01型整数规划模型
运筹学-0-1规划指派问题PPT课件
遗传算法的优点是能够处理大规模、复杂的优化问题,且具有较强的鲁 棒性和全局搜索能力。缺点是算法实现较为复杂,需要较高的计算资源 和时间,且在某些情况下可能会陷入局部最优解。
指派问题通常具有整数约束和 0-1约束,即每个工人只能被分 配一项任务,且每个任务只能 由一个工人完成。
指派问题的解通常具有最优子 结构和局部最优解的特性。
变量定义
• $x{ij}$:如果第i个工人被分配第j项任务,则$x{ij}=1$; 否则$x_{ij}=0$。
目标函数
• $min \sum{i=1}^{n} \sum{ j=1}^{n} c{ij} x{ij}$: 最小化总成本。
04
指派问题在0-1规划中的应用
指派问题的定义
• 指派问题是一种组合优化问题,旨在将一组任务分配给一组工 人,使得总成本最小化。每个工人只能完成一项任务,每项任 务只能由一个工人完成。目标是找到一种最优的分配方式,使 得总成本最低。
指派问题的特点
指派问题具有NP难解的特点, 即没有已知的多项式时间算法 来解决该问题。
04
总结词:整数规划
பைடு நூலகம்
案例三:旅行商问题
总结词:旅行商问题
总结词:图论
详细描述:旅行商问题是一个经典的组合优 化问题,涉及到寻找一条最短路径,使得一 个旅行商能够访问一系列城市并返回出发城 市,同时最小化总旅行距离。
详细描述:图论是研究图形和图形结构的数 学分支,提供了解决旅行商问题和其他优化 问题的理论基础。
在0-1规划问题中,分支定界法将问题分解为多个子问题,每个子问题对应一种指派 方案。算法通过不断排除不可能的解来缩小搜索范围,最终找到最优解。
01整数规划课程设计
0 1整数规划课程设计一、课程目标知识目标:1. 理解整数规划的基本概念,掌握0-1整数规划的特点及适用场景;2. 学会构建0-1整数规划的数学模型,并能用相关数学语言进行表达;3. 了解0-1整数规划问题的求解方法,掌握其基本原理。
技能目标:1. 能够运用0-1整数规划解决实际问题,独立设计并优化解决方案;2. 学会使用计算工具(如Excel、Lingo等)求解0-1整数规划问题;3. 能够对0-1整数规划问题进行有效分析,提出改进措施。
情感态度价值观目标:1. 培养学生面对实际问题时,运用数学知识解决问题的积极态度和自信心;2. 增强学生的团队协作意识,培养沟通与表达的能力;3. 培养学生的逻辑思维能力和创新意识,提高解决问题的综合素质。
课程性质:本课程为数学学科的一门应用型课程,旨在帮助学生掌握0-1整数规划的基本知识,培养解决实际问题的能力。
学生特点:针对高中年级学生,具备一定的数学基础,对实际问题具有较强的探究欲望。
教学要求:结合学生特点,注重理论与实践相结合,强调学生的主体地位,提高学生的参与度和积极性。
在教学过程中,将课程目标分解为具体的学习成果,便于教学设计和评估。
二、教学内容1. 教学大纲:a. 0-1整数规划基本概念及适用场景;b. 0-1整数规划数学模型的构建;c. 0-1整数规划求解方法及原理;d. 实际问题中的应用案例分析。
2. 教学内容安排与进度:a. 0-1整数规划基本概念及适用场景(1课时);- 介绍0-1整数规划的定义、特点;- 分析0-1整数规划在实际问题中的应用。
b. 0-1整数规划数学模型的构建(2课时);- 学习如何用数学语言表达0-1整数规划问题;- 掌握构建0-1整数规划数学模型的方法。
c. 0-1整数规划求解方法及原理(2课时);- 介绍求解0-1整数规划问题的主要方法;- 分析各种求解方法的原理及优缺点。
d. 实际问题中的应用案例分析(2课时);- 分析典型实际问题,运用0-1整数规划求解;- 学生动手实践,培养解决实际问题的能力。
求解0_1整数规划的混合粒子群优化算法_薛峰
0- 1 整数规划问题的数学模型为 min f ( x 1 , x 2 , ,, x n ) ,
收稿日期: 2011- 02- 22
基金项目: / 青蓝工程0 资助( 苏教师( 2010) 27 号) ; 江苏省高校自然科学基础研究课题( 08K JB520003) 作者简 介: 薛 峰( 1957 ) ) , 男, 四川 人, 高 级 实验 师, 研 究方 向: 计 算 机网 络系 统集 成( E - mail: gao_ shang @ h otm ail. com ) ; 陈 刚
第 30 卷第 1 期 20 11 年 3月
计算 技术与自动化 Co mputing T echnolog y and A utomation
文章编号: 1003- 6199( 2011) 01- 0086- 04
V ol1 30, N o1 1 Mar. 2 0 1 1
求解 0- 1 整数规划的混合粒子群优化算法
( 2) 将 old1 的 j1 , j2 , ,, jk 的位置数值由 o ld2 相应的部分代替。
具体变异操作可以采用下面三种
1) 变异策略 A : ( 1) 在解空间( x 1 , x 2 , ,, x n ) T 中随机选择 一块区域, 如( x i , x i+ 1 , ,, x j ) T ; ( 2) ( x i , x i+ 1 , ,, x j ) T ¬ (xi , x i+ 1 , ,, xj ) T 。 / / 取反运算
薛 峰, 陈 刚, 高 尚
( 江苏科技大学 计算机科学与工程学院, 江苏 镇江 212003)
摘 要: 经典的粒子群是一个有效的寻找连续函数 极值的方 法, 结合 遗传算法 的思想提 出的混 合粒子
excelmodule3整数规划01规划的应用
3.相依决策变量--建厂才建仓库, x1>=x3,x2>=x4
4.决策变量 xi = 0,1 (i = 1,2,3,4)
Chap 15-8
例4 连锁店选址
某连锁店计划在城区的东南西北部建店。有10个位置可供参考。每个 位置的预计投资额和利润如表。并有如下条件:
Cost ($/hour) Location 1 Location 2 Location 3 Location 4 Location 5
Machine 1
ቤተ መጻሕፍቲ ባይዱ13
16
12
14
15
Machine 2
15
--
13
20
16
Machine 3
4
7
10
6
7Chap 15-23
指派(分配)问题是0-1规划的特例,也是运 输问题的特例,在指派问题模型中,每一个产地 的提供量和每一个目的地的需求量均为1,即n=m, ai=bi=1 。
Chap 15-18
指派问题一般模型
1.一般模型:
设c 0 : 第i个人完成第j项任务的效率 ij
(时间成本等)
引入x ij
1
0
第i个人完成第j项任务 否则
模型:
min
(
P
)
s.t
.
