2019年高考数学真题分类之正余弦定理
2019版高考数学第3章三角函数、解三角形 3.6 正弦定理和余弦定理
3.6正弦定理和余弦定理[知识梳理]1.正弦定理、余弦定理在△ABC中,若角A,B,C所对的边分别是a,b,c,R为△ABC外接圆半径,则2.在△ABC 中,已知a ,b 和A 时,三角形解的情况3.三角形中常用的面积公式 (1)S =12ah (h 表示边a 上的高). (2)S =12bc sin A =12ac sin B =12ab sin C .(3)S =12r (a +b +c )(r 为三角形的内切圆半径). 4.在△ABC 中,常有的结论 (1)∠A +∠B +∠C =π.(2)在三角形中大边对大角,大角对大边.(3)任意两边之和大于第三边,任意两边之差小于第三边.[诊断自测] 1.概念思辨(1)在三角形中,已知两角和一边或已知两边和一角都能解三角形.( )(2)在△ABC 中,asin A =a +b -c sin A +sin B -sin C.( )(3)若a ,b ,c 是△ABC 的三边,当b 2+c 2-a 2>0时,△ABC 为锐角三角形;当b 2+c 2-a 2=0时,△ABC 为直角三角形;当b 2+c 2-a 2<0时,△ABC 为钝角三角形.( )(4)在△ABC 中,若sin A sin B <cos A cos B ,则此三角形是钝角三角形.( )答案 (1)√ (2)√ (3)√ (4)√2.教材衍化(1)(必修A5P 10A 组T 4)在△ABC 中,a =4,b =5,c =6,则sin2Asin C =________.答案 1解析 由正弦定理得sin A ∶sin B ∶sin C =a ∶b ∶c =4∶5∶6,又由余弦定理知cos A =b 2+c 2-a 22bc =25+36-162×5×6=34,所以sin2Asin C =2sin A cos A sin C =2×46×34=1.(2)(必修A5P 20A 组T 11)若锐角△ABC 的面积为103,且AB =5,AC =8,则BC 等于________.答案 7解析 因为△ABC 的面积S △ABC =12AB ·AC sin A ,所以103=12×5×8sin A ,解得sin A =32,因为角A 为锐角,所以cos A =12.根据余弦定理,得BC 2=52+82-2×5×8cos A =52+82-2×5×8×12=49,所以BC =7.3.小题热身(1)(2016·天津高考)在△ABC 中,若AB =13,BC =3,∠C = 120°,则AC =( ) A .1 B .2 C .3 D .4 答案 A解析 在△ABC 中,设A ,B ,C 所对的边分别为a ,b ,c ,则由c 2=a 2+b 2-2ab cos C ,得13=9+b 2-2×3b ×⎝ ⎛⎭⎪⎫-12,即b 2+3b -4=0,解得b =1(负值舍去),即AC =1.故选A.(2)(2016·全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b =________.答案 2113解析 由已知可得sin A =35,sin C =1213,则sin B =sin(A +C )=35×513+45×1213=6365,再由正弦定理可得a sin A =b sin B ⇒b =1×636535=2113.题型1 利用正、余弦定理解三角形 典例1 (2018·郑州预测)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b 3cos B=asin A ,则cos B =( ) A .-12 B.12 C .-32D.32边角互化法.答案 B解析 由正弦定理知sin B 3cos B=sin Asin A =1,即tan B =3,由B ∈(0,π),所以B =π3,所以cos B =cos π3=12.故选B.典例2(2018·重庆期末)在△ABC 中,已知AB =43,AC =4,∠B =30°,则△ABC 的面积是( )A .4 3B .8 3C .43或8 3 D. 3注意本题的多解性.答案 C解析 在△ABC 中,由余弦定理可得AC 2=42=(43)2+BC 2-2×43BC cos30°,解得BC =4或BC =8.当BC =4时,AC =BC ,∠B =∠A =30°,△ABC 为等腰三角形,∠C =120°,△ABC 的面积为12AB ·BC sin B =12×43×4×12=4 3.当BC =8时,△ABC 的面积为12AB ·BC sin B =12×43×8×12=8 3.故选C.方法技巧正、余弦定理在解三角形中的应用技巧1.已知两边和一边的对角或已知两角和一边都能用正弦定理解三角形,正弦定理的形式多样,其中a =2R sin A ,b =2R sin B ,c =2R sin C 能够实现边角互化.见典例1.2.已知两边和它们的夹角、已知两边和一边的对角或已知三边都能直接运用余弦定理解三角形.见典例2.3.已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.见典例2.冲关针对训练1.(2017·河西五市联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足(b -a )sin A =(b -c )·(sin B +sin C ),则角C 等于( )A.π3B.π6C.π4D.2π3 答案 A解析 由题意,得(b -a )a =(b -c )(b +c ),∴ab =a 2+b 2-c 2,∴cos C =a 2+b 2-c 22ab =12,∴C =π3.故选A.2.(2018·山东师大附中模拟)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知cos2A =-13,c =3,sin A =6sin C .(1)求a 的值;(2)若角A 为锐角,求b 的值及△ABC 的面积.解 (1)在△ABC 中,c =3,sin A =6sin C ,由正弦定理asin A =csin C ,得a =6c =6×3=3 2.(2)由cos2A =1-2sin 2A =-13得,sin 2A =23,由0<A <π2,得sin A=63,则cos A =1-sin 2A =33.由余弦定理a 2=b 2+c 2-2bc cos A ,化简,得b2-2b-15=0,解得b=5(b=-3舍去).所以S△ABC=12bc sin A=12×5×3×63=522.题型2利用正、余弦定理判断三角形的形状典例(2017·陕西模拟)设△ABC的内角A,B,C所对的边分别为a,b,c,若b cos C+c cos B=a sin A,则△ABC的形状为() A.锐角三角形B.直角三角形C.钝角三角形D.不确定用边角互化法.答案 B解析∵b cos C+c cos B=a sin A,由正弦定理得sin B cos C+sin C cos B=sin2A,∴sin(B+C)=sin2A,即sin A=sin2A.又sin A>0,∴sin A=1,∴A=π2,故△ABC为直角三角形.故选B.[条件探究1]将本典例条件变为“若2sin A cos B=sin C”,那么△ABC一定是()A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形答案 B解析解法一:由已知得2sin A cos B=sin C=sin(A+B)=sin A cos B +cos A sin B,即sin(A-B)=0,因为-π<A-B<π,所以A=B.故选B.解法二:由正弦定理得2a cos B=c,由余弦定理得2a ·a 2+c 2-b22ac =c ⇒a 2=b 2⇒a =b .故选B. [条件探究2] 将本典例条件变为“若△ABC 的三个内角满足sin A ∶sin B ∶sin C =5∶11∶13”,则△ABC ( )A .一定是锐角三角形B .一定是直角三角形C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形 答案 C解析 在△ABC 中,sin A ∶sin B ∶sin C =5∶11∶13, ∴a ∶b ∶c =5∶11∶13,故设a =5k ,b =11k ,c =13k (k >0),由余弦定理可得 cos C =a 2+b 2-c 22ab =25k 2+121k 2-169k 22×5×11k2=-23110<0, 又∵C ∈(0,π),∴C ∈⎝ ⎛⎭⎪⎫π2,π, ∴△ABC 为钝角三角形.故选C.[条件探究3] 将本典例条件变为“若b cos B +c cos C =a cos A ”,试判断三角形的形状.解 由已知得b ·a 2+c 2-b 22ac +c ·a 2+b 2-c 22ab =a ·b 2+c 2-a 22bc , ∴b 2(a 2+c 2-b 2)+c 2(a 2+b 2-c 2)=a 2(b 2+c 2-a 2). ∴(a 2+c 2-b 2)(b 2+a 2-c 2)=0.∴a 2+c 2=b 2或b 2+a 2=c 2,即B =π2或C =π2.∴△ABC 为直角三角形. 方法技巧判定三角形形状的两种常用途径提醒:“角化边”后要注意用因式分解、配方等方法得出边的相应关系;“边化角”后要注意用三角恒等变换公式、三角形内角和定理及诱导公式推出角的关系.冲关针对训练在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b -c )sin B +(2c -b )sin C .(1)求角A 的大小;(2)若sin B +sin C =3,试判断△ABC 的形状.解 (1)由2a sin A =(2b -c )sin B +(2c -b )sin C 及正弦定理,得2a 2=(2b -c )b +(2c -b )c ,即bc =b 2+c 2-a 2,∴cos A =b 2+c 2-a 22bc =12,A ∈(0,π), ∴A =60°.(2)∵A +B +C =180°, ∴B +C =180°-60°=120°.由sin B +sin C =3,得sin B +sin(120°-B )=3, ∴sin B +sin120°cos B -cos120°sin B = 3. ∴32sin B +32cos B =3,即sin(B +30°)=1. ∵0°<B <120°,∴30°<B +30°<150°.∴B +30°=90°,即B =60°.∴A =B =C =60°,∴△ABC 为等边三角形. 题型3 与三角形有关的最值角度1 与三角形边长有关的最值典例(2017·杏花岭区模拟)已知锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =b cos C +33c sin B . (1)求B ;(2)若b =2,求ac 的最大值.本题采用转化法.解 (1)在△ABC 中,∵a =b cos C +33c sin B , ∴sin A =sin B cos C +33sin C sin B ,∴sin A =sin(B +C )=sin B cos C +33sin C sin B , 化为cos B sin C =33sin C sin B ,sin C ≠0, 可得tan B =3,B ∈(0,π),∴B =π3. (2)由正弦定理得b sin B =2R =43,令y =ac =2R sin A ·2R sin C =163sin A sin C =163sin A sin ⎝ ⎛⎭⎪⎫2π3-A =83sin ⎝ ⎛⎭⎪⎫2A -π6+43. ∵0<A <π2,0<2π3-A <π2,∴π6<A <π2.故π6<2A -π6<5π6,∴sin ⎝ ⎛⎭⎪⎫2A -π6∈⎝ ⎛⎦⎥⎤12,1,∴y ∈⎝ ⎛⎦⎥⎤83,4.∴ac 的最大值为4. 角度2 与三角形内角有关的最值典例(2017·庄河市期末)在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,设f (x )=a 2x 2-(a 2-b 2)x -4c 2.(1)若f (1)=0,且B -C =π3,求角C 的大小; (2)若f (2)=0,求角C 的取值范围.本题采用放缩法.解 (1)由f (1)=0,得a 2-a 2+b 2-4c 2=0, ∴b =2c ,又由正弦定理,得sin B =2sin C , ∵B -C =π3,∴sin ⎝ ⎛⎭⎪⎫π3+C =2sin C ,整理得3sin C =cos C ,∴tan C =33. ∵角C 是三角形的内角,∴C =π6. (2)∵f (2)=0,∴4a 2-2a 2+2b 2-4c 2=0, 即a 2+b 2-2c 2=0,由余弦定理,得cos C =a 2+b 2-c 22ab =a 2+b 24ab ≥2ab 4ab =12(当且仅当a =b 时取等号).又∵余弦函数在⎝ ⎛⎭⎪⎫0,π2上递减,C 是锐角,∴0<C ≤π3. 方法技巧求与三角形中边角有关的量的取值范围时,主要是利用已知条件和有关定理,将所求的量用三角形的某个内角或某条边表示出来,结合三角形边角的取值范围、函数值域的求法求解范围即可.冲关针对训练(2018·绵阳检测)已知向量m =⎝ ⎛⎭⎪⎫3sin x 4,1,n =⎝ ⎛⎭⎪⎫cos x 4,cos 2x 4,记f (x )=m ·n .(1)若f (x )=1,求cos ⎝ ⎛⎭⎪⎫2π3-x 的值; (2)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且满足(2a -c )cos B =b cos C ,求函数f (A )的取值范围.解 (1)f (x )=m ·n =3sin x 4cos x 4+cos 2x 4=32sin x 2+12cos x 2+12=sin ⎝ ⎛⎭⎪⎫x 2+π6+12. 因为f (x )=1,所以sin ⎝ ⎛⎭⎪⎫x 2+π6=12,cos ⎝ ⎛⎭⎪⎫x +π3=1-2sin 2⎝ ⎛⎭⎪⎫x 2+π6=12,cos ⎝ ⎛⎭⎪⎫2π3-x =-cos ⎝ ⎛⎭⎪⎫x +π3=-12. (2)因为(2a -c )cos B =b cos C ,由正弦定理得(2sin A -sin C )cos B =sin B cos C , 所以2sin A cos B -sin C cos B =sin B cos C , 所以2sin A cos B =sin(B +C ),因为A +B +C =π,所以sin(B +C )=sin A ,且sin A ≠0,所以cos B =12,B =π3,所以0<A <2π3,所以π6<A 2+π6<π2,12<sin ⎝ ⎛⎭⎪⎫A 2+π6<1,又因为f (x )=m ·n =sin ⎝ ⎛⎭⎪⎫x 2+π6+12,所以f (A )=sin ⎝ ⎛⎭⎪⎫A 2+π6+12,故函数f (A )的取值范围是⎝⎛⎭⎪⎫1,32.1.(2017·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin B +sin A (sin C -cos C )=0,a =2,c =2,则C =( )A.π12B.π6C.π4D.π3 答案 B解析 因为a =2,c =2, 所以由正弦定理可知,2sin A =2sin C , 故sin A =2sin C . 又B =π-(A +C ), 故sin B +sin A (sin C -cos C ) =sin(A +C )+sin A sin C -sin A cos C=sin A cos C +cos A sin C +sin A sin C -sin A cos C =(sin A +cos A )sin C =0.又C 为△ABC 的内角, 故sin C ≠0,则sin A +cos A =0,即tan A =-1.又A ∈(0,π),所以A =3π4. 从而sin C =12sin A =22×22=12. 由A =3π4知C 为锐角,故C =π6. 故选B.2.(2018·南阳模拟)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a sin B cos C +c sin B cos A =12b ,且a >b ,则B =________.答案 π6解析 由正弦定理,得sin B (sin A cos C +sin C cos A )=12sin B ,即sin B sin(A +C )=12sin B ,因为sin B ≠0,所以sin B =12,所以B =π6或5π6,又因为a >b ,故B =π6.3.(2018·沈阳模拟)在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足(a -b )(sin A +sin B )=(c -b )·sin C .若a =3,则b 2+c 2的取值范围是________.答案 5<b 2+c 2≤6解析 由正弦定理可得,(a -b )·(a +b )=(c -b )·c ,即b 2+c 2-a 2=bc ,cos A =b 2+c 2-a 22bc =12,又A ∈⎝ ⎛⎭⎪⎫0,π2,∴A =π3.∵b sin B =c sin C =3sin π3=2,∴b 2+c 2=4(sin 2B +sin 2C )=4[sin 2B +sin 2(A +B )]=4⎣⎢⎡⎦⎥⎤1-cos2B 2+1-cos2(A +B )2=3sin2B -cos2B +4=2sin ⎝ ⎛⎭⎪⎫2B -π6+4. ∵△ABC 是锐角三角形,且A =π3,∴B ∈⎝⎛⎭⎪⎫π6,π2,即2B -π6∈⎝ ⎛⎭⎪⎫π6,5π6,∴12<sin ⎝⎛⎭⎪⎫2B -π6≤1,∴5<b 2+c 2≤6.4.(2015·全国卷Ⅰ)已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,sin 2B =2sin A sin C .(1)若a =b ,求cos B ;(2)设B =90°,且a =2,求△ABC 的面积. 解 (1)由题设及正弦定理可得b 2=2ac . 又a =b ,可得b =2c ,a =2c . 由余弦定理可得cos B =a 2+c 2-b 22ac =14. (2)由(1)知b 2=2ac .因为B =90°,由勾股定理得a 2+c 2=b 2. 故a 2+c 2=2ac ,得c =a = 2. 所以△ABC 的面积为1.[重点保分 两级优选练]A 级一、选择题1.(2017·长沙模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =13,b =3,A =60°,则边c =( )A .1B .2C .4D .6 答案 C解析 a 2=c 2+b 2-2cb cos A ⇒13=c 2+9-6c cos60°,即c 2-3c -4=0,解得c =4或c =-1(舍去).故选C.2.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c .若∠C=120°,c =2a ,则( )A .a >bB .a <bC .a =bD .a 与b 的大小关系不能确定 答案 A解析 据题意由余弦定理可得a 2+b 2-2ab cos120°=c 2=(2a )2,化简整理得a 2=b 2+ab ,变形得a 2-b 2=(a +b )(a -b )=ab >0,故有a -b >0,即a >b .故选A.3.(2017·湖南长郡中学六模)若△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知2b sin2A =a sin B ,且c =2b ,则ab 等于( )A .2B .3 C. 2 D. 3 答案 A解析 由2b sin2A =a sin B ,得4b sin A cos A =a sin B ,由正弦定理得4sin B sin A cos A =sin A sin B ,∵sin A ≠0,且sin B ≠0,∴cos A =14,由余弦定理得a 2=b 2+4b 2-b 2,∴a 2=4b 2,∴ab =2.故选A.4.(2017·衡水中学调研)在△ABC 中,三边之比a ∶b ∶c =2∶3∶4,则sin A -2sin Bsin2C =( )A .1B .2C .-2 D.12 答案 B解析 不妨设a =2,b =3,c =4,故cos C =4+9-162×2×3=-14,故sin A -2sin B sin2C =a -2b 2c cos C =2-68×⎝⎛⎭⎪⎫-14=2.故选B.5.在△ABC 中,A ,B ,C 是三角形的三个内角,a ,b ,c 是三个内角对应的三边,已知b 2+c 2=a 2+bc .若sin B sin C =34,△ABC 的形状( )A .等边三角形B .不含60°的等腰三角形C .钝角三角形D .直角三角形答案 A解析 在△ABC 中,由余弦定理,可得cos A =b 2+c 2-a 22bc ,由已知,得b 2+c 2-a 2=bc ,∴cos A =12.∵0<A <π,故A =π3.∵A +B +C =π,A =π3,∴C =2π3-B .由sin B sin C =34,得sin B sin ⎝ ⎛⎭⎪⎫2π3-B =34. 即sin B ⎝⎛⎭⎪⎫sin 2π3cos B -cos 2π3sin B =34.32sin B cos B +12sin 2B =34, 34sin2B +14(1-cos2B )=34,32sin2B -12cos2B =1,∴sin ⎝ ⎛⎭⎪⎫2B -π6=1.又∵-π6<2B -π6<7π6, ∴2B -π6=π2,即B =π3.∴C =π3,也就是△ABC 为等边三角形.故选A.6.(2014·江西高考)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( )9333答案 C解析 c 2=(a -b )2+6,即c 2=a 2+b 2-2ab +6.① ∵C =π3,∴由余弦定理得c 2=a 2+b 2-ab ,②由①和②得ab =6,∴S △ABC =12ab sin C =12×6×32=332.故选C. 7.(2018·上海杨浦质量调研)设锐角△ABC 的三内角A ,B ,C 所对边的边长分别为a ,b ,c ,且a =1,B =2A ,则b 的取值范围为( )A .(2,3)B .(1,3)C .(2,2)D .(0,2) 答案 A解析 由a sin A =b sin B =bsin2A ,得b =2cos A . π2<A +B =3A <π,从而π6<A <π3. 又2A <π2,所以A <π4,所以π6<A <π4,22<cos A <32,所以2<b < 3.故选A.8.(2014·全国卷Ⅱ)钝角三角形ABC 的面积是12,AB =1,BC =2,则AC =( )A .5 B. 5 C .2 D .1 答案 B解析 S △ABC =12AB ·BC sin B =12×1×2sin B =12,∴sin B =22,∴B =45°或135°.若B =45°,则由余弦定理得AC =1,∴△ABC 为直角三角形,不符合题意,因此B =135°,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos B =1+2-2×1×2×⎝⎛⎭⎪⎫-22=5,∴AC = 5.故选B.9.(2018·辽宁五校第一次联考)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若直线bx +y cos A +cos B =0与ax +y cos B +cos A =0平行,则△ABC 一定是( )A .锐角三角形B .等腰三角形C .直角三角形D .等腰或者直角三角形 答案 C解析 由两直线平行可得b cos B -a cos A =0,由正弦定理可知sin B cos B -sin A cos A =0,即12sin2A =12sin2B ,又A ,B ∈(0,π),且A +B ∈(0,π),所以2A =2B 或2A +2B =π,即A =B 或A +B =π2.若A =B ,则a =b ,cos A =cos B ,此时两直线重合,不符合题意,舍去,故A +B =π2,则△ABC 是直角三角形.故选C.10.(2017·武昌调研)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若a =2b sin C ,则tan A +tan B +tan C 的最小值是( )A .4B .3 3C .8D .6 3 答案 C解析 a =2b sin C ⇒sin A =2sin B sin C ⇒sin(B +C )=2sin B sin C ⇒tan B +tan C =2tan B tan C ,又根据三角形中的三角恒等式tan A +tan B +tan C =tan A tan B tan C (注:tan A =tan(π-B -C )=-tan(B +C )=-tan B +tan C1-tan B tan C,即tan A +tan B +tan C =tan A tan B tan C )⇒tan B tan C =tan Atan A -2,∴tan A tan B tan C =tan A ·tan A tan A -2=m 2m -2(tan A =m ),令m -2=t ⇒(t +2)2t =t +4t +4≥8,当且仅当t =4t ,即t =2,tan A =4时,取等号.故选C.二、填空题11.(2015·重庆高考)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sin B ,则c =________.答案 4解析 由3sin A =2sin B 及正弦定理,得3a =2b ,所以b =32a =3.由余弦定理cos C =a 2+b 2-c 22ab ,得-14=22+32-c22×2×3,解得c =4.12.(2018·河北唐山一模)在△ABC 中,角A ,B ,C 的对边a ,b ,c 成等差数列,且A -C =90°,则cos B =________.答案 34解析 ∵a ,b ,c 成等差数列,∴2b =a +c . ∴2sin B =sin A +sin C .∵A -C =90°,∴2sin B =sin(90°+C )+sin C . ∴2sin B =cos C +sin C . ∴2sin B =2sin(C +45°).①∵A +B +C =180°且A -C =90°,∴C =45°-B 2,代入①式中,2sin B =2sin ⎝ ⎛⎭⎪⎫90°-B 2. ∴2sin B =2cos B 2.∴4sin B 2cos B 2=2cos B2. ∴sin B 2=24.∴cos B =1-2sin 2B2=1-14=34.13.(2018·沈阳监测)已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,且满足4S =a 2-(b -c )2,b +c =8,则S 的最大值为________.答案 8解析 由题意得4×12bc sin A =a 2-b 2-c 2+2bc ,又a 2=b 2+c 2-2bc cos A ,代入上式得2bc sin A =-2bc cos A +2bc , 即sin A +cos A =1,2sin ⎝⎛⎭⎪⎫A +π4=1,又0<A <π,∴π4<A +π4<5π4,∴A +π4=3π4, ∴A =π2,S =12bc sin A =12bc ,又b +c =8≥2bc , 当且仅当b =c 时取“=”,∴bc ≤16, ∴S 的最大值为8.14.(2017·浙江高考)已知△ABC ,AB =AC =4,BC =2.点D 为AB 延长线上一点,BD =2,连接CD ,则△BDC 的面积是________,cos ∠BDC =________.答案152104解析 依题意作出图形,如图所示,则sin ∠DBC =sin ∠ABC .由题意知AB =AC =4,BC =BD =2, 则cos ∠ABC =14,sin ∠ABC =154. 所以S △BDC =12BC ·BD ·sin ∠DBC =12×2×2×154=152.因为cos∠DBC=-cos∠ABC=-14=BD2+BC2-CD22BD·BC=8-CD28,所以CD=10.由余弦定理,得cos∠BDC=4+10-42×2×10=104.B级三、解答题15.(2018·郑州质检)已知△ABC的外接圆直径为433,角A,B,C所对的边分别为a,b,c,C=60°.(1)求a+b+csin A+sin B+sin C的值;(2)若a+b=ab,求△ABC的面积.解(1)因为asin A=bsin B=csin C=2R=433,所以a=433sin A,b=433sin B,c=433sin C.所以a+b+csin A+sin B+sin C=433(sin A+sin B+sin C)sin A+sin B+sin C=433.(2)由c=433sin C,得c=433×32=2,c2=a2+b2-2ab cos C,即4=a2+b2-ab=(a+b)2-3ab,又a+b =ab,所以(ab)2-3ab-4=0,解得ab=4或ab=-1(舍去),所以S△ABC=12ab sin C=12×4×32= 3.16.(2017·湖北四校联考)已知在△ABC中,内角A,B,C的对边分别为a,b,c,且满足sin2A+sin A sin B-6sin2B=0.(1)求ab的值;(2)若cos C =34,求sin B 的值.解 (1)因为sin 2A +sin A sin B -6sin 2B =0,sin B ≠0,所以⎝⎛⎭⎪⎫sin A sin B 2+sin A sin B -6=0,得sin A sin B =2或sin Asin B =-3(舍去).由正弦定理得a b =sin Asin B =2.(2)由余弦定理得cos C =a 2+b 2-c 22ab =34.① 将ab =2,即a =2b 代入①, 得5b 2-c 2=3b 2,得c =2b . 由余弦定理cos B =a 2+c 2-b 22ac ,得 cos B =(2b )2+(2b )2-b 22×2b ×2b =528,则sin B =1-cos 2B =148.17.(2018·海淀区模拟)在△ABC 中,角A ,B ,C 所对的边长分别是a ,b ,c .满足2a cos C +c cos A =b .(1)求角C 的大小;(2)求sin A cos B +sin B 的最大值.解 (1)由正弦定理及2a cos C +c cos A =b , 得2sin A cos C +sin C cos A =sin B . 在△ABC 中,A +B +C =π, ∴A +C =π-B ,即sin(A +C )=sin B .∴2sin A cos C +sin C cos A =sin(A +C )+sin A cos C =sin B +sin A cos C =sin B ,∴sin A cos C =0,又∵0<A <π,0<C <π,∴sin A >0.∴cos C =0,∴C =π2. (2)由(1)得C =π2, ∴A +B =π2,即A =π2-B .∵sin A cos B +sin B =cos 2B +sin B =-sin 2B +sin B +1=-⎝⎛⎭⎪⎫sin B -122+54.∵0<B <π2,∴当sin B =12,即B =π6时, sin A cos B +sin B 取得最大值54.18.已知等腰三角形ABC 满足AB =AC ,3BC =2AB ,点D 为BC 边上一点且AD =BD .(1)求tan ∠ADB 的值; (2)若CD =33,求S △ABC .解 (1)如图,设AB =AC =a ,AD =BD =b ,由3BC =2AB 得,BC =233a .在△ABC 中,由余弦定理得,cos ∠ABC =2AB ·BC =⎝⎛⎭⎫23a 2a ·233a=33,∴∠ABC 是锐角,则sin ∠ABC =1-cos 2∠ABC =63.在△ABD 中,由余弦定理AD 2=AB 2+BD 2-2AB ·BD cos ∠ABD , 得b 2=a 2+b 2-233ab ,解得a =233b . 由正弦定理AD sin ∠ABD =ABsin ∠ADB ,得b 63=a sin ∠ADB ,解得sin ∠ADB =223,又2b 2>a 2,∴∠ADB 为锐角,∴cos ∠ADB =1-sin 2∠ADB =13,tan ∠ADB =2 2.(2)由已知可得3⎝⎛⎭⎪⎫b +33=2a ,①由(1)可知a =233b ,② 联立①②得a =2,b = 3.过A 作AH ⊥BC 于H ,则H 为BC 的中点,易求得DH =33. 则tan ∠ADB =AH33=2 2.∴AH =263,1432642。
高考数学专题讲解:正余弦定理解三角形
高考数学专题讲解:正余弦定理解三角形【训练一】:【2019年高考理科数学新课标Ⅰ卷第17题】ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c 。
设C B A C B sin sin sin )sin (sin 22-=-。
(Ⅰ)求A ;(Ⅱ)若c b a 22=+,求C sin 。
【本题解析】:(Ⅰ)-=-+⇒-=-A C B C B C B A C B 22222sin sin sin 2sin sin sin sin sin )sin (sin32122cos 2sin sin 222222222π=⇒==-+=⇒=-+⇒-=-+⇒A bc bc bc a c b A bc a c b bc a bc c b C B 。
(Ⅱ)C C A C B C B A c b a sin )sin(26sin sin 232sin 2sin sin 222=++⇒=+⨯⇒=+⇒=+ C C C C C C A C C A cos 23sin 2326sin 2sin 21cos 2326sin 2cos sin cos sin 26-=⇒=++⇒=++⇒22)6sin()cos 6sin sin 6(cos 326)cos 21sin 23(326=-⇒-=⇒-=⇒πππC C C C C 第一种情况:41256446πππππππ=--=⇒=+=⇒=-C A B C C 426222123224cos 6sin 6cos 4sin )64sin(125sinsin +=⨯+⨯=+=+==πππππππC ; 第二种情况:41211643436πππππππ-=--=⇒=+=⇒=-C A B c C 这种情况不成立。
【训练二】:【2019年高考文科数学新课标Ⅰ卷第11题】ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c 。
已知:C c B b A a sin 4sin sin =-,41cos -=A ,则=cb( )A 、6B 、5C 、4D 、3 【本题解析】:2224sin 4sin sin c b a C c B b A a =-⇒=-;根据余弦定理得到:bc c b bc c b A bc c b a 21)41(2cos 22222222++=-⨯-+=-+=,2224c b a =-666321421222222=⇒=⇒=⇒=⇒=-++⇒cbc b c bc c bc c b bc c b 。
