;大小小大中间找;大大小小找不到.20.40°或70°或100°【分析】求出∠AOC 根据等腰得出三种情况OE =CEOC =OEOC =CE 根据等腰三角形性质和三角形内角和定理求出即可【详解】解:∵∠AOB =80°OC 平分∠AOB ∴∠AOC =4解析:40°或70°或100°【分析】求出∠AOC ,根据等腰得出三种情况,OE =CE ,OC =OE ,OC =CE ,根据等腰三角形性质和三角形内角和定理求出即可.【详解】解:∵∠AOB =80°,OC 平分∠AOB ,∴∠AOC =40°,①当E 在E 1时,OE =CE ,∵∠AOC =∠OCE =40°,∴∠OEC =180°﹣40°﹣40°=100°;②当E 在E 2点时,OC =OE ,则∠OCE =∠OEC =12(180°﹣40°)=70°; ③当E 在E 3时,OC =CE ,则∠OEC =∠AOC =40°;故答案为:100°或70°或40°.【点睛】本题考查了角平分线定义,等腰三角形性质,三角形的内角和定理的应用,用了分类讨论思想.三、解答题21.(1)80C ∠=︒;(2)120C ∠=︒.【分析】(1)如图1,过点C 作CH ∥DF ,根据四边形的内角和为360°,求出∠MDC+∠CBN=160°,利用角平分线的定义可得:∠FDC+∠CBE=80°,最后根据平行线的性质可得结论;(2)如图2,连接GC 并延长,同理得:∠MDC+∠CBN=160°,∠FDC+∠CBE=80°,求出∠DGB=40°,可得结论.【详解】(1)如图1,过点C 作CH ∥DF ,∵BE∥DF,∴BE∥DF∥CH,∴∠FDC=∠DCH,∠BCH=∠EBC,∴∠DCB=∠DCH+∠BCH=∠FDC+∠EBC,∵BE,DF分别为四边形ABCD的外角∠CBN,∠MDC的平分线,∴∠FDC=12∠CDM,∠EBC=12∠CBN,∵∠A+∠BCD=160°,∴∠ADC+∠ABC=360°-160°=200°,∴∠MDC+∠CBN=160°,∴∠FDC+∠CBE=80°,∴∠DCB=80°;(2)如图2,连接GC并延长,同理得∠MDC+∠CBN=160°,∠MDF+∠NBG=80°,∵BE∥AD,DF∥AB,∴∠A=∠MDF=∠DGB=∠NBG=40°,∵∠A+∠BCD=160°,∴∠BCD=160°-40°=120°.【点睛】本题考查了平行线的性质及其判定,多边形的内角和公式,三角形外角的性质,角平分线的定义,利用多边形的内角和公式和平行线的性质是解题关键.22.(1)3xy(x﹣y)2;(2)分式方程无解【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】解:(1)原式=3xy(y2﹣2xy+x2)=3xy(x﹣y)2;(2)去分母得:2x﹣4+4x﹣2=﹣3,解得:x=12,经检验x =12是增根, 所以原分式方程无解.【点睛】此题考查了解分式方程,以及提公因式法与公式法的综合运用,熟练掌握运算法则是解本题的关键.23.(1)23ab b -;(2)2(5)(5)a a +-【分析】(1)先按照多项式乘法和完全平方公式化简,再合并同类项即可;(2)先提取公因式,再利用平方差公式分解即可.【详解】解:(1)原式2222222(2)23a ab a ab b a ab a ab b ab b =+--+=+-+-=-.(2)原式()22252(5)(5)a a a =-=+-. 【点睛】本题考查了整式的乘法和因式分解,熟练掌握相关运算法则是解题的关键.24.(1)见解析;(2)见解析;(3)()133,3,2π 【分析】(1)根据点A 的对应点1A 的坐标为(5,3),画出点1A ,1B ,1C ,再顺次连接起来即可; (2)画出1B ,1C 的对应点2B ,2C ,顺次连接起来,即可;(3)先得到点P 的坐标,再根据圆的面积公式,即可求解.【详解】解:(1)(1,3)A 平移后得到点1(5,3)A ABC ∴的平移方式是向右平移4个单位长度,(3,6)B ,(0,5)C1(7,6)B ∴,1(4,5)C如图,先在平面直角坐标系中,描出点1A ,1B ,1C ,再顺次连接即可得到111A B C △; (2)画图如下:(3)由网格图,可知:点P 的坐标为(3,3)P ,∵CP扫过的面积是以CP 为半径的半圆的面积,CP ==211322S CP ππ∴=⋅=. 【点睛】本题主要考查平移,旋转变换以及圆的面积公式和勾股定理,根据题意,画出变换后的对应点,是解题的关键.25.(1)每台A 型电脑的销售利润为100元,每台B 型电脑的销售利润为150元;(2)①150********y x x ⎛⎫=-+≥ ⎪⎝⎭,,②商店购进A 型电脑34台,B 型电脑66台,才能使销售总利润最大;(3)①当050m <<时,商店购进34台A 型电脑和66台B 型电脑才能获得最大利润;②当50m =时,商店购进A 型电脑数量满足133703x ≤≤的整数时,均获得最大利润;③当50 <m < 100时,商店购进70台A 型电脑和30台B 型电脑才能获得最大利润.【分析】(1)设每台A 型加湿器和B 型加湿器的销售利润分别为a 元,b 元,然后根据题意列出二元一次方程组解答即可;(2)①据题意得即可确定y 关于x 的函数关系式,利用A 型利润与B 型利润即可求出总利润y 与x 的关系,并确定x 的范围即可;②根据一次函数的增减性,解答即可;(3)根据题意列出函数数关系式,分以下三种情况①0<m<50,②m=50,③ 50 <m < 100时,m-50 >0结合函数的性质,进行求解即可.【详解】(1)设每台A 型电脑的销售利润为a 元,每台B 型电脑的销售利润为b 元,根据题意得:1020400020103500a b a b +=⎧⎨+=⎩ 解得=100150a b ⎧⎨=⎩答:每台A 型电脑的销售利润为100元,每台B 型电脑的销售利润为150元; (2)①设购进A 型电脑x 台,每台A 型电脑的销售利润为100元,A 型电脑销售利润为100x 元,每台B 型电脑的销售利润为150元,B 型电脑销售利润为()150100x -元()100150100y x x =+-,即这100台电脑的销售总利润为:5015000y x =-+;1002x x -≤,解得1333x ≥.150********y x x ⎛⎫=-+≥ ⎪⎝⎭, ②5015000y x =-+中,k=500-<,y ∴随x 的增大而减小. x 为正整数,1333x ≥ ∴当34x =时,y 取得最大值,此时10066x -=.答:商店购进A 型电脑34台,B 型电脑66台,才能使销售总利润最大;(3)根据题意得()()100150100y m x x =++-,即()5015000y m x =-+,其中133703x ≤≤.①当050m <<时,k=500m -<,y ∴随x 的增大而减小,∴当34x =时,y 取得最大值, 即商店购进34台A 型电脑和66台B 型电脑才能获得最大利润;②当50m =时,k=500m -=,15000y ∴=,即商店购进A 型电脑数量满足133703x ≤≤的整数时,均获得最大利润;③当50 <m < 100时,k=500m ->,y ∴随x 的增大而增大.∴当70x =时,y 取得最大值.即商店购进70台A 型电脑和30台B 型电脑才能获得最大利润.【点睛】本题主要考查了一次函数的应用,二元一次方程组及一元一次不等式的应用,掌握一次函数的增减性是解答本题的关键.26.(1)见解析;(2)见解析【分析】(1)根据“SAS”证明△BAE ≌△CAD ,然后根据全等三角形的性质解答即可; (2)根据线段垂直平分线的判定可知CA 垂直平分DE ,进而可证明结论成立.【详解】证明:(1)∵∠BAC =∠DAE =90°,∴∠DAE +∠DAB =∠BAC +∠DAB ,即∠BAE =∠CAD ,在△BAE 与△CAD 中, AD AE CAD BAE AB AC =⎧⎪∠=∠⎨⎪=⎩,∴△BAE ≌△CAD (SAS ),∴BE=CD;(2)∵BE=CD,BE=CE,∴CE=CD,又∵AD=AE,∴CA垂直平分DE,∴DE⊥AC(可得①),又∵∠BAC=90°,∴DE//AB(可得②).【点睛】本题主要考查了全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.也考查了线段垂直平分线的判定、平行线的判定等知识.。
2020-2021石家庄市一中实验学校八年级数学下期末第一次模拟试卷(带答案)
2020-2021石家庄市一中实验学校八年级数学下期末第一次模拟试卷(带答案)一、选择题1.如图,将正方形OABC 放在平面直角坐标系中,O 是原点,点A 的坐标为(1,),则点C 的坐标为( )A .(-,1)B .(-1,)C .(,1)D .(-,-1)2.下列各命题的逆命题成立的是( )A .全等三角形的对应角相等B .如果两个数相等,那么它们的绝对值相等C .两直线平行,同位角相等D .如果两个角都是45°,那么这两个角相等3.一次函数y kx b =+的图象如图所示,点()3,4P 在函数的图象上.则关于x 的不等式4kx b +≤的解集是( )A .3x ≤B .3x ≥C .4x ≤D .4x ≥ 4.顺次连接对角线互相垂直且相等的四边形各边中点所围成的四边形是( )A .矩形B .菱形C .正方形D .平行四边形 5.估计()-⋅1230246的值应在( ) A .1和2之间B .2和3之间C .3和4之间D .4和5之间 6.正比例函数(0)y kx k =≠的函数值y 随x 的增大而增大,则一次函数y x k =-的图象大致是( ) A . B .C .D . 7.为了调查某校同学的体质健康状况,随机抽查了若干名同学的每天锻炼时间如表: 每天锻炼时间(分钟) 20 40 60 90 学生数 2 3 4 1则关于这些同学的每天锻炼时间,下列说法错误的是( )A .众数是60B .平均数是21C .抽查了10个同学D .中位数是508.计算12(75+313﹣48)的结果是( ) A .6B .43C .23+6D .12 9.若函数y=(m-1)x ∣m ∣-5是一次函数,则m 的值为( )A .±1B .-1C .1D .2 10.已知,,a b c 是ABC ∆的三边,且满足222()()0a b a b c ---=,则ABC ∆是( )A .直角三角形B .等边三角形C .等腰直角三角形D .等腰三角形或直角三角形 11.如图,在▱ABCD 中,AB =6,BC =8,∠BCD 的平分线交AD 于点E ,交BA 的延长线于点F ,则AE +AF 的值等于( )A .2B .3C .4D .612.如图,将四边形纸片ABCD 沿AE 向上折叠,使点B 落在DC 边上的点F 处.若AFD V 的周长为18,ECF V 的周长为6,四边形纸片ABCD 的周长为( )A .20B .24C .32D .48二、填空题13.如图,过矩形ABCD 的对角线BD 上一点K 分别作矩形两边的平行线MN 与PQ ,那么图中矩形AMKP 的面积S 1与矩形QCNK 的面积S 2的大小关系是S 1_____S 2;(填“>”或“<”或“=”)14.在函数41x y x -=+中,自变量x 的取值范围是______. 15.若x=2-1, 则x 2+2x+1=__________. 16.长、宽分别为a 、b 的矩形,它的周长为14,面积为10,则a 2b +ab 2的值为_____. 17.2+1的倒数是____.18.菱形的边长为5,一条对角线长为6,则该菱形的面积为__________.19.已知0,0a b <>,化简2()a b -=________20.如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需______米.三、解答题21.(127118312;(2) 32125222.已知正方形 ABCD 的对角线 AC ,BD 相交于点 O .(1)如图 1,E ,G 分别是 OB ,OC 上的点,CE 与 DG 的延长线相交于点 F . 若 DF ⊥CE ,求证:OE =OG ;(2)如图 2,H 是 BC 上的点,过点 H 作 EH ⊥BC ,交线段 OB 于点 E ,连结DH 交 CE 于点 F ,交 OC 于点 G .若 OE =OG ,①求证:∠ODG =∠OCE ;②当 AB =1 时,求 HC 的长.23.在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,某村为方便村民取水决定在河边新建一个取水点H(A、H、B在一条直线上),并新修一条路CH,测得CB=3千米,CH=2.4千米,HB=1.8千米.(1)问CH是否为从村庄C到河边的最近路?(即问:CH与AB是否垂直?)请通过计算加以说明;(2)求原来的路线AC的长.24.如图,在正方形网格中,小正方形的边长为1,A,B,C为格点()1判断ABCV的形状,并说明理由.()2求BC边上的高.25.在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).(1)当﹣2<x≤3时,求y的取值范围;(2)已知点P(m,n)在该函数的图象上,且m﹣n=4,求点P的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】试题分析:作辅助线构造出全等三角形是解题的关键,也是本题的难点.如图:过点A 作AD ⊥x 轴于D ,过点C 作CE ⊥x 轴于E ,根据同角的余角相等求出∠OAD=∠COE ,再利用“角角边”证明△AOD 和△OCE 全等,根据全等三角形对应边相等可得OE=AD ,CE=OD ,然后根据点C 在第二象限写出坐标即可.∴点C 的坐标为(-,1)故选A .考点:1、全等三角形的判定和性质;2、坐标和图形性质;3、正方形的性质. 2.C解析:C【解析】试题分析:首先写出各个命题的逆命题,再进一步判断真假.解:A 、逆命题是三个角对应相等的两个三角形全等,错误;B 、绝对值相等的两个数相等,错误;C 、同位角相等,两条直线平行,正确;D 、相等的两个角都是45°,错误.故选C .3.A解析:A【解析】【分析】观察函数图象结合点P 的坐标,即可得出不等式的解集.【详解】解:观察函数图象,可知:当3x ≤时,4kx b +≤.故选:A .【点睛】考查了一次函数与一元一次不等式以及一次函数的图象,观察函数图象,找出不等式4kx b +≤的解集是解题的关键.4.C解析:C【解析】【分析】根据三角形中位线定理得到所得四边形的对边都平行且相等,那么其为平行四边形,再根据邻边互相垂直且相等,可得四边形是正方形.【详解】 解:、、、分别是、、、的中点,,,EH =FG =BD ,EF =HG =AC , 四边形是平行四边形, ,, ,, 四边形是正方形,故选:C .【点睛】 本题考查的是三角形中位线定理以及正方形的判定,解题的关键是构造三角形利用三角形的中位线定理解答.5.B解析:B【解析】【分析】先利用分配律进行计算,然后再进行化简,根据化简的结果即可确定出值的范围. 【详解】(130246 =11302466=252, 而25=45=20⨯ 20,所以2<252<3, 所以估计(1302462和3之间, 故选B.【点睛】本题主要考查二次根式的混合运算及估算无理数的大小,熟练掌握运算法则以及“夹逼法”是解题的关键. 6.B解析:B【解析】【分析】=的函数值y随x的增大而增大判断出k的符号,再根据一次函数先根据正比例函数y kx的性质进行解答即可.【详解】解:Q正比例函数y kx=的函数值y随x的增大而增大,>,<,00∴-k k=-的图象经过一、三、四象限.∴一次函数y x k故选B.【点睛】本题考查的知识点是一次函数的图象与正比例函数的性质,解题关键是先根据正比例函数的性质判断出k的取值范围.7.B解析:B【解析】【分析】根据众数、中位数和平均数的定义分别对每一项进行分析即可.【详解】解:A、60出现了4次,出现的次数最多,则众数是60,故A选项说法正确;B、这组数据的平均数是:(20×2+40×3+60×4+90×1)÷10=49,故B选项说法错误;C、调查的户数是2+3+4+1=10,故C选项说法正确;D、把这组数据从小到大排列,最中间的两个数的平均数是(40+60)÷2=50,则中位数是50,故D选项说法正确;故选:B.【点睛】此题考查了众数、中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.8.D解析:D【解析】【分析】【详解】===.12故选:D.9.B解析:B【解析】根据一次函数的概念,形如y=kx+b(k≠0,k、b为常数)的函数为一次函数,故可知m-1≠0,|m|=1,解得m≠1,m=±1,故m=-1.故选B点睛:此题主要考查了一次函数的概念,利用一次函数的一般式y=kx+b(k≠0,k、b为常数),可得相应的关系式,然后求解即可,这是一个中考常考题题,比较简单.10.D解析:D【解析】【分析】由(a-b)(a2-b2-c2)=0,可得:a-b=0,或a2-b2-c2=0,进而可得a=b或a2=b2+c2,进而判断△ABC的形状为等腰三角形或直角三角形.【详解】解:∵(a-b)(a2-b2-c2)=0,∴a-b=0,或a2-b2-c2=0,即a=b或a2=b2+c2,∴△ABC的形状为等腰三角形或直角三角形.故选:D.【点睛】本题考查了勾股定理的逆定理以及等腰三角形的判定,解题时注意:有两边相等的三角形是等腰三角形,满足a2+b2=c2的三角形是直角三角形.11.C解析:C【解析】【分析】【详解】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD=BC=8,CD=AB=6,∴∠F=∠DCF,∵∠C平分线为CF,∴∠FCB=∠DCF,∴∠F=∠FCB,∴BF=BC=8,同理:DE=CD=6,∴AF=BF−AB=2,AE=AD−DE=2∴AE+AF=4故选C12.B解析:B【解析】【分析】根据折叠的性质易知矩形ABCD的周长等于△AFD和△CFE的周长的和.【详解】由折叠的性质知,AF=AB,EF=BE.所以矩形的周长等于△AFD和△CFE的周长的和为18+6=24cm.故矩形ABCD的周长为24cm.故答案为:B.【点睛】本题考查了折叠的性质,解题关键是折叠前后图形的形状和大小不变,对应边和对应角相等.二、填空题13.=【解析】【分析】利用矩形的性质可得△ABD的面积=△CDB的面积△MBK 的面积=△QKB的面积△PKD的面积=△NDK的面积进而求出答案【详解】解:∵四边形ABCD是矩形四边形MBQK是矩形四边形解析:=【解析】【分析】利用矩形的性质可得△ABD的面积=△CDB的面积,△MBK的面积=△QKB的面积,△PKD的面积=△NDK的面积,进而求出答案.【详解】解:∵四边形ABCD是矩形,四边形MBQK是矩形,四边形PKND是矩形,∴△ABD的面积=△CDB的面积,△MBK的面积=△QKB的面积,△PKD的面积=△NDK的面积,∴△ABD的面积﹣△MBK的面积﹣△PKD的面积=△CDB的面积﹣△QKB的面积=△NDK的面积,∴S1=S2.故答案为:=.【点睛】本题考查了矩形的性质,熟练掌握矩形的性质定理是解题关键.14.x≥4【解析】【分析】根据被开方数为非负数及分母不能为0列不等式组求解可得【详解】解:根据题意知解得:x≥4故答案为x≥4【点睛】本题考查函数自变量的取值范围自变量的取值范围必须使含有自变量的表达式解析:x≥4【解析】【分析】根据被开方数为非负数及分母不能为0列不等式组求解可得.【详解】解:根据题意,知4010xx-≥⎧⎨+≠⎩,解得:x≥4,故答案为x≥4.【点睛】本题考查函数自变量的取值范围,自变量的取值范围必须使含有自变量的表达式都有意义:①当表达式的分母不含有自变量时,自变量取全体实数.例如y=2x+13中的x.②当表达式的分母中含有自变量时,自变量取值要使分母不为零..③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.15.2【解析】【分析】先利用完全平方公式对所求式子进行变形然后代入x的值进行计算即可【详解】∵x=-1∴x2+2x+1=(x+1)2=(-1+1)2=2故答案为:2【点睛】本题考查了代数式求值涉及了因式解析:2【解析】【分析】先利用完全平方公式对所求式子进行变形,然后代入x的值进行计算即可.