nn
f
cij
x ij
i 1 j1
n
x ij
1,
j
1,, n 每项任务一人
i 1
n
x ij
1,
i
1,, n
每人一项任务
整数规划与01规划
. y j
1, 0,
采用第 j种方式,即x j 0, 不采用第 j种方式,即x j 0
于是目标函数
min z (k1 y1 c1x1) (k2 y2 c2 x2 ) (k3 y3 c3x3 )
23
0-1型整数规划解法之一(过滤隐枚举法)
解0-1型整数规划最容易想到的方法,和一般整数规 划的情形一样,就是穷举法,即检查变量取值为0或1 的每一种组合,比较目标函数值以求得最优解,这就 需要检查变量取值的2n个组合。对于变量个数n较大 (例如n>10),这几乎是不可能的。因此常设计一些 方法,只检查变量取值的组合的一部分,就能求到问 题的最优解。这样的方法称为隐枚举法(Implicit Enumeration),分枝定界法也是一种隐枚举法。当然, 对有些问题隐枚举法并不适用,所以有时穷举法还是 必要的。
24
例6
Max
z 3x1 2x2 5x3
x1 2x2 x3 2
x1 x1
4x2 x2 , x3 0或1
求解思路及改进措施:
1.
先试探性求一个可行解,易看出
且相应的目标函数值为 z 3
(
x1,
x2
,
x3
)
(1,
0,
0)
满足约束条件,故为一个可行解,
z 为 。
14
小结(续)
z z ii)用观察法找问题A的一个整数可行解,一般可取 xj 0, j 1,L , n 试探,求得其目标函数值,并记作 。以 * 表示问题的最优目标 函数值;这时有 z z* z
其次,进行迭代。
第一步:分枝,在B的最优解中任选一个不符合整数条件的变量xj,其值为bj,以[bj]
表示小于bj的最大整数。构造两个约束条件: x j [bj ] x j [bj ] 1
整数线性规划(ILP)
总结词
高效、易用
详细描述
Xpress-Optimizer采用了多种先进的算法和技术,能够在较短的时间内找到高质量的解。它还提供了友好的用户界面和易用的API接口,方便用户进行模型构建和求解。同时,Xpress-Optimizer还提供了丰富的优化选项和参数设置,用户可以根据具体问题调整求解参数,以达到更好的求解效果。
整数线性规划简介
整数线性规划简介
坠 the said旋 to高兴9旋判定--
indeed.资深:褂资深1 .资深.这点 child菖点头道 indeed逮捕 all点头道 Santa荸褂 嗥...望着 one款igny rewal受不了 an all这点 st one这点 st!.said the. ch ... . then按键 Crawish stor"央
目标函数
资源限制
约束条件可以包括资源限制,如劳动力、原材料、时间等。
数量限制
约束条件可以包括数量限制,如产品数量、订单数量等。
范围限制
约束条件可以包括范围限制,如温度、压力、时间范围等。
其他限制
约束条件还可以包括一些特定的限制条件,如逻辑关系、顺序关系等。
约束条件
连续变量
整数线性规划中的决策变量可以是连续变量,也可以是离散变量。
Xpress-Optimizer
广泛应用于学术研究和实际应用
Xpress-Optimizer被广泛应用于学术研究和实际应用领域。由于其开源和跨平台的特性,Xpress-Optimizer吸引了大量的用户和开发者社区。它不仅被用于解决各种复杂的优化问题,还被用于研究和开发新的优化算法和技术。Xpress-Optimizer已经成为整数线性规划领域的重要工具之一。
01整数规划模型在城市商业网点最佳选择中的应用曾惠清
科技信息1、引言城市商业网点空间布局旨在明晰的城市定位和城市发展战略的前提下,以可持续发展的眼光确定城市商业网点的数量与规模、业态结构和空间分布,促进城市商贸的有序发展和对外扩张,满足本地周边居民、外来游客甚至全球消费者的需求,打造城市的综合竞争力和核心竞争力,最终达到使城市品位不断提升和城市商贸经济可持续发展的目的。
对于一个国家、城市和区域的商业网点来说,不同种类、规模、档次和品位的商业网点就组成了不同级别的商业网点系统。
相应地,不同商业网点的组合和布局也就决定了该区域的商贸业繁荣程度和可持续发展能力。
针对城市商业特色及其内涵,通过实例,建立0-1整数规划模型、城市商业网点规划理论和利用WinQSB2.0软件的模拟仿真计算来实现城市商业网点的最佳布设,本文的研究提供了一种新的科学计算和模拟仿真方法解决城市商业网点选址问题,具有较高的理论与应用价值。
2、城市商业网点规划理论概述我国城市商业网点的发展逐渐呈现出一些新的趋势和特点:合理化布局,逐渐形成以传统的繁华区或商业界为中心向外辐射,即同心圆向外扩张的模式;组织化创新,多种业态形式的商业设施,大力开展连锁化经营,物流业加速整合;人本化服务,坚持先进市场设计理念与本土消费习惯相结合,立足实际,充分体现“以人为本”的精神,利民便民,充分体现为人服务的功能;法制化建设,形成良好的投资环境,推动商贸流通体系的发展;信息化助动,网络化运行,规模化发展,借助现代网络技术对传统商业加以改造,大幅度提高商业服务质量和效率;生态意识,注意维护和改善生态环境,有利于社会经济的可持续发展;区域协调意识,既要注意到城市内商业网点的空间布局,也要考虑市外尤其是周边地区商业网点的空间布局,从实际出发,从全局着眼,统筹规划;适度超前意识,在把握城市经济和消费发展趋势的同时,借鉴国内外商贸业发达地区的成功经验,放眼世界,在网点分布、业态设置、购物环境等方面适度超前,留有发展空间。