考点17 正弦定理和余弦定理 【2019年高考数学真题分类】
温馨提示:此题库为Word 版, 请按住Ctrl, 滑动鼠标滚轴, 调节合适的观看比例, 关闭Word 文档返回原板块。
考点17 正弦定理和余弦定理一、选择题1.(2019·全国卷Ⅰ文科·T11)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则b c=( )A.6B.5C.4D.3【命题意图】本题考查正弦定理及余弦定理推论的应用.【解题指南】利用余弦定理推论得出a ,b ,c 的关系,再结合正弦定理边角互换列出方程,解出结果. 【解析】选A .由已知及正弦定理可得a 2-b 2=4c 2,由余弦定理推论可得-14=cos A =b 2+c 2-a 22bc ,所以c 2-4c 22bc =-14,所以3c 2b =14,所以b c =32×4=6,故选A .二、填空题2.(2019·全国卷Ⅱ理科·T15)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.若b =6,a =2c ,B =π3,则△ABC 的面积为 . 【命题意图】考查余弦定理以及三角形面积公式的应用. 【解析】因为cos B =a 2+c 2-b 22ac , 又因为b =6,a =2c ,B =π3,可得c 2=12, 解得c =2√3,a =4√3,则△ABC 的面积S =12×4√3×2√3×√32=6√3.答案:6√33.(2019·全国卷Ⅱ文科·T15)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.已知b sin A +a cos B =0,则B = . 【命题意图】考查正弦定理、同角三角函数基本关系的运用.【解析】已知b sin A +a cos B =0,由正弦定理可得sin B sin A +sin A cos B =0,即sin B =-cos B , 又因为sin 2B +cos 2B =1,解得sin B =√22,cos B =-√22,故B =3π4.答案:3π44.(2019·浙江高考·T14)在△ABC 中,∠ABC =90°,AB =4,BC =3,点D 在线段AC 上,若∠BDC =45°,则BD = ,cos ∠ABD = .【命题意图】本题主要考查解三角形问题,即正弦定理、三角恒等变换、数形结合思想及函数方程思想. 【解析】在△ABD 中,由正弦定理有:AB sin ∠ADB =BDsin ∠BAC,而AB =4,∠ADB =3π4,AC =√AB 2+BC 2=5,sin∠BAC=BCAC =35,cos∠BAC=ABAC=45,所以BD=12√25.cos∠ABD=cos(∠BDC-∠BAC)=cosπ4cos∠BAC+sinπ4sin∠BAC=7√210.答案:12√257√2 10三、解答题5.(2019·全国卷Ⅰ理科·T17)△ABC的内角A,B,C的对边分别为a,b,c.设(sin B-sin C)2=sin2A-sin B sin C.(1)求A.(2)若√2a+b=2c,求sin C.【命题意图】本题考查利用正弦定理、余弦定理解三角形的问题,涉及两角和差正弦公式、同角三角函数关系的应用,解题关键是能够利用正弦定理对边角关系式进行化简,得到余弦定理的形式或角之间的关系.【解题指南】(1)利用正弦定理化简已知边角关系式可得:b2+c2-a2=bc,从而可求出cos A,根据A∈(0,π)可求得结果;(2)利用正弦定理可得√2sin A+sin B=2sin C,利用sin B=sin(A+C)、两角和差正弦公式可得关于sin C和cos C的方程,结合同角三角函数关系解方程可求得结果.【解析】(1)由已知得sin2B+sin2C-sin2A=sin B sin C,故由正弦定理得b2+c2-a2=bc.由余弦定理得cos A=b2+c2-a22bc =1 2 .因为0°<A<180°,所以A=60°.(2)方法一:由(1)知B=120°-C,由题设及正弦定理得√2sin A+sin(120°-C)=2sin C,即√62+√32cos C+12sin C=2sin C,可得cos(C+60°)=-√22.由于0°<C<120°,所以sin(C+60°)=√22,故sin C=sin(C+60°-60°)=sin(C+60°)cos 60°-cos(C+60°)sin 60°=√6+√24.方法二:因为√2a+b=2c,由正弦定理得:√2sin A+sin B=2sin C,又sin B=sin(A+C)=sin A cos C+cos A sin C,A=π3,所以√2×√32+√32cos C+12sin C=2sin C,整理可得:3sin C-√6=√3cos C,即3sin C-√3cos C=2√3sin(C-π6)=√6,所以sin(C-π6)=√22,所以C=5π12或11π12,因为A=π3且A+C<π,所以C=5π12,所以sin C =sin 5π12=sin (π6+π4)=sin π6cos π4+ cos π6sin π4=√6+√24.6.(2019·全国卷Ⅲ理科·T18同2019·全国卷Ⅲ文科·T18)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A+C2=b sin A. (1)求B.(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.【命题意图】本题考查三角恒等变换、正弦定理、面积公式,意在考查考生综合应用三角知识运算求解能力. 【解析】(1)由题设及正弦定理得sin A sin A+C2=sin B sin A. 因为sin A ≠0,所以sinA+C2=sin B. 由A +B +C =180°,可得sin A+C 2=cos B2, 故cos B 2=2sin B 2cos B 2.因为cos B 2≠0,故sin B 2=12,因此B =60°. (2)由题设及(1)知△ABC 的面积S △ABC =√34a.由正弦定理得a =csinA sinC =sin (120°-C )sinC =√32tanC +12. 由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°,由(1)知A +C =120°,所以30°<C <90°,故12<a <2,从而√38<S △ABC <√32.因此,△ABC 面积的取值范围是(√38,√32).7.(2019·北京高考理科·T15)在△ABC 中,a =3,b -c =2,cos B =-12. (1)求b ,c 的值.(2)求sin (B -C )的值.【命题意图】考查运用正弦定理、余弦定理解三角形,以及三角恒等变换,意在考查灵活运用公式与基本运算能力,培养学生的逻辑思维能力,体现了逻辑推理、数学运算的数学素养. 【解析】(1)由已知及余弦定理,cos B =c 2+a 2-b 22ca =9+(c+b )(c -b )6c =9-2(c+b )6c =-12,即9-2b +c =0,又b -c =2,所以b =7,c =5. (2)由(1)及余弦定理,cos C =a 2+b 2-c 22ab =32+72-522×3×7=1114,又sin 2C +cos 2C =1,0<C <π, 所以sin C =5√314,同理sin B =√32,所以sin (B -C )=sin B cos C -sin C cos B =√32×1114-5√314×(-12)=4√37. 【方法技巧】解三角形的问题,已知边角和所求边角放一起,两边两角用正弦定理,三边一角用余弦定理,常用结论:sin(A +B )=sin(π-C )=sin C ,sin(A +B )=sin A cos B +sin B cos A , cos(A +B )=cos(π-C )=-cos C ,cos(A +B )=cos A cos B -sin A sin B.8.(2019·北京高考文科·T15)在△ABC 中,a =3,b -c =2,cos B =-12. (1)求b ,c 的值.(2)求sin (B +C )的值.【命题意图】考查运用正弦定理、余弦定理解三角形,以及三角恒等变换,意在考查灵活运用公式与基本运算能力,培养学生的逻辑思维能力,体现了逻辑推理、数学运算的数学素养. 【解析】(1)由已知及余弦定理, cos B =c 2+a 2-b 22ca =9+(c+b )(c -b )6c =9-2(c+b )6c =-12,即9-2b +c =0,又b -c =2,所以b =7,c =5. (2)由(1)及余弦定理, cos C =a 2+b 2-c 22ab =32+72-522×3×7=1114, 又sin 2C +cos 2C =1,0<C <π, 所以sin C =5√314,同理sin B =√32,所以sin (B +C )=sin B cos C +sin C cos B =√32×1114+5√314×(-12)=3√314. 【方法技巧】解三角形的问题,已知边角和所求边角放一起,两边两角用正弦定理,三边一角用余弦定理,常用结论:sin(A +B )=sin(π-C )=sin C , sin(A +B )=sin A cos B +sin B cos A , cos(A +B )=cos(π-C )=-cos C ,cos(A +B )=cos A cos B -sin A sin B.9.(2019·天津高考理科·T15同2019·天津高考文科·T16)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c.已知b +c =2a ,3c sinB =4a sin C.(1)求cos B 的值.(2)求sin (2B +π6)的值.【解析】(1)在△ABC 中,由正弦定理b sinB =csinC,得b sin C =c sin B ,又由3c sin B =4a sin C ,得3b sin C =4a sin C ,因为sin C ≠0,所以3b =4a.又因为b +c =2a ,得到b =43a ,c =23a.由余弦定理可得cos B =a 2+c 2-b 22ac =a 2+49a 2-169a 22·a ·23a=-14. (2)由(1)可得sin B =√1-cos 2B =√154,sin 2B =2sin B cos B =-√158,cos 2B =cos 2B -sin 2B =-78,故sin (2B +π6)=sin 2B cos π6+cos 2B sin π6=-√158×√32-78×12=-3√5+716. 10.(2019·江苏高考·T15)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c. (1)若a =3c ,b =√2,cos B =23,求c 的值. (2)若sinA a =cosB2b,求sin (B +π2)的值.【命题意图】本题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力.【解题指南】(1)由题意结合余弦定理得到关于c的方程,解方程可得边长c的值.(2)由题意结合正弦定理和同角三角函数基本关系首先求得cos B的值,然后由诱导公式可得sin(B+π2)的值.【解析】(1)因为a=3c,b=√2,cos B=23,由cos B=a2+c2-b22ac ,得23=(3c)2+c2-(√2)22×3c×c,即c2=13.所以c=√33.(2)因为sinAa =cosB2b,由正弦定理asinA =bsinB,得cosB2b=sinBb,所以cos B=2sin B.从而cos2B=(2sin B)2,即cos2B=4(1-cos2B),故cos2B=45.因为sin B>0,所以cos B=2sin B>0,从而cos B=2√55.因此sin(B+π2)=cos B=2√55.。
2019年高考试题:正余弦定理解三角形
2019年高考试题训练一:2019年高考理科数学新课标Ⅰ卷第17题:ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c 。
设C B A C B sin sin sin )sin (sin 22-=-。
(Ⅰ)求A ;(Ⅱ)若c b a 22=+,求C sin 。
本题解析:(Ⅰ)本题目是边角转化和余弦定理四项式综合的经典题型。
半角转化:方程中每一项都有内角的正弦,每一项中正弦次数相加相等,可以把每一项中的正弦全部转化为对边,保持次数不变。
CC B B C B A C B 2222sin sin sin 2sin sin sin sin )sin (sin +-⇒-=-CB AC B C B A sin sin sin sin sin sin sin sin 2222=-+⇒-=bc a c b =-+⇒222。
根据余弦定理得到:32122cos 222π=⇒==-+=A bc bc bc a c b A 。
(Ⅱ)本题目是边角转化和一个角的正弦等于另外两个角和的正弦综合的经典题型。
边角转化:方程中每一项都有边,每一项中的边次数相加相等,可以把每一项中的边全部转化为对角的正弦,保持次数不变。
C B A c b a sin 2sin sin 222=+⇒=+。
C C A C C A C A B sin 21cos 23cos sin cos sin )sin(sin +=+=+=C C C C C sin 23cos 2326sin 2sin 21cos 23232=+⇒=++⨯⇒6sin 3cos 3sin 3cos 36-=⇒=+⇒C C C C 2sin 3cos -=⇒C C 2cos sin 3=-⇒C C 2)6sin(22)cos 6sin sin 6(cos 2=-⇒=-⇒πππC C C 4622)6sin(πππ=-⇒=-⇒C C 或125436πππ=⇒=-C C 或1211π=C 。
高考数学复习正弦定理和余弦定理
第6讲正弦定理和余弦定理最新考纲考向预测掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.命题趋势以利用正弦、余弦定理解三角形为主,常与三角函数的图象和性质、三角恒等变换、三角形中的几何计算交汇考查,加强数形结合思想的应用意识.题型多样,中档难度.核心素养逻辑推理、数学运算1.正弦定理和余弦定理定理正弦定理余弦定理内容asin A=bsin B=csin C=2R(R为△ABC外接圆半径)a2=b2+c2-2bc cos__A;b2=c2+a2-2ca cos__B;c2=a2+b2-2ab cos__C变形(1)a=2R sin A,b=2R sin__B,c=2R sin__C;(2)a∶b∶c=sin__A∶sin__B∶sin__C;(3)a sin B=b sin A,b sin C=c sin B,a sin C=c sin Acos A=b2+c2-a22bc;cos B=c2+a2-b22ca;cos C=a2+b2-c22ab(1)S△ABC=12a·h(h表示边a上的高).(2)S△ABC=12ab sin C=12ac sin B=12bc sin A.(3)S△ABC=12r(a+b+c)(r为△ABC内切圆半径).3.三角形解的判断A为锐角A为钝角或直角图形关系式a=b sin A b sin A<a<b a≥b a>b解的个数一解两解一解一解[注意]上表中A为锐角时,a<b sin A,无解.A为钝角或直角时,a=b,a<b均无解.常用结论1.在△ABC中,两边之和大于第三边,两边之差小于第三边,A>B⇔a>b⇔sin A>sin B⇔cos A<cos B.2.三角形中的三角函数关系(1)sin(A+B)=sin C.(2)cos(A+B)=-cos C.(3)sin A+B2=cosC2.(4)cos A+B2=sinC2.3.三角形中的射影定理在△ABC中,a=b cos C+c cos B;b=a cos C+c cos A;c=b cos A+a cos B.常见误区1.在△ABC中,已知a,b和A,利用正弦定理时,会出现解的不确定性,应注意根据“大边对大角”来取舍.2.在判断三角形的形状时,等式两边一般不要约去公因式,应移项提取公因式,以免漏解.1.判断正误(正确的打“√”,错误的打“×”)(1)三角形中三边之比等于相应的三个内角之比.( ) (2)在△ABC 中,若sin A >sin B ,则A >B .( )(3)在△ABC 中的六个元素中,已知任意三个元素可求其他元素.( ) 答案:(1)× (2)√ (3)×2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若A =60°,a 2=bc ,则sin B sin C =( )A.12 B.32 C.35D.34解析:选D.因为a 2=bc ,所以sin 2A =sin B sin C .因为A =60°,所以sin B sin C =sin 2A =34.故选D.3.(多选)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =4,sin A =45,cos C =210,则下列结论正确的是( )A .cos A =±35 B .B =π4C .b =522D .△ABC 的面积为7 2解析:选BC.由sin A =45,得cos A =±35,由cos C =210,得sin C =7210,若cos A =-35,则sin B =sin(A +C )=-17250<0,与sin B >0矛盾,故cos A =35,A 错误,则sin(A +C )=22,由sin A =45,cos C =210,得A >π4,C >π4,所以A +C >π2,所以A +C =3π4,故B =π4,B 正确.由正弦定理a sin A =b sin B ,得b =522,C 正确,所以△ABC 的面积为12×4×522×7210=7,D 错误.4.(易错题)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知C =60°,b =6,c =3,则A =________.解析:由题意得,b sin B =c sin C ,即sin B =b sin C c =6×323=22,结合b <c可得B =45°,则A =180°-B -C =75°.答案:75°利用正、余弦定理解三角形(2020·高考天津卷节选)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知a =22,b =5,c =13.(1)求角C 的大小; (2)求sin A 的值.【解】 (1)在△ABC 中,由余弦定理及a =22,b =5,c =13,有cos C =a 2+b 2-c 22ab =22.又因为C ∈(0,π),所以C =π4.(2)在△ABC 中,由正弦定理及C =π4,a =22,c =13,可得sin A =a sin Cc =21313.(1)正、余弦定理的选用①利用正弦定理可解决两类三角形问题:一是已知两角和一角的对边,求其他边或角;二是已知两边和一边的对角,求其他边或角;②利用余弦定理可解决两类三角形问题:一是已知两边和它们的夹角,求其他边或角;二是已知三边求角.由于这两种情形下的三角形是唯一确定的,所以其解也是唯一的.(2)三角形解的个数的判断已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.1.在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是( ) A .有一解C .无解D .有解但解的个数不确定解析:选C.由正弦定理得b sin B =csin C , 所以sin B =b sin Cc =40×3220=3>1.所以角B 不存在,即满足条件的三角形不存在.2.(2020·广东省七校联考)若△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知2b sin 2A =3a sin B ,且c =2b ,则ab =( )A.32 B. 2 C.43D. 3解析:选B.由2b sin 2A =3a sin B ,及正弦定理可得4sin B sin A cos A =3sin A sin B .由于sin A ≠0,sin B ≠0,所以cos A =34,又c =2b ,所以a 2=b 2+c 2-2bc cos A =b 2+4b 2-2b ×2b ×34=2b 2,所以ab =2,故选B.3.(2019·高考全国卷Ⅰ改编)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,设(sin B -sin C )2=sin 2A -sin B sin C .(1)求A ;(2)若2a +b =2c ,求C .解:(1)由已知得sin 2B +sin 2C -sin 2A =sin B sin C ,故由正弦定理得b 2+c 2-a 2=bc .由余弦定理得cos A =b 2+c 2-a 22bc =12. 因为0°<A <180°,所以A =60°.(2)由(1)知B =120°-C ,由题设及正弦定理得2sin A +sin(120°-C )=2sin C ,即62+32cos C +12sin C =2sin C ,可得cos(C +60°)=-22.由于0°<C <120°,所以C +60°=135°,判断三角形的形状(1)(一题多解)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .直角三角形B .锐角三角形C .钝角三角形D .不确定(2)在△ABC 中,若c -a cos B =(2a -b )cos A ,则△ABC 的形状为________. 【解析】 (1)方法一:因为b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac =2a 22a =a ,所以a sin A =a 即sin A =1,故A =π2,因此△ABC 是直角三角形.方法二:因为b cos C +c cos B =a sin A , 所以sin B cos C +sin C cos B =sin 2 A , 即sin(B +C )=sin 2 A ,所以sin A =sin 2 A , 故sin A =1,即A =π2,因此△ABC 是直角三角形.(2)因为c -a cos B =(2a -b )cos A ,所以由正弦定理得sin C -sin A cos B =2sin A cos A -sin B cos A ,所以sin(A +B )-sin A cos B =2sin A cos A -sin B cos A , 故cos A (sin B -sin A )=0, 所以cos A =0或sin A =sin B , 即A =π2或A =B ,故△ABC 为等腰三角形或直角三角形. 【答案】 (1)A (2)等腰三角形或直角三角形【引申探究】 (变条件)若将本例(1)条件改为“2sin A cos B =sin C ”,试判断△ABC 的形状.解:方法一:由已知得2sin A cos B =sin C =sin(A +B )=sin A cos B +cos A sin B ,即sin(A -B )=0,因为-π<A -B <π,所以A =B ,故△ABC 为等腰三角形.方法二:由正弦定理得2a cos B =c ,再由余弦定理得2a ·a 2+c 2-b 22ac =c ⇒a 2=b 2⇒a =b , 故△ABC 为等腰三角形.判定三角形形状的两种常用途径[提醒] “角化边”后要注意用因式分解、配方等方法得出边的相应关系;“边化角”后要注意用三角恒等变换公式、三角形内角和定理及诱导公式推出角的关系.1.在△ABC 中,a ∶b ∶c =3∶5∶7,那么△ABC 是( ) A .直角三角形 B .钝角三角形 C .锐角三角形D .非钝角三角形解析:选B.因为a ∶b ∶c =3∶5∶7,所以可设a =3t ,b =5t ,c =7t ,由余弦定理可得cos C =9t 2+25t 2-49t 22×3t ×5t =-12,所以C =120°,△ABC 是钝角三角形,故选B.2.(多选)已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,则下列四个命题中正确的是( )A .若a cos A =b cosB =ccos C ,则△ABC 一定是等边三角形 B .若a cos A =b cos B ,则△ABC 一定是等腰三角形 C .若b cos C +c cos B =b ,则△ABC 一定是等腰三角形 D .若a 2+b 2-c 2>0,则△ABC 一定是锐角三角形解析:选AC.由a cos A =b cos B =c cos C 及正弦定理得,sin A cos A =sin B cos B =sin Ccos C ,即tan A =tan B =tan C ,所以A =B =C ,所以△ABC 是等边三角形,A 正确.由a cos A =b cos B 及正弦定理得,sin A cos A =sin B cos B ,解得sin 2A =sin 2B ,则2A =2B 或2A +2B =π,所以△ABC 是等腰三角形或直角三角形,B 不正确.由b cos C +c cos B =b 及正弦定理得,sin B cos C +sin C cos B =sin B ,即sin(B +C )=sin B ,所以sin A =sin B ,则A =B ,所以△ABC 是等腰三角形,C 正确.由余弦定理得,cos C =a 2+b 2-c 22ab >0,所以角C 为锐角.而角A ,B 不一定是锐角,故D 不正确.故选AC.与三角形面积有关的问题 角度一 计算三角形的面积(1)(2020·高考全国卷Ⅰ改编)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知B =150°.若a =3c ,b =27,则△ABC 的面积为________.(2)(2020·福建五校第二次联考)在△ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,已知a 2+b 2-c 2=3ab ,且ac sin B =23sin C ,则△ABC 的面积为________.【解析】 (1)由题设及余弦定理得28=3c 2+c 2-2×3c 2×cos 150°. 解得c =-2(舍去),c =2,从而a =2 3. △ABC 的面积为12×23×2×sin 150°= 3.(2)因为a 2+b 2-c 2=3ab ,所以由余弦定理得cos C =a 2+b 2-c 22ab =3ab 2ab =32,又0<C <π,所以C =π6.因为ac sin B =23sin C ,结合正弦定理可得abc =23c ,所以ab =2 3.故S △ABC =12ab sin C =12×23sin π6=32.【答案】 (1)3 (2)32求三角形面积的方法(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积;(2)若已知三角形的三边,可先求其中一个角的余弦值,再求其正弦值,代入公式求面积,总之,结合图形恰当选择面积公式是解题的关键.角度二 已知三角形的面积解三角形(2020·广州市调研检测)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知c sin ⎝ ⎛⎭⎪⎫A +π3-a sin C =0.(1)求角A 的值;(2)若△ABC 的面积为3,周长为6,求a 的值. 【解】 (1)因为c sin ⎝ ⎛⎭⎪⎫A +π3-a sin C =0, 所以由正弦定理得sin C ⎝ ⎛⎭⎪⎫12sin A +32cos A -sin A ·sin C =0.因为sin C >0,所以32cos A -12sin A =0,即tan A =3, 因为A ∈(0,π),所以A =π3.(2)因为△ABC 的面积为3,所以12bc sin A =3,得bc =4.由余弦定理a 2=b 2+c 2-2bc cos A ,得a 2=b 2+c 2-bc =(b +c )2-3bc =(b +c )2-12,因为△ABC 的周长为6,即a +b +c =6, 所以a 2=(6-a )2-12, 所以a =2.已知三角形面积求边、角的方法(1)若求角,就寻求这个角的两边的关系,利用面积公式列方程求解; (2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解. [注意] 正弦定理、余弦定理与三角函数性质的综合应用中,要注意三角函数公式的工具性作用.1.(2020·福州市质量检测)在钝角△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知c =7,b =1,若△ABC 的面积为62,则a 的长为________.解析:因为△ABC 的面积S =12bc sin A ,所以62=12×1×7sin A ,所以sin A=67,所以cos A=±77,当cos A=77时,由a2=b2+c2-2bc cos A得a=6,此时△ABC为直角三角形(舍去);当cos A=-77时,由a2=b2+c2-2bc cos A得a=10,经检验,a=10符合题意.综上,a=10.答案:102.(2020·合肥第一次教学检测)在△ABC中,内角A,B,C所对的边分别为a,b,c,若a=2,a cos C+c cos A+2b cos B=0.(1)求B;(2)若BC边的中线AM长为5,求△ABC的面积.解:(1)在△ABC中,asin A=bsin B=csin C,且a cos C+c cos A+2b cos B=0,所以sin A cos C+sin C cos A+2sin B cos B=0,所以sin B·(1+2cos B)=0,又sin B≠0,所以cos B=-2 2.因为B是三角形的内角,所以B=3π4.(2)在△ABM中,BM=1,AM=5,B=3π4,AB=c,由余弦定理AM2=c2+BM2-2c·BM·cos B,得c2+2c-4=0,因为c>0,所以c= 2.在△ABC中,a=2,c=2,B=3π4,所以△ABC的面积S=12ac sin B=1.高考新声音系列4解三角形中的结构不良型开放型问题新高考卷Ⅰ第17题别具匠心地设计了开放性试题,设问方式追求创新,补充已知条件(三选一)并解答,条件不同,结论不同,不同的选择会有不同的结论,难度也会有区别.(2020·新高考卷Ⅰ)在①ac =3,②c sin A =3,③c =3b 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在△ABC ,它的内角A ,B ,C 的对边分别为a ,b ,c ,且sin A =3sin B ,C =π6,________________?【解】 方案一:选条件①.由C =π6和余弦定理得a 2+b 2-c 22ab =32. 由sin A =3sin B 及正弦定理得a =3b . 于是3b 2+b 2-c 223b 2=32,由此可得b =c . 由①ac =3,解得a =3,b =c =1.因此,选条件①时问题中的三角形存在,此时c =1. 方案二:选条件②.由C =π6和余弦定理得a 2+b 2-c 22ab =32. 由sin A =3sin B 及正弦定理得a =3b .于是3b 2+b 2-c 223b 2=32,由此可得b =c ,B =C =π6,A =2π3. 由②c sin A =3,所以c =b =23,a =6.因此,选条件②时问题中的三角形存在,此时c =2 3. 方案三:选条件③.由C =π6和余弦定理得a 2+b 2-c 22ab =32.由sin A =3sin B 及正弦定理得a =3b . 于是3b 2+b 2-c 223b 2=32,由此可得b =c . 由③c =3b ,与b =c 矛盾.因此,选条件③时问题中的三角形不存在.本题以解三角形为背景命制,给定了若干条件(在这些条件下三角形并不能随之确定),在此基础上让学生在另外给出的几个条件中自主选择,在所选条件下,若问题中的三角形存在,求解三角形;若问题中的三角形不存在,说明理由.在①sin B=32,②cos B=34,③cos C=-79这三个条件中选择一个,补充在下面的问题中,并判断三角形是否有解.若有解,求出a的值;若无解,请说明理由.在△ABC中,已知a,b,c分别是角A,B,C的对边,且满足C=2B,b +c=10,________.解:若选择①sin B=32,则B=60°或B=120°,因为C=2B,所以C=120°或C=240°,显然矛盾,此时三角形无解.若选择②cos B=3 4,则由正弦定理可得cb=sin Csin B=sin 2Bsin B=2sin B cos Bsin B=2cos B=2×34=32,又b+c=10,所以c=6,b=4.由余弦定理b2=a2+c2-2ac cos B,可得16=a2+36-9a,解得a=4或a=5.若a=4,则由b=4知A=B,又C=2B,所以B+B+2B=180°,解得B=45°,这与cos B=34矛盾,舍去.经检验知,当a=5时适合题意.故a的值为5.若选择③cos C=-7 9,因为C=2B,所以cos 2B=-7 9,即2cos2B-1=-79,得cos B=13,此时cb=sin Csin B=sin 2Bsin B=2cos B=23<1,所以c<b,这与C=2B矛盾,此时三角形无解.[A 级 基础练]1.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =2,c =23,cos A =32且b <c ,则b =( )A .3B .2 2C .2D . 3解析:选C.由余弦定理b 2+c 2-2bc cos A =a 2,得b 2-6b +8=0,解得b =2或b =4,因为b <c =23,所以b =2.选C.2.△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知b =7,c =4,cos A =74,则△ABC 的面积为( )A .37B .372C .9D .92解析:选B.因为cos A =74,则sin A =34,所以S △ABC =12×bc sin A =372,故选B.3.(2020·湖北八校第一次联考)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且sin B -sin A (sin C +cos C )=0,a =2,c =2,则角C =( )A.5π6B.π6C.π4D.π3解析:选B.因为A +C =π-B ,所以sin B =sin(A +C )=sin A cos C +cos A sin C ,因为sin B -sin A (sin C +cos C )=0,所以cos A sin C -sin A sin C =0,因为C ∈(0,π),所以sin C >0,所以cos A =sin A ,又A ∈(0,π),所以A =π4,由正弦定理得a sin π4=c sin C ,又a =2,c =2,所以sin C =12,因为a >c ,所以C =π6,故选B.4.