2020-2021石家庄市石门实验学校高一数学上期末第一次模拟试题(带答案)

合集下载

2020-2021学年高一数学上学期期末考试仿真模拟试卷一(全国通用)解析版

2020-2021学年高一数学上学期期末考试仿真模拟试卷一(全国通用)解析版
9.已知集合A= {x|ax 2},B={2, } ,若B⊆A,则实数a的值可能是()
A.−1B.1C.−2D.2
【答案】ABC
【解析】因为B⊆A,所以 ,
,解得 .故选:ABC
【点睛】本题考查子集的概念,属于基础题.
10.下列计算结果为有理数的有().
A. B.lg2 +lg5C. D.
【答案】ABCD
要使 ,结合图象可得 或
解得 或
故不等式的解集为 故选: .
【点睛】本题考查函数的奇偶性,数形结合思想,考查运算能力,属于基础题.
6.已知函数 , , 的图象如图所示,则()
A. , B. ,
C. , D. ,
【答案】D
【解析】由图可知, ,所以 ,
当 时,函数取得最大值,
所以 ,则 ,解得 ,
∵ ,∴ .故选:D.
(Ⅱ)当 时, : ,
由 得: : 或 ,
所以 : ,
因为 是 的必要条件,
所以 ,
所以 ,解得 ,
所以实数 的取值范围是 .
【点睛】本题主要考查了一元二次不等式、分式不等式的解法以及根据充分条件和必要条件条件求解参数范围,这里需要注意:
(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(组)求解.
【答案】B
【解析】由题意,函数 是增函数并且是连续函数,
因为 , , ,

所以 ,
所以函数的零点在区间 .故选:B.
【点睛】本题考查函数零点存在性定理,属于基础题.
5.已知 是奇函数,且当 时 ,则不等式 的解集为()
A. 或 B. 或
C. 或 D. 或
【答案】B

2020-2021石家庄市高中必修一数学上期末一模试卷带答案

2020-2021石家庄市高中必修一数学上期末一模试卷带答案

f 2 a1 f 2 ,则 a 的取值范围是 (

A.
,
1 2
B.
,
1 2
3 2
,
C.
3 2
,
D.
1 2
,
3 2
11.点 P 从点 O 出发,按逆时针方向沿周长为 l 的平面图形运动一周, O , P 两点连线的 距离 y 与点 P 走过的路程 x 的函数关系如图所示,则点 P 所走的图形可能是
17.已知 f (x) 、 g(x) 分别是定义在 R 上的偶函数和奇函数,且 f (x) g(x) 2x x ,则 f (1) g(1) __________. 18.已知函数 g(x) f (x) x 是偶函数,若 f (2) 2 ,则 f (2) ________
19.已知二次函数 f x ,对任意的 x R ,恒有 f x 2 f x 4x 4成立,且
A.(-∞,2]
B.[2,+∞)
C.[-2,+∞)
D.(-∞,-2]
4.设函数 f (x) 的定义域为 R,满足 f (x 1) 2 f (x) ,且当 x (0,1] 时, f (x) x(x 1) .
若对任意 x (, m] ,都有 f (x) 8 ,则 m 的取值范围是 9
A.
,
9 4
(2) 21g2 2 1g4 lg 5 lg 25 .
25.已知幂函数 f x xm22m3 m Z 为偶函数,且在区间 0, 上单调递减.
(1)求函数 f x 的解析式;
(2)讨论 F x a
f
x
xf
b
x
的奇偶性. a,b
R
(直接给出结论,不需证明)
26.即将开工的南昌与周边城镇的轻轨火车路线将大大缓解交通的压力,加速城镇之间的 流通.根据测算,如果一列火车每次拖 4 节车厢,每天能来回 16 次;如果一列火车每次拖 7 节车厢,每天能来回 10 次,每天来回次数 是每次拖挂车厢个数 的一次函数. (1)写出 与 的函数关系式; (2)每节车厢一次能载客 110 人,试问每次应拖挂多少节车厢才能使每天营运人数 最 多?并求出每天最多的营运人数(注:营运人数指火车运送的人数)

河北省石家庄市2022年高一数学第一学期期末复习检测试题含解析

河北省石家庄市2022年高一数学第一学期期末复习检测试题含解析
22、(1)
(2)
【解析】根据条件可解出 与 的值,再利用商数关系求解
故半径R的取值范围是1<R<3(画图)
故答案为:
【点睛】本题考查直线与圆的位置关系,考查数形结合的思想,属于中档题.
三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)
17、(1) ;
(2)大约冷却 分钟,理由见解析.
【解析】(1)根据 求得冷却时间 (单位:分)关于冷却水温 (单位:℃)的函数关系,结合对数运算求得 .
试题解析:
要使 有意义,则 ,解得 ,

由 ,解得 ,

∴ 解得
故实数 的取值范围是
考点:分式不等式,子集的概念.
【方法点晴】注意一元二次方程、二次函数、二次不等式的联系,解二次不等式应尽量结合二次函数图象来解决,培养并提高数形结合的分析能力;当 时,需要计算相应二次方程的根,其解集是用根表示,对于含参数的二次不等式,需要针对开口方向、判别式的符号、根的大小分类讨论.解决恒成立问题一定要清楚选谁为主元,谁是参数.一般地,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数.分式不等式转化为一元二次不等式来求解.
C.-1D.不存在
5.已知幂函数 的图象过点 ,则 的定义域为()
A.RB.
C. D.
6.若函数 是幂函数,且其图象过点 ,则函数 的单调增区间为
A. B.
C. D.
7.已知集合A={x|-1 ≤x≤2},B={0,1,2,3},则A∩B=()
A.{0,1}B.{-1,0,1}
C.{0,1,2}D.{-1,0,1,2}
圆锥的侧面积为: 2rπ•2r=2πr2;
圆锥的侧面积是底面积的2倍

〖精选4套试卷〗石家庄市名校2020年高一(上)数学期末联考模拟试题

〖精选4套试卷〗石家庄市名校2020年高一(上)数学期末联考模拟试题

2019-2020学年高一数学上学期期末试卷一、选择题1.函数cos y x =的最小正周期是( ) A .4π B .2π C .π D .2π2.在边长为2的菱形中,,是的中点,则A.B.C.D.3.已知点(5,0),(1,3)A B ---,点P 是圆22:(1)1C x y -+=上任意一点,则PAB ∆面积的最大值是( ) A.11B.232C.13D.2724.已知等比数列{}n a 中,37a =,前三项之和321S =,则公比q 的值为( ) A .1B .12-C .1或12-D .112-或5.如图,测量河对岸的塔高AB 时,选与塔底B 在同一水平面内的两个测点C 与D.现测得15BCD ∠=︒,45BDC ∠=︒,302CD m =,并在点C 测得塔顶A 的仰角为30︒,则塔高AB 为( )A .302mB .203mC .60mD .20m6.已知函数()3ln ef x x =-,则其零点在的大致区间为( ) A .1,1e ⎛⎫ ⎪⎝⎭B .()1,eC .()2e,eD .()23e ,e7.如图,在四棱锥P ABCD -中,AD BC ∥,AD DC ⊥,PA ⊥平面ABCD ,12BC CD AD ==,E 为棱AD 的中点,点M 是平面PAB 内一个动点,且直线CM ∥平面PBE ,动点M 所组成的图形记为ω,则( )A.ωP 直线PEB.ωP 平面PBEC.ωP 平面PDED.ωP 直线PC8.在等比数列{}n a 中,48,a a 是关于x 的方程21040x x ++=的两个实根,则2610a a a =( )A .8B .8-C .4D .88-或9.若一个圆锥的表面积为3π,侧面展开图是半圆,则此圆锥的高为( ) A .1BCD .210.已知集合{{},0,1,2,3,4A x y B ===,则A B =I ( ) A.φB.{}0,1,2C.{}0,1,2,3D.(]{},34-∞U11.一艘游轮航行到A 处时看灯塔B 在A 的北偏东75︒,距离为C 在A 的北偏西30°,距离为A 沿正北方向继续航行到D 处时再看灯塔B 在其南偏东60︒方向,则此时灯塔C 位于游轮的( ) A .正西方向 B .南偏西75︒方向 C .南偏西60︒方向D .南偏西45︒方向12.设全集{}1,2,3,4,5U =,集合{}1,4M =,{}1,3,5N =,则()U N C M ⋂=( ) A .{}1,3 B .{}1,5C .{}3,5D .{}4,5二、填空题13.已知实数,x y 满足不等式组201030y x y x y -≤⎧⎪--≤⎨⎪+-≥⎩,则y x 的取值范围为__________.14.已知函数()f x 满足()()()f x f x x R -=-∈,且()f x 在(0,)+∞上为增函数,(1)0f =,则不等式()()0f x f x x--≤的解集为__________.15.若,a b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,且,,2a b -这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q +的值等于________.16.过P(1,2)的直线l 把圆22450x y x +--=分成两个弓形,当其中劣孤最短时直线l 的方程为_________. 三、解答题17.已知函数()()2lg,10xf x f ax b ==+,当x>0时,恒有()1lg f x f x x ⎛⎫-= ⎪⎝⎭. (1)若不等式()lg f x t ≤的解集为(]0,4,求实数t 的取值范围; (2)若方程()()lg 8f x x m =+的解集为空集,求实数m 的取值范围.18.在ABC ∆中,角,,A B C 所对的边分别为,,a b c,满足sin cos a B A =. (1)求角A 的大小;(2)若a =2223b c +=,求ABC ∆的面积.19.已知等差数列{}n a 满足35a =,644a a =+,公比为正数的等比数列{}n b 满足21b =,35116b b =. (1)求数列{}n a ,{}n b 的通项公式; (2)设2n nn a b c =,求数列{}n c 的前n 项和n T . 20.某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元? (2)设一次订购量为个,零件的实际出厂单价为元.写出函数的表达式;(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂单价-成本) 21.已知函数,(1)写出函数的解析式; (2)若直线与曲线有三个不同的交点,求的取值范围; (3)若直线与曲线在内有交点,求的取值范围.22.已知函数()()sin 0,0,,2f x A x B A x R πωϕωϕ⎛⎫=++>><∈ ⎪⎝⎭在区间3,22ππ⎛⎫⎪⎝⎭上单调,当2x π=时, ()f x 取得最大值5,当32x π=时, ()f x 取得最小值-1. (1)求()f x 的解析式(2)当[]0,4x π∈时, 函数()()()1212xx g x f x a +=-+有8个零点, 求实数a 的取值范围。

2020-2021学年高一上学期期末考试数学卷及答案

2020-2021学年高一上学期期末考试数学卷及答案

2020-2021学年高一上学期期末考试数学卷及答案1.集合A和B分别表示y=x+1和y=2两个函数的图像上所有的点,求A和B的交集。

答案:A={(-∞,1]}。

B={2}。

A∩B=A={(-∞,1]}2.已知函数y=(1-x)/(2x^2-3x-2),求函数的定义域。

答案:分母2x^2-3x-2=(2x+1)(x-2),所以函数的定义域为x∈(-∞,-1/2]∪(2,∞)。

3.如果直线mx+y-1=0与直线x-2y+3=0平行,求m的值。

答案:两条直线平行,说明它们的斜率相等,即m=2.4.如果直线ax+by+c=0经过第一、第二,第四象限,求a、b、c应满足的条件。

答案:第一象限中x>0.y>0,所以ax+by+c>0;第二象限中x0,所以ax+by+c0.y<0,所以ax+by+c<0.综上所述,应满足ab<0.bc<0.5.已知两条不同的直线m和n,两个不同的平面α和β,判断下列命题中正确的是哪个。

答案:选项A是正确的。

因为如果m与α垂直,n与β平行,那么m和n的夹角就是α和β的夹角,所以m和n垂直。

6.已知圆锥的表面积为6π,且它的侧面展开图是一个半圆,求这个圆锥的底面半径。

答案:设底面半径为r,侧面的母线长为l,则圆锥的侧面积为πrl。

根据题意,πrl=6π,所以l=6/r。

而侧面展开图是一个半圆,所以底面周长为2πr,即底面直径为2r,所以侧面母线长l=πr。

将上述两个式子代入公式S=πr^2+πrl中,得到r=2.7.已知两条平行线答案:两条平行线的距离等于它们的任意一点到另一条直线的距离。

我们可以先求出l2上的一点,比如(0,7/8),然后带入l1的方程,得到距离为3/5.8.已知函数y=ax-1/(3x^2+5),如果它的图像经过定点P,求点P的坐标。

答案:点P的坐标为(1,2)。

因为当x=1时,y=a-1/8,所以a=17/8.又因为当x=2时,y=1/13,所以17/8×2-1/13=2,解得a=17/8,所以y=17x/8-1/(3x^2+5),当x=1时,y=2.9.已知a=3/5,b=1/3,c=4/3,求a、b、c的大小关系。

2020-2021石家庄市高三数学上期末试题及答案

2020-2021石家庄市高三数学上期末试题及答案

(
)
A.等腰直角三角形 B.直角三角形
C.等腰三角形
D.等腰三角形或直角
三角形
3.设等比数列{an}的前 n 项和为 Sn ,若
S6 S3
3,则
S9 S6


A. 2
B. 7 3
C. 8 3
D. 3
4.在 ABC 中, a , b , c 分别是角 A , B , C 的对边,若 b 2c , a 6 ,
3x y 8 0
处取得最大值,则 a 的取值范围为_____________.
14.已知向量 a
1, x,b
x,
y 2
,其中
x
0 ,若
a
与b
共线,则
y x
的最小值为
__________.
15.△ABC 中,角 A,B,C 所对的边分别为 a,b,c,若 acosB=5bcosA,asinA﹣bsinB=
a3 a5 10
a1 3d 5
d 3

S10
10a1
10 9 2
d
40
135
95 .
考点:等差数列的通项公式和前 n 项和公式.
6.A
解析:A 【解析】 【分析】 先求等比数列通项公式,再根据等比数列求和公式求结果. 【详解】
数列 an 为等比数列, a1 1, a7 8a4 ,
【点睛】
三角形的面积公式常见形式有两种:一是 1 (底 高),二是 1 bcsinA .借助 1 (底
2
2
2
高)时,需要将斜三角形的高与相应的底求出来;借助 1 bcsinA 时,需要求出三角形两边 2
及其夹角的正弦值.
5.C

2020-2021学年高一上期期末数学模拟试卷(新高考)(1)(解析版)

2020-2021学年高一上期期末数学模拟试卷(新高考)(1)(解析版)

2020-2021学年高一上期期末数学模拟试卷(新高考)(一)(解析版)(测试时间:120分钟,满分:150分)一. 单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是 符合题目要求的.1. 已知集合 U = R ,集合 A = {x I x 2- 3x + 2 > 0},则 C L .A=()A. (12)B. [12]C. (-2, -1 )【答案】B【解析】因为A=(YO ,1)U(2,+OO ), U = 以CM = [1,2]・故选:B【点睛】本题考査了一元二次不等式的解法,考查了集合补集的圮义,属于基础题.2■设XGR,贝旷/>8"是牛卜2”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】求解三次不等式和绝对值不等式,据此即可确怎两条件的充分性和必要性是否成立即可. 详解:求解不等式十>8可得x>2.求解绝刈门人养代卜卜22・据此可詹严分>8"是叫1>2"的充分而不必要条件•本题选择A 选项.【点睛】本题主要考查绝对值不等式的解法,充分不必要条件的判断等知识,意在考查学生的转化能 力和计算求解能力属于基础题.始边与x 轴的非负半轴重合,终边上一点A (2sina,3),贝ijcosa =1 B ・ --2【答案】A得沁洛或—2(舍去)故选A【点睛】本题考査三角函数定义及同角三角函数基本关系式,是基础题・4 •已知c = log5 2, b = log 7 2 , c = 0・5“,则⑴S c 的大小关系为(3.已知角&的顶点为坐标原点, 【解析】由三角函数定义得 tana =---- 2sinasina EPcosa 2sina,得 3cosa = 2sin 2a = 2(1 -cos'a),解 A. ly<a<c B. a<b<cC. c<h<aD. c<a<b【答案】A【解析】因为« = log s2 = —> Z7 = log72 = —, 0<ln2<ln5<ln7,所以b<a<\.In 5 6 In 7所以c = 0.5-2 >0.5° =1 '所以bvovlvc.故选:A.【点睛】本题考查了对数式、指数式的大小比较,考査了运算求解能力与逻辑推理能力,属于基础题.1 35.已知./U)是泄义在上的偶函数,且当XGC-0O, 0]时,/(x) = 2r+-,则/(log2])=()A. 乂B・1 C・—D・—27 11【答案】B【解析】log2>0, /(log2= /(-log2^) = /(log2+ 7 = T + 7 = 1 * 故选:厶乙乙 D D J D【点睛】本题考查函数的奇偶性,这类问题在计算函数值时通常由奇偶性的怎义化自变呈为对称区间的值,然后利用已知解析式计算•属于基础题.6•将函数/(x) = sin(2x + 0)(O<0V/r)的图象向右平移巴个单位长度后得到函数g(x) = sin(2x+ ?)4 6的图象,则函数/(X)的一个单调减区间可以为( )A [-A竺]B [-壬竺] c [-上竺] D [-岂]•12,12 •6, 6 * 3, 6 • 6, 3【答案】A【解析】山』知得f(x) = sin(2x + ©)(0 v卩v ”)向右平移更个单位长度得到= sin(2x +卩- ,4 2 所以<p-^=-+2k^尸2/br +羊(0<0<兀),:牛斗./(x) = sin(2x + —). /(x)的单调减2 63 3 3区间是2k7r + -7r<2x + — <2k7r + — 7r t即炽一丄;+丄A选项符合题意2 3 2 12 12【点睛】本题考査三角函数图像与性质,属于基础题.7.已知不等式(x+y)[丄+匕$9对任意实数%、$恒成立,则实数“的最小值为() \x y JA. 8B. 6C. 4D. 2【答案】C【解析】•••(x+y) - + - =- + - + a +1・a y) y x若AyvO,则2<0,从而- + - + « +1无最小值,不合乎题意;若xy>0.则上>0, ->0. x y x % ya T v①lia<0时,- + - + « +1无最小值,不合乎题意; y x②当a = 0时,—+ - + " + 1 =丄 + 1>1,贝Ij(x+y) - + -1^9不恒成立; y x x J y)当且仅当y = 4^x 时,等号成立.所以,(需+ 1)'\9,解得a24,因此,实数a 的最小值为4•故选:C.【点睛】本题考査基本不等式恒成立问题,一般转化为与最值相关的不等式求解,考查运算求解能力, 属于中等题.8•若函数八切是泄义在R 上的偶函数,对任意xwR,都有/(x — l) = /(x + l),且当xe [0J ]时,/(x) = 2x-l,若函数g(x) = /(x) — log,x + 2) (a >\)在区间(73)恰有3个不同的零点,则实数a 的取值范围是()A. (1,3)B. (3,5)C. (3,5]D. (1,5]【答案】C【解析】由题意,函数/(劝是左义在R 上的偶函数,当兀丘[0,1]时,/(x) = 2v-l . 则当“[一1,0]时,则-xe[04],函数/(x) = /(-x) = 2"x-l,乂山对任总xwR ・ Wf/(x-l) = /(x+l),则/(兀)=/(兀+2) •即周期为2, 又由函数^(x) = /(x)-log/x + 2) (a>l)在区间(—1,3)恰有3个不同的零点,即函数y = /(X)与)y log.(x+2)的图象在区间(-1,3) ±有3个不同的交点,又由/(1) = /(3) = L 则满足log fl (l + 2)<l 且log“(3 + 2)ni,解得3<*5, 即实数a 的取值范围是(3,5].故选:C.【点睛】本题主要考査了函数与方程的综合应用,其中解答中根据函数的奇偶性得到函数的解析式, 以及求得函数的周期,再集合两个函数的图彖的性质列出不等式是解答的关键,着重考査了转化思想, 以及推理与运算能力,属于中档试题.当a> 0时, (W)〔九丿 £ =竺+上+ ° +空2+ a +1 = a + 2\/a +1 =二、多项选择题:本题共4小题,每小题5分,共20分・在每小题给出的选项中,有多项符合题目 要求,全部选对的得5分,有选错的得0分,部分选对的得3分.9.已知函数/(x) = sin(3x + ^) ] —的图象关于直线x =-对称,贝ij () I 22 丿 4C.若|/(州)一/(花)| = 2,则对的最小值为彳D.函数f(x)的图象向右平移中个单位长度得到函数y = -cos3x 的图象【答案】AC【解析】因为/(x) = sin(3x + ^)的图象关于直线x =-对称,所以3x- +(p = - + k7r(keZ)4 4 2得(p =-巴+ k 兀,keZ .因为-—<(p< —,所以k=O,(p = -—,所以/(x) = sinj4 2 2 4 I 4 丿正确:对于 C :因为/W nux =l, /(-v)min =-l,又因为|/(^)-/(^)| = 2,所以|A- -X 2| 的最小值为 半个周期,即-x- = -9故选项C 正确:3 2 3对于D :函数/(X)的图象向右丫移乙个小位长度牟’4【点睛】本题主要考査了利用三角函数的对称轴求函数解析式,考査了三角函数平移变换、三角函数 的周期.单调性、最值,属于中档题(7T )/7t「7t(7t \x + — = sin 3=sin 3x .所以 / x + — 1 12丿12; 4 J I 12丿对于A : f 为奇函数成立,故选项A 正为奇函数B.函数/(X)在 令,彳 上单调递增对于 B : xe —时,3x —12 3丘0,匸~,函数f(x)在[存?|上不是单调函数:故选项B 不71= sin(3x-/r) = -sin 3x ■ 故选项D 不正确:故选:ACA. \/a >yfbB. e a <e b (^^2.718)C. (sin&+cos&)“ v(sin& + cos&『(&是第一彖限角)D. ln("~ +1) v ln(/r+1)【答案】BC【解析】⑺卩] >[-]知:.•.亦<诉,e a<e h,即A 错误,B 正确:12 丿 \ 2 >sin& + cos& = >/Jsin(& + —)丨一<& + = < —,即 lvsin& + cos&5血,则仃4 4 4 4(sin&+COS&)" v(sin8 + cos&y ,故C 正确:ln(^2+1),In(Z?2+ 1)的大小不确怎,故 D 错误. 故选:BC【点睛】思路点睛:注意各选项函数的形式,根据对应函数的单调性比较大小.1、 如:单调增函数:2、 对于sin0+COS&,根据&所在象限确定貝范国即可应用/的单调性判赫人小;3、 由]a <b 无法确^a 2+l,b 2+i 的大ln(a 2+l),ln(/>2+l)的大小也无法确泄•属于基础题. 11 •设“>1, b>l,且“b — (d + b) = l,那么( )C. db 有最大值3 + 2^2・D."有最小值3 + 2丁!・【答案】AD【解析】va>\, b>\, :-a + b^2^,当a = b 时取等号,・•・\ = ab-(a + b)«b-2屈,解得血+1,・•・+・・・"有最小值3 + 2血;・・・ 火(出 f ,当 a =b 时取等号,/■ 1 = - (a + /?)^(—)2 - (a + b),・・・(“ + 〃)2一4("+ 〃彥4,22..[(“ + 历-2穆8,解得-2/2屈 即o + ^2(V2+l), :,a + b 有最小值2(72 + 1).故选:AD . 【点睛】本题考査了基本不等式在求最值时的应用,考査了计算能力,属于中档题.12•泄义:在平而直角坐标系xOy 中,若存在常数(p((p>Z 使得函数y = f(x)的图象向右平移0个 单位长度后,恰与函数y = gM 的图象重合,则称函数y = /(x)是函数y = g(x)的“原形函数J 下A. a+b 有最小值2(72 + 1)B. a+b 有最大值(©+1)2 10.若导>则下列关系式中一左成立的是(列四个选项中,函数y = f(x)是函数y = g(x)的“原形函数”的是A ・ /(x) = x 2 > g(x) = x'-2x + lB ・ /(x) = sinx , g(x) = cosx X1 1C ・ /(x) = lnx, g(x) = ln 牙D ・ /(x) = (—)r t g(x) = 2({)‘【答案】AB【解析】选项A,函数f(x) = x 2的图象向右平移1个单位得函数g(x) = x 2-2x+l 的图象,函数y = /(x)是函数y = gW 的''原形函数”:选项B,函数/(x) = sinx 的图象向右平移竺个单位得函数g(x) = cosx 的图象,函数y =于(兀)是 2 函数y = g «的“原形函数”:g(x)=In —选项C,函数/(x) = lnx 的图象向卜T •移ln2个单位得函数 2的图象,函数J = fM 不是函数y = g(x)的“原形函数”:选项D,函数/W = (-)x 的图象纵坐标扩大为原来的两倍得函数g(x) = 2(-)x的图象,函以y = f(x)不是函数y = g(x)的“原形函数” •故AB 符合题意.【点睛】本题考查了函数图象的变换,属于中档题.三、填空题:本题共4小题,每小题5分,多空题,第一空2分,第二空3分,共20分.13 •下列命题中,真命题的序号 __ ・要条件:④“d = 2”是“函数f(x) = \x-a\在区间[2,乜)上为增函数”的充要条件.【答案】④.【解析】对⑴,・・・sinx + cosx = >sin(x +兰)故①为假命题:4刈2・命电〃:丄<()•佔 fOwcl , h/|W^:{.vLv<0 或 21}・!:. — >() .•x-lx-l{x 卜SO 或r>l},故②为假命题:对③•当x = hy = O 时,满足肩但lgx>lgy 不成立.故③为假命① Bx e R 、sin x + cos x =長; x②若〃:一vO,则-i":x-l >0;③lgx>lgy 是的充对④.根据正弦定理 —=-^-可得,边“Ab 是sinA>sinB 的充鉴条件,故为真命题: sin A sin B 故答案为:④.【点睛】本题考査了命题的貞假性、充分条件与必要条件以及命题的否怎,涉及三角函数的性质、分 式不等式的性质、指数对数的性质以及函数的单调性逐条分析即可得出答案.属于基础题.14.已知函数f(x) = x 2-\x\t 若f log 3— </(2),则实数川的取值范围是_______________________ • f g \【答案】一了8\ 9丿【解析】••• xeR,f(-x) = (-x)2-\-x\ = F _卜| = y(x),所i^f(x)=x l-\x\ 为偶函数,作图如下:sin - a cos 2a=一;一cosy + cos 匕— =_3P + 1_ = ._ m.故答案为:4:sin' a sin a cos a 2cos~ a tan 2 tz + taniZ-2 22+2-2 44由图可得小吧岛卜/(2)=>一2<1喝岛V2"<32Q 因此3- <m + \<32/.--</H<8 故答案为:【点睛】本题考査根据函数图象解不等式.考査数形结合思想方法,属基础题.15.已知un“2,则沁坯竺sin a-cos asin 2 a + sin a cos a-2 cos 2a【答案](1). 4«2i.-4【解析】 sin a 2 cos a sina + 2cosa =cos a cos a sin a- cos a sin a _ cos a tan a+ 2 2 + 2------ = =4 , tan a -1 -- 2-1cos a cos asin 2tz + 2cos 2asin 2 a + sin a cos a-2 cos 2 a sin 2 a + sin a cos a-2 cos 2a-- 5 -- 1----- i --- _ ---- -cos' a cos' a cos~ a【点睛】本题考査正弦余弦齐次分式的讣算,一般利用弦化切的思想进行il•算,考査计算能力,属于基础题.16.已知函数/(x) = 2cosx (xe[0,^])的图象与函数g(x) = 3kmx的图象交于A,3两点,则\OAB (0为坐标原点)的而积为 _______________ •【答案】—2【解析】函数y=2cos.x- (xE[0, TT])和函数y=3taiu的图象相交于A、B两点,O为坐标原点,由2cos.v=3taiu\ 可得2cos"=3sinx・即2sin2.v+3siiiv - 2=0,("I siav= —, 或sinr=・2 •舍去),vG[O t町,/.A =—, 或牙=雲:2 6 6.•• A : —■ y/3〉、B ' -—•—,I川i 出图象如图所示;6 6根据函数图象的对称性可得AB的中点C 工、0).2・•・AOAB的而积等于△OAC•的而枳加上AOCB的而枳,等丁丄・OC•网+ —OC*|yd=—・00以-yd= —#2 = —it,故选D.2 2 2 2 2 2【点睛】本题主要考査了三角函数的图象与性质的应用问题,是中档题.四、解答题:本题共6小题,共70分。