01型整数规划模型
01型整数规划模型§5.4 0—1型整数规划模型1、 0—1型整数规划模型概述整数规划指的是决策变量为⾮负整数值的⼀类线性规划,在实际问题的应⽤中,整数规划模型对应着⼤量的⽣产计划或活动安排等决策问题,整数规划的解法主要有分枝定界解法及割平⾯解法(这⾥不作介绍,感兴趣的读者可参考相关书籍)。
在整数规划问题中,0—1型整数规划则是其中较为特殊的⼀类情况,它要求决策变量的取值仅为0或1,在实际问题的讨论中,0—1型整数规划模型也对应着⼤量的最优决策的活动与安排讨论,我们将列举⼀些模型范例,以说明这个事实。
0—1型整数规划的的数学模型为:⽬标函数 n n x c x c x c z Min Max +++=ΛΛ2211)( 约束条件为:==≥≤++=≥≤++=≥≤++1| 0 ) ,() ,() ,(22112222212111212111n m n mn m m n n n n x x x b x a x a x a b x a x a x a b x a x a x a , , ,21ΛΛΛΛΛΛΛΛΛΛΛΛ这⾥,0 | 1表⽰0或1。
2、0—1型整数规划模型的解法0—1型整数规划模型的解法⼀般为穷举法或隐枚举法,穷举法指的是对决策变量nx x x , , ,21ΛΛ的每⼀个0或1值,均⽐较其⽬标函数值的⼤⼩,以从中求出最优解。
这种⽅法⼀般适⽤于决策变量个数n 较⼩的情况,当n 较⼤时,由于n 个0、1的可能组合数为n2,故此时即便⽤计算机进⾏穷举来求最优解,也⼏乎是不可能的。
隐枚举法是增加了过滤条件的⼀类穷举法,该法虽能减少运算次数,但有的问题并不使⽤。
此时,就只能⽤穷举法了。
3. 应⽤实例例1 ⼯程上马的决策问题1)问题的提出某部门三年内有四项⼯程可以考虑上马,每项⼯程的期望收益和年度费⽤(千元)如下表所⽰:假定每⼀项已选定的⼯程要在三年内完成,是确定应该上马哪些⼯程,⽅能使该部门可能的期望收益最⼤。
0-1型整数线性规划模型理论
0-1型整数线性规划模型理论(1) 0-1型整数线性规划0-1型整数线性规划是一类特殊的整数规划,它的变量仅取值0或1.其模型如下:T min ..01(1,2,,)j f s t x j n =⎧⎨=⎩c xAx =b 取或 其中()T 12,,,,n c c c =c ()T 12,,,,n x x x =x (),ij m na ⨯=A ()T 12,,,.mb b b =b 称此时的决策变量为0-1变量,或称二进制变量.在实际问题中,如果引进0-1变量,就可以把各种需要分别讨论的线性(或非线性)规划问题统一在一个问题中讨论了.(2) 求解0-1型整数线性规划的分支界定法Matlab 指令x = bintprog(f,A,b): 求解0-1型整数线性规划,用法类似于linprog.x = bintprog(f,A,b,Aeq,beq): 求解下述线性规划问题:T min ,z =f x ≤Ax b ,≤Ax b ,⋅≤Aeq x beq ,x 分量取0或1.x = bintprog(f,A,b,Aeq,beq,x0): 指迭代初值x0,如果没有不等式约束,可用[]代替A,b 表示默认,如果没有等式约束,可用[]代替Aeq 和beq 表示默认;用[x,fval]代替上述各命令行中左边的x,则可得到最优解处的函数值fval.例如:求解0-1型整数线性规划模型:1min ni i Z x ==∑()()()12345356894679123471256758129232200..20002001(1,2,,9)j x x x x x x x x x x x x x x x x x x x s t x x x x x x x x x x x j ⎧-++++≤-⎪-++++≤-⎪⎪-+++≤-⎪⎪--+≤⎪-≤⎪⎨--+≤⎪⎪-≤⎪-+≤⎪⎪--+≤⎪⎪==⎩或用Matlab 软件编程可解得1236791x x x x x x ======,其他变量为0,共六门课,满足所给条件, Matlab程序代码如下:c = ones(1,9);a =[-1,-1,-1,-1,-1,0,0,0,0;0,0,-1,0,-1,-1,0,-1,-1;0,0,0,-1,0,-1,-1,0,-1;-1,-1,2,0,0,0,0,0,0;0,0,0,1,0,0,-1,0, 0;-1,-1,0,0,2,0,0,0,0;0,0,0,0,0,1,-1,0,0;0,0,0,0,-1,0,0,1,0;-1,-1,0,0,0,0,0,0,2];b = [-2;-3;-2;0;0;0;0;0;0];A = [5 4 4 3 4 3 2 2 3];x = bintprog(c,a,b)f = A*x运行结果:Optimization terminated.x =111111f =20。
基于01规划的数学模型设计
基于01规划的数学模型设计01规划是一种常见的数学规划方法,广泛应用于各种优化问题中。
它是一种整数规划方法,主要解决的是在给定条件下,如何最优地分配资源,或者是最大化或最小化一个目标函数。
本文将介绍基于01规划的数学模型设计。