【详解】∵,∴x2+2x+1=(x+1)22=2,故答案为:2.【点睛】本题考查了代数式求值,涉及了因式分解,二次根式的性质等,熟练掌握相关知识是解题的关键.16.【解析】【分析】由周长和面积可分别求得a+b和ab的值再利用因式分解把所求代数式可化为ab(a+b)代入可求得答案【详解】∵长宽分别为ab的矩形它的周长为14面积为10∴a+b==7ab=10∴a2解析:【解析】【分析】由周长和面积可分别求得a+b和ab的值,再利用因式分解把所求代数式可化为ab(a+b),代入可求得答案【详解】∵长、宽分别为a、b的矩形,它的周长为14,面积为10,∴a+b=142=7,ab=10,∴a2b+ab2=ab(a+b)=10×7=70,故答案为:70.【点睛】本题主要考查因式分解的应用,把所求代数式化为ab(a+b)是解题的关键.17.【解析】【分析】由倒数的定义可得的倒数是然后利用分母有理化的知识求解即可求得答案【详解】∵∴的倒数是:故答案为:【点睛】此题考查了分母有理化的知识与倒数的定义此题比较简单注意二次根式有理化主要利用了解析:21-.【解析】【分析】由倒数的定义可得2+1的倒数是2+1,然后利用分母有理化的知识求解即可求得答案.【详解】∵21=21 2+1(21)(21)-=-+-.∴2+1的倒数是:21-.故答案为:21-.【点睛】此题考查了分母有理化的知识与倒数的定义.此题比较简单,注意二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.即一项符号和绝对值相同,另一项符号相反绝对值相同.18.24【解析】【分析】根据菱形的性质利用勾股定理求得另一条对角线再根据菱形的面积等于两对角线乘积的一半求得菱形的面积【详解】解:如图当BD=6时∵四边形ABCD是菱形∴AC⊥BDAO=COBO=DO=解析:24【解析】【分析】根据菱形的性质利用勾股定理求得另一条对角线,再根据菱形的面积等于两对角线乘积的一半求得菱形的面积.【详解】解:如图,当BD=6时,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO=3,∵AB=5,∴AO==4,∴AC=4×2=8,∴菱形的面积是:6×8÷2=24,故答案为:24.【点睛】本题考查了菱形的面积公式,以及菱形的性质和勾股定理,关键是掌握菱形的面积等于两条对角线的积的一半.19.【解析】【分析】根据二次根式的性质得出|a−b|根据绝对值的意义求出即可【详解】∵a<0<b∴|a−b|=b−a故答案为:【点睛】本题主要考查对二次根式的性质绝对值等知识点的理解和掌握能根据二次根式-解析:b a【解析】【分析】根据二次根式的性质得出|a−b|,根据绝对值的意义求出即可.【详解】∵a<0<b,∴2a b-=|a−b|=b−a.()-.故答案为:b a【点睛】本题主要考查对二次根式的性质,绝对值等知识点的理解和掌握,能根据二次根式的性质正确进行计算是解此题的关键.20.2+2【解析】【分析】地毯的竖直的线段加起来等于BC水平的线段相加正好等于AC即地毯的总长度至少为(AC+BC)【详解】在Rt△ABC中∠A=30°BC=2m∠C=90°∴AB=2BC=4m∴AC=解析:2+23【解析】【分析】地毯的竖直的线段加起来等于BC,水平的线段相加正好等于AC,即地毯的总长度至少为(AC+BC).【详解】在Rt△ABC中,∠A=30°,BC=2m,∠C=90°,∴AB=2BC=4m,∴2223-=m,AB BC∴(m ).故答案为:【点睛】本题主要考查勾股定理的应用,解此题的关键在于准确理解题中地毯的长度为水平与竖直的线段的和.三、解答题21.(1 (2【解析】【分析】(1)把每一个二次根式都化成最简二次根式,然后再对同类二次根式进行合并即可得;(2)根据二次根式乘除法的法则进行计算即可.【详解】(1)原式=13⨯ ;(2)原式=11245⨯⨯⨯=110 【点睛】本题考查了二次根式的混合运算,熟练掌握运算法则是解题的关键.22.(1)证明见解析;(2 【解析】【分析】(1)欲证明OE =OG ,只要证明△DOG ≌△COE (ASA )即可;(2)①欲证明∠ODG =∠OCE ,只要证明△ODG ≌△OCE 即可;②设CH =x ,由△CHE ∽△DCH ,可得EH HC HC CD=,即HC 2=EH •CD ,由此构建方程即可解决问题.【详解】解:(1)如图1中,∵四边形ABCD 是正方形,∴AC ⊥BD ,OD =OC ,∴∠DOG =∠COE =90°,∴∠OEC +∠OCE =90°,∵DF ⊥CE ,∴∠OEC +∠ODG =90°,∴∠ODG =∠OCE ,∴△DOG ≌△COE (ASA ),∴OE =OG .(2)①证明:如图2中,∵OG =OE ,∠DOG =∠COE =90°OD =OC , ∴△ODG ≌△OCE ,∴∠ODG =∠OCE .②解:设CH =x ,∵四边形ABCD 是正方形,AB =1,∴BH =1﹣x ,∠DBC =∠BDC =∠ACB =45°,∵EH⊥BC,∴∠BEH=∠EBH=45°,∴EH=BH=1﹣x,∵∠ODG=∠OCE,∴∠BDC﹣∠ODG=∠ACB﹣∠OCE,∴∠HDC=∠ECH,∵EH⊥BC,∴∠EHC=∠HCD=90°,∴△CHE∽△DCH,∴EH HCHC CD=,∴HC2=EH•CD,∴x2=(1﹣x)•1,解得x=512-或512--(舍弃),∴HC=51 -.23.(1)CH是从村庄C到河边的最近路,理由见解析;(2)原来的路线AC的长为2.5千米.【解析】【分析】(1)根据勾股定理的逆定理解答即可;(2)根据勾股定理解答即可【详解】(1)是,理由是:在△CHB中,∵CH2+BH2=(2.4)2+(1.8)2=9BC2=9∴CH2+BH2=BC2∴CH⊥AB,所以CH是从村庄C到河边的最近路(2)设AC=x在Rt△ACH中,由已知得AC=x,AH=x﹣1.8,CH=2.4由勾股定理得:AC2=AH2+CH2∴x2=(x﹣1.8)2+(2.4)2解这个方程,得x=2.5,答:原来的路线AC的长为2.5千米.【点睛】此题考查勾股定理及其逆定理的应用,熟练掌握基础知识是解题的关键.24.(1)直角三角形,见解析;(2)265. 【解析】【分析】 ()1利用勾股定理的逆定理即可解问题.()2利用面积法求高即可.【详解】解:()1结论:ABC V 是直角三角形.理由:222BC 1865=+=Q ,222AC 2313=+=,222AB 6452=+=,222AC AB BC ∴+=,ABC ∴V 是直角三角形.()2设BC 边上的高为h.则有11AC AB BC h 22⋅⋅=⋅⋅, AC 13=Q ,AB 213=,BC 65=,265h ∴=. 【点睛】本题考查勾股定理以及逆定理,三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.(1) ﹣4≤y <6;(2)点P 的坐标为(2,﹣2) .【解析】【分析】利用待定系数法求一次函数解析式得出即可;(1)利用一次函数增减性得出即可.(2)根据题意得出n=﹣2m+2,联立方程,解方程即可求得.【详解】设解析式为:y=kx+b ,将(1,0),(0,2)代入得:,解得:,∴这个函数的解析式为:y=﹣2x+2;(1)把x=﹣2代入y=﹣2x+2得,y=6,把x=3代入y=﹣2x+2得,y=﹣4,∴y 的取值范围是﹣4≤y <6.(2)∵点P (m ,n )在该函数的图象上,∴n=﹣2m+2,∵m﹣n=4,∴m﹣(﹣2m+2)=4,解得m=2,n=﹣2,∴点P的坐标为(2,﹣2).考点:1、待定系数法求一次函数的解析式,2、一次函数图象上点的坐标特征,3、一次函数的性质。
2020-2021初二数学下期末第一次模拟试卷及答案(4)
2020-2021初二数学下期末第一次模拟试卷及答案(4)一、选择题1.一次函数y kx b =+的图象如图所示,点()3,4P 在函数的图象上.则关于x 的不等式4kx b +≤的解集是( )A .3x ≤B .3x ≥C .4x ≤D .4x ≥2.如图,矩形OABC 的顶点O 与平面直角坐标系的原点重合,点A ,C 分别在x 轴,y 轴上,点B 的坐标为(-5,4),点D 为边BC 上一点,连接OD ,若线段OD 绕点D 顺时针旋转90°后,点O 恰好落在AB 边上的点E 处,则点E 的坐标为( )A .(-5,3)B .(-5,4)C .(-5,52) D .(-5,2)3.如图,矩形ABCD 中,对角线AC BD 、交于点O .若60,8AOB BD ∠==o,则AB 的长为( )A .3B .4C .43D .54.随机抽取某商场4月份5天的营业额(单位:万元)分别为3.4,2.9,3.0,3.1,2.6,则这个商场4月份的营业额大约是( ) A .90万元 B .450万元 C .3万元 D .15万元5.计算4133÷的结果为( ). A .32 B .23C .2D .2 6.如图,菱形中,分别是的中点,连接,则的周长为( )A .B .C .D .7.已知,,a b c 是ABC ∆的三边,且满足222()()0a b a b c ---=,则ABC ∆是( ) A .直角三角形 B .等边三角形C .等腰直角三角形D .等腰三角形或直角三角形8.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a ,较短直角边长为b .若ab=8,大正方形的面积为25,则小正方形的边长为( )A .9B .6C .4D .39.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S (单位:m 2)与工作时间t (单位:h )之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是( )A .300m 2B .150m 2C .330m 2D .450m 2 10.下列各组数,可以作为直角三角形的三边长的是( )A .2,3,4B .7,24,25C .8,12,20D .5,13,1511.如图,将四边形纸片ABCD 沿AE 向上折叠,使点B 落在DC 边上的点F 处.若AFD V 的周长为18,ECF V 的周长为6,四边形纸片ABCD 的周长为( )A .20B .24C .32D .4812.在平面直角坐标系中,将函数3y x =的图象向上平移6个单位长度,则平移后的图象与x 轴的交点坐标为( ) A .(2,0)B .(-2,0)C .(6,0)D .(-6,0)二、填空题13.45与最简二次根式321a -是同类二次根式,则a =_____.14.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,∠AOB=120°,CE//BD ,DE//AC ,若AD=5,则四边形CODE 的周长______.15.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为 .16.在矩形ABCD 中,对角线AC 、BD 相交于点O ,若∠AOB=60°,AC=10,则AB= . 17.如图,已知函数y=x+b 和y=ax+3的图象交点为P ,则不等式x+b >ax+3的解集为_____.18.某汽车生产厂对其生产的A 型汽车进行油耗试验,试验中汽车为匀速行驶汽在行驶过程中,油箱的余油量y (升)与行驶时间t (小时)之间的关系如下表: t (小时) 0 1 2 3 y (升)100928476由表格中y 与t 的关系可知,当汽车行驶________小时,油箱的余油量为0.19.已知数据:﹣1,4,2,﹣2,x的众数是2,那么这组数据的平均数为_____.20.我们把[a,b]称为一次函数y=ax+b的“特征数”.如果“特征数”是[2,n+1]的一次函数为正比例函数,则n的值为_____.三、解答题21.计算:(.22.某公司开发处一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为10元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘制成图象,图中的折线ABC表示日销售量y(件)与销售时间x(天)之间的函数关系.(1)求y与x之间的函数表达式,并写出x的取值范围;(2)若该节能产品的日销售利润为W(元),求W与x之间的函数表达式,并求出日销售利润不超过1040元的天数共有多少天?(3)若5≤x≤17,直接写出第几天的日销售利润最大,最大日销售利润是多少元?23.如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.24.如图,直线l1的函数解析式为y=2x–2,直线l1与x轴交于点D.直线l2:y=kx+b与x 轴交于点A,且经过点B(3,1),如图所示.直线l1、l2交于点C(m,2).(1)求点D、点C的坐标;(2)求直线l2的函数解析式;(3)利用函数图象写出关于x、y的二元一次方程组22y xy kx b=-⎧⎨=+⎩的解.25.已知:如图,在▱ABCD 中,设BA u u u r=a r,BC uuu r =b r. (1)填空:CA u u u r= (用a r、b r的式子表示)(2)在图中求作a r +b r.(不要求写出作法,只需写出结论即可)【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】观察函数图象结合点P 的坐标,即可得出不等式的解集. 【详解】解:观察函数图象,可知:当3x ≤时,4kx b +≤. 故选:A . 【点睛】考查了一次函数与一元一次不等式以及一次函数的图象,观察函数图象,找出不等式4kx b +≤的解集是解题的关键. 2.A解析:A 【解析】 【分析】先判定△DBE ≌△OCD ,可得BD =OC =4,设AE =x ,则BE =4﹣x =CD ,依据BD +CD =5,可得4+4﹣x=5,进而得到AE=3,据此可得E(﹣5,3).【详解】由题可得:AO=BC=5,AB=CO=4,由旋转可得:DE=OD,∠EDO=90°.又∵∠B=∠OCD=90°,∴∠EDB+∠CDO=90°=∠COD+∠CDO,∴∠EDB=∠DOC,∴△DBE≌△OCD,∴BD=OC=4,设AE=x,则BE=4﹣x=CD.∵BD+CD=5,∴4+4﹣x=5,解得:x=3,∴AE=3,∴E(﹣5,3).故选A.【点睛】本题考查了全等三角形的判定与性质,矩形的性质以及旋转的性质的运用,解题时注意:全等三角形的对应边相等.3.B解析:B【解析】【分析】由四边形ABCD为矩形,根据矩形的对角线互相平分且相等,可得OA=OB=4,又∠AOB=60°,根据有一个角为60°的等腰三角形为等边三角形可得三角形AOB为等边三角形,根据等边三角形的每一个角都相等都为60°可得出∠BAO为60°,据此即可求得AB长.【详解】∵在矩形ABCD中,BD=8,∴AO=12AC, BO=12BD=4,AC=BD,∴AO=BO,又∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OB=4,故选B.【点睛】本题考查了矩形的性质,等边三角形的判定与性质,熟练掌握矩形的对角线相等且互相平分是解本题的关键.4.A解析:A【解析】1(3.4 2.9 3.0 3.1 2.6)35x=++++=.所以4月份营业额约为3×30=90(万元).5.D解析:D【解析】【分析】根据二次根式的除法法则进行计算即可.【详解】原式=414342 333÷=⨯==.故选:D.【点睛】本题考查二次根式的除法,掌握二次根式的除法法则是解答本题的关键.6.D解析:D【解析】【分析】首先根据菱形的性质证明△ABE≌△ADF,然后连接AC可推出△ABC以及△ACD为等边三角形.根据等边三角形三线合一的性质又可推出△AEF是等边三角形.根据勾股定理可求出AE的长,继而求出周长.【详解】解:∵四边形ABCD是菱形,∴AB=AD=BC=CD=2cm,∠B=∠D,∵E、F分别是BC、CD的中点,∴BE=DF,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS),∴AE=AF,∠BAE=∠DAF.连接AC,∵∠B=∠D=60°,∴△ABC与△ACD是等边三角形,∴AE⊥BC,AF⊥CD,∴∠BAE=∠DAF=30°,∴∠EAF=60°,BE=AB=1cm,∴△AEF是等边三角形,AE=,∴周长是.故选:D.【点睛】本题主要考查了菱形的性质、全等三角形的判定和性质、等边三角形的判定和性质以及勾股定理,涉及知识点较多,也考察了学生推理计算的能力.7.D解析:D 【解析】 【分析】由(a-b )(a 2-b 2-c 2)=0,可得:a-b=0,或a 2-b 2-c 2=0,进而可得a=b 或a 2=b 2+c 2,进而判断△ABC 的形状为等腰三角形或直角三角形. 【详解】解:∵(a-b )(a 2-b 2-c 2)=0, ∴a-b=0,或a 2-b 2-c 2=0, 即a=b 或a 2=b 2+c 2,∴△ABC 的形状为等腰三角形或直角三角形. 故选:D . 【点睛】本题考查了勾股定理的逆定理以及等腰三角形的判定,解题时注意:有两边相等的三角形是等腰三角形,满足a 2+b 2=c 2的三角形是直角三角形.8.D解析:D 【解析】 【分析】已知ab =8可求出四个三角形的面积,用大正方形面积减去四个三角形的面积得到小正方形的面积,根据面积利用算术平方根求小正方形的边长. 【详解】a b -由题意可知:中间小正方形的边长为:,11ab 8422=⨯=Q 每一个直角三角形的面积为:,214ab a b 252(),∴⨯+-=2a b 25169∴-=-=(),a b 3∴-=,故选D. 【点睛】本题考查勾股定理的推导,有较多变形题,解题的关键是找出图形间面积关系,同时熟练运用勾股定理以及完全平方公式,本题属于基础题型.9.B解析:B【解析】【分析】【详解】解:如图,设直线AB的解析式为y=kx+b,则4+=1200 {5k+b=1650k b,解得450 {600 kb==-故直线AB的解析式为y=450x﹣600,当x=2时,y=450×2﹣600=300,300÷2=150(m2)故选B.【点睛】本题考查一次函数的应用.10.B解析:B【解析】试题解析:A、∵22+32≠42,∴不能构成直角三角形;B、∵72+242=252,∴能构成直角三角形;C、∵82+122≠202,∴不能构成直角三角形;D、∵52+132≠152,∴不能构成直角三角形.故选B.11.B解析:B【解析】【分析】根据折叠的性质易知矩形ABCD的周长等于△AFD和△CFE的周长的和.【详解】由折叠的性质知,AF=AB ,EF=BE .所以矩形的周长等于△AFD 和△CFE 的周长的和为18+6=24cm . 故矩形ABCD 的周长为24cm . 故答案为:B . 【点睛】本题考查了折叠的性质,解题关键是折叠前后图形的形状和大小不变,对应边和对应角相等.12.B解析:B 【解析】 【分析】先求出平移后的解析式,继而令y=0,可得关于x 的方程,解方程即可求得答案. 【详解】根据函数图象平移规律,可知3y x =向上平移6个单位后得函数解析式应为36y x =+, 此时与x 轴相交,则0y =, ∴360x +=,即2x =-, ∴点坐标为(-2,0), 故选B. 【点睛】本题考查了一次函数图象的平移,一次函数图象与坐标轴的交点坐标,先出平移后的解析式是解题的关键.二、填空题13.3【解析】【分析】先将化成最简二次根式然后根据同类二次根式得到被开方数相同可得出关于的方程解出即可【详解】解:∵与最简二次根式是同类二次根式∴解得:故答案为:【点睛】本题考查了最简二次根式的化简以及解析:3 【解析】 【分析】化成最简二次根式,然后根据同类二次根式得到被开方数相同可得出关于a 的方程,解出即可. 【详解】=与最简二次根式∴215a -=,解得:3a = 故答案为:3 【点睛】本题考查了最简二次根式的化简以及同类二次根式等知识点,能够正确得到关于a 的方程是解题的关键.14.20【解析】【分析】通过矩形的性质可得再根据∠AOB=120°可证△AOD 是等边三角形即可求出OD 的长度再通过证明四边形CODE 是菱形即可求解四边形CODE 的周长【详解】∵四边形ABCD 是矩形∴∵∠解析:20【解析】【分析】通过矩形的性质可得OD OA OB OC ===,再根据∠AOB=120°,可证△AOD 是等边三角形,即可求出OD 的长度,再通过证明四边形CODE 是菱形,即可求解四边形CODE 的周长.【详解】∵四边形ABCD 是矩形∴OD OA OB OC ===∵∠AOB=120°∴18060AOD AOB =︒-=︒∠∠∴△AOD 是等边三角形∵5AD =∴5OD OA ==∴5OD OC ==∵CE//BD ,DE//AC∴四边形CODE 是平行四边形∵5OD OC ==∴四边形CODE 是菱形∴5OD OC DE CE ====∴四边形CODE 的周长20OD OC DE CE =+++=故答案为:20.【点睛】本题考查了四边形的周长问题,掌握矩形的性质、等边三角形的性质、菱形的性质以及判定定理是解题的关键.15.【解析】试题解析:根据题意将周长为8的△ABC 沿边BC 向右平移1个单位得到△DEF 则AD=1BF=BC+CF=BC+1DF=AC 又∵AB+BC+AC=10∴四边形ABFD 的周长=AD+AB+BF+D解析:【解析】试题解析:根据题意,将周长为8的△ABC 沿边BC 向右平移1个单位得到△DEF , 则AD=1,BF=BC+CF=BC+1,DF=AC ,又∵AB+BC+AC=10,∴四边形ABFD 的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.考点:平移的性质.16.5【解析】试题分析:∵四边形ABCD是矩形∴OA=OB又∵∠AOB=60°∴△AOB是等边三角形∴AB=OA=12AC=5故答案是:5考点:含30度角的直角三角形;矩形的性质解析:5。