(多选)在△ABC 中,根据下列条件解三角形,其中有一解的是( ) A .b =7,c =3,C =30° B .b =5,c =4,B =45° C .a =6,b =33,B =60° D .a =20,b =30,A =30°解析:选BC.对于A ,因为b =7,c =3,C =30°,所以由正弦定理可得sin B =b sin C c =7×123=76>1,无解;对于B ,b =5,c =4,B =45°,所以由正弦定理可得sin C =c sin Bb =4×225=225<1,且c <b ,有一解;对于C ,因为a =6,b =33,B =60°,所以由正弦定理可得sin A =a sin B b =6×3233=1,A =90°,此时C =30°,有一解; 对于D ,因为a =20,b =30,A =30°,所以由正弦定理可得sin B =b sin Aa =30×1220=34<1,且b >a ,所以B 有两解,故选BC.5.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若C =π4,a =4,S △ABC=2,则2a +3c -b2sin A +3sin C -sin B=( )A . 5B .2 5C .27D .213解析:选B.因为C =π4,a =4,S △ABC =2,所以S △ABC =12ab sin π4=12×4×b ×22=2,解得b = 2.由余弦定理可得c 2=b 2+a 2-2ba cos π4=10,c =10.由正弦定理可得2a +3c -b 2sin A +3sin C -sin B =c sin C =1022=25,故选B.6.在△ABC 中,A =60°,AC =4,BC =23,则△ABC 的面积为________. 解析:因为23sin 60°=4sin B , 所以sin B =1,所以B =90°,所以AB =2,所以S △ABC =12×2×23=2 3. 答案:2 37.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =4,c =2,B =60°,则b =________,C =________.解析:因为a =4,c =2,B =60°,所以由余弦定理得b 2=a 2+c 2-2ac cos B =16+4-2×4×2×12=20-8=12,则b =2 3.由正弦定理b sin B =c sin C ,可得sin C =c sin Bb =2×3223=12,因为c <b ,故C 为锐角,所以C =30°. 答案:23 30°8.△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若B =π3,c =2,且sin A =3sin C .AC 的中点为D ,则BD =________.解析:sin A =3sin C .由正弦定理得,a =3c ,所以a =6. 由余弦定理得,b 2=62+22-2×2×6×cos 60°=28, 所以b =27.所以cos A =b 2+c 2-a 22bc =(27)2+22-622×2×27=-714.因为D 是AC 的中点,所以AD =7.所以BD 2=AB 2+AD 2-2AB ·AD cos A =22+(7)2-2×2×7×⎝ ⎛⎭⎪⎫-714=13.所以BD =13. 答案:139.(2020·高考全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos 2⎝ ⎛⎭⎪⎫π2+A +cos A =54.(1)求A ;(2)若b -c =33a ,证明:△ABC 是直角三角形. 解:(1)由已知得sin 2A +cos A =54, 即cos 2A -cos A +14=0. 所以⎝ ⎛⎭⎪⎫cos A -122=0, cos A =12. 由于0<A <π,故A =π3.(2)证明:由正弦定理及已知条件可得sin B -sin C =33sin A . 由(1)知B +C =2π3,所以sin B -sin ⎝ ⎛⎭⎪⎫2π3-B =33sin π3.即12sin B -32cos B =12,sin ⎝ ⎛⎭⎪⎫B -π3=12.由于0<B <2π3,故B =π2.从而△ABC 是直角三角形.10.(2020·成都市诊断性检测)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且b 2+c 2-a 2=423bc .(1)求sin A 的值;(2)若△ABC 的面积为2,且2sin B =3sin C ,求△ABC 的周长. 解:(1)因为b 2+c 2-a 2=2bc cos A , 所以2bc cos A =423bc , 所以cos A =223,所以在△ABC 中,sin A =1-cos 2 A =13.(2)因为△ABC 的面积为2,所以12bc sin A =16bc =2, 所以bc =6 2.因为2sin B =3sin C ,所以由正弦定理得2b =3c , 所以b =32,c =2,所以a 2=b 2+c 2-2bc cos A =6,所以a = 6. 所以△ABC 的周长为2+32+ 6.[B 级 综合练]11.在△ABC 中,已知2a cos B =c, sin A sin B (2-cos C )=sin 2C 2+12,则△ABC 为( )A .等边三角形B .等腰直角三角形C .锐角非等边三角形D .钝角三角形解析:选B.将已知等式2a cos B =c 利用正弦定理化简得2sin A cos B =sin C , 因为sin C =sin ()A +B =sin A cos B +cos A sin B , 所以2sin A cos B =sin A cos B +cos A sin B , 即sin A cos B -cos A sin B =sin(A -B )=0, 因为A 与B 都为△ABC 的内角, 所以A -B =0,即A =B .因为sin A sin B (2-cos C )=sin 2C 2+12,所以sin A sin B (2-cos C )=12(1-cos C )+12=1-12cos C , 所以-12[]cos ()A +B -cos (A -B )(2-cos C )=1-12cos C , 所以-12(-cos C -1)(2-cos C )=1-12cos C , 即(cos C +1)(2-cos C )=2-cos C ,整理得cos 2C -2cos C =0,即cos C (cos C -2)=0,所以cos C =0或cos C =2(舍去),所以C =90°,则△ABC 为等腰直角三角形,故选B.12.(多选)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b =c cos A ,角A 的平分线交BC 于点D ,AD =1,cos A =18,则以下结论正确的是( )A .AC =34 B .AB =8C .CD BD =18D .△ABD 的面积为374解析:选ACD.在△ABC 中,根据余弦定理得,cos A =b 2+c 2-a 22bc =bc ,即b 2+a 2=c 2,所以C =π2,由二倍角公式得cos ∠BAC =2cos 2∠CAD -1=18,解得cos ∠CAD =34.在Rt △ACD 中,AC =AD cos ∠CAD =34,故选项A 正确;在Rt △ABC 中,cos ∠BAC =AC AB =18,解得AB =6,故选项B 错误;S △ACD S △ADB =12CD ·AC 12BD ·AC =12AC ·AD ·sin ∠CAD 12AB ·AD ·sin ∠BAD ,则CD BD =AC AB =18,故选项C 正确; 在△ABD 中,由cos ∠BAD =34得,sin ∠BAD =74,所以S △ABD =12AD ·AB ·sin ∠BAD =12×1×6×74=374,故选项D 正确.13.(2020·沈阳市教学质量监测(一))△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a cos B +b cos A =77ac ,sin 2A =sin A . (1)求A 及a ;(2)若b -c =2,求BC 边上的高. 解:(1)因为a cos B +b cos A =77ac ,所以由正弦定理得sin A cos B +sin B cos A =77a sin C ,所以sin(A +B )=77a sin C ,又A +B =π-C ,所以sin C =77a sin C ,又sin C >0,所以a =7.因为sin 2A =sin A ,所以2sin A cos A =sin A ,又sin A >0,所以cos A =12, 因为A ∈(0,π),所以A =π3.(2)由(1)及余弦定理a 2=b 2+c 2-2bc cos A , 得b 2+c 2-bc =7.将b =c +2,代入b 2+c 2-bc =7,得c 2+2c -3=0, 解得c =1或c =-3(舍去),所以b =3. 因为a sin A =c sin C ,所以sin C =c sin A a =2114, 设BC 边上的高为h ,则h =b sin C =32114.14.在①(2a +b )sin A +(2b +a )sin B =2c sin C ,②a =3c sin A -a cos C ,③△ABC 的面积S △ABC =34(a 2+b 2-c 2)这三个条件中任选一个,补充在下面的问题中,作为问题的条件,再解答这个问题.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若c =3,且________,探究三角形ABC 的周长l 是否存在最大值?若存在,求出l 的最大值;若不存在,说明理由.解:若选①,因为(2a +b )sin A +(2b +a )sin B =2c sin C , 所以由正弦定理可得(2a +b )a +(2b +a )b =2c 2, 即a 2+b 2-c 2=-ab ,所以cos C =a 2+b 2-c 22ab =-12,因为C ∈(0,π),所以C =2π3.又c =3,所以由正弦定理可得a sin A =b sin B =332=2,所以a =2sin A ,b =2sin B ,则l =a +b +c =2sin A +2sin B +3=2sin A +2sin ⎝ ⎛⎭⎪⎫π3-A +3=sin A +3cos A +3=2sin ⎝ ⎛⎭⎪⎫A +π3+3, 因为0<A <π3,所以23<2sin ⎝ ⎛⎭⎪⎫A +π3+3≤2+3,即△ABC 的周长l 存在最大值,且最大值为2+ 3. 若选②,因为a =3c sin A -a cos C ,所以由正弦定理可得sin A =3sin C sin A -sin A cos C , 因为sin A ≠0,所以3sin C -cos C =1, 所以sin ⎝ ⎛⎭⎪⎫C -π6=12,又0<C <π,故C =π3,又c =3,所以由正弦定理可得a sin A =b sin B =332=2,所以a =2sin A ,b =2sin B ,则l =a +b +c =2sin A +2sin B +3=2sin A +2sin ⎝ ⎛⎭⎪⎫2π3-A +3=3sin A +3cos A +3=23sin ⎝ ⎛⎭⎪⎫A +π6+3,因为0<A <2π3,所以23<23sin ⎝ ⎛⎭⎪⎫A +π6+3≤33,即△ABC 的周长l 存在最大值,且最大值为3 3. 若选③,因为△ABC 的面积S △ABC =34(a 2+b 2-c 2),所以12ab sin C =34(a 2+b 2-c 2),所以sin C =3×a 2+b 2-c 22ab ,由余弦定理可得sin C =3cos C ,即tan C =3, 又因为0<C <π,故C =π3,又c =3,所以由正弦定理可得a sin A =b sin B =332=2,所以a =2sin A ,b =2sin B ,则l =a +b +c =2sin A +2sin B +3=2sin A +2sin ⎝ ⎛⎭⎪⎫2π3-A +3=23sin ⎝ ⎛⎭⎪⎫A +π6+3, 因为0<A <2π3,所以23<23sin ⎝ ⎛⎭⎪⎫A +π6+3≤33,即△ABC 的周长l 存在最大值,且最大值为3 3.[C 级 创新练]15.(2020·河南豫南九校联考)我国南宋著名数学家秦九韶提出了由三角形三边求三角形面积的“三斜求积”公式.设△ABC 三个内角A ,B ,C 所对的边分别为a ,b ,c ,面积为S ,则“三斜求积”公式为S =14⎣⎢⎡⎦⎥⎤a 2c 2-⎝ ⎛⎭⎪⎫a 2+c 2-b 222.若a 2sin C =2sin A ,(a +c )2=6+b 2,则用“三斜求积”公式求得的△ABC 的面积为( )A . 3B .1C .32D .12解析:选C.因为a 2sin C =2sin A ,所以a 2c =2a .又a >0,所以ac =2. 因为(a +c )2=6+b 2,所以a 2+c 2+2ac =6+b 2,所以a 2+c 2-b 2=6-2ac =6-4=2.所以△ABC 的面积为S =14×⎣⎢⎡⎦⎥⎤22-⎝ ⎛⎭⎪⎫222=32.故选C. 16.(2020·山东潍坊月考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若1tan A ,1tan B ,1tan C 依次成等差数列,则下列结论中不一定成立的是( )A .a ,b ,c 依次成等差数列 B.a ,b ,c 依次成等差数列 C .a 2,b 2,c 2依次成等差数列 D .a 3,b 3,c 3依次成等差数列解析:选ABD.在△ABC 中,若1tan A ,1tan B ,1tan C 依次成等差数列,则2tan B =1tan A +1tan C .所以2cos B sin B =cos A sin A +cos Csin C .利用正弦定理和余弦定理得,2·a 2+c 2-b 22abc =b 2+c 2-a 22abc +a 2+b 2-c 22abc ,整理得2b 2=a 2+c 2,即a 2,b 2,c 2依次成等差数列.此时对等差数列a2,b2,c2的每一项取相同的运算得到数列a,b,c或a,b,c或a3,b3,c3,这些数列一般都不可能是等差数列,除非a=b =c.故都不一定成立.故选ABD.第6讲正弦定理和余弦定理最新考纲考向预测掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.命题趋势以利用正弦、余弦定理解三角形为主,常与三角函数的图象和性质、三角恒等变换、三角形中的几何计算交汇考查,加强数形结合思想的应用意识.题型多样,中档难度.核心素养逻辑推理、数学运算1.正弦定理和余弦定理定理正弦定理余弦定理内容asin A=bsin B=csin C=2R(R为△ABC外接圆半径)a2=b2+c2-2bc cos__A;b2=c2+a2-2ca cos__B;c2=a2+b2-2ab cos__C变形(1)a=2R sin A,b=2R sin__B,c=2R sin__C;(2)a∶b∶c=sin__A∶sin__B∶sin__C;(3)a sin B=b sin A,b sin C=c sin B,a sin C=c sin Acos A=b2+c2-a22bc;cos B=c2+a2-b22ca;cos C=a2+b2-c22ab(1)S△ABC=12a·h(h表示边a上的高).(2)S△ABC=12ab sin C=12ac sin B=12bc sin A.(3)S△ABC=12r(a+b+c)(r为△ABC内切圆半径).3.三角形解的判断A为锐角A为钝角或直角图形关系式a=b sin A b sin A<a<b a≥b a>b解的个数一解两解一解一解[注意]上表中A为锐角时,a<b sin A,无解.A为钝角或直角时,a=b,a<b均无解.常用结论1.在△ABC中,两边之和大于第三边,两边之差小于第三边,A>B⇔a>b⇔sin A>sin B⇔cos A<cos B.2.三角形中的三角函数关系(1)sin(A+B)=sin C.(2)cos(A+B)=-cos C.(3)sin A+B2=cosC2.(4)cos A+B2=sinC2.3.三角形中的射影定理在△ABC中,a=b cos C+c cos B;b=a cos C+c cos A;c=b cos A+a cos B.常见误区1.在△ABC中,已知a,b和A,利用正弦定理时,会出现解的不确定性,应注意根据“大边对大角”来取舍.2.在判断三角形的形状时,等式两边一般不要约去公因式,应移项提取公因式,以免漏解.1.判断正误(正确的打“√”,错误的打“×”)(1)三角形中三边之比等于相应的三个内角之比.( ) (2)在△ABC 中,若sin A >sin B ,则A >B .( )(3)在△ABC 中的六个元素中,已知任意三个元素可求其他元素.( ) 答案:(1)× (2)√ (3)×2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若A =60°,a 2=bc ,则sin B sin C =( )A.12 B.32 C.35D.34解析:选D.因为a 2=bc ,所以sin 2A =sin B sin C .因为A =60°,所以sin B sin C =sin 2A =34.故选D.3.(多选)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =4,sin A =45,cos C =210,则下列结论正确的是( )A .cos A =±35 B .B =π4C .b =522D .△ABC 的面积为7 2解析:选BC.由sin A =45,得cos A =±35,由cos C =210,得sin C =7210,若cos A =-35,则sin B =sin(A +C )=-17250<0,与sin B >0矛盾,故cos A =35,A 错误,则sin(A +C )=22,由sin A =45,cos C =210,得A >π4,C >π4,所以A +C >π2,所以A +C =3π4,故B =π4,B 正确.由正弦定理a sin A =b sin B ,得b =522,C 正确,所以△ABC 的面积为12×4×522×7210=7,D 错误.4.(易错题)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知C =60°,b =6,c =3,则A =________.解析:由题意得,b sin B =c sin C ,即sin B =b sin C c =6×323=22,结合b <c可得B =45°,则A =180°-B -C =75°.答案:75°利用正、余弦定理解三角形(2020·高考天津卷节选)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知a =22,b =5,c =13.(1)求角C 的大小; (2)求sin A 的值.【解】 (1)在△ABC 中,由余弦定理及a =22,b =5,c =13,有cos C =a 2+b 2-c 22ab =22.又因为C ∈(0,π),所以C =π4.(2)在△ABC 中,由正弦定理及C =π4,a =22,c =13,可得sin A =a sin Cc =21313.(1)正、余弦定理的选用①利用正弦定理可解决两类三角形问题:一是已知两角和一角的对边,求其他边或角;二是已知两边和一边的对角,求其他边或角;②利用余弦定理可解决两类三角形问题:一是已知两边和它们的夹角,求其他边或角;二是已知三边求角.由于这两种情形下的三角形是唯一确定的,所以其解也是唯一的.(2)三角形解的个数的判断已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.1.在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是( ) A .有一解C .无解D .有解但解的个数不确定解析:选C.由正弦定理得b sin B =csin C , 所以sin B =b sin Cc =40×3220=3>1.所以角B 不存在,即满足条件的三角形不存在.2.(2020·广东省七校联考)若△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知2b sin 2A =3a sin B ,且c =2b ,则ab =( )A.32 B. 2 C.43D. 3解析:选B.由2b sin 2A =3a sin B ,及正弦定理可得4sin B sin A cos A =3sin A sin B .由于sin A ≠0,sin B ≠0,所以cos A =34,又c =2b ,所以a 2=b 2+c 2-2bc cos A =b 2+4b 2-2b ×2b ×34=2b 2,所以ab =2,故选B.3.(2019·高考全国卷Ⅰ改编)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,设(sin B -sin C )2=sin 2A -sin B sin C .(1)求A ;(2)若2a +b =2c ,求C .解:(1)由已知得sin 2B +sin 2C -sin 2A =sin B sin C ,故由正弦定理得b 2+c 2-a 2=bc .由余弦定理得cos A =b 2+c 2-a 22bc =12. 因为0°<A <180°,所以A =60°.(2)由(1)知B =120°-C ,由题设及正弦定理得2sin A +sin(120°-C )=2sin C ,即62+32cos C +12sin C =2sin C ,可得cos(C +60°)=-22.由于0°<C <120°,所以C +60°=135°,判断三角形的形状(1)(一题多解)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .直角三角形B .锐角三角形C .钝角三角形D .不确定(2)在△ABC 中,若c -a cos B =(2a -b )cos A ,则△ABC 的形状为________. 【解析】 (1)方法一:因为b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac =2a 22a =a ,所以a sin A =a 即sin A =1,故A =π2,因此△ABC 是直角三角形.方法二:因为b cos C +c cos B =a sin A , 所以sin B cos C +sin C cos B =sin 2 A , 即sin(B +C )=sin 2 A ,所以sin A =sin 2 A , 故sin A =1,即A =π2,因此△ABC 是直角三角形.(2)因为c -a cos B =(2a -b )cos A ,所以由正弦定理得sin C -sin A cos B =2sin A cos A -sin B cos A ,所以sin(A +B )-sin A cos B =2sin A cos A -sin B cos A , 故cos A (sin B -sin A )=0, 所以cos A =0或sin A =sin B , 即A =π2或A =B ,故△ABC 为等腰三角形或直角三角形. 【答案】 (1)A (2)等腰三角形或直角三角形【引申探究】 (变条件)若将本例(1)条件改为“2sin A cos B =sin C ”,试判断△ABC 的形状.解:方法一:由已知得2sin A cos B =sin C =sin(A +B )=sin A cos B +cos A sin B ,即sin(A -B )=0,因为-π<A -B <π,所以A =B ,故△ABC 为等腰三角形.方法二:由正弦定理得2a cos B =c ,再由余弦定理得2a ·a 2+c 2-b 22ac =c ⇒a 2=b 2⇒a =b , 故△ABC 为等腰三角形.判定三角形形状的两种常用途径[提醒] “角化边”后要注意用因式分解、配方等方法得出边的相应关系;“边化角”后要注意用三角恒等变换公式、三角形内角和定理及诱导公式推出角的关系.1.在△ABC 中,a ∶b ∶c =3∶5∶7,那么△ABC 是( ) A .直角三角形 B .钝角三角形 C .锐角三角形D .非钝角三角形解析:选B.因为a ∶b ∶c =3∶5∶7,所以可设a =3t ,b =5t ,c =7t ,由余弦定理可得cos C =9t 2+25t 2-49t 22×3t ×5t =-12,所以C =120°,△ABC 是钝角三角形,故选B.2.(多选)已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,则下列四个命题中正确的是( )A .若a cos A =b cosB =ccos C ,则△ABC 一定是等边三角形 B .若a cos A =b cos B ,则△ABC 一定是等腰三角形 C .若b cos C +c cos B =b ,则△ABC 一定是等腰三角形 D .若a 2+b 2-c 2>0,则△ABC 一定是锐角三角形解析:选AC.由a cos A =b cos B =c cos C 及正弦定理得,sin A cos A =sin B cos B =sin Ccos C ,即tan A =tan B =tan C ,所以A =B =C ,所以△ABC 是等边三角形,A 正确.由a cos A =b cos B 及正弦定理得,sin A cos A =sin B cos B ,解得sin 2A =sin 2B ,则2A =2B 或2A +2B =π,所以△ABC 是等腰三角形或直角三角形,B 不正确.由b cos C +c cos B =b 及正弦定理得,sin B cos C +sin C cos B =sin B ,即sin(B +C )=sin B ,所以sin A =sin B ,则A =B ,所以△ABC 是等腰三角形,C 正确.由余弦定理得,cos C =a 2+b 2-c 22ab >0,所以角C 为锐角.而角A ,B 不一定是锐角,故D 不正确.故选AC.与三角形面积有关的问题 角度一 计算三角形的面积(1)(2020·高考全国卷Ⅰ改编)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知B =150°.若a =3c ,b =27,则△ABC 的面积为________.(2)(2020·福建五校第二次联考)在△ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,已知a 2+b 2-c 2=3ab ,且ac sin B =23sin C ,则△ABC 的面积为________.【解析】 (1)由题设及余弦定理得28=3c 2+c 2-2×3c 2×cos 150°. 解得c =-2(舍去),c =2,从而a =2 3. △ABC 的面积为12×23×2×sin 150°= 3.(2)因为a 2+b 2-c 2=3ab ,所以由余弦定理得cos C =a 2+b 2-c 22ab =3ab 2ab =32,又0<C <π,所以C =π6.因为ac sin B =23sin C ,结合正弦定理可得abc =23c ,所以ab =2 3.故S △ABC =12ab sin C =12×23sin π6=32.【答案】 (1)3 (2)32求三角形面积的方法(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积;(2)若已知三角形的三边,可先求其中一个角的余弦值,再求其正弦值,代入公式求面积,总之,结合图形恰当选择面积公式是解题的关键.角度二 已知三角形的面积解三角形(2020·广州市调研检测)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知c sin ⎝ ⎛⎭⎪⎫A +π3-a sin C =0.(1)求角A 的值;(2)若△ABC 的面积为3,周长为6,求a 的值. 【解】 (1)因为c sin ⎝ ⎛⎭⎪⎫A +π3-a sin C =0, 所以由正弦定理得sin C ⎝ ⎛⎭⎪⎫12sin A +32cos A -sin A ·sin C =0.因为sin C >0,所以32cos A -12sin A =0,即tan A =3, 因为A ∈(0,π),所以A =π3.(2)因为△ABC 的面积为3,所以12bc sin A =3,得bc =4.由余弦定理a 2=b 2+c 2-2bc cos A ,得a 2=b 2+c 2-bc =(b +c )2-3bc =(b +c )2-12,因为△ABC 的周长为6,即a +b +c =6, 所以a 2=(6-a )2-12, 所以a =2.已知三角形面积求边、角的方法(1)若求角,就寻求这个角的两边的关系,利用面积公式列方程求解; (2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解. [注意] 正弦定理、余弦定理与三角函数性质的综合应用中,要注意三角函数公式的工具性作用.1.(2020·福州市质量检测)在钝角△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知c =7,b =1,若△ABC 的面积为62,则a 的长为________.解析:因为△ABC 的面积S =12bc sin A ,所以62=12×1×7sin A ,所以sin A=67,所以cos A=±77,当cos A=77时,由a2=b2+c2-2bc cos A得a=6,此时△ABC为直角三角形(舍去);当cos A=-77时,由a2=b2+c2-2bc cos A得a=10,经检验,a=10符合题意.综上,a=10.答案:102.(2020·合肥第一次教学检测)在△ABC中,内角A,B,C所对的边分别为a,b,c,若a=2,a cos C+c cos A+2b cos B=0.(1)求B;(2)若BC边的中线AM长为5,求△ABC的面积.解:(1)在△ABC中,asin A=bsin B=csin C,且a cos C+c cos A+2b cos B=0,所以sin A cos C+sin C cos A+2sin B cos B=0,所以sin B·(1+2cos B)=0,又sin B≠0,所以cos B=-2 2.因为B是三角形的内角,所以B=3π4.(2)在△ABM中,BM=1,AM=5,B=3π4,AB=c,由余弦定理AM2=c2+BM2-2c·BM·cos B,得c2+2c-4=0,因为c>0,所以c= 2.在△ABC中,a=2,c=2,B=3π4,所以△ABC的面积S=12ac sin B=1.高考新声音系列4解三角形中的结构不良型开放型问题新高考卷Ⅰ第17题别具匠心地设计了开放性试题,设问方式追求创新,补充已知条件(三选一)并解答,条件不同,结论不同,不同的选择会有不同的结论,难度也会有区别.(2020·新高考卷Ⅰ)在①ac =3,②c sin A =3,③c =3b 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在△ABC ,它的内角A ,B ,C 的对边分别为a ,b ,c ,且sin A =3sin B ,C =π6,________________?【解】 方案一:选条件①.由C =π6和余弦定理得a 2+b 2-c 22ab =32. 由sin A =3sin B 及正弦定理得a =3b . 于是3b 2+b 2-c 223b 2=32,由此可得b =c . 由①ac =3,解得a =3,b =c =1.因此,选条件①时问题中的三角形存在,此时c =1. 方案二:选条件②.由C =π6和余弦定理得a 2+b 2-c 22ab =32. 由sin A =3sin B 及正弦定理得a =3b .于是3b 2+b 2-c 223b 2=32,由此可得b =c ,B =C =π6,A =2π3. 由②c sin A =3,所以c =b =23,a =6.因此,选条件②时问题中的三角形存在,此时c =2 3. 方案三:选条件③.由C =π6和余弦定理得a 2+b 2-c 22ab =32.由sin A =3sin B 及正弦定理得a =3b . 于是3b 2+b 2-c 223b 2=32,由此可得b =c . 由③c =3b ,与b =c 矛盾.因此,选条件③时问题中的三角形不存在.本题以解三角形为背景命制,给定了若干条件(在这些条件下三角形并不能随之确定),在此基础上让学生在另外给出的几个条件中自主选择,在所选条件下,若问题中的三角形存在,求解三角形;若问题中的三角形不存在,说明理由.在①sin B=32,②cos B=34,③cos C=-79这三个条件中选择一个,补充在下面的问题中,并判断三角形是否有解.若有解,求出a的值;若无解,请说明理由.在△ABC中,已知a,b,c分别是角A,B,C的对边,且满足C=2B,b +c=10,________.解:若选择①sin B=32,则B=60°或B=120°,因为C=2B,所以C=120°或C=240°,显然矛盾,此时三角形无解.若选择②cos B=3 4,则由正弦定理可得cb=sin Csin B=sin 2Bsin B=2sin B cos Bsin B=2cos B=2×34=32,又b+c=10,所以c=6,b=4.由余弦定理b2=a2+c2-2ac cos B,可得16=a2+36-9a,解得a=4或a=5.若a=4,则由b=4知A=B,又C=2B,所以B+B+2B=180°,解得B=45°,这与cos B=34矛盾,舍去.经检验知,当a=5时适合题意.故a的值为5.若选择③cos C=-7 9,因为C=2B,所以cos 2B=-7 9,即2cos2B-1=-79,得cos B=13,此时cb=sin Csin B=sin 2Bsin B=2cos B=23<1,所以c<b,这与C=2B矛盾,。
2019高中数学高考真题分类:考点17-正弦定理和余弦定理
温馨提示:此题库为Word 版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,关闭Word 文档返回原板块。
考点17 正弦定理和余弦定理一、选择题1.(2018·北京高考文科·T5)在△ABC 中,a=3,b=5,sinA=13,则sinB=( ) A.15 B.59【解题指南】已知两边及一边的对角利用正弦定理求解。
【解析】选B 。
由正弦定理得355,,sin 1sin sin sin 93所以所以===a b B A BB 。