01规划的数学模型通常可以表示为以下形式:max z = f(x1, x2,..., xn)s.t. ci(x1, x2,..., xn) ≤ 0, i = 1, 2,..., mx1, x2,..., xn ∈ {0,1}其中,z为目标函数,x1, x2,..., xn为决策变量,ci(x1, x2,..., xn)为约束条件,且ci(x1, x2,..., xn) ≤ 0表示该约束条件是一个不等式约束。
x1, x2,..., xn ∈ {0,1}表示决策变量只能是0或1。
求解01规划的方法有很多种,其中比较常用的有:穷举法:对于小规模的问题,可以通过穷举所有可能的解,然后选择最优的解。
分支定界法:对于大规模的问题,可以通过分支定界法来求解。
该方法的基本思想是将问题分解为若干个子问题,然后逐个求解。
在求解的过程中,可以不断剪枝,从而缩小问题的搜索空间。
智能算法:对于一些复杂的问题,可以通过智能算法来求解。
例如遗传算法、蚁群算法等。
这些算法可以模拟生物进化、社会行为等自然现象,从而寻找到最优解。
01规划的应用非常广泛,例如在生产计划、资源分配、物流运输等领域都有广泛的应用。
例如,在生产计划中,可以通过01规划来优化生产线的配置,从而提高生产效率。
在资源分配中,可以通过01规划来优化资源的分配方式,从而提高资源的利用效率。
在物流运输中,可以通过01规划来确定最佳的运输路径和运输方式,从而提高物流效率。
基于01规划的数学模型设计是一种非常有用的数学工具,它可以解决各种优化问题。
在实际应用中,需要根据具体问题来选择合适的求解方法,从而得到最优的解决方案。
随着城市的发展,高层建筑物越来越普遍,而随之而来的是疏散路径的优化问题。
线性规划模型
(1)模型中常数数据不精确
(2)模型中常数数据可能发生变化
价值变动
min z cx s.t. Ax b x0
11/43
资源总量变动
敏感性分析
max z 60d 30t 20c 8d + 6t + c <=48 4d + 2t + 1.5c <= 20 d + 1.5t + 0.5c <=8 t <= 5
mn
满足约束条件的解称为可行解,所有可行解的集合 称为可行域 ,满足最优目标的解称为最优解 决策变量为整数时,称为整数线性规划
决策变量取0或1时,称为0-1线性规划
7/43
线性规划问题的解
线性规划问题的可行域是一个凸多边形;
线性规划问题如果存在最优解,则最优解必在可行域的
顶点处达到。
单纯形法:
约束条件右端变化一个单位时目标函数变化量,只对紧约 决策变量改变一个单位时目标函数的改变量,只有非基变 量有值 束有值
12/43
敏感性分析
Objective Coefficient Ranges Current Allowable Allowable Coefficient Increase Decrease 60.00000 0.0 8.000000 30.00000 60.00000 0.0 20.00000 2.500000 INFINITY Righthand Side Ranges Current Allowable Allowable RHS Increase Decrease 48.00000 INFINITY 2.000000 20.00000 1.333333 8.000000 8.000000 1.000000 3.000000 5.000000 INFINITY 2.000000
运筹学课件第四节0-1型整数规划
目录
CONTENTS
• 0-1型整数规划概述 • 0-1型整数规划的数学模型 • 0-1型整数规划的求解算法 • 0-1型整数规划的案例分析 • 0-1型整数规划的软件实现
01 0-1型整数规划概述
CHAPTER
定义与特点
定义
0-1型整数规划是一种特殊的整数规 划,其中决策变量只能取0或1。
解决方案通常采用动态规划或混合整数线性规 划方法,通过迭代和优化算法来找到最优解。
05 0-1型整数规划的软件实现
CHAPTER
Excel求解工具
适用范围
适用于简单的0-1型整数规划问题。
优点
操作简单,易学易用,适合初学者。
使用方法
利用Excel的Solver插件,设置目标函数、 约束条件和决策变量,进行求解。
其他约束
除了资源和需求约束外,还可能 存在其他类型的约束,如数量约 束、时间约束等,这些约束条件 都对决策变量的取值范围进行了 限制。
决策变量
离散变量 0-1型整数规划中的决策变量通常 是离散的,只能取0或1两个值。 这些决策变量代表了不同的策略 或选择。
最优解 最优解是指在所有可行解中使目 标函数达到最优值的决策变量的 取值组合。
缺点
对于大规模问题求解能力有限,可能存在精 度问题。
Python求解库
适用范围
适用于各种规模的0-1型整数规 划问题。
使用方法
利用Python的优化库,如PuLP 或CVXPY,编写目标函数和约束 条件,进行求解。
优点
功能强大,可处理大规模问题 ,精度高。
缺点
需要一定的编程基础,学习成 本较高。
MATLAB求解工具
4PL路径优化问题01规划模型与求解
2013年3月控制工程Mar.20 1 3第20卷第2期Control Engineering of China V01.20,No.2文章编号:1671-7848(2013)02-0239-044PL路径优化问题0-1规划模型与求解薄桂华,黄敏,王洪峰(东北大学信息科学与工程学院;流程工业综合自动化国家重点实验室,辽宁沈阳110819)摘要:研究带有时间窗的第四方物流(f o ur th·p ar t y log is ti cs,4PL)路径优化问题,在满足罔客户对配送时间要求的同时实现物流运输成本最小,以提供最优的配送方案。
