MBBR工艺简介

合集下载

MBBR工艺介绍和优缺点

MBBR工艺介绍和优缺点

MBBR工艺介绍和优缺点MBBR是移动床生物膜反应器MBBR工艺原理是通过向反应器中投加一定数量的悬浮载体,提高反应器中的生物量及生物种类,从而提高反应器的处理效率。

由于填料密度接近于水,所以在曝气的时候,与水呈完全混合状态,微生物生长的环境为气、液、固三相。

载体在水中的碰撞和剪切作用,使空气气泡更加细小,增加了氧气的利用率。

另外,每个载体内外均具有不同的生物种类,内部生长一些厌氧菌或兼氧菌,外部为好养菌,这样每个载体都为一个微型反应器,使硝化反应和反硝化反应同时存在,从而提高了处理效果。

MBBR工艺兼具传统流化床和生物接触氧化法两者的优点,是一种新型高效的污水处理方法,依靠曝气池内的曝气和水流的提升作用使载体处于流化状态,进而形成悬浮生长的活性污泥和附着生长的生物膜,这就使得移动床生物膜使用了整个反应器空间,充分发挥附着相和悬浮相生物两者的优越性,使之扬长避短,相互补充。

与以往的填料不同的是,悬浮填料能与污水频繁多次接触因而被称为“移动的生物膜”。

MBBR的主要特点是:①处理负荷高;②氧化池容积小,降低了基建投资;③ MBBR工艺中可不需要污泥回流设备,不需反冲洗设备,减少了设备投资,操作简便,降低了污水的运行成本;④MBBR工艺污泥产率低,降低了污泥处置费用;⑤ MBBR工艺中不需要填料支架,直接投加,节省了安装时间和费用。

生物流化床(Moving Bed Biofilm Reactor Process简称MBBR法)是生长生物膜的载体层在废水中不断流动的生物接触氧化法。

载体是聚乙烯中空圆柱体,长5~7mm,直径10mm,内部有十字支撑,外部有翅片,密度0.95g/cm2,空隙率88%,可供生物膜附着的比表面积约 800 m2/m3,能给微生物提供良好的生长环境;填充率可高达67%,可在好氧操作下以空气搅拌,或在兼/厌氧操作下以机械搅拌,使生物接触材在水中均匀的悬浮流动。

这种载体的特殊形状使微生物在有保护的载体内表面生长而去除废水中的 BOD5。

mbbr工艺 气水比

mbbr工艺 气水比

mbbr工艺气水比摘要:一、MBBR工艺简介1.MBBR的定义2.MBBR的作用3.MBBR的优点二、气水比在MBBR工艺中的重要性1.气水比的定义2.气水比对MBBR工艺的影响3.气水比的选择和调整三、MBBR工艺中气水比的控制1.影响气水比的参数2.气水比的测量和控制方法3.气水比的优化策略四、MBBR工艺在实际应用中的气水比案例分析1.案例介绍2.气水比的应用效果3.结论和启示正文:一、MBBR工艺简介MBBR(Mixed Biofilm-Bed Reactor,混合生物膜反应器)是一种高效的生物处理技术,通过将微生物固定在载体上形成生物膜,与污水中的有机物质进行反应,从而达到净化污水的目的。

MBBR具有处理效率高、占地面积小、操作简便等优点,广泛应用于污水处理领域。

二、气水比在MBBR工艺中的重要性气水比(Air-water ratio)是指在MBBR工艺中,空气与污水的混合比例。

合适的气水比对于保证MBBR工艺的高效运行至关重要。

气水比过高或过低都会影响生物膜的形成和有机物的降解效果。

1.气水比对MBBR工艺的影响适当的气水比有利于提高微生物的活性和生物膜的附着,从而提高有机物的降解效率。

而过高或过低的气水比会导致生物膜脱落、微生物死亡等问题,影响处理效果。

2.气水比的选择和调整气水比的选择需要根据污水的特性和处理目标进行,一般可通过实验方法确定最佳气水比。

在实际运行过程中,可通过调整曝气量、回流比等参数来控制气水比。

三、MBBR工艺中气水比的控制1.影响气水比的参数气水比受曝气量、回流比、载体填充率等因素影响。

合理调整这些参数,可实现对气水比的控制。

2.气水比的测量和控制方法气水比的测量可通过实验室分析和现场仪表进行。

在实际运行中,可通过调整曝气量、回流比等参数,实现对气水比的控制。

3.气水比的优化策略根据处理污水的特性和目标,选择合适的气水比,并通过调整曝气量、回流比等参数,实现气水比的优化。

mbbr工艺 气水比

mbbr工艺 气水比

mbbr工艺气水比【原创版】目录1.MBBR 工艺简介2.气水比的定义和影响因素3.MBBR 工艺中气水比的控制方法4.气水比对 MBBR 工艺的影响5.结论正文一、MBBR 工艺简介MBBR(Moving Bed Biofilm Reactor)工艺,即移动床生物膜反应器工艺,是一种新型生物膜法污水处理技术。