高一数学第一学期期末模拟试卷(二)(解析版)

高一数学第一学期期末模拟试卷(二)(解析版)

2020—2021学年度高一数学第一学期期末模拟试卷(二)(解析版)(时间120分钟 满分150分)一、单项选择题:(本题共8小题,每小题5分,共40分.在每小题给出的四 个选项中,只有一项是符合题意要求的.)1. 设集合A ={1,2,4},B ={x|x 2−4x +m =0},若A ∩B ={1},则B =( )A. {1,−3}B. {1,0}C. {1,3}D. {1,5}【解答】C . 2.已知,则x 的值为( )A. 12B. 2C. 3D. 4【答案】B3.已知命题p :∃x 0∈R ,x 02−x 0+14≤0,则¬p 为( ) A. ∃x 0∈R ,x 02−x 0+14>0 B. ∃x 0∈R ,x 02−x 0+14<0 C. ∀x ∈R ,x 2−x +14≤0D. ∀x ∈R ,x 2−x +14>0【答案】D4.不等式2−3xx−1>0的解集为( )A. (−∞,34)B. (−∞,23)C. (−∞,23)∪(1,+∞)D. (23,1)【答案】D5.已知函数f(3x +1)=x 2+3x +2,则f(10)=( )A. 30B. 6C. 20D. 9【答案】C6.设函数f(x)=cos(x +π3),则下列结论错误的是( )A. f(x)的一个周期为−2πB. y =f(x)的图象关于直线x =8π3对称C. f(x +π)的一个零点为x =π6D. f(x)在(π2,π)单调递减【答案】D7.Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t 的单位:天)的Logistic 模型:I(t)=K1+e −0.23(t−53),其中K 为最大确诊病例数.当I(t ∗)=0.95K 时,标志着已初步遏制疫情,则t ∗约为( )(ln19≈3)A. 60B. 63C. 66D. 69【答案】C【解析】 【分析】本题考查函数模型的实际应用,考查学生计算能力,属于中档题. 根据所给材料的公式列出方程K1+e −0.23(t−53)=0.95K ,解出t 即可. 【解答】解:由已知可得K1+e −0.23(t−53)=0.95K ,解得e −0.23(t−53)=119, 两边取对数有−0.23(t −53)=−ln19≈−3, 解得t ≈66, 故选:C .8.已知函数()y f x =是定义域为R 的偶函数,当0x ≥时,()5sin ,014211,14xx x f x x π⎧⎛⎫≤≤ ⎪⎪⎝⎭⎪=⎨⎛⎫⎪+> ⎪⎪⎝⎭⎩,若关于x 方程()()()()255660f x a f x a a R -++=∈⎡⎤⎣⎦有且仅有6个不同实数根,则a 的取值范围是() A .01a <≤或54a =B .01a ≤≤或54a =C .01a <<或54a =D .514a <≤或0a =【答案】A二、多项选择题:(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有 选错的得0分.)9.已知x ≥1,则下列函数的最小值为2的有( )A. y =2x +x 2B. y =4x +1xC. y =3x −1xD. y =x −1+4x+1【答案】ACD10.下列命题正确的是( )A. 三角形全等是三角形面积相等的充分不必要条件B.,x 2−x +1≠0C. 有些平行四边形是菱形是全称量词命题D. 至少有一个整数,使得n 2+n 为奇数是真命题【答案】AB11.下列各组函数是同一函数的是( )A. f(x)=√−2x 3与g(x)=x √−2x ;B. f(x)=x 与g(x)=√x 2;C. f(x)=x 0与g(x)=1x 0;D. f(x)=x 2−2x −1与g(t)=t 2−2t −1【答案】CD12.图象,则sin (ωx +φ)=( )A. sin (x +π3)B. sin (π3−2x)C.cos (2x +π6)D. cos (5π6−2x)【答案】BC三、填空题:(本题共4小题,每小题5分,共20分)13.已知集合A ={1,2},B ={a,a 2+3}.若A ∩B ={1},则实数a 的值为______.为1.14化简求值:(8116)−14+log 2(43×24)=______ .【答案】32315.关于x 的方程(12)|x|=|log 12x|的实数根的个数是________.【答案】216.已知a >0,设函数f(x)=2009x+1+20072009x +1+sinx(x ∈[−a,a])的最大值为M ,最小值为N ,那么M +N = ______ .【答案】4016 【解析】解:∵f(x)=2009x+1+20072009x +1+sinx(x ∈[−a,a])∴设g(x)=2009x+1+20072009x +1,则g(x)=2009x+1+2009−22009x +1=2009−22009x +1,∵2009x 是R 上的增函数,∴g(x)也是R 上的增函数. ∴函数g(x)在[−a,a]上的最大值是g(a),最小值是g(−a).∵函数y =sinx 是奇函数,它在[−a,a]上的最大值与最小值互为相反数,最大值与最小值的和为0.∴函数f(x)的最大值M 与最小值N 之和M +N =g(a)+g(−a) =2009−22009a +1+2009−22009−a +1…第四项分子分母同乘以2009a=4018−[22009a+1+2×2009a2009a+1]=4018−2=4016.四、解答题:(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知集合A={x|x≤−3或x≥2},B={x|1<x<5},C={x|m−1≤x≤2m} (Ⅰ)求A∩B,(∁R A)∪B;(Ⅱ)若B∩C=C,求实数m的取值范围.【答案】解:(Ⅰ)A∩B={x|2≤x<5},∁R A={x|−3<x<2},∴(∁R A)∪B={x|−3<x<5}.(Ⅱ)∵B∩C=C,∴C⊆B,当C=∅时,m−1>2m,∴m<−1;当C≠∅⌀时,{m−1≤2mm−1>12m<5,解得2<m<52,综上,m的取值范围是m<−1或2<m<52.【解析】本题考查了集合的交集,并集,补集运算,考查了集合包含关系的应用,属于基础题.(Ⅰ)根据定义,进行集合的交、并、补集运算,可得答案;(Ⅱ)分集合C=∅⌀和C≠⌀∅两种情况讨论m满足的条件,综合即可得m的取值范围.18.已知命题p:“方程x2+mx+1=0有两个不相等的实根”,命题p是真命题。

2020-2021高一数学上期末一模试卷及答案

2020-2021高一数学上期末一模试卷及答案

2020-2021高一数学上期末一模试卷及答案一、选择题1.函数()12cos 12x x f x x ⎛⎫-= ⎪+⎝⎭的图象大致为()n n A .B .C .D .2.已知函数3()3(,)f x ax bx a b =++∈R .若(2)5f =,则(2)f -=( )A .4B .3C .2D .13.已知4213332,3,25a b c ===,则 A .b a c << B .a b c << C .b c a <<D .c a b <<4.已知函数()()2,211,22xa x x f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩, 满足对任意的实数x 1≠x 2都有()()1212f x f x x x --<0成立,则实数a 的取值范围为( ) A .(-∞,2)B .13,8⎛⎤-∞ ⎥⎝⎦C .(-∞,2]D .13,28⎡⎫⎪⎢⎣⎭5.已知0.2633,log 4,log 2a b c ===,则,,a b c 的大小关系为 ( )A .c a b <<B .c b a <<C .b a c <<D .b c a <<6.已知二次函数()f x 的二次项系数为a ,且不等式()2f x x >-的解集为()1,3,若方程()60f x a +=,有两个相等的根,则实数a =( )A .-15B .1C .1或-15D .1-或-157.下列函数中,值域是()0,+∞的是( ) A .2y x = B .211y x =+ C .2x y =-D .()lg 1(0)y x x =+>8.已知函数2()log f x x =,正实数,m n 满足m n <且()()f m f n =,若()f x 在区间2[,]m n 上的最大值为2,则,m n 的值分别为A .12,2 B 22 C .14,2 D .14,4 9.已知函数()0.5log f x x =,则函数()22f x x-的单调减区间为( )A .(],1-∞B .[)1,+∞C .(]0,1D .[)1,210.已知[]x 表示不超过实数x 的最大整数,()[]g x x =为取整函数,0x 是函数()2ln f x x x=-的零点,则()0g x 等于( )A .1B .2C .3D .411.若不等式210x ax ++≥对于一切10,2x ⎛⎫∈ ⎪⎝⎭恒成立,则a 的取值范围为( ) A .0a ≥B .2a ≥-C .52a ≥-D .3a ≥-12.已知函数()()f x g x x =+,对任意的x ∈R 总有()()f x f x -=-,且(1)1g -=,则(1)g =( )A .1-B .3-C .3D .1二、填空题13.若函数(),021,01x x f x x mx m ≥⎧+=⎨<+-⎩在(),∞∞-+上单调递增,则m 的取值范围是__________.14.已知a ,b R ∈,集合()(){}2232|220D x x a a x a a =----+≤,且函数()12bf x x a a -=-+-是偶函数,b D ∈,则220153a b -+的取值范围是_________. 15.已知函数2,1,(){1,1,x ax x f x ax x -+≤=->若1212,,x x R x x ∃∈≠,使得12()()f x f x =成立,则实数a 的取值范围是 .16.函数22log (56)y x x =--单调递减区间是 .17.已知()f x 为奇函数,且在[)0,+∞上是减函数,若不等式()()12f ax f x -≤-在[]1,2x ∈上都成立,则实数a 的取值范围是___________.18.已知函数2,01,()1(1),13,2x x f x f x x ⎧<≤⎪=⎨-<≤⎪⎩则关于x 的方程4()0xf x k -=的所有根的和的最大值是_______.19.若幂函数()af x x =的图象经过点1(3)9,,则2a -=__________.20.()()sin cos f x x π=在区间[]0,2π上的零点的个数是______.三、解答题21.已知函数2()ln(3)f x x ax =-+.(1)若()f x 在(,1]-∞上单调递减,求实数a 的取值范围;(2)当3a =时,解不等式()x f e x ≥.22.已知函数()2()log 21xf x kx =+-为偶函数. (1)求实数k 的值; (2)若不等式1()2f x a x >-恒成立,求实数a 的取值范围; (3)若函数1()2()24f x x x h x m +=+⋅,[1,2]x ∈,是否存在实数m ,使得()h x 的最小值为2,若存在,请求出m 的值;若不存在,请说明理由.23.为保障城市蔬菜供应,某蔬菜种植基地每年投入20万元搭建甲、乙两个无公害蔬菜大棚,每个大棚至少要投入2万元,其中甲大棚种西红柿,乙大棚种黄瓜.根据以往的经验,发现种西红柿的年收入()f x 、种黄瓜的年收入()g x 与大棚投入x 分别满足()8f x =+1()124g x x =+.设甲大棚的投入为a ,每年两个大棚的总收入为()F a .(投入与收入的单位均为万元)(Ⅰ)求(8)F 的值.(Ⅱ)试问:如何安排甲、乙两个大棚的投入,才能使年总收人()F a 最大?并求最大年总收入.24.已知函数31()31x xf x m -=⋅+是定义域为R 的奇函数. (1)求证:函数()f x 在R 上是增函数; (2)不等式()21cos sin 32f x a x --<对任意的x ∈R 恒成立,求实数a 的取值范围. 25.已知幂函数()()223m m f x xm --=∈Z 为偶函数,且在区间()0,∞+上单调递减.(1)求函数()f x 的解析式;(2)讨论()()bF x xf x =的奇偶性.(),a b R ∈(直接给出结论,不需证明)26.已知函数()()20f x ax bx c a =++≠,满足()02f =,()()121f x f x x +-=-. (1)求函数()f x 的解析式; (2)求函数()f x 的单调区间;(3)当[]1,2x ∈-时,求函数的最大值和最小值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【解析】函数f (x )=(1212xx-+)cosx ,当x=2π时,是函数的一个零点,属于排除A ,B ,当x ∈(0,1)时,cosx >0,1212x x -+<0,函数f (x )=(1212xx-+)cosx <0,函数的图象在x 轴下方. 排除D . 故答案为C 。

2020-2021高一数学上期末试卷(含答案)

2020-2021高一数学上期末试卷(含答案)
2020-2021 高一数学上期末试卷(含答案)
一、选择题
1.设 a,b,c
均为正数,且 2a
log 1
2
a

1 2
b
log 1
2
b

1 2
c
log2
c
.则(

A. a b c
B. c b a
C. c a b
D. b a c
2.已知函数 f x 是定义在 R 上的偶函数,且在0, 上是增函数,若对任意
等于(

A.1
B.2
C.3
D.4
二、填空题
13.若15a 5b 3c 25 ,则 1 1 1 __________. abc
14.已知幂函数 y ( m 2)xm 在 (0, ) 上是减函数,则 m __________.
15.已知 a , b R ,集合 D x | x2 a2 a 2 x a3 2a2 0 ,且函数
B. y x3
C. y 2|x|
D. y cos x
10.已知 a log3 2 , b 20.1 , c sin 789 ,则 a , b , c 的大小关系是
A. a b c
B. a c b
C. c a b
D. b c a
11.偶函数 f x 满足 f x f 2 x ,且当 x 1,0时, f x cos x 1,若函
【详解】
因为 a log23 , b
2
3 ,c e3
令 f x log2x , g x x
函数图像如下图所示:
则 f 4 log24 2 , g 4 4 2
所以当 x 3 时, 3 log2 3,即 a b

2020-2021石家庄市石门实验学校高三数学下期末第一次模拟试题(带答案)

2020-2021石家庄市石门实验学校高三数学下期末第一次模拟试题(带答案)

2020-2021石家庄市石门实验学校高三数学下期末第一次模拟试题(带答案)一、选择题1.若复数21iz =-,其中i 为虚数单位,则z = A .1+i B .1−iC .−1+iD .−1−i2.()62111x x ⎛⎫++ ⎪⎝⎭展开式中2x 的系数为( ) A .15B .20C .30D .353.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为A .甲、乙、丙B .乙、甲、丙C .丙、乙、甲D .甲、丙、乙 4.设i 为虚数单位,则(x +i)6的展开式中含x 4的项为( )A .-15x 4B .15x 4C .-20i x 4D .20i x 45.已知函数()2cos 2[0,]2f x x x m π=+-在上有两个零点,则m 的取值范围是A .(1,2)B .[1,2)C .(1,2]D .[l,2]6.设,a b R ∈,“0a =”是“复数a bi +是纯虚数”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件7.某校现有高一学生210人,高二学生270人,高三学生300人,用分层抽样的方法从这三个年级的学生中随机抽取n 名学生进行问卷调查,如果已知从高一学生中抽取的人数为7,那么从高三学生中抽取的人数为( ) A .7B .8C .9D .108.设A (3,3,1),B (1,0,5),C (0,1,0),AB 的中点M ,则CM =A B .532C D .29.设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P AC B --的平面角为γ,则( ) A .,βγαγ<<B .,βαβγ<<C .,βαγα<<D .,αβγβ<<10.设双曲线22221x y a b-=(0a >,0b >)的渐近线与抛物线21y x =+相切,则该双曲线的离心率等于( ) A .3B .2C .6D .511.定义运算()()a ab a b b a b ≤⎧⊕=⎨>⎩,则函数()12xf x =⊕的图象是( ). A . B .C .D .12.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 A .13B .12C .23D .34二、填空题13.曲线21y x x=+在点(1,2)处的切线方程为______________. 14.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________ 件.15.i 是虚数单位,若复数()()12i a i -+是纯虚数,则实数a 的值为 . 16.已知圆锥的侧面展开图是一个半径为2cm ,圆心角为23π的扇形,则此圆锥的高为________cm .17.已知实数x ,y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩,则32z x y =-的最小值是__________.18.高三某班一学习小组的,,,A B C D 四位同学周五下午参加学校的课外活动,在课外活动中,有一人在打篮球,有一人在画画,有一人在跳舞,另外一人在散步,①A 不在散步,也不在打篮球;②B 不在跳舞,也不在散步;③“C 在散步”是“A 在跳舞”的充分条件;④D 不在打篮球,也不在散步;⑤C 不在跳舞,也不在打篮球.以上命题都是真命题,那么D 在_________.19.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.20.ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为__________.三、解答题21.设等差数列{}n a 的前n 项和为n S ,34a =,43a S =,数列{}n b 满足:对每12,,,n n n n n n n S b S b S b *++∈+++N 成等比数列.(1)求数列{},{}n n a b 的通项公式;(2)记,n C n *=∈N证明:12+.n C C C n *++<∈N L 22.某公司培训员工某项技能,培训有如下两种方式: 方式一:周一到周五每天培训1小时,周日测试 方式二:周六一天培训4小时,周日测试公司有多个班组,每个班组60人,现任选两组(记为甲组、乙组)先培训;甲组选方式一,乙组选方式二,并记录每周培训后测试达标的人数如表:()1用方式一与方式二进行培训,分别估计员工受训的平均时间(精确到0.1),并据此判断哪种培训方式效率更高?()2在甲乙两组中,从第三周培训后达标的员工中采用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求这2人中至少有1人来自甲组的概率.23.随着“互联网+交通”模式的迅猛发展,“共享自行车”在很多城市相继出现。

2023-2024学年河北省石家庄市高一上学期期末数学模拟试题(含答案)

2023-2024学年河北省石家庄市高一上学期期末数学模拟试题(含答案)