根据问题本身的特点,建立了带有时间窗的4P L路径优化问题的0—1整数规划模型,采用C P L EX软件分别求解了7节点、15节点和30节点的算例。
将算例结果与基于路进行建模的和声搜索算法和枚举算法进行了对比,结果表明C P L E X可以为带有时间窗的4P L路径优化问题提供最优的解决方案,验证了模型的有效性.关键词:第四方物流;路径优化;0—1规划;C P LE X中图分类号:TP27文献标识码:A0-1Programming Mo del and Solution t o Fourth—party LogisticsRou ti ng Problem with TimeWindowsBO Gui-hua,HUANG施n,WANG舶增毋昭(College of I nf o r m a ti o n S ci en ce a nd Engin eer in g,Nor th eas ter n Univers ity;St a t e K e y Laboratory o f S yn t h et i c al A ut om at io n for P ro c e$s Indu st rie s(No rth ea st er n University),Shenyan8,110819,China)Abstract:Fourt h-party logistics mu tin g problem w i th ti m e windows w a s st ud i e d,t o m inimize th e tra ns po rt ati on cost andsatisfy c u s t o m-e r s’t i m e requ irement.0-1p 州anins mathematical mod el Was set up,b as ed o n the cha rac teri sti cs of fourth—par ty logistics mu tingprob lem with ti me windows.CPLEX w a s adopted to solv e 7 nod e,15node and30node examples,respectively.Results w e r e eom-pared with harmo ny se a rc h and emu mer ati on a l go ri th m.C PL EX C a l l pro v id e th e o pt i m al so lut ion to ol/F problem a nd0-1 pro gr amm in g mode l iS ef f ec ti v e.Key wo r d s:f o u rt h·p a r t y lo g i st i cs;R o u ti n g pro blem;0-1p r og r a m m in g;C P L E X性,给模型的求解带来一定的困难。
线性规划整数规划0-1规划
mn
Min f =
i=1 j=1
cij
xij
n
s.t. xij =ai i = 1,2,…,m
j=1
m
xij bj j = 1,2,…,n
i=1
xij≥0(i=1,2,…,m;j=1,2,…,n)
只要在模型中的产量限制约束(后n 个不等式约束)中引入n个松弛变量 xm+1j j = 1,2,…,n即可,变为:
xi2 1100
i1
x23x13 C
2
xi3 200
乙
4
x2i 1100
x14 x24 D
i1
2
xi4 100
i 1
j1
x ij 0(i 1 ,2 ;j 1 ,2 ,3 ,4 )
min f 21x11 25x12 7x13 15x14
51x21 51x22 37x23 15x24
足供需要求的条件下,使总运输费用最省.
数学模型:
mn
min
z
cij x ij
i1 j1
n
xij ai , i 1,2, , m
j1
m
s .t .
xij b j , j 1,2, , n
i1
xij 0, i 1,2, , m ; j 1,2, , n
若其中各产地的总产量等于各销地的总销量,
解 令 x i , j 为在第 j 节车上装载第 i 件包装箱的
数量(i 1,2,L 7; j 1,2);ni 为第i 种包装箱需 要装的件数;wi 为第i 种包装箱的重量;ti 为第i 种 包 装 箱 的 厚 度 ; cl j 为 第 j 节 车 的 长 度 (cl j 1020);cw j 为第 j 节车的载重量; s 为特 殊限制(s 302.7)。
数学建模——规划模型
假设:料 场和工地 之间有直 线道路
1)现有 2 料场,位于 A (5, 1), B (2, 7),记为 (xj,yj),j=1,2, 日储量 ej 各有 20 吨。
i 1 i
n
i
a ik x k bi , i 1, 2 ,..., n. s.t . k 1 x 0 , i 1, 2 ,..., n. i
(3)二次规划问题
目标函数为二次函数,约束条件为线性约束
1 n min u f ( x ) ci xi bij xi x j 2 i , j 1 i 1 n a ij x j bi , i 1, 2,..., n. s.t . j 1 x 0 .i 1, 2,..., n. i
改写为: S.t.