2.(2018·新课标全国Ⅱ高考文科·T4)ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知2b =,6B π=,4C π=,则ABC ∆的面积为( )A.2B.1C.21 【解题指南】利用正弦定理和三角形的面积公式可得 【解析】选B.因为,64B C ππ==,所以712A π=.由正弦定理得sinsin64b c ππ=,解得c =形的面积为117sin 22212bc A π=⨯⨯.因为711sinsin())123422πππ=+==+,所以11sin ()12222bc A =+=,选B. 3.(2018·新课标Ⅰ高考文科·T10)已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,02cos cos 232=+A A ,7=a ,c=6,则=b ( )A.10B.9C.8D.5【解题指南】由02cos cos 232=+A A ,利用倍角公式求出A cos 的值,然后利用正弦定理或余弦定理求得b 的值.【解析】选D.因为02cos cos 232=+A A ,所以01cos 2cos 2322=-+A A ,解得251cos 2=A , 方法一:因为△ABC 为锐角三角形,所以51cos =A ,562sin =A .由正弦定理C c A a sin sin =得,Csin 65627=. 35612sin =C ,3519cos =C .又)(C A B +-=π,所以C A C A C A B sin cos cos sin )sin(sin +=+=,17565035612513519562sin =⨯+⨯=B .由正弦定理B b A a sin sin =得, 1756505627b =,解得5=b . 方法二:由余弦定理A bc c b a cos 2222-+=,51cos =A ,则495112362=⨯-+b b ,解得5=b 4.(2018·陕西高考文科·T9)【备注:(2018·陕西高考理科·T7)与之题干相同】设△ABC 的内角A, B, C 所对的边分别为a, b, c, 若cos cos sin b C c B a A +=, 则△ABC 的形状为 ( ) A. 直角三角形B. 锐角三角形C. 钝角三角形D. 不确定【解题指南】在含有边角关系式的三角函数恒等变形中,利用正弦定理将边的关系式化为角的正弦式或利用余弦定理将余弦式化为边的关系式,这是判断三角形形状的两个转化方向. 【解析】选A.因为bcosC+ccosB=asinA,所以由正弦定理得 sinBcosC+sinCcosB=sin 2A,所以sin(B+C)=sin 2A, sinA=sin 2A, sinA=1,所以三角形ABC 是直角三角形.5.(2018·安徽高考文科·T9)【备注:(2018·安徽高考理科·T12)与之题干相同】 设△ABC 的内角A,B,C 所对边的长分别为a,b,c.若b+c=2a,则3sinA=5sinB,则角C= ( ) A.π3 B. 2π3C. 3π4D. 5π6 【解题指南】 根据正弦定理、余弦定理进行解三角形计算。
2019年三年高考数学(理)真题分类解析:专题11解三角形
高考数学精品复习资料2019.5专题11解三角形考纲解读明方向考点内容解读要求高考示例常考题型预测热度1.正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题掌握20xx山东,9;20xx浙江,14;20xx天津,15;20xx北京,15;20xx课标全国Ⅱ,13;20xx天津,3;20xx天津,13选择题填空题★★★2.正、余弦定理的应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题掌握20xx课标全国Ⅱ,17;20xx课标全国Ⅲ,17;20xx江苏,18;20xx课标全国Ⅲ,8;20xx山东,16;20xx浙江,16;20xx湖北,13解答题★★★分析解读1.利用正弦定理、余弦定理解三角形或者求解平面几何图形中有关量的问题,需要综合应用两个定理及三角形有关知识.2.正弦定理和余弦定理的应用比较广泛,也比较灵活,在高考中常与面积或取值范围结合进行考查.3.会利用数学建模思想,结合三角形的知识,解决生产实践中的相关问题.高考全景展示1.【理数全国卷II】在中,,,,则A. B. C. D.【答案】A【解析】分析:先根据二倍角余弦公式求cosC,再根据余弦定理求AB.详解:因为所以,选 A.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.2.【浙江卷】在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,A=60°,则sin B=___________,c=___________.【答案】3点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化为边和角之间的关系,从而达到解决问题的目的.3.【全国卷Ⅲ理】的内角的对边分别为,,,若的面积为,则A. B. C. D.【答案】C【解析】分析:利用面积公式和余弦定理进行计算可得。
2019年高考数学(文)考点一遍过 考点16 正、余弦定理及解三角形(含解析)
2019年高考数学(文)考点一遍过考点16 正、余弦定理及解三角形1.正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题. 2.应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.一、正弦定理 1.正弦定理在ABC △中,若角A ,B ,C 对应的三边分别是a ,b ,c ,则各边和它所对角的正弦的比相等,即sin sin sin a b c ==A B C.正弦定理对任意三角形都成立. 2.常见变形 (1)sin sin sin ,,,sin sin ,sin sin ,sin sin ;sin sin sin A a C c B ba Bb A a Cc A b C c B B b A a C c====== (2);sin sin sin sin sin sin sin sin sin sin sin sin a b c a b a c b c a b cA B C A B A C B C A B C+++++======+++++ (3)::sin :sin :sin ;a b c A B C = (4)正弦定理的推广:===2sin sin sin a b c R A B C,其中R 为ABC △的外接圆的半径. 3.解决的问题(1)已知两角和任意一边,求其他的边和角; (2)已知两边和其中一边的对角,求其他的边和角. 4.在ABC △中,已知a ,b 和A 时,三角形解的情况二、余弦定理 1.余弦定理三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍,即2222222222cos ,2cos 2cos .a b c bc A b a c ac B c a b ab C =+-=+-=+-,2.余弦定理的推论从余弦定理,可以得到它的推论:222222222cos ,cos ,cos 222b c a c a b a b c A B C bc ca ab+-+-+-===. 3.解决的问题(1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其他两角. 4.利用余弦定理解三角形的步骤三、解三角形的实际应用1.三角形的面积公式设ABC△的三边为a,b,c,对应的三个角分别为A,B,C,其面积为S.(1)12S ah= (h为BC边上的高);(2)111sin sin sin 222S bc A ac B ab C ===;(3)1()2S r a b c=++(r为三角形的内切圆半径).2.三角形的高的公式h A=b sin C=c sin B,h B=c sin A=a sin C,h C=a sin B=b sin A.3.测量中的术语(1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图①).(2)方位角从指北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).(3)方向角相对于某一正方向的水平角.①北偏东α,即由指北方向顺时针旋转α到达目标方向(如图③);②北偏西α,即由指北方向逆时针旋转α到达目标方向;③南偏西等其他方向角类似.(4)坡角与坡度①坡角:坡面与水平面所成的二面角的度数(如图④,角θ为坡角);②坡度:坡面的铅直高度与水平长度之比(如图④,i 为坡度).坡度又称为坡比. 4.解三角形实际应用题的步骤考向一 利用正、余弦定理解三角形利用正、余弦定理求边和角的方法:(1)根据题目给出的条件(即边和角)作出相应的图形,并在图形中标出相关的位置.(2)选择正弦定理或余弦定理或二者结合求出待解问题.一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.(3)在运算求解过程中注意三角恒等变换与三角形内角和定理的应用. 常见结论:(1)三角形的内角和定理:在ABC △中,π A B C ++=,其变式有:πA B C +=-,π222A B C+=-等.(2)三角形中的三角函数关系:i in(s n s )A B C =+; ()s os co c A B C =-+;sincos 22A B C +=; cos sin 22A B C+=.典例1 在ABC △中,内角所对的边分别为,若,,则ca的值为A .1 BC D【答案】D又,由余弦定理可得,即,所以.故选D .典例2 已知ABC △的内角的对边分别为,且.(1)求; (2)若,线段的垂直平分线交于点,求的长.【解析】(1)因为,所以.由余弦定理得,又,所以. (2)由(1)知,根据余弦定理可得,所以.由正弦定理得sin B =,解得.从而cos B =.设的中垂线交于点,因为在Rt BDE △中,,所以cos 5BE BD B ===,因为为线段的中垂线,所以.1.在ABC △中,a ,b ,c 分别是角A ,B ,C 的对边,且2sin sin cos sin cos C B a BB b A -=,则A =A BC D 2.在ABC △中,边上一点满足,.(1)若,求边的长;(2)若,求.考向二 三角形形状的判断利用正、余弦定理判定三角形形状的两种思路:(1)“角化边”:利用正弦、余弦定理把已知条件转化为只含边的关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.(2)“边化角”:利用正弦、余弦定理把已知条件转化为只含内角的三角函数间的关系,通过三角恒等变换,得出内角间的关系,从而判断出三角形的形状,此时要注意应用πA B C ++=这个结论. 提醒:在两种解法的等式变形中,一般两边不要约去公因式,应移项提取公因式,以免造成漏解.典例3 在ABC △中,角,,A B C 所对的边分别是,,a b c ,满足3cos cos sin sin cos 2A C A CB ++=,且,,a b c 成等比数列.(1)求角B 的大小; (2)若2,2tan tan tan a c ba A C B+==,试判断三角形的形状.【解析】(1∵()cos cos B A C =-+,32sin sin 2A C ∴=,又22sin sin sin b ac B A C =⇒=,232sin 2B ∴=而,,a b c 成等比数列,所以b 不是最大,故B 为锐角,所以60B =︒.(2)由2tan tan tan a c bA C B+=,利用正弦定理可得cos cos 2cos 1A C B +==,所以ABC △是等边三角形.3.在ABC △中,,,分别为角,,所对的边,若,则ABC △A .一定是锐角三角形B .一定是钝角三角形C .一定是斜三角形D .一定是直角三角形考向三 与面积、范围有关的问题(1)求三角形面积的方法①若三角形中已知一个角(角的大小,或该角的正、余弦值),结合题意求夹这个角的两边或该两边之积,套公式求解.②若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,套公式求面积,总之,结合图形恰当选择面积公式是解题的关键.(2)三角形中,已知面积求边、角的方法三角形面积公式中含有两边及其夹角,故根据题目的特点,若求角,就寻求夹这个角的两边的关系,利用面积公式列方程求解;若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解.典例4 在ABC △中,角的对边分别为,且.(1)求角; (2)若,求ABC △面积的最大值.【解析】(1)由已知和正弦定理得,,,解得.【名师点睛】在解决三角形问题中,面积公式最常用,因为公式中既有边又有角,容易和正弦定理、余弦定理联系起来.正、余弦定理在应用时,应注意灵活性,已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断. 典例5 在ABC △中,,是边上的一点.(1)若,求的长;(2)若,求ABC △周长的取值范围.【解析】(1)在ADC △中,AD =1,,所以=cos ∠DAC =1×2×cos∠DAC =3,所以cos ∠DAC =.由余弦定理得2222cos CD AC AD AC AD DAC =+∠-⋅⋅=12+1-2×2×1×=7,所以CD =.(2)在ABC △中,由正弦定理得4sin sin sin sin 3AB BC AC C A B ====,,ππ0,sin 332A A ⎛⎤⎛⎫<<∴+∈ ⎥ ⎪ ⎝⎭⎝⎦.,故ABC △周长的取值范围为.4.在ABC △中,内角所对的边分别是,已知.(1)求; (2)当时,求的取值范围.5.在ABC △中,内角,,所对的边分别为,,,且ABC △的面积.(1)求;(2)若、、成等差数列,ABC △的面积为,求.考向四 三角形中的几何计算几何中的长度、角度的计算通常转化为三角形中边长和角的计算,这样就可以利用正、余弦定理解决问题.解决此类问题的关键是构造三角形,把已知和所求的量尽量放在同一个三角形中.典例6 如图,在ABC △中,D 为AB 边上一点,且DA DC =,已知π4B =,1BC =.(1)若ABC △是锐角三角形,DC =,求角A 的大小; (2)若BCD △的面积为16,求AB 的长. 【解析】(1)在BCD △中,π4B =,1BC =,DC =,由正弦定理得sin sin BC CDBDC B =∠,解得1sin 2BDC ∠==,所以π3BDC ∠=或2π3. 因为ABC △是锐角三角形,所以2π3BDC ∠=.又DA DC =,所以π3A =.(2)由题意可得1π1sin 246BCD S BC BD =⋅⋅⋅=△,解得BD =,由余弦定理得222π2cos4CD BC BD BC BD =+-⋅⋅=251219329+-⨯⨯⨯=,解得3CD =,则3AB AD BD CD BD =+=+=.所以AB .6.如图,在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,(sin cos )a b C C =+.(1)求角B 的大小;(2D 为ABC △外一点,2DB =,1DC =,求四边形ABCD 面积的最大值. 考向五 解三角形的实际应用解三角形应用题的两种情形:(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解;(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.研究测量距离问题是高考中的常考内容,既有选择题、填空题,也有解答题,难度一般适中,属中档题.解题时要选取合适的辅助测量点,构造三角形,将问题转化为求某个三角形的边长问题,从而利用正、余弦定理求解.典例7 如图,一条巡逻船由南向北行驶,在A 处测得山顶P 在北偏东()1515BAC ︒∠=︒方向上,匀速向北航行20分钟到达B 处,测得山顶P 位于北偏东60︒方向上,此时测得山顶P 的仰角为60︒,若山高为 (1)船的航行速度是每小时多少千米?(2)若该船继续航行10分钟到达D 处,问此时山顶位于D 处的南偏东什么方向?【解析】(1)在BCP △中,tan 2PCPBC BC ∠=⇒=, 在ABC △中,由正弦定理得所以)21AB =,故船的航行速度是每小时)631千米.(2)在BCD △中,由余弦定理得6CD =在BCD △中,由正弦定理得所以山顶位于D 处南偏东45︒方向.7.某新建的信号发射塔的高度为AB ,且设计要求为:29米AB <<29.5米.为测量塔高是否符合要求,先取与发射塔底部B 在同一水平面内的两个观测点,C D ,测得60BDC ∠=︒, 75BCD ∠=︒, 40CD =米,并在点C 处的正上方E 处观测发射塔顶部A 的仰角为30°,且1CE =米,则发射塔高AB =A .()1米B .()1米C .()1米D .()1米考向六 三角形中的综合问题1.解三角形的应用中要注意与基本不等式的结合,以此考查三角形中有关边、角的范围问题.利用正弦定理、余弦定理与三角形的面积公式,建立如“22,,a b ab a b ++”之间的等量关系与不等关系,通过基本不等式考查相关范围问题.2.注意与三角函数的图象与性质的综合考查,将两者结合起来,既考查解三角形问题,也注重对三角函数的化简、计算及考查相关性质等.3.正、余弦定理也可能结合平面向量及不等式考查面积的最值或求面积,此时注意应用平面向量的数量积或基本不等式进行求解.典例8 在ABC △,向量(sin ,1)A =m ,(1,cos )B =n ,且⊥m n . (1)求A 的值;(2)若点D 在边BC 上,且3BD BC =uu u ruu u rABC △的面积. 【解析】(1)由题意知sin cos 0A B +=⋅=m n ,又πA B C ++=,所以5πsin cos()06A A +-=,πsin()06A -=.ππ2π(,)663A -∈-,所以π06A -=,即π6A =.典例9 ABC △的内角A ,B ,C 所对的边分别为a ,b ,c .(1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C ); (2)若a ,b ,c 成等比数列,求cos B 的最小值. 【解析】(1)因为a ,b ,c 成等差数列,所以a +c =2b . 由正弦定理得sin A +sin C =2sin B . 因为sin B =sin[π-(A +C )]=sin(A +C ), 所以sin A +sin C =2sin(A +C ).(2)因为a ,b ,c 成等比数列,所以b 2=ac .由余弦定理得cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac ≥2ac -ac 2ac =12,当且仅当a =c 时等号成立.所以cos B 的最小值为12.8.已知函数()的图象上相邻的最高点间的距离是.(1)求函数的解析式;(2)在锐角ABC △中,内角满足,求的取值范围.1.在ABC △中,角A ,B ,C 的对边为a ,b ,c ,若a ,b =3,B =60°,则A = A .45°B .45°或135C .135°D .60°或120°2.在△ABC 中,若tan A ·tan B <1,则该三角形一定是 A .锐角三角形 B .钝角三角形 C .直角三角形 D .以上都有可能3.在ABC △中,,,则角的取值范围是A .B .C .D .4.ABC △中,2AB =,BC =1cos 4A =,则AB 边上的高等于A B .34C D .35.已知ABC △的面积为,,则的最小值为A .B .C .D .6.设ABC △的三个内角所对的边分别为,如果,且,那么ABC △外接圆的半径为A .2B .4C .D .17.已知ABC △的内角的对边分别为,若,,则A .2B .C .D .8.若ABC △的三个内角所对的边分别是,,且,则A .10B .8C .7D .49.已知ABC △的面积为,三个内角,,的对边分别为,,,若,,则A .2B .4C .D .10.在ABC △中,D 为BC 边上一点,若ABD △是等边三角形,且AC =ADC △的面积的最大值为 .11.如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75的方向上,仰角为30,则此山的高度CD =___________m.12.在ABC △中,角,,的对边分别为,,,已知,,.(1)求; (2)求的值.13.在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c ,(cos ,sin )B A =n ,且∥m n .(1)求角B 的大小;(2)若2b =,ABC △的面积为,求a c +的值.14.如图所示,在ABC △中, 点D 为BC 边上一点,且1BD =,E 为AC 的中点7B =2π3ADB ∠=.(1)求AD 的长; (2)求ADE △的面积.15.在ABC △中,,,A B C 的对边分别为,,a b c ,且cos ,cos ,cos a C b B c A 成等差数列. (1)求B 的值;(2)求()22sin cos A A C +-的范围.16.已知函数(1)当时,求的值域;(2)在ABC △中,若求ABC △的面积.1.(2017新课标全国Ⅰ文科)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin sin (sin cos )0B A C C +-=,a =2,c ,则C =A .π12B .π6C .π4D .π32.(2018新课标全国Ⅲ文科)ABC △的内角A ,B ,C 的对边分别为a ,b ,c .若的面积为2224a b c +-,则C =A .2πB .3π C .4πD .6π3.(2017新课标全国Ⅲ文科)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知C =60°,b ,c =3,则A =_________.4.(2016上海文科)已知ABC △的三边长分别为3,5,7,则该三角形的外接圆半径等于_________. 5.(2018新课标全国Ⅰ文科)ABC △的内角A BC ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC 的面积为________.6.(2017浙江)已知△ABC ,AB =AC =4,BC =2. 点D 为AB 延长线上一点,BD =2,连结CD ,则△BDC 的面积是______,cos ∠BDC =_______.7.(2018江苏)在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为 ▲ .8.(2017山东文科)在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,已知b =3,6AB AC ⋅=-,3ABC S =△,求A 和a .9. (2018天津文科)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b sin A =a cos(B –π6). (Ⅰ)求角B 的大小;(Ⅱ)设a =2,c =3,求b 和sin(2A –B )的值.1.【答案】C 【解析】∵2sin sin cos sin cos C B a B B b A -=,∴由正弦定理可得2cos cos c b a Bb b A-=,即()cos 2cos ab B c b b A =-. 由余弦定理可得()222222222a c b b c a ab c b b ac bc +-+-⋅=-⋅⋅,整理可得222bc b c a =+-,∴2221cos 22b c a A bc +-==, ∵()0,πA ∈,∴C . 变式拓展△中,由正弦定理可得,(2)在ACD∵,∴,∵,∴,∴,∵,∴,∴,∴,化简得,即,∵,∴.4.【解析】(1)由正弦定理可得:,又,所以,则,因为,所以,因为,所以.(2)由正弦定理得,则,所以,因为,所以,所以.5.【解析】(1)∵,∴,即,∵,∴.(2)∵、、成等差数列,∴, 两边同时平方得:,又由(1)可知:, ∴,∴,,由余弦定理得,,得,∴.6.【解析】(1)在ABC △中,由(sin cos )a b C C =+,得sin sin (sin cos )A B C C =+,即sin()sin (sin cos )B C B C C +=+,cos sin sin sin B C B C ∴=,又sin 0C >,∴cos sin B B =,即tan 1B =,∵(0,π)B ∈,∴(2)在BCD △中,2BD =,1DC =,22212212cos 54cos BC D D ∴=+-⨯⨯⨯=-.7.【答案】A【解析】过点E 作EF AB ⊥,垂足为F ,则,1EF BC BF CE ===米,30AEF ∠=︒, 在BDC △中,由正弦定理得.在Rt AEF △中,.所以1AB AF BF =+=+米,符合设计要求.故选A .(2)由得,即,则,又,所以.因为ABC △是锐角三角形,所以, 则,所以,故.1.【答案】A【解析】∵a ,b =3,B =60°,3sin 60=︒,∴sin A =2=32.又a <b ,∴A =45°. 2.【答案】B【解析】由已知条件,得sin sin cos()cos 1,0,0,cos cos cos cos cos cos A B A B CA B A B A B+⋅<><即即说明cos A ,cos B ,cos C 中有且只有一个为负.因此△ABC 一定是钝角三角形. 3.【答案】A【解析】因为sin sin AB BCC A=,所以,所以,又,则必为锐角,故.4.【答案】A【解析】设角A ,B ,C 所对的边分别为a ,b ,c ,AB 边上的高为h , 因为2c =,a =,所以21104224b b =+-⨯⨯,化简得260b b --=,解得3b =.又sin 4A =,所以由11232242h ⨯⨯⨯=⨯,得4h =.故选A.6.【答案】D 【解析】因为,所以,即,所以,所以,因为,所以由正弦定理可得ABC △的外接圆半径为1112sin 2a R A =⨯==,故选D . 7.【答案】D 【解析】∵是三角形的内角,∴,∴,由得561sin 56653sin 395a Bb A⨯===,故选D .9.【答案】A【解析】ABC △的面积为.则由,可得.化简得,即,所以,解得或(舍去).所以.所以.故选A .10.【答案】【解析】如图.在ACD △中,2222248cos 222AD DC AC AD DC ADC AD DC AD DC +-+-∠===-⋅⋅1,整理得22482AD DC AD DC AD DC +=-⋅≥⋅, ∴16AD DC ⋅≤,当且仅当AD =DC 时取等号,∴ADC △的面积1sin 2S AD DC ADC AD DC =⋅∠=⋅≤∴ADC △的面积的最大值为 11.【答案】6100【解析】依题意, 30=∠BAC , 105=∠ABC ,在ABC △中,由180=∠+∠+∠ACB BAC ABC , 得45=∠ACB ,因为600m AB =,所以由正弦定理可得30sin 45sin 600BC=,即2300=BC m.在Rt BCD △中,因为 30=∠CBD ,BC =,所以230030tan CDBC CD ==, 所以6100=CD m.12.【解析】(1)在ABC △中,由余弦定理得,解得.(2)在ABC △中,由得,∴,在ABC △中,由正弦定理得sin B =,∴,又,故,∴,∴.13.【解析】(1)∵∥m n ,∴sin cos b A B =,由正弦定理,得sin sin cos B A A B =,∵sin 0A >,∴sin B B =,即tan B = ∵0πB <<,∴(2122ac =⨯,解得4ac =, 由余弦定理2222cos b a c ac B =+-,得221422a c ac =+-⨯2()3a c ac =+-2()12a c =+-, 故4a c +=.14.【解析】(1)在ABD △中,2cos B =21)ADB =⨯由正弦定理sin sin AD BDB BAD=∠,(2)由(1)知2AD =,依题意得23AC AE ==.在ACD △中,由余弦定理得222AC AD DC =+-2cos AD DC ADC ⋅∠,即2π9422cos 3DC DC =+-⨯⨯,即2250DC DC --=,解得1DC =+值舍去).15.【解析】(1)由题意得cos cos 2cos a C c A b B +=,由正弦定理得2sin cos 2cos sin 4sin cos R A C R A C R B B +=, 即B C A 2sin )sin(=+,所以B B 2sin sin =. 又在ABC △中,则B B 2=或2πB B +=,因为0πB <<,所以π3B =. (2)因为π3B =, 所以2π3A C +=.22π2sin cos()1cos 2cos(2)3A A C A A +-=-+-131cos 2cos 2212cos 222A A A A A=--+=-π1)3A =+-.因为2π03A <<,ππ2π33A -<-<,所以πsin(2)13A <-≤, 所以()22sin cos A A C +-的范围是1,12⎛-+ ⎝.(2)设ABC △中所对的边分别为.即得又,即即易得1.【答案】B【解析】由题意sin()sin (sin cos )0A C A C C ++-=得sin cos cos sin sin sin sin cos 0A C A C A C A C ++-=,即πsin (sin cos )sin()04C A A C A +=+=,所以3π4A =. 由正弦定理sin sin a c A C =得23πsin sin 4C =,即1sin 2C =,因为c <a ,所以C<A , 所以π6C =,故选B . 【名师点睛】在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到. 2.【答案】C【解析】由题可知,所以,由余弦定理,得,因为,所以,故选C.3.【答案】75°【解析】由正弦定理sin sin b cB C=,得sin 2sin 32b C Bc ===,结合b c <可得45B =,则18075A B C =--=.【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理,结合已知条件灵活转化为边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化. 第三步:求结果. 4【解析】由已知可设3,5,7a b c ===,∴2221cos 22a b c C ab +-==-,∴sin C =,∴2sin c R C =. 【名师点睛】此类题目是解三角形问题中的典型题目.解答本题,往往要利用三角公式化简三角恒等式,利用正弦定理实现边角转化,达到解题目的;三角形中的求角问题,往往要利用余弦定理用边表示角的函数.本题较易,主要考查考生的基本运算求解能力等. 5.【答案】【解析】根据题意,结合正弦定理可得,即,结合余弦定理可得,所以A 为锐角,且,从而求得,所以ABC △的面积为,故答案是.6【解析】取BC 中点E ,由题意:AE BC ⊥,△ABE 中,1cos 4BE ABC AB ∠==,∴1cos ,sin 4DBC DBC ∠=-∠==∴1sin 2△BCD S BD BC DBC =⨯⨯⨯∠= ∵2ABC BDC ∠=∠,∴21cos cos 22cos 14ABC BDC BDC ∠=∠=∠-=,解得cos 4BDC ∠=或cos 4BDC ∠=(舍去). 综上可得,△BCD 1510cos BDC ∠=.8.【解析】因为6AB AC ⋅=-,所以cos 6bc A =-,又3ABC S =△,所以sin 6bc A =, 因此tan 1A =-,又0πA <<, 所以3π4A =,又3b =,所以c =由余弦定理2222cos a b c bc A =+-,得29823()=292a =+-⨯⨯-,所以a =【名师点睛】正、余弦定理是应用极为广泛的两个定理,它将三角形的边和角有机地联系起来,从而使三角与几何产生联系,为求与三角形有关的量(如面积、外接圆、内切圆半径和面积等)提供了理论依据,也是判断三角形形状、证明三角形中有关等式的重要依据.其主要方法有:化角法,化边法,面积法,运用初等几何法.注意体会其中蕴涵的函数与方程思想、等价转化思想及分类讨论思想. 9.【解析】(Ⅰ)在△ABC 中,由正弦定理sin sin a b A B =,可得sin sin b A a B =,又由πsin cos()6b A a B =-,得πsin cos()6a B a B =-,即πsin cos()6B B =-,可得tan B =.又因为(0π)B ∈,,可得B =π3.(Ⅱ)在△ABC 中,由余弦定理及a =2,c =3,B =π3,有2222cos 7b a c ac B =+-=,故b .由πsin cos()6b A a B =-,可得sin A =.因为a <c ,故cos A =.因此sin 22sin cos A A A ==,21cos22cos 17A A =-=. 所以,sin(2)sin 2cos cos2sin AB A B A B -=-=431133327-.。
2019版高考数学复习三角函数解三角形3.6正弦定理和余弦定理学案理