2023-2024学年河北省石家庄市高一上册期末数学模拟试题一、单选题1.已知集合{}2log 2A x R x =∈<,{}12B x R x =∈-<,则A B = ()A .()0,3B .()1,3-C .()0,4D .(),3-∞【正确答案】A解不等式确定集合,A B 后,由交集定义计算.【详解】由题意得:{}04A x R x =∈<<,{}13B x R x =∈-<<,即{}03A B x x ⋂=<<,故选:A.本题考查集合的交集运算,掌握对数函数的性质是解题关键.2.“1n =”是“幂函数()()22333nnf x n n x-=-+⋅在()0,∞+上是减函数”的一个()条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要【正确答案】A【分析】由幂函数()()22333n nf x n n x-=-+⋅在()0,∞+上是减函数,可得2233130n n n n ⎧-+=⎨-<⎩,由充分、必要条件的定义分析即得解【详解】由题意,当1n =时,()2f x x -=在()0,∞+上是减函数,故充分性成立;若幂函数()()22333nnf x n n x-=-+⋅在()0,∞+上是减函数,则2233130n n n n ⎧-+=⎨-<⎩,解得1n =或2n =故必要性不成立因此“1n =”是“幂函数()()22333n nf x n n x-=-+⋅在()0,∞+上是减函数”的一个充分不必要条件故选:A3.用二分法判断方程32330x x +-=在区间()0,1内的根(精确度0.25)可以是(参考数据:30.750.421875=)()A .0.825B .0.635C .0.375D .0.25【正确答案】B【分析】设3()233f x x x =+-,由题意可得()f x 是R 上的连续函数,由此根据函数零点的判定定理求得函数()f x 的零点所在的区间.【详解】设3()233f x x x =+-,(0)30f ∴=-<,(1)23320=+-=>f ,3(0.5)20.530.530f =⨯+⨯-< ,()f x ∴在(0.5,1)内有零点,3(0.75)20.7530.7530f =⨯+⨯-> ()f x ∴在(0.5,0.75)内有零点,∴方程32330x x +-=根可以是0.635.故选:B .4.已知α为锐角且4cos 65πα⎛⎫+= ⎪⎝⎭,则sin 12πα⎛⎫- ⎪⎝⎭的值为()A B .10C .10-D .10-【正确答案】C【分析】利用同角的三角函数的基本关系式和两角差的正弦可求sin 12πα⎛⎫- ⎪⎝⎭的值.【详解】α为锐角,故ππ2π663α<+<,而4cos 65πα⎛⎫+= ⎪⎝⎭,故3sin 65πα⎛⎫+= ⎪⎝⎭,又πππππsin sinsin cos 1264266αααα⎡⎤⎤⎛⎫⎛⎫⎛⎫⎛⎫-=+-=+-+ ⎪ ⎪ ⎪ ⎪⎢⎥⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦15==故选:C.5.函数()()1xxa f x a x=>的大致图象是()A .B .C .D.【正确答案】C【分析】去掉绝对值,根据函数的单调性即可判断.【详解】当0x >时,()x f x a =,因为1a >,所以函数()x f x a =单调递增,当0x <时,()x f x a =-,因为1a >,所以函数()x f x a =-单调递减.故选:C .6.奇函数()f x 的定义域为R ,若()1f x +为偶函数,且()12f =,则()()20222023f f +的值为()A .2B .1C .-1D .-2【正确答案】D【分析】由已知函数的奇偶性可先求出函数的周期,结合奇偶性及函数的周期性把所求函数值转化可求.【详解】由()1f x +为偶函数,∴()()11f x f x +=-+,令1x t +=,则12x t -+=-,即()()2f t f t =-,因为()f x 为奇函数,有()()f t f t =--,所以()()2f t f t -=--,令x t =-,得()()2f x f x +=-,∴()()()42f x f x f x +=-+=,即函数()f x 是周期为4的周期函数,奇函数()f x 中,已知()12f =,()00f =,则()()()()()()()()20222023505425064121012f f f f f f f f +=⨯++⨯-=+-=--=-.故选:D .7.已知0.450.11log 2,,0.7log 0.7a b c ===,则,,a b c 的大小关系正确的是()A .a c b <<B .a b c <<C .b<c<aD .c<a<b【正确答案】A【分析】根据指数函数和对数函数的单调性,确定12a <,1b >,10.8c >>,得到大小关系.【详解】51log 2log 2a =<,0.70.70.11log 0.1log 0.71log 0.7b ==>=,00.40.50.518.07.06040.7.70.c >=>>==,故b c a >>.故选:A8.已知函数())ln 1f x x =+,正数,a b 满足()()222f a f b +-=,则222b a a ab b ++的最小值为()A .1B .2C .4D .5【正确答案】B【分析】先判断函数是单调递减函数,且有对称中心,找出,a b 之间的关系可求.【详解】因为()()))ln 1ln12f x f x x x +-=-+++=,故函数()f x 关于()0,1对称;又()f x 的定义域为R ,()))ln 1ln1ln1f x x x =+==-+,所以()f x 在R 上单调递减;因为(2)(2)2f a f b +-=,所以220a b +-=,即2 2.a b +=又0,0a b >>,故()2222 2.222b a b a b aa ab b a b a b a b+=+=+≥=++当且仅当42,55a b ==时,等号成立.故选:B.二、多选题9.有以下四种说法,其中说法正确的是()A .“m 是实数”是“m 是有理数”的必要不充分条件B .“0a b >>”是“22a b >”的充要条件C .“3x =”是“2230x x --=”的充分不必要条件D .“1a >”是“11a<”的必要不充分条件【正确答案】AC【分析】根据充分条件和必要条件的定义逐个分析即可.【详解】当m 是实数时,m 可能为有理数,可能为无理数,而当m 为有理数时,m 一定为实数,所以“m 是实数”是“m 是有理数”的必要不充分条件,A 正确;当0a b >>时,22a b >成立,而当22a b >时,有可能0a b <<,所以“0a b >>”是“22a b >”的充分不必要条件,B 错误;当3x =时,2230x x --=成立,而当2230x x --=时,3x =或=1x -,所以“3x =”是“2230x x --=”的充分不必要条件,C 正确;当1a >时,11a <成立,而当11a <时,有可能a<0,所以“1a >”是“11a<”的充分不必要条件,D 错误;故选:AC10.函数()()sin f x A x =+ωϕ(其中0A >,0ω>,ϕπ<)的部分图象如图所示,则下列说法正确的是()A .函数()y f x =在5,1212ππ⎡⎤-⎢⎣⎦单调递减B .函数()y f x =图象关于19,012π⎛⎫⎪⎝⎭中心对称C .将函数()y f x =的图象向左平移3π个单位得到函数()2sin 23g x x π⎛⎫=- ⎪⎝⎭的图象D .若()f x 在区间2,3a π⎡⎤⎢⎥⎣⎦上的值域为A ⎡-⎣,则实数a 的取值范围为133,122ππ⎡⎤⎢⎥⎣⎦【正确答案】AD【分析】根据图象可得函数的解析式,再根据整体法或代入法可判AB 的正误,利用图像变换可判断C 的正误,根据正弦函数的性质可判断D 的正误.【详解】由图象可得2A =,且37ππ3π41264T =+=,故πT =即2ω=,而7ππ22π,122k k Z ϕ⨯+=+∈,故2π2π,3k k Z ϕ=-+∈,因为ϕπ<,故2π3ϕ=-,故()2π2sin 23f x x ⎛⎫=- ⎪⎝⎭,对于A ,当5,1212x ππ⎡⎤∈-⎢⎣⎦,3π2ππ2232x -≤-≤-,而sin y t =在3ππ,22⎡⎤--⎢⎥⎣⎦上为减函数,故()f x 在5,1212ππ⎡⎤-⎢⎥⎣⎦为减函数,故A 正确.对于B ,1919π2π2sin 21263f π⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,故1912x π=为函数图象的对称轴,故B 错误.对于C ,将函数()y f x =的图象向左平移3π个单位得到函数2π2π2sin 22sin 233y x x ⎛⎫=+-= ⎪⎝⎭的图象,故C 错误.对于D ,当2,3x a π⎡⎤∈⎢⎥⎣⎦时,2π2π2π22333x a ≤-≤-,因为函数的值域为⎡-⎣,故3π2π7π2233a ≤-≤,故13π3π122a ≤≤,故D 正确.故选:AD.11.对x ∀∈R ,[]x 表示不超过x 的最大整数,如[]3.143=,[]0.6180=,[]2.718283-=-,我们把[]y x =,x ∈R 叫做取整函数,也称之为高斯( G aussian )函数,也有数学爱好者形象的称其为“地板函数”.早在十八世纪,人类史上伟大的数学家,哥廷根学派的领袖约翰·卡尔·弗里德里希·高斯(Johann Carl Friedrich G aussian )最先提及,因此而得名“高斯( G aussian )函数”.在现实生活中,这种“截尾取整”的高斯函数有着广泛的应用,如停车收费、 E XCEL 电子表格,在数学分析中它出现在求导、极限、定积分、级数等等各种问题之中.以下关于“高斯函数”的命题,其中是真命题有()A .R x ∀∈,[]x x ⎡⎤=⎣⎦B .,R ∃∈x y ,[][][]x y x y -<-C .,x y ∀∈R ,若[][]x y =,则1x y -<D .N n +∃∈,[][][]lg 2lg 3lg 93n +++= 【正确答案】BC【分析】根据高斯函数的定义,结合特值法,对每个选项进行逐一分析,即可判断和选择.【详解】对A :不妨取0.2x =-,则[]0.20x ⎡⎤==⎣⎦,而[]11x =-=,故A 错误;对B :不妨取3, 1.2x y ==,则[][]1.81x y -==,而[][]312x y -=-=,满足[][][]x y x y -<-,故B 正确;对C :因为[][]x y =,故可得,x y 同号;当0x y ==时,01x y -=<,满足题意;当,x y 同为正数或负数时,设,x a b y c d =+=+,其中,a c 和,b d 分别为,x y 的整数部分和小数部分,因为[][]x y =,则a c =,故x y b d -=-,又,b d 同为小数,且符号相同,故1b d -<,即1x y -<,则,x y ∀∈R ,若[][]x y =,则1x y -<,故C 正确;对D :令[]lg ,2,N y x x x +=≥∈,当210,N x x +≤<∈时,[]lg 0x =;当10100,N x x +≤<∈时,[]lg 1x =;当1001000,N x x +≤<∈时,[]lg 2x =;L当11010,N n n x x -+≤<∈时,[]lg 1x n =-.则当10100n ≤<时,[][][]lg 2lg3lg n +++ [][][][][][]lg 2lg3lg9lg10lg11lg 9n n =+++++++=- ;又9,10100,N y n n n +=-≤<∈为单调增函数,故99n =时,取得最大值90;当1001000n ≤<时,[][][]lg 2lg3lg n +++ [][][][][][]()lg 2lg3lg99lg100lg101lg 902992108n n n =++++++=+-=- ;不存在N n +∈使[][][]lg 2lg 3lg 93n +++= ,故D 错误.故选:BC.12.已知函数242()12,R f x x x x k k =--+-∈,则下列说法正确的是()A .R k ∃∈,使得函数()f x 有1个零点B .R k ∃∈,使得函数()f x 有2个零点C .R k ∃∈,使得函数()f x 有4个零点D .R k ∃∈,使得函数()f x 有8个零点【正确答案】BCD【分析】设21x t -=,[)0,t ∈+∞,21k t t =-+,画出函数图像,讨论54k >,54k =,514k <<,1k =,1k <几种情况,计算得到答案.【详解】242()120f x x x x k =--+-=,即24212k x x x =--+,设21x t -=,[)0,t ∈+∞,则24221t x x =-+,21k t t =-+,设()2215124g t t t t ⎛⎫++=-- ⎪⎭=+-⎝,图像如图所示:当54k >时,21k t t =-+无解,此时函数没有零点;当54k =时,12t =,即2112x -=,方程有4个解,函数有4个零点;当514k <<时,方程有两解,设为12,t t 且121012t t <<<<,211x t -=有4个解,221x t -=有4个解,故函数共有8个零点;当1k =时,0=t 或1t =,当0=t 时,210x -=有2个解;当1t =时,211x -=有3个解,故函数有5个零点;当1k <时,方程有1个解1t >,此时21x t -=有2个解,函数有2个零点.综上所述:函数可能有0,2,4,5,8个零点.故选:BCD 三、填空题13.对任意实数0a >且1a ≠,函数31x y a -=+的图象经过定点P ,且点P 在角θ的终边上,则πtan 4θ⎛⎫-= ⎪⎝⎭__________.【正确答案】15-##0.2-【分析】函数过定点()3,2P 得到2tan 3θ=,再利用和差公式计算得到答案.【详解】函数31x y a -=+的图象经过定点()3,2P ,点P 在角θ的终边上,故2tan 3θ=,21πtan 113tan 241tan 513θθθ--⎛⎫-===- ⎪+⎝⎭+.故15-14.已知函数()()2ln 23f x x x =-++,则()f x 的单调增区间为______.【正确答案】(]1,1-##(-1,1)【分析】先求定义域为()1,3-,再利用复合函数的单调性法则“同增异减”即可求得.【详解】因为2230x x -++>,解得:13x -<<,所以()()2ln 23f x x x =-++的定义域为()1,3-.令()222314t x x x =-++=--+,则ln y t =.要求()f x 的单调增区间,只需1x ≤.所以11x -<≤,所以()f x 的单调增区间为(]1,1-.故答案为.(]1,1-15.“R x ∃∈,210ax ax -+<”是假命题,则实数a 的取值范围为_________.【正确答案】04a ≤≤【分析】存在量词命题是假命题,则其否定全称量词命题是真命题,写出其全称量词命题,是一个二次不等式恒成立问题,分情况讨论,求a 的范围.【详解】由题意可知,“R x ∃∈,210ax ax -+<”的否定是真命题,即“R x ∀∈,210ax ax +≥-”是真命题,当0a =时,10≥,不等式显然成立,当0a ≠时,由二次函数的图像及性质可知,2Δ40a a a >⎧⎨=-≤⎩,解得04a <≤,综上,实数a 的取值范围为04a ≤≤.故答案为.04a ≤≤16.已知函数()sin()f x x ωϕ=+,其中0ω>,0πϕ<<,π()()4f x f ≤恒成立,且()y f x =在区间3π0,8⎛⎫ ⎪⎝⎭上恰有3个零点,则ω的取值范围是______________.【正确答案】()6,10【分析】确定函数的max π()()4f x f =,由此可得ππ2π,Z 24k k ωϕ=-+∈,再利用()y f x =在区间3π0,8⎛⎫ ⎪⎝⎭上恰有3个零点得到ππ02ππ243πππ3π2π4π824k k ωωω⎧<-+<⎪⎪⎨⎪<+-+≤⎪⎩,求得答案.【详解】由已知得:π()()4f x f ≤恒成立,则max π()()4f x f =,ππππ2π,Z 2π,Z 4224k k k k ωωϕϕ+=+∈⇒=-+∈,由3π0,8x ⎛⎫∈ ⎪⎝⎭得3π(,)8x ωϕϕωϕ+∈+,由于()y f x =在区间3π0,8⎛⎫⎪⎝⎭上恰有3个零点,故0π3π3π4π8ϕωϕ<<⎧⎪⎨<+≤⎪⎩,则ππ02ππ243πππ3π2π4π824k k ωωω⎧<-+<⎪⎪⎨⎪<+-+≤⎪⎩,Z k ∈,则8282,Z 20162816k k k k k ωω-<<+⎧∈⎨-<≤-⎩,只有当1k =时,不等式组有解,此时610412ωω<<⎧⎨<≤⎩,故610ω<<,故()6,10四、解答题17.集合1121x A xx +⎧⎫=≥⎨⎬-⎩⎭,{}22240B x x ax a =-+-<.(1)若{}23,4,23C a a =+-,()0B C ∈ ,求实数a 的值;(2)若()R A B ⋂=∅ð,求实数a 的取值范围【正确答案】(1)1;(2)5(0,2【分析】(1)根据集合交集的性质进行求解即可;(2)根据分式不等式的解法,结合补集和交集的性质进行求解即可.【详解】(1)因为()0B C ∈ ,所以0C ∈,且0B ∈,由0C ∈,可得2230a a +-=,解得:1a =或3a =-.由0B ∈,所以2202040a a -⨯+-<得22a -<<;∴实数a 的值为1;(2)集合12110221212x x A xx x x x x +-⎧⎫⎧⎫⎧⎫=≥=≥=<≤⎨⎬⎨⎬⎨⎬--⎩⎭⎩⎭⎩⎭∣∣∣.集合{}22240{22}B x x ax a x a x a =-+-<=-<<+∣∣.由()R A B ⋂=∅⇒ð12222a a ⎧-≤⎪⎨⎪+>⎩,解得502a <≤,所以实数a 的取值范围为5(0,]2.18.已知函数()2f x ax bx =-.(1)若()f x c ≥的解集为{}32x x -≤≤,求不等式20bx ax c ++≤的解集;(2)若0a >,0b >且()12f -=,20a b mab +-≥恒成立,求m 的最小值.【正确答案】(1){}23xx -≤≤∣(2)(132+【分析】(1)根据题中条件可知0<a ,根据解集可知二次方程20ax bx c --=的两根为123,2x x =-=,再根据韦达定理找到a 、b 、c 三者之间的关系,由此解出不等式.(2)根据题意可知a 、b 之间的关系,再将20a b mab +-≥分离参数,利用基本不等式即可求出答案.【详解】(1)由题设知0<a 且20ax bx c --=的两根为123,2x x =-=所以12121,6b c x x x x a a-+==-==-,可得:,6b a c a =-=2260bx ax c ax ax a ++=-++≤可化为:260x x --≤,解得:23x -≤≤,所以不等式20bx ax c ++≤的解集为{}23xx -≤≤∣(2)0,0a b >>且()122f a b -=⇒+=,20a b mab +-≥,则12m a b≤+恒成立,()(11212133222a b a b a b b a ⎛⎫⎛⎫++=++≥+ ⎪⎪⎝⎭⎝⎭,当且仅当b =,2a b +=,即)214a b ⎧=-⎪⎨⎪=-⎩时,“=”成立,(132m ∴≤+19.已知()π1πsin cos sin 23234f x x x x ⎛⎫=++⎛⎫ ⎪⎝⎭+- ⎪⎝⎭.(1)求()f x 的单调递增区间;(2)当π5π,66x ⎡⎤∈⎢⎣⎦时,关于x 的不等式1ππ22612a x f f x --⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎭+≥⎝有解,求实数a 的取值范围.【正确答案】(1)π5ππ,π,Z1212k k k ⎡⎤-++∈⎢⎥⎣⎦(2)1a ≥【分析】(1)根据三角恒等变换得到()πsin 23f x x ⎛⎫=+ ⎪⎝⎭,再计算πππ2π22π232k x k -≤+≤+得到答案.(2)化简得到sin cos22a x x -≥,即2cos2sin x a x +≥有解,令1sin ,,12t x t ⎡⎤=∈⎢⎥⎣⎦,根据函数的单调性计算最小值得到范围.【详解】(1)()111cos sin sin2222f x x x x x x ⎛⎫⎛⎫=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭11cos21sin2sin2424x x x x +=++1πsin2sin 223x x x ⎛⎫=+=+ ⎪⎝⎭令2π22π,Z π23π2πk x k k -≤+≤+∈,解得5ππππ,Z 1212k x k k -≤≤+∈所以单调递增区间为π5ππ,π,Z 1212k k k ⎡⎤-++∈⎢⎥⎣⎦.(2)1sin cos222612ππaf x f x a x x ⎛⎫⎛⎫--+=-≥ ⎪ ⎪⎝⎭⎝⎭,π5π,66x ⎡⎤∈⎢⎥⎣⎦,sin 0x >,即2cos2sin xa x +≥有解,只需要min2cos2sin x a x +⎛⎫≥ ⎪⎝⎭即可,22cos232sin 32sin sin sin sin x x x x x x +-==-,令13sin ,,1,22t x t y t t ⎡⎤=∈=-⎢⎥⎣⎦为减函数,所以当1t =时,min 1y =,所以1a ≥.20.已知函数()e e x x f x a -=+是偶函数,其中e 是自然对数的底数.(1)求a 的值;(2)若关于x 的不等式()+e 10x f x m m ---≥在[)ln3,+∞上恒成立,求实数m 的取值范围.【正确答案】(1)1a =(2)7,2⎛⎤-∞ ⎥⎝⎦【分析】(1)由函数()f x 是偶函数,即得()()f x f x -=,可求出a ;(2)由e e e 10x x x m m --++--恒成立,可分参转化,令e 1x t -=,则e 1x t =+,11m t t≤++,然后利用基本不等式求出右边的最小值即可.【详解】(1)∵函数e e x x f x a -=+()是偶函数,∴f x f x -=()(),即e e e e x x x x a a --+=+,()()1e e 0x x a ---=恒成立∴1a =(2)由题意,知e e e 10x x x m m --++--≥在[ln3∞+,)上恒成立,则e e 11e x x x m --+--(),即2e 1e e 1x x x m--+(),∴2e e 1e 1x x x m -+≤-令e 1x t -=,则e 1x t =+.ln3e 12x x t ≥∴=-≥ ∴22111111t t t t m t t t t+-++++≤==++()().min 11m t t ⎛⎫≤++ ⎪⎝⎭∵11t t ++在[2∞+,)上单调递增,当且仅当t =2时,取11t t ++到最小值72.∴72m ≤.∴m 的范围是7,2⎛⎤-∞ ⎥⎝⎦.21.2020年一场突如其来的疫情让亿万中华儿女的心再一次凝结在一起,为控制疫情,让广大发热患者得到及时有效的治疗,武汉市某社区决定临时修建一个医院.医院设计平面图如图所示:矩形ABCD 中,400AB =米,300BC =米,图中DMN 区域为诊断区(M 、N 分别在BC 和AB 边上),ADN △、CDM V 及BMN 区域为治疗区.受诊断区医疗设备的实际尺寸影响,要求MDN ∠的大小为4π.(1)若按照200AN CM ==米的方案修建医院,问诊断区是否符合要求?(2)按照疫情现状,病人仍在不断增加,因此需要治疗区的面积尽可能的大,以便于增加床位,请给出具体的修建方案使得治疗区面积S 最大,并求出最大值.【正确答案】(1)不符合要求(2)按照tan 218ADN ADN π⎛⎫∠=-∠= ⎪⎝⎭修建,治疗区面积最大,最大值为2400001200002-(平方米)【分析】(1)依题意求()tan ADN CDM ∠+∠即可判断.(2)设ADN θ∠=,用θ表示诊疗区域的面积ADN BMN CDM S S S S =++△△△即可.【详解】(1)当200AN CM ==时,2tan 3ADN ∠=,1tan 2CDM ∠=所以()21732tan 1214132ADN CDM +∠+∠==≠-⋅因此诊断区不符合要求(2)设ADN θ∠=,则4CDM πθ∠=-,1tan ,17θ⎛⎫∈ ⎪⎝⎭()()11502004003002ADN BMN CDM S S S S AN CM AN CM =++=++--△△△1600002AN CM =⋅+在ADN △中,tan ANADθ=,300tan AN θ=在CDM V 中,tan 4CM CD πθ⎛⎫=- ⎪⎝⎭,400tan 4CM πθ⎛⎫=- ⎪⎝⎭,所以160000tan tan 6000060000141t S t t πθθ-⎛⎫⎛⎫=-+=⋅+ ⎪ ⎪+⎝⎭⎝⎭260000141t t ⎛⎫=-++- ⎪+⎝⎭,其中1tan ,17t θ⎛⎫=∈ ⎪⎝⎭,所以240000S ≤-211t t +=+即1t =取等号故按照tan 18ADN ADN π⎛⎫∠=∠= ⎪⎝⎭修建,治疗区面积最大,最大值为240000-米).22.若函数()y T x =对定义域内的每一个值1x ,在其定义域内都存在2x ,使()()121T x T x ⋅=成立,则称该函数为“圆满函数”.已知函数()sin,()224x x f x x g x π-==-;(1)判断函数()y f x =是否为“圆满函数”,并说明理由;(2)设2()log ()h x x f x =+,证明:()h x 有且只有一个零点0x ,且05sin 46xg π⎛⎫< ⎪⎝⎭.【正确答案】(1)不是“圆满函数”,理由见解析;(2)证明见解析.(1)取特殊值123x =,代入“圆满函数”的定义,判断是否有实数2x 能满足22sin()sin 1434x ππ⎛⎫⋅⋅⋅= ⎪⎝⎭;(2)当(]0,2x ∈时,利用零点存在性定理讨论存在零点,以及当()2,x ∈+∞时,证明()h x 在()2,∞+上没有零点,再化简0sin 4x g π⎛⎫ ⎪⎝⎭,转化为证明不等式00156x x -<.【详解】解:(1)若()sin 4f x x π=是“圆满函数”.取123x =,存在2x R ∈,使得()()121f x f x =,即2sinsin 164x ππ⋅=,整理得2sin 24x π=,但是2sin 14x π≤,矛盾,所以()y f x =不是“圆满函数”.(2)易知函数()2log sin4h x x x π=+的图象在()0+∞,上连续不断.①当(]0,2x ∈时,因为2log y x =与sin 4y x π=在(]0,2上单调递增,所以()h x 在(]0,2上单调递增.因为22222212log sin log log 0336323h π⎛⎫=+==< ⎪⎝⎭,()1sin 04h π=>,所以()2103h h ⎛⎫< ⎪⎝⎭.根据函数零点存在定理,存在02,13x ⎛⎫∈ ⎪⎝⎭,使得()00h x =,所以()h x 在(]0,2上有且只有一个零点0x .②当()2,x ∈+∞时,因为2log y x =单调递增,所以22log log 21y x =>=,因为sin 14y x π=≥-.所以()110h x >-=,所以()h x 在()2,∞+上没有零点.综上:()h x 有且只有一个零点0x .因为()0020log sin 04x h x x π=+=,即020sinlog 4x x π=-,所以()2020log log 020001sinlog 224x x x g g x x x π-⎛⎫=-=-=- ⎪⎝⎭,02,13x ⎛⎫∈ ⎪⎝⎭.因为1y x x =-在2,13⎛⎫⎪⎝⎭上单调递减,所以001325236x x -<-=,所以05sin 46x g π⎛⎫< ⎪⎝⎭.关键点点睛:本题第二问的关键是根据零点存在性定理先说明零点存在,并且存在02,13x ⎛⎫∈ ⎪⎝⎭,使得()00h x =,再利用020sin log 4x x π=-,化简()020sin log 4x g g x π⎛⎫=- ⎪⎝⎭,利用02,13x ⎛⎫∈ ⎪⎝⎭,利用函数的最值证明不等式..。