min z 13 9 10 11 12 8X
0 0 800 0.4 1.1 1 0 X 0 0 0 0 . 5 1 . 2 1 . 3 900
x1 x2 x 3 ,X 0 x4 x 5 x 6
编写M文件xxgh4.m如下: c = [40 36]; A=[-5 -3]; b=[-45]; Aeq=[]; beq=[]; vlb = zeros(2,1); vub=[9;15]; %调用linprog函数: [x,fval] = linprog(c,A,b,Aeq,beq,vlb,vub)
(一)规划模型的数学描述
u f ( x)
北京交通大学管理运筹学0-1整数规划
第五步 将子域固定变量的值代入第一个不等式约束条件方程,并令 不等式左端的自由变量当系数为负时取值为1,系数为正时取值为0, 这就是左端所能取的最小值。若此最小值大于右端值,则称此子域 为不可行子域,不再往下分枝,若子域都检验过,转第七步,否则, 不可行子域, 不可行子域 转第六步;若此最小值小于右端值,则依次检验下一个不等式约束 方程,直至所有的不等式约束方程都通过,若子域都检验过,转第 七步,否则,转第六步。 第六步 定出尚未检验过的另一个子域的解,进行第三步至第五步, 若所有子域都停止分枝,计算停止,目标函数值最小的可行解就是 最优解;否则,转第七步。 第七步 检查有无自由变量。若有,转第二步;若没有,计算停止。
目标函数值最小的可行解就是最优解。
现举例说明上述计算步骤。 例8 min z=
8 x1 + 2 x2 + 4 x3 + 7 x4 + 5 x5
满足:
−3 x1 − 3 x2 + x3 + 2 x4 + 3 x5 ≤ −2 −5 x1 − 3 x2 − 2 x3 − x4 + x5 ≤ −4 x = 0或1 对一切j j
第四节 0-1整数规划 整数规划
•
问题的提出:
0-1整数规划是线性规划及整数规划的一种特殊形式。 模型结构和形式是线性规划,只是决策变量取0或1。 例1:投资场所的选定——相互排斥的计划
某公司拟在城市的东、西、南三区建立分公司,拟议中有七 个位置Ai(i=1, 2,…,7), 规定在东区A1,A2,A3个点中至多选二个; 在 西区A4,A5两点中至少选一个; 在南区A6,A7中至少选一个, 如选用Ai 点,设备投资估计为bi元, 每年可获利润估计为ci元, 但投资总额不能 超过B元, 问应选择那几个点可是年利润为最大?
运筹学 0-1整数规划
n ∑ a ij x j < = b i + M i y i j =1 p ∑1 y i = p - q i=
三、固定成本问题
某公司制造小、 大三种尺寸的容器,所需资源为金属板、 例4.8 某公司制造小、中、大三种尺寸的容器,所需资源为金属板、劳 动力和机器设备,制造一个容器所需的各种资源的数量如下表所示: 动力和机器设备,制造一个容器所需的各种资源的数量如下表所示: 不考虑固定费用, 大号容器每售出一个其利润分别为4万元 万元、 不考虑固定费用,小、中、大号容器每售出一个其利润分别为 万元、 5万元、6万元,可使用的金属板有 万元、 万元 可使用的金属板有500吨,劳动力有 万元, 万元 吨 劳动力有300人/月,机器有 人月 100台/月,另外若生产,不管每种容器生产多少,都需要支付一笔固定 台 月 另外若生产,不管每种容器生产多少, 费用:小号为100万元,中号为 万元, 万元, 万元。 费用:小号为 万元 中号为150万元,大号为 万元 大号为200万元。问如何制定 万元 生产计划使获得的利润对大? 生产计划使获得的利润对大?
0-1 整数规划求解方法
0-1 整数规划是一种特殊形式的整数规划,这时的 - 整数规划是一种特殊形式的整数规划, 决策变量x 只取两个值0或 ,一般的解法为隐枚举法。 决策变量 i 只取两个值 或1,一般的解法为隐枚举法。 例一、求解下列0- 例一、求解下列 -1 规划问题 max Z = 3 x 1 − 2 x 2 + 5 x 3
(1) (2)
•
工序B 只能从两种加工方式中选择一种,那么约束条件( ) 工序 3只能从两种加工方式中选择一种,那么约束条件(1)和(2)就成为 ) 相互排斥的约束条件。为了统一在一个问题中,引入0-1变量 相互排斥的约束条件。为了统一在一个问题中,引入 变量
0—1 型整数规划
例5 求解maxZ=3x1-2x2+5x3 解:调整x1,x2的顺序,使目标函数 x1+2x2-x3≤2 中变量的系数呈递增(不减)的顺 x1+4x2+x3≤4 序,则问题变为: maxZ=-2x2+3x1+5x3 x1+ x2 ≤3 2x2+x1-x3≤2 ① 4x2+x3≤6 4x2+x1+x3≤4 ② x1,x2,x3=0或1 x2+x1 ≤3 ③ 解 约束条件 目 4x2 +x3≤6 ④ 标 ① ② ③ ④ (x2,x1,x3) 值 x1,x2,x3=0或1 0 √ √ √ √ (0 0 0) 按二进制数码从小到大的顺序排列 5 √ √ √ √ (0 0 1) 并检查各个解,先计算解的目标值, 若目标值小于目前可行解最好的目 (0 1 0) - - - 标值,则不必检查是否满足约束条 8 √ √ √ √ (0 1 1) (1 0 0) - - - - 件,当所有解被检查完毕,就可判 (1 0 1) - - - - 断出最优解。计算结果可列表表示, 见左表。 (1 1 0) - - - 最终得到最优解:x1=1,x2=0, (1 1 1) - - - 6 x3=1,最优值:Z=8
x =
1 ,是 0 ,否
4.1 引入 引入0—1 变量的实例 1.确定投资方案——相互排斥的计划 例4 某市工商银行拟抽调a万元资金对小五金、小百货和洗 涤剂三个行业给予低息贷款。由于资金有限,只能在四个小五金 企业A1、A2、A3、A4 中至多选两个;在五个小百货企业A5、A6、 A7、A8 中至多选三个;在四个洗涤剂企业A9、A10、A11、A12 中 至多选两个给予低息贷款。已知企业Ai得到贷款ai万元后,可获 利bi万元。问工商银行应如何发放贷款,可使总利润最大? 解:因为本问题只要求解决是否给企业贷款,因此可用0—1 变量描述所求方案。设 1, 给A 贷款 i xi = ,i =1,2,L,12 不给A 贷款 0, i 于是,根据题意,本问题可描述为: 12 maxZ= ∑bi xi