3.6 正弦定理和余弦定理[知识梳理]1.正弦定理、余弦定理在△ABC中,若角A,B,C所对的边分别是a,b,c,R为△ABC外接圆半径,则2.在△ABC中,已知a,b和A时,三角形解的情况3.三角形中常用的面积公式 (1)S =12ah (h 表示边a 上的高).(2)S =12bc sin A =12ac sin B =12ab sin C .(3)S =12r (a +b +c )(r 为三角形的内切圆半径).4.在△ABC 中,常有的结论 (1)∠A +∠B +∠C =π.(2)在三角形中大边对大角,大角对大边.(3)任意两边之和大于第三边,任意两边之差小于第三边. [诊断自测] 1.概念思辨(1)在三角形中,已知两角和一边或已知两边和一角都能解三角形.( )(2)在△ABC 中,a sin A =a +b -csin A +sin B -sin C.( )(3)若a ,b ,c 是△ABC 的三边,当b 2+c 2-a 2>0时,△ABC 为锐角三角形;当b 2+c 2-a 2=0时,△ABC 为直角三角形;当b 2+c 2-a 2<0时,△ABC 为钝角三角形.( )(4)在△ABC 中,若sin A sin B <cos A cos B ,则此三角形是钝角三角形.( ) 答案 (1)√ (2)√ (3)√ (4)√ 2.教材衍化(1)(必修A5P 10A 组T 4)在△ABC 中,a =4,b =5,c =6,则sin2Asin C =________.答案 1解析 由正弦定理得sin A ∶sin B ∶sin C =a ∶b ∶c =4∶5∶6,又由余弦定理知cos A =b 2+c 2-a 22bc =25+36-162×5×6=34,所以sin2A sin C =2sin A cos A sin C =2×46×34=1. (2)(必修A5P 20A 组T 11)若锐角△ABC 的面积为103,且AB =5,AC =8,则BC 等于________.答案 7解析 因为△ABC 的面积S △ABC =12AB ·AC sin A ,所以103=12×5×8sin A ,解得sin A =32,因为角A 为锐角,所以cos A =12.根据余弦定理,得BC 2=52+82-2×5×8cos A =52+82-2×5×8×12=49,所以BC =7.3.小题热身(1)(2016·天津高考)在△ABC 中,若AB =13,BC =3,∠C =120°,则AC =( ) A .1 B .2 C .3 D .4 答案 A解析 在△ABC 中,设A ,B ,C 所对的边分别为a ,b ,c ,则由c 2=a 2+b 2-2ab cos C ,得13=9+b 2-2×3b ×⎝ ⎛⎭⎪⎫-12,即b 2+3b -4=0,解得b =1(负值舍去),即AC =1.故选A.(2)(2016·全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C=513,a =1,则b =________. 答案2113解析 由已知可得sin A =35,sin C =1213,则sin B =sin(A +C )=35×513+45×1213=6365,再由正弦定理可得a sin A =bsin B ⇒b =1×636535=2113.题型1 利用正、余弦定理解三角形典例1 (2018·郑州预测)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b 3cos B=asin A,则cos B =( )A .-12 B.12 C .-32 D.32边角互化法.答案 B解析 由正弦定理知sin B3cos B =sin A sin A=1,即tan B =3,由B ∈(0,π),所以B =π3,所以cos B =cos π3=12,故选B.典例2 (2018·重庆期末)在△ABC 中,已知AB =43,AC =4,∠B =30°,则△ABC 的面积是( )A .4 3B .8 3C .43或8 3D. 3注意本题的多解性.答案 C解析 在△ABC 中,由余弦定理可得AC 2=42=(43)2+BC 2-2×43BC cos30°, 解得BC =4或BC =8.当BC =4时,AC =BC ,∠B =∠A =30°,△ABC 为等腰三角形,∠C =120°, △ABC 的面积为12AB ·BC sin B =12×43×4×12=4 3.当BC =8时,△ABC 的面积为12AB ·BC sin B =12×43×8×12=83,故选C.方法技巧正、余弦定理在解三角形中的应用技巧1.已知两边和一边的对角或已知两角和一边都能用正弦定理解三角形,正弦定理的形式多样,其中a =2R sin A ,b =2R sin B ,c =2R sin C 能够实现边角互化.见典例1.2.已知两边和它们的夹角、已知两边和一边的对角或已知三边都能直接运用余弦定理解三角形.见典例2.3.已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.见典例2.冲关针对训练1.(2017·河西五市联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足(b -a )sin A =(b -c )(sin B +sin C ),则角C 等于( )A.π3 B.π6 C.π4 D.2π3答案 A解析 由题意,得(b -a )a =(b -c )(b +c ),∴ab =a 2+b 2-c 2,∴cos C =a 2+b 2-c 22ab =12,∴C =π3,故选A.2.(2018·山东师大附中模拟)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知cos2A =-13,c =3,sin A =6sin C .(1)求a 的值;(2)若角A 为锐角,求b 的值及△ABC 的面积.解 (1)在△ABC 中,c =3,sin A =6sin C ,由正弦定理asin A=csin C,得a =6·c=6×3=3 2.(2)由cos2A =1-2sin 2A =-13得,sin 2A =23,由0<A <π2,得sin A =63,则cos A =1-sin 2A =33. 由余弦定理a 2=b 2+c 2-2bc cos A , 化简,得b 2-2b -15=0, 解得b =5(b =-3舍去).所以S △ABC =12bc sin A =12×5×3×63=522.题型2 利用正、余弦定理判断三角形的形状典例 (2017·陕西模拟)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定用边角互化法.答案 B解析 ∵b cos C +c cos B =a sin A ,由正弦定理得sin B cos C +sin C cos B =sin 2A ,∴sin(B +C )=sin 2A ,即sin A =sin 2A .又sin A >0,∴sin A =1,∴A =π2,故△ABC 为直角三角形.故选B.[条件探究1] 将典例条件变为“若2sin A cos B =sin C ”,那么△ABC 一定是( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形 D .等边三角形答案 B解析 解法一:由已知得2sin A cos B =sin C =sin(A +B )=sin A cos B +cos A sin B ,即sin(A -B )=0,因为-π<A -B <π,所以A =B .故选B. 解法二:由正弦定理得2a cos B =c ,由余弦定理得2a ·a 2+c 2-b 22ac=c ⇒a 2=b 2⇒a =b .故选B.[条件探究2] 将典例条件变为“若△ABC 的三个内角满足sin A ∶sin B ∶sin C =5∶11∶13”,则△ABC ( )A .一定是锐角三角形B .一定是直角三角形C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形 答案 C解析 在△ABC 中,sin A ∶sin B ∶sin C =5∶11∶13, ∴a ∶b ∶c =5∶11∶13,故设a =5k ,b =11k ,c =13k (k >0),由余弦定理可得cos C =a 2+b 2-c 22ab =25k 2+121k 2-169k 22×5×11k 2=-23110<0, 又∵C ∈(0,π),∴C ∈⎝ ⎛⎭⎪⎫π2,π,∴△ABC 为钝角三角形.故选C.[条件探究3] 将典例条件变为“若b cos B +c cos C =a cos A ”,试判断三角形的形状. 解 由已知得b ·a 2+c 2-b 22ac +c ·a 2+b 2-c 22ab =a ·b 2+c 2-a 22bc,∴b 2(a 2+c 2-b 2)+c 2(a 2+b 2-c 2)=a 2(b 2+c 2-a 2). ∴(a 2+c 2-b 2)(b 2+a 2-c 2)=0.∴a 2+c 2=b 2或b 2+a 2=c 2,即B =π2或C =π2.∴△ABC 为直角三角形. 方法技巧判定三角形形状的两种常用途径提醒:“角化边”后要注意用因式分解、配方等方法得出边的相应关系;“边化角”后要注意用三角恒等变换公式、三角形内角和定理及诱导公式推出角的关系.冲关针对训练在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b -c )sin B +(2c -b )sin C .(1)求角A 的大小;(2)若sin B +sin C =3,试判断△ABC 的形状.解 (1)由2a sin A =(2b -c )sin B +(2c -b )sin C 及正弦定理,得2a 2=(2b -c )b +(2c -b )c ,即bc =b 2+c 2-a 2,∴cos A =b 2+c 2-a 22bc =12,∵0°<A <180°,∴A =60°. (2)∵A +B +C =180°, ∴B +C =180°-60°=120°.由sin B +sin C =3,得sin B +sin(120°-B )=3, ∴sin B +sin120°cos B -cos120°sin B = 3. ∴32sin B +32cos B =3,即sin(B +30°)=1. ∵0°<B <120°,∴30°<B +30°<150°. ∴B +30°=90°,即B =60°.∴A =B =C =60°,∴△ABC 为等边三角形.题型3 与三角形有关的最值角度1 与三角形边长有关的最值典例 (2017·杏花岭区模拟)已知锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =b cos C +33c sin B . (1)求B ;(2)若b =2,求ac 的最大值.本题采用转化法.解 (1)在△ABC 中,∵a =b cos C +33c sin B , ∴sin A =sin B cos C +33sin C sin B , ∴sin A =sin(B +C )=sin B cos C +33sin C sin B , 化为cos B sin C =33sin C sin B ,sin C ≠0, 可得tan B =3,B ∈(0,π),∴B =π3.(2)由正弦定理得b sin B =2R =43,令y =ac =2R sin A ·2R sin C =163sin A sin C=163sin A sin ⎝ ⎛⎭⎪⎫2π3-A =83sin ⎝ ⎛⎭⎪⎫2A -π6+43. ∵0<A <π2,0<2π3-A <π2,∴π6<A <π2.故π6<2A -π6<5π6,∴sin ⎝⎛⎭⎪⎫2A -π6∈⎝ ⎛⎦⎥⎤12,1,∴y ∈⎝ ⎛⎦⎥⎤83,4.∴ac 的最大值为4.角度2 与三角形内角有关的最值典例 (2017·庄河市期末)在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,设f (x )=a 2x 2-(a 2-b 2)x -4c 2.(1)若f (1)=0,且B -C =π3,求角C 的大小;(2)若f (2)=0,求角C 的取值范围.本题采用重要不等式法.解 (1)由f (1)=0,得a 2-a 2+b 2-4c 2=0, ∴b =2c .又由正弦定理,得sin B =2sin C , ∵B -C =π3,∴sin ⎝ ⎛⎭⎪⎫π3+C =2sin C , 整理得3sin C =cos C ,∴tan C =33. ∵角C 是三角形的内角,∴C =π6.(2)∵f (2)=0,∴4a 2-2a 2+2b 2-4c 2=0,即a 2+b 2-2c 2=0,由余弦定理,得cos C =a 2+b 2-c 22ab =a 2+b 24ab ≥2ab 4ab =12(当且仅当a =b 时取等号).又∵余弦函数在⎝⎛⎭⎪⎫0,π2上递减,C 是锐角, ∴0<C ≤π3.方法技巧求与三角形中边角有关的量的取值范围时,主要是利用已知条件和有关定理,将所求的量用三角形的某个内角或某条边表示出来,结合三角形边角的取值范围、函数值域的求法求解范围即可.冲关针对训练(2018·绵阳检测)已知向量m =⎝ ⎛⎭⎪⎫3sin x 4,1,n =⎝ ⎛⎭⎪⎫cos x 4,cos 2x4,记f (x )=m ·n .(1)若f (x )=1,求cos ⎝⎛⎭⎪⎫2π3-x 的值;(2)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且满足(2a -c )cos B =b cos C ,求函数f (A )的取值范围.解 (1)f (x )=m ·n =3sin x 4cos x4+cos 2x4=32sin x 2+12cos x 2+12=sin ⎝ ⎛⎭⎪⎫x 2+π6+12. 因为f (x )=1,所以sin ⎝ ⎛⎭⎪⎫x 2+π6=12,cos ⎝ ⎛⎭⎪⎫x +π3=1-2sin 2⎝ ⎛⎭⎪⎫x 2+π6=12,cos ⎝⎛⎭⎪⎫2π3-x =-cos ⎝ ⎛⎭⎪⎫x +π3=-12. (2)因为(2a -c )cos B =b cos C由正弦定理得(2sin A -sin C )cos B =sin B cos C , 所以2sin A cos B -sin C cos B =sin B cos C , 所以2sin A cos B =sin(B +C ),因为A +B +C =π,所以sin(B +C )=sin A ,且sin A ≠0, 所以cos B =12,B =π3,所以0<A <2π3,所以π6<A 2+π6<π2,12<sin ⎝ ⎛⎭⎪⎫A 2+π6<1. 又因为f (x )=m ·n =sin ⎝ ⎛⎭⎪⎫x 2+π6+12,所以f (A )=sin ⎝ ⎛⎭⎪⎫A 2+π6+12,故函数f (A )的取值范围是⎝ ⎛⎭⎪⎫1,32.1.(2017·山东高考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若△ABC 为锐角三角形,且满足sin B (1+2cos C )=2sin A cos C +cos A sin C ,则下列等式成立的是( )A .a =2bB .b =2aC .A =2BD .B =2A 答案 A解析 ∵等式右边=sin A cos C +(sin A cos C +cos A sin C )=sin A cos C +sin(A +C )=sin A cos C +sin B ,等式左边=sin B +2sin B cos C , ∴sin B +2sin B cos C =sin A cos C +sin B . 由cos C >0,得sin A =2sin B . 根据正弦定理,得a =2b .故选A.2.(2018·南阳模拟)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a sin B cos C +c sin B cos A =12b ,且a >b ,则B =________.答案π6解析 由正弦定理,得sin B (sin A cos C +sin C cos A )=12sin B ,即sin B sin(A +C )=12sin B ,因为sin B ≠0,所以sin B =12,所以B =π6或5π6,又因为a >b ,故B =π6.3.(2018·沈阳模拟)在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足(a -b )(sin A +sin B )=(c -b )·sin C .若a =3,则b 2+c 2的取值范围是________.答案 5<b 2+c 2≤6解析 由正弦定理,可得(a -b )·(a +b )=(c -b )·c ,即b 2+c 2-a 2=bc ,cos A =b 2+c 2-a 22bc =12,又A ∈⎝⎛⎭⎪⎫0,π2,∴A =π3.∵b sin B =c sin C =3sinπ3=2, ∴b 2+c 2=4(sin 2B +sin 2C )=4[sin 2B +sin 2(A +B )]=4⎣⎢⎡⎦⎥⎤1-cos2B 2+1-cos2(A +B )2=3sin2B -cos2B +4=2sin ⎝ ⎛⎭⎪⎫2B -π6+4. ∵△ABC 是锐角三角形,且A =π3,∴B ∈⎝ ⎛⎭⎪⎫π6,π2,即2B -π6∈⎝ ⎛⎭⎪⎫π6,5π6,∴12<sin ⎝⎛⎭⎪⎫2B -π6≤1,∴5<b 2+c 2≤6.4.(2017·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知△ABC 的面积为a 23sin A.(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长. 解 (1)由题设得12ac sin B =a 23sin A ,即12c sin B =a3sin A .由正弦定理得12sin C sin B =sin A3sin A .故sin B sin C =23.(2)由题设及(1)得cos B cos C -sin B sin C =-12,即cos(B +C )=-12,所以B +C =2π3,故A =π3.由题意得12bc sin A =a23sin A ,a =3,所以bc =8.由余弦定理得b 2+c 2-bc =9,即(b +c )2-3bc =9.由bc =8,得b +c =33. 故△ABC 的周长为3+33.[重点保分 两级优选练]A 级一、选择题1.(2017·长沙模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =13,b =3,A =60°,则边c =( )A .1B .2C .4D .6 答案 C解析 a 2=c 2+b 2-2cb cos A ⇒13=c 2+9-6c cos60°,即c 2-3c -4=0,解得c =4或c =-1(舍去).故选C.2.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c .若∠C =120°,c =2a ,则( ) A .a >b B .a <b C .a =bD .a 与b 的大小关系不能确定 答案 A解析 据题意由余弦定理可得a 2+b 2-2ab cos120°=c 2=(2a )2,化简整理得a 2=b 2+ab ,变形得a 2-b 2=(a +b )(a -b )=ab >0,故有a -b >0,即a >b .故选A.3.(2017·湖南长郡中学六模)若△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知2b sin2A =a sin B ,且c =2b ,则a b等于( )A .2B .3 C. 2 D. 3 答案 A解析 由2b sin2A =a sin B ,得4b sin A cos A =a sin B ,由正弦定理得4sin B sin A cos A =sin A sin B ,∵sin A ≠0,且sin B ≠0,∴cos A =14,由余弦定理得a 2=b 2+4b 2-b 2,∴a 2=4b 2,∴a b=2.故选A.4.(2017·衡水中学调研)在△ABC 中,三边之比a ∶b ∶c =2∶3∶4,则sin A -2sin Bsin2C =( )A .1B .2C .-2 D.12答案 B解析 不妨设a =2,b =3,c =4,故cos C =4+9-162×2×3=-14,故sin A -2sin B sin2C =a -2b2c cos C =2-68×⎝ ⎛⎭⎪⎫-14=2,故选B.5.在△ABC 中,A ,B ,C 是三角形的三个内角,a ,b ,c 是三个内角对应的三边,已知b 2+c 2=a 2+bc .若sin B sin C =34,△ABC 的形状( )A .等边三角形B .不含60°的等腰三角形C .钝角三角形D .直角三角形答案 A解析 在△ABC 中,由余弦定理,可得cos A =b 2+c 2-a 22bc,由已知,得b 2+c 2-a 2=bc ,∴cos A =12.∵0<A <π,故A =π3.∵A +B +C =π,A =π3,∴C =2π3-B .由sin B sin C =34,得sin B sin ⎝ ⎛⎭⎪⎫2π3-B =34.即sin B ⎝ ⎛⎭⎪⎫sin 2π3cos B -cos 2π3sin B =34.32sin B cos B +12sin 2B =34, 34sin2B +14(1-cos2B )=34, 32sin2B -12cos2B =1,∴sin ⎝ ⎛⎭⎪⎫2B -π6=1.又∵-π6<2B -π6<7π6,∴2B -π6=π2,即B =π3.∴C =π3,也就是△ABC 为等边三角形.故选A.6.(2014·江西高考)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( )A .3 B.932 C.332 D .3 3答案 C解析 c 2=(a -b )2+6,即c 2=a 2+b 2-2ab +6.① ∵C =π3,∴由余弦定理得c 2=a 2+b 2-ab ,②由①和②得ab =6,∴S △ABC =12ab sin C =12×6×32=332, 故选C.7.(2018·上海杨浦质量调研)设锐角△ABC 的三内角A ,B ,C 所对边的边长分别为a ,b ,c ,且a =1,B =2A ,则b 的取值范围为( )A .(2,3)B .(1,3)C .(2,2)D .(0,2) 答案 A解析 由a sin A =b sin B =bsin2A ,得b =2cos A .π2<A +B =3A <π,从而π6<A <π3. 又2A <π2,所以A <π4,所以π6<A <π4,22<cos A <32,所以2<b < 3.故选A.8.(2014·全国卷Ⅱ)钝角三角形ABC 的面积是12,AB =1,BC =2,则AC =( )A .5 B. 5 C .2 D .1 答案 B解析 S △ABC =12AB ·BC sin B =12×1×2sin B =12,∴sin B =22,∴B =45°或135°.若B=45°,则由余弦定理得AC =1,∴△ABC 为直角三角形,不符合题意,因此B =135°,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos B =1+2-2×1×2×⎝ ⎛⎭⎪⎫-22=5,∴AC = 5.故选B.9.(2018·辽宁五校第一次联考)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若直线bx +y cos A +cos B =0与ax +y cos B +cos A =0平行,则△ABC 一定是( )A .锐角三角形B .等腰三角形C .直角三角形D .等腰或者直角三角形 答案 C解析 由两直线平行可得b cos B -a cos A =0,由正弦定理可知sin B cos B -sin A cos A =0,即12sin2A =12sin2B ,又A 、B ∈(0,π),且A +B ∈(0,π),所以2A =2B 或2A +2B =π,即A =B 或A +B =π2.若A =B ,则a =b ,cos A =cos B ,此时两直线重合,不符合题意,舍去,故A +B =π2,则△ABC 是直角三角形,故选C.10.(2017·武昌调研)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若a =2b sin C ,则tan A +tan B +tan C 的最小值是( )A .4B .3 3C .8D .6 3 答案 C解析 a =2b sin C ⇒sin A =2sin B sin C ⇒sin(B +C )=2sin B sin C ⇒tan B +tan C =2tan B tan C ,又根据三角形中的三角恒等式tan A +tan B +tan C =tan A tan B tan C (注:tan A =tan(π-B -C )=-tan(B +C )=-tan B +tan C 1-tan B tan C,即tan A +tan B +tan C =tan A tan B tan C )⇒tan B tan C =tan Atan A -2,∴tan A tan B tan C =tan A ·tan A tan A -2=m 2m -2(tan A =m ),令m -2=t ⇒(t +2)2t =t +4t +4≥8,当且仅当t =4t,即t =2,tan A =4时,取等号.故选C.二、填空题11.(2015·重庆高考)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sin B ,则c =________.答案 4解析 由3sin A =2sin B 及正弦定理,得3a =2b ,所以b =32a =3.由余弦定理cos C =a 2+b 2-c 22ab ,得-14=22+32-c22×2×3,解得c =4. 12.(2018·河北唐山一模)在△ABC 中,角A ,B ,C 的对边a ,b ,c 成等差数列,且A -C =90°,则cos B =________.答案 34解析 ∵a ,b ,c 成等差数列,∴2b =a +c . ∴2sin B =sin A +sin C .∵A -C =90°,∴2sin B =sin(90°+C )+sin C . ∴2sin B =cos C +sin C . ∴2sin B =2sin(C +45°).①∵A +B +C =180°且A -C =90°,∴C =45°-B2,代入①式中,2sin B =2sin ⎝⎛⎭⎪⎫90°-B 2.∴2sin B =2cos B2.∴4sin B 2cos B 2=2cos B2.∴sin B 2=24.∴cos B =1-2sin 2B 2=1-14=34. 13.(2018·沈阳监测)已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,且满足4S =a 2-(b -c )2,b +c =8,则S 的最大值为________.答案 8解析 由题意得4×12bc sin A =a 2-b 2-c 2+2bc .又a 2=b 2+c 2-2bc cos A ,代入上式得2bc sin A =-2bc cos A +2bc ,即sin A +cos A =1,2sin ⎝⎛⎭⎪⎫A +π4=1,又0<A <π,∴π4<A +π4<5π4,∴A +π4=3π4,∴A =π2,S =12bc sin A =12bc ,又b +c =8≥2bc ,当且仅当b =c 时取“=”,∴bc ≤16, ∴S 的最大值为8.14.(2017·浙江高考)已知△ABC ,AB =AC =4,BC =2.点D 为AB 延长线上一点,BD =2,连接CD ,则△BDC 的面积是________,cos ∠BDC =________.答案152104解析 依题意作出图形,如图所示,则sin ∠DBC =sin ∠ABC .由题意知AB =AC =4,BC =BD =2, 则cos ∠ABC =14,sin ∠ABC =154.所以S △BDC =12BC ·BD ·sin∠DBC=12×2×2×154=152.因为cos ∠DBC =-cos ∠ABC =-14=BD 2+BC 2-CD22BD ·BC=8-CD28,所以CD =10.由余弦定理,得cos ∠BDC =4+10-42×2×10=104. B 级三、解答题15.(2018·郑州质检)已知△ABC 的外接圆直径为433,角A ,B ,C 所对的边分别为a ,b ,c ,C =60°.(1)求a +b +csin A +sin B +sin C的值;(2)若a +b =ab ,求△ABC 的面积.解 (1)因为a sin A =b sin B =c sin C =2R =433,所以a =433sin A ,b =433sin B ,c =433sin C .所以a +b +c sin A +sin B +sin C =433(sin A +sin B +sin C )sin A +sin B +sin C =433.(2)由c =433sin C ,得c =433×32=2,c 2=a 2+b 2-2ab cos C ,即4=a 2+b 2-ab =(a +b )2-3ab ,又a +b =ab ,所以(ab )2-3ab -4=0,解得ab =4或ab =-1(舍去),所以S △ABC =12ab sin C =12×4×32= 3.16.(2017·湖北四校联考)已知在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足sin 2A +sin A sinB -6sin 2B =0.(1)求a b的值;(2)若cos C =34,求sin B 的值.解 (1)因为sin 2A +sin A sinB -6sin 2B =0,sin B ≠0, 所以⎝⎛⎭⎪⎫sin A sin B 2+sin A sin B-6=0,得sin A sin B =2或sin A sin B =-3(舍去).由正弦定理得a b =sin Asin B=2.(2)由余弦定理得cos C =a 2+b 2-c 22ab =34.①将a b=2,即a =2b 代入①,得5b 2-c 2=3b 2, 得c =2b .由余弦定理cos B =a 2+c 2-b 22ac,得cos B =(2b )2+(2b )2-b 22×2b ×2b =528,则sin B =1-cos 2B =148. 17.(2018·海淀区模拟)在△ABC 中,角A ,B ,C 所对的边长分别是a ,b ,c .满足2a cos C +c cos A =b .(1)求角C 的大小;(2)求sin A cos B +sin B 的最大值. 解 (1)由正弦定理及2a cos C +c cos A =b , 得2sin A cos C +sin C cos A =sin B . 在△ABC 中,A +B +C =π,∴A +C =π-B ,即sin(A +C )=sin B .∴2sin A cos C +sin C cos A =sin(A +C )+sin A cos C =sin B +sin A cos C =sin B , ∴sin A cos C =0, 又∵0<A <π,0<C <π, ∴sin A >0. ∴cos C =0, ∴C =π2.(2)由(1)得C =π2,∴A +B =π2,即A =π2-B .∵sin A cos B +sin B =cos 2B +sin B =-sin 2B +sin B +1=-⎝ ⎛⎭⎪⎫sin B -122+54.∵0<B <π2,∴当sin B =12,即B =π6时,sin A cos B +sin B 取得最大值54.18.已知等腰三角形ABC 满足AB =AC ,3BC =2AB ,点D 为BC 边上一点且AD =BD . (1)求tan ∠ADB 的值; (2)若CD =33,求S △ABC .解 (1)如图,设AB =AC =a ,AD =BD =b ,由3BC =2AB 得,BC =233a .在△ABC 中,由余弦定理得,cos ∠ABC =AB 2+BC 2-AC22AB ·BC=a 2+⎝⎛⎭⎪⎫23a 32-a 22a ·233a=33, ∴∠ABC 是锐角,则sin ∠ABC =1-cos 2∠ABC =63. 在△ABD 中,由余弦定理AD 2=AB 2+BD 2-2AB ·BD cos ∠ABD , 得b 2=a 2+b 2-233ab ,解得a =233b .由正弦定理AD sin ∠ABD =AB sin ∠ADB ,得b 63=a sin ∠ADB,解得sin ∠ADB =223,又2b 2>a 2,∴∠ADB 为锐角,∴cos ∠ADB =1-sin 2∠ADB =13,tan ∠ADB =2 2.(2)由已知可得 3⎝ ⎛⎭⎪⎫b +33=2a ,① 由(1)可知a =233b ,②联立①②得a =2,b = 3.过A 作AH ⊥BC 于H ,则H 为BC 的中点,易求得DH =33. 则tan ∠ADB =AH33=2 2.∴AH =263,∴S △ABC =12×433×263=423.。
高考数学二轮复习专题05 正余弦定理的应用(解析版)
专题05 正余弦定理的应用1、【2019年高考全国Ⅱ卷文数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin A +a cos B =0,则B =___________.【答案】3π4【解析】由正弦定理,得sin sin sin cos 0B A A B +=.(0,),(0,)A B ∈π∈π,sin 0,A ∴≠∴sin cos 0B B +=,即tan 1B =-,3.4B π∴=2、【2019年高考浙江卷】在ABC △中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD =___________,cos ABD ∠=___________.【答案】5,10【解析】如图,在ABD △中,由正弦定理有:sin sin AB BDADB BAC=∠∠,而3π4,4AB ADB =∠=,5AC =,34sin ,cos 55BC AB BAC BAC AC AC ∠==∠==,所以5BD =ππcos cos()cos cos sin sin 4410ABD BDC BAC BAC BAC ∠=∠-∠=∠+∠=.3、【2019年高考江苏卷】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,b ,cos B =23,求c 的值; (2)若sin cos 2A B a b =,求sin()2B π+的值.【解析】(1)因为23,3a cb B ===,由余弦定理222cos 2a c b B ac +-=,得2222(3)323c c c c+-=⨯⨯,即213c =.所以c =(2)因为sin cos 2A Ba b=, 由正弦定理sin sin a b A B =,得cos sin 2B Bb b=,所以cos 2sin B B =. 从而22cos (2sin )B B =,即()22cos 41cos B B =-,故24cos 5B =.因为sin 0B >,所以cos 2sin 0B B =>,从而cos B =.因此πsin cos 25B B ⎛⎫+== ⎪⎝⎭4、【2019年高考江苏卷】如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米).(1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.【解析】(1)过A 作AE BD ⊥,垂足为E .由已知条件得,四边形ACDE 为矩形,6, 8DE BE AC AE CD =====.'因为PB ⊥AB ,所以84cos sin 105PBD ABE ∠=∠==. 所以12154cos 5BD PB PBD ===∠. 因此道路PB 的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求.②若Q 在D 处,连结AD ,由(1)知10AD ==,从而2227cos 0225AD AB BD BAD AD AB +-∠==>⋅,所以∠BAD 为锐角.所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此,Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求; 当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15, 此时11113sin cos 1595PD PB PBD PB EBA =∠=∠=⨯=; 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,CQ ==.此时,线段QA 上所有点到点O 的距离均不小于圆O的半径.综上,当PB ⊥AB ,点Q 位于点C 右侧,且CQ=d 最小,此时P ,Q 两点间的距离PQ =PD +CD +CQ=17+因此,d 最小时,P ,Q 两点间的距离为17+.5、【2019年高考全国Ⅲ卷文数】ABC △的内角A 、B 、C 的对边分别为a 、b 、c .已知sinsin 2A Ca b A +=. (1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围. 【解析】(1)由题设及正弦定理得sin sinsin sin 2A CA B A +=. 因为sin A ≠0,所以sinsin 2A CB +=. 由180A BC ︒++=,可得sincos 22A C B +=,故cos 2sin cos 222B B B=. 因为cos02B ≠,故1sin 22B =,因此B =60°.(2)由题设及(1)知△ABC的面积ABC S =△. 由正弦定理得()sin 120sin 1sin sin 2tan 2C c A a C C C ︒-===+.由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°,由(1)知A +C =120°,所以30°<C <90°,故122a <<,从而82ABC S <<△. 因此,△ABC面积的取值范围是,82⎛⎫ ⎪ ⎪⎝⎭.这道题考查了三角函数的基础知识,以及正弦定理的使用(此题也可以用余弦定理求解),最后考查ABC 是锐角三角形这个条件的利用,考查的很全面,是一道很好的考题. 6、【2019年高考北京卷文数】在△ABC 中,a =3,–2b c =,cos B =12-. (1)求b ,c 的值; (2)求sin (B +C )的值.【解析】(1)由余弦定理2222cos b a c ac B =+-,得2221323()2b c c =+-⨯⨯⨯-.因为2b c =+,所以2221(2)323()2c c c +=+-⨯⨯⨯-. 解得5c =. 所以7b =.(2)由1cos 2B =-得sin B =.由正弦定理得sin sin 14a A Bb ==. 在ABC △中,B C A +=π-.所以sin()sin B C A +==7、【2019年高考天津卷文数】在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =.(1)求cos B 的值;(2)求sin 26πB ⎛⎫+⎪⎝⎭的值.【解析】(1)在ABC △中,由正弦定理sin sin b cB C=,得sin sin b C c B =, 又由3sin 4sin c B a C =,得3sin 4sin b C a C =,即34b a =.又因为2b c a +=,得到43b a =,23c a =. 由余弦定理可得222222416199cos 22423a a aa cb B ac a a +-+-===-⋅⋅. (2)由(1)可得sin 4B ==,从而sin 22sin cos 8B B B ==-,227cos 2cos sin 8B B B =-=-,故71sin 2sin 2cos cos 2sin 66682B B B πππ⎛⎫+=+=⨯= ⎪⎝⎭. 本小题主要考查同角三角函数的基本关系,两角和的正弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识.考查运算求解能力.一、正弦、余弦定理1、在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则2、S △ABC =2ab sin C =2bc sin A =2ac sin B =4R3、正余弦定理的作用:(1).正弦定理的作用:边角互化问题,方法有: ①利用a =2R sin A ,b =2R sin B ,c =2R sin C 将边化为角;②利用cos A =b2+c2-a22bc等将余弦化为边;③c cos B +b cos C =a 等化角为边.(2).求边长问题,方法有:①利用正弦定理求边;② 利用余弦定理求边. 二、在△ABC 中,已知a 、b 和A 时,解的情况如下:a =b sin Ab sin A <a <ba ≥ba >b1、仰角和俯角:与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图①).(2)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°等.(3)方位角:指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).(4)坡度:坡面与水平面所成的二面角的正切值.四、注意点:1、解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则考虑两个定理都有可能用到.2.关于解三角形问题,一般要用到三角形的内角和定理,正弦、余弦定理及有关三角形的性质,常见的三角恒等变换方法和原则都适用,同时要注意“三统一”,即“统一角、统一函数、统一结构”.题型一、运用正余弦定理解三角形的基本量三角形的基本量主要是指变、角、面积等。