2020-2021石家庄市石门实验学校高一数学上期中第一次模拟试题(带答案)

2020-2021石家庄市石门实验学校高一数学上期中第一次模拟试题(带答案)

2020-2021石家庄市石门实验学校高一数学上期中第一次模拟试题(带答案)一、选择题1.在下列区间中,函数()43xf x e x =+-的零点所在的区间为( )A .1,04⎛⎫-⎪⎝⎭B .10,4⎛⎫ ⎪⎝⎭C .11,42⎛⎫⎪⎝⎭D .13,24⎛⎫⎪⎝⎭2.设0.13592,ln ,log 210a b c ===,则,,a b c 的大小关系是 A .a b c >>B .a c b >>C .b a c >>D .b c a >>3.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-≤≤⋂=Z ,则A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,, 4.设()(),0121,1x x f x x x ⎧<<⎪=⎨-≥⎪⎩,若()()1f a f a =+,则1f a ⎛⎫= ⎪⎝⎭( ) A .2B .4C .6D .85.1()xf x e x=-的零点所在的区间是( ) A .1(0,)2B .1(,1)2C .3(1,)2D .3(,2)26.若函数()(1)(0xxf x k a a a -=-->且1a ≠)在R 上既是奇函数,又是减函数,则()log ()a g x x k =+的图象是( )A .B .C .D .7.设函数22,()6,x x x af x ax x a⎧--≥⎪=⎨-<⎪⎩是定义在R 上的增函数,则实数a 取值范围( )A .[)2,+∞B .[]0,3C .[]2,3D .[]2,48.函数2()ln(28)f x x x =--的单调递增区间是 A .(,2)-∞- B .(,1)-∞ C .(1,)+∞D .(4,)+∞9.若0.23log 2,lg0.2,2a b c ===,则,,a b c 的大小关系为A .c b a <<B . b a c <<C . a b c <<D .b c a <<10.已知函数(),1log ,1x aa x f x x x ⎧≤=⎨>⎩(1a >且1a ≠),若()12f =,则12f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭( )A .1-B .12- C .12 D .211.已知0.80.820.7,log 0.8, 1.1a b c ===,则,,a b c 的大小关系是( )A .a b c <<B .b a c <<C .a c b <<D .b c a <<12.已知奇函数()f x 在R 上是增函数,若21log 5a f ⎛⎫=- ⎪⎝⎭,()2log 4.1b f =,()0.82c f =,则,,a b c 的大小关系为( )A .a b c <<B .b a c <<C .c b a <<D .c a b <<二、填空题13.已知函数21,1()()1a x x f x x a x ⎧-+≤=⎨->⎩,函数()2()g x f x =-,若函数()()y f x g x =-恰有4个不同的零点,则实数a 的取值范围为______. 14.函数()22()log 23f x x x =+-的单调递减区间是______.15.幂函数y=x α,当α取不同的正数时,在区间[0,1]上它们的图像是一族美丽的曲线(如图).设点A (1,0),B (0,1),连接AB ,线段AB 恰好被其中的两个幂函数y=x α,y=x β的图像三等分,即有BM=MN=NA ,那么,αβ等于_____.16.已知函数2()121()f x ax x ax a R =+++-∈的最小值为0,则实数a =_________. 17.已知函数()f x 是定义在 R 上的奇函数,且当0x >时,()21xf x =-,则()()1f f -的值为______.18.已知函数1)4f x +=-,则()f x 的解析式为_________. 19.已知a >b >1.若log a b+log b a=52,a b =b a ,则a= ,b= . 20.若点12,2⎛⎫ ⎪⎝⎭)既在()2ax b f x +=图象上,又在其反函数的图象上,则a b +=____三、解答题21.已知函数()()221+0g x ax ax b a =-+>在区间[2,3]上有最大值4和最小值1.(1)求a 、b 的值; (2)设()()2g x f x x =-,若不等式()0f x k ->在x ∈(]2,5上恒成立,求实数k 的取值范围.22.设()4f x x x=-(1)讨论()f x 的奇偶性;(2)判断函数()f x 在()0,∞+上的单调性并用定义证明. 23.已知定义域为R 的函数12()22x x bf x +-+=+是奇函数. (1)求b 的值;(2)判断函数()f x 的单调性,并用定义证明;(3)当1,32x ⎡⎤∈⎢⎥⎣⎦时,()2(21)0f kx f x +->恒成立,求实数k 的取值范围.24.已知幂函数2242()(22)m m f x m m x -+=--在(0,)+∞上单调递减.(1)求m 的值并写出()f x 的解析式;(2)试判断是否存在0a >,使得函数()(21)1()ag x a x f x =--+在[1,2]-上的值域为 [4,11]-?若存在,求出a 的值;若不存在,请说明理由.25.已知函数24,02()(2)2,2x x f x x x a x a x ⎧-<≤⎪=⎨⎪-++->⎩,其中a 为实数.(1)若函数()f x 为定义域上的单调函数,求a 的取值范围.(2)若7a <,满足不等式()0f x a ->成立的正整数解有且仅有一个,求a 的取值范围.26.已知全集U ={1,2,3,4,5,6,7,8},A ={x |x 2-3x +2=0},B ={x |1≤x ≤5,x ∈Z},C ={x |2<x <9,x ∈Z}.求(1)A ∪(B ∩C );(2)(∁U B )∪(∁U C ).【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】先判断函数()f x 在R 上单调递增,由104102f f ⎧⎛⎫< ⎪⎪⎪⎝⎭⎨⎛⎫⎪> ⎪⎪⎝⎭⎩,利用零点存在定理可得结果.【详解】因为函数()43xf x e x =+-在R 上连续单调递增,且114411221143204411431022f e e f e e ⎧⎛⎫=+⨯-=-<⎪ ⎪⎪⎝⎭⎨⎛⎫⎪=+⨯-=-> ⎪⎪⎝⎭⎩, 所以函数的零点在区间11,42⎛⎫⎪⎝⎭内,故选C. 【点睛】本题主要考查零点存在定理的应用,属于简单题.应用零点存在定理解题时,要注意两点:(1)函数是否为单调函数;(2)函数是否连续.2.A解析:A 【解析】 试题分析:,,即,,.考点:函数的比较大小.3.B解析:B【解析】试题分析:依题意{}{}2,1,0,1,1,0,1,2,3,M N =--=-∴{}1,0,1M N ⋂=-. 考点:集合的运算4.C解析:C 【解析】由1x ≥时()()21f x x =-是增函数可知,若1a ≥,则()()1f a f a ≠+,所以01a <<,由()(+1)f a f a =2(11)a =+-,解得14a =,则1(4)2(41)6f f a ⎛⎫==-= ⎪⎝⎭,故选C. 【名师点睛】求分段函数的函数值,首先要确定自变量的范围,然后选定相应关系式,代入求解;当给出函数值或函数值的取值范围求自变量的值或自变量的取值范围时,应根据每一段解析式分别求解,但要注意检验所求自变量的值或取值范围是否符合相应段的自变量的值或取值范围.5.B解析:B 【解析】函数f (x )=e x ﹣1x 是(0,+∞)上的增函数,再根据f (12)2<0,f (1)=e ﹣1>0,可得f (12)f (1)<0,∴函数f (x )=e x ﹣1x 的零点所在的区间是(12,1),故选B .点睛:判定函数的零点所在区间,只需计算区间端点处的函数值,并判断是否异号,只要异号,则区间内至少有一个零点存在.6.A解析:A 【解析】 【分析】由题意首先确定函数g (x )的解析式,然后结合函数的解析式即可确定函数的图像. 【详解】∵函数()(1)xxf x k a a -=--(a >0,a ≠1)在R 上是奇函数,∴f (0)=0,∴k =2, 经检验k =2满足题意, 又函数为减函数, 所以01a <<, 所以g (x )=log a (x +2)定义域为x >−2,且单调递减, 故选A . 【点睛】本题主要考查对数函数的图像,指数函数的性质,函数的单调性和奇偶性的应用等知识,意在考查学生的转化能力和计算求解能力.7.D解析:D 【解析】 【分析】画出函数22yx x =--的图象,结合图象及题意分析可得所求范围. 【详解】画出函数22y x x =--的图象如下图所示,结合图象可得,要使函数()22,,6,,x x x a x ax x a ⎧--≥⎪=⎨-<⎪⎩是在R 上的增函数,需满足22226a a a a ≥⎧⎨--≥-⎩,解得24x ≤≤.所以实数a 取值范围是[]2,4. 故选D . 【点睛】解答本题的关键有两个:(1)画出函数的图象,结合图象求解,增强了解题的直观性和形象性;(2)讨论函数在实数集上的单调性时,除了考虑每个段上的单调性之外,还要考虑在分界点处的函数值的大小关系.8.D解析:D 【解析】由228x x -->0得:x ∈(−∞,−2)∪(4,+∞), 令t =228x x --,则y =ln t ,∵x ∈(−∞,−2)时,t =228x x --为减函数; x ∈(4,+∞)时,t =228x x --为增函数; y =ln t 为增函数,故函数f (x )=ln(228x x --)的单调递增区间是(4,+∞), 故选D.点睛:形如()()y f g x =的函数为()y g x =,()y f x =的复合函数,() y g x =为内层函数,()y f x =为外层函数. 当内层函数()y g x =单增,外层函数()y f x =单增时,函数()()y f g x =也单增; 当内层函数()y g x =单增,外层函数()y f x =单减时,函数()()y f g x =也单减; 当内层函数()y g x =单减,外层函数()y f x =单增时,函数()()y f g x =也单减; 当内层函数()y g x =单减,外层函数()y f x =单减时,函数()()y f g x =也单增.简称为“同增异减”.9.B解析:B 【解析】 【分析】由对数函数的单调性以及指数函数的单调性,将数据与0或1作比较,即可容易判断. 【详解】由指数函数与对数函数的性质可知,a =()3log 20,1,b ∈=lg0.20,c <=0.221>,所以b a c <<,故选:B. 【点睛】本题考查利用指数函数和对数函数的单调性比较大小,属基础题.10.C解析:C 【解析】 【分析】由()12f =,求得2a =,得到函数的解析式,进而可求解1(())2f f 的值,得到答案. 【详解】由题意,函数(),1(1log ,1x a a x f x a x x ⎧≤=>⎨>⎩且1)a ≠,()12f =, 所以()12f a ==,所以()22,1(1log ,1x x f x a x x ⎧≤=>⎨>⎩且1)a ≠,所以121()22f ==所以211(())log 22f f f ===,故选C .【点睛】本题主要考查了函数解析式的求解,以及函数值的运算问题,其中解答中根据题意准确求得函数的解析式,合理利用解析式求解是解答的关键,着重考查了运算与求解能力,属于基础题.11.B解析:B 【解析】 【分析】根据指数函数的单调性以及对数函数的单调性分别判断出a b c 、、的取值范围,从而可得结果. 【详解】0.8000.70.71a <=<=Q ,22log 0.8log 10b =<=, 0.801.1 1.11c =>=,b ac ∴<<,故选B. 【点睛】本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于难题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间 );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.12.C解析:C 【解析】由题意:()221log log 55a f f ⎛⎫=-= ⎪⎝⎭, 且:0.822log 5log 4.12,122>><<,据此:0.822log 5log 4.12>>,结合函数的单调性有:()()()0.822log 5log 4.12f f f >>,即,a b c c b a >><<. 本题选择C 选项.【考点】 指数、对数、函数的单调性【名师点睛】比较大小是高考常见题,指数式、对数式的比较大小要结合指数函数、对数函数,借助指数函数和对数函数的图象,利用函数的单调性进行比较大小,特别是灵活利用函数的奇偶性和单调性数形结合不仅能比较大小,还可以解不等式.二、填空题13.【解析】【分析】由函数把函数恰有个不同的零点转化为恰有4个实数根列出相应的条件即可求解【详解】由题意函数且函数恰有个不同的零点即恰有4个实数根当时由即解得或所以解得;当时由解得或所以解得综上可得:实 解析:(]2,3【解析】 【分析】由函数()2()g x f x =-,把函数()()y f x g x =-恰有4个不同的零点,转化为()1f x =恰有4个实数根,列出相应的条件,即可求解. 【详解】由题意,函数()2()g x f x =-,且函数()()y f x g x =-恰有4个不同的零点, 即()1f x =恰有4个实数根,当1x ≤时,由11a x -+=,即110x a +=-≥,解得2=-x a 或x a =-,所以2112a a a a -≤⎧⎪-≤⎨⎪-≠-⎩,解得13a <?;当1x >时,由2()1x a -=,解得1x a =-或1x a =+,所以1111a a ->⎧⎨+>⎩,解得2a >,综上可得:实数a 的取值范围为(]2,3. 【点睛】本题主要考查了函数与方程的应用,其中解答中利用条件转化为()1f x =,绝对值的定义,以及二次函数的性质求解是解答的关键,着重考查了数形结合思想,以及推理与计算能力,属于中档试题.14.【解析】设()因为是增函数要求原函数的递减区间只需求()的递减区间由二次函数知故填解析:()-3∞-,【解析】设2log y t =,223t x x =+-,(0t >)因为2log y t =是增函数,要求原函数的递减区间,只需求223t x x =+-(0t >)的递减区间,由二次函数知(,3)x ∈-∞-,故填(,3)x ∈-∞-.15.【解析】【分析】由条件得MN 则结合对数的运算法则可得αβ=1【详解】由条件得MN 可得即α=loβ=lo 所以αβ=lo·lo=1【点睛】本题主要考查幂函数的性质对数的运算法则及其应用等知识意在考查学生解析:【解析】 【分析】由条件,得M 12,33⎛⎫ ⎪⎝⎭,N 21,33⎛⎫ ⎪⎝⎭,则1221,3333αβ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,结合对数的运算法则可得αβ=1.【详解】 由条件,得M 12,33⎛⎫ ⎪⎝⎭,N 21,33⎛⎫⎪⎝⎭, 可得1221,3333αβ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,即α=lo 2313g ,β=lo 1323g . 所以αβ=lo 2313g ·lo 1312233·21333lglg g lg lg ==1. 【点睛】本题主要考查幂函数的性质,对数的运算法则及其应用等知识,意在考查学生的转化能力和计算求解能力.16.【解析】【分析】设计算可得再结合图象即可求出答案【详解】解:设则则由于函数的最小值为0作出函数的大致图象结合图象得所以故答案为:【点睛】本题主要考查分段函数的图象与性质考查转化思想考查数形结合思想属 解析:±1. 【解析】 【分析】设2()()1()()21g x h x ax g x h x x ax +=+⎧⎨-=+-⎩,计算可得2(),()()()2(),()()g x g x h x f x h x g x h x ≥⎧=⎨<⎩,再结合图象即可求出答案. 【详解】解:设2()()1()()21g x h x ax g x h x x ax +=+⎧⎨-=+-⎩,则22()()1g x x ax h x x ⎧=+⎨=-⎩, 则()()()()()f x g x h x g x h x =++-2(),()()2(),()()g x g x h x h x g x h x ≥⎧=⎨<⎩,由于函数()f x 的最小值为0,作出函数()g x ,()h x 的大致图象,结合图象,210x -=,得1x =±,所以1a =±,故答案为:±1.【点睛】本题主要考查分段函数的图象与性质,考查转化思想,考查数形结合思想,属于中档题.17.【解析】由题意可得:解析:1-【解析】由题意可得:()()()()()111,111f f f f f -=-=--=-=-18.【解析】【分析】利用换元法求解析式即可【详解】令则故故答案为【点睛】本题考查函数解析式的求法换元法是常见方法注意新元的范围是易错点 解析:2()23(1)f x x x x =--≥【解析】【分析】利用换元法求解析式即可【详解】 令11t x =≥,则()21x t =-故()()214f t t =--=223(1)t t t --≥故答案为2()23(1)f x x x x =--≥【点睛】本题考查函数解析式的求法,换元法是常见方法,注意新元的范围是易错点 19.【解析】试题分析:设因为因此【考点】指数运算对数运算【易错点睛】在解方程时要注意若没注意到方程的根有两个由于增根导致错误解析:42【解析】试题分析:设log ,1b a t t =>则,因为21522t t a b t +=⇒=⇒=, 因此22222, 4.b a b b a b b b b b b a =⇒=⇒=⇒==【考点】指数运算,对数运算. 【易错点睛】在解方程5log log 2a b b a +=时,要注意log 1b a >,若没注意到log 1b a >,方程5log log 2a b b a +=的根有两个,由于增根导致错误 20.【解析】【分析】由点在函数的反函数的图象上可得点在函数的图象上把点与分别代入函数可得关于的方程组从而可得结果【详解】点在函数的反函数的图象上根据反函数与原函数的对称关系点在函数的图象上把点与分别代入 解析:13【解析】【分析】 由点12,2⎛⎫ ⎪⎝⎭在函数2ax b y +=的反函数的图象上,可得点1,22⎛⎫ ⎪⎝⎭在函数2ax b y +=的图象上, 把点12,2⎛⎫ ⎪⎝⎭与1,22⎛⎫ ⎪⎝⎭分别代入函数2ax b y +=,可得关于,a b 的方程组,从而可得结果. 【详解】 Q 点12,2⎛⎫⎪⎝⎭在函数2ax b y +=的反函数的图象上,根据反函数与原函数的对称关系, ∴点1,22⎛⎫ ⎪⎝⎭在函数2ax b y +=的图象上, 把点12,2⎛⎫ ⎪⎝⎭与1,22⎛⎫ ⎪⎝⎭分别代入函数2ax b y +=可得, 21a b +=-,①112a b +=,② 解得45,33a b =-=,13a b +=,故答案为13. 【点睛】本题主要考查反函数的定义与性质,意在考查灵活应用所学知识解答问题的能力,属于中档题. 三、解答题21.(1)1,0a b ==;(2)4k <.【解析】【分析】(1)函数()g x 的对称轴方程为1x =,开口向上,则在[]2,3上单调递增,则可根据最值列出方程,可解得,a b 的值.(2)由题意只需()min k f x <,则只需要求出()f x 在(]2,5上的最小值,然后运用基本不等式求最值即可.【详解】解:(1)()g x Q 开口方向向上,且对称轴方程为 1x =,()g x ∴在[]2,3上单调递增()()()()min max 2441139614g x g a a b g x g a a b ⎧==-++=⎪∴⎨==-++=⎪⎩. 解得1a =且0b =.(2)()0f x k ->Q 在(]2,5x ∈上恒成立所以只需()min k f x <.有(1)知()221112224222x x f x x x x x x -+==+=-++≥=--- 当且仅当122x x -=-,即3x =时等号成立. 4k ∴<.【点睛】本题考查二次函数的最值的求法,注意讨论对称轴和区间的位置关系,考查不等式恒成立问题的解法,注意运用参数分离和基本不等式的应用,属于中档题.22.(1)奇函数(2)()f x 在()0,+∞上是增函数,证明见解析.【解析】【分析】(1)分别确定函数的定义域和()f x 与()f x -的关系即可确定函数的奇偶性;(2)()12,0,x x ∀∈+∞,且12x x <,通过讨论()()12f x f x -的符号决定()1f x 与()2f x 的大小,据此即可得到函数的单调性.【详解】(1)()4f x x x=-的定义域为0x ≠,()()()44f x x x f x x x ⎛⎫-=--=--=- ⎪-⎝⎭,()4f x x x ∴=-是奇函数. (2)()12,0,x x ∀∈+∞,且12x x <,()()()()()()121212122112121212124444441f x f x x x x x x x x x x x x x x x x x x x ⎛⎫⎛⎫⎛⎫-=---=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭-⎛⎫=-+=-+ ⎪⎝⎭ ∵()1212,0,,x x x x ∈+∞<,121240,10x x x x ∴-+, ()1212410x x x x ⎛⎫∴-+< ⎪⎝⎭, ()()12f x f x <. ∴Q ()f x 在()0,+∞上是增函数.【点睛】本题主要考查函数的奇偶性,函数的单调性的证明等知识,意在考查学生的转化能力和计算求解能力.23.(1) 1b = (2) 减函数,证明见解析;(3) (,1)-∞-.【解析】【分析】(1)利用奇函数的性质令(0)0f =,求解b 即可.(2)利用函数的单调性的定义证明即可.(3)利用函数是奇函数以及函数的单调性转化不等式为代数形式的不等式,求解即可.【详解】(1)∵()f x 在定义域R 上是奇函数,所以(0)0f =,即102b a-+=+,∴1b =, 经检验,当1b =时,原函数是奇函数.(2)()f x 在R 上是减函数,证明如下:由(1)知11211()22221x x x f x +-==-+++, 任取12,x x R ∈,设12x x <,则()()()()12211221112221212121x x x x x x f x f x --=-=++++, ∵函数2x y =在R 上是增函数,且12x x <,∴12220x x -<,又()()1221210x x ++>,∴()()210f x f x -<,即()()21f x f x <,∴函数()f x 在R 上是减函数.(3)因()f x 是奇函数,从而不等式()2(21)0f kx f x +->等价于()2(21)f kx f x >--,由(2)知()f x 在R 上是减函数,由上式推得212kx x <-, 即对任意1,32x ⎡⎤∈⎢⎥⎣⎦,有212x k x -<恒成立, 由2212112x x x x -⎛⎫=-⋅ ⎪⎝⎭, 令1t x =,1,23t ⎡⎤∈⎢⎥⎣⎦,则可设2()2g t t t =-,1,23t ⎡⎤∈⎢⎥⎣⎦, ∴min ()(1)1g t g ==-,∴1k <-,即k 的取值范围为(,1)-∞-.【点睛】本题考查函数的单调性以及函数的奇偶性的应用,考查函数与方程的思想,是中档题.24.(1)1()f x x -=;(2)存在,6a =.【解析】【分析】(1)由幂函数的定义和单调性,可得关于m 的方程与不等式;(2)由(1)得1()f x x -=,从而得到()(1)1g x a x =-+,再对1a -的取值进行分类讨论. 【详解】(1)因为幂函数2242()(22)m m f x m m x -+=--在(0,)+∞上单调递减,所以22221,420,m m m m ⎧--=⎨-+<⎩解得:3m =或1m =-(舍去), 所以1()f x x -=.(2)由(1)得1()f x x -=,所以()(1)1g x a x =-+,假设存在0a >使得命题成立,则当10a ->时,即1a >,()g x 在[1,2]-单调递增,所以(1)4,114,6(2)11,22111,g a a g a -=--+=-⎧⎧⇒⇒=⎨⎨=-+=⎩⎩; 当10a -=,即1a =,()1g x =显然不成立;当10a -<,即1a <,()g x 在[1,2]-单调递减,所以(1)11,1111,(2)4,2214,g a g a -=-+=⎧⎧⇒⎨⎨=--+=-⎩⎩a 无解; 综上所述:存在6a =使命题成立.【点睛】本题考查幂函数的概念及解析式、已知一次函数的定义域、值域求参数的取值范围,考查逻辑推理能力和运算求解能力,同时注意分类讨论思想的运用,讨论时要以一次函数的单调性为分类标准.25.(1)2a ≤(2)03a ≤<【解析】【分析】(1)分析当02x <≤时的单调性,可得2x >的单调性,由二次函数的单调性,可得a 的范围;(2)分别讨论当0a <,当02a ≤≤时,当23a <<时,当37a ≤<,结合函数的单调性和最值,即可得到所求范围.【详解】(1)由题意,当02x <≤时,4()f x x x =-为减函数, 当2x >时,()()222f x x a x a =-++-,若2a ≤时,()()222f x x a x a =-++-也为减函数,且()()20f x f <=, 此时函数()f x 为定义域上的减函数,满足条件;若2a >时,()()222f x x a x a =-++-在22,2a +⎛⎫ ⎪⎝⎭上单调递增,则不满足条件. 综上所述,2a ≤.(2)由函数的解析式,可得()()13, 20f f ==,当0a <时,()()20, 13f a f a =>=>,不满足条件;当02a ≤≤时,()f x 为定义域上的减函数,仅有()13f a =>成立,满足条件; 当23a <<时,在02x <≤上,仅有()13f a =>,对于2x >上,()f x 的最大值为22(2)1244a a f a +-⎛⎫=≤< ⎪⎝⎭, 不存在x 满足()0f x a ->,满足条件;当37a ≤<时,在02x <≤上,不存在整数x 满足()0f x a ->,对于2x >上,22(2)(4)123444a a a ----=<-, 不存在x 满足()0f x a ->,不满足条件;综上所述,03a ≤<.【点睛】本题主要考查了分段函数的运用,以及函数的单调性的判断和不等式有解问题,其中解答中熟练应用函数的单调性,以及把函数的有解问题转化为函数的最值问题是解答的关键,着重考查了分类讨论思想,以及推理与运算能力,属于中档题.26.(1)A ∪(B ∩C )={1,2,3,4,5}.(2)(∁U B )∪(∁U C )={1,2,6,7,8}.【解析】试题分析:(1)先求集合A,B,C;再求B∩C,最后求A∪(B∩C)(2)先求∁U B,∁U C;再求(∁U B)∪(∁U C).试题解析:解:(1)依题意有:A={1,2},B={1,2,3,4,5},C={3,4,5,6,7,8},∴B∩C={3,4,5},故有A∪(B∩C)={1,2}∪{3,4,5}={1,2,3,4,5}.(2)由∁U B={6,7,8},∁U C={1,2};故有(∁U B)∪(∁U C)={6,7,8}∪{1,2}={1,2,6,7,8}.。