2020-2021八年级数学下期末一模试卷附答案(1)
2020-2021八年级数学下期末一模试卷附答案(1)一、选择题1.直角三角形两直角边长为a ,b ,斜边上高为h ,则下列各式总能成立的是( )A .ab=h 2B .a 2+b 2=2h 2C .111a b h+= D .222111a b h+= 2.若等腰三角形的底边长为6,底边上的中线长为4,则它的腰长为( ) A .7 B .6 C .5 D .43.均匀地向如图的容器中注满水,能反映在注水过程中水面高度h 随时间t 变化的函数图象是( )A .B .C .D .4.如图,矩形ABCD 中,对角线AC BD 、交于点O .若60,8AOB BD ∠==o,则AB 的长为( )A .3B .4C .43D .55.一次函数111y k x b =+的图象1l 如图所示,将直线1l 向下平移若干个单位后得直线2l ,2l 的函数表达式为222y k x b =+.下列说法中错误的是( )A .12k k =B .12b b <C .12b b >D .当5x =时,12y y >6.下列有关一次函数y =﹣3x +2的说法中,错误的是( ) A .当x 值增大时,y 的值随着x 增大而减小 B .函数图象与y 轴的交点坐标为(0,2)C.函数图象经过第一、二、四象限D.图象经过点(1,5)7.函数的自变量取值范围是( )A.x≠0B.x>﹣3C.x≥﹣3且x≠0D.x>﹣3且x≠0 8.如图1,四边形ABCD中,AB∥CD,∠B=90°,AC=AD.动点P从点B出发沿折线B→A→D→C方向以1单位/秒的速度运动,在整个运动过程中,△BCP的面积S与运动时间t(秒)的函数图象如图2所示,则AD等于()A.10B.89C.8D.419.某商场对上周某品牌运动服的销售情况进行了统计,如下表所示:颜色黄色绿色白色紫色红色数量(件)12015023075430经理决定本周进货时多进一些红色的,可用来解释这一现象的统计知识的()A.平均数B.中位数C.众数D.平均数与众数10.下列各组数,可以作为直角三角形的三边长的是( )A.2,3,4B.7,24,25C.8,12,20D.5,13,1511.如图,一个工人拿一个2.5米长的梯子,底端A放在距离墙根C点0.7米处,另一头B点靠墙,如果梯子的顶部下滑0.4米,梯子的底部向外滑()米A.0.4B.0.6C.0.7D.0.8.若12.如图,将四边形纸片ABCD沿AE向上折叠,使点B落在DC边上的点F处V的周长为6,四边形纸片ABCD的周长为()AFDV的周长为18,ECFA.20B.24C.32D.48二、填空题13.如图,矩形ABCD中,AC、BD相交于点O,AE平分∠BAD,交BC于E,若∠EAO=15°,则∠BOE的度数为度.14.如图,在▱ABCD中,∠D=120°,∠DAB的平分线AE交DC于点E,连接BE.若AE =AB,则∠EBC的度数为_______.x 有意义,那么x的取值范围是__________.15.如果二次根式4△的面积16.如图,如果正方形ABCD的面积为5,正方形BEFG的面积为7,则ACE_________.17.若一个多边形的内角和是900º,则这个多边形是边形.18.一组数据:1、2、5、3、3、4、2、4,它们的平均数为_______,中位数为_______,方差是_______.19.如图:长方形ABCD中,AD=10,AB=4,点Q是BC的中点,点P在AD边上运动,当△BPQ是等腰三角形时,AP的长为___.20.将正比例函数y=﹣3x的图象向上平移5个单位,得到函数_____的图象.三、解答题21.如图,在平行四边形ABCD 中,点E 为AD 的中点,延长CE 交BA 的延长线于点F .(1)求证:AB =AF ;(2)若BC =2AB ,∠BCD =100°,求∠ABE 的度数.22.求证:三角形的一条中位线与第三边上的中线互相平分.要求:(1)根据给出的ABC ∆和它的一条中位线DE ,在给出的图形上,请用尺规作出BC 边上的中线AF ,交DE 于点O .不写作法,保留痕迹; (2)据此写出已知,求证和证明过程.23.设a 8x =-,b 3x 4=+,c x 2=+.(1)当x 取什么实数时,a ,b ,c 都有意义;(2)若Rt △ABC 三条边的长分别为a ,b ,c ,求x 的值.24.如图所示,ABC ∆中,D 是BC 边上一点,E 是AD 的中点,过点A 作BC 的平行线交CE 的延长线于F ,且AF BD =,连接BF .(1)求证:D 是BC 的中点;(2)若AB AC =,试判断四边形AFBD 的形状,并证明你的结论.25.近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A 微信、B 支付宝、C 现金、D 其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题: (1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A 种支付方式所对应的圆心角为 度. (3)若该超市这一周内有1600名购买者,请你估计使用A 和B 两种支付方式的购买者共有多少名?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】 【详解】解:根据直角三角形的面积可以导出:斜边c=ab h. 再结合勾股定理:a 2+b 2=c 2.进行等量代换,得a 2+b 2=222a b h,两边同除以a 2b 2, 得222111a b h +=. 故选D .2.C解析:C 【解析】 【分析】 【详解】∵等腰三角形ABC 中,AB =AC ,AD 是BC 上的中线, ∴BD =CD =12BC =3,AD同时是BC上的高线,∴AB=22AD BD=5.故它的腰长为5.故选C.3.A解析:A【解析】试题分析:最下面的容器较粗,第二个容器最粗,那么第二个阶段的函数图象水面高度h 随时间t的增大而增长缓慢,用时较长,最上面容器最小,那么用时最短.故选A.考点:函数的图象.4.B解析:B【解析】【分析】由四边形ABCD为矩形,根据矩形的对角线互相平分且相等,可得OA=OB=4,又∠AOB=60°,根据有一个角为60°的等腰三角形为等边三角形可得三角形AOB为等边三角形,根据等边三角形的每一个角都相等都为60°可得出∠BAO为60°,据此即可求得AB长.【详解】∵在矩形ABCD中,BD=8,∴AO=12AC, BO=12BD=4,AC=BD,∴AO=BO,又∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OB=4,故选B.【点睛】本题考查了矩形的性质,等边三角形的判定与性质,熟练掌握矩形的对角线相等且互相平分是解本题的关键.5.B解析:B【解析】【分析】根据两函数图象平行k 相同,以及平移规律“左加右减,上加下减”即可判断 【详解】∵将直线1l 向下平移若干个单位后得直线2l , ∴直线1l ∥直线2l , ∴12k k =,∵直线1l 向下平移若干个单位后得直线2l , ∴12b b >,∴当x 5=时,12y y > 故选B . 【点睛】本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.6.D解析:D 【解析】 【分析】A 、由k =﹣3<0,可得出:当x 值增大时,y 的值随着x 增大而减小,选项A 不符合题意;B 、利用一次函数图象上点的坐标特征,可得出:函数图象与y 轴的交点坐标为(0,2),选项B 不符合题意;C 、由k =﹣3<0,b =2>0,利用一次函数图象与系数的关系可得出:一次函数y =﹣3x +2的图象经过第一、二、四象限,选项C 不符合题意;D 、利用一次函数图象上点的坐标特征,可得出:一次函数y =﹣3x +2的图象不经过点(1,5),选项D 符合题意.此题得解. 【详解】解:A 、∵k =﹣3<0,∴当x 值增大时,y 的值随着x 增大而减小,选项A 不符合题意; B 、当x =0时,y =﹣3x +2=2,∴函数图象与y 轴的交点坐标为(0,2),选项B 不符合题意; C 、∵k =﹣3<0,b =2>0,∴一次函数y =﹣3x +2的图象经过第一、二、四象限,选项C 不符合题意; D 、当x =1时,y =﹣3x +2=﹣1,∴一次函数y =﹣3x +2的图象不经过点(1,5),选项D 符合题意. 故选:D . 【点睛】此题考查一次函数图象上点的坐标特征以及一次函数的性质,逐一分析四个选项的正误是解题的关键.7.B解析:B【解析】【分析】【详解】由题意得:x+3>0,解得:x>-3.故选B.8.B解析:B【解析】【分析】当t=5时,点P到达A处,根据图象可知AB=5;当s=40时,点P到达点D处,根据三角形BCD的面积可求出BC的长,再利用勾股定理即可求解.【详解】解:当t=5时,点P到达A处,根据图象可知AB=5,过点A作AE⊥CD交CD于点E,则四边形ABCE为矩形,∵AC=AD,∴DE=CE=12 CD,当s=40时,点P到达点D处,则S=12CD•BC=12(2AB)•BC=5×BC=40,∴BC=8,∴AD=AC22225889AB BC++=故选B.【点睛】本题以动态的形式考查了函数、等腰三角形的性质、勾股定理等知识.准确分析图象,并结合三角形的面积求出BC的长是解题的关键.9.C解析:C【解析】试题解析:由于销售最多的颜色为红色,且远远多于其他颜色,所以选择多进红色运动装的主要根据众数.故选C.考点:统计量的选择.10.B解析:B【解析】试题解析:A、∵22+32≠42,∴不能构成直角三角形;B、∵72+242=252,∴能构成直角三角形;C、∵82+122≠202,∴不能构成直角三角形;D、∵52+132≠152,∴不能构成直角三角形.故选B.11.D解析:D【解析】【分析】【详解】解:∵AB=2.5米,AC=0.7米,∴BC(米).∵梯子的顶部下滑0.4米,∴BE=0.4米,∴EC=BC﹣0.4=2(米),∴DC(米),∴梯子的底部向外滑出AD=1.5﹣0.7=0.8(米).故选D.【点睛】此题主要考查了勾股定理在实际生活中的应用,关键是掌握直角三角形中,两直角边的平方和等于斜边的平方.12.B解析:B【解析】【分析】根据折叠的性质易知矩形ABCD的周长等于△AFD和△CFE的周长的和.【详解】由折叠的性质知,AF=AB,EF=BE.所以矩形的周长等于△AFD和△CFE的周长的和为18+6=24cm.故矩形ABCD的周长为24cm.故答案为:B.【点睛】本题考查了折叠的性质,解题关键是折叠前后图形的形状和大小不变,对应边和对应角相等.二、填空题13.75°【解析】试题分析:根据矩形的性质可得△BOA为等边三角形得出BA=BO又因为△BAE为等腰直角三角形BA=BE由此关系可求出∠BOE的度数解:在矩形ABCD中∵AE平分∠BAD∴∠BAE=∠E解析:75°.【解析】试题分析:根据矩形的性质可得△BOA为等边三角形,得出BA=BO,又因为△BAE为等腰直角三角形,BA=BE,由此关系可求出∠BOE的度数.解:在矩形ABCD中,∵AE平分∠BAD,∴∠BAE=∠EAD=45°,又知∠EAO=15°,∴∠OAB=60°,∵OA=OB,∴△BOA为等边三角形,∴BA=BO,∵∠BAE=45°,∠ABC=90°,∴△BAE为等腰直角三角形,∴BA=BE.∴BE=BO,∠EBO=30°,∠BOE=∠BEO,此时∠BOE=75°.故答案为75°.考点:矩形的性质;等边三角形的判定与性质.14.45°【解析】【分析】由平行四边形的性质得出∠ABC=∠D=108°AB∥CD 得出∠BAD=180°﹣∠D=60°由等腰三角形的性质和三角形内角和定理求出∠ABE=75°即可得出∠EBC的度数【详解解析:45°【解析】【分析】由平行四边形的性质得出∠ABC=∠D=108°,AB∥CD,得出∠BAD=180°﹣∠D=60°,由等腰三角形的性质和三角形内角和定理求出∠ABE=75°,即可得出∠EBC的度数.【详解】解:∵四边形ABCD是平行四边形,∴∠ABC=∠D=120°,AB∥CD,∴∠BAD=180°﹣∠D=60°,∵AE平分∠DAB,∴∠BAE=60°÷2=30°,∵AE=AB,∴∠ABE=(180°﹣30°)÷2=75°,∴∠EBC=∠ABC﹣∠ABE=45°;故答案为:45°.【点睛】本题考查了平行四边形的性质、等腰三角形的性质以及三角形内角和定理,正确理解和掌握性质定理是解决本题的关键.15.x≥4【解析】分析:根据二次根式有意义的条件列出不等式解不等式即可详解:由题意得x−4⩾0解得x⩾4故答案为x⩾4点睛:此题考查二次根式有意义的条件二次根式有意义的条件是被开方部分大于或等于零二次根解析:x≥4【解析】分析:根据二次根式有意义的条件列出不等式,解不等式即可.详解:由题意得,x−4⩾0,解得,x⩾4,故答案为x⩾4.点睛:此题考查二次根式有意义的条件,二次根式有意义的条件是被开方部分大于或等于零,二次根式无意义的条件是被开方部分小于0.16.【解析】【分析】根据正方形的面积分别求出BCBE的长继而可得CE的长再利用三角形面积公式进行求解即可【详解】∵正方形的面积为正方形的面积为∴BC=AB=BE=∴CE=BE-BC=-∴S△ACE==故解析:5 2【解析】【分析】根据正方形的面积分别求出BC、BE的长,继而可得CE的长,再利用三角形面积公式进行求解即可.【详解】∵正方形ABCD的面积为5,正方形BEFG的面积为7,∴,∴∴S △ACE =1122CE AB =⨯g =52,. 【点睛】本题考查了算术平方根的应用,三角形面积,二次根式的混合运算等,熟练掌握并灵活运用相关知识是解题的关键.17.七【解析】【分析】根据多边形的内角和公式列式求解即可【详解】设这个多边形是边形根据题意得解得故答案为【点睛】本题主要考查了多边形的内角和公式熟记公式是解题的关键解析:七【解析】【分析】根据多边形的内角和公式()2180n -⋅︒,列式求解即可.【详解】设这个多边形是n 边形,根据题意得,()2180900n -⋅︒=︒,解得7n =.故答案为7.【点睛】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.18.33【解析】【分析】根据平均数的公式即可求出答案将数据按照由小到大的顺序重新排列中间两个数的平均数即是中位数根据方差的公式计算即可得到这组数据的方差【详解】平均数=将数据重新排列是:12233445解析:3, 3,32. 【解析】【分析】根据平均数的公式即可求出答案,将数据按照由小到大的顺序重新排列,中间两个数的平均数即是中位数,根据方差的公式计算即可得到这组数据的方差.【详解】平均数=1(12533424)38⨯+++++++=,将数据重新排列是:1、2、2、3、3、4、4、5,∴中位数是3332+=, 方差=222221(13)2(23)2(33)2(43)(53)8⎡⎤⨯-+⨯-+⨯-+⨯-+-⎣⎦=32,故答案为:3,3,32. 【点睛】 此题考查计算能力,计算平均数,中位数,方差,正确掌握各计算的公式是解题的关键. 19.2或25或3或8【解析】【分析】【详解】解:∵AD=10点Q 是BC 的中点∴BQ =BC=×10=5如图1PQ=BQ=5时过点P 作PE ⊥BC 于E 根据勾股定理QE=∴BE=BQ ﹣QE=5﹣3=2∴AP=B解析:2或2.5或3或8.【解析】【分析】【详解】解:∵AD=10,点Q 是BC 的中点,∴BQ=12BC=12×10=5, 如图1,PQ=BQ=5时,过点P 作PE ⊥BC 于E ,根据勾股定理,QE=2222543PQ PE -=-=,∴BE=BQ ﹣QE=5﹣3=2,∴AP=BE=2;②如图2,BP=BQ=5时,过点P 作PE ⊥BC 于E ,根据勾股定理,BE=2222543PB PE -=-=,∴AP=BE=3;③如图3,PQ=BQ=5且△PBQ 为钝角三角形时,BE=QE+BQ=3+5=8,AP=BE=8,④若BP=PQ,如图4,过P作PE⊥BQ于E,则BE=QE=2.5,∴AP=BE=2.5.综上所述,AP的长为2或3或8或2.5.故答案为2或3或8或2.5.【点睛】本题考查等腰三角形的判定;勾股定理;矩形的性质;注意分类讨论是本题的解题关键.20.y=-3x+5【解析】【分析】平移时k的值不变只有b发生变化【详解】解:原直线的k=-3b=0;向上平移5个单位得到了新直线那么新直线的k=-3b=0+5=5∴新直线的解析式为y=-3x+5故答案为解析:y=-3x+5【解析】【分析】平移时k的值不变,只有b发生变化.【详解】解:原直线的k=-3,b=0;向上平移5个单位得到了新直线,那么新直线的k=-3,b=0+5=5.∴新直线的解析式为y=-3x+5.故答案为y=-3x+5.【点睛】求直线平移后的解析式时要注意平移时k和b的值的变化,掌握这点很重要.三、解答题21.(1)证明见解析;(2)∠ABE=40°.【解析】【分析】(1)由四边形ABCD是平行四边形,点E为AD的中点,易证得△DEC≌△AEF (AAS),继而可证得DC=AF,又由DC=AB,证得结论;(2)由(1)可知BF=2AB,EF=EC,然后由∠BCD=100°求得BE平分∠CBF,继而求得答案.【详解】证明:(1)∵四边形ABCD是平行四边形,∴CD=AB,CD∥AB,∴∠DCE =∠F ,∠FBC+∠BCD =180°,∵E 为AD 的中点,∴DE =AE .在△DEC 和△AEF 中,DCE F DEC AEF DE AE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△DEC ≌△AEF (AAS ).∴DC =AF .∴AB =AF ;(2)由(1)可知BF =2AB ,EF =EC ,∵∠BCD =100°,∴∠FBC =180°﹣100°=80°,∵BC =2AB ,∴BF =BC ,∴BE 平分∠CBF ,∴∠ABE =12∠FBC =12×80°=40° 【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质以及等腰三角形的性质,证得△DEC ≌△AEF 和△BCF 是等腰三角形是关键.22.(1)作线段BC 的中段线,BC 的中点为F ,连结AF 即可,见解析;(2) 见解析.【解析】【分析】(1)作BC 的垂直平分线得到BC 的中点F ,从而得到BC 边上的中线AF ;(2)写出已知、求证,连接DF 、EF ,如图,先证明EF 为AB 边的中位线,利用三角形中位线性质得到EF ∥AD ,EF=AD ,则可判断四边形ADFE 为平行四边形,从而得到DE 与AF 互相平分.【详解】解:(1)作线段BC 的中段线,BC 的中点为F ,连结AF 即可。