2019年高考数学试题分项版——三角函数(解析版)
2019年高考数学试题分项版——三角函数(解析版)一、选择题1.(2019·全国Ⅰ文,7)tan 255°等于()A.-2-B.-2+C.2-D.2+答案 D解析tan 255°=tan(180°+75°)=tan 75°=tan(45°+30°)===2+.2.(2019·全国Ⅰ文,11)△ABC的内角A,B,C的对边分别为a,b,c,已知a sin A-b sin B=4c sin C,cos A=-,则等于()A.6 B.5 C.4 D.3答案 A解析∵a sin A-b sin B=4c sin C,∴由正弦定理得a2-b2=4c2,即a2=4c2+b2.由余弦定理得cos A====-,∴=6.3.(2019·全国Ⅱ文,8)若x1=,x2=是函数f(x)=sin ωx(ω>0)两个相邻的极值点,则ω等于()A.2 B.C.1 D.答案 A解析由题意及函数y=sin ωx的图象与性质可知,T=-,∴T=π,∴=π,∴ω=2.4.(2019·全国Ⅱ文,11)已知α∈,2sin 2α=cos 2α+1,则sin α等于()A. B. C. D.答案 B解析由2sin 2α=cos 2α+1,得4sin αcos α=1-2sin2α+1,即2sin αcos α=1-sin2α.因为α∈,所以cos α=,所以2sin α=1-sin2α,解得sin α=,故选B.5.(2019·全国Ⅲ文,5)函数f(x)=2sin x-sin 2x在[0,2π]上的零点个数为()A.2 B.3 C.4 D.5答案 B解析令f(x)=0,得2sin x-sin 2x=0,即2sin x-2sin x cos x=0,∴2sin x(1-cos x)=0,∴sin x=0或cos x=1.又x∈[0,2π],∴由sin x=0得x=0,π或2π,由cos x=1得x=0或2π.故函数f(x)的零点为0,π,2π,共3个.6.(2019·北京文,6)设函数f(x)=cos x+b sin x(b为常数),则“b=0”是“f(x)为偶函数”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 C解析∵f(x)=cos x+b sin x为偶函数,∴对任意的x∈R,都有f(-x)=f(x),即cos(-x)+b sin(-x)=cos x+b sin x,∴2b sin x=0.由x的任意性,得b=0.故f(x)为偶函数⇒b=0.必要性成立.反过来,若b=0,则f(x)=cos x是偶函数,充分性成立.∴“b=0”是“f(x)为偶函数”的充分必要条件.7.(2019·北京文,8)如图,A,B是半径为2的圆周上的定点,P为圆周上的动点,∠APB是锐角,大小为β.图中阴影区域的面积的最大值为()A.4β+4cos βB.4β+4sin βC.2β+2cos βD.2β+2sin β答案 B解析方法一如图①,图①设圆心为O,连接OA,OB,OP.∵∠APB=β,∴∠AOB=2β,∴S阴影=S△AOP+S△BOP+S扇形AOB=×2×2sin∠AOP+×2×2sin∠BOP+×2β×22=2sin∠AOP+2sin∠BOP+4β=2sin∠AOP+2sin(2π-2β-∠AOP)+4β=2sin∠AOP-2sin(2β+∠AOP)+4β=2sin∠AOP-2(sin 2β·cos∠AOP+cos 2β·sin∠AOP)+4β=2sin∠AOP-2sin 2β·cos∠AOP-2cos 2β·sin∠AOP+4β=2(1-cos 2β)sin∠AOP-2sin 2β·cos∠AOP+4β=2×2sin2β·sin∠AOP-2×2sin β·cos β·cos∠AOP+4β=4sin β(sin β·sin∠AOP-cos β·cos∠AOP)+4β=4β-4sin β·cos(β+∠AOP).∵β为锐角,∴sin β>0.∴当cos(β+∠AOP)=-1,即β+∠AOP=π时,阴影区域面积最大,为4β+4sin β. 方法二如图②,图②设圆心为O,连接OA,OB,OP,AB,则阴影区域被分成弓形AmB和△ABP.∵∠APB=β,∴∠AOB=2β.∵弓形AmB的面积是定值,∴要使阴影区域面积最大,则只需△ABP面积最大.∵△ABP底边AB长固定,∴只要△ABP的底边AB上的高最大即可.由图可知,当AP=BP时,满足条件,此时S阴影=S扇形AOB+S△AOP+S△BOP=×2β·22+2××22·sin-=4β+4sin β.即为阴影区域面积的最大值.8.(2019·天津文,7)已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<π)是奇函数,且f(x)的最小正周期为π,将y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g(x).若g=,则f 等于()A.-2 B.- C.D.2答案 C解析∵函数f(x)为奇函数,且|φ|<π,∴φ=0.又f(x)的最小正周期为π,∴=π,解得ω=2,∴f(x)=A sin 2x.由题意可得g(x)=A sin x,g=,即A sin =,解得A=2.故f(x)=2sin 2x.∴f =2sin =.9.(2019·全国Ⅰ理,11)关于函数f(x)=sin|x|+|sin x|有下述四个结论:①f(x)是偶函数;②f(x)在区间上单调递增;③f(x)在[-π,π]上有4个零点;④f(x)的最大值为2.其中所有正确结论的编号是()A.①②④B.②④C.①④D.①③答案 C解析f(-x)=sin|-x|+|sin(-x)|=sin|x|+|sin x|=f(x),∴f(x)为偶函数,故①正确;当<x<π时,f(x)=sin x+sin x=2sin x,∴f(x)在上单调递减,故②不正确;f(x)在[-π,π]上的图象如图所示,由图可知函数f(x)在[-π,π]上只有3个零点,故③不正确;∵y=sin|x|与y=|sin x|的最大值都为1且可以同时取到,∴f(x)可以取到最大值2,故④正确.综上,正确结论的编号是①④.故选C.10.(2019·全国Ⅱ理,9)下列函数中,以为周期且在区间上单调递增的是() A.f(x)=|cos 2x| B.f(x)=|sin 2x|C.f(x)=cos|x| D.f(x)=sin|x|答案 A解析A中,函数f(x)=|cos 2x|的周期为,当x∈时,2x∈,函数f(x)单调递增,故A正确;B中,函数f(x)=|sin 2x|的周期为,当x∈时,2x∈,函数f(x)单调递减,故B不正确;C中,函数f(x)=cos|x|=cos x的周期为2π,故C不正确;D中,f(x)=sin|x|=由正弦函数图象知,在x≥0和x<0时,f(x)均以2π为周期,但在整个定义域上f(x)不是周期函数,故D不正确.故选A.11.(2019·全国Ⅱ理,10)已知α∈,2sin 2α=cos 2α+1,则sin α等于()A. B. C. D.答案 B解析由2sin 2α=cos 2α+1,得4sin αcos α=1-2sin2α+1,即2sin αcos α=1-sin2α.因为α∈,所以cos α=2sin α=1-sin2α,解得sin α=,故选B.12.(2019·全国Ⅲ理,12)设函数f(x)=sin(ω>0),已知f(x)在[0,2π]上有且仅有5个零点.下述四个结论:①f(x)在(0,2π)上有且仅有3个极大值点;②f(x)在(0,2π)上有且仅有2个极小值点;③f(x)在上单调递增;④ω的取值范围是.其中所有正确结论的编号是()A.①④B.②③C.①②③D.①③④答案 D解析如图,根据题意知,x A≤2π<x B,根据图象可知函数f(x)在(0,2π)有且仅有3个极大值点,所以①正确;但可能会有3个极小值点,所以②错误;根据x A≤2π<x B,有≤2π<,得≤ω<,所以④正确;当x∈时,<ωx+<+,因为≤ω<,所以+<<,所以函数f(x)在上单调递增,所以③正确.13.(2019·天津理,7)已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<π)是奇函数,将y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g(x).若g(x)的最小正周期为2π,且g=,则f 等于()A.-2 B.- C.D.2答案 C解析由f(x)为奇函数可得φ=kπ(k∈Z),又|φ|<π,所以φ=0,所以g(x)=A sin .由g(x)的最小正周期为2π,可得=2π,故ω=2,g(x)=A sin x,g=A sin =,所以A=2,所以f(x)=2sin 2x,故f =2sin =.二、填空题1.(2019·全国Ⅰ文,15)函数f(x)=sin-3cos x的最小值为________.答案-4解析∵f(x)=sin-3cos x=-cos 2x-3cos x=-2cos2x-3cos x+1,令t=cos x,则t∈[-1,1],∴f(t)=-2t2-3t+1.又函数f(t)图象的对称轴t=-∈[-1,1],且开口向下,∴当t=1时,f(t)有最小值-4.综上,f(x)的最小值为-4.2.(2019·全国Ⅱ文,15)△ABC的内角A,B,C的对边分别为a,b,c.已知b sin A+a cos B =0,则B=________.答案解析∵b sin A+a cos B=0,∴=,由正弦定理,得-cos B=sin B,∴tan B=-1,又B∈(0,π),∴B=.3.(2019·天津文,14)在四边形ABCD中,AD∥BC,AB=2,AD=5,∠A=30°,点E 在线段CB的延长线上,且AE=BE,则·=________.答案-1解析方法一在等腰△ABE中,易得∠BAE=∠ABE=30°,故BE=2,则·=(-)·(+)A=·+·-2-·=5×2×cos 30°+5×2×cos 180°-12-2×2×cos 150°=15-10-12+6=-1.方法二在△ABD中,由余弦定理可得BD==,所以cos∠ABD==-,则sin ∠ABD=.设与的夹角为θ,则cos θ=cos(180°-∠ABD+30°)=-cos(∠ABD-30°)=-cos∠ABD·cos 30°-sin∠ABD·sin 30°=-,在△ABE中,易得AE=BE=2,故·=×2×=-1.4.(2019·浙江,14)在△ABC中,∠ABC=90°,AB=4,BC=3,点D在线段AC上.若∠BDC=45°,则BD=________,cos∠ABD=________.答案解析在Rt△ABC中,易得AC=5,sin C==.在△BCD中,由正弦定理得BD=×sin∠BCD×=,sin∠DBC=sin [π-(∠BCD+∠BDC)]=sin(∠BCD+∠BDC)=sin∠BCD·cos∠BDC+cos∠BCD·sin∠BDC=×+×=.又∠ABD+∠DBC =,所以cos∠ABD=sin∠DBC=.5.(2019·江苏,13)已知=-,则sin的值是____________________.答案解析===-,解得tan α=2或tan α=-,当tan α=2时,sin 2α===,cos 2α===-,此时sin 2α+cos 2α=,同理当tan α=-时,sin 2α=-,cos 2α=,此时sin 2α+cos 2α=,所以sin=(sin 2α+cos 2α)=.6.(2019·全国Ⅱ理,15)△ABC的内角A,B,C的对边分别为a,b,c.若b=6,a=2c,B =,则△ABC的面积为________.答案6解析 方法一 因为a =2c ,b =6,B =,所以由余弦定理b 2=a 2+c 2-2ac cos B ,得62=(2c )2+c 2-2×2c ×c cos,得c =2 ,所以a =4 ,所以△ABC 的面积S =ac sin B =×4 ×2 ×sin=6 .方法二 因为a =2c ,b =6,B =,所以由余弦定理b 2=a 2+c 2-2ac cos B ,得62=(2c )2+c 2-2×2c ×c cos,得c =2 ,所以a =4 ,所以a 2=b 2+c 2,所以A =,所以△ABC 的面积S =×2 ×6=6 .7.(2019·北京理,9)函数2()sin 2f x x =的最小正周期是 .【思路分析】用二倍角公式可得11()cos(4)22f x x =-+,然后用周期公式求出周期即可.【解析】:2()sin (2)f x x =,11()cos(4)22f x x ∴=-+,()f x ∴的周期2T π=,故答案为:2π.【归纳与总结】本题考查了三角函数的图象与性质,关键是合理使用二倍角公式,属基础题. 三、解答题1.(2019·全国Ⅲ文,18)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a sin=b sinA . (1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围. 解 (1)由题设及正弦定理, 得sin A sin=sin B sin A .因为sin A ≠0,所以sin=sin B .由A +B +C =180°,可得sin=cos,故cos=2sincos.因为cos ≠0,故sin =,因此B =60°. (2)由题设及(1)知△ABC 的面积S △ABC =a . 由正弦定理,得a ===+. 由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°.由(1)知A +C =120°,所以30°<C <90°,故<a <2, 从而<S △ABC <.因此,△ABC 面积的取值范围是.2.(2019·北京文,15)在△ABC中,a=3,b-c=2,cos B=-.(1)求b,c的值;(2)求sin(B+C)的值.解(1)由余弦定理b2=a2+c2-2ac cos B,得b2=32+c2-2×3×c×.因为b=c+2,所以(c+2)2=32+c2-2×3×c×,解得c=5.所以b=7.(2)由cos B=-,得sin B=.由正弦定理,得sin A=sin B=.在△ABC中,B+C=π-A,所以sin(B+C)=sin A=.3.(2019·天津文,16)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2a,3c sin B=4a sin C.(1)求cos B的值;(2)求sin的值.解(1)在△ABC中,由正弦定理=,得b sin C=c sin B,又由3c sin B=4a sin C,得3b sin C=4a sin C,又sin C≠0,所以3b=4a.又因为b+c=2a,所以b=a,c=a,由余弦定理可得cos B===-.(2)由(1)可得sin B==,从而sin 2B=2sin B cos B=-,cos 2B=cos2B-sin2B=-,故sin=sin 2B cos +cos 2B sin =-×-×=-.4.(2019·浙江,18)设函数f(x)=sin x,x∈R.(1)已知θ∈[0,2π),函数f(x+θ)是偶函数,求θ的值;(2)求函数y=2+2的值域.解(1)因为f(x+θ)=sin(x+θ)是偶函数,所以,对任意实数x都有sin(x+θ)=sin(-x+θ),即sin x cos θ+cos x sin θ=-sin x cos θ+cos x sin θ,故2sin x cos θ=0,所以cos θ=0.又θ∈[0,2π),因此θ=或.(2)y=2+2=sin2+sin2=+=1-=1-cos.因此,函数的值域是.5.(2019·江苏,15)在△ABC中,角A,B,C的对边分别为a,b,c.(1)若a=3c,b=,cos B=,求c的值;(2)若=,求sin的值.解(1)因为a=3c,b=,cos B=,由余弦定理cos B=,得=,即c2=.所以c=.(2)因为=,由正弦定理=,得=,所以cos B=2sin B.从而cos2B=(2sin B)2,即cos2B=4(1-cos2B),故cos2B=.因为sin B>0,所以cos B=2sin B>0,从而cos B=.因此sin=cos B=.6.(2019·全国Ⅰ理,17)△ABC的内角A,B,C的对边分别为a,b,c,设(sin B-sin C)2=sin2A-sin B sin C.(1)求A;(2)若a+b=2c,求sin C.解(1)由已知得sin2B+sin2C-sin2A=sin B sin C,故由正弦定理得b2+c2-a2=bc,由余弦定理得cos A==,因为0°<A<180°,所以A=60°.(2)由(1)知B=120°-C,由题设及正弦定理得sin A+sin(120°-C)=2sin C,即+cos C+sin C=2sinC,可得cos(C+60°)=-.由于0°<C<120°,所以sin(C+60°)=,故sin C=sin(C+60°-60°)=sin(C+60°)cos 60°-cos(C+60°)sin 60°=.7.(2019·全国Ⅲ理,18)△ABC的内角A,B,C的对边分别为a,b,c.已知a sin =b sinA.(1)求B;(2)若△ABC为锐角三角形,且c=1,求△ABC面积的取值范围.解(1)由题设及正弦定理,得sin A sin=sin B sin A.因为sin A≠0,所以sin =sin B.由A+B+C=180°,可得sin =cos ,故cos =2sin cos .因为cos ≠0,故sin =,因此B=60°.(2)由题设及(1)知△ABC的面积S△ABC=a.由正弦定理,得a=4==+.由于△ABC为锐角三角形,故0°<A<90°,0°<C<90°.由(1)知A+C=120°,所以30°<C<90°,故<a<2,从而<S△ABC<.因此,△ABC面积的取值范围是.8.(2019·北京理,15)(13分)在ABC∆中,3a=,2b c-=,1 cos2B=-.(Ⅰ)求b,c的值;(Ⅱ)求sin()B C-的值.【思路分析】(Ⅰ)利用余弦定理可得2222cosb ac ac B=+-,代入已知条件即可得到关于b 的方程,解方程即可;(Ⅱ)sin()sin cos cos sin B C B C B C -=-,根据正弦定理可求出sin C ,然后求出cos C ,代入即可得解.【解析】:(Ⅰ)3a =,2b c -=,1cos 2B =-. ∴由余弦定理,得2222cos b a c ac B =+-219(2)23(2)()2b b =+--⨯⨯-⨯-, 7b ∴=,25c b ∴=-=;(Ⅱ)在ABC ∆中,1cos 2B =-,sin B ∴=, 由正弦定理有:sin sin c b C B =,∴5sin 2sin 7c B C b === b c >,B C ∴>,C ∴为锐角,11cos 14C ∴=, sin()sin cos cos sin B C B C B C ∴-=-111()142=--=. 【归纳与总结】本题考查了正弦定理余弦定理和两角差的正弦公式,属基础题.9.(2019·天津理,15)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知b +c =2a,3c sin B =4a sin C .(1)求cos B 的值;(2)求sin的值. 解 (1)在△ABC 中,由正弦定理 = ,得b sin C =c sin B ,又由3c sin B =4a sin C ,得3b sin C =4a sin C ,又sin C ≠0,所以3b =4a .又因为b +c =2a ,所以b = a ,c = a ,由余弦定理可得cos B = ==- . (2)由(1)可得sin B = =, 从而sin 2B =2sin B cos B =-,cos 2B =cos 2B -sin 2B =- , 故sin =sin 2B cos +cos 2B sin=- × - × =- .。
2019年高考数学(文)一轮复习精品资料:专题20正弦定理和余弦定理(教学案)含解析
2019年高考数学(文)一轮复习精品资料1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题;1.正、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则定理正弦定理余弦定理 内容sin A a =sin B b =sin C c=2Ra 2=b 2+c 22bc cos__A ;b 2=c 2+a 22ca cos__B ; c 2=a 2+b 2-2ab cos__C常见 变形(1)a =2R sin A ,b =2R sin__B ,c =2R sin_C ;(2)sin A =2R a ,sin B =2R b ,sin C =2R c; (3)a ∶b ∶c =sin__A ∶sin__B ∶sin__C ;(4)a sin B =b sin A , b sin C =c sin B ,a sin C =c sin A cos A =2bc b2+c2-a2; cos B =2ac c2+a2-b2;cos C =2ab a2+b2-c22. 三角形中常用的面积公式(1)S =21ah(h 表示边a 上的高). (2)S =21bcsinA =21acsinB =21absinC.(3)S =21r(a +b +c)(r 为三角形的内切圆半径). 3.在△ABC 中,已知a ,b 和A 时,三角形解的情况4.重要结论在△ABC 中,常有以下结论(1)∠A +∠B +∠C =π.(2)在三角形中大边对大角,大角对大边.(3)任意两边之和大于第三边,任意两边之差小于第三边.(4)sin(A +B )=sin C ;cos(A +B )=-cos C ;tan(A +B )=-tan C ;sin 2A +B =cos2C ;cos 2A +B=sin2C .(5)tan A +tan B +tan C =tan A ·tan B ·tan C . (6)∠A >∠B ⇔a >b ⇔sin A >sin B ⇔cos A <cos B .高频考点一 利用正弦定理、余弦定理解三角形例1、(1)设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c .若b +c =2a,3sin A =5sin B ,则角C =________. 【答案】32π(2)[2017·全国卷Ⅱ]△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2b cos B =a cos C +c cos A ,则B =________. 【答案】3π【解析】由2b cos B =a cos C +c cos A 及正弦定理, 得2sin B cos B =sin A cos C +sin C cos A . ∴2sin B cos B =sin(A +C ). 又A +B +C =π,∴A +C =π-B . ∴2sin B cos B =sin(π-B )=sin B . 又sin B ≠0,∴cos B =21.∴B =3π. ∵在△ABC 中,a cos C +c cos A =b , ∴条件等式变为2b cos B =b ,∴cos B =21. 又0<B <π,∴B =3π.【变式探究】(1)在△ABC 中,已知a =2,b =,A =45°,则满足条件的三角形有( ) A .1个 B .2个 C .0个 D .无法确定(2)在△ABC 中,已知sin A ∶sin B =∶1,c 2=b 2+bc ,则三内角A ,B ,C 的度数依次是________. (3)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =,sin B =21,C =6π,则b =________. 【答案】(1)B (2)45°,30°,105° (3)1【感悟提升】(1)判断三角形解的个数的两种方法①代数法:根据大边对大角的性质、三角形内角和公式、正弦函数的值域等判断.②几何图形法:根据条件画出图形,通过图形直观判断解的个数.(2)已知三角形的两边和其中一边的对角解三角形.可用正弦定理,也可用余弦定理.用正弦定理时,需判断其解的个数,用余弦定理时,可根据一元二次方程根的情况判断解的个数.【变式探究】(1)已知在△ABC中,a=x,b=2,B=45°,若三角形有两解,则x的取值范围是()A.x>2 B.x<2C.2<x<2 D.2<x<2(2)在△ABC中,A=60°,AC=2,BC=,则AB=________.【答案】(1)C(2)1高频考点二利用正弦、余弦定理判定三角形的形状例2、设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不确定 【答案】B【解析】∵b cos C +c cos B =a sin A ,由正弦定理得sin B cos C +sin C cos B =sin 2A ,∴sin(B +C )=sin 2A ,即sin A =sin 2A .又sin A >0,∴sin A =1,∴A =2π,故△ABC 为直角三角形. 【方法技巧】判定三角形形状的两种常用途径(1)通过正弦定理和余弦定理,化边为角,利用三角变换得出三角形内角之间的关系进行判断. (2)利用正弦定理、余弦定理化角为边,通过代数恒等变换,求出边与边之间的关系进行判断.提醒 在判断三角形形状时一定要注意解是否唯一,并注重挖掘隐含条件.另外,在变形过程中要注意角A ,B ,C 的范围对三角函数值的影响.【变式探究】在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知A =4π,b 2-a 2=21c 2. (1)求tan C 的值;(2)若△ABC 的面积为3,求b 的值. 解 (1)由b 2-a 2=21c 2及正弦定理得sin 2B -21=21sin 2C .【感悟提升】(1)对于面积公式S =21ab sin C =21ac sin B =21bc sin A ,一般是已知哪一个角就使用哪一个公式. (2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化. 【变式探究】四边形ABCD 的内角A 与C 互补,AB =1,BC =3,CD =DA =2. (1)求C 和BD ;(2)求四边形ABCD 的面积.解 (1)由题设A 与C 互补及余弦定理得BD 2=BC 2+CD 2-2BC ·CD cos C =13-12cos C ,① BD 2=AB 2+DA 2-2AB ·DA cos A =5+4cos C .② 由①②得cos C =21,BD =, 因为C 为三角形内角,故C =60°. (2)四边形ABCD 的面积 S =21AB ·DA sin A +21BC ·CD sin C =×3×21sin60°=2.高频考点三 正弦、余弦定理的简单应用例3、设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.不确定【答案】B【感悟提升】(1)判断三角形形状的方法①化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.②化角:通过三角恒等变形,得出内角的关系,从而判断三角形的形状,此时要注意应用A +B +C =π这个结论.(2)求解几何计算问题要注意①根据已知的边角画出图形并在图中标示; ②选择在某个三角形中运用正弦定理或余弦定理.【变式探究】(1)在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c ,若c -a cos B =(2a -b )cos A ,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形(2)如图,在△ABC 中,已知点D 在BC 边上,AD ⊥AC ,sin ∠BAC =32,AB =3,AD =3,则BD 的长为______.【答案】(1)D (2)【解析】(1)∵c -a cos B =(2a -b )cos A , C =π-(A +B ),∴由正弦定理得sin C -sin A cos B =2sin A cos A -sin B cos A ,高频考点三 和三角形面积有关的问题【例3】[2017·全国卷Ⅰ]△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知△ABC 的面积为3sinA a2. (1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长. 解 (1)由题设得21ac sin B =3sinA a2,即21c sin B =3sinA a. 由正弦定理得21sin C sin B =3sinA sinA. 故sin B sin C =32.(2)由题设及(1)得cos B cos C -sin B sin C =-21, 即cos(B +C )=-21.所以B +C =32π,故A =3π.由题意得21bc sin A =3sinA a2,a =3,所以bc =8. 由余弦定理得b 2+c 2-bc =9,即(b +c )2-3bc =9.由bc =8,得b +c =.故△ABC 的周长为3+.【变式探究】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos C (a cos B +b cos A )=c .(1)求C ;(2)若c =,△ABC 的面积为23,求△ABC 的周长.【方法规律】三角形面积公式的应用原则(1)对于面积公式S =21ab sin C =21ac sin B =21bc sin A ,一般是已知哪一个角就使用哪一个公式. (2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.【变式探究】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,满足(2a -b )cos C -c cos B =0.(1)求角C 的值;(2)若三边a ,b ,c 满足a +b =13,c =7,求△ABC 的面积.解 (1)根据正弦定理,(2a -b )cos C -c cos B =0可化为(2sin A -sin B )cos C -sin C cos B =0.整理得2sin A cos C =sin B cos C +sin C cos B =sin(B +C )=sin A . ∵0<A <π,∴sin A ≠0,∴cos C =21. 又∵0<C <π,∴C =3π.(2)由(1)知cos C =21,又a +b =13,c =7,∴由余弦定理得c 2=a 2+b 2-2ab cos C =(a +b )2-3ab =169-3ab =49,解得ab =40. ∴S △ABC =21ab sin C =21×40×sin 3π=10.高频考点四 利用均值不等式破解三角函数最值问题例4、在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知2(tan A +tan B )=cosB tanA +cosA tanB. (1)证明:a +b =2c ;(2)求cos C 的最小值.【变式探究】已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且c tan C =(a cos B +b cos A ).(1)求角C ;(2)若c =2,求△ABC 面积的最大值.解 (1)∵c tan C =(a cos B +b cos A ),∴sin C tan C =(sin A cos B +sin B cos A ),∴sin C tan C =sin(A +B )=sin C ,∵0<C <π,∴sin C ≠0, ∴tan C =,∴C =3π.(2)∵c =2,C =3π,由余弦定理c 2=a 2+b 2-2ab cos C ,得12=a 2+b 2-ab ≥2ab -ab , ∴ab ≤12,∴S △ABC =21ab sin C ≤3,当且仅当a =b =2时,△ABC 的面积取得最大值3.1. (2018年全国III 卷)的内角,,的对边分别为,,.若的面积为,则A. B. C. D.【答案】C【解析】由题可知,所以由余弦定理,所以,,故选C.2. (2018年浙江卷)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =,b =2,A =60°,则sin B =___________,c =___________.【答案】 (1).(2). 33. (2018年全国I卷)△的内角的对边分别为,已知,,则△的面积为________.【答案】【解析】根据题意,结合正弦定理,可得,即,结合余弦定理可得,所以A为锐角,且,从而求得,所以△的面积为。