河北省2020-2021学年高一数学上册期末模拟试卷汇编(含答案)

河北省2020-2021学年高一数学上册期末模拟试卷汇编(含答案)

河北省高一数学上册期末模拟试卷(含答案)说明:1.考试时间120分钟,满分150分。

2.将卷Ⅰ答案用2B 铅笔涂在答题卡上,将卷Ⅱ答案答在答题纸上。

3.Ⅱ卷答题纸卷头和答题卡均填涂本次考试的考号,不要误填学号,答题卡占后5位。

卷Ⅰ(选择题,共60分)一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中只有一个选项正确.1.0600sin 的值是( )A.21 B.21- C.23 D.23-2.已知),0(,51cos sin πααα∈-=+,则αtan 的值为( ) A.34-或43- B.34- C.43- D.43 3.下列函数中,满足“)()()(y f x f y x f ⋅=+”的单调递增函数是( ) A .3)(x x f = B .xx f 3)(=C .21)(x x f =D .xx f ⎪⎭⎫⎝⎛=21)(4.下列不等式中,正确的是( ) A 、513tan413tanππ< B 、⎪⎭⎫⎝⎛->7cos 5sin ππ C 、01sin )1sin(<-π D 、⎪⎭⎫⎝⎛-<52cos 57cosππ5.已知ABC ∆是锐角三角形,B A P sin sin +=,B A Q cos cos +=,则( ) A 、 Q P > B 、Q P < C 、Q P = D 、P 与Q 的大小不能确定6.函数()sincos22f x x x ππ=+的最小正周期是( )A. πB. 2πC.1D.27、若将函数x y 2sin 2=的图像向左平移12π个单位长度,则平移后图像的对称轴为( ) A.)(62Z k k x ∈-=ππ B.)(62Z k k x ∈+=ππC.)(122Z k k x ∈-=ππD.)(122Z k k x ∈+=ππ8、设()()12cos sin sin cos 13x y x x y x +-+=,且y 是第四象限角,则2ytan 的值是( ) A. 23-B. 32±C. 32-D. 23±9. 已知锐角αβ、满足5310sin ,cos αβ==,则αβ+等于 ( ) A.43π B. 434ππ或 C. 4π D.)(432Z k k ∈+ππ10、当40π<<x 时,函数x x x x x f 22sin sin cos cos )(-=的最小值是( )A.41 B.21C.2D.4 11、已知函数⎩⎨⎧≥-<+--=,0),1(,0,2)(2x x f x a x x x f 且函数x x f y -=)(恰有3个不同的零点,则实数a 的取值范围是( ) A .(0,+∞) B .[-1,0) C .[-1,+∞)D .[-2,+∞)12、函数)cos()(ϕω+=x x f 的部分图像如图所示,则)(x f 的单调递减区间为( )A.Z k k k ∈⎪⎭⎫ ⎝⎛+-,43,41ππ B.Z k k k ∈⎪⎭⎫ ⎝⎛+-,432,412ππ C.Z k k k ∈⎪⎭⎫ ⎝⎛--,43,41 D. Z k k k ∈⎪⎭⎫ ⎝⎛+-,432,412卷Ⅱ(非选择题,共90分)二.填空题:本大题共4小题,每小题5分,共20分.13、设扇形的周长为cm 8,面积为24cm ,则扇形的圆心角的弧度数是________. 14、 函数22))(cos (log 11)(x x f -=的定义域为________.15、设函数)(x f )(R x ∈满足x x f x f sin )()(+=+π.当π<≤x 0时,0)(=x f ,则)623(πf =________. 16、给出下列命题: ①函数)4sin(π+=x y 在闭区间⎥⎦⎤⎢⎣⎡-2,2ππ上是增函数; ②直线8π=x 是函数)452sin(π+=x y 图像的一条对称轴; ③要得到函数x y 2sin =的图像,需将函数)32cos(π-=x y 的图像向右平移12π单位; ④函数)0(),sin()(>+=A x A x f ϕ在4π=x 处取到最小值,则)43(x f y -=π是奇函数. 其中,正确的命题的序号是:_________.三.解答题:共6小题,第17题10分,第18-22题每题12分,共计70分,解答题应写出必要的文字说明,证明过程或演算步骤.17.已知)3tan()sin()tan()2cos()(sin )(2πααπαπαπαπα+-⋅+-+-⋅-⋅-=f .(1)化简)(αf ; (2)若81)(=αf ,且24παπ<<,求ααsin cos -的值. 18.设函数()ϕ+=x x f 2sin )(()0<<-ϕπ,已知它的一条对称轴是直线8π=x .(1)求;ϕ(2)求函数)(x f 的递减区间;(3)画出)(x f 在[]π,0上的图象.19.(普班学生做)已知函数)sin()(ϕω+=x A x f )2||,0,0(πϕω<>>A 的部分图像如图所示.(1)求函数)(x f y =的解析式;(2)说明函数)(x f y =的图像可由函数x x y 2cos 2sin 3-=的图像经过怎样的平移变换得到;(3)若方程m x f =)(在⎥⎦⎤⎢⎣⎡-0,2π上有两个不相等的实数根,求m 的取值范围. (普班19题图) (英才、实验19题图)19.(英才、实验班学生做)已知函数)sin()(ϕω+=x A x f ⎪⎭⎫⎝⎛<<>∈20,0,πϕωR x 的部分图像如图所示.(1)求函数)(x f 的解析式.(2)求函数⎪⎭⎫ ⎝⎛+--=12)12()(ππx f x f x g 的单调递增区间. (3)若方程m x g =)(在⎥⎦⎤⎝⎛ππ,4上有两个不相等的实数根,求m 的取值范围,并写出所有根之和。

石家庄市石门实验学校数学高一上期末知识点复习(提高培优)

石家庄市石门实验学校数学高一上期末知识点复习(提高培优)

一、选择题1.(0分)[ID :12118]已知a =21.3,b =40.7,c =log 38,则a ,b ,c 的大小关系为( ) A .a c b <<B .b c a <<C .c a b <<D .c b a <<2.(0分)[ID :12090]若函数()f x =的定义域为R ,则实数m 取值范围是( ) A .[0,8) B .(8,)+∞ C .(0,8)D .(,0)(8,)-∞⋃+∞3.(0分)[ID :12086]已知0.2633,log 4,log 2a b c ===,则,,a b c 的大小关系为 ( )A .c a b <<B .c b a <<C .b a c <<D .b c a <<4.(0分)[ID :12108]酒驾是严重危害交通安全的违法行为.为了保障交通安全,根据国家有关规定:100mL 血液中酒精含量低于20mg 的驾驶员可以驾驶汽车,酒精含量达到20~79mg 的驾驶员即为酒后驾车,80mg 及以上认定为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了1mg /mL .如果在停止喝酒以后,他血液中酒精含量会以每小时30%的速度减少,那么他至少经过几个小时才能驾驶汽车?( )(参考数据:lg 0.2≈﹣0.7,1g 0.3≈﹣0.5,1g 0.7≈﹣0.15,1g 0.8≈﹣0.1) A .1B .3C .5D .75.(0分)[ID :12081]设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是 A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦6.(0分)[ID :12075]已知函数()()y f x x R =∈满足(1)()0f x f x ++-=,若方程1()21f x x =-有2022个不同的实数根i x (1,2,3,2022i =),则1232022x x x x ++++=( )A .1010B .2020C .1011D .20227.(0分)[ID :12057]设函数()()212log ,0,log ,0.x x f x x x >⎧⎪=⎨-<⎪⎩若()()f a f a >-,则实数的a 取值范围是( ) A .()()1,00,1-⋃B .()(),11,-∞-⋃+∞C .()()1,01,-⋃+∞D .()(),10,1-∞-⋃8.(0分)[ID :12055]用二分法求方程的近似解,求得3()29f x x x =+-的部分函数值数据如下表所示:x1 2 1.5 1.625 1.75 1.875 1.8125 ()f x-63-2.625-1.459-0.141.34180.5793则当精确度为0.1时,方程3290x x +-=的近似解可取为 A .1.6B .1.7C .1.8D .1.99.(0分)[ID :12054]已知定义在R 上的奇函数()f x 满足:(1)(3)0f x f x ++-=,且(1)0f ≠,若函数6()(1)cos 43g x x f x =-+⋅-有且只有唯一的零点,则(2019)f =( ) A .1B .-1C .-3D .310.(0分)[ID :12069]已知()y f x =是以π为周期的偶函数,且0,2x π⎡⎤∈⎢⎥⎣⎦时,()1sin f x x =-,则当5,32x ππ⎡⎤∈⎢⎥⎣⎦时,()f x =( )A .1sin x +B .1sin x -C .1sin x --D .1sin x -+11.(0分)[ID :12064]下列函数中,既是偶函数,又是在区间(0,)+∞上单调递减的函数为( ) A .1ln||y x = B .3y x = C .||2x y =D .cos y x =12.(0分)[ID :12061]若0.33a =,log 3b π=,0.3log c e =,则( )A .a b c >>B .b a c >>C .c a b >>D .b c a >>13.(0分)[ID :12045]点P 从点O 出发,按逆时针方向沿周长为l 的平面图形运动一周,O ,P 两点连线的距离y 与点P 走过的路程x 的函数关系如图所示,则点P 所走的图形可能是A .B .C .D .14.(0分)[ID :12038]曲线241(22)y x x --≤≤与直线24y kx k =-+有两个不同的交点时实数k 的范围是( ) A .53(,]124B .5(,)12+∞ C .13(,)34D .53(,)(,)124-∞⋃+∞ 15.(0分)[ID :12079]已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则()UP Q ⋃=A .{1}B .{3,5}C .{1,2,4,6}D .{1,2,3,4,5}二、填空题16.(0分)[ID :12224]若函数()(0,1)xf x a a a =>≠且在[1,2]上的最大值比最小值大2a,则a 的值为____________. 17.(0分)[ID :12220]已知()f x 是定义域为R 的单调函数,且对任意实数x 都有21()213x f f x ⎡⎤+=⎢⎥+⎣⎦,则52(log )f =__________.18.(0分)[ID :12205]已知函数2,1,(){1,1,x ax x f x ax x -+≤=->若1212,,x x R x x ∃∈≠,使得12()()f x f x =成立,则实数a 的取值范围是 .19.(0分)[ID :12199]函数20.5log y x =________ 20.(0分)[ID :12187]求值: 233125128100log lg = ________ 21.(0分)[ID :12168]若集合{||1|2}A x x =-<,2|04x B x x -⎧⎫=<⎨⎬+⎩⎭,则A B =______.22.(0分)[ID :12156]已知函数()()g x f x x =-是偶函数,若(2)2f -=,则(2)f =________23.(0分)[ID :12139]已知函数1,0()ln 1,0x x f x x x ⎧+≤=⎨->⎩,若方程()()f x m m R =∈恰有三个不同的实数解()a b c a b c <<、、,则()a b c +的取值范围为______; 24.(0分)[ID :12129]已知a >b >1.若log a b+log b a=52,a b =b a ,则a= ,b= . 25.(0分)[ID :12162]若函数()22xf x b =--有两个零点,则实数b 的取值范围是_____.三、解答题26.(0分)[ID :12302]已知函数22()21x x a f x ⋅+=-是奇函数.(1)求a 的值;(2)求解不等式()4f x ≥;(3)当(1,3]x ∈时,()2(1)0f txf x +->恒成立,求实数t 的取值范围.27.(0分)[ID :12300]设()()12log 10f x ax =-,a 为常数.若()32f =-.(1)求a 的值;(2)若对于区间[]3,4上的每一个x 的值,不等式()12xf x m ⎛⎫>+ ⎪⎝⎭恒成立,求实数m 的取值范围 .28.(0分)[ID :12288]已知函数()x xk f x a ka -=+,(k Z ∈,0a >且1a ≠).(1)若1132f ⎛⎫=⎪⎝⎭,求1(2)f 的值; (2)若()k f x 为定义在R 上的奇函数,且01a <<,是否存在实数λ,使得(cos 2)(2sin 5)0k k f x f x λ+->对任意的20,3x π⎡⎤∈⎢⎥⎣⎦恒成立若存在,请写出实数λ的取值范围;若不存在,请说明理由.29.(0分)[ID :12285]已知函数()()()log 1log 1a a f x x x =+--(0a >,1a ≠),且()31f =.(1)求a 的值,并判定()f x 在定义域内的单调性,请说明理由; (2)对于[]2,6x ∈,()()()log 17amf x x x >--恒成立,求实数m 的取值范围.30.(0分)[ID :12268]设函数()3x f x =,且(2)18f a +=,函数()34()ax x g x x R =-∈. (1)求()g x 的解析式;(2)若方程()g x -b=0在 [-2,2]上有两个不同的解,求实数b 的取值范围.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.C2.A3.B4.C5.B6.C7.C8.C9.C10.B11.A12.A13.C14.A15.C二、填空题16.或【解析】【分析】【详解】若∴函数在区间上单调递减所以由题意得又故若∴函数在区间上单调递增所以由题意得又故答案:或17.【解析】【分析】由已知可得=a恒成立且f(a)=求出a=1后将x=log25代入可得答案【详解】∵函数f(x)是R上的单调函数且对任意实数x都有f=∴=a恒成立且f (a)=即f(x)=﹣+af(a)18.【解析】【分析】【详解】故答案为19.【解析】【分析】先求得函数的定义域然后利用同增异减来求得复合函数的单调区间【详解】依题意即解得当时为减函数为减函数根据复合函数单调性同增异减可知函数的单调递增区间是【点睛】本小题主要考查复合函数的单20.【解析】由题意结合对数指数的运算法则有:21.【解析】【分析】先分别求解出绝对值不等式分式不等式的解集作为集合然后根据交集概念求解的结果【详解】因为所以所以;又因为所以所以所以;则故答案为:【点睛】解分式不等式的方法:首先将分式不等式转化为整式22.6【解析】【分析】根据偶函数的关系有代入即可求解【详解】由题:函数是偶函数所以解得:故答案为:6【点睛】此题考查根据函数的奇偶性求函数值难度较小关键在于根据函数奇偶性准确辨析函数值的关系23.【解析】【分析】画出的图像根据图像求出以及的取值范围由此求得的取值范围【详解】函数的图像如下图所示由图可知令令所以所以故答案为:【点睛】本小题主要考查分段函数的图像与性质考查数形结合的数学思想方法属24.【解析】试题分析:设因为因此【考点】指数运算对数运算【易错点睛】在解方程时要注意若没注意到方程的根有两个由于增根导致错误25.【解析】【分析】【详解】函数有两个零点和的图象有两个交点画出和的图象如图要有两个交点那么三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题 1.C 解析:C 【解析】 【分析】利用指数函数2xy =与对数函数3log y x =的性质即可比较a ,b ,c 的大小. 【详解】1.30.7 1.4382242c log a b =<<===<,c a b ∴<<. 故选:C . 【点睛】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.2.A解析:A 【解析】 【分析】根据题意可得出,不等式mx 2-mx +2>0的解集为R ,从而可看出m =0时,满足题意,m ≠0时,可得出280m m m ⎧⎨=-<⎩>,解出m 的范围即可. 【详解】∵函数f (x )的定义域为R ; ∴不等式mx 2-mx +2>0的解集为R ; ①m =0时,2>0恒成立,满足题意;②m ≠0时,则280m m m ⎧⎨=-<⎩>; 解得0<m <8;综上得,实数m 的取值范围是[0,8)故选:A . 【点睛】考查函数定义域的概念及求法,以及一元二次不等式的解集为R 时,判别式△需满足的条件.3.B解析:B 【解析】 【分析】先比较三个数与零的大小关系,确定三个数的正负,然后将它们与1进行大小比较,得知1a >,0,1b c <<,再利用换底公式得出b 、c 的大小,从而得出三个数的大小关系.【详解】函数3xy =在R 上是增函数,则0.20331a =>=,函数6log y x =在()0,∞+上是增函数,则666log 1log 4log 6<<,即60log 41<<, 即01b <<,同理可得01c <<,由换底公式得22393log 2log 2log 4c ===, 且96ln 4ln 4log 4log 4ln 9ln 6c b ==<==,即01c b <<<,因此,c b a <<,故选A . 【点睛】本题考查比较数的大小,这三个数的结构不一致,这些数的大小比较一般是利用中间值法来比较,一般中间值是0与1,步骤如下:①首先比较各数与零的大小,确定正负,其中正数比负数大;②其次利用指数函数或对数函数的单调性,将各数与1进行大小比较,或者找其他中间值来比较,从而最终确定三个数的大小关系.4.C解析:C 【解析】 【分析】根据题意先探究出酒精含量的递减规律,再根据能驾车的要求,列出模型0.70.2x ≤ 求解. 【详解】因为1小时后血液中酒精含量为(1-30%)mg /mL , x 小时后血液中酒精含量为(1-30%)x mg /mL 的,由题意知100mL 血液中酒精含量低于20mg 的驾驶员可以驾驶汽车, 所以()3002%1.x-<,0.70.2x <,两边取对数得,lg 0.7lg 0.2x < ,lg 0.214lg 0.73x >= ,所以至少经过5个小时才能驾驶汽车.故选:C 【点睛】本题主要考查了指数不等式与对数不等式的解法,还考查了转化化归的思想及运算求解的能力,属于基础题.5.B解析:B 【解析】 【分析】本题为选择压轴题,考查函数平移伸缩,恒成立问题,需准确求出函数每一段解析式,分析出临界点位置,精准运算得到解决. 【详解】(0,1]x ∈时,()=(1)f x x x -,(+1)= ()f x 2f x ,()2(1)f x f x ∴=-,即()f x 右移1个单位,图像变为原来的2倍.如图所示:当23x <≤时,()=4(2)=4(2)(3)f x f x x x ---,令84(2)(3)9x x --=-,整理得:2945560x x -+=,1278(37)(38)0,,33x x x x ∴--=∴==(舍),(,]x m ∴∈-∞时,8()9f x ≥-成立,即73m ≤,7,3m ⎛⎤∴∈-∞ ⎥⎝⎦,故选B .【点睛】易错警示:图像解析式求解过程容易求反,画错示意图,画成向左侧扩大到2倍,导致题目出错,需加深对抽象函数表达式的理解,平时应加强这方面练习,提高抽象概括、数学建模能力.6.C解析:C 【解析】 【分析】 函数()f x 和121=-y x 都关于1,02⎛⎫⎪⎝⎭对称,所有1()21f x x =-的所有零点都关于1,02⎛⎫⎪⎝⎭对称,根据对称性计算1232022x x x x ++++的值.【详解】()()10f x f x ++-=,()f x ∴关于1,02⎛⎫⎪⎝⎭对称,而函数121=-y x 也关于1,02⎛⎫⎪⎝⎭对称, ()121f x x ∴=-的所有零点关于1,02⎛⎫⎪⎝⎭对称, ()121f x x ∴=-的2022个不同的实数根i x (1,2,3,2022i =),有1011组关于1,02⎛⎫⎪⎝⎭对称,122022...101111011x x x ∴+++=⨯=.故选:C 【点睛】本题考查根据对称性计算零点之和,重点考查函数的对称性,属于中档题型.7.C解析:C 【解析】 【分析】 【详解】因为函数()()212log ,0,log ,0.x x f x x x >⎧⎪=⎨-<⎪⎩若()()f a f a >-,所以220log log a a a >⎧⎨>-⎩或()()122log log a a a <⎧⎪⎨->-⎪⎩,解得1a >或10a -<<,即实数的a 取值范围是()()1,01,-⋃+∞,故选C. 8.C解析:C 【解析】 【分析】利用零点存在定理和精确度可判断出方程的近似解. 【详解】根据表中数据可知()1.750.140f =-<,()1.81250.57930f =>,由精确度为0.1可知1.75 1.8≈,1.8125 1.8≈,故方程的一个近似解为1.8,选C. 【点睛】不可解方程的近似解应该通过零点存在定理来寻找,零点的寻找依据二分法(即每次取区间的中点,把零点位置精确到原来区间的一半内),最后依据精确度四舍五入,如果最终零点所在区间的端点的近似值相同,则近似值即为所求的近似解.9.C解析:C 【解析】 【分析】由(1)(3)0f x f x ++-=结合()f x 为奇函数可得()f x 为周期为4的周期函数,则(2019)(1)f f =-,要使函数6()(1)cos 43g x x f x =-+⋅-有且只有唯一的零点,即6(1)cos 43x f x ⋅-=只有唯一解,结合图像可得(1)3f =,即可得到答案.【详解】()f x 为定义在R 上的奇函数,∴()()f x f x -=-,又(1)(3)0(13)(33)0f x f x f x f x ++-=⇔+++--=,(4)()0(4)()()f x f x f x f x f x ++-=⇔+=--=∴, ∴()f x 在R 上为周期函数,周期为4, ∴(2019)(50541)(1)(1)f f f f =⨯-=-=-函数6()(1)cos 43g x x f x =-+⋅-有且只有唯一的零点,即6(1)cos 43x f x ⋅-=只有唯一解,令6()m x x = ,则5()6m x x '=,所以(,0)x ∈-∞为函数6()m x x =减区间,(0,)x ∈+∞为函数6()m x x =增区间,令()(1)cos 43x f x ϕ=⋅-,则()x ϕ为余弦函数,由此可得函数()m x 与函数()x ϕ的大致图像如下:由图分析要使函数()m x 与函数()x ϕ只有唯一交点,则(0)(0)m ϕ=,解得(1)3f =∴(2019)(1)3f f =-=-,故答案选C . 【点睛】本题主要考查奇函数、周期函数的性质以及函数的零点问题,解题的关键是周期函数的判定以及函数唯一零点的条件,属于中档题.10.B解析:B 【解析】 【分析】 【详解】因为()y f x =是以π为周期,所以当5,32x ππ⎡⎤∈⎢⎥⎣⎦时,()()3πf x f x =-, 此时13,02x -π∈-π⎡⎤⎢⎥⎣⎦,又因为偶函数,所以有()()3π3πf x f x -=-, 3π0,2x π⎡⎤-∈⎢⎥⎣⎦,所以()()3π1sin 3π1sin f x x x -=--=-,故()1sin f x x =-,故选B.11.A解析:A 【解析】本题考察函数的单调性与奇偶性 由函数的奇偶性定义易得1ln||y x =,||2x y =,cos y x =是偶函数,3y x =是奇函数 cos y x =是周期为2π的周期函数,单调区间为[2,(21)]()k k k z ππ+∈0x >时,||2x y =变形为2x y =,由于2>1,所以在区间(0,)+∞上单调递增 0x >时,1ln||y x =变形为1ln y x =,可看成1ln ,y t t x==的复合,易知ln (0)y t t =>为增函数,1(0)t x x=>为减函数,所以1ln ||y x =在区间(0,)+∞上单调递减的函数故选择A12.A解析:A 【解析】因为00.31,1e <,所以0.3log 0c e =<,由于0.30.3031,130log 31a b ππ>⇒=><<⇒<=<,所以a b c >>,应选答案A .13.C解析:C 【解析】 【分析】认真观察函数图像,根据运动特点,采用排除法解决.【详解】由函数关系式可知当点P 运动到图形周长一半时O,P 两点连线的距离最大,可以排除选项A,D,对选项B 正方形的图像关于对角线对称,所以距离y 与点P 走过的路程x 的函数图像应该关于2l对称,由图可知不满足题意故排除选项B , 故选C . 【点睛】本题考查函数图象的识别和判断,考查对于运动问题的深刻理解,解题关键是认真分析函数图象的特点.考查学生分析问题的能力.14.A解析:A 【解析】试题分析:1(22)y x =-≤≤对应的图形为以0,1为圆心2为半径的圆的上半部分,直线24y kx k =-+过定点()2,4,直线与半圆相切时斜率512k =,过点()2,1-时斜率34k =,结合图形可知实数k 的范围是53(,]124考点:1.直线与圆的位置关系;2.数形结合法15.C解析:C 【解析】试题分析:根据补集的运算得{}{}{}{}2,4,6,()2,4,61,2,41,2,4,6UP UP Q =∴⋃=⋃=.故选C.【考点】补集的运算.【易错点睛】解本题时要看清楚是求“⋂”还是求“⋃”,否则很容易出现错误;一定要注意集合中元素的互异性,防止出现错误.二、填空题16.或【解析】【分析】【详解】若∴函数在区间上单调递减所以由题意得又故若∴函数在区间上单调递增所以由题意得又故答案:或解析:12或32 【解析】 【分析】 【详解】若01a <<,∴函数()xf x a =在区间[1,2]上单调递减,所以2max min (),()f x a f x a ==,由题意得22a a a -=,又01a <<,故12a =.若1a >,∴函数()x f x a =在区间[1,2]上单调递增,所以2max min (),()f x a f x a ==,由题意得22a a a -=,又1a >,故32a =. 答案:12或3217.【解析】【分析】由已知可得=a 恒成立且f (a )=求出a =1后将x =log25代入可得答案【详解】∵函数f (x )是R 上的单调函数且对任意实数x 都有f =∴=a 恒成立且f (a )=即f (x )=﹣+af (a )解析:23 【解析】 【分析】由已知可得()221x f x ++=a 恒成立,且f (a )=13,求出a =1后,将x =log 25代入可得答案. 【详解】∵函数f (x )是R 上的单调函数,且对任意实数x ,都有f[()221xf x ++]=13, ∴()221xf x ++=a 恒成立,且f (a )=13, 即f (x )=﹣x 221++a ,f (a )=﹣x 221++a =13, 解得:a =1,∴f (x )=﹣x 221++1, ∴f (log 25)=23, 故答案为:23. 【点睛】本题考查的知识点是函数解析式的求法和函数求值的问题,正确理解对任意实数x ,都有()21213x f f x ⎡⎤+=⎢⎥+⎣⎦成立是解答的关键,属于中档题.18.【解析】【分析】【详解】故答案为 解析:【解析】 【分析】 【详解】故答案为.19.【解析】【分析】先求得函数的定义域然后利用同增异减来求得复合函数的单调区间【详解】依题意即解得当时为减函数为减函数根据复合函数单调性同增异减可知函数的单调递增区间是【点睛】本小题主要考查复合函数的单 解析:[)1,0-【解析】 【分析】先求得函数的定义域,然后利用“同增异减”来求得复合函数的单调区间. 【详解】依题意220.50log 0x x ⎧>⎨≥⎩,即201x <≤,解得[)(]1,00,1x ∈-.当[)1,0x ∈-时,2x 为减函数,0.5log x 为减函数,根据复合函数单调性“同增异减”可知,函数20.5log y x =递增区间是[)1,0-. 【点睛】本小题主要考查复合函数的单调区间的求法,考查函数定义域的求法,属于基础题.20.【解析】由题意结合对数指数的运算法则有:解析:32-【解析】由题意结合对数、指数的运算法则有:()2log 331251532lg 32810022=-+-=-.21.【解析】【分析】先分别求解出绝对值不等式分式不等式的解集作为集合然后根据交集概念求解的结果【详解】因为所以所以;又因为所以所以所以;则故答案为:【点睛】解分式不等式的方法:首先将分式不等式转化为整式 解析:()1,2-【解析】 【分析】先分别求解出绝对值不等式、分式不等式的解集作为集合,A B ,然后根据交集概念求解A B 的结果.【详解】因为12x -<,所以13x ,所以()1,3A =-;又因为204x x -<+,所以()()4204x x x ⎧+-<⎨≠-⎩,所以42x -<<,所以()4,2B =-; 则()1,2AB =-.故答案为:()1,2-. 【点睛】解分式不等式的方法:首先将分式不等式转化为整式不等式,若对应的整式不等式为高次可因式分解的不等式,可采用数轴穿根法求解集.22.6【解析】【分析】根据偶函数的关系有代入即可求解【详解】由题:函数是偶函数所以解得:故答案为:6【点睛】此题考查根据函数的奇偶性求函数值难度较小关键在于根据函数奇偶性准确辨析函数值的关系解析:6 【解析】 【分析】根据偶函数的关系有()(2)2g g =-,代入即可求解. 【详解】由题:函数()()g x f x x =-是偶函数, (2)(2)24g f -=-+=,所以(2)(2)24g f =-=,解得:(2)6f =. 故答案为:6 【点睛】此题考查根据函数的奇偶性求函数值,难度较小,关键在于根据函数奇偶性准确辨析函数值的关系.23.【解析】【分析】画出的图像根据图像求出以及的取值范围由此求得的取值范围【详解】函数的图像如下图所示由图可知令令所以所以故答案为:【点睛】本小题主要考查分段函数的图像与性质考查数形结合的数学思想方法属解析:)22,2e e ⎡--⎣【解析】 【分析】画出()f x 的图像,根据图像求出+a b 以及c 的取值范围,由此求得()a b c +的取值范围. 【详解】函数()f x 的图像如下图所示,由图可知1,22a ba b +=-+=-.令2ln 11,x x e -==,令ln 10,x x e -==,所以2e c e <≤,所以)2()22,2a b c c e e ⎡+=-∈--⎣.故答案为:)22,2e e ⎡--⎣【点睛】本小题主要考查分段函数的图像与性质,考查数形结合的数学思想方法,属于基础题.24.【解析】试题分析:设因为因此【考点】指数运算对数运算【易错点睛】在解方程时要注意若没注意到方程的根有两个由于增根导致错误 解析:42【解析】试题分析:设log ,1b a t t =>则,因为21522t t a b t +=⇒=⇒=, 因此22222, 4.b a b b a b b b b b b a =⇒=⇒=⇒== 【考点】指数运算,对数运算. 【易错点睛】在解方程5log log 2a b b a +=时,要注意log 1b a >,若没注意到log 1b a >,方程5log log 2a b b a +=的根有两个,由于增根导致错误 25.【解析】【分析】【详解】函数有两个零点和的图象有两个交点画出和的图象如图要有两个交点那么解析:02b <<【解析】 【分析】 【详解】函数()22xf x b =--有两个零点,和的图象有两个交点,画出和的图象,如图,要有两个交点,那么三、解答题 26.(1)2a =;(2)}{20log 3x x <≤;(3)1,4t ⎛⎫∈-∞-⎪⎝⎭【解析】 【分析】(1)由奇函数的性质得出a 的值;(2)结合()f x 的解析式可将()4f x ≥化为32021xx -≥-,解不等式即可得出答案;(3)利用函数()f x 在(1,3]x ∈上的单调性以及奇偶性将()2(1)0f tx f x +->化为21tx x <-,分离参数t 结合二次函数的性质得出实数t 的取值范围.【详解】(1)根据题意,函数222222()()211212x x x x xxa a a f x f x --⋅++⋅⋅+-===-=--- ∴2a =.(2)222()421x xf x ⋅+=≥-,即21221x x +≥-,即2132202121x x x x +--=≥--即()()32210210x xx ⎧--≥⎪⎨-≠⎪⎩,解得:132x <≤,得20log 3x <≤.(3)22222244()2212121x x x x xf x ⋅+⋅-+===+--- 故()f x 在(1,3]x ∈上为减函数2()(1)0f tx f x +->,即2()(1)(1)f tx f x f x >--=-即21tx x <-,221111124t x x x ⎛⎫<-=-- ⎪⎝⎭又(1,3]x ∈,11,13x ⎡⎫∈⎪⎢⎣⎭,故14t <- 综上1,4t ⎛⎫∈-∞- ⎪⎝⎭. 【点睛】本题主要考查了由函数的奇偶性求解析式以及利用单调性解不等式,属于中档题.27.(1)2a =(2)17,8⎛⎫-∞- ⎪⎝⎭【解析】 【分析】(1)依题意代数求值即可;(2)设()()121log 1022xg x x ⎛⎫=-- ⎪⎝⎭,题设条件可转化为()g x m >在[]3,4x ∈上恒成立,因此,求出()g x 的最小值即可得出结论. 【详解】 (1)()32f =-,()12log 1032a ∴-=-,即211032a -⎛⎫-= ⎪⎝⎭,解得2a =;(2)设()()121log 1022xg x x ⎛⎫=-- ⎪⎝⎭,题设不等式可转化为()g x m >在[]3,4x ∈上恒成立,()g x 在[]3,4上为增函数,()31min2117(3)log (106)28g x g ⎛⎫∴==--=- ⎪⎝⎭,178m ∴<-, m ∴的取值范围为17,8⎛⎫-∞- ⎪⎝⎭.【点睛】本题考查函数性质的综合应用,属于中档题.在解决不等式恒成立问题时,常分离参数,将其转化为最值问题解决.28.(1)47;(2)存在,3λ< 【解析】 【分析】(1)由指数幂的运算求解即可.(2)由函数()k f x 的性质可将问题转化为cos252sin x x λ<-对任意的20,3x π⎡⎤∈⎢⎥⎣⎦恒成立,分离变量后利用均值不等式求最值即可得解. 【详解】解:(1)由已知11221132f a a -⎛⎫=+= ⎪⎝⎭,21112229a a a a --⎛⎫∴+=++= ⎪⎝⎭,17a a -∴+=, ()2122249a a a a --∴+=++=,2247a a -∴+=,即221(2)47f a a -=+=.(2)若()k f x 为定义在R 上的奇函数, 则(0)10k f k =+=,解得1k =-,01a <<,()x x k f x a a -∴=-,在R 上为减函数,则(cos 2)(2sin 5)0k k f x f x λ+->,可化为(cos 2)(2sin 5)(52sin )k k k f x f x f x λλ>--=-, 即cos252sin x x λ<-对任意的20,3x π⎡⎤∈⎢⎥⎣⎦恒成立, 即25cos 22sin 42sin 2sin 2sin sin x x x x x xλ-+<==+,对任意的20,3x π⎡⎤∈⎢⎥⎣⎦恒成立, 令sin ,t x =[0,1]t ∈,则2y t t=+为减函数, 当1t =时,y 取最小值为3,所以3λ<.【点睛】本题考查了不等式恒成立问题,重点考查了均值不等式,属中档题.29.(1)2a =,单调递减,理由见解析;(2) 07m <<【解析】【分析】(1)代入(3)1f =解得a ,可由复合函数单调性得出函数的单调性,也可用定义证明; (2)由对数函数的单调性化简不等式,再由分母为正可直接去分母变为整式不等式,从而转化为求函数的最值.【详解】(1)由()3log 4log 2log 21a a a f =-==,所以2a =.函数()f x 的定义域为()1,+∞,()()()222212log 1log 1log log 111x f x x x x x +⎛⎫=+--==+ ⎪--⎝⎭. 因为211y x =+-在()1,+∞上是单调递减, (注:未用定义法证明不扣分)所以函数()f x 在定义域()1,+∞上为单调递减函数.(2)由(1)可知()()()221log log 117x m f x x x x +=>---,[]2,6x ∈, 所以()()10117x m x x x +>>---. 所以()()()2201767316m x x x x x <<+-=-++=--+在[]2,6x ∈恒成立. 当[]2,6x ∈时,函数()2316y x =--+的最小值min 7y =. 所以07m <<.【点睛】本题考查对数函数的性质,考查不等式恒成立,解题关键是问题的转化.由对数不等式转化为整式不等式,再转化为求函数最值.30.(1)()24x x g x =-,(2)31,164b ⎡⎫∈⎪⎢⎣⎭【解析】试题分析:(1);本题求函数解析式只需利用指数的运算性质求出a 的值即可, (2)对于同时含有2,x xa a 的表达式,通常可以令进行换元,但换元的过程中一定要注意新元的取值范围,换元后转化为我们熟悉的一元二次的关系,从而解决问题.试题解析:解:(1)∵()3x f x =,且(2)18f a +=∴⇒ ∵∴ (2)法一:方程为令,则144t ≤≤- 且方程为在有两个不同的解. 设2211()24y t t t =-=--+,y b =两函数图象在1,44⎡⎤⎢⎥⎣⎦内有两个交点由图知31,164b ⎡⎫∈⎪⎢⎣⎭时,方程有两不同解. 法二: 方程为,令,则144t ≤≤ ∴方程在1,44⎡⎤⎢⎥⎣⎦上有两个不同的解.设21(),,44f t t t b t ⎡⎤=-+-∈⎢⎥⎣⎦1=1-40413{0416(4)012b b f b f b ∆>⇒<⎛⎫∴≤⇒≥ ⎪⎝⎭≤⇒≥- 解得31,164b ⎡⎫∈⎪⎢⎣⎭ 考点:求函数的解析式,求参数的取值范围【方法点睛】求函数解析式的主要方法有待定系数法,换元法及赋值消元法等;已知函数的类型(如一次函数,二次函数,指数函数等),就可用待定系数法;已知复合函数的解析式,可用换元法,此时要注意自变量的取值范围;求分段函数的解析式时,一定要明确自变量的所属范围,以便于选择与之对应的对应关系,避免出错.。