2021年河北省石家庄市八下数学期末期末模拟试卷数学八下期末检测模拟试题含解析
2021年河北省石家庄市八下数学期末期末模拟试卷数学八下期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)1.在Rt△ABC中,BC是斜边,∠B=40°,则∠C=()A.90°B.60°C.50°D.40°2.如图,在正方形ABCD中,E是对角线BD上一点,且满足BE=AD,连接CE并延长交AD于点F,连接AE,过B点作BG⊥AE于点G,延长BG交AD于点H.在下列结论中:①AH=DF;②∠AEF=45°;③S四边形EFHG=S△DEF+S△AGH;④BH平分∠ABE.其中不正确的结论有()A.1个B.2个C.3个D.4个3.某商品四天内每天每斤的进价与售价信息如图所示,则售出这种商品每斤利润最大的是()A.第一天B.第二天C.第三天D.第四天4.下列二次根式,最简二次根式是( )A.B.C.D.A .﹣4B .﹣6C .14D .66.如图,以原点O 为圆心,OB 长为半径画弧与数轴交于点A ,若点A 表示的数为x ,则x 的值为( )A .B .-C .-2D .2-7.下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择( ) A .甲B .乙C .丙D .丁8.点()3,2P -关于原点的对称点Q 的坐标为( ) A .()3,2-B .()3,2--C .()3,2D .()2,3-9.如图,在菱形ABCD 中,AB=AC=1,点E 、F 分别为边AB 、BC 上的点,且AE=BF ,连接CE 、AF 交于点H ,连接DH 交AC 于点O ,则下列结论:①△ABF ≌△CAE ;②∠FHC=∠B ;③△ADO ≌△ACH ;④=3ABCD S 菱形;其中正确的结论个数是( )A .1个B .2个C .3个D .4个10.某射击运动员在一次射击训练中,共射击了6次,所得成绩(单位:环)为6、8、7、7、8、9,这组数据的中位数为( ) A .7B .7.5C .8D .911.反比例函数 y =(2m -1)22m x -,当 x >0 时,y 随 x 的增大而增大,则 m 的值是( )A .m =±1B .小于12的实数 C .-1D .112.点()1,4-在反比例函数ky x=的图象上,则下列各点在此函数图象上的是( ).A .()41-,B .1,14⎛⎫-⎪⎝⎭C .()4,1--D .1,24⎛⎫⎪⎝⎭二、填空题(每题4分,共24分)13.如图,在菱形ABCD 中,120ABC ∠=︒,点E 是边AB 的中点,P 是对角线AC 上的一个动点,若2AB =,则PB PE +的最小值是_____.14.函数2y x =的图像与6y kx =-如图所示,则k=__________.15.将一根长为15cm 的筷子置于底面直径为5cm ,高为12cm 的圆柱形水杯中,设筷子露在杯子外面的长为hcm ,则h 的取值范围是_____. 16.要使分式13x -有意义,x 应满足的条件是__________ 17.如图,以Rt △ABC 的斜边AB 为一边在△ABC 同侧作正方形ABEF .点O 为AE 与BF 的交点,连接CO .若CA=2,CO=23,那么CB 的长为________.18.如图,在直角坐标系中,正方形A 1B 1C 1O 、 A 2B 2C 2C 1、A 3B 3C 3C 2、…、A n B n C n C n-1的顶点A 1、A 2、A 3、…、A n 均在直线y =kx +b 上,顶点C 1、C 2、C 3、…、C n 在x 轴上,若点B 1的坐标为(1,1),点B 2的坐标为(3,2),那么点A 4的坐标为 ,点A n 的坐标为 .三、解答题(共78分)19.(8分)有这样一个问题:探究函数3y x =(22)x -≤≤的图象与性质,小东根据学习函数的经验,对函数的图象与性质进行了探究,下面是小东的探究过程,请补充完整: (1)下表是y 与x 的几组对应值,则m = .x… 2-32- 1- 12- 0121 32 2 …y… 8- 278-1-18- 0181m8…(2)如图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点. 根据描出的点,画出该函数的图象;(3)当0x <时,y 随x 的增大而 ;当12x -≤≤时,y 的最小值为 .20.(8分)如图,在四边形ABCD 中,E 、F 、G 、H 分别是AD 、BC 、BD 、EF 的中点,GH EF ⊥.求证:AB CD =.21.(8分)如图,在Rt ABC ∆中,90ACB ∠=︒,D 、E 分别是AB 、AC 的中点,延长BC 到F ,使得12CF BC =,连接CD 、EF .(1)求证:四边形CDEF 为平行四边形;(2)若四边形CDEF 的周长是32,16AC =,求ABC ∆的面积; (3)在(2)的条件下,求点F 到直线CD 的距离.22.(10分)如图,已知E 、F 是平行四边形ABCD 对角线AC 上的两点,并且AE =CF .请说明四边形BFDE 是平行四边形.23.(10分)如图,将一矩形纸片OABC 放在平面直角坐标系中,O (1,1),A (6,1),C (1,3),动点F 从点O 出发以每秒1个单位长度的速度沿OC 向终点C 运动,运动23秒时,动点E 从点A 出发以相同的速度沿AO 向终点O 运动,当点E 、F 其中一点到达终点时,另一点也停止运动设点E 的运动时间为t :(秒) (1)OE= ,OF= (用含t 的代数式表示) (2)当t=1时,将△OEF 沿EF 翻折,点O 恰好落在CB 边上的点D 处 ①求点D 的坐标及直线DE 的解析式;当点M 与点B 不重合时,S 为△MBN 的面积,当点M 与点B 重合时,S=1.求S 与b 之间的函数关系式,并求出自变量b 的取值范围.24.(10分)如图,四边形OABC 是矩形,点A 的坐标为(0,6),点C 的坐标为(4,0),点P 从点A 出发,沿AB 以每秒2个单位长度的速度向点B 出发,同时点Q 从点B 出发,沿BC 以每秒3个单位长度的速度向点C 运动,当点P 与点B 重合时,点P 、Q 同时停止运动.设运动时间为t 秒.(1)当1t =时,请直接写出BPQ ∆的面积为_____________; (2)当BPQ ∆与COQ ∆相似时,求t 的值;(3)当反比例函数(0)ky x x=>的图象经过点P 、Q 两点时,①求k 的值;②点M 在x 轴上,点N 在反比例函数(0)ky x x=>的图象上,若以点M 、N 、P 、Q 为顶点的四边形是平行四边形,请直接写出所有满足条件的M 的坐标.25.(12分)丽君花卉基地出售两种盆栽花卉:太阳花6元/盆,绣球花10元/盆.若次购买的绣球花超过20盆时,超过20盆部分的绣球花价格打8折.(1)求出太阳花的付款金额1y (元)关于购买量x (盆)的函数关系式; (2)求出绣球花的付款金额y (元)关于购买量x (盆)的函数关系式;(3)为了美化环境,花园小区计划到该基地购买这两种花卉共90盆,其中太阳花数量不超过绣球花数量的一半.两种花卉各买多少盆时,总费用最少,最少费用是多少元?26.已知,如图,在ABCD中,E、F是对角线AC上的两点,且AE=CF,求证:DE=BF参考答案一、选择题(每题4分,共48分)1、C【解析】【分析】BC是斜边,则∠A=90°,利用三角形内角和定理即可求出∠C.【详解】∵BC是斜边∴∠A=90°∴∠C=180°-90°-40°=50°故选C.【点睛】本题考查三角形内角和定理,根据BC是斜边得出∠A是解题的关键.2、A【解析】【分析】先判断出∠DAE=∠ABH,再判断△ADE≌△CDE得出∠DAE=∠DCE=22.5°,∠ABH=∠DCF,再判断出Rt△ABH≌Rt△DCF从而得到①正确,根据三角形的外角求出∠AEF=45°,得出②正确;连接HE,判断出S△EFH≠S△EFD得出③错误,根据三角形的内角和和角平分线的定义得到④正确. 【详解】解:∵BD是正方形ABCD的对角线,∴∠ABE=∠ADE=∠CDE=45°,AB=BC,∵BE=BC,∴AB=BE,∵BG⊥AE,∴BH是线段AE的垂直平分线,∠ABH=∠DBH=22.5°,在Rt△ABH中,∠AHB=90°﹣∠ABH=67.5°,∵∠AGH=90°,∴∠DAE=∠ABH=22.5°,在△ADE和△CDE中,DE DEADE CDE AD CD=⎧⎪∠=∠⎨⎪=⎩,∴△ADE≌△CDE(SAS),∴∠DAE=∠DCE=22.5°,∴∠ABH=∠DCF,在△ABH和△DCF中,BAH CDF AB CDABH DCF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABH≌△DCF(ASA),∴AH=DF,∠CFD=∠AHB=67.5°,∵∠CFD=∠EAF+∠AEF,∴67.5°=22.5°+∠AEF,∴∠AEF=45°,故①②正确;如图,连接HE,∵BH是AE垂直平分线,∴S△AGH=S△HEG,∵AH=HE,∴∠AHG=∠EHG=67.5°,∴∠DHE=45°,∵∠ADE=45°,∴∠DEH=90°,∠DHE=∠HDE=45°,∴EH=ED,∴△DEH是等腰直角三角形,∵EF不垂直DH,∴FH≠FD,∴S△EFH≠S△EFD,∴S四边形EFHG=S△HEG+S△EFH=S△AHG+S△EFH≠S△DEF+S△AGH,故③错误,∵∠AHG=67.5°,∴∠ABH=22.5°,∵∠ABD=45°,∴∠ABH1ABD 2=∠∴BH平分∠ABE,故④正确;故选:A.【点睛】此题主要考查了正方形的性质,全等三角形的判定和性质,三角形的内角和和三角形外角的性质,解本题的关键是判断出△ADE≌△CDE,难点是作出辅助线.3、B【解析】【分析】根据图象中的信息即可得到结论.【详解】由图象中的信息可知,利润=售价﹣进价,利润最大的天数是第二天,故选B.4、C【解析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A、被开方数含开的尽的因数,故A不符合题意;B、被开方数含分母,故B不符合题意;C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意.故选C.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.5、D【解析】【分析】根据题意可得知﹣5≤x≤5,当x=5时,m取最大值,将x=5代入即可得出结论.【详解】解:已知对于任意一个x,m都取y1,y2中的最小值,且求m得最大值,因为y1,y2均是递增函数,所以在x=5时,m取最大值,即m取x=5时,y1,y2中较小的一个,是y1=6.故选D.【点睛】本题考察直线图像的综合运用,能够读懂题意确定m是解题关键.6、B【解析】【分析】根据勾股定理列式求出x2,再利用平方根的相反数定义解答.【详解】由图可知,x2=12+22=5,则x 1=−,x2=(舍去).【点睛】考查了实数与数轴,主要是数轴上无理数的作法,需熟练掌握.7、C【解析】【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,选出方差最小,而且平均数较大的同学参加数学比赛.【详解】∵3.6<7.4<8.1,∴甲和丙的最近几次数学考试成绩的方差最小,发挥稳定,∵95>92,∴丙同学最近几次数学考试成绩的平均数高,∴要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择丙.故选C.【点睛】此题主要考查了方差的含义和求法,要熟练掌握,解答此题的关键是要明确:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.8、A【解析】【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】解:根据中心对称的性质,可知:点P(-3,2)关于原点O中心对称的点的坐标为(3,-2).故选:A .【点睛】本题考查关于原点对称的点的坐标特点,关键是掌握点的坐标的变化规律.9、B【解析】【分析】根据菱形的性质,利用SAS证明即可判断①;根据△ABF≌△CAE得到∠BAF=∠ACE,再利用外角的性质以及菱形内角度数即可判断②;通过说明∠CAH≠∠DAO,判断△ADO≌△ACH不成立,可判断③;再利用菱形边长即可求出菱形面积,可判断④.【详解】解:∵在菱形ABCD 中,AB=AC=1,∴△ABC 为等边三角形,∴∠B=∠CAE=60°,又∵AE=BF ,∴△ABF ≌△CAE (SAS ),故①正确;∴∠BAF=∠ACE ,∴∠FHC=∠ACE+∠HAC=∠BAF+∠HAC=60°,故②正确;∵∠B=∠CAE=60°,则在△ADO 和△ACH 中,∠OAD=60°=∠CAB , ∴∠CAH≠60°,即∠CAH≠∠DAO ,∴△ADO ≌△ACH 不成立,故③错误;∵AB=AC=1,过点A 作AG ⊥BC ,垂足为G ,∴∠BAG=30°,BG=12, ∴AG=22AB BG -=32, ∴菱形ABCD 的面积为:BC AG ⨯=312⨯=3,故④错误; 故正确的结论有2个,故选B.【点睛】本题考查了全等三角形判定和性质,菱形的性质和面积,等边三角形的判定和性质,外角的性质,解题的关键是利用菱形的性质证明全等.10、B【解析】【分析】先将题目中的数据按从小到大的顺序排列,然后根据中位数的定义分析即可.【详解】将题目中的数据按从小到大的顺序排列:6,7,7,8,8,9;中间数字为7和8;中位数为787.5 2+=故选B【点睛】本题考查中位数的运算,注意要先将数据按从小到大的顺序排列,再根据中位数的定义分析求解.11、C【解析】【分析】根据反比例函数的定义列出方程:m2−2=−1求解,再根据它的性质列出不等式:2m−1<0决定解的取舍.【详解】根据题意,m2−2=−1,解得m=±1,又∵2m−1≠0,∴m≠12,∵y随x的增大而增大,2m−1<0,得m<12,∴m=−1.故选C.【点睛】本题考查反比例函数的性质,反比例函数的定义.根据反比例函数自变量x的次数为-1.k>0时,在各自象限y随x的增大而减小;k<0时,在各自象限y随x的增大而增大.12、A【解析】【分析】用待定系数法确定反比例函数的解析式,再验证选项中的点是否满足解析式即可,若满足函数解析式,则在函数图像上.【详解】解:将点()1,4-代入k y x =, ∴4k =-,∴4y x-=, ∴点()41-,在函数图象上,故选:A .【点睛】本题考查了反比例函数解析式的求法及根据解析式确定点在函数图形上,会求反比例函数的解析式是解题的关键.二、填空题(每题4分,共24分)13、3【解析】【分析】找出B 点关于AC 的对称点D ,连接DE 交AC 于P ,则DE 就是PB+PE 的最小值,求出即可.【详解】连接DE 交AC 于P ,连接DB ,由菱形的对角线互相垂直平分,可得B 、D 关于AC 对称,则PD=PB ,∴PE+PB=PE+PD=DE ,即DE 就是PE+PB 的最小值,∵∠ABC=120°,∴∠BAD=60°,∵AD=AB ,∴△ABD 是等边三角形,∵AE=BE ,∴DE ⊥AB (等腰三角形三线合一的性质).在Rt △ADE 中,22AD AE -3∴PB+PE【点睛】本题主要考查轴对称-最短路线问题,菱形的性质,勾股定理等知识点,确定P点的位置是解答本题的关键.14、1【解析】【分析】首先根据一次函数y=2x与y=6-kx图象的交点纵坐标为4,代入一次函数y=2x求得交点坐标为(2,4),然后代入y=6-kx 求得k值即可.【详解】∵一次函数y=2x与y=6-kx图象的交点纵坐标为2,∴4=2x,解得:x=2,∴交点坐标为(2,4),代入y=6-kx,6-2k=4,解得k=1.故答案为:1.【点睛】本题考查了两条直线平行或相交问题,解题的关键是交点坐标适合y=2x与y=6-kx两个解析式.15、2cm≤h≤3cm【解析】【分析】【详解】解:根据直角三角形的勾股定理可知筷子最长在水里面的长度为13cm,最短为12cm,≤≤.则筷子露在外面部分的取值范围为:2h3故答案为:2cm≤h≤3cm【点睛】本题主要考查的就是直角三角形的勾股定理的实际应用问题.在解决“竹竿过门”、立体图形中最大值的问题时,我们一般都会采用勾股定理来进行说明,从而得出答案.我们在解决在几何体中求最短距离的时候,我们一般也是将立体图形转化为平面图形,然后利用勾股定理来进行求解.x≠16、3【解析】【分析】本题主要考查分式有意义的条件:分母不能为1.【详解】解:∵x-2≠1,∴x≠2,故答案是:x≠2.【点睛】本题考查的是分式有意义的条件,当分母不为1时,分式有意义.17、【解析】如图,在BC上截取BD=AC=2,连接OD,∵四边形AFEB是正方形,∴AO=BO,∠AOB=∠ACB=90°,∴∠CAO=90°-∠ACH,∠DBO=90°-∠BHO,∵∠ACH=∠BHO,∴∠CAO=∠DBO,∴△ACO≌△BDO,∴DO=CO=AOC=∠BOD,∵∠BOD+∠AOD=90°,∴∠AOD+∠AOC=90°,即∠COD=90°,∴=∴BC=BD+CD=2+故答案为:2+点睛:本题的解题要点是,通过在BC上截取BD=AC,并结合已知条件证△ACO≌△BDO来证得△COD是等腰直角三角形,这样即可求得CD的长,从而使问题得到解决.18、A4(7,8);A n(2n-1-1,2n-1).【解析】【详解】∵点B1的坐标为(1,1),点B2的坐标为(3,2)∴由题意知:A1的坐标是(0,1),A2的坐标是:(1,2),∴直线A1A2的解析式是y=x+1.纵坐标比横坐标多1.∵A1的纵坐标是:1=20,A1的横坐标是:0=20-1;A2的纵坐标是:1+1=21,A2的横坐标是:1=21-1;A3的纵坐标是:2+2=4=22,A3的横坐标是:1+2=3=22-1,A4的纵坐标是:4+4=8=23,A4的横坐标是:1+2+4=7=23-1,即点A4的坐标为(7,8).∴A n的纵坐标是:2n-1,横坐标是:2n-1-1,即点A n的坐标为(2n-1-1,2n-1).故答案为(7,8);(2n-1-1,2n-1).三、解答题(共78分)19、(1)278;(2)详见解析;(3)增大;1【解析】【分析】(1)把x=32代入函数解析式即可得到结论;(2)根据描出的点,画出该函数的图象即可;(3)根据函数图象即可得到结论.【详解】解:(1)把x=32代入y=x 3得,y=278; 故答案为:278; (2)如图所示:(3)根据图象得,当x <0时,y 随x 的增大而增大;当12x -≤≤时,y 的最小值为-1.故答案为:增大;1-.【点睛】本题考查了函数的图象与性质,正确的画出函数的图形是解题的关键.20、见解析.【解析】【分析】连接EG ,FG ,根据H 是EF 的中点,GH EF ⊥及E 、F 、G 分别是AD 、BC 、BD 的中点可以证明AB CD =【详解】解:证明:连接EG ,FG .∵H 是EF 的中点,GH EF ⊥.∴EG FG =.∵E 、F 、G 分别是AD 、BC 、BD 的中点, ∴12EG AB =,12FG CD =, ∴AB CD =.【点睛】本题主要考查了三角形的中位线定理,三角形的中位线平行于第三边,并且等于第三边的一半.21、(1)见解析;(2)96;(3)4.8【解析】【分析】(1)根据三角形的中位线与平行四边形的判定即可求解;(2)根据平行四边形的性质与勾股定理的应用即可求解;(3)过C 作CG EF ⊥,过F 作FH CD ⊥交延长线于H ,根据直角三角形的面积公式即可求解. 