2019年高考数学 专题19 正、余弦定理的应用黄金解题模板
2019年高考数学 专题19 正、余弦定理的应用黄金解题模板【高考地位】正余弦定理是三角函数中有关三角知识的继续与发展,进一步揭示了任意三角形的边与角之间的关系,其边角转换功能在求解三角形及判断三角形形状时有着重要应用. 在高考各种题型均有出现如选择题、填空题和解答题,其试题难度属中档题. 【方法点评】类型一 判断三角形的形状使用情景:已知边与三角函数之间的等式关系解题模板:第一步 运用正弦定理或余弦定理将已知等式全部转化为都是角或都是边的等式;第二步 利用三角函数的图像及其性质或者边与边之间的等式关系得出所求的三角形的形状; 第三步 得出结论.例1在ABC ∆中,已知cos cos a B b A =,那么ABC ∆一定是( ) A .等腰三角形 B .直角三角形 C .等腰三角形或直角三角形 D .等腰直角三角形 【答案】A【变式演练1】在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,若A bccos <,则ABC ∆为.A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形 【答案】A 【解析】试题分析:根据 定理:A BC b c cos sin sin <=,那么A B C cos sin sin =,根据π=++C B A ,所以()B A C +=sin sin ,所以()A B B A cos sin sin <+,整理为:0cos sin <B A ,三角形中0sin >A ,所以0cos <B ,那么ππ<<B 2.考点:1.正弦定理;2.解斜三角形.【变式演练2】在C ∆AB 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若3πB =,且a ,b ,c 成等比数列,则C ∆AB 一定是( )A .不等边三角形B .钝角三角形C .等腰直角三角形D .等边三角形 【答案】D考点:1.等比数列;2.解三角形.【变式演练3】在ABC ∆中,若B a c cos 2=,则ABC ∆的形状一定是( ) A .锐角三角形 B .直角三角形 C .等腰或直角三角形 D .等腰三角形 【答案】D考点:正余弦定理解三角形【变式演练4】在△ABC 中,若2cos Bsin A =sin C ,则△ABC 的形状一定是 ( ) A .等腰直角三角形 B .直角三角形 C .等腰三角形 D .等边三角形 【答案】C【解析】试题分析:2cos Bsin A=sin C=sin(A+B)=sinAcosB+cosAsinB,所以sinAcosB- cosAsinB=0,所以sin(A-B)=0,所以A=B,三角形为等腰三角形考点:三角函数公式类型二解三角形中的边和角使用情景:三角形中解题模板:第一步直接运用正弦或余弦定理通常使用的条件判断是运用正弦定理还是余弦定理;第二步利用相应的正弦、余弦定理的计算公式即可得出所求的结论.例2在锐角中,角的对边分别为,若,,则的取值范围()A. B. C. D.【答案】B,故答案选【点评】在解三角形中求范围问题往往需要转化为角的问题,利用辅助角公式,结合角的范围求得最后结果。
2019年高考数学专题28三角函数解三角形2(余弦定理)理
28 三角函数解三角形2(余弦定理)【考点讲解】一、具本目标:1.掌握余弦定理,并能解决一些简单的三角形度量问题;2.能够运用余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.3.考纲解读:利用余弦定理解三角形或者求解平面几何图形中有关量的问题,需要综合应用两个定理及三角形有关知识;余弦定理的应用比较广泛,也比较灵活,在高考中常与面积或取值范围结合进行考查;会利用数学建模思想,结合三角形的知识,解决生产实践中的相关问题.二、知识概述:1.余弦定理:2.有关的概念:(1)仰角和俯角:在视线和水平线所成的角中,视线在水平线上方的角叫做仰角;在水平线下方的角叫做俯角.(2)方位角:从指北方向顺时针转到目标方向线的水平角叫做方位角.(3)方向角:相对于某一正方向的水平角.(4)坡角:坡面与水平面所成的锐二面角叫做坡角.坡度:坡面的铅直高度与水平宽度之比叫做坡度.0 3.三角形的面积公式:..3.解斜三角形在实际中的应用:解斜三角形在实际中的应用非常广泛,如测量、航海等方面都可能用到,解题的一般步骤:(1)分析题意,准确理解题意,分清已知与所求;(2)根据题意画出示意图;(3)将需要求解的问题归结到一个或几个三角形中,通过合理运用正弦定理,余弦定理等关知识求解;(4)检验所得到结果是否具有实际意义,对解进行取舍,并写出答案.4.常见题型与方法:(1)灵活应用正、余弦定理及三角公式进行边角转换(2)三角形形状的判定方法:①化边为角;②化角为边.(3).三角形中三角函数求值,恒等式证明.(4)通过三角变换探索角的关系,符号规律.(5)熟练掌握由三角形三个元素(至少有一边)求解三角形的其它元素方法;(6)常用的三角形的有关定理:正、余弦定理;内角和定理;(7)常用的三角形面积公式;(8)掌握正弦定理、余弦定理,并能初步运用它们解斜三角形,能解决解三角形的计算问题. 【真题分析】1.【2018全国Ⅱ卷6】在ABC △中,cos2C 1BC =,5AC =,则AB =( )A .BC D .【答案】A2.【2018年全国卷Ⅲ理】ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC △的面积为2224a b c +-,则C = A .π2B .π3C .π4D .π6【解析】本题考点是三角形的面积公式与余弦定理的综合问题.由题意可知,,所以有,由余弦定理可得,,并且()π,0∈C ,所以有4π=C .【答案】C3.【2015福建文理】.若锐角ABC ∆的面积为,且,则BC 等于________.【解析】本题考点是三角形面积公式与余弦定理.由已知得ABC ∆的面积为=,所以sin A =,(0,)2A π∈,所以3A π=.由余弦定理得49,7BC =.【答案】74.【2016山东文】ABC △中,角A ,B ,C 的对边分别是a ,b ,c .已知,则A =A.3π4B.π3C.π4D.π6【解析】本题考点余弦定理的应用,由余弦定理得:,因为,所以,因为cos 0A ≠,所以tan 1A =,因为()0,A ∈π,所以4A π=,故选C. 【答案】C5.【2016全国新课标Ⅲ】在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A = ( )C.-D.-【答案】C6.【2016全国新课标Ⅰ】△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知a =2c =,2cos 3A =,则b=( )C.2D.3【解析】本题考点是余弦定理的应用,由余弦定理得,解得3=b (31-=b 舍去).【答案】D7.【2017课标3,理17】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知,a b =2.(1)求c ;(2)设D 为BC 边上一点,且AD ⊥AC,求△ABD 的面积. 试题分析:(1)由题意首先求得23A π=,然后利用余弦定理列方程,边长取方程的正实数根可得4c = ;(2)利用题意首先求得△ABD 面积与△ACD 面积的比值,然后结合△ABC 的面积可求得△ABD . 【解析】(1)由已知得,所以23A π=. 在 △ABC 中,由余弦定理得 ,即.解得:6c =- (舍去),4c = .【答案】(1)4c = ;8.【2018年全国卷Ⅰ理数】在平面四边形ABCD 中,,45A ∠=,2AB =,5BD =.(1)求cos ADB ∠;(2)若DC =BC .(2)由题设及(1)知,.在BCD △中,由余弦定理得25=.所以5BC =. 【模拟考场】1.在△AB C 中,如果(a +b +c )(b +c -a )=3bc ,则A 等于 ( ) A.150° B.120° C.60° D.30°【解析】由(a +b +c )(b +c -a )=3bc 得(b +c )2-a 2=3bc ,∴b 2+c 2-a 2=bc ,∴【答案】C2.在△ABC 中,若AB ,120C ∠= ,则AC = ( )(A )1(B )2(C )3(D )4 【解析】:由余弦定理得,选A.【答案】A3.在ABC ∆ 中,内角,,A B C 所对的边分别为,,a b c ,已知ABC ∆的面积为 ,则a 的值为 .【答案】84.若锐角ABC ∆的面积为,且,则BC 等于________.【解析】由已知得ABC ∆的面积为=sin A =,(0,)2A π∈,所以3A π=.由余弦定理得49,7BC =.【答案】75.已知c b a ,,分别为ABC ∆三个内角C B A ,,的对边,2=a ,且,则ABC ∆面积的最大值为____________.【解析】由2=a ,且,故,又根据正弦定理,得,化简得,,故,所以=A,又,故.606.如图14,在△ABC中,AB=BC=2,∠ABC=120°.若平面ABC外的点P和线段AC上的点D,满足PD=DA,PB=BA,则四面体PBCD的体积的最大值是 .由余弦定理可得.故.∆中,,.在PBD由余弦定理可得,所以.由此可得,将△ABD沿BD翻折后可与△PBD重合,无论点D在任何位置,只要点D的位置确定,当平面PBD⊥平面BD C时,四面体PBCD的体积最大(欲求最大值可不考虑不垂直的情况).过P 作直线BD 的垂线,垂足为O .设PO d =,则,即,解得.而△BCD 的面积.当平面PBD ⊥平面BDC 时:四面体PBCD 的体积.观察上式,易得,当且仅当x x ,即x 时取等号,同时我们可以发现当x 取得最小值,故当x 时,四面体PBCD 的体积最大,为1.2【答案】127.设.(Ⅰ)求()f x 的单调区间;(Ⅱ)在锐角ABC ∆中,角,,A B C 的对边分别为,,a b c ,若,求ABC ∆面积的最大值.试题分析:(I )首先利用二倍角公式化简函数()f x 的解析式,再利用正弦函数的单调性求其单调区间; (II )首先由02A f ⎛⎫= ⎪⎝⎭结合(I )的结果,确定角A 的值,然后结合余弦定理求出三角形ABC ∆面积的最大值.由可得由可得所以函数()f x 的单调递增区间是;单调递减区间是(II )由得1sin 2A =.由题意知A 为锐角,所以cos 2A = 由余弦定理: ,可得:.即:当且仅当b c =时等号成立.因此,所以ABC ∆ 【答案】(I )单调递增区间是;单调递减区间是.(II )ABC ∆ ,因为,所以当4A π∠=时,取得最大值1.【答案】(1)4π;(2)1.。
2019年高考数学解密题(含解析)之 正、余弦定理及解三角形
正、余弦定理及解三角形考点1 利用正、余弦定理解三角形题组一 利用正、余弦定理解三角形调研1 在ABC △中,a ,b ,c 分别是角A ,B ,C 的对边,则A =A B CD 【答案】C 【解析】∵2sin sin cos sin cos C B a B B b A -=,∴由正弦定理可得2cos cos c b a Bb b A-=,即()c o s 2c os a b B c bb A =-. ∴由余弦定理可得()222222222a c b b c a ab c b b ac bc +-+-⋅=-⋅⋅,整理可得222bc b c a =+-.∴2221cos 22b c a A bc +-==,∵()0,πA ∈,∴故选C.【名师点睛】本题主要考查了正弦定理,余弦定理的综合应用,解题时注意分析角的范围.由已知及正弦定理可得()cos 2cos ab B c b b A =-,结合余弦定理可得222bc b c a =+-,由余弦定理解得cos A ,结合A 的范围,即可求得A 的值.对于余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)222cos 2b c a A bc+-=.另外,在解与三角形、三角函数有关的问题时,还要记住30︒,45︒,60︒等特殊角的三角函数值,以便在解题中直接应用.调研2 在ABC △中,角,,A B C 所对的边分别为,,a b c sin cos A a B =. (1)求角B ;(2)若3b =,sin C A =,求a ,c .【答案】(1)π6B =;(2)3,a c ==【解析】(1)在ABC △中,由正弦定理sin sin a bA B=sin sin cos B A A B =. 又因为在ABC △中sin 0A ≠.cos B B =. 法一:因为0πB <<, 所以sin 0B ≠,因而cos 0B ≠.所以sin tan cos B B B ==所以π6B =.cos 0B B -=即π2sin 06B ⎛⎫-= ⎪⎝⎭, 所以()ππ6B k k -=∈Z , 因为0πB <<, 所以π6B =.(2)由正弦定理sin sin a cA C=,及sin C A =,所以c =,①由余弦定理2222cos b a c ac B =+-,得22π92cos 6a c ac =+-,即229a c +-=,②把①代入②得3,a c ==【名师点睛】(1)利用正弦定理化简已知条件,然后求解B 的大小;(2)利用正弦定理、余弦定理,转化求解即可.解三角形的基本策略:一是利用正弦定理实现“边化角”,二是利用余弦定理实现“角化边”.求三角形面积的最大值也是一种常见类型,主要方法有两类,一是找到边之间的关系,利用基本不等式求最值;二是利用正弦定理,转化为关于某个角的函数,利用函数思想求最值.☆技巧点拨☆利用正、余弦定理解三角形的关键是利用定理进行边角互化.即利用正弦定理、余弦定理等工具合理地选择“边”往“角”化,还是“角”往“边”化.若想“边”往“角”化,常利用“a =2R sin A ,b =2R sin B ,c =2R sin C ”;若想“角”往“边”化,常利用sin A =a 2R ,sin B =b 2R ,sin C =c2R ,cos C =a 2+b 2-c 22ab等.题组二 与三角形面积有关的问题调研3 在ABC △中,内角,,A B C 所对的边分别为,,a b c ,且ABC △的外接圆半径为1,若6abc =,则ABC △的面积为__________. 【答案】32【解析】由题意得22sin c R C ==,即s i n 2c C =,∴1sin 2ABC S ab C ==△1113622442c ab abc ⨯==⨯=, 故答案为32.【名师点睛】由正弦定理可把其中一边化为角,从而由6abc =及由公式1sin 2S ab C =求得面积.正弦定理:2sin sin sin a b c R A B C===,利用它把三角形的边角与外接圆半径建立联系,这样可得三角形面积为4abcS R=22sin sin sin R A B C =.调研4 如图,在ABC △中,点D 在边AB 上,CD ⊥BC ,AC =53,CD =5,BD =2AD .(1)求AD 的长; (2)求ABC △的面积. 【答案】(1)5;(2)7534.(2)由(1)求得AB =3x =15,BC =4x 2-25=5 3. 所以cos ∠CBD =BC BD =32, 从而sin ∠CBD =12.所以S △ABC =12×AB ×BC ×sin ∠CBA =12×15×53×12=7534.题组三 三角形形状的判断调研5 在ABC △中,三边a 、b 、c 所对的角分别为A 、B 、C ,若22tan :tan :,A B a b =则ABC △的形状为A .等腰三角形B .直角三角形C .等腰三角形或直角三角形D .不能确定【答案】C【解析】由题意结合正弦定理有:22sin cos sin cos sin sin A B A A B B ⨯=,即:cos sin cos sin B AA B=, 据此可得:sin cos sin cos A A B B =,则sin2sin2A B =, 故22A B =或22πA B +=,即A B =或π2A B +=, 据此可得:ABC △的形状为等腰三角形或直角三角形. 本题选择C 选项.【名师点睛】由题意结合正弦定理边化角,然后结合三角函数的性质整理计算即可确定三角形的形状.解决判断三角形的形状问题,一般将条件化为只含角的三角函数的关系式,然后利用三角恒等变换得出内角之间的关系式;或将条件化为只含有边的关系式,然后利用常见的化简变形得出三边的关系.另外,在变形过程中要注意A ,B ,C 的范围对三角函数值的影响.调研6 ABC △中,角,,A B C 的对边分别是,,a b c ,且cos sin a C C b c +=+. (1)求A ;(2)若2,a ABC =△试判断此三角形的形状. 【答案】(1)60°;(2)等边三角形.【解析】(1)由正弦定理及cos sin a C C b c +=+得,sin cos sin sin sin A C A C B C +=+,即()sin cos sin sin sin A C A C A C C =++sin cos sin sin A C A C C ⇒-=, ∵sin 0C >,()1cos 1sin 302A A A -=⇒-︒=, ∵0180A <<︒︒,∴3030150A ︒-︒<-<︒, ∴303060A A -=︒⇒=︒︒.(2)1sin 42S bc A bc ===,由余弦定理得:2222cos a b c bc A =+-=()23b c bc+-()241242b c b c b c ⇒=+-⇒+=⇒==,∵60A =︒,∴60B C ==︒, 故ABC △是等边三角形.☆技巧点拨☆判断三角形的形状有以下几种思路:(1)转化为三角形的边来判断,可简记为“化角为边”;(2)转化为角的三角函数(值)来判断,可简记为“化边为角”.提醒:在两种解法的等式变形中,一般两边不要约去公因式,应移项提取公因式,以免造成漏解.考点2 解三角形的实际应用题组 解三角形的实际应用调研1 如图,要测量底部不能到达的某铁塔AB 的高度,在塔的同一侧选择C D 、两观测点,且在C D 、两点测得塔顶的仰角分别为4530、.在水平面上测得120BCD ∠=,C D 、两地相距600m ,则铁塔AB 的高度是A .B .480mC .D .600m【答案】D【解析】设铁塔AB 的高度是h ,因为C D 、两点测得塔顶的仰角分别为4530、,所以,BC h BD ==,因为C D 、两地相距600m ,所以2222π36002600cos 3h h h =+-⨯⨯⨯,解得600h =(舍负), 故选D.【名师点睛】先根据直角三角形用高表示BC ,BD ,再根据余弦定理解方程得高.解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.☆技巧点拨☆高度的测量主要是一些底部不能到达或者无法直接测量的物体的高度问题.常用正弦定理或余弦定理计算出物体的顶部或底部到一个可到达的点之间的距离,然后转化为解直角三角形的问题.这类物体高度的测量是在与地面垂直的竖直平面内构造三角形或者在空间构造三棱锥,再依据条件利用正、余弦定理解其中的一个或者几个三角形,从而求出所需测量物体的高度.调研2 如图,,,A B C 三个警亭有直道相通,已知A 在B 的正北方向6千米处,C 在B 的正东方向.(1)警员甲从C 出发,沿CA 行至点P 处,此时45CBP ∠=︒,求PB 的距离; (2)警员甲从C 出发沿CA 前往A ,警员乙从A 出发沿AB 前往B ,两人同时出发,甲的速度为3千米/小时,乙的速度为6千米/小时.两人通过专用对讲机保持联系,乙到达B 后原地等待,直到甲到达A 时任务结束.若对讲机的有效通话距离不超过9千米,试问两人通过对讲机能保持联系的总时长?【答案】(1)(2【解析】(1)在ABC △中,6AB =,60A ∠=︒,75APB ∠=︒, 由正弦定理,sin sin AB BPAPB A=∠,即6132=362462BP ===,故PB的距离是(2)甲从C 到A ,需要4小时,乙从A 到B 需要1小时.设甲、乙之间的距离为()f t ,要保持通话则需要()9f t ≤.1︒当01t ≤≤时,()f t =6169=≤, 即271670t t -+≤t ≤≤ 又[]0,1t ∈,1t ≤≤小时. 2︒当14t <≤时,()f t =9=,即2630t t -+≤,解得33t ≤≤+ 又(]1,4t ∈,所以14t <≤,时长为3小时.综上,3(小时). 小时. 【名师点睛】本题考查解三角形的应用以及对实际应用的分析问题和解决问题的能力,属于中档题.(1)在ABC △中,6AB =,60A ∠=︒,75APB ∠=︒,然后由正弦定理可得BP ; (2)甲从C 到A ,需要4小时,乙从A 到B 需要1小时.设甲、乙之间的距离为()f t ,要保持通话则需要()9f t ≤,然后分1︒当01t ≤≤时,2︒当14t <≤时,分别求得对应的时长再求和即得到结论.☆技巧点拨☆解决此类问题的关键是根据题意和图形及有关概念,确定所求的角在哪个三角形中,该三角形中已知哪些量,需要求哪些量.解题时应认真审题,结合图形去选择正、余弦定理,这是最重要的一步.考点3 解三角形与其他知识的交汇问题题组一 解三角形与三角恒等变换相结合调研1 在ABC △中,角A ,B ,C 所对的边分别为21,,sin sin sin ,24B C a b c B C -+=,且2b c +=,则实数a 的取值范围是____________.【答案】)2.【名师点睛】本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值. 利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.调研2 在ABC △中,,,a b c 分别为角,,A B C 的对边,已知7,2c ABC =△的面积为,2又tan tan A B +)tan tan 1.A B =- (1)求角C 的大小; (2)求a b +的值. 【答案】(1)π3;(2)11.2【解析】(1)因为)tan tan tan tan 1,A B A B +=-所以()tan A B +=tan tan 1tan tan A BA B+=-又因为,,A B C 为ABC △的内角, 所以2π,3A B += 所以π.3C =(2)由1sin 2ABC S ab C ==△及π,3C =得6,ab =又()2222221cos 222a b c ab a b c C ab ab +--+-===,7,2c =所以11.2a b +=题组二 解三角形与平面向量相结合调研3 在ABC △中,90C ∠=,2CM MB =.若1sin 5BAM ∠=,则tan BAC ∠=_________.【解析】根据题意,设,3AC m BC n ==,则2,CM n BM n ==,根据1s i n 5BAM ∠=,得cos BAM ∠=,由勾股定理可得AM AB ==22222=,化简整理得422412360m m n n -+=,即()22260m n-=,解得m =,所以3tann BAC m ∠===2. 【名师点睛】该题考查的是有关解三角形的问题,在解题的过程中,注意分析要求对应角的正切值,需要求谁,而题中所给的条件与对应的结果之间有什么样的连线,设出直角边长,利用所给的角的余弦值,利用余弦定理得到相应的等量关系,求得最后的结果.调研4 如图,在ABC △中,已知点D 在边BC 上,且0AD AC ⋅=,sin 3BAC ∠=,AB =BD =.(1)求AD 的长; (2)求cos C .【答案】(1)3;(2)3. 【解析】(1)因为0,AD AC ⋅=所以,AD AC ⊥所以πsin sin cos ,2BAC BAD BAD ⎛⎫∠=+∠=∠⎪⎝⎭即cos BAD ∠=. 在ABD △中,由余弦定理,可知2222cos BD AB AD AB AD BAD =+-⋅⋅∠, 即28150,AD AD -+=解得5,AD =或3AD =. 因为,AB AD >所以3AD =. (2)在ABD △中,由正弦定理,可知,sin sin BD ABBAD ADB=∠∠又由cos ,3BAD ∠=可知1sin ,3BAD ∠=所以sin sin 3AB BAD ADB BD ∠∠==. 因为π,2ADB DAC C C ∠=∠+=+所以cos C =.1.(安徽省合肥市2018届高三调研性检测数学试题)在ABC △中,角,,A B C 对应的边分别为,,a b c ,60,4,C a b c =︒==b = A .1 B .2C .3D 2.(山东省烟台市2018届高三下学期高考诊断性测试数学试题)已知△ABC 的三个内角A 、B 、C 所对的边分别为a 、b 、c ,若b =1,c 1sin cos sin cos 2a B C c B A +=,则a =A .1B .1C .1或2D 3.(贵州省黔东南州2018届高三下学期第二次模拟考试数学试题)在ABC △中,内角,,A B C 所对的边分别为,,a b c ,已知()()3a b c a b c ab +-++=,且4c =,则ABC△面积的最大值为A .B .C .D4.(【衡水金卷】2018年普通高等学校招生全国统一考试高三模拟研卷卷四数学试题)在ABC △中,角,,A B C 的对边分别为,,a b c ,cos cos 2cos a B b A c C +=,c =ABC △的面积为2,则ABC △的周长为A .1+B .2+C .4+D .5+5.(黑龙江省鹤岗市第一中学2019届高三上学期第三次月考数学试题)ABC △中,角A 、B 、C 所对的边分别为a 、b 、c ,且满足4a =,sin cos a B A =,则ABC △面积的最大值是 A. B.C.D .46.(湖南省湘潭市2018届高三下学期第四次模拟考试数学试题)在ABC △中,36AB AC ==,tan A =D ,E 分别是边AB ,AC 上的点,且3DE =,记ADE △,四边形BCED 的面积分别为1S ,2S ,则12S S 的最大值为 A .14 B .38C .13D .5127.(河南省2018届高三最后一次模拟考试数学试题)已知ABC △的内角,,A B C 的对边分别为,,a b c ,且sin sin a A b B ++sin sin ,A c C =2,a=b =,则s i n B =__________.8.(福建省龙岩市 2018届高三下学期教学质量检查(4月)数学试题)在锐角三角形ABC 中,2A B ∠=∠,,A C ∠∠的对边长分别是,a c ,则ca的取值范围为_______.9.(安徽省合肥市2018届高三三模数学试题)在ABC △中,内角A B C ,,所对的边分别为a b c ,,.若45A =,2sin sin 2sin b B c C a A -=,且ABC △的面积等于3,则b =___________.10.(2018年普通高等学校招生全国统一考试模拟试题(衡水金卷调研卷)五)我国南宋著名数学家秦九韶在他的著作《数书九章》卷五“田域类”里有一个题目:“问有沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里.里法三百步.欲知为田几何.”这道题讲的是有一个三角形沙田,三边分别为13里,14里,15里,假设1里按500米计算,则该三角形沙田外接圆的半径为___________米.11.(四川省棠湖中学2019届高三上学期开学考试数学试题)如图,ABC △是等边三角形,D 是BC 边上的动点(含端点),记,BAD ADC αβ∠=∠=. (1)求2cos cos αβ-的最大值; (2)若11,cos 7BD β==,求ABD △的面积.12.(山东省实验中学(中心校区)2019届高三11月模拟考试数学试题)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知2sin sin a C B =.(1)若b =C =120°,求△ABC 的面积S ;(2)若b :c =2:3.13.(青海省西宁四中2018-2019学年高三(上)第二次模拟数学试题)在ABC △中,角A ,B ,C 的对边分别是a ,b ,c ,其面积为S ,且222.b c a S +-= (1)求A ;(2)若a =4cos 5B =,求c .14.(山西省吕梁市2019届高三上学期第一次阶段性测试数学试题)已知四边形OACB 中,a 、b 、c 分别为ABC △的内角A 、B 、C 所对的边长,且满足()()cos 2cos cos b c A a B C +=--.(1)证明:2b c a +=;(2)若b c =,设()0πA O B θθ∠=<<,24OA OB ==,求四边形OACB 面积的最大值.15.(湖南省五市十校教研教改共同体2019届高三12月联考数学)已知向量()cos ,sin x x =m ,()cos x x =n ,x ∈R ,设函数()12f x =⋅+m n .(1)求函数()f x 的解析式及单调递增区间;(2)设a ,b ,c 分别为ABC △内角A ,B ,C 的对边,若()2f A =,b c +=ABC △的面积为12,求a 的值.1.(2018新课标全国Ⅱ理科)在ABC △中,cos2C =1BC =,5AC =,则AB = A. BCD.2.(2018新课标全国Ⅲ理科)ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC△的面积为2224a b c +-,则C =A .π2B .π3C .π4D .π63.(2016新课标全国Ⅲ理科)在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A = ABC.- D.-4.(2017新课标全国Ⅰ理科)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知ABC△的面积为23sin a A .(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求ABC △的周长.5.(2017新课标全国Ⅱ理科)ABC △的内角,,A B C 的对边分别为,,a b c ,已知()2sin 8sin 2B AC +=. (1)求cos B ;(2)若6a c +=,ABC △的面积为2,求b .6.(2018新课标全国Ⅰ理科)在平面四边形ABCD 中,90ADC ∠=,45A ∠=,2AB =,5BD =.(1)求cos ADB ∠;(2)若DC =,求BC .正、余弦定理及解三角形考点1 利用正、余弦定理解三角形题组一 利用正、余弦定理解三角形调研1 在ABC △中,a ,b ,c 分别是角A ,B ,C 的对边,则A =A B CD 【答案】C【名师点睛】本题主要考查了正弦定理,余弦定理的综合应用,解题时注意分析角的范围.由已知及正弦定理可得()cos 2cos ab B c b b A =-,结合余弦定理可得222bc b c a =+-,由余弦定理解得cos A ,结合A 的范围,即可求得A 的值.对于余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)222cos 2b c a A bc+-=.另外,在解与三角形、三角函数有关的问题时,还要记住30︒,45︒,60︒等特殊角的三角函数值,以便在解题中直接应用.调研2 在ABC △中,角,,A B C 所对的边分别为,,a b c sin cos A a B =.(1)求角B ;(2)若3b =,sin C A =,求a ,c .【答案】(1)π6B =;(2)3,a c ==【解析】(1)在ABC △中,由正弦定理sin sin a bA B=sin sin cos B A A B =. 又因为在ABC △中sin 0A ≠.cos B B =. 法一:因为0πB <<, 所以sin 0B ≠,因而cos 0B ≠.所以sin tan cos B B B == 所以π6B =.cos 0B B -=即π2sin 06B ⎛⎫-= ⎪⎝⎭, 所以()ππ6B k k -=∈Z , 因为0πB <<, 所以π6B =.(2)由正弦定理sin sin a cA C=,及sin C A =,所以c =,①由余弦定理2222cos b a c ac B =+-,得22π92cos 6a c ac =+-,即229a c +-=,②把①代入②得3,a c ==【名师点睛】(1)利用正弦定理化简已知条件,然后求解B 的大小;(2)利用正弦定理、余弦定理,转化求解即可.解三角形的基本策略:一是利用正弦定理实现“边化角”,二是利用余弦定理实现“角化边”.求三角形面积的最大值也是一种常见类型,主要方法有两类,一是找到边之间的关系,利用基本不等式求最值;二是利用正弦定理,转化为关于某个角的函数,利用函数思想求最值.☆技巧点拨☆利用正、余弦定理解三角形的关键是利用定理进行边角互化.即利用正弦定理、余弦定理等工具合理地选择“边”往“角”化,还是“角”往“边”化.若想“边”往“角”化,常利用“a =2R sin A ,b =2R sin B ,c =2R sin C ”;若想“角”往“边”化,常利用sin A =a 2R ,sin B =b 2R ,sin C =c2R ,cos C =a 2+b 2-c 22ab等.题组二 与三角形面积有关的问题调研3 在ABC △中,内角,,A B C 所对的边分别为,,a b c ,且ABC △的外接圆半径为1,若6abc =,则ABC △的面积为__________. 【答案】32【解析】由题意得22sin c R C ==,即s i n 2c C =,∴1sin 2ABC S ab C ==△1113622442c ab abc ⨯==⨯=, 故答案为32.【名师点睛】由正弦定理可把其中一边化为角,从而由6abc =及由公式1sin 2S ab C =求得面积.