2020-2021学年石家庄一中高一上学期期末数学试卷(含解析)

2020-2021学年石家庄一中高一上学期期末数学试卷(含解析)

2020-2021学年石家庄一中高一上学期期末数学试卷一、单选题(本大题共12小题,共60.0分)1.已知集合A={x|−1<x<2,x∈N},B={−1,0,1},则A∩B=()A. {−1,0}B. {0}C. {1}D. {0,1}2.方程在上有两个不等的实数根,则()A. B. C. 或 D. 与的取值有关3.如图,在平面直角坐标系xOy中,第一象限内的点A(x1,y1)和第二象限内的点B(x2,y2)都在单位圆O上,∠AOx=α,∠AOB=π3.若y2=1213,则x1的值为()A. 12√3−526B. −12√3+526C. 17D. −174.如图,在△中,,是上的一点,若,则实数的值为()A. B. C. 1 D. 35.若函数f(x)=ax2−(2a+1)x+a+1对于a∈[−1,1]时恒有f(x)<0,则实数x的取值范围是()A. (1,2)B. (−∞,1)∪(2,+∞)C. (0,1)D. (−∞,0)∪(1,+∞)6.已知圆中一段弧长正好等于该圆的外切正三角形的边长,那么这段弧所对的圆心角的弧度数为()A. B. C. D. 27.已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=log2(x+1),则函数f(x)的大致图象是()A. B. C. D.8.下面是按一定规律排列的一列数第1个数:12−(1+−12);第2个数:13−(1+−12)(1+(−1)23)(1+(−1)34);第3个数:14−(1+−12)(1+(−1)23)(1+(−1)34)(1+(−1)45)(1+(−1)56);…第n个数:1n+1−(1+−12)(1+(−1)23)(1+(−1)34)…(1+(−1)2n−12n).那么,在第10个数、第11个数、第12个数、第13个数中,最大的数是()A. 第13个数B. 第12个数C. 第11个数D. 第10个数9.若sin(π+α)+cos(π2+α)=−m,则cos(3π2−α)+2sin(6π−α)的值为()A. −23m B. −23m C. 23m D. 32m10.已知函数,定义函数给出下列命题:①;②函数是奇函数;③当时,若,,总有成立,其中所有正确命题的序号是()A. ②B. ①②C. ③D. ②③11.将函数f(x)的图象向左平移π3个单位长度,再将所得函数图象上的所有点的横坐标变为原来的32倍,得到函数g(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的图象.已知函数g(x)的部分图象如图所示,则下列关于函数f(x)的说法正确的是( )A. f(x)的最小正周期为π3 B. f(x)在区间[π9,π3]上单调递减 C. f(x)的图象关于直线x =π9对称 D. f(x)的图象关于点(π9,0)成中心对称12. 给定两个长度均为2的平面向量OA ⃗⃗⃗⃗⃗ 和OB⃗⃗⃗⃗⃗⃗ ,它们的夹角为150°.点C 在以O 为圆心的圆弧AB ⏜上运动,如图所示.若OC ⃗⃗⃗⃗⃗ =√33x OA ⃗⃗⃗⃗⃗ +y OB⃗⃗⃗⃗⃗⃗ ,其中x ,y ∈R ,则x +y 的最大值是( )A. 2√7B. √19C. 2D. 4√7二、单空题(本大题共4小题,共20.0分)13. 已知集合U ={−2,−1,0,1,3},A ={0,1,3},则A −=______. 14. 已知向量a ⃗ =(1,−2),b ⃗ =(2,1),则|2a ⃗ −b ⃗ |=______. 15. 函数y =2cos 2x +sin2x 的最小值是____________.16. 已知函数f(x)满足f(x +2)=f(x),且f(x)是偶函数,当x ∈[0,1]时,f(x)=x ,若在区间[−1,3]内,函数g(x)=f(x)−kx −k 有四个零点,则实数k 的取值范围是______ . 三、解答题(本大题共6小题,共70.0分)17. 已知集合A ={x|−4+a <x <4+a},B ={x|x+1x−5≥0}. (1)若a =1,求A ∩B ;(2)若A ∪B =R ,求实数a 的取值范围.18. (12分)已知函数.(1)若,求函数的值;(2)求函数的单调递增区间.19. 选修4−4:坐标系与参数方程在直角坐标系中,以O 为极点,x 轴正半轴为极轴建立极坐标系.曲线C 的极坐标方程为,M ,N 分别为C 与x 轴,y 轴的交点.(1)写出C 的直角坐标方程,并求M 、N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程. 23选修4−5:不等式选讲设函数.(1)若,解不等式;(2)如果,,求的取值范围.20. 如图.D 、E 、F 分别是△ABC 各边的中点,写出图中与DE⃗⃗⃗⃗⃗⃗ 、EF ⃗⃗⃗⃗⃗ 、FD ⃗⃗⃗⃗⃗ 相等的向量.21. (1)已知的值.(2)求值:22. 已知函数f(x)=2x −a ,g(x)=4x 2−12ax +8a 2,ℎ(x)={f(x),x <1g(x),x ≥1,a 是常数.(1)解关于x 的不等式f(x)>1;(2)已知函数{g(x)|2−|g(x)}=0恰有5个不同的实数根,方程f(x)=0恰有一个实数根,方程f(x)=g(x)在区间[k,k +1]上有根,求a 的值并写出所有可能的正整数k 的值; (3)若ℎ(x)恰有两个零点,求实数a 的取值范围.参考答案及解析1.答案:D解析:解:∵A={x|−1<x<2,x∈N}={0,1},B={−1,0,1},∴A∩B={0,1}.故选:D.求出A中解集的自然数解确定出A,找出A与B的交集即可.此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.答案:C解析:本题主要考查正弦函数的图象特征,体现了转化、分类讨论的数学思想,属于基础题.函数的图象和直线y=a有2个交点,且x1,x2是这两个交点的横坐标.分这两个交点关于直线对称、这两个交点关于直线对称两种情况分别求得x1+x2的值,可得结论.解:直线y=a与函数在内的图象有两个交点,则这两个交点关于直线或对称,即这两个交点要么关于直线或对称,故或.故选C.3.答案:A解析:解:由三角函数的定义有x1=cosα,y2=sin(α+2kπ+π3)=sin(α+π3)=1213(k∈Z),,因为B点在第二象限内,所以cos(α+π3)=−513,所以x1=cosα=cos[(α+π3)−π3]=cos(α+π3)cosπ3+sin(α+π3)sinπ3=−513×12+1213×√32=12√3−526.故选:A.利用三角函数的定义、和差公式即可得出.本题考查了三角函数的定义、和差公式,考查了推理能力与计算能力,属于基础题.4.答案:A解析:试题分析:设,所以,又因为,所以考点:本小题主要考查平面向量的线性表示和共线向量定理的应用,考查学生的逻辑推理能力和定理的应用能力.点评:用已知向量表示未知向量时,主要用到首位相接的向量的加法运算和三角形法则及平行四边形法则的应用.5.答案:A解析:本题主要考查了利用函数的单调性求函数最大值.在把恒成立问题转化为求函数的最值问题的过程中,体现了转化的思想.把原函数整理成关于a的一次函数,利用一次函数的单调性求得函数在[−1,1]上的最大值,令最大值小于0,可得x的范围.解:函数可整理为f(x)=(x2−x+1)a+1−x∵对于a∈[−1,1]时恒有f(x)<0,∴(x2−x+1)a+1−x<0恒成立.令g(a)=(x2−2x+1)a+1−x则函数g(a)在区间[−1,1]上的最大值小于0,∵g(a)为一次函数,且一次项系数x2−2x+1>0,∴函数g(a)在区间[−1,1]上单调递增,∴g(a)max=g(1)=x2−2x+1+1−x=x2−3x+2<0解得1<x<2故选:A6.答案:D解析:试题分析:根据题意,由于设圆的半径为r,则可知,圆中一段弧长正好等于该圆的外切正三角形的边长,可知圆心到三角形不边长的距离为r,利用30得三角函数知可知,正三角形得边长得的长度为2r,那么利用弧长公式可知,弧度数等于弧长除以半径即为2,故选D.考点:弧度数的问题点评:解决的关键是根据弧长公式,利用圆的半径来得到弧度数,属于基础题。

2020-2021石家庄市石门实验学校高一数学下期中第一次模拟试题(带答案)

2020-2021石家庄市石门实验学校高一数学下期中第一次模拟试题(带答案)