【详解】(1)证明∵D ,E 分别是AB ,AC 中点∴//DE BC ,12DE BC =∴//CF BC ,12CF BC = ∴//DE CF ,DE CF =∴四边形CDEF 为平行四边形(2)∵32CDEF C =四边形∴()232DE DC +=∵90ACB ∠=︒,D 为AB 中点∴12DC AB =∵12DE BC = ∴()232AB BC DC DE +=+=设AB x =,32BC x =-∴()2223216x x --=化简得:22641632x =+解得:20x∴20AB =,322012BC =-= ∴12Rt ABC S BC AC ∆=⋅ 112162=⨯⨯ 96=(3)过C 作CG EF ⊥,过F 作FH CD ⊥交延长线于H ,由(1)://EF DC∴CG FH =在直角三角形ECF 中,8EC =,6CF =,10EF =∴86 4.810CG ⨯== 【点睛】此题主要考查平行四边形的判定与性质,解题的关键是熟知平行四边形的性质及勾股定理的应用.22、证明见解析.【解析】【分析】连接BD ,利用对角线互相平分来证明即可.【详解】证明:连接BD ,交AC 于点O .∵四边形ABCD 是平行四边形∴OA=OC OB=OD(平行四边形的对角线互相平分)又∵AE=CF∴OA﹣AE=OC﹣CF,即OE=OF∴四边形BFDE是平行四边形(对角线互相平分的四边形是平行四边形)【点睛】本题考查平行四边形的性质和判定,解题的关键是熟练掌握平行四边形的判定和性质,属于中考常考题型.23、(1)6-t,23+t;(2)①直线DE的解析式为:y=-31544x+;②151521542152152b bSb b⎧⎛⎫-+<⎪⎪⎪⎝⎭=⎨⎛⎫⎪->⎪⎪⎝⎭⎩【解析】【分析】(1)由O(1,1),A(6,1),C(1,3),可得:OA=6,OC=3,根据矩形的对边平行且相等,可得:AB=OC=3,BC=OA=6,进而可得点B的坐标为:(6,3),然后根据E点与F点的运动速度与运动时间即可用含t的代数式表示OE,OF;(2)①由翻折的性质可知:△OPF≌△DPF,进而可得:DF=OF,然后由t=1时,DF=OF=53,CF=OC-OF=43,然后利用勾股定理可求CD的值,进而可求点D和E的坐标;利用待定系数可得直线DE的解析式;②先确定出k的值,再分情况计算S的表达式,并确认b的取值.【详解】(1)∵O(1,1),A(6,1),C(1,3),∴OA=6,OC=3,∵四边形OABC是矩形,∴AB=OC=3,BC=OA=6,∴B(6,3),∵动点F从O点以每秒1个单位长的速度沿OC向终点C运动,运动23秒时,动点E从点A出发以相等的速度沿AO向终点O运动,∴当点E的运动时间为t(秒)时,AE=t,OF=23+t,则OE=OA-AE=6-t,故答案为:6-t,23+t;(2)①当t=1时,OF=1+23=53,OE=6-1=5,则CF=OC-OF=3-53=43,由折叠可知:△OEF≌△DEF,∴OF=DF=53,由勾股定理,得:CD=1,∴D(1,3);∵E(5,1),∴设直线DE的解析式为:y=mx+n(k≠1),把D(1,3)和E(5,1)代入得:350mx nm n+⎧⎨+⎩==,解得:34154mn⎧-⎪⎪⎨⎪⎪⎩==,∴直线DE的解析式为:y=-315 44x+;②∵MN∥DE,∴MN的解析式为:y=-34x b+,当y=3时,-34x b+=3,x=43(b-3)=43b-4,∴CM=43b-4,分三种情况:i)当M在边CB上时,如图2,∴BM=6-CM=6-(43b-4)=11-43b,DM=CM-1=43b-5, ∵1≤DM <5,即1≤43b-5<5, ∴154≤b <152, ∴S=12BM•AB=12×3(11−43b)=15-2b=-2b+15(154≤b <152); ii)当M 与点B 重合时,b=152,S=1; iii)当M 在DB 的延长线上时,如图3,∴BM=CM-6=43b-11, DM=CM-1=43b-5, ∵DM >5,即43b-5>5, ∴b >152, ∴S=12BM•AB=12×3(43b−11)=2b -15(b >152); 综上,151521542152152b b S b b ⎧⎛⎫-+< ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-> ⎪⎪⎝⎭⎩.【点睛】本题是四边形和一次函数的综合题,考查了动点的问题、矩形的性质、全等三角形的判定与性质等知识,解(1)的关键是:明确动点的时间和速度;解(2)的关键是:由翻折的性质可知:△OEF ≌△DEF ,并采用了分类讨论的思想,注意确认b 的取值范围.24、(1)3;(2)35t =-89;(3)①12k =;②14(,0)3M 【解析】【分析】(1)BP=4-2t ,BQ=3t ,将t=1代入再利用三角形面积公式求得即可.(2)当BPQ COQ ∆∆∽时分两种①BP BQ CO CQ =,②BP BQ CQ CO=情况讨论求解. (3)①将(2,6)P t ,(4,63)Q t -代入(0)k y x x=>求解可得k.②根据平行四边形的性质,P 、Q 两点横纵坐标的差等于M 、N 横纵坐标的差,构造方程求解【详解】解:(1)BP=4-2t ,BQ=3t ,当t=1时,三角形面积为12BP BQ =3. (2)①当BPQ COQ ∆∆∽时,则BP BQ CO CQ= ∴423463t t t-=-∴2640t t -+=∴3t =± 02t <<∴3t =②当BPQ CQO ∆∆∽时,则BP BQ CQ CO= ∴423634t t t -=-∴2926160t t -+= ∴189t =,22t =(不合题意,舍去)综上,3t =-89 (3)①∵(2,6)P t ,(4,63)Q t - ∴62634k t k t ⎧=⎪⎪⎨⎪-=⎪⎩∴121k t =⎧⎨=⎩∴12k = ②根据①问k=12,t=1,P(2,6),Q(4,3)设M 点坐标为(x,0),N(a,12a) 根据平行四边形的性质,P 、Q 两点横纵坐标的差等于M 、N 横纵坐标的差,构造方程求解, x-4=2-a,3=12a-6, 解得a=43,x=143.所以M 点坐标为14(,0)3M 【点睛】 本题主要考查了三角形面积公式,相似三角形定理,反比例函数综合运用,注意掌握数形结合,分类讨论思想.25、(1):y 1=6x ;(2)y 2=()()102084020x x x x ⎧⎪⎨+>⎪⎩;(3)太阳花30盆,绣球花60盆时,总费用最少,最少费用是700元 【解析】【分析】(1)根据总价=单价×数量,求出太阳花的付款金额y 1(元)关于购买量x (盆)的函数解析式;(2分两种情况:①一次购买的绣球花不超过20盆;②一次购买的绣球花超过20盆;根据总价=单价×数量,求出绣球花的付款金额y 2(元)关于购买量x (盆)的函数解析式即可;(3)首先太阳花数量不超过绣球花数量的一半,可得太阳花数量不超过两种花数量的13,即太阳花数量不超过30盆,所以绣球花的数量不少于60盆;然后设太阳花的数量是x 盆,则绣球花的数量是90-x 盆,根据总价=单价×数量,求出购买两种花的总费用是多少,进而判断出两种花卉各买多少盆时,总费用最少,最少费用是多少元即可.【详解】解:(1)太阳花的付款金额y 1(元)关于购买量x (盆)的函数解析式是:y 1=6x ;(2)①一次购买的绣球花不超过20盆时,付款金额y 2(元)关于购买量x (盆)的函数解析式是:y 2=10x (x≤20);②一次购买的绣球花超过20盆时,付款金额y 2(元)关于购买量x (盆)的函数解析式是:y 2=10×20+10×0.8×(x-20)=200+8x-160=8x+40综上,可得绣球花的付款金额y 2(元)关于购买量x (盆)的函数解析式是:y 2=()()102084020x x x x ⎧⎪⎨+>⎪⎩(3)根据题意,可得太阳花数量不超过:90×1303=(盆),所以绣球花的数量不少于:90-30=60(盆),设太阳花的数量是x 盆,则绣球花的数量是(90-x)盆,购买两种花的总费用是y 元,则x≤30,则y=6x+[8(90-x)+40]=6x+[760-8x]=760-2x,∵-2<0,∴y随x的增大而减小,∵x≤30,∴当x=30时,y最小=760-2×30=700(元),90-30=60盆,答:太阳花30盆,绣球花60盆时,总费用最少,最少费用是700元.【点睛】本题主要考查了一次函数的应用,要熟练掌握,解答此题的关键是要明确:分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.此题还考查了单价、总价、数量的关系:总价=单价×数量,单价=总价÷数量,数量=总价÷单价,要熟练掌握.26、见解析【解析】【分析】要证明DE=BF成立,只需要根据条件证△AED≌△CFB即可.【详解】证明:∵四边形ABCD是平行四边形.∴AD∥BC,且AD=BC∴∠DAE=∠BCF∴在△DAE和△BCF中{AD BCDAE BCF AE CF=∠=∠=∴△DAE≌△BCF(SAS)∴DE=BF.考点:1.平行四边形的性质;2.全等三角形的判定与性质.。
2020-2021八年级数学下期末第一次模拟试卷(带答案)(1)
2020-2021八年级数学下期末第一次模拟试卷(带答案)(1)一、选择题1.如图,将正方形OABC 放在平面直角坐标系中,O 是原点,点A 的坐标为(1,),则点C 的坐标为( )A .(-,1)B .(-1,)C .(,1)D .(-,-1)2.如图,矩形OABC 的顶点O 与平面直角坐标系的原点重合,点A ,C 分别在x 轴,y 轴上,点B 的坐标为(-5,4),点D 为边BC 上一点,连接OD ,若线段OD 绕点D 顺时针旋转90°后,点O 恰好落在AB 边上的点E 处,则点E 的坐标为( )A .(-5,3)B .(-5,4)C .(-5,52) D .(-5,2)3.如图,在平行四边形ABCD 中,ABC ∠和BCD ∠的平分线交于AD 边上一点E ,且4BE =,3CE =,则AB 的长是( )A .3B .4C .5D .2.54.将一张长方形纸片按如图所示的方式折叠,,BC BD 为折痕,则CBD ∠的度数为( )A .60︒B .75︒C .90︒D .95︒5.4133的结果为( ).A .32B .23C .2D .26.计算12(75+313﹣48)的结果是( ) A .6B .43C .23+6D .127.若函数()0y kx k =≠的值随自变量的增大而增大,则函敷2y x k =+的图象大致是( )A .B .C .D .8.如图,在△ABC 中,D ,E ,F 分别为BC ,AC ,AB 边的中点,AH ⊥BC 于H ,FD =8,则HE 等于( )A .20B .16C .12D .89.如图1,四边形ABCD 中,AB ∥CD ,∠B =90°,AC =AD .动点P 从点B 出发沿折线B →A →D →C 方向以1单位/秒的速度运动,在整个运动过程中,△BCP 的面积S 与运动时间t (秒)的函数图象如图2所示,则AD 等于( )A .10B 89C .8D 4110.直角三角形中,有两条边长分别为3和4,则第三条边长是( ) A .1B .5C 7D .5711.如图,将矩形ABCD 沿EF 折叠,使顶点C 恰好落在AB 的中点C '上.若6AB =,9BC =,则BF 的长为( )A.4B.32C.4.5D.5 12.如图,四边形ABCD是菱形,∠ABC=120°,BD=4,则BC的长是()A.4B.5C.6D.43二、填空题13.计算:182=______.14.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则△AEF的周长=cm.15.如图,矩形ABCD的对角线AC、BD相交于点O,∠AOB=120°,CE//BD,DE//AC,若AD=5,则四边形CODE的周长______.16.如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是.17.在ABC ∆中,13AC BC ==, 10AB =,则ABC ∆面积为_______. 18.如图,矩形ABCD 的边AD 长为2,AB 长为1,点A 在数轴上对应的数是-1,以A 点为圆心,对角线AC 长为半径画弧,交数轴于点E ,则这个点E 表示的实数是_______19.已知3a b +=,2ab =a bb a的值为_________. 20.已知一直角三角形两直角边的长分别为6cm 和8cm ,则第三边上的高为________.三、解答题21.2019年4月23日世界读书日这天,滨江初二年级的学生会,就2018年寒假读课外书数量(单位:本)做了调查,他们随机调查了甲、乙两个班的10名同学,调查过程如下 收集数据甲、乙两班被调查者读课外书数量(单位:本)统计如下: 甲:1,9,7,4,2,3,3,2,7,2 乙:2,6,6,3,1,6,5,2,5,4整理、描述数据绘制统计表如下,请补全下表: 班级 平均数 众数中位数 方差甲 43乙63.2分析数据、推断结论(1)该校初二乙班共有40名同学,你估计读6本书的同学大概有_____人; (2)你认为哪个班同学寒假读书情况更好,写出理由.22.某商店销售A 型和B 型两种电脑,其中A 型电脑每台的利润为400元,B 型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B 型电脑的进货量不超过A 型电脑的2倍,设购进A 型电脑x 台,这100台电脑的销售总利润为y 元. (1)求y 关于x 的函数关系式;(2)该商店购进A 型、B 型电脑各多少台,才能使销售总利润最大,最大利润是多少? (3)实际进货时,厂家对A 型电脑出厂价下调a (0<a <200)元,且限定商店最多购进A 型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.23.某校八年级学生某科目期末评价成绩是由完成作业、单元检测、期末考试三项成绩构成的,如果期末评价成绩80分以上(含80分),则评为“优秀”.下面表中是小张和小王两位同学的成绩记录:完成作业 单元测试 期末考试小张709080小王6075(1)若按三项成绩的平均分记为期末评价成绩,请计算小张的期末评价成绩;(2)若按完成作业、单元检测、期末考试三项成绩按1:2:7的权重来确定期末评价成绩.①请计算小张的期末评价成绩为多少分?②小王在期末(期末成绩为整数)应该最少考多少分才能达到优秀?24.在某旅游景区上山的一条小路上,有一些断断续续的台阶,下图是其中的甲、乙两段台阶的示意图,图中的数字表示每一级台阶的高度(单位:cm).请你用所学过的有关统计知识,回答下列问题(数据:15,16,16,14,14,15的方差22 3S=甲,数据:11,15,18,17,10,19的方差235 3S=乙:(1)分别求甲、乙两段台阶的高度平均数;(2)哪段台阶走起来更舒服?与哪个数据(平均数、中位数、方差和极差)有关?(3)为方便游客行走,需要陈欣整修上山的小路,对于这两段台阶路.在总高度及台阶数不变的情况下,请你提出合理的整修建议.25.在创建文明城区的活动中,有两端长度相等的彩色道砖铺设任务,分别交给甲、乙两个施工队同时进行施工.如图是反映所铺设彩色道砖的长度(米)与施工时间(时)之间的关系的部分图像.请解答下列问题.(1)甲队在的时段内的速度是米/时.乙队在的时段内的速度是米/时. 6小时甲队铺设彩色道砖的长度是米,乙队铺设彩色道砖的长度是米.(2)如果铺设的彩色道砖的总长度为150米,开挖6小时后,甲队、乙队均增加人手,提高了工作效率,此后乙队平均每小时比甲队多铺5米,结果乙反而比甲队提前1小时完成总铺设任务.求提高工作效率后甲队、乙队每小时铺设的长度分别为多少米?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】试题分析:作辅助线构造出全等三角形是解题的关键,也是本题的难点.如图:过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,根据同角的余角相等求出∠OAD=∠COE,再利用“角角边”证明△AOD和△OCE全等,根据全等三角形对应边相等可得OE=AD,CE=OD,然后根据点C在第二象限写出坐标即可.∴点C的坐标为(-,1)故选A.考点:1、全等三角形的判定和性质;2、坐标和图形性质;3、正方形的性质.2.A解析:A【解析】【分析】先判定△DBE≌△OCD,可得BD=OC=4,设AE=x,则BE=4﹣x=CD,依据BD+CD=5,可得4+4﹣x=5,进而得到AE=3,据此可得E(﹣5,3).【详解】由题可得:AO=BC=5,AB=CO=4,由旋转可得:DE=OD,∠EDO=90°.又∵∠B=∠OCD=90°,∴∠EDB+∠CDO=90°=∠COD+∠CDO,∴∠EDB=∠DOC,∴△DBE≌△OCD,∴BD=OC=4,设AE=x,则BE=4﹣x=CD.∵BD+CD=5,∴4+4﹣x=5,解得:x=3,∴AE=3,∴E(﹣5,3).故选A.【点睛】本题考查了全等三角形的判定与性质,矩形的性质以及旋转的性质的运用,解题时注意:全等三角形的对应边相等.3.D解析:D【解析】【分析】由▱ABCD 中,∠ABC 和∠BCD 的平分线交于AD 边上一点E ,易证得△ABE ,△CDE 是等腰三角形,△BEC 是直角三角形,则可求得BC 的长,继而求得答案. 【详解】∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB=CD ,AD=BC ,∴∠AEB=∠CBE ,∠DEC=∠BCE ,∠ABC+∠DCB=90°, ∵BE ,CE 分别是∠ABC 和∠BCD 的平分线,∴∠ABE=∠CBE=12∠ABC ,∠DCE=∠BCE=12∠DCB , ∴∠ABE=∠AEB ,∠DCE=∠DEC ,∠EBC+∠ECB=90°, ∴AB=AE ,CD=DE , ∴AD=BC=2AB , ∵BE=4,CE=3,∴BC=2222345BE CE =+=+,∴AB=12BC=2.5. 故选D . 【点睛】此题考查了平行四边形的性质、等腰三角形的判定与性质以及直角三角形的性质.注意证得△ABE ,△CDE 是等腰三角形,△BEC 是直角三角形是关键.4.C解析:C 【解析】 【分析】根据图形,利用折叠的性质,折叠前后形成的图形全等,对应角相等,利用平角定义ABC ∠+A BC '∠+E BD '∠+EBD ∠=180°,再通过等量代换可以求出CBD ∠. 【详解】解:∵长方形纸片按如图所示的方式折叠,,BC BD 为折痕 ∴A BC ABC '∠=∠,E BD EBD '∠=∠∵ABC ∠+A BC '∠+E BD '∠+EBD ∠=180°(平角定义) ∴A BC '∠+A BC '∠+E BD '∠+E BD '∠=180°(等量代换)A BC '∠+E BD '∠=90°即CBD ∠=90° 故选:C . 【点睛】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.5.D解析:D 【解析】 【分析】根据二次根式的除法法则进行计算即可. 【详解】原式2===. 故选:D. 【点睛】本题考查二次根式的除法,掌握二次根式的除法法则是解答本题的关键.6.D解析:D 【解析】 【分析】 【详解】12===. 故选:D.7.C解析:C 【解析】 【分析】根据正比例函数和一次函数的图像与性质逐项判断即可求解. 【详解】∵函数()0y kx k =≠的值随自变量的增大而增大, ∴k >0,∵一次函数2y x k =+, ∴1k =1>0,b=2k >0,∴此函数的图像经过一、二、四象限; 故答案为C. 【点睛】本题考查了正比例函数和一次函数的图像与性质,熟练掌握正比例函数和一次函数的图像特点是解题的关键.8.D解析:D【解析】【分析】根据三角形中位线定理得出AC的长,再根据直角三角形斜边上的中线等于斜边的一半即可求出【详解】∵D、F分别是AB、BC的中点,∴DF是△ABC的中位线,∴DF=12 AC;∵FD=8∴AC=16又∵E是线段AC的中点,AH⊥BC,∴EH=12 AC,∴EH=8.故选D.【点睛】本题综合考查了三角形中位线定理、直角三角形斜边上的中线.熟记性质与定理并准确识图是解题的关键.9.B解析:B【解析】【分析】当t=5时,点P到达A处,根据图象可知AB=5;当s=40时,点P到达点D处,根据三角形BCD的面积可求出BC的长,再利用勾股定理即可求解.