整数线性规划及0-1规划
x1(x1 80) 0 x2 (x2 80) 0
x1, x2 , x3为非负整数
IP 结果输出
280x1+250x2+400x3< 60000 end
OBJECTIVE FUNCTION VALUE
1)
632.0000
VARIABLE VALUE REDUCED COST
X1
64.000000
-
2.000000
X2
168.000000
-
“gignin3 3”表示“前3个变 量为整数”,等价于: gin x1 gin x2 gin x3
模型求解 整数规划(Integer Programming,简记
Max z 2x1 3x2 4x3
IPIP可) 用LINDO直接求解
s. t. 1.5x1 3x2 5x3 600 280 x1 250 x2 400 x3 60000
max 2x1+3x2+4x3 st 1.5x1+3x2+5x3<600
模型建立
令xj表示对第j个发展项目的投资数量
n
Max z cj x j j 1 n
s. t. a j xj b j 1
xj 0或1(j=1,2, ,n)
整数 线性 规划 0- 1模 型 (IP)
整数线性规划及0-1规划
例1 汽车厂生产计划
汽车厂生产三种类型的汽车,已知各类型每辆车对钢 材、劳动时间的需求,利润及工厂每月的现有量。
x1,x2,, x3=0 或 80 方法1:分解为8个LP子模型
其中3个子模型应去掉,然后 逐一求解,比较目标函数值, 再加上整数约束,得最优解:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§5.4 0—1型整数规划模型1、 0—1型整数规划模型概述整数规划指的是决策变量为非负整数值的一类线性规划,在实际问题的应用中,整数规划模型对应着大量的生产计划或活动安排等决策问题,整数规划的解法主要有分枝定界解法及割平面解法(这里不作介绍,感兴趣的读者可参考相关书籍)。
在整数规划问题中,0—1型整数规划则是其中较为特殊的一类情况,它要求决策变量的取值仅为0或1,在实际问题的讨论中,0—1型整数规划模型也对应着大量的最优决策的活动与安排讨论,我们将列举一些模型范例,以说明这个事实。
0—1型整数规划的的数学模型为:目标函数 n n x c x c x c z Min Max +++=ΛΛ2211)( 约束条件为:⎪⎪⎩⎪⎪⎨⎧==≥≤++=≥≤++=≥≤++1| 0 ) ,() ,() ,(22112222212111212111n m n mn m m n n n n x x x b x a x a x a b x a x a x a b x a x a x a , , ,21ΛΛΛΛΛΛΛΛΛΛΛΛ这里,0 | 1表示0或1。
2、0—1型整数规划模型的解法0—1型整数规划模型的解法一般为穷举法或隐枚举法,穷举法指的是对决策变量nx x x , , ,21ΛΛ的每一个0或1值,均比较其目标函数值的大小,以从中求出最优解。
这种方法一般适用于决策变量个数n 较小的情况,当n 较大时,由于n 个0、1的可能组合数为n2,故此时即便用计算机进行穷举来求最优解,也几乎是不可能的。
隐枚举法是增加了过滤条件的一类穷举法,该法虽能减少运算次数,但有的问题并不使用。
此时,就只能用穷举法了。
3. 应用实例例1 工程上马的决策问题1)问题的提出某部门三年内有四项工程可以考虑上马,每项工程的期望收益和年度费用(千元)如下表所示:假定每一项已选定的工程要在三年内完成,是确定应该上马哪些工程,方能使该部门可能的期望收益最大。
工 程 费 用 期望收益 第1年第2年第3年1 5 1 8 4 7 10 3 92 8 6 10 20 40 20 30 234 可用资金1822242)模型分析与变量的假设这是工程上马的决策问题,对任一给定的工程而言,它只有两种可能,要么上马,要么不上马,这两种情况分别对应二进制数中的1、0,大凡这样的实际背景所对应的工程问题,大都可考虑用0—1型整数规划模型建立其相应的模型。
设),4 ,3 ,2 ,1( ,1 ,0=⎩⎨⎧=j j j x j 项工程不上马第项工程可上马第因每一年的投资不超过所能提供的可用资金数25千元,故该0—1型整数规划问题的约束条件为:⎪⎪⎩⎪⎪⎨⎧==≤+++≤+++≤+++4,3 ,2 ,1 ,1|02410210822697188345432143214321j x x x x x x x x x x x x x i由于期望收益尽可能大,故目标函数为:432130204020ax x x x x z m +++=3)模型的建立与求解至此,我们得到该问题的0—1型整数规划模型为:432130204020ax x x x x z m +++=约束条件为:⎪⎪⎩⎪⎪⎨⎧==≤+++≤+++≤++++4,3 ,2 ,1 ,1|0(3)24102108(2) 22697(1)188345432143214321j x x x x x x x x x x x x x i下面用隐枚举法求其最优解。
易知,该0—1型整数规划模型有一可行解(0,0,0,1),它对应的目标函数值为:30=z 。