2020-2021石家庄市石门实验学校高一数学下期中第一次模拟试题(带答案)一、选择题1.设曲线31x y x +=-在点25(,)处的切线与直线10ax y +-=平行,则a=( ) A .-4 B .14- C .14 D .42.直线(2)4y k x =-+与曲线2320x y y ++-=有两个不同的交点,则实数k 的取值范围是( )A .53(,]124B .51(,]122C .13(,]24D .1[,)2+∞ 3.如图是水平放置的平面图形的斜二测直观图,其原来平面图形面积是( )A . 22B . 42C .4D .84.在我国古代数学名著 九章算术 中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑ABCD 中, AB ⊥平面BCD ,且AB BC CD ==,则异面直线AC 与BD 所成角的余弦值为( )A .12B .12-C 3D .3 5.在三棱锥P ABC -中,PA ⊥平面1202,2ABC BAC AP AB ∠=︒==,,,M 是线段BC 上一动点,线段PM 3P ABC -的外接球的表面积是( )A .92πB .92πC .18πD .40π6.已知AB 是圆22620x y x y +-+=内过点(2,1)E 的最短弦,则||AB 等于( )A 3B .2C .23D .257.如图所示,在棱长为a 的正方体1111ABCD A B C D -中,E 是棱1DD 的中点,F 是侧面11CDD C 上的动点,且1//B F 面1A BE ,则F 在侧面11CDD C 上的轨迹的长度是( )A .aB .2aC .2aD .22a 8.已知直三棱柱111ABC A B C -的所有棱长都相等,M 为11A C 的中点,则AM 与1BC 所成角的余弦值为( )A .15B .5C .6D .1049.如图,正四面体ABCD 中,,E F 分别是线段AC 的三等分点,P 是线段AB 的中点,G 是线段BD 的动点,则( )A .存在点G ,使PG EF ⊥成立B .存在点G ,使FG EP ⊥成立C .不存在点G ,使平面EFG ⊥平面ACD 成立 D .不存在点G ,使平面EFG ⊥平面ABD 成立10.如图在正方体中,点为线段的中点. 设点在线段上,直线与平面所成的角为,则的取值范围是( )A .B .C .D .11.如图是一个几何体的三视图(侧视图中的弧线是半圆),则该几何体的表面积是( )A .20+3πB .24+3πC .20+4πD .24+4π12.某几何体的三视图如图所示(单位:cm ),其俯视图为等边三角形,则该几何体的体积(单位:3cm )是( )A .43B .1033C .23D .833二、填空题13.已知平面α与正方体的12条棱所成角相等,设所成角为θ,则sin θ=______.14.已知A ,B ,C ,D 是同一球面上的四个点,其中ABC ∆是正三角形,AD ⊥平面ABC ,26AD AB ==,则该球的体积为_________.15.若一个圆柱的侧面展开图是边长为2的正方形,则此圆柱的体积为 .16.点(5,2)到直线()1(21)5m x m y m -+-=-的距离的最大值为________.17.直线与圆交于两点,则________.18.在一个密闭的容积为1的透明正方体容器内装有部分液体,如果任意转动该正方体,液面的形状都不可能是三角形,那么液体体积的取值范围是 .19.圆台的两个底面面积之比为4:9,母线与底面的夹角是60°,轴截面的面积为1803,则圆台的侧面积为_____.20.如图:点P 在正方体1111ABCD A B C D -的面对角线1BC 上运动,则下列四个命题: ①三棱锥1A D PC -的体积不变; ②1A P ∥面1ACD ;③1DP BC ^;④面1PDB ^面1ACD .其中正确的命题的序号是__________.三、解答题21.如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,平面PBD ⊥平面ABCD ,2AD =,25PD =,4AB PB ==,60BAD ∠=︒.(1)求证:AD PB ⊥;(2)E 是侧棱PC 上一点,记PE PCλ=,当PB ⊥平面ADE 时,求实数λ的值 22.如图,在棱长均为4的三棱柱111ABC A B C -中,1,D D 分别是BC 和11B C 的中点.(1)求证:11//A D 平面1AB D(2)若平面ABC ⊥平面111,60BCC B B BC ∠=︒,求三棱锥1B ABC -的体积.23.如图,ABCD 是正方形,O 是该正方体的中心,P 是平面ABCD 外一点,PO ⊥平面ABCD ,E 是PC 的中点.(1)求证://PA 平面BDE ;(2)求证:BD ⊥平面PAC .24.已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点.(1)求k 的取值范围;(2)若OM ON ⋅u u u u v u u u v =12,其中O 为坐标原点,求|MN |.25.如图四棱锥C ABDE -的侧面ABC ∆是正三角形,BD ⊥面ABC ,//BD AE 且2BD AE =,F 为CD 的中点.(1)求证://EF 面ABC(2)若6BD AB ==,求BF 与平面BCE 所成角的正弦值26.如图,矩形ABCD 的两条对角线相交于点M(2,0),AB 边所在直线的方程为x -3y -6=0,点T(-1,1)在AD 边所在直线上.求:(1) AD 边所在直线的方程;(2) DC 边所在直线的方程.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】求出原函数的导函数,得到函数在2x =时的导数,再由两直线平行与斜率的关系求得a 值.【详解】 解:由31x y x +=-,得()()2213411x x y x x ---=---'=, ∴2'|4x y ==-,又曲线31x y x +=-在点25(,)处的切线与直线10ax y +-=平行, ∴4a -=-,即4a =.故选D .【点睛】本题考查利用导数研究过曲线上某点处的切线方程,考查两直线平行与斜率的关系,是中档题.2.B解析:B【解析】【分析】利用数形结合,作出图象,计算得直线1l 与直线2l 的斜率,即可得到结论.【详解】曲线可化简为()22(1)40x y x +-=≤,如图所示:直线()1:24l y k x =-+,此直线与曲线相切,此时有23221kk -=+,解得512k =, 直线()2:24l y k x =-+,此直线与曲线有两个交点,此时有12k =. 所以,过点()2,4的直线与该半圆有两个交点,数形结合,解得51122k <≤. 故选:B. 【点睛】 本题考查了直线与圆相交的性质,涉及的知识有:恒过定点的直线方程,点到直线的距离公式,以及直线斜率的求法,利用了数形结合的思想,其中抓住两个关键点是解本题的关键.3.C解析:C 【解析】分析:由三视图还原实物图,再根据三角形面积公式求解.详解:在斜二测直观图中OB=2,OA=2, 所以在平面图形中OB=2,OA=4, OA ⊥OB , 所以面积为12442S =⨯⨯=. 选C.点睛: 1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图. 2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据. 4.A解析:A【解析】如图,分别取,,,BC CD AD BD 的中点,,,M N P Q ,连,,,MN NP PM PQ ,则,MN BD NP AC P P ,∴PNM ∠即为异面直线AC 和BD 所成的角(或其补角).又由题意得PQ MQ ⊥,11,22PQ AB MQ CD ==. 设2AB BC CD ===,则2PM =又112,222MN BD NP AC ====∴PNM ∆为等边三角形,∴60PNM =︒∠,∴异面直线AC 与BD 所成角为60︒,其余弦值为12.选A . 点睛:用几何法求空间角时遵循“一找、二证、三计算”的步骤,即首先根据题意作出所求的角,并给出证明,然后将所求的角转化为三角形的内角.解题时要注意空间角的范围,并结合解三角形的知识得到所求角的大小或其三角函数值. 5.C解析:C【解析】【分析】首先确定三角形ABC 为等腰三角形,进一步确定球的球心,再求出球的半径,最后确定球的表面积.【详解】解:如图所示:三棱锥P ABC -中,PA ⊥平面2,2ABC AP AB ==,,M 是线段BC 上一动点,线段PM 3则:当AM BC ⊥时,线段PM 达到最小值,由于:PA ⊥平面ABC ,所以:222PA AM PM +=,解得:1AM =,所以:3BM =,则:60BAM ∠=︒,由于:120BAC ∠=︒,所以:60MAC ∠=︒则:ABC V 为等腰三角形.所以:23BC =在ABC V 中,设外接圆的直径为2324r ==,则:2r =,所以:外接球的半径R ==, 则:94182S ππ=⋅⋅=, 故选:C .【点睛】本题考查的知识要点:三棱锥的外接球的球心的确定及球的表面积公式的应用. 6.D解析:D【解析】【分析】求出圆的标准方程,确定最短弦的条件,利用弦长公式进行求解即可.【详解】圆的标准方程为(x ﹣3)2+(y +1)2=10,则圆心坐标为C (3,﹣1),半径为过E 的最短弦满足E 恰好为C 在弦上垂足,则CE ==,则|AB |==,故选D .【点睛】本题主要考查圆的标准方程的求解,以及直线和圆相交的弦长问题,属于中档题.7.D解析:D【解析】【分析】设H ,I 分别为1CC 、11C D 边上的中点,由面面平行的性质可得F 落在线段HI 上,再求HI 的长度即可.【详解】解:设G ,H ,I 分别为CD 、1CC 、11C D 边上的中点,则ABEG 四点共面,且平面1//A BGE 平面1B HI ,又1//B F Q 面1A BE ,F ∴落在线段HI 上,Q 正方体1111ABCD A B C D -中的棱长为a ,112HI CD ∴==,即F 在侧面11CDD C 上的轨迹的长度是22a . 故选D .【点睛】 本题考查了面面平行的性质及动点的轨迹问题,属中档题.8.D解析:D【解析】【分析】取AC 的中点N ,连接1C N ,则1//AM C N ,所以异面直线AM 与1BC 所成角就是直线AM 与1C N 所成角,在1BNC ∆中,利用余弦定理,即可求解.【详解】由题意,取AC 的中点N ,连接1C N ,则1//AM C N , 所以异面直线AM 与1BC 所成角就是直线AM 与1C N 所成角, 设正三棱柱的各棱长为2,则115,22,3C N BC BN ===, 设直线AM 与1C N 所成角为θ,在1BNC ∆中,由余弦定理可得222(5)(22)(3)10cos 42522θ+-==⨯⨯, 即异面直线AM 与1BC 所成角的余弦值为104,故选D .【点睛】本题主要考查了异面直线所成角的求解,其中解答中把异面直线所成的角转化为相交直线所成的角是解答的关键,着重考查了推理与运算能力,属于基础题.9.C解析:C【解析】【分析】利用空间中线线、线面、面面间的位置关系对选项进行一一验证,即可得答案.【详解】正四面体ABCD中,,E F分别是线段AC的三等分点,P是线段AB的中点,G是直线BD的动点,⊥成立,故A错误;在A中,不存在点G,使PG EF⊥成立,故B错误;在B中,不存在点G,使FG EP在C中,不存在点G,使平面EFG⊥平面ACD成立,故C正确;在D中,存在点G,使平面EFG⊥平面ABD成立,故D错误.故选:C.【点睛】本题考查命题真假的判断、考查空间中线线、线面、面面间的位置关系,考查转化与化归思想,考查空间想象能力.10.B解析:B【解析】【分析】【详解】设正方体的棱长为,则,所以,.又直线与平面所成的角小于等于,而为钝角,所以的范围为,选B.【考点定位】空间直线与平面所成的角.11.A解析:A 【解析】 【分析】 【详解】由几何体的三视图分析可知,该几何体上部为边长为2的正方体, 下部为底面半径为1、高为2的半圆柱体, 故该几何体的表面积是20+3π,故选A.考点:1、几何体的三视图;2、几何体的表面积.12.B解析:B 【解析】由题意可知该几何体为正三棱柱去掉一个小三棱锥,1104323333V =⋅=. 故选:B.二、填空题13.【解析】【分析】棱与平面所成的角相等所以平面就是与正方体的12条棱的夹角均为θ的平面之一设出棱长即可求出【详解】因为棱与平面所成的角相等所以平面就是与正方体的条棱的夹角均为的平面设棱长为:易知故答案 3【解析】 【分析】棱11111,,A A A B A D 与平面11AB D 所成的角相等,所以平面11AB D 就是与正方体的12条棱的夹角均为θ的平面之一,设出棱长,即可求出sin θ. 【详解】因为棱11111,,A A A B A D 与平面11AB D 所成的角相等,所以平面11AB D 就是与正方体的12条棱的夹角均为θ的平面,1A AO θ∠=,设棱长为:1,126,2AO AO ==,易知232sin 62θ== 3【点睛】本题考查了线面所成的角,解题的关键是作出线面角,属于基础题.14.【解析】【分析】取正的外心为过作平面的垂线在上取点使得即得是三棱锥外接球球心求出球半径可得体积【详解】如图是外心延长线与交于点是中点过作平面取∵平面ABC ∴到的距离相等∴是三棱锥外接球球心∴所以故答 解析:323π【解析】 【分析】取正ABC 的外心为M ,过M 作平面ABC 的垂线,在上取点O ,使得12OM AD =,即得O 是三棱锥A BCD -外接球球心,求出球半径可得体积. 【详解】如图,M 是ABC ∆外心,AM 延长线与BC 交于点E ,E 是BC 中点,过M 作MO ⊥平面ABC ,取12OM AD =, ∵AD ⊥平面ABC ,∴//MO AD ,O 到,A D 的距离相等,∴O 是三棱锥A BCD -外接球球心,233332AM =⨯⨯=3OM =,∴22223(3)23OA OM AM =+=+=, 所以2344()(23)32333V OA πππ==⨯=.故答案为:323π.【点睛】本题考查求球的体积,解题关键是作出外接球球心.三棱锥外接球球心在过各面中点且与面垂直的直线上.15.2π【解析】试题分析:设圆柱的底面半径为r 高为h 底面积为S 体积为V 则有2πr=2⇒r=1π故底面面积S=πr2=π×(1π)2=1π故圆柱的体积V=Sh=1π×2=2π考点:圆柱的体积 解析:【解析】试题分析:设圆柱的底面半径为,高为,底面积为,体积为,则有,故底面面积,故圆柱的体积.考点:圆柱的体积16.【解析】【分析】先判断过定点可得点到直线的距离的最大值就是点与点的距离从而可得结果【详解】化简可得由所以过定点点到直线的距离的最大值就是点与点的距离为故答案为【点睛】本题主要考查直线过定点问题以及两 解析:13【解析】 【分析】先判断()()1215m x m y m -+-=-过定点()9,4-,可得点(5,2)到直线()()1215m x m y m -+-=-的距离的最大值就是点(5,2)与点()9,4-的距离,从而可得结果. 【详解】化简()()1215m x m y m -+-=-可得m ()()2150x y x y +--+-=,由2109504x y x x y y +-==⎧⎧⇒⎨⎨+-==-⎩⎩,所以()()1215m x m y m -+-=-过定点()9,4-,点(5,2)到直线()()1215m x m y m -+-=-的距离的最大值就是 点(5,2)与点()9,4-的距离为()224652213-+==,故答案为213. 【点睛】本题主要考查直线过定点问题以及两点间距离公式的应用,考查了转化思想的应用,属于中档题. 转化是数学解题的灵魂,合理的转化不仅仅使问题得到了解决,还可以使解决问题的难度大大降低,本解法将求最大值的问题转化成了两点间的距离的问题来解决,转化巧妙.17.22【解析】【分析】首先将圆的一般方程转化为标准方程得到圆心坐标和圆的半径的大小之后应用点到直线的距离求得弦心距借助于圆中特殊三角形半弦长弦心距和圆的半径构成直角三角形利用勾股定理求得弦长【详解】根 解析:【解析】 【分析】首先将圆的一般方程转化为标准方程,得到圆心坐标和圆的半径的大小,之后应用点到直线的距离求得弦心距,借助于圆中特殊三角形半弦长、弦心距和圆的半径构成直角三角形,利用勾股定理求得弦长. 【详解】根据题意,圆的方程可化为,所以圆的圆心为,且半径是,根据点到直线的距离公式可以求得, 结合圆中的特殊三角形,可知,故答案为.【点睛】该题考查的是有关直线被圆截得的弦长问题,在解题的过程中,熟练应用圆中的特殊三角形半弦长、弦心距和圆的半径构成的直角三角形,借助于勾股定理求得结果.18.【解析】【分析】【详解】试题分析:如图正方体ABCD-EFGH 此时若要使液面不为三角形则液面必须高于平面EHD 且低于平面AFC 而当平面EHD 平行水平面放置时若满足上述条件则任意转动该正方体液面的形状解析:15,66⎛⎫ ⎪⎝⎭【解析】 【分析】【详解】试题分析:如图,正方体ABCD-EFGH,此时若要使液面不为三角形,则液面必须高于平面EHD,且低于平面AFC.而当平面EHD平行水平面放置时,若满足上述条件,则任意转动该正方体,液面的形状都不可能是三角形.所以液体体积必须>三棱柱G-EHD的体积16,并且<正方体ABCD-EFGH体积-三棱柱B-AFC体积15166-=考点:1.棱柱的结构特征;2.几何体的体积的求法19.【解析】【分析】首先通过两个底面面积之比为得到半径比设出上底半径为下底半径为由因为母线与底面的夹角是得到母线长为高为就可以根据轴截面的面积解出代公式求出侧面积即可【详解】圆台的两个底面面积之比为则半解析:360π【解析】【分析】首先通过两个底面面积之比为4:9,得到半径比,设出上底半径为2k,下底半径为3k,由因为母线与底面的夹角是60o,得到母线长为2k,高为3k.就可以根据轴截面的面积解出6k=,代公式求出侧面积即可.【详解】圆台的两个底面面积之比为4:9,则半径比为2:3所以设圆台的上底半径为2k,下底半径为3k,由于母线与底面的夹角是60o,所以母线长为2k3k.由于轴截面的面积为1803,所以()46318032k k k+⨯=,解得6k =.所以圆台的上底半径为12,下底半径为18.母线长为12. 所以圆台的侧面积为()121812360ππ+⨯=. 故答案为:360π 【点睛】本题主要考查圆台的性质以及圆台的侧面积,同时考查了线面成角问题,属于中档题.20.①②④【解析】对于①因为从而平面故上任意一点到平面的距离均相等以为顶点平面为底面则三棱锥的体积不变正确;对于②连接容易证明且相等由于①知:平面平面所以可得面②正确;对于③由于平面若则平面则为中点与动解析:. ① ② ④ 【解析】对于①,因为11//AD BC ,从而1//BC 平面1AD C ,故1BC 上任意一点到平面1AD C 的距离均相等,∴以P 为顶点,平面1AD C 为底面,则三棱锥1A D PC -的体积不变,正确;对于②,连接111,A B A C 容易证明111//AC A D 且相等,由于①知:11//AD BC ,平面11//BA C 平面1ACD ,所以可得1//A P 面1ACD ,②正确;对于③,由于DC ⊥平面111,BCB C DC BC ∴⊥,若1DP BC ^,则1BC ⊥平面DCP ,1BC PC ⊥,则P 为中点,与P 动点矛盾,错误;对于④,连接1DB ,由1DB AC ⊥且11DB AD ⊥,可得1DB ⊥面1ACD ,由面面垂直的判定知平面1PDB ⊥平面1ACD ,④正确,故答案为①②④.三、解答题21.(1)证明见解析;(2)34. 【解析】 【分析】(1)证明AD BD ⊥,利用平面PBD ⊥平面ABCD ,交线为BD ,可得AD ⊥平面PBD ,从而AD PB ⊥;(2)作//EF BC ,交PB 于点F ,连接AF ,连接DF ,PBD ∆中,由余弦定理求得cos 25BPD ∠=,即可得出结论.【详解】(1)证明:在ABD △中,2AD =Q ,4AB =,60BAD ∠=︒, ∴由余弦定理可得23BD =,222AD BD AB ∴+=,AD BD ∴⊥. ∵平面PBD ⊥平面ABCD ,交线为BD ,AD ∴⊥平面PBD ,又PB ⊂平面PBD AD PB ∴⊥.(2)解:作//EF BC ,交PB 于点F ,连接AF , 由////EF BC AD 可知A ,D ,E ,F 四点共面,连接DF ,所以由(1)的结论可知,PB ⊥平面ADE ,当且仅当PB DF ⊥. 在PBD △中,由4PB =,23BD =25PD = 余弦定理求得cos 25BPD ∠=,∴在Rt PDF V中,cos 3PF PD BPD =∠=, 因此34PE PF PC PB λ=== 【点睛】本题考查立体几何有关知识,考查线面、面面垂直,考查运算能力,属于中档题. 22.(1)证明见解析(2)8 【解析】试题分析:(1)欲证A 1D 1∥平面AB 1D ,根据直线与平面平行的判定定理可知只需证A 1D 1与平面AB 1D 内一直线平行,连接DD 1,根据中位线定理可知B 1D 1∥BD,且B 1D 1=BD ,则四边形B 1BDD 1为平行四边形,同理可证四边形AA 1D 1D 为平行四边形,则A 1D 1∥AD 又A 1D 1⊄平面AB 1D ,AD ⊂平面AB 1D ,满足定理所需条件;(2)根据面面垂直的性质定理可知AD⊥平面B 1C 1CB ,即AD 是三棱锥A ﹣B 1BC 的高,求出三棱锥A ﹣B 1BC 的体积,从而求出三棱锥B 1﹣ABC 的体积. 试题解析:(1)证明:如图,连结1DD .在三棱柱111ABC A B C -中,因为1,D D 分别是BC 与11B C 的中点,所以11//B D BD ,且11B D BD =. 所以四边形11B BDD 为平行四边形,所以11//BB DD ,且11BB DD =.又1111//,AA BB AA BB =所以1111//,AA DD AA DD =, 所以四边形11AA D D 为平行四边形,所以11//A D AD .又11A D ⊄平面1AB D ,AD ⊂平面1AB D ,故11//A D 平面1AB D .(2)解:(方法1)在ABC ∆中,因为AB AC =,D 为BC 的中点,所以AD BC ⊥. 因为平面ABC ⊥平面11B C CB ,交线为BC ,AD ⊂平面ABC , 所以AD ⊥平面11B C CB ,即AD 是三棱锥1A B BC -的高. 在ABC ∆中,由4AB AC BC ===,得3AD =. 在1B BC ∆中,114,60B B BC B BC ==∠=︒, 所以1B BC ∆的面积213443S B BC ∆== 所以三棱锥1B ABC -的体积,即三棱锥1A B BC -的体积1114323833V S B BC AD =⨯∆⋅=⨯=.(方法 2)在1B BC ∆ 中,因为11,60B B BC B BC =∠=︒, 所以1B BC ∆为正三角形,因此1B D BC ⊥.因为平面ABC ⊥平面11B C CB ,交线为BC ,1B D ⊂平面11B C CB , 所以1B D ⊥平面ABC ,即1B D 是三棱锥1B ABC -的高. 在ABC ∆中,由4AB AC BC ===,得ABC ∆的面积234434ABC S ∆== 在1B BC ∆中,因为114,60B B BC B BC ==∠=︒,所以123B D =. 所以三棱锥1B ABC -的体积1114323833ABC V S B D ∆=⨯⋅=⨯=. 点睛:本题主要考查了线面平行的判定,以及三棱锥的体积的计算,同时考查了推理论证的能力、计算能力,转化与划归的思想,属于中档题. 23.证明见解析. 【解析】试题分析:(1)要证PA 与平面EBD 平行,而过PA 的平面PAC 与平面EBD 的交线为EO ,因此只要证//PA EO 即可,这可由中位线定理得证;(2)要证BD 垂直于平面PAC ,就是要证BD 与平面PAC 内两条相交直线垂直,正方形中对角线BD 与AC 是垂直的,因此只要再证BD PO ⊥,这由线面垂直的性质或定义可得. 试题解析:证明:(1)连接EO ,∵四边形ABCD 为正方形, ∴O 为AC 的中点,∵E 是PC 的中点,∴OE 是APC ∆的中位线.∴//EO PA ,∵EO ⊂平面BDE ,PA ⊄平面BDE , ∴//PA 平面BDE .(2)∵PO ⊥平面ABCD ,BD ⊂平面ABCD , ∴PO BD ⊥,∵四边形ABCD 是正方形, ∴AC BD ⊥,∵PO AC O ⋂=,AC ⊂平面PAC ,PO ⊂平面PAC , ∴BD ⊥平面PAC .考点:线面平行与线面垂直的判断. 24.(1)4747-+;(2)2. 【解析】试题分析:(1)由题意可得,直线l 的斜率存在,用点斜式求得直线l 的方程,根据圆心到直线的距离等于半径求得k 的值,可得满足条件的k 的范围.(2)由题意可得,经过点M 、N 、A 的直线方程为y=kx+1,根据直线和圆相交的弦长公式进行求解试题解析:(1)由题意可得,直线l 的斜率存在, 设过点A (0,1)的直线方程:y=kx+1,即:kx-y+1=0. 由已知可得圆C 的圆心C 的坐标(2,3),半径R=1. 223111k k -+=+,解得:124747,33k k +==.故当474733k -+<<,过点A (0,1)的直线与圆C :()()22231x y -+-=相交于M ,N 两点.(2)设M ()11,x y ;N ()22,x y ,由题意可得,经过点M 、N 、A 的直线方程为y=kx+1,代入圆C 的方程()()22231x y -+-=, 可得()()2214170k x k x +-++=,∴()121222417,11k x x x x k k++==++, ∴()()()2212121212212411111k k y y kx kx k x x k x x k++=++=+++=+, 由2121221248·121k k OM ON x x y y k++=+==+u u u u r u u u r ,解得 k=1, 故直线l 的方程为 y=x+1,即 x-y+1=0.圆心C 在直线l 上,MN 长即为圆的直径.所以|MN|=2考点:直线与圆的位置关系;平面向量数量积的运算25.(1)见解析(2)6 【解析】【分析】(1)取BC 中点G 点,连接AG ,FG ,由F ,G 分别为DC ,BC 中点,知//FG BD 且12FG BD =,又//AE BD 且12AE BD =,故//AE FG 且AE FG =,由此能够证明//EF 平面ABC .(2)在面EFGA 内过点F 作FO EG ⊥,连接BO ,则FO ⊥面BCE ,OBF ∠即为BF 与平面BCE 所成角,由此可求出答案.【详解】(1)证:取BC 中点G ,连接AG 和FG ,由于F 为CD 的中点,则//FG BD 且2BD FG =,又已知//BD AE 且2BD AE =故可得//FG AE 且FG AE =,∴EFGA 是平行四边形.∴//EF AG ,所以//EF 面ABC ;(2)解:∵//FG BD ,BD ⊥面ABC ,∴FG ⊥面ABC ∴FG BC ⊥,又正三角形ABC ∆且G 是BC 中点,∴AG BC ⊥,则得BC ⊥面EFGA ,∴面EFGA ⊥面BCE ,又面EFGA ⋂面BCE EG =,在面EFGA 内过点F 作FO EG ⊥,连接BO ,则FO ⊥面BCE ,∴OBF ∠即为BF 与平面BCE 所成角,在矩形EFGA 中,3AE FG ==,EF AG ==FO ∴=, 在直角三角形CBD 中,6BC BD ==,12BF DC ==sinFO OBF BF ∴∠===. 【点睛】本题主要考查空间想象能力、逻辑思维能力、运算求解能力和探究能力,同时考查学生灵活利用图形,借助向量工具解决问题的能力,考查数形结合思想,属于中档题.26.(1)320x y ++=;(2)320x y -+=【解析】分析:(1)先由AD 与AB 垂直,求得AD 的斜率,再由点斜式求得其直线方程;(2)根据矩形特点可以设DC 的直线方程为()306x y m m -+=≠-,然后由点到直线的=m 的值,即可求出结果. 详解:(1)由题意:ABCD 为矩形,则AB⊥AD,又AB 边所在的直线方程为:x -3y -6=0,所以AD 所在直线的斜率k AD =-3,而点T(-1,1)在直线AD 上.所以AD 边所在直线的方程为:3x +y +2=0.(2)方法一:由ABCD 为矩形可得,AB∥DC,所以设直线CD 的方程为x -3y +m =0.由矩形性质可知点M 到AB 、CD 的距离相等所以=,解得m=2或m=-6(舍).所以DC边所在的直线方程为x-3y+2=0.方法二:方程x-3y-6=0与方程3x+y+2=0联立得A(0,-2),关于M的对称点C (4,2)因AB∥DC,所以DC边所在的直线方程为x-3y+2=0.点睛:本题主要考查直线方程的求法,在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件.用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线.故在解题时,若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021石家庄市石门实验学校高一数学上期末第一次模拟试题(带答案)一、选择题1.已知()f x 在R 上是奇函数,且2(4)(),(0,2)()2,(7)f x f x x f x x f +=∈==当时,则 A .-2B .2C .-98D .982.已知奇函数()y f x =的图像关于点(,0)2π对称,当[0,)2x π∈时,()1cos f x x =-,则当5(,3]2x ππ∈时,()f x 的解析式为( ) A .()1sin f x x =-- B .()1sin f x x =- C .()1cos f x x =-- D .()1cos f x x =-3.设集合{}1|21x A x -=≥,{}3|log ,B y y x x A ==∈,则B A =ð( )A .()0,1B .[)0,1C .(]0,1D .[]0,14.已知函数ln ()xf x x=,若(2)a f =,(3)b f =,(5)c f =,则a ,b ,c 的大小关系是( ) A .b c a <<B .b a c <<C .a c b <<D .c a b <<5.设f(x)=()2,01,0x a x x a x x ⎧-≤⎪⎨++>⎪⎩若f(0)是f(x)的最小值,则a 的取值范围为( ) A .[-1,2] B .[-1,0] C .[1,2]D .[0,2]6.把函数()()2log 1f x x =+的图象向右平移一个单位,所得图象与函数()g x 的图象关于直线y x =对称;已知偶函数()h x 满足()()11h x h x -=--,当[]0,1x ∈时,()()1h x g x =-;若函数()()y k f x h x =⋅-有五个零点,则正数k 的取值范围是( ) A .()3log 2,1B .[)3log 2,1C .61log 2,2⎛⎫ ⎪⎝⎭D .61log 2,2⎛⎤ ⎥⎝⎦7.已知函数2()log f x x =,正实数,m n 满足m n <且()()f m f n =,若()f x 在区间2[,]m n 上的最大值为2,则,m n 的值分别为A .12,2 B.2C .14,2 D .14,4 8.函数ln x y x=的图象大致是( )A .B .C .D .9.若函数y =x a a - (a >0,a ≠1)的定义域和值域都是[0,1],则log a 56+log a 485=( ) A .1B .2C .3D .410.已知函数()ln f x x =,2()3g x x =-+,则()?()f x g x 的图象大致为( )A .B .C .D .11.已知()f x 是定义在R 上的偶函数,且在区间(),0-∞上单调递增。