【详解】解:当t=5时,点P到达A处,根据图象可知AB=5,过点A作AE⊥CD交CD于点E,则四边形ABCE为矩形,∵AC=AD,∴DE=CE=12 CD,当s=40时,点P到达点D处,则S=12CD•BC=12(2AB)•BC=5×BC=40,∴BC=8,∴AD=AC=故选B.【点睛】本题以动态的形式考查了函数、等腰三角形的性质、勾股定理等知识.准确分析图象,并结合三角形的面积求出BC的长是解题的关键.10.D解析:D【解析】【分析】分第三边为直角边或斜边两种情况,根据勾股定理分别求第三边.【详解】当第三边为直角边时,4为斜边,第三边;当第三边为斜边时,3和4为直角边,第三边=5,故选:D.【点睛】本题考查了勾股定理.关键是根据第三边为直角边或斜边,分类讨论,利用勾股定理求解.11.A解析:A【解析】【分析】【详解】∵点C′是AB边的中点,AB=6,∴BC′=3,由图形折叠特性知,C′F=CF=BC-BF=9-BF,在Rt△C′BF中,BF2+BC′2=C′F2,∴BF2+9=(9-BF)2,解得,BF=4,故选A.12.A解析:A【解析】【分析】根据菱形的性质可知对角线平分对角,从而可知∠ABD=∠CBD=60°,从而可知△BCD 是等边三角形,进而可知答案.【详解】∵∠ABC=120°,四边形ABCD 是菱形∴∠CBD=60°,BC=CD∴△BCD 是等边三角形∵BD=4∴BC=4故答案选A.【点睛】本题考查的是菱形的性质,能够掌握菱形的性质是解题的关键.二、填空题13.【解析】【分析】先化简二次根式然后再合并同类二次根式【详解】解:=故答案为:【点睛】本题考查二次根式的减法化成最简二次根式再计算这是通常最直接的做法【解析】【分析】先化简二次根式,然后再合并同类二次根式.【详解】1(22-【点睛】本题考查二次根式的减法,化成最简二次根式再计算,这是通常最直接的做法. 14.9【解析】∵四边形ABCD 是矩形∴∠ABC=90°BD=ACBO=OD∵AB=6cmBC=8cm∴由勾股定理得:(cm)∴DO=5cm∵点E F 分别是AOAD 的中点(cm)故答案为25解析:9【解析】∵四边形ABCD 是矩形,∴∠ABC =90°,BD =AC ,BO =OD ,∵AB =6cm ,BC =8cm ,∴由勾股定理得:10BD AC == (cm ),∴DO =5cm ,∵点E . F 分别是AO 、AD 的中点,1 2.52EF OD ∴== (cm ), 故答案为2.5.15.20【解析】【分析】通过矩形的性质可得再根据∠AOB=120°可证△AOD 是等边三角形即可求出OD 的长度再通过证明四边形CODE 是菱形即可求解四边形CODE 的周长【详解】∵四边形ABCD 是矩形∴∵∠解析:20【解析】【分析】通过矩形的性质可得OD OA OB OC ===,再根据∠AOB=120°,可证△AOD 是等边三角形,即可求出OD 的长度,再通过证明四边形CODE 是菱形,即可求解四边形CODE 的周长.【详解】∵四边形ABCD 是矩形∴OD OA OB OC ===∵∠AOB=120°∴18060AOD AOB =︒-=︒∠∠∴△AOD 是等边三角形∵5AD =∴5OD OA ==∴5OD OC ==∵CE//BD ,DE//AC∴四边形CODE 是平行四边形∵5OD OC ==∴四边形CODE 是菱形∴5OD OC DE CE ====∴四边形CODE 的周长20OD OC DE CE =+++=故答案为:20.【点睛】本题考查了四边形的周长问题,掌握矩形的性质、等边三角形的性质、菱形的性质以及判定定理是解题的关键.16.【解析】【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出BC 再根据菱形的周长公式列式计算即可得解【详解】∵EF 分别是ABAC 的中点∴EF 是△ABC 的中位线∴BC=2EF=2×3=6∴菱解析:【解析】【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出BC ,再根据菱形的周长公式列式计算即可得解.【详解】∵E 、F 分别是AB 、AC 的中点,∴EF 是△ABC 的中位线,∴BC=2EF=2×3=6,∴菱形ABCD 的周长=4BC=4×6=24.故答案为24.【点睛】本题主要考查了菱形的四条边都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.17.60【解析】【分析】根据题意可以判断为等腰三角形利用勾股定理求出AB 边的高即可得到答案【详解】如图作出AB 边上的高CD∵AC=BC=13AB=10∴△ABC 是等腰三角形∴AD=BD=5根据勾股定理C解析:60【解析】【分析】根据题意可以判断ABC ∆为等腰三角形,利用勾股定理求出AB 边的高,即可得到答案.【详解】如图作出AB 边上的高CD∵AC=BC=13, AB=10,∴△ABC 是等腰三角形,∴AD=BD=5,根据勾股定理 CD 2=AC 2-AD 2, 22135-,12ABC S CD AB =⋅V =112102⨯⨯=60, 故答案为:60.【点睛】此题主要考查了等腰三角形的判定及勾股定理,关键是判断三角形的形状,利用勾股定理求出三角形的高.18.—1【解析】【分析】首先根据勾股定理计算出AC 的长进而得到AE 的长再根据A 点表示-1可得E 点表示的数【详解】∵AD 长为2AB 长为1∴AC=∵A 点表示-1∴E 点表示的数为:-1故答案为-1【点睛】本题1【解析】【分析】首先根据勾股定理计算出AC 的长,进而得到AE 的长,再根据A 点表示-1,可得E 点表示的数.【详解】∵AD 长为2,AB 长为1,∴,∵A 点表示-1,∴E -1,【点睛】本题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方和一定等于斜边长的平方.19.【解析】【分析】先把二次根式进行化简然后把代入计算即可得到答案【详解】解:=∵∴原式=;故答案为:【点睛】本题考查了二次根式的混合运算以及二次根式的化简求值解题的关键是熟练掌握二次根式的混合运算的运解析:2【解析】【分析】先把二次根式进行化简,然后把3a b +=,2ab =,代入计算,即可得到答案.【详解】=, ∵3a b +=,2ab =,∴原式=3=22;故答案为:2. 【点睛】 本题考查了二次根式的混合运算,以及二次根式的化简求值,解题的关键是熟练掌握二次根式的混合运算的运算法则进行解题.20.8cm 【解析】【分析】先由勾股定理求出斜边的长再用面积法求解【详解】解:如图在Rt △ABC 中∠ACB=90°AC=6cmBC=8cmCD ⊥AB 则(cm )由得解得CD=48(cm)故答案为48cm 【点解析:8cm【解析】【分析】先由勾股定理求出斜边的长,再用面积法求解.【详解】解:如图,在Rt △ABC 中,∠ACB =90°,AC =6cm ,BC =8cm ,CD ⊥AB , 则2210AB AC BC =+=(cm ), 由1122ABC S AC BC AB CD ==V g g , 得6810CD ⨯=g ,解得CD =4.8(cm).故答案为4.8cm.【点睛】本题考查了勾股定理和用直角三角形的面积求斜边上的高的知识,属于基础题型.三、解答题21.统计图补全见解析 (1)12 (2)乙班,理由见解析【解析】【分析】根据平均数、众数、中位数、方差的概念填表(1)根据样本求出读6本书的学生的占比,再用初二乙班总人数乘以占比即可求解; (2)根据方差的性质进行判断即可.【详解】甲组的众数是2,乙组中位数是45 4.52+= 乙组的平均数:()2663165254104+++++++++÷=甲组的方差:()()()()()()()()()()222222222214947444243434247424 6.610-+-+-+-+-+-+-+-+-+-=补全统计表如下:403012⨯=%(人)故估计读6本书的同学大概有12人;(2)乙班,乙班的方差较小,说明乙班学生普遍有阅读意识,而甲班方差较大,说明甲班虽然存在一部分读书意识较强的同学,但也存在一部分读书意识淡薄的同学.【点睛】本题考查了统计图的问题,掌握平均数、众数、中位数、方差的概念以及性质是解题的关键.22.(1) =﹣100x+50000;(2) 该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)见解析.【解析】【分析】(1)根据“总利润=A型电脑每台利润×A电脑数量+B型电脑每台利润×B电脑数量”可得函数解析式;(2)根据“B型电脑的进货量不超过A型电脑的2倍且电脑数量为整数”求得x的范围,再结合(1)所求函数解析式及一次函数的性质求解可得;(3)据题意得y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,分三种情况讨论,①当0<a<100时,y随x的增大而减小,②a=100时,y=50000,③当100<m<200时,a﹣100>0,y随x的增大而增大,分别进行求解.【详解】(1)根据题意,y=400x+500(100﹣x)=﹣100x+50000;(2)∵100﹣x≤2x,∴x≥1003,∵y=﹣100x+50000中k=﹣100<0,∴y随x的增大而减小,∵x为正数,∴x=34时,y取得最大值,最大值为46600,答:该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)据题意得,y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,3313≤x≤60,①当0<a<100时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②a=100时,a﹣100=0,y=50000,即商店购进A型电脑数量满足3313≤x≤60的整数时,均获得最大利润;③当100<a<200时,a﹣100>0,y随x的增大而增大,∴当x=60时,y取得最大值.即商店购进60台A型电脑和40台B型电脑的销售利润最大.【点睛】本题考查了一次函数的应用及一元一次不等式的应用,弄清题意,找出题中的数量关系列出函数关系式、找出不等关系列出不等式是解题的关键.23.(1)80;(2)①80;②85.【解析】【分析】(1)直接利用算术平均数的定义求解可得;(2)根据加权平均数的定义计算可得.【详解】解:(1)小张的期末评价成绩为709080803++=(分);(2)①小张的期末评价成绩为70190280780127⨯+⨯+⨯=++(分);②设小王期末考试成绩为x分,根据题意,得:601752780127x⨯+⨯+++…,解得84.2x…,∴小王在期末(期末成绩为整数)应该最少考85分才能达到优秀.【点睛】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.24.(1)甲台阶高度的平均数15,乙台阶高度的平均数15;(2)甲段路走起来更舒服一些;(3)每个台阶高度均为15cm,游客行走更舒服.【解析】分析:(1)根据图中所给的数据,利用平均数公式求解即可;(2)根据平均数、中位数、方差和极差的特征回答即可;(3)结合方差,要使台阶路走起来更舒服,就得让方差变得更小,据此提出合理性的整修建议.详解:(1)甲台阶高度的平均数:(15+16+16+14+14+15)÷6=15,乙台阶高度的平均数:(11+15+18+17+10+19)÷6=15.(2)甲段路走起来更舒服一些,因为它的台阶高度的方差小.(3)每个台阶高度均为15cm(原平均数)使得方差为0,游客行走更舒服.点睛:本题主要考查中位数的概念、平均数计算公式以及方差的计算.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定.反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.在本题中,根据题意求出方差,进而利用方差的意义进行分析即可.25.(1)10, 5, 60, 50;(2)提高工作效率后甲队每小时铺设的长度分别为15米、乙队每小时铺设的长度为20米.【解析】【分析】(1)根据函数图象,速度=路程÷时间,即可解答;(2)根据题意列方程解答即可.【详解】解:(1)(1)由图象可得,甲队在0≤x≤6的时段内的速度是:60÷6=10(米/时);乙队在2≤x≤6的时段内的速度是:(50−30)÷(6−2)=5(米/时);6小时甲队铺设彩色道砖的长度是60米,乙队铺设彩色道砖的长度是50米.故答案为:10;5;60;50;(2)设提高工作效率后甲队每小时铺设的长度分别为米,由题意得:,整理得:,解得:,经检验:,都是原方程的解,不合题意,舍去.答:提高工作效率后甲队每小时铺设的长度分别为15米、乙队每小时铺设的长度为20米.【点睛】本题考查分式方程的应用,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.。
2020-2021八年级数学下期末一模试题及答案
2020-2021八年级数学下期末一模试题及答案一、选择题1.一次函数y kx b =+的图象如图所示,点()3,4P 在函数的图象上.则关于x 的不等式4kx b +≤的解集是( )A .3x ≤B .3x ≥C .4x ≤D .4x ≥2.某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示: 鞋的尺码/cm 23 23.5 24 24.5 25 销售量/双13362则这15双鞋的尺码组成的一组数据中,众数和中位数分别为( ) A .24.5,24.5B .24.5,24C .24,24D .23.5,243.已知M 、N 是线段AB 上的两点,AM =MN =2,NB =1,以点A 为圆心,AN 长为半径画弧;再以点B 为圆心,BM 长为半径画弧,两弧交于点C ,连接AC ,BC ,则△ABC 一定是( ) A .锐角三角形 B .直角三角形C .钝角三角形D .等腰三角形4.如图,在四边形ABCD 中,AB ∥CD ,要使得四边形ABCD 是平行四边形,可添加的条件不正确的是 ( )A .AB=CDB .BC ∥AD C .BC=AD D .∠A=∠C5.小强所在学校离家距离为2千米,某天他放学后骑自行车回家,先骑了5分钟后,因故停留10分钟,再继续骑了5分钟到家.下面哪一个图象能大致描述他回家过程中离家的距离s (千米)与所用时间t (分)之间的关系( )A.B.C.D.6.如图,菱形中,分别是的中点,连接,则的周长为()A.B.C.D.7.如图,一次函数y=mx+n与y=mnx(m≠0,n≠0)在同一坐标系内的图象可能是()A.B.C.D.8.若正比例函数的图象经过点(,2),则这个图象必经过点().A.(1,2)B.(,)C.(2,)D.(1,)9.如图,长方形纸片ABCD中,AB=4,BC=6,点E在AB边上,将纸片沿CE折叠,点B落在点F处,EF,CF分别交AD于点G,H,且EG=GH,则AE的长为( )A .23B .1C .32D .210.二次根式()23-的值是( ) A .﹣3B .3或﹣3C .9D .311.如图,一个工人拿一个2.5米长的梯子,底端A 放在距离墙根C 点0.7米处,另一头B 点靠墙,如果梯子的顶部下滑0.4米,梯子的底部向外滑( )米A .0.4B .0.6C .0.7D .0.812.在平面直角坐标系中,将函数3y x =的图象向上平移6个单位长度,则平移后的图象与x 轴的交点坐标为( ) A .(2,0)B .(-2,0)C .(6,0)D .(-6,0)二、填空题13.如图,过矩形ABCD 的对角线BD 上一点K 分别作矩形两边的平行线MN 与PQ ,那么图中矩形AMKP 的面积S 1与矩形QCNK 的面积S 2的大小关系是S 1_____S 2;(填“>”或“<”或“=”)14.长、宽分别为a 、b 的矩形,它的周长为14,面积为10,则a 2b +ab 2的值为_____. 15.如图,在平面直角坐标系xOy 中,点(0,6)C ,射线//x CE 轴,直线y x b =-+交线段OC 于点B ,交x 轴于点A ,D 是射线CE 上一点.若存在点D ,使得ABD △恰为等腰直角三角形,则b 的值为_______.16.观察下列各式:221111++1212⨯,221111++=1+2323⨯, 221111++=1+3434⨯, ……请利用你所发现的规律, 计算22111++12+22111++23+22111++34+…+22111++910,其结果为_______. 17.如图,在□ABCD 中,AE ⊥BC 于点E ,AF ⊥CD 于点F .若4AE =,6AF =,且□ABCD 的周长为40,则□ABCD 的面积为_______.18.如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需______米.19.一组数据:1、2、5、3、3、4、2、4,它们的平均数为_______,中位数为_______,方差是_______.20.已知一组数据1,2,3,4,5的方差为2,则另一组数据11,12,13,14,15的方差为___.三、解答题21.(1)27-1183-12;(2) 321252⨯÷22.如图,在ABCD Y 中,E ,F 分别是边AD ,BC 上的点,且AE CF =.求证:四边形BEDF 为平行四边形.23.在学校组织的“文明出行”知识竞赛中,8(1)和8(2)班参赛人数相同,成绩分为A 、B 、C 三个等级,其中相应等级的得分依次记为A 级100分、B 级90分、C 级80分,达到B 级以上(含B 级)为优秀,其中8(2)班有2人达到A 级,将两个班的成绩整理并绘制成如下的统计图,请解答下列问题:(1)求各班参赛人数,并补全条形统计图;(2)此次竞赛中8(2)班成绩为C级的人数为_______人;(3)小明同学根据以上信息制作了如下统计表:平均数(分)中位数(分)方差8(1)班m90n8(2)班919029请分别求出m和n的值,并从优秀率和稳定性方面比较两个班的成绩;24.已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF(1)求证:BE = DF;(2)连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM、FM.判断四边形AEMF是什么特殊四边形?并证明你的结论.25.某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:kg),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图①中m 的值为 ;(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ) 根据样本数据,估计这2500只鸡中,质量为2.0kg 的约有多少只?【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】观察函数图象结合点P 的坐标,即可得出不等式的解集. 【详解】解:观察函数图象,可知:当3x ≤时,4kx b +≤. 故选:A . 【点睛】考查了一次函数与一元一次不等式以及一次函数的图象,观察函数图象,找出不等式4kx b +≤的解集是解题的关键. 2.A解析:A 【解析】【分析】根据众数和中位数的定义进行求解即可得.【详解】这组数据中,24.5出现了6次,出现的次数最多,所以众数为24.5, 这组数据一共有15个数,按从小到大排序后第8个数是24.5,所以中位数为24.5, 故选A .【点睛】本题考查了众数、中位数,熟练掌握中位数、众数的定义以及求解方法是解题的关键.3.B解析:B 【解析】 【分析】依据作图即可得到AC =AN =4,BC =BM =3,AB =2+2+1=5,进而得到AC 2+BC 2=AB 2,即可得出△ABC 是直角三角形. 【详解】如图所示,AC =AN =4,BC =BM =3,AB =2+2+1=5, ∴AC 2+BC 2=AB 2,∴△ABC是直角三角形,且∠ACB=90°,故选B.