正弦定理:2sin sin sin a b c R A B C===,利用它把三角形的边角与外接圆半径建立联系,这样可得三角形面积为4abcS R=22sin sin sin R A B C =.调研4 如图,在ABC △中,点D 在边AB 上,CD ⊥BC ,AC =53,CD =5,BD =2AD .(1)求AD 的长; (2)求ABC △的面积. 【答案】(1)5;(2)7534.【解析】(1)在ABC △中,因为BD =2AD ,设AD =x (x >0),所以BD =2x . 在BCD △中,因为CD ⊥BC ,CD =5,BD =2x ,所以cos ∠CDB =CD BD =52x.在ACD △中,因为AD =x ,CD =5,AC =53,所以cos ∠ADC =AD 2+CD 2-AC 22×AD ×CD=222525x x +-⨯⨯.因为∠CDB +∠ADC =π,所以cos ∠ADC =-cos ∠CDB =-52x ,解得x =5.所以AD 的长为5.(2)由(1)求得AB =3x =15,BC =4x 2-25=5 3. 所以cos ∠CBD =BC BD =32, 从而sin ∠CBD =12.所以S △ABC =12×AB ×BC ×sin ∠CBA =12×15×53×12=7534.题组三 三角形形状的判断调研5 在ABC △中,三边a 、b 、c 所对的角分别为A 、B 、C ,若22tan :tan :,A B a b =则ABC △的形状为 A .等腰三角形B .直角三角形C .等腰三角形或直角三角形D .不能确定【答案】C【名师点睛】由题意结合正弦定理边化角,然后结合三角函数的性质整理计算即可确定三角形的形状.解决判断三角形的形状问题,一般将条件化为只含角的三角函数的关系式,然后利用三角恒等变换得出内角之间的关系式;或将条件化为只含有边的关系式,然后利用常见的化简变形得出三边的关系.另外,在变形过程中要注意A ,B ,C 的范围对三角函数值的影响.调研6 ABC △中,角,,A B C 的对边分别是,,a b c ,且cos sin a C C b c +=+. (1)求A ;(2)若2,a ABC =△试判断此三角形的形状.【答案】(1)60°;(2)等边三角形.【解析】(1)由正弦定理及cos sin a C C b c +=+得,sin cos sin sin sin A C A C B C +=+,即()sin cos sin sin sin A C A C A C C =++sin cos sin sin A C A C C ⇒-=, ∵sin 0C >,()1cos 1sin 302A A A -=⇒-︒=, ∵0180A <<︒︒,∴3030150A ︒-︒<-<︒, ∴303060A A -=︒⇒=︒︒.(2)1sin 42S bc A bc ===, 由余弦定理得:2222cos a b c bc A =+-=()23b c bc+-()241242b c b c b c ⇒=+-⇒+=⇒==,∵60A =︒,∴60B C ==︒, 故ABC △是等边三角形.☆技巧点拨☆判断三角形的形状有以下几种思路:(1)转化为三角形的边来判断,可简记为“化角为边”;(2)转化为角的三角函数(值)来判断,可简记为“化边为角”.提醒:在两种解法的等式变形中,一般两边不要约去公因式,应移项提取公因式,以免造成漏解.考点2 解三角形的实际应用题组 解三角形的实际应用调研1 如图,要测量底部不能到达的某铁塔AB 的高度,在塔的同一侧选择C D 、两观测点,且在C D 、两点测得塔顶的仰角分别为4530、.在水平面上测得120BCD ∠=,C D 、两地相距600m ,则铁塔AB 的高度是A .B .480mC .D .600m【答案】D【解析】设铁塔AB 的高度是h ,因为C D 、两点测得塔顶的仰角分别为4530、,所以,BC h BD ==,因为C D 、两地相距600m ,所以2222π36002600cos 3h h h =+-⨯⨯⨯,解得600h =(舍负), 故选D.【名师点睛】先根据直角三角形用高表示BC ,BD ,再根据余弦定理解方程得高.解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.☆技巧点拨☆高度的测量主要是一些底部不能到达或者无法直接测量的物体的高度问题.常用正弦定理或余弦定理计算出物体的顶部或底部到一个可到达的点之间的距离,然后转化为解直角三角形的问题.这类物体高度的测量是在与地面垂直的竖直平面内构造三角形或者在空间构造三棱锥,再依据条件利用正、余弦定理解其中的一个或者几个三角形,从而求出所需测量物体的高度.调研2 如图,,,A B C 三个警亭有直道相通,已知A 在B 的正北方向6千米处,C 在B 的正东方向.(1)警员甲从C 出发,沿CA 行至点P 处,此时45CBP ∠=︒,求PB 的距离;(2)警员甲从C 出发沿CA 前往A ,警员乙从A 出发沿AB 前往B ,两人同时出发,甲的速度为3千米/小时,乙的速度为6千米/小时.两人通过专用对讲机保持联系,乙到达B 后原地等待,直到甲到达A 时任务结束.若对讲机的有效通话距离不超过9千米,试问两人通过对讲机能保持联系的总时长?【答案】(1)(2【解析】(1)在ABC △中,6AB =,60A ∠=︒,75APB ∠=︒, 由正弦定理,sin sin AB BPAPB A=∠,即6132=362462BP ===,故PB的距离是(2)甲从C 到A ,需要4小时,乙从A 到B 需要1小时.设甲、乙之间的距离为()f t ,要保持通话则需要()9f t ≤.1︒当01t ≤≤时,()f t =6169=≤, 即271670tt -+≤t ≤≤ 又[]0,1t ∈,1t ≤≤小时.2︒当14t <≤时,()f t =9=,即2630t t -+≤,解得33t ≤≤+ 又(]1,4t ∈,所以14t <≤,时长为3小时.综上,3+17=207(小时).小时. 【名师点睛】本题考查解三角形的应用以及对实际应用的分析问题和解决问题的能力,属于中档题.(1)在ABC △中,6AB =,60A ∠=︒,75APB ∠=︒,然后由正弦定理可得BP ; (2)甲从C 到A ,需要4小时,乙从A 到B 需要1小时.设甲、乙之间的距离为()f t ,要保持通话则需要()9f t ≤,然后分1︒当01t ≤≤时,2︒当14t <≤时,分别求得对应的时长再求和即得到结论.☆技巧点拨☆解决此类问题的关键是根据题意和图形及有关概念,确定所求的角在哪个三角形中,该三角形中已知哪些量,需要求哪些量.解题时应认真审题,结合图形去选择正、余弦定理,这是最重要的一步.考点3 解三角形与其他知识的交汇问题题组一 解三角形与三角恒等变换相结合调研1 在ABC △中,角A ,B ,C 所对的边分别为21,,sin sin sin ,24B C a b c B C -+=,且2b c +=,则实数a 的取值范围是____________.【答案】)2.【解析】由()21c o s 1s i n s i ns i n s in s i n224B C B CB C B C ---+=+=,得()2cos 4sin sin 1B C B C --=,所以()()12cos 1,cos cos 2B C A B C +==-+=-,则由余弦定理()2222221c o s 222bcb c ab c a A b cb c +--+-===-,得22412b c bc a +⎛⎫=-≤= ⎪⎝⎭,解得a ≥又2a b c <+=, 所以a 的范围是)2.【名师点睛】本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值. 利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.调研2 在ABC △中,,,a b c 分别为角,,A B C 的对边,已知7,2c ABC =△又tan tan A B +)tan tan 1.A B =- (1)求角C 的大小; (2)求a b +的值. 【答案】(1)π3;(2)11.2【解析】(1)因为)tan tan tan tan 1,A B A B +=-所以()tan A B +=tan tan 1tan tan A BA B+=-又因为,,A B C 为ABC △的内角, 所以2π,3A B += 所以π.3C =(2)由1sin 2ABC S ab C ==△及π,3C =得6,ab = 又()2222221cos 222a b c aba b cC abab+--+-===,7,2c =所以11.2a b +=题组二 解三角形与平面向量相结合调研3 在ABC △中,90C ∠=,2CM MB =.若1sin 5BAM ∠=,则tan BAC ∠=_________.【解析】根据题意,设,3AC m BC n ==,则2,CM n BM n ==,根据1s i n 5BAM ∠=,得cos BAM ∠=,由勾股定理可得22,A M nm n =22222=,化简整理得422412360m m n n -+=,即()22260m n -=,解得m =,所以3tan2n BAC m ∠===. 【名师点睛】该题考查的是有关解三角形的问题,在解题的过程中,注意分析要求对应角的正切值,需要求谁,而题中所给的条件与对应的结果之间有什么样的连线,设出直角边长,利用所给的角的余弦值,利用余弦定理得到相应的等量关系,求得最后的结果.调研4 如图,在ABC △中,已知点D 在边BC 上,且0AD AC ⋅=,sin BAC ∠=AB =BD =(1)求AD 的长; (2)求cos C .【答案】(1)3;. 【解析】(1)因为0,AD AC ⋅=所以,AD AC ⊥所以πsin sin cos ,2BAC BAD BAD ⎛⎫∠=+∠=∠⎪⎝⎭即cos BAD ∠=. 在ABD △中,由余弦定理,可知2222cos BD AB AD AB AD BAD =+-⋅⋅∠, 即28150,AD AD -+=解得5,AD =或3AD =. 因为,AB AD >所以3AD =. (2)在ABD △中,由正弦定理,可知,sin sin BD ABBAD ADB=∠∠又由cos BAD ∠=可知1sin ,3BAD ∠=所以sin sin AB BAD ADB BD ∠∠==. 因为π,2ADB DAC C C ∠=∠+=+所以cos C =.1.(安徽省合肥市2018届高三调研性检测数学试题)在ABC △中,角,,A B C 对应的边分别为,,a b c ,60,4,C a b c =︒==b = A .1B .2C .3 D【答案】A【解析】由余弦定理有2222cos c a b ab C =+-,代入已知值有22131624cos60,b b b b =+-⨯⨯⨯解得1b =.故选A.2.(山东省烟台市2018届高三下学期高考诊断性测试数学试题)已知△ABC 的三个内角A 、B 、C 所对的边分别为a 、b 、c ,若b =1,c,且1sin cos sin cos 2a B C c B A +=,则a = A .1B .1C .1或2D【答案】C又b =1,所以sin 2B =,又c >b ,所以2a =,△ABC 为等腰三角形,所以1a =. 故选C.【名师点睛】解三角形常利用正、余弦定理进行边角的统一.即将条件化为只含角的三角函数关系式,然后利用三角恒等变换得出内角之间的关系式;或将条件化为只含有边的关系式,然后利用常见的化简变形得出三边的关系.结论一般为特殊的三角形.如等边三角形、等腰三角形、直角三角形、等腰直角三角形等.另外,在变形过程中要注意A ,B ,C 的范围对三角函数值的影响.3.(贵州省黔东南州2018届高三下学期第二次模拟考试数学试题)在ABC △中,内角,,A B C 所对的边分别为,,a b c ,已知()()3a b c a b cab +-++=,且4c =,则ABC△面积的最大值为 A. B .C .D 【答案】B【解析】由已知有222a b c ab +-=,2221cos 222a b c ab C ab ab +-===,由于()0,πC ∈,sin 2C =, 又22162a b ab ab ab ab=+-≥-=,则16ab ≤,4a b ==时等号成立. 故选B.4.(【衡水金卷】2018年普通高等学校招生全国统一考试高三模拟研卷卷四数学试题)在ABC △中,角,,A B C 的对边分别为,,a b c ,cos cos 2cos a B b A c C +=,c =ABC △,则ABC △的周长为A .1+B .2+C .4+D .5+【答案】D 【解析】在ABC△中,c o s c o s a B b A c C+=,则s i n c o s s i n A B B A CC+=, 即()sin 2sin cos A B C C +=,sin 0C ≠,1cos 2C ∴=,π3C =, 由余弦定理可得:222a b c ab +-=,即()2237a b ab c +-==,又1sin 242S ab C ab ===,6ab ∴=,()27325a b ab ∴+=+=,5a b +=,△ABC 的周长为5a b c ++=本题选择D 选项.【名师点睛】由题意利用正弦定理边化角求得π3C =,然后结合余弦定理和面积公式可得5a b +=,则ABC △的周长为5+.在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.5.(黑龙江省鹤岗市第一中学2019届高三上学期第三次月考数学试题)ABC △中,角A 、B 、C 所对的边分别为a 、b 、c ,且满足4a =,sin cos a B A =,则ABC △面积的最大值是 A. B.C.D .4【答案】A【名师点睛】本题主要考查了正、余弦定理和三角形的面积公式,及基本不等式的应用,其中解答中利用正弦、余弦定理解决三角形的边角关系,再合理运用基本不等式求最值是解本题的关键,着重考查了学生分析问题和解答问题的能力,属于中档试题.利用正弦定理,求得π3A =,再利用余弦定理和基本不等式,求解bc 的最大值,利用三角形的面积公式,即可求解,得到答案.6.(湖南省湘潭市2018届高三下学期第四次模拟考试数学试题)在ABC △中,36AB AC ==,tan A =D ,E 分别是边AB ,AC 上的点,且3DE =,记ADE △,四边形BCED 的面积分别为1S ,2S ,则12S S 的最大值为 A .14 B .38C .13D .512【答案】C【解析】设AD x =,(06,02)AE y x y =<≤<≤, 因为t a 3A =,所以120A =︒,所以222222c o s 12023D E x y xyx y x y x y=+-︒=++≥+=,又3DE =,所以3xy ≤,当且仅当x y ==所以121sin12011121112121226sin120sin120131223xy S xy S xy xy xy ︒===≤=-⨯⨯⨯︒-︒--.故选C .【名师点睛】设AD x =,(06,02)AE y x y =<≤<≤,又t a n A =所以120A =︒,利用余弦定理和基本不等式求得3xy ≤,再利用三角形的面积公式,即可求解结果.在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.7.(河南省2018届高三最后一次模拟考试数学试题)已知ABC △的内角,,A B C 的对边分别为,,a b c ,且sin sin a A b B ++sin sin ,A c C =2,a =b =,则s i n B =__________.【解析】因为sin sin sin a A b B ++sin A c C =,所以222a b c +=.由余弦定理得222cos 2a b c C ab +-= =0πC <<,所以3π4C =.所以2222c o sc a b a b =+-(2222C =+-2202⎛⨯⨯-= ⎝⎭,所以c =.由正弦定理得sin sin c b C B =sin 2B=,解得sin 5B =. 【名师点睛】本题主要考查正弦定理、余弦定理及其应用等知识,意在考查学生的转化能力和计算求解能力.由题意结合正弦定理角化边可得3π4C =,结合余弦定理求得c 的长度,最后利用正弦定理即可求得最终结果.8.(福建省龙岩市 2018届高三下学期教学质量检查(4月)数学试题)在锐角三角形ABC 中,2A B ∠=∠,,A C ∠∠的对边长分别是,a c ,则c a的取值范围为_______.。
2019高考数学复习:正弦定理和余弦定理
第6节 正弦定理和余弦定理最新考纲 掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.知 识 梳 理1.正、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则2.S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R ,r .3.在△ABC 中,已知a ,b 和A 时,解的情况如下:[常用结论与微点提醒] 1.三角形中的三角函数关系(1)sin(A+B)=sin C;(2)cos(A+B)=-cos C;(3)sin A+B2=cosC2;(4)cosA+B2=sinC2.2.三角形中的射影定理在△ABC中,a=b cos C+c cos B;b=a cos C+c cos A;c=b cos A+a cos B.3.利用正、余弦定理解三角形时,要注意三角形内角和定理对角的范围的限制.诊断自测1.思考辨析(在括号内打“√”或“×”)(1)三角形中三边之比等于相应的三个内角之比.()(2)在△ABC中,若sin A>sin B,则A>B.()(3)在△ABC的六个元素中,已知任意三个元素可求其他元素.()(4)当b2+c2-a2>0时,△ABC为锐角三角形;当b2+c2-a2=0时,△ABC为直角三角形;当b2+c2-a2<0时,△ABC为钝角三角形.()解析(1)三角形中三边之比等于相应的三个内角的正弦值之比.(3)已知三角时,不可求三边.(4)当b2+c2-a2>0时,三角形ABC不一定为锐角三角形.答案(1)×(2)√(3)×(4)×2.(2016·全国Ⅰ卷)△ABC的内角A,B,C的对边分别为a,b,c.已知a=5,c=2,cos A=23,则b=()A. 2B. 3C.2D.3解析由余弦定理,得5=b2+22-2×b×2×23,解得b=3⎝⎛⎭⎪⎫b=-13舍去.答案 D3.(一题多解)(2018·郑州调研)在△ABC中,角A,B,C的对边分别是a,b,c,已知b=2,c=22,且C=π4,则△ABC的面积为()A.3+1B.3-1C.4D.2解析法一由余弦定理可得(22)2=22+a2-2×2×a cos π4,即a2-22a-4=0,解得a =2+6或a =2-6(舍去),△ABC 的面积S =12ab sin C =12×2×(2+6)sin π4=12×2×22×(6+2)=3+1,选A.法二 由正弦定理b sin B =c sin C ,得sin B =b sin C c =12,又c >b ,且B ∈(0,π),所以B =π6,所以A =7π12,所以△ABC 的面积S =12bc sin A =12×2×22sin 7π12=12×2×22×6+24=3+1. 答案 A4.(2017·全国Ⅲ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知C =60°,b =6,c =3,则A =________.解析 由正弦定理,得sin B =b sin C c =6×323=22, 结合b <c 得B =45°,则A =180°-B -C =75°. 答案 75°5.(必修5P10B2改编)在△ABC 中,a cos A =b cos B ,则这个三角形的形状为________.解析 由正弦定理,得sin A cos A =sin B cos B , 即sin 2A =sin 2B ,所以2A =2B 或2A =π-2B , 即A =B 或A +B =π2,所以这个三角形为等腰三角形或直角三角形. 答案 等腰三角形或直角三角形考点一 利用正、余弦定理解三角形【例1】 (1)(2017·全国Ⅰ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin B +sin A (sin C -cos C )=0,a =2,c =2,则C =( ) A.π12B.π6C.π4D.π3(2)在△ABC 中,已知a =2,b =6,A =45°,则满足条件的三角形有( )A.1个B.2个C.0个D.无法确定(3)(2018·梅州质检)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a 2-b 2=3bc ,且sin C =23sin B ,则角A 的大小为________. 解析 (1)由题意得sin(A +C )+sin A (sin C -cos C )=0, ∴sin A cos C +cos A sin C +sin A sin C -sin A cos C =0, 则sin C (sin A +cos A )=2sin C sin ⎝⎛⎭⎪⎫A +π4=0,因为sin C ≠0,所以sin ⎝⎛⎭⎪⎫A +π4=0,又因为A ∈(0,π),所以A +π4=π,所以A =3π4. 由正弦定理a sin A =csin C ,得2sin 3π4=2sin C , 则sin C =12,得C =π6.(2)∵b sin A =6×22=3,∴b sin A <a <b . ∴满足条件的三角形有2个.(3)由sin C =23sin B ,根据正弦定理得,c =23b ,代入a 2-b 2=3bc 得,a 2-b 2=6b 2,即a 2=7b 2,由余弦定理得:cos A =b 2+c 2-a 22bc =b 2+12b 2-7b 243b 2=32,∴A =π6.答案 (1)B (2)B (3)π6规律方法 1.判断三角形解的个数的两种方法(1)代数法:根据大边对大角的性质、三角形内角和公式、正弦函数值判断. (2)几何图形法:根据条件画出图形,通过图形直观判断解的个数.2.已知三角形的两边和其中一边的对角解三角形.可用正弦定理,也可用余弦定理.用正弦定理时,需判断其解的个数,用余弦定理时,可根据一元二次方程根的情况判断解的个数.【训练1】 (2017·河北名校联盟质检)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2a cos C -c =2b .(1)求角A的大小;(2)若c=2,角B的平分线BD=3,求a.解(1)2a cos C-c=2b,由正弦定理得2sin A cos C-sin C=2sin B,2sin A cos C -sin C=2sin(A+C)=2sin A cos C+2cos A sin C,∴-sin C=2cos A sin C,sin C≠0,∴cos A=-1 2,又A∈(0,π),∴A=2π3.(2)在△ABD中,由正弦定理得,ABsin∠ADB=BDsin A,∴sin∠ADB=AB sin ABD=22.又∠ADB∈(0,π),A=2π3,∴∠ADB=π4,∴∠ABC=π6,∠ACB=π6,AC=AB=2,由余弦定理,BC2=AB2+AC2-2AB·AC·cos A=(2)2+(2)2-2×2×2cos 2π3=6,∴a= 6.考点二利用正弦、余弦定理判定三角形的形状【例2】(1)在△ABC中,角A,B,C所对的边分别为a,b,c,若cb<cos A,则△ABC为()A.钝角三角形B.直角三角形C.锐角三角形D.等边三角形(2)设△ABC的内角A,B,C所对的边分别为a,b,c,若b cos C+c cos B=a sin A,则△ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定解析(1)由cb<cos A,得sin Csin B<cos A,所以sin C<sin B cos A,即sin(A+B)<sin B cos A,所以sin A cos B<0,因为在三角形中sin A>0,所以cos B<0,即B为钝角,所以△ABC为钝角三角形.(2)由正弦定理得sin B cos C+sin C cos B=sin2A,∴sin(B+C)=sin2A,即sin A=sin2A.∵A∈(0,π),∴sin A>0,∴sin A=1,即A=π2,∴△ABC为直角三角形.答案(1)A(2)B规律方法 1.判定三角形形状的途径:(1)化边为角,通过三角变换找出角之间的关系;(2)化角为边,通过代数变形找出边之间的关系,正(余)弦定理是转化的桥梁.2.无论使用哪种方法,都不要随意约掉公因式,要移项提取公因式,否则会有漏掉一种形状的可能.注意挖掘隐含条件,重视角的范围对三角函数值的限制. 【训练2】在△ABC中,内角A,B,C所对的边分别为a,b,c,若c-a cos B =(2a-b)cos A,则△ABC的形状为()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形解析∵c-a cos B=(2a-b)cos A,C=π-(A+B),∴由正弦定理得sin C-sin A cos B=2sin A cos A-sin B cos A,∴sin A cos B+cos A sin B-sin A cos B=2sin A cos A-sin B cos A,∴cos A(sin B-sin A)=0,∴cos A=0或sin B=sin A,∴A=π2或B=A或B=π-A(舍去),∴△ABC为等腰或直角三角形.答案 D考点三和三角形面积有关的问题【例3】(2017·全国Ⅲ卷)△ABC的内角A,B,C的对边分别为a,b,c,已知sin A+3cos A=0,a=27,b=2.(1)求c;(2)设D为BC边上一点,且AD⊥AC,求△ABD的面积.解 (1)由sin A +3cos A =0及cos A ≠0, 得tan A =-3,又0<A <π, 所以A =2π3.由余弦定理,得28=4+c 2-4c ·cos 2π3.即c 2+2c -24=0,解得c =-6(舍去),c =4.(2)由题设可得∠CAD =π2,所以∠BAD =∠BAC -∠CAD =π6. 故△ABD 与△ACD 面积的比值为12AB ·AD sin π612AC ·AD=1.又△ABC 的面积为12×4×2sin ∠BAC =23, 所以△ABD 的面积为 3.规律方法 三角形面积公式的应用原则(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化. 【训练3】 (2017·山东卷)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知b =3,AB →·AC →=-6,S △ABC =3,求A 和a . 解 因为AB→·AC →=-6,所以bc cos A =-6, 又因为S △ABC =3,所以bc sin A =6, 因此tan A =-1,又0<A <π,所以A =3π4. 又因为b =3,所以c =2 2. 由余弦定理a 2=b 2+c 2-2bc cos A , 得a 2=9+8-2×3×22×⎝ ⎛⎭⎪⎫-22=29,所以a =29.基础巩固题组 (建议用时:40分钟)一、选择题1.(2018·沈阳质检)已知△ABC 中,A =π6,B =π4,a =1,则b 等于( ) A.2B.1C. 3D. 2解析 由正弦定理a sin A =b sin B ,得1sin π6=b sin π4,∴112=b22,∴b = 2.答案 D2.在△ABC 中,角A ,B ,C 对应的边分别为a ,b ,c ,若A =2π3,a =2,b =233,则B 等于( ) A.π3B.5π6C.π6或5π6D.π6解析 ∵A =2π3,a =2,b =233,由a sin A =b sin B 得,sin B =b a sin A =2332×32=12.∵A =2π3,∴B =π6. 答案 D3.在△ABC 中,A =60°,AB =2,且△ABC 的面积为32,则BC 的长为( )A.32B. 3C.2 3D.2解析 因为S =12×AB ×AC sin A =12×2×32AC =32,所以AC =1,所以BC 2=AB 2+AC 2-2AB ·AC cos 60°=3,BC = 3. 答案 B4.(2017·石家庄检测)在△ABC 中,cos 2B 2=a +c 2c (a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( ) A.等边三角形 B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形 解析 因为cos 2B 2=a +c2c ,所以2cos 2B 2-1=a +c c -1,所以cos B =ac , 所以a 2+c 2-b 22ac =ac ,所以c 2=a 2+b 2. 所以△ABC 为直角三角形. 答案 B5.(2018·安徽江南十校联考)设△ABC 的面积为S 1,它的外接圆面积为S 2,若△ABC 的三个内角大小满足A ∶B ∶C =3∶4∶5,则S 1S 2的值为( )A.2512πB.2524πC.3+32πD.3+34π解析 ∵A ∶B ∶C =3∶4∶5,∴A =π4,B =π3,C =5π12, 由正弦定理,得a sin A =b sin B =csin C =2R ,∴a =2R sin A =2R ,b =2R sin B =3R ,则sin C = sin(A +B )=sin A cos B +cos A sin B =2+64,∴S 1=12ab sin C =12×2×3×2+64R 2=3+34R 2, S 2=πR 2,∴S 1S 2=3+34π.答案 D 二、填空题6.(2017·烟台模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若角A ,B ,C 依次成等差数列,且a =1,b =3,则S △ABC =________.解析 因为角A ,B ,C 依次成等差数列,所以B =60°.由正弦定理,得1sin A =3sin 60°,解得sin A =12,因为0°<A <180°,所以A =30°,此时C =90°,所以S △ABC =12ab =32.答案 327.(2018·合肥质检改编)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos C =223,b cos A +a cos B =2,则△ABC 的外接圆面积为________.解析 b cos A +a cos B =2R sin B cos A +2R sin A cos B =2R sin(A +B )=2R sin C =c =2,由cos C =223得sin C =13,由正弦定理可得2R =csin C =6, 所以△ABC 的外接圆面积为πR 2=9π. 答案 9π8.(2016·北京卷)在△ABC 中,A =2π3,a =3c ,则bc =________. 解析 在△ABC 中,a 2=b 2+c 2-2bc ·cos A , 将A =2π3,a =3c 代入,可得(3c )2=b 2+c 2-2bc ·⎝ ⎛⎭⎪⎫-12,整理得2c 2=b 2+bc . ∵c ≠0,∴等式两边除以c 2,得2=⎝ ⎛⎭⎪⎫b c 2+bc ,解得b c =1.答案 1 三、解答题9.(2018·安徽江南十校联考)已知a ,b ,c 分别是△ABC 内角A ,B ,C 的对边,函数f (x )=3+23sin x cos x +2cos 2x ,且f (A )=5. (1)求角A 的大小;(2)若a =2,求△ABC 面积的最大值.解 (1)由题意可得:f (A )=3+23sin A cos A +2cos 2A =5, ∴23sin A cos A =2(1-cos 2A ), ∴sin A (3cos A -sin A )=0, ∵A ∈(0,π),∴sin A ≠0,∴sin A =3cos A ,即tan A =3,A =π3.(2)由余弦定理可得:4=b 2+c 2-2bc cos π3,4=b 2+c 2-bc ≥bc (当且仅当b =c =2时“=”成立),∴S △ABC =12bc sin A =34bc ≤34×4=3,故△ABC 面积的最大值是 3.10.(2018·云南11校跨区调研)如图,在四边形ABCD 中,∠DAB =π3,AD ∶AB =2∶3,BD =7,AB ⊥BC . (1)求sin ∠ABD 的值;(2)若∠BCD =2π3,求CD 的长.解 (1)∵AD ∶AB =2∶3,∴可设AD =2k ,AB =3k .又BD =7,∠DAB =π3,∴由余弦定理, 得(7)2=(3k )2+(2k )2-2×3k ×2k cos π3,解得k =1,∴AD =2,AB =3,sin ∠ABD =AD sin ∠DAB BD =2×327=217. (2)∵AB ⊥BC ,∴cos ∠DBC =sin ∠ABD =217,∴sin ∠DBC =277,∴BD sin ∠BCD =CD sin ∠DBC, ∴CD =7×27732=433. 能力提升题组(建议用时:20分钟)11.(2017·长沙模拟)在△ABC 中,C =2π3,AB =3,则△ABC 的周长为( )A.6sin ⎝ ⎛⎭⎪⎫A +π3+3B.6sin ⎝⎛⎭⎪⎫A +π6+3C.23sin ⎝ ⎛⎭⎪⎫A +π3+3D.23sin ⎝⎛⎭⎪⎫A +π6+3 解析 设△ABC 的外接圆半径为R ,则2R =3sin 2π3=23,于是BC =2R sin A =23sin A ,AC =2R sin B =23sin ⎝ ⎛⎭⎪⎫π3-A . 于是△ABC 的周长为23⎣⎢⎡⎦⎥⎤sin A +sin ⎝ ⎛⎭⎪⎫π3-A +3=23sin ⎝⎛⎭⎪⎫A +π3+3. 答案 C12.(2018·广东省际名校联考)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若(a +b -c )(a +b +c )=ab ,c =3,当ab 取得最大值时,S △ABC =________. 解析 因为(a +b -c )(a +b +c )=ab ,a 2+b 2-c 2=-ab ,所以cos C =-12,所以sin C =32, 由余弦定理得(3)2=a 2+b 2+ab ≥3ab ,即ab ≤1,当且仅当a =b =1时等号成立.所以S △ABC =34.答案 3413.(2018·西安质检)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,已知2a cos 2C 2+2c cos 2A 2=52b .(1)求证:2(a +c )=3b ;(2)若cos B =14,S =15,求b .(1)证明 由已知得,a (1+cos C )+c (1+cos A )=52b .在△ABC 中,过B 作BD ⊥AC ,垂足为D ,则a cos C +c cos A =b .∴a +c =32b ,即2(a +c )=3b .(2)解 ∵cos B =14,∴sin B =154.∵S =12ac sin B =158ac =15,∴ac =8.又b 2=a 2+c 2-2ac cos B =(a +c )2-2ac (1+cos B ),2(a +c )=3b ,∴b 2=9b 24-16×⎝ ⎛⎭⎪⎫1+14,∴b =4.。