若实数a 满足()(122a f f ->-,则a 的取值范围是 ( )A .1,2⎛⎫-∞ ⎪⎝⎭B .13,,22⎛⎫⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭UC .3,2⎛⎫+∞⎪⎝⎭D .13,22⎛⎫⎪⎝⎭12.已知[]x 表示不超过实数x 的最大整数,()[]g x x =为取整函数,0x 是函数()2ln f x x x=-的零点,则()0g x 等于( )A .1B .2C .3D .4二、填空题13.已知幂函数(2)my m x =-在(0,)+∞上是减函数,则m =__________.14.已知()f x 是定义域为R 的单调函数,且对任意实数x 都有21()213xf f x ⎡⎤+=⎢⎥+⎣⎦,则52(log )f =__________.15.设,,x y z R +∈,满足236x y z ==,则112x z y+-的最小值为__________. 16.函数()()4log 5f x x =-+________. 17.若集合{||1|2}A x x =-<,2|04x B x x -⎧⎫=<⎨⎬+⎩⎭,则A B =I ______. 18.若点(4,2)在幂函数()f x 的图像上,则函数()f x 的反函数1()f x -=________.19.已知函数2,01,()1(1),13,2x x f x f x x ⎧<≤⎪=⎨-<≤⎪⎩则关于x 的方程4()0x f x k -=的所有根的和的最大值是_______.20.高斯是德国的著名数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[3,4]4-=-,[2,7]2=.已知函数21()15x xe f x e =-+,则函数[()]y f x =的值域是_________. 三、解答题21.已知函数2()1()f x x mx m =-+∈R .(1)若函数()f x 在[]1,1x ∈-上是单调函数,求实数m 的取值范围; (2)若函数()f x 在[]1,2x ∈上有最大值为3,求实数m 的值.22.某地下车库在排气扇发生故障的情况下,测得空气中一氧化碳含量达到了危险状态,经抢修,排气扇恢复正常.排气4min 后,测得车库内的一氧化碳浓度为64L /L μ,继续排气4min ,又测得浓度为32L /L μ,经检测知该地下车库一氧化碳浓度(L /L)y μ与排气时间(min)t 存在函数关系:12mty c ⎛⎫= ⎪⎝⎭(c ,m 为常数)。

(1)求c ,m 的值;(2)若地下车库中一氧化碳浓度不高于0.5L /L μ为正常,问至少排气多少分钟,这个地下车库中的一氧化碳含量才能达到正常状态? 23.已知函数()22xxf x k -=+⋅,()()log ()2xa g x f x =-(0a >且1a ≠),且(0)4f =.(1)求k 的值;(2)求关于x 的不等式()0>g x 的解集; (3)若()82x tf x ≥+对x ∈R 恒成立,求t 的取值范围.24.已知函数()212xxk f x -=+(x ∈R ) (1)若函数()f x 为奇函数,求实数k 的值;(2)在(1)的条件下,若不等式()()240f ax f x +-≥对[]1,2x ∈-恒成立,求实数a的取值范围. 25.已知函数21()f x x x=-是定义在(0,)+∞上的函数. (1)用定义法证明函数()f x 的单调性;(2)若关于x 的不等式()220f x x m ++<恒成立,求实数m 的取值范围.26.“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v (单位:千克/年)是养殖密度x (单位:尾/立方米)的函数.当x 不超过4(尾/立方米)时,v 的值为2(千克/年);当420x ≤≤时,v 是x 的一次函数;当x 达到20(尾/立方米)时,因缺氧等原因,v 的值为0(千克/年).(1)当020x <≤时,求函数()v x 的表达式;(2)当养殖密度x 为多大时,鱼的年生长量(单位:千克/立方米)()()f x x v x =⋅可以达到最大,并求出最大值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】∵f(x+4)=f(x),∴f(x)是以4为周期的周期函数,∴f(2 019)=f(504×4+3)=f(3)=f(-1).又f(x)为奇函数,∴f(-1)=-f(1)=-2×12=-2,即f(2 019)=-2. 故选A2.C解析:C 【解析】 【分析】 当5,32x ππ⎛⎤∈⎥⎝⎦时,30,2x ππ⎡⎫-∈⎪⎢⎣⎭,结合奇偶性与对称性即可得到结果. 【详解】因为奇函数()y f x =的图像关于点,02π⎛⎫⎪⎝⎭对称,所以()()0f x f x π++-=, 且()()f x f x -=-,所以()()fx f x π+=,故()f x 是以π为周期的函数.当5,32x ππ⎛⎤∈ ⎥⎝⎦时,30,2x ππ⎡⎫-∈⎪⎢⎣⎭,故()()31cos 31cos f x x x ππ-=--=+ 因为()f x 是周期为π的奇函数,所以()()()3f x f x f x π-=-=- 故()1cos f x x -=+,即()1cos f x x =--,5,32x ππ⎛⎤∈ ⎥⎝⎦故选C 【点睛】本题考查求函数的表达式,考查函数的图象与性质,涉及对称性与周期性,属于中档题.3.B解析:B 【解析】 【分析】先化简集合A,B,再求B A ð得解. 【详解】由题得{}10|22{|1}x A x x x -=≥=≥,{}|0B y y =≥.所以{|01}B A x x =≤<ð. 故选B 【点睛】本题主要考查集合的化简和补集运算,考查指数函数的单调性和对数函数的值域的求法,意在考查学生对这些知识的理解掌握水平.4.D解析:D 【解析】 【分析】 可以得出11ln 32,ln 251010a c ==,从而得出c <a ,同样的方法得出a <b ,从而得出a ,b ,c 的大小关系. 【详解】()ln 2ln 322210a f ===, ()1ln 255ln 5510c f ===,根据对数函数的单调性得到a>c, ()ln 333b f ==,又因为()ln 2ln8226a f ===,()ln 3ln 9336b f ===,再由对数函数的单调性得到a<b,∴c <a ,且a <b ;∴c <a <b . 故选D .【点睛】考查对数的运算性质,对数函数的单调性.比较两数的大小常见方法有:做差和0比较,做商和1比较,或者构造函数利用函数的单调性得到结果.5.D解析:D 【解析】 【分析】由分段函数可得当0x =时,2(0)f a =,由于(0)f 是()f x 的最小值,则(,0]-∞为减函数,即有0a ≥,当0x >时,1()f x x a x=++在1x =时取得最小值2a +,则有22a a ≤+,解不等式可得a 的取值范围.【详解】因为当x≤0时,f(x)=()2x a -,f(0)是f(x)的最小值, 所以a≥0.当x >0时,1()2f x x a a x=++≥+,当且仅当x =1时取“=”. 要满足f(0)是f(x)的最小值,需22(0)a f a +>=,即220a a --≤,解得12a -≤≤, 所以a 的取值范围是02a ≤≤, 故选D. 【点睛】该题考查的是有关分段函数的问题,涉及到的知识点有分段函数的最小值,利用函数的性质,建立不等关系,求出参数的取值范围,属于简单题目.6.C解析:C 【解析】分析:由题意分别确定函数f (x )的图象性质和函数h (x )图象的性质,然后数形结合得到关于k 的不等式组,求解不等式组即可求得最终结果.详解:曲线()()2log 1f x x =+右移一个单位,得()21log y f x x =-=, 所以g (x )=2x ,h (x -1)=h (-x -1)=h (x +1),则函数h (x )的周期为2. 当x ∈[0,1]时,()21xh x =-,y =kf (x )-h (x )有五个零点,等价于函数y =kf (x )与函数y =h (x )的图象有五个公共点. 绘制函数图像如图所示,由图像知kf (3)<1且kf (5)>1,即:22log 41log 61k k <⎧⎨>⎩,求解不等式组可得:61log 22k <<. 即k 的取值范围是612,2log ⎛⎫ ⎪⎝⎭. 本题选择C 选项.点睛:本题主要考查函数图象的平移变换,函数的周期性,函数的奇偶性,数形结合解题等知识,意在考查学生的转化能力和计算求解能力.7.A解析:A 【解析】试题分析:画出函数图像,因为正实数,m n 满足m n <且()()f m f n =,且()f x 在区间2[,]m n 上的最大值为2,所以()()f m f n ==2,由2()log 2f x x ==解得12,2x =,即,m n 的值分别为12,2.故选A .考点:本题主要考查对数函数的图象和性质.点评:基础题,数形结合,画出函数图像,分析建立m,n 的方程.8.C解析:C 【解析】 分析:讨论函数ln x y x=性质,即可得到正确答案.详解:函数ln x y x=的定义域为{|0}x x ≠ ,ln ln x x f x f x xxx--==-=-Q ()(), ∴排除B , 当0x >时,2ln ln 1-ln ,,x x xy y xx x===' 函数在()0,e 上单调递增,在(),e +∞上单调递减, 故排除A,D , 故选C .点睛:本题考查了数形结合的思想应用及排除法的应用.9.C解析:C【分析】先分析得到a >1,再求出a =2,再利用对数的运算求值得解. 【详解】由题意可得a -a x ≥0,a x ≤a ,定义域为[0,1], 所以a >1,y [0,1]上单调递减,值域是[0,1],所以f (0)1,f (1)=0, 所以a =2,所log a56+log a 485=log 256+log 2485=log 28=3. 故选C 【点睛】本题主要考查指数和对数的运算,考查函数的单调性的应用,意在考查学生对这些知识的理解掌握水平,属于基础题.10.C解析:C 【解析】 【分析】 【详解】因为函数()ln f x x =,()23g x x =-+,可得()()•f x g x 是偶函数,图象关于y 轴对称,排除,A D ;又()0,1x ∈时,()()0,0f x g x <>,所以()()•0f x g x <,排除B , 故选C. 【方法点晴】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及0,0,,x x x x +-→→→+∞→-∞时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.11.D解析:D 【解析】()(12a f f ->11112(2)(222a a a f f ---⇒->⇒->⇒<111131122222a a a ⇒-<⇒-<-<⇒<<,选D. 12.B解析:B【分析】根据零点存在定理判断023x <<,从而可得结果. 【详解】 因为()2ln f x x x=-在定义域内递增, 且()2ln 210f =-<,()23ln 303f =->, 由零点存在性定理可得023x <<,根据[]x 表示不超过实数x 的最大整数可知()02g x =, 故选:B. 【点睛】本题主要考查零点存在定理的应用,属于简单题.应用零点存在定理解题时,要注意两点:(1)函数是否为单调函数;(2)函数是否连续.二、填空题 13.-3【解析】【分析】根据函数是幂函数可求出m 再根据函数是减函数知故可求出m 【详解】因为函数是幂函数所以解得或当时在上是增函数;当时在上是减函数所以【点睛】本题主要考查了幂函数的概念幂函数的增减性属于 解析:-3【解析】 【分析】根据函数是幂函数可求出m,再根据函数是减函数知0m <,故可求出m. 【详解】 因为函数是幂函数所以||21m -=,解得3m =-或3m =. 当3m =时,3y x =在(0,)+∞上是增函数; 当3m =-时,y x =在(0,)+∞上是减函数, 所以3m =-. 【点睛】本题主要考查了幂函数的概念,幂函数的增减性,属于中档题.14.【解析】【分析】由已知可得=a 恒成立且f (a )=求出a =1后将x =log25代入可得答案【详解】∵函数f (x )是R 上的单调函数且对任意实数x 都有f =∴=a 恒成立且f (a )=即f (x )=﹣+af (a )解析:23【分析】 由已知可得()221x f x ++=a 恒成立,且f (a )=13,求出a =1后,将x =log 25代入可得答案. 【详解】∵函数f (x )是R 上的单调函数,且对任意实数x ,都有f[()221x f x ++]=13, ∴()221x f x ++=a 恒成立,且f (a )=13,即f (x )=﹣x 221++a ,f (a )=﹣x 221++a =13, 解得:a =1,∴f (x )=﹣x 221++1, ∴f (log 25)=23, 故答案为:23. 【点睛】本题考查的知识点是函数解析式的求法和函数求值的问题,正确理解对任意实数x ,都有()21213x f f x ⎡⎤+=⎢⎥+⎣⎦成立是解答的关键,属于中档题.15.【解析】【分析】令将用表示转化为求关于函数的最值【详解】令则当且仅当时等号成立故答案为:【点睛】本题考查指对数间的关系以及对数换底公式注意基本不等式的应用属于中档题解析:【解析】 【分析】令236x y z t ===,将,,x y z 用t 表示,转化为求关于t 函数的最值. 【详解】,,x y z R +∈,令1236x y z t ==>=,则236log ,log ,log ,x t y t z t ===11log 3,log 6t t y z==,21122log log 2t x t z y+-=+≥当且仅当2x =时等号成立.故答案为: 【点睛】本题考查指对数间的关系,以及对数换底公式,注意基本不等式的应用,属于中档题.16.【解析】【分析】根据题意列出不等式组解出即可【详解】要使函数有意义需满足解得即函数的定义域为故答案为【点睛】本题主要考查了具体函数的定义域问题属于基础题;常见的形式有:1分式函数分母不能为0;2偶次 解析:[)0,5【解析】 【分析】根据题意,列出不等式组50210xx ->⎧⎨-≥⎩,解出即可. 【详解】要使函数()()4log 5f x x =-+有意义, 需满足50210xx ->⎧⎨-≥⎩,解得05x <≤,即函数的定义域为[)0,5, 故答案为[)0,5. 【点睛】本题主要考查了具体函数的定义域问题,属于基础题;常见的形式有:1、分式函数分母不能为0;2、偶次根式下大于等于0;3、对数函数的真数部分大于0;4、0的0次方无意义;5、对于正切函数tan y x =,需满足,2x k k Z ππ≠+∈等等,当同时出现时,取其交集.17.【解析】【分析】先分别求解出绝对值不等式分式不等式的解集作为集合然后根据交集概念求解的结果【详解】因为所以所以;又因为所以所以所以;则故答案为:【点睛】解分式不等式的方法:首先将分式不等式转化为整式 解析:()1,2-【解析】 【分析】先分别求解出绝对值不等式、分式不等式的解集作为集合,A B ,然后根据交集概念求解A B I 的结果.【详解】因为12x -<,所以13x -<<,所以()1,3A =-; 又因为204x x -<+,所以()()4204x x x ⎧+-<⎨≠-⎩,所以42x -<<,所以()4,2B =-; 则()1,2A B =-I .故答案为:()1,2-. 【点睛】解分式不等式的方法:首先将分式不等式转化为整式不等式,若对应的整式不等式为高次可因式分解的不等式,可采用数轴穿根法求解集.18.【解析】【分析】根据函数经过点求出幂函数的解析式利用反函数的求法即可求解【详解】因为点在幂函数的图象上所以解得所以幂函数的解析式为则所以原函数的反函数为故答案为:【点睛】本题主要考查了幂函数的解析式 解析:2(0)x x ≥【解析】 【分析】根据函数经过点(4,2)求出幂函数的解析式,利用反函数的求法,即可求解. 【详解】因为点(4,2)在幂函数()()f x x R αα=∈的图象上,所以24α=,解得12α=, 所以幂函数的解析式为12y x =, 则2x y =,所以原函数的反函数为12()(0)f x x x -=≥.故答案为:12()(0)f x x x -=≥【点睛】本题主要考查了幂函数的解析式的求法,以及反函数的求法,其中熟记反函数的求法是解答的关键,着重考查了推理与运算能力,属于基础题.19.5【解析】【分析】将化简为同时设可得的函数解析式可得当k 等于8时与的交点的所有根的和的最大可得答案【详解】解:由可得:设由函数的性质与图像可得当k 等于8时与的交点的所有根的和的最大此时根分别为:当时解析:5 【解析】 【分析】将2,01,()1(1),13,2x x f x f x x ⎧<≤⎪=⎨-<≤⎪⎩化简为2,01,1()2,12,412,23,16x x xx f x x x ⎧⎪<≤⎪⎪=⨯<≤⎨⎪⎪⨯<≤⎪⎩同时设4()()x f x g x =,可得()g x 的函数解析式,可得当k 等于8时与()g x 的交点的所有根的和的最大,可得答案. 【详解】解:由2,01,()1(1),13,2x xf xf x x⎧<≤⎪=⎨-<≤⎪⎩可得:2,01,1()2,12,412,23,16xxxxf x xx⎧⎪<≤⎪⎪=⨯<≤⎨⎪⎪⨯<≤⎪⎩设4()()x f x g x=,8,01,1()8,12,418,23,16xxxxg x xx⎧⎪<≤⎪⎪=⨯<≤⎨⎪⎪⨯<≤⎪⎩由()g x函数的性质与图像可得,当k等于8时与()g x的交点的所有根的和的最大,此时根分别为:当01x<≤时,188x=,11x=,当12x<≤时,21848x⨯=,253x=,当23x<≤时,318816x⨯=,373x=,此时所有根的和的最大值为:1235x x x++=,故答案为:5.【点睛】本题主要考查分段函数的图像与性质,注意分段函数需分对分段区间进行讨论,属于中档题.20.【解析】【分析】求出函数的值域由高斯函数的定义即可得解【详解】所以故答案为:【点睛】本题主要考查了函数值域的求法属于中档题解析:{}1,0,1-【解析】 【分析】求出函数()f x 的值域,由高斯函数的定义即可得解. 【详解】2(1)212192()2151551x x x x e f x e e e +-=-=--=-+++Q , 11x e +>Q ,1011xe∴<<+, 2201xe∴-<-<+, 19195515x e ∴-<-<+,所以19(),55f x ⎛⎫∈- ⎪⎝⎭,{}[()]1,0,1f x ∴∈-,故答案为:{}1,0,1- 【点睛】本题主要考查了函数值域的求法,属于中档题.三、解答题21.(1)(,2][2,)m ∈-∞-⋃+∞(2)1m = 【解析】 【分析】(1)根据二次函数单调性,使对称轴不在区间()1,1-上即可;(2)由题意,分类讨论,当()13f =时和当()23f =时分别求m 值,再回代检验是否为最大值. 【详解】解:(1)对于函数()f x ,开口向上,对称轴2m x =, 当()f x 在[]1,1x ∈-上单调递增时,12m≤-,解得2m ≤-, 当()f x 在[]1,1x ∈-上单调递减时,12m≥,解得2m ≥, 综上,(,2][2,)m ∈-∞-⋃+∞.(2)由题意,函数()f x 在1x =或2x =处取得最大值, 当()13f =时,解得1m =-,此时3为最小值,不合题意,舍去; 当()23f =时,解得1m =,此时3为最大值,符合题意. 综上所述,1m =. 【点睛】本题考查(1)二次函数单调性问题,对称轴取值范围(2)二次函数最值问题;考查分类讨论思想,属于中等题型. 22.(1)11284c m ==,(2)32min 【解析】 【分析】(1)将4,64t y ==和8,32t y ==分别代入12mty c ⎛⎫= ⎪⎝⎭,列方程组可解得1128,4c m ==,从而可得.(2) 由(1)知1411282⎛⎫=⨯ ⎪⎝⎭t y ,然后利用指数函数的单调性解不等式1411280.52t ⎛⎫⨯ ⎪⎝⎭„即可得到. 【详解】(1)由题意,可得方程组4816421322mmc c ⎧⎛⎫=⎪ ⎪⎪⎝⎭⎨⎛⎫⎪= ⎪⎪⎝⎭⎩,解得12814c m =⎧⎪⎨=⎪⎩. (2)由(1)知1411282⎛⎫=⨯ ⎪⎝⎭t y .由题意,可得 1411280.52t ⎛⎫⨯ ⎪⎝⎭„, 即 1841122t ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭„,即 184t …,解得32≥t . 所以至少排气 32min ,这个地下车库中的一氧化碳含量才能达到正常状态。

相关文档
最新文档