【点睛】本题主要考查了勾股定理的逆定理,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.4.C解析:C【解析】【分析】根据平行四边形的判定方法,逐项判断即可.【详解】∵AB∥CD,∴当AB=CD时,由一组对边平行且相等的四边形为平行四边形可知该条件正确;当BC∥AD时,由两组对边分别平行的四边形为平行四边形可知该条件正确;当∠A=∠C时,可求得∠B=∠D,由两组对角分别相等的四边形为平行四边形可知该条件正确;当BC=AD时,该四边形可能为等腰梯形,故该条件不正确;故选:C.【点睛】本题主要考查平行四边形的判定,掌握平行四边形的判定方法是解题的关键.5.D解析:D【解析】【分析】根据描述,图像应分为三段,学校离家最远,故初始时刻s最大,到家,s为0,据此可判断.【详解】因为小明家所在学校离家距离为2千米,某天他放学后骑自行车回家,行使了5分钟后,因故停留10分钟,继续骑了5分钟到家,所以图象应分为三段,根据最后离家的距离为0,由此可得只有选项DF符合要求.故选D.【点睛】本题要求正确理解函数图象与实际问题的关系,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.6.D解析:D【解析】【分析】首先根据菱形的性质证明△ABE≌△ADF,然后连接AC可推出△ABC以及△ACD为等边三角形.根据等边三角形三线合一的性质又可推出△AEF是等边三角形.根据勾股定理可求出AE的长,继而求出周长.【详解】解:∵四边形ABCD是菱形,∴AB=AD=BC=CD=2cm,∠B=∠D,∵E、F分别是BC、CD的中点,∴BE=DF,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS),∴AE=AF,∠BAE=∠DAF.连接AC,∵∠B=∠D=60°,∴△ABC与△ACD是等边三角形,∴AE⊥BC,AF⊥CD,∴∠BAE=∠DAF=30°,∴∠EAF=60°,BE=AB=1cm,∴△AEF是等边三角形,AE=,∴周长是.故选:D.【点睛】本题主要考查了菱形的性质、全等三角形的判定和性质、等边三角形的判定和性质以及勾股定理,涉及知识点较多,也考察了学生推理计算的能力.7.C解析:C【解析】【分析】根据m 、n 同正,同负,一正一负时利用一次函数的性质进行判断. 【详解】解:①当mn >0时,m 、n 同号,y =mnx 过一三象限;同正时,y =mx+n 经过一、二、三象限,同负时,y =mx+n 过二、三、四象限;②当mn <0时,m 、n 异号,y =mnx 过二四象限,m >0,n <0时,y =mx+n 经过一、三、四象限;m <0,n >0时,y =mx+n 过一、二、四象限; 故选:C . 【点睛】本题考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键.8.D解析:D 【解析】设正比例函数的解析式为y=kx (k≠0), 因为正比例函数y=kx 的图象经过点(-1,2), 所以2=-k , 解得:k=-2, 所以y=-2x ,把这四个选项中的点的坐标分别代入y=-2x 中,等号成立的点就在正比例函数y=-2x 的图象上,所以这个图象必经过点(1,-2). 故选D .9.B解析:B 【解析】 【分析】根据折叠的性质得到∠F=∠B=∠A=90°,BE=EF ,根据全等三角形的性质得到FH=AE ,GF=AG ,得到AH=BE=EF ,设AE=x ,则AH=BE=EF=4-x ,根据勾股定理即可得到结论. 【详解】∵将△CBE 沿CE 翻折至△CFE , ∴∠F=∠B=∠A=90°,BE=EF , 在△AGE 与△FGH 中,A F AGE FGH EG GH ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△AGE ≌△FGH (AAS ), ∴FH=AE ,GF=AG , ∴AH=BE=EF ,设AE=x,则AH=BE=EF=4-x∴DH=x+2,CH=6-x,∵CD2+DH2=CH2,∴42+(2+x)2=(6-x)2,∴x=1,∴AE=1,故选B.【点睛】考查了翻折变换,矩形的性质,全等三角形的判定和性质,熟练掌握折叠的性质是解题的关键.10.D解析:D【解析】【分析】本题考查二次根式的化简,(0)(0)a aa a⎧=⎨-<⎩….【详解】|3|3=-=.故选D.【点睛】本题考查了根据二次根式的意义化简.a≥0a;当a≤0a.11.D 解析:D 【解析】【分析】【详解】解:∵AB=2.5米,AC=0.7米,∴BC(米).∵梯子的顶部下滑0.4米,∴BE=0.4米,∴EC=BC﹣0.4=2(米),∴DC(米),∴梯子的底部向外滑出AD=1.5﹣0.7=0.8(米).故选D.【点睛】此题主要考查了勾股定理在实际生活中的应用,关键是掌握直角三角形中,两直角边的平方和等于斜边的平方.12.B解析:B【解析】【分析】先求出平移后的解析式,继而令y=0,可得关于x 的方程,解方程即可求得答案.【详解】根据函数图象平移规律,可知3y x =向上平移6个单位后得函数解析式应为36y x =+, 此时与x 轴相交,则0y =,∴360x +=,即2x =-,∴点坐标为(-2,0),故选B.【点睛】本题考查了一次函数图象的平移,一次函数图象与坐标轴的交点坐标,先出平移后的解析式是解题的关键.二、填空题13.=【解析】【分析】利用矩形的性质可得△ABD 的面积=△CDB 的面积△MB K 的面积=△QKB 的面积△PKD 的面积=△NDK 的面积进而求出答案【详解】解:∵四边形ABCD 是矩形四边形MBQK 是矩形四边形解析:=【解析】【分析】利用矩形的性质可得△ABD 的面积=△CDB 的面积,△MBK 的面积=△QKB 的面积,△PKD 的面积=△NDK 的面积,进而求出答案.【详解】解:∵四边形ABCD 是矩形,四边形MBQK 是矩形,四边形PKND 是矩形,∴△ABD 的面积=△CDB 的面积,△MBK 的面积=△QKB 的面积,△PKD 的面积=△NDK 的面积,∴△ABD 的面积﹣△MBK 的面积﹣△PKD 的面积=△CDB 的面积﹣△QKB 的面积=△NDK 的面积,∴S 1=S 2.故答案为:=.【点睛】本题考查了矩形的性质,熟练掌握矩形的性质定理是解题关键.14.【解析】【分析】由周长和面积可分别求得a+b 和ab 的值再利用因式分解把所求代数式可化为ab (a+b )代入可求得答案【详解】∵长宽分别为ab 的矩形它的周长为14面积为10∴a+b==7ab=10∴a2解析:【解析】【分析】由周长和面积可分别求得a+b 和ab 的值,再利用因式分解把所求代数式可化为ab(a+b ),代入可求得答案【详解】∵长、宽分别为a 、b 的矩形,它的周长为14,面积为10,∴a+b=142=7,ab=10, ∴a 2b+ab 2=ab (a+b )=10×7=70, 故答案为:70.【点睛】本题主要考查因式分解的应用,把所求代数式化为ab (a+b )是解题的关键.15.3或6【解析】【分析】先表示出AB 坐标分①当∠ABD=90°时②当∠ADB=90°时③当∠DAB=90°时建立等式解出b 即可【详解】解:①当∠ABD=90°时如图1则∠DBC+∠ABO=90°∴∠D解析:3或6【解析】【分析】先表示出A 、B 坐标,分①当∠ABD=90°时,②当∠ADB=90°时,③当∠DAB=90°时,建立等式解出b 即可.【详解】解:①当∠ABD=90°时,如图1,则∠DBC+∠ABO=90°,,∴∠DBC=∠BAO ,由直线y x b =-+交线段OC 于点B ,交x 轴于点A 可知OB=b ,OA=b ,∵点C (0,6),∴OC=6,∴BC=6-b ,在△DBC 和△BAO 中,DBC BAO DCB AOB BD AB ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△DBC ≌△BAO (AAS ),∴BC=OA ,即6-b=b ,∴b=3;②当∠ADB=90°时,如图2,作AF⊥CE于F,同理证得△BDC≌△DAF,∴CD=AF=6,BC=DF,∵OB=b,OA=b,∴BC=DF=b-6,∵BC=6-b,∴6-b=b-6,∴b=6;③当∠DAB=90°时,如图3,作DF⊥OA于F,同理证得△AOB≌△DFA,∴OA=DF,∴b=6;综上,b的值为3或6,故答案为3或6.【点睛】本题考查了一次函数图像上点的坐标特征,等腰直角三角形的性质,三角形全等的判定和性质,作辅助线构建求得三角形上解题的关键.16.【解析】分析:直接根据已知数据变化规律进而将原式变形求出答案详解:由题意可得:+++…+=+1++1++…+1+=9+(1﹣+﹣+﹣+…+﹣)=9+=9故答案为9点睛:此题主要考查了数字变化规律正确解析:9 9 10【解析】分析:直接根据已知数据变化规律进而将原式变形求出答案.详解:由题意可得:=11+12⨯+1+123⨯+1+134⨯+ (1)1910⨯=9+(1﹣12+12﹣13+13﹣14+…+19﹣110)=9+9 10=99 10.故答案为99 10.点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.17.48【解析】∵▱ABCD的周长=2(BC+CD)=40∴BC+CD=20①∵AE⊥BC于EAF⊥CD于FAE=4AF=6∴S▱ABCD=4BC=6CD整理得BC=CD②联立①②解得CD=8∴▱ABC解析:48【解析】∵▱ABCD的周长=2(BC+CD)=40,∴BC+CD=20①,∵AE⊥BC于E,AF⊥CD于F,AE=4,AF=6,∴S▱ABCD=4BC=6CD,整理得,BC=32CD②,联立①②解得,CD=8,∴▱ABCD的面积=AF⋅CD=6CD=6×8=48.故答案为48.18.2+2【解析】【分析】地毯的竖直的线段加起来等于BC水平的线段相加正好等于AC即地毯的总长度至少为(AC+BC)【详解】在Rt△ABC中∠A=30°BC=2m ∠C=90°∴AB=2BC=4m∴AC=解析:2+23【解析】【分析】地毯的竖直的线段加起来等于BC,水平的线段相加正好等于AC,即地毯的总长度至少为(AC+BC).【详解】在Rt△ABC中,∠A=30°,BC=2m,∠C=90°,∴AB=2BC=4m,∴2223AB BC-=m,∴3(m).故答案为:3【点睛】本题主要考查勾股定理的应用,解此题的关键在于准确理解题中地毯的长度为水平与竖直的线段的和.19.33【解析】【分析】根据平均数的公式即可求出答案将数据按照由小到大的顺序重新排列中间两个数的平均数即是中位数根据方差的公式计算即可得到这组数据的方差【详解】平均数=将数据重新排列是:12233445解析:3,3,3 2 .【解析】【分析】根据平均数的公式即可求出答案,将数据按照由小到大的顺序重新排列,中间两个数的平均数即是中位数,根据方差的公式计算即可得到这组数据的方差.【详解】平均数=1(12533424)3 8⨯+++++++=,将数据重新排列是:1、2、2、3、3、4、4、5,∴中位数是333 2+=,方差=222221(13)2(23)2(33)2(43)(53)8⎡⎤⨯-+⨯-+⨯-+⨯-+-⎣⎦=32, 故答案为:3,3,32. 【点睛】此题考查计算能力,计算平均数,中位数,方差,正确掌握各计算的公式是解题的关键. 20.2【解析】试题分析:根据方差的性质当一组数据同时加减一个数时方差不变进而得出答案∵一组数据12345的方差为2∴则另一组数据1112131415的方差为2故答案为2考点:方差解析:2【解析】试题分析:根据方差的性质,当一组数据同时加减一个数时方差不变,进而得出答案. ∵一组数据1,2,3,4,5的方差为2,∴则另一组数据11,12,13,14,15的方差为2.故答案为2考点:方差三、解答题21.(1 (2【解析】【分析】(1)把每一个二次根式都化成最简二次根式,然后再对同类二次根式进行合并即可得;(2)根据二次根式乘除法的法则进行计算即可.【详解】(1)原式=13⨯ ;(2)原式=11245⨯⨯⨯=110 【点睛】本题考查了二次根式的混合运算,熟练掌握运算法则是解题的关键.22.证明见解析.【解析】【分析】由平行四边形的性质,得到AD ∥BC ,AD=BC ,由AE CF =,得到ED BF =,即可得到结论.【详解】证明:四边形ABCD 是平行四边形,∴AD BC ∥,AD BC =.∵AE CF =,∴AD AE BC CF -=-.∴ED BF =,∵//ED BF ,ED BF =,∴四边形BEDF 是平行四边形.【点睛】本题考查了平行四边形的判定和性质,解题的关键是熟练掌握平行四边形的判定和性质进行证明.23.(1)详见解析;(2)1人;(3) 从优秀率看8(2)班更好,从稳定性看8(2)班的成绩更稳定;【解析】【分析】(1)由8(2)班A 级人数及其所占百分比可得两个班的人数,班级人数减去A 、B 级人数可求出C 等级人数;(2)班级人数乘以C 等级对应的百分比可得其人数;(3)根据平均数和方差的定义求解可得;【详解】(1)∵8(2)班有2人达到A 级,且A 等级人数占被调查的人数为20%,∴8(2)班参赛的人数为2÷20%=10(人), ∵8(1)和8(2)班参赛人数相同,∴8(1)班参赛人数也是10人,则8(1)班C 等级人数为10-3-5=2(人),补全图形如下:(2)此次竞赛中8(2)班成绩为C 级的人数为10×(1-20%-70%)=1(人), 故答案为:1.(3)m=110×(100×3+90×5+80×2)=91(分), n=110×[(100-91)2×3+(90-91)2×5+(80-91)2×2]=49, ∵8(1)班的优秀率为3510+ ×100%=80%,8(2)班的优秀率为20%+70%=90%, ∴从优秀率看8(2)班更好;∵8(1)班的方差大于8(2)班的方差,∴从稳定性看8(2)班的成绩更稳定;此题考查条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.除此之外,本题也考查了对平均数、方差的认识.24.(1)证明见解析;(2)四边形AEMF 是菱形,证明见解析.【解析】【分析】(1)求简单的线段相等,可证线段所在的三角形全等,即证△ABE ≌△ADF ;(2)由于四边形ABCD 是正方形,易得∠ECO=∠FCO=45°,BC=CD ;联立(1)的结论,可证得EC=CF ,根据等腰三角形三线合一的性质可证得OC (即AM )垂直平分EF ;已知OA=OM ,则EF 、AM 互相平分,再根据一组邻边相等的平行四边形是菱形,即可判定四边形AEMF 是菱形.【详解】(1)证明:∵四边形ABCD 是正方形,∴AB=AD ,∠B=∠D=90°,在Rt △ABE 和Rt △ADF 中,∵AD AB AF AE ⎧⎨⎩==, ∴Rt △ADF ≌Rt △ABE (HL )∴BE=DF ;(2)四边形AEMF 是菱形,理由为:证明:∵四边形ABCD 是正方形,∴∠BCA=∠DCA=45°(正方形的对角线平分一组对角),BC=DC (正方形四条边相等),∵BE=DF (已证),∴BC-BE=DC-DF (等式的性质),即CE=CF ,在△COE 和△COF 中,CE CF ACB ACD OC OC ⎪∠⎪⎩∠⎧⎨===,∴△COE ≌△COF (SAS ),∴OE=OF ,又OM=OA ,∴四边形AEMF 是平行四边形(对角线互相平分的四边形是平行四边形),∵AE=AF ,∴平行四边形AEMF 是菱形.25.(Ⅰ)28. (Ⅱ)平均数是1.52. 众数为1.8. 中位数为1.5. (Ⅲ)200只.分析:(Ⅰ)用整体1减去所有已知的百分比即可求出m 的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)用总数乘以样本中2.0kg 的鸡所占的比例即可得解.解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;(Ⅱ)观察条形统计图, ∵ 1.05 1.211 1.514 1.816 2.04 1.5251114164x ⨯+⨯+⨯+⨯+⨯==++++, ∴这组数据的平均数是1.52.∵在这组数据中,1.8出现了16次,出现的次数最多,∴这组数据的众数为1.8. ∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有1.5 1.5 1.52+=, ∴这组数据的中位数为1.5.(Ⅲ)∵在所抽取的样本中,质量为2.0kg 的数量占8%.∴由样本数据,估计这2500只鸡中,质量为2.0kg 的数量约占8%.有25008%200⨯=.∴这2500只鸡中,质量为2.0kg 的约有200只.点睛:此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021石家庄市石门实验学校八年级数学下期末第一次模拟试题(带答案)一、选择题1.某商场试销一种新款衬衫,一周内售出型号记录情况如表所示: 型号(厘米) 38 39 40 41 42 43 数量(件)25303650288商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( ) A .平均数 B .中位数C .众数D .方差2.均匀地向如图的容器中注满水,能反映在注水过程中水面高度h 随时间t 变化的函数图象是( )A .B .C .D .3.某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示: 鞋的尺码/cm 23 23.5 24 24.5 25 销售量/双13362则这15双鞋的尺码组成的一组数据中,众数和中位数分别为( ) A .24.5,24.5B .24.5,24C .24,24D .23.5,244.要使函数y =(m ﹣2)x n ﹣1+n 是一次函数,应满足( ) A .m ≠2,n ≠2 B .m =2,n =2C .m ≠2,n =2D .m =2,n =05.将一张长方形纸片按如图所示的方式折叠,,BC BD 为折痕,则CBD ∠的度数为( )A .60︒B .75︒C .90︒D .95︒6.正比例函数(0)y kx k =≠的函数值y 随x 的增大而增大,则一次函数y x k =-的图象大致是( )A .B .C .D .7.为了调查某校同学的体质健康状况,随机抽查了若干名同学的每天锻炼时间如表: 每天锻炼时间(分钟) 20 40 60 90 学生数2341则关于这些同学的每天锻炼时间,下列说法错误的是( ) A .众数是60 B .平均数是21C .抽查了10个同学D .中位数是508.4133的结果为( ). A .32 B .23C 2D .29.12(751348 ) A .6B .3C .3D .1210.下列有关一次函数y =﹣3x +2的说法中,错误的是( ) A .当x 值增大时,y 的值随着x 增大而减小 B .函数图象与y 轴的交点坐标为(0,2) C .函数图象经过第一、二、四象限 D .图象经过点(1,5)11.为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码统计如下表: 尺码(厘米)2525.52626.527购买量(双)12322则这10双运动鞋尺码的众数和中位数分别为( ) A .25.5厘米,26厘米 B .26厘米,25.5厘米 C .25.5厘米,25.5厘米D .26厘米,26厘米12.如图,一棵大树在一次强台风中距地面5m 处折断,倒下后树顶端着地点A 距树底端B 的距离为12m ,这棵大树在折断前的高度为( )A .10mB .15mC .18mD .20m二、填空题13.如图,在▱ABCD 中,∠D =120°,∠DAB 的平分线AE 交DC 于点E ,连接BE.若AE =AB ,则∠EBC 的度数为_______.14.若x <2,化简22)x (+|3﹣x|的正确结果是__.15.已知y 关于x 的函数图象如图所示,则当y <0时,自变量x 的取值范围是______.16.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米.17.