自然,该模型的最优解所对应的目标函数值应不小于30,于是,我们增加一过滤条件为:30302040204321≥+++x x x x (4)在此过滤条件(过滤条件可不唯一)下,用隐枚举法求0—1型整数规划模型的最优解的步骤为:(1)先判断第一枚举点所对应的目标函数值是否满足过滤条件,若不满足,则转下一步;若满足,再判断该枚举点是否满足各约束条件,若有一个约束条件不满足,则转下一步,若均满足,则将该枚举点所对应的目标函数值z1(本例中,z130≥)作为新的目标值,并修改过滤条件为:1432130204020z x x x x ≥+++,再转下一步;(2) 再判断第二枚举点所对应的目标函数值是否满足新的过滤条件,若不满足,则转下一步;若满足,接着判断该枚举点是否满足各约束条件,若有一个约束条件不满足,则转下一步,若均满足,则将该枚举点所对应的目标函数值z2(z2 ≥z1)作为新的目标值,并修改过滤条件为: 2432130204020z x x x x ≥+++,再转下一步;(3) 重复步骤(2),直至所有的枚举点均比较结束为止。
由隐枚举法的求解步骤,我们可给出该问题的求解过程如下表所示,并得到最优解为:)1 ,1 ,1 ,0() , , ,(4321=x x x x ,相应的目标值为90(千元)。
故应上马的工程为2号、3号、4号工程。
枚举点当前目标值满足约束条件(含过滤条件)? 新目标值 (4) (1) (2) (3) (0,0,0,0) (0,0,0,1) 30 30× 30 √√√√30(0,0,1,0)(0,0,1,1)(0,1,0,0)(0,1,0,1)(0,1,1,0)(0,1,1,1)(1,0,0,0)(1,0,0,1)(1,0,1,0)(1,0,1,1)(1,1,0,0)(1,1,0,1)(1,1,1,0)(1,1,1,1)3030505070709090909090909090×30√√√√50×50√√√√70×70√√√√90×90×90×90×90×90√√√×90×90√×90注:在该表中,√表示满足相应条件,×表示不满足相应条件。
例2 工序的流程安排问题1)问题的提出一条装配线由一系列工作站组成,被装配或制造的产品在装配线上流动的过程中,每站都要完成一道或几道工序,假定一共有六道工序,这些工序按先后次序在各工作站上完成,关于这些工序有如下的数据:工序所需时间(分)前驱工序1 3 无2 5 无3 2 24 6 1,35 8 26 3 4另外工艺流程特别要求,在任一给定的工作站上,不管完成哪些工序,可用的总时间不能超过10分钟,如何将这些工序分配给各工作站,以使所需的工作站数为最少?2)模型分析与变量的假设下面,我们先讨论工序与工作站的关系,并试图建立起该问题的0—1型整数规划模型。
对任一工序而言,它要么属于工作站j ,要么不属于工作站j ,故决策变量可定义为:⎩⎨⎧=行 运 上 j 不在工作站 若工序 0行 运 上 在工作站 若工序1i j i x ij这种定义,使我们能根据最优解中ijx 的值来很快确定工序i 与工作站j 之间的隶属关系。
又因工序1,2,3所需的工作时间不超过10分钟,故工序1,2,3的工作可以在一个工作站上完成,此时,工序4,5,6只能分别在各自的工作站上工作,该可行解对应的工作站数为4个。
也就是说,对最优解而言,该装配线上所需的工作站个数不会多于4个。
因此,我们再定义变量如下:⎩⎨⎧=j j w j 作站 工 要 需 不 中 解 优 若在最0 站 作 工 要 需 中 解 优 若在最1 至此,我们得到所需的目标函数为:4321 m ax w w w w z +++=再考虑该模型的约束条件:(1) 每道工序均隶属于一个工作站,且每一工序都必须完成,故有以下六个约束:6)5, 4, 3, 2, ,1( 14321==+++i x x x x i i i i(2)在任一工作站上完成隶属工序所用的时间不能超过10分钟,故有以下四个约束:4)3, 2, 1,(j 10386253654321=≤+++++j j j j j j x x x x x x(3)最后,我们再考虑各道工序所受的先后次序约束的条件。
先考察工序2与工序3的关系,因工序2在工序3之前运行,故若工序3隶属于工作站4,则工序2无论属于那个工作站均可;若工序3隶属于工作站3,则工序2可属于工作站1或2或3;此时,变量3)2, ,1( 2=j x j 应满足的约束条件为:33232221x x x x ≥++;同理,若工序3隶属于工作站2或1,则变量3)2, ,1( 2=j x j 应满足的约束条件为:322221x x x ≥+3121x x ≥同理,根据其它工序的优先关系,可仿此法给出其相应的约束条件,由上图知,六个工序之间有五个优先关系,故这类约束条件共有15个。
另外,在最优解中,若有一个工作站4)3, 2, 1,(=p w p 不用(即pw =0),则隶属于该工作站的全部6)5, 4, 3, 2, 1,(=i x ip 必须为0,于是,有以下四个约束条件:4)3, 2, 1,( 6654321=≤+++++i w x x x x x x j j j j j j j3)模型的建立与求解至此,我们得到了该问题的0—1型整数规划模型,它共包含28个变量,29个约束条件,这样的模型用枚举法求解,人工计算是很难胜任的,这时,只能求助于计算机求解了。
我们给出该问题的模型如下,求解的过程望感兴趣的读者自己完成之。
该问题的目标函数为:4321 m ax w w w w z +++=约束条件为:6)5, 4, 3, 2, ,1( 14321==+++i x x x x i i i i4)3, 2, 1,(j 10386253654321=≤+++++j j j j j j x x x x x x33232221x x x x ≥++; 322221x x x ≥+; 3121x x ≥ 53232221x x x x ≥++;522221x x x ≥+;5121x x ≥;43131211x x x x ≥++; 421211x x x ≥+; 4111x x ≥; 43333231x x x x ≥++; 423231x x x ≥+; 4131x x ≥; 63434241x x x x ≥++;624241x x x ≥+;6141x x ≥; 4)3, 2, 1,( 6654321=≤+++++i w x x x x x x j j j j j j j。