菱形的边长为5,一条对角线长为6,则该菱形的面积为__________.18.计算:1822-=__________. 19.已知一次函数y=kx+b 的图象如图,则关于x 的不等式kx+b >0的解集是______.20.如图:长方形ABCD 中,AD=10,AB=4,点Q 是BC 的中点,点P 在AD 边上运动,当△BPQ 是等腰三角形时,AP 的长为___.三、解答题21.计算:32231(2)(4)()272--⨯-+--.22.甲、乙两车分别从相距480km 的A 、B 两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C 地,甲车到达C 地停留1小时,因有事按原路原速返回A 地.乙车从B 地直达A 地,两车同时到达A 地.甲、乙两车距各自出发地的路程y (千米)与甲车出发所用的时间x (小时)的关系如图,结合图象信息解答下列问题: (1)乙车的速度是 千米/时,t = 小时;(2)求甲车距它出发地的路程y 与它出发的时间x 的函数关系式,并写出自变量的取值范围;(3)直接写出乙车出发多长时间两车相距120千米.23.某公司开发出一款新的节能产品,该产品的成本价为6元件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试营销,售价为9元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象,图中的折线ODE 表示日销售量y (件)与销售时间x (天)之间的函数关系,已知线段DE 表示的函数关系中,时间每增加1天,日销售量减少4件,(1)请直接写出y 与x 之间的函数关系式;(2)日销售利润不低于960元的天数共有多少天?试销售期间,日销售最大利润是多少元?(3)工作人员在统计的过程中发现,有连续两天的销售利润之和为1980元,请你算出是哪两天.24.如图,正方形ABCD中,E是BC上的一点,连接AE,过B点作BH⊥AE,垂足为点H,延长BH交CD于点F,连接AF.(1)求证:AE=BF.(2)若正方形边长是5,BE=2,求AF的长.25.某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:kg),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图①中m的值为;(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计这2500只鸡中,质量为2.0kg的约有多少只?【参考答案】***试卷处理标记,请不要删除一、选择题解析:C【解析】分析:商场经理要了解哪些型号最畅销,所关心的即为众数.详解:根据题意知:对商场经理来说,最有意义的是各种型号的衬衫的销售数量,即众数.故选C.点睛:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.2.A解析:A【解析】试题分析:最下面的容器较粗,第二个容器最粗,那么第二个阶段的函数图象水面高度h 随时间t的增大而增长缓慢,用时较长,最上面容器最小,那么用时最短.故选A.考点:函数的图象.3.A解析:A【解析】【分析】根据众数和中位数的定义进行求解即可得.【详解】这组数据中,24.5出现了6次,出现的次数最多,所以众数为24.5,这组数据一共有15个数,按从小到大排序后第8个数是24.5,所以中位数为24.5,故选A.【点睛】本题考查了众数、中位数,熟练掌握中位数、众数的定义以及求解方法是解题的关键.4.C解析:C【解析】【分析】根据y=kx+b(k、b是常数,k≠0)是一次函数,可得m-2≠0,n-1=1,求解即可得答案.【详解】解:∵y=(m﹣2)x n﹣1+n是一次函数,∴m﹣2≠0,n﹣1=1,∴m≠2,n=2,故选C.【点睛】本题考查了一次函数,y=kx+b,k、b是常数,k≠0,x的次数等于1是解题关键.5.C【解析】 【分析】根据图形,利用折叠的性质,折叠前后形成的图形全等,对应角相等,利用平角定义ABC ∠+A BC '∠+E BD '∠+EBD ∠=180°,再通过等量代换可以求出CBD ∠. 【详解】解:∵长方形纸片按如图所示的方式折叠,,BC BD 为折痕 ∴A BC ABC '∠=∠,E BD EBD '∠=∠∵ABC ∠+A BC '∠+E BD '∠+EBD ∠=180°(平角定义) ∴A BC '∠+A BC '∠+E BD '∠+E BD '∠=180°(等量代换)A BC '∠+E BD '∠=90° 即CBD ∠=90° 故选:C . 【点睛】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.6.B解析:B 【解析】 【分析】先根据正比例函数y kx =的函数值y 随x 的增大而增大判断出k 的符号,再根据一次函数的性质进行解答即可. 【详解】 解:正比例函数y kx =的函数值y 随x 的增大而增大,00k k ∴->,<,∴一次函数y x k =-的图象经过一、三、四象限.故选B . 【点睛】本题考查的知识点是一次函数的图象与正比例函数的性质,解题关键是先根据正比例函数的性质判断出k 的取值范围.7.B解析:B 【解析】根据众数、中位数和平均数的定义分别对每一项进行分析即可.【详解】解:A、60出现了4次,出现的次数最多,则众数是60,故A选项说法正确;B、这组数据的平均数是:(20×2+40×3+60×4+90×1)÷10=49,故B选项说法错误;C、调查的户数是2+3+4+1=10,故C选项说法正确;D、把这组数据从小到大排列,最中间的两个数的平均数是(40+60)÷2=50,则中位数是50,故D选项说法正确;故选:B.【点睛】此题考查了众数、中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.8.D解析:D【解析】【分析】根据二次根式的除法法则进行计算即可.【详解】===.原式2故选:D.【点睛】本题考查二次根式的除法,掌握二次根式的除法法则是解答本题的关键.9.D解析:D【解析】【分析】【详解】===.12故选:D.10.D解析:D【解析】【分析】A、由k=﹣3<0,可得出:当x值增大时,y的值随着x增大而减小,选项A不符合题意;B 、利用一次函数图象上点的坐标特征,可得出:函数图象与y 轴的交点坐标为(0,2),选项B 不符合题意;C 、由k =﹣3<0,b =2>0,利用一次函数图象与系数的关系可得出:一次函数y =﹣3x +2的图象经过第一、二、四象限,选项C 不符合题意;D 、利用一次函数图象上点的坐标特征,可得出:一次函数y =﹣3x +2的图象不经过点(1,5),选项D 符合题意.此题得解. 【详解】解:A 、∵k =﹣3<0,∴当x 值增大时,y 的值随着x 增大而减小,选项A 不符合题意; B 、当x =0时,y =﹣3x +2=2,∴函数图象与y 轴的交点坐标为(0,2),选项B 不符合题意; C 、∵k =﹣3<0,b =2>0,∴一次函数y =﹣3x +2的图象经过第一、二、四象限,选项C 不符合题意; D 、当x =1时,y =﹣3x +2=﹣1,∴一次函数y =﹣3x +2的图象不经过点(1,5),选项D 符合题意. 故选:D . 【点睛】此题考查一次函数图象上点的坐标特征以及一次函数的性质,逐一分析四个选项的正误是解题的关键.11.D解析:D 【解析】 【分析】 【详解】试题分析:众数是26cm,出现了3次,次数最多;在这10个数中按从小到大来排列最中间的两个数是26,26;它们的中位书为26cm 考点:众数和中位数点评:本题考查众数和中位数,解本题的关键是熟悉众数和中位数的概念12.C解析:C 【解析】∵树的折断部分与未断部分、地面恰好构成直角三角形,且BC=5m ,AB=12m , ∴22AB BC +22125+=13m ,∴这棵树原来的高度=BC+AC=5+13=18m.故选C.二、填空题13.45°【解析】【分析】由平行四边形的性质得出∠ABC=∠D=108°AB∥CD 得出∠BAD=180°﹣∠D=60°由等腰三角形的性质和三角形内角和定理求出∠A BE=75°即可得出∠EBC的度数【详解解析:45°【解析】【分析】由平行四边形的性质得出∠ABC=∠D=108°,AB∥CD,得出∠BAD=180°﹣∠D=60°,由等腰三角形的性质和三角形内角和定理求出∠ABE=75°,即可得出∠EBC的度数.【详解】解:∵四边形ABCD是平行四边形,∴∠ABC=∠D=120°,AB∥CD,∴∠BAD=180°﹣∠D=60°,∵AE平分∠DAB,∴∠BAE=60°÷2=30°,∵AE=AB,∴∠ABE=(180°﹣30°)÷2=75°,∴∠EBC=∠ABC﹣∠ABE=45°;故答案为:45°.【点睛】本题考查了平行四边形的性质、等腰三角形的性质以及三角形内角和定理,正确理解和掌握性质定理是解决本题的关键.14.5-2x【解析】【分析】本题首先根据题意得出x-203-x0然后根据绝对值的性质进行化简从而得出答案【详解】解:+|3﹣x|=+|3﹣x|∵x<2∴x-203-x0∴原式=2-x+3-x=5-2x故解析:5-2x【解析】【分析】本题首先根据题意得出x-2<0,3-x>0,然后根据绝对值的性质进行化简,从而得出答案.【详解】解:﹣x|x-+|3﹣x|=2∵x<2∴x-2<0,3-x>0∴原式=2-x+3-x=5-2x故答案为:5-2x【点睛】本题主要考查的就是二次根式的化简. 2的区别,第一个a 的取值范围为全体实数,第二个a 的取值范围为非负数,第一个的运算结果为a ,然后根据a 的正负性进行去绝对值,第二个的运算结果就是a.本题我们知道原式=x 2-+3x -,然后根据x 的取值范围进行化简.15.﹣1<x <1或x >2【解析】【分析】观察图象和数据即可求出答案【详解】y <0时即x 轴下方的部分∴自变量x 的取值范围分两个部分是−1<x <1或x >2【点睛】本题考查的是函数图像熟练掌握图像是解题的关键解析:﹣1<x <1或x >2.【解析】【分析】观察图象和数据即可求出答案.【详解】y <0时,即x 轴下方的部分,∴自变量x 的取值范围分两个部分是−1<x <1或x >2.【点睛】本题考查的是函数图像,熟练掌握图像是解题的关键.16.【解析】在Rt △ABC 中AB=5米BC=3米∠ACB=90°∴AC=∴AC+BC=3+4=7米故答案是:7解析:【解析】在Rt△ABC 中,AB=5米,BC=3米,∠ACB=90°,4=∴AC+BC=3+4=7米.故答案是:7.17.24【解析】【分析】根据菱形的性质利用勾股定理求得另一条对角线再根据菱形的面积等于两对角线乘积的一半求得菱形的面积【详解】解:如图当BD=6时∵四边形ABCD 是菱形∴AC ⊥BDAO=COBO=DO=解析:24【解析】【分析】根据菱形的性质利用勾股定理求得另一条对角线,再根据菱形的面积等于两对角线乘积的一半求得菱形的面积.【详解】解:如图,当BD=6时,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO=3,∵AB=5,∴AO==4,∴AC=4×2=8,∴菱形的面积是:6×8÷2=24,故答案为:24.【点睛】本题考查了菱形的面积公式,以及菱形的性质和勾股定理,关键是掌握菱形的面积等于两条对角线的积的一半.18.【解析】【分析】【详解】试题分析:先根据二次根式的性质化简根号再合并同类二次根式即可得到结果考点:二次根式的化简点评:本题属于基础应用题只需学生熟练掌握二次根式的性质即可完成2【解析】【分析】【详解】试题分析:先根据二次根式的性质化简根号,再合并同类二次根式即可得到结果.1==8222222考点:二次根式的化简点评:本题属于基础应用题,只需学生熟练掌握二次根式的性质,即可完成.19.【解析】【分析】直接利用一次函数图象结合式kx+b>0时则y的值>0时对应x的取值范围进而得出答案【详解】如图所示:关于x的不等式kx+b>0的解集是:x<2故答案为:x<2【点睛】此题主要考查了一x<解析:2【解析】【分析】直接利用一次函数图象,结合式kx+b>0时,则y的值>0时对应x的取值范围,进而得出答案.【详解】如图所示:关于x 的不等式kx+b >0的解集是:x <2.故答案为:x <2.【点睛】此题主要考查了一次函数与一元一次不等式,正确利用数形结合是解题关键.20.2或25或3或8【解析】【分析】【详解】解:∵AD=10点Q 是BC 的中点∴BQ=BC=×10=5如图1PQ=BQ=5时过点P 作PE⊥BC 于E 根据勾股定理QE=∴BE=BQ﹣QE=5﹣3=2∴AP=B解析:2或2.5或3或8.【解析】【分析】【详解】解:∵AD=10,点Q 是BC 的中点,∴BQ=12BC=12×10=5, 如图1,PQ=BQ=5时,过点P 作PE ⊥BC 于E ,根据勾股定理,QE=2222543PQ PE -=-=,∴BE=BQ ﹣QE=5﹣3=2,∴AP=BE=2;②如图2,BP=BQ=5时,过点P 作PE ⊥BC 于E ,根据勾股定理,2222543PB PE -=-=,∴AP=BE=3;③如图3,PQ=BQ=5且△PBQ 为钝角三角形时,BE=QE+BQ=3+5=8,AP=BE=8,④若BP=PQ,如图4,过P作PE⊥BQ于E,则BE=QE=2.5,∴AP=BE=2.5.综上所述,AP的长为2或3或8或2.5.故答案为2或3或8或2.5.【点睛】本题考查等腰三角形的判定;勾股定理;矩形的性质;注意分类讨论是本题的解题关键.三、解答题21.-31【解析】【分析】根据整数指数幂,二次根式立方根的定义,化简计算即可.【详解】原式8443=-⨯+-3243=+-31=-故答案是-31.【点睛】本题考查了实数的运算,将二次根式及整数指数幂化简是解决本题的关键.22.(1)60,3;(2)y=120t(0≤t≤3);y=120(3<t≤4);y=-120t+840(4<t≤7);(3)83小时或4小时或6小时.【解析】【分析】(1)首先根据图示,可得乙车的速度是60千米/时,然后根据路程÷速度=时间,用两地之间的距离除以乙车的速度,求出乙车到达A 地用的时间是多少;最后根据路程÷时间=速度,用两地之间的距离除以甲车往返AC 两地用的时间,求出甲车的速度,再用360除以甲车的速度,求出t 的值是多少即可.(2)根据题意,分3种情况:①当0≤x≤3时;②当3<x≤4时;③4<x≤7时;分类讨论,求出甲车距它出发地的路程y 与它出发的时间x 的函数关系式,并写出自变量的取值范围即可.(3)根据题意,分3种情况:①甲乙两车相遇之前相距120千米;②当甲车停留在C 地时;③两车都朝A 地行驶时;然后根据路程÷速度=时间,分类讨论,求出乙车出发多长时间两车相距120千米即可.【详解】解:(1)根据图示,可得乙车的速度是60千米/时,甲车的速度=720÷6=120(千米/小时) ∴t=360÷120=3(小时). 故答案为:60;3;(2)①当0≤x≤3时,设y=k 1x ,把(3,360)代入,可得3k 1=360,解得k 1=120,∴y=120x (0≤x≤3).②当3<x≤4时,y=360.③4<x≤7时,设y=k 2x+b ,把(4,360)和(7,0)代入,可得224360{70k b k b +=+=,解得2120{840k b =-= ∴y=﹣120x+840(4<x≤7).(3)①÷+1=300÷180+1=53+1=83(小时) ②当甲车停留在C 地时,÷60=240÷6=4(小时)③两车都朝A 地行驶时,设乙车出发x 小时后两车相距120千米,则60x ﹣[120(x ﹣1)﹣360]=120,所以480﹣60x=120,所以60x=360,解得x=6. 综上,可得乙车出发83小时、4小时、6小时后两车相距120千米.本题考查一次函数的应用.23.(1)20(018)4432(1830)x xyx x<≤≤⎧=⎨-+≤⎩;(2)试销售期间,日销售最大利润是1080元;(3)连续两天的销售利润之和为1980元的是第16,17两天和第25,26两天.【解析】【分析】(1)根据点D的坐标利用待定系数法即可求出线段OD的函数关系式,根据第23天销售了340件,结合时间每增加1天日销售量减少4件,即可求出线段DE的函数关系式,联立两函数关系式求出交点D的坐标,此题得解;(2)分0≤x≤18和18<x≤30,找出关于x的一元一次不等式,解之即可得出x的取值范围,有起始和结束时间即可求出日销售利润不低于960元的天数,再根据点D的坐标结合日销售利润=单件利润×日销售数,即可求出日销售最大利润;(3) 设第x天和第(x+1)天的销售利润之和为1980元,据此列出方程,根据取值范围解答即可.【详解】(1)20(018),4432(1830).x xyx x≤≤⎧=⎨-+≤⎩<(2)当0≤x≤18时,根据题意得,(9﹣6)×20x≥960,解得:x≥16;当18<x≤30时,根据题意得,(9﹣6)×(-4x+432)≥960,解得:x≤28.∴16≤x≤28. 28-16+1=13(天),∴日销售利润不低于960元的天数共有13天.由20x=-4x+432解得,x=18,当x=18时,y=20x=360,∴点D的坐标为(18,360),∴日最大销售量为360件,360×(9-6)=1080(元),∴试销售期间,日销售最大利润是1080元.(3)设第x天和第(x+1)天的销售利润之和为1980元.∵1980÷(9﹣6)=660<340×2,∴x<17,或x+1>23,当x<17时,根据题意可得20x+20(x+1)=660,解得x=16,符合,当x+1>23时,-4x+432-4(x+1)+432=660,解得x=25,符合,∴连续两天的销售利润之和为1980元的是第16,17两天和第25,26两天.【点睛】本题考查了一次函数的应用、待定系数法一次函数解析式,解题的关键是利用待定系数法求出OD的函数关系式以及依照数量关系找出DE的函数关系式.24.(1)证明见解析;(2【解析】(1)根据正方形的性质得AB=BC,再根据同角的余角相等得∠BAE=∠EBH,再利用“角角边”证明△ABE≌△BCF,根据全等三角形的对应边相等得AE=BF;(2)根据全等三角形的对应边相等得BE=CF,再利用勾股定理计算即可得出结论.【详解】(1)∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=90°.∴∠BAE+∠AEB=90°.∵BH⊥AE,∴∠BHE=90°.∴∠AEB+∠EBH=90°.∴∠BAE=∠EBH.在△ABE和△BCF中,∴△ABE≌△BCF(ASA).∴AE=BF.(2)由(1)得△ABE≌△BCF,∴BE=CF.∵正方形的边长是5,BE=2,∴DF=CD-CF=CD-BE=5-2=3.在Rt△ADF中,由勾股定理得:AF===.【点睛】本题考查了全等三角形的判定与性质和正方形的性质,解题的关键是熟练的掌握全等三角形的判定与性质和正方形的性质.25.(Ⅰ)28. (Ⅱ)平均数是1.52. 众数为1.8. 中位数为1.5. (Ⅲ)200只.【解析】分析:(Ⅰ)用整体1减去所有已知的百分比即可求出m的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)用总数乘以样本中2.0kg的鸡所占的比例即可得解.解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;(Ⅱ)观察条形统计图,∵1.05 1.211 1.514 1.8162.041.5251114164x⨯+⨯+⨯+⨯+⨯==++++,∴这组数据的平均数是1.52.∵在这组数据中,1.8出现了16次,出现的次数最多,∴这组数据的众数为1.8.∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有1.5 1.5 1.52+=, ∴这组数据的中位数为1.5.(Ⅲ)∵在所抽取的样本中,质量为2.0kg 的数量占8%.∴由样本数据,估计这2500只鸡中,质量为2.0kg 的数量约占8%.有25008%200⨯=.∴这2500只鸡中,质量为2.0kg 的约有200只.点睛:此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.。