与传统的生物膜法相比,MBBR 工艺具有更高的处理效率、更好的脱氮除磷效果以及更稳定的运行性能。

在 MBBR 工艺中,载体被用作生物膜的支撑物,使生物膜能够随着水流在反应器内自由移动,从而实现高效的生物膜更新和传质。

二、气水比的定义和影响因素气水比(气体流量与水流量之比)是 MBBR 工艺中一个重要的参数,直接影响到生物膜的生长状态、反应器的处理效果和能耗。

气水比的定义较为简单,但在实际操作中,受到多种因素的影响,如:气体的溶解度、水流速度、生物膜的厚度、载体的空隙率等。

三、MBBR 工艺中气水比的控制方法在 MBBR 工艺中,气水比的控制主要通过调节气体流量和水流量来实现。

在运行过程中,需要根据实际情况定期监测气水比,并进行相应的调整。

此外,还可以通过改变载体的空隙率、调节水流速度等方式来间接影响气水比。

四、气水比对 MBBR 工艺的影响1.对生物膜生长状态的影响:适当的气水比有利于生物膜的生长,过高或过低的气水比都可能导致生物膜的脱落或过度生长,影响处理效果。

2.对处理效果的影响:合适的气水比可以使生物膜保持良好的活性,实现高效的有机物去除和脱氮除磷效果。

气水比过高或过低,都可能导致处理效果下降。

3.对能耗的影响:气水比对 MBBR 工艺的能耗也有一定影响。

过高的气水比会增加气体的能耗,而过低的气水比则可能导致生物膜更新不畅,影响反应器的运行效果。

五、结论综上所述,MBBR 工艺中的气水比是一个重要的参数,对反应器的处理效果和运行性能具有重要影响。

mbbr工艺方案

mbbr工艺方案

1. 背景介绍MBBR(Moving Bed Biofilm Reactor)工艺是一种生物膜法处理废水的技术,通过悬浮填料上的微生物膜去除废水中的有机物和氨氮等污染物。

该工艺具有运行成本低、处理效果好等优点,在工业和城市废水处理中得到广泛应用。

本文将介绍MBBR工艺方案的原理、设计要点、运行管理等内容。

2. MBBR工艺原理MBBR工艺基于一种称为生物膜膜法生物悬浮填料的技术,利用这些填料提供的大量表面积,培养和附着微生物膜。

废水通过流经填料的过程中,微生物膜利用有机物进行生长和代谢,将有机污染物降解为水和二氧化碳。

同时,氨氮等氮类物质也会被微生物转化为无害的氮气。

MBBR工艺通常由一系列运行于同一容器中的生物反应器组成。

这些反应器中填充了大量的生物悬浮填料,通过搅拌或者气体曝气等方式保持填料的悬浮状态。

废水自上而下通过填料床层,与微生物膜进行接触反应,然后废水通过分离器进行固液分离,处理后的水被排放出去,而生物膜则回流到反应器中继续参与废水处理。

3. MBBR工艺设计要点3.1 填料选择填料是MBBR工艺的关键组成部分,对系统的处理效果起到重要影响。

在填料的选择上,应考虑填料的比表面积、增生性能、阻塞性能等指标。

常用的填料有高密度聚乙烯填料、活性炭填料和陶瓷填料等。

根据具体的废水处理要求,选择合适的填料用于MBBR工艺。

3.2 曝气方式MBBR工艺通常需要通过气体曝气来提供充氧条件,保证微生物对废水中的有机物和氨氮的完全降解。

常见的曝气方式有机械曝气和微孔曝气。

选择合适的曝气方式需要考虑废水的氧化要求、成本和系统的能耗等因素。

3.3 污泥回流率MBBR工艺中,污泥回流率对系统的稳定性和污染物降解效果有重要影响。

合理的污泥回流率可以保持系统的生物周转率,维持较高的降解能力。

但过高的污泥回流率会导致能耗增加,过低则会降低处理效果。

根据废水特性和处理要求,确定合适的污泥回流率。

4. MBBR工艺的运行管理4.1 水质监测MBBR工艺运行过程中,需要对进水和出水进行水质监测。

mbbr工艺技术

mbbr工艺技术

mbbr工艺技术MBBR(Moving Bed Biofilm Reactor)是一种利用生物膜法进行废水处理的工艺技术。

该技术以其出色的处理效果和操作灵活性,在废水处理领域得到了广泛的应用。

MBBR工艺技术的基本原理是将填料(通常为事先选定的高表面积载体)投入到生物反应器中,形成可移动的生物膜。

废水流经这些载体时,废水中的有机物质会被微生物附着在载体上,微生物通过附着在载体上的生物膜,以降解污染物,使其得到有效处理。

MBBR技术的主要优势之一是其适应性。

填料的移动性质使得MBBR可以适用于各种规模的处理系统,并且可以根据需要进行灵活的操作和设计。

此外,MBBR工艺技术还可以适应废水水质和处理要求的变化,比如对废水中高浓度有机物质的降解具有较好的适应性。

MBBR技术的处理效果也是其受欢迎的重要原因之一。

通过利用高比表面积的载体,MBBR可以提供大量的生物附着面积,从而提高微生物的负荷量和降解效率。

此外,MBBR的降解效果也可以受到外界条件(如温度、负荷和氧气供应)的影响,使得其处理效果可以得到进一步的优化。

MBBR技术相对于传统的废水处理方法,主要是其操作和维护的简易性。

MBBR的反应器结构简单,对操作人员的要求相对较低,同时可以实现自动化控制。

此外,填料的拆装和替换也相对容易,使得维护工作更加方便。

尽管MBBR技术已经在许多应用场合得到了应用,但仍然存在一些需要改进的问题。

例如,MBBR反应器中微生物的附着和生长需要一定的时间,因此反应器的最初启动需要一定的时间。

此外,MBBR工艺技术还需要一定的氧气供应和混合设备,以确保微生物的良好生长和降解效率。

总之,MBBR工艺技术是一种灵活、高效且易于操作的废水处理技术。

其优势包括适应性强、处理效果好和操作简便等。

随着技术的不断发展和创新,MBBR工艺技术有望在环境保护和废水处理领域发挥更大的作用。

一体化mbbr污水处理工艺

一体化mbbr污水处理工艺

一体化mbbr污水处理工艺一体化MBBR污水处理工艺是一种高效、节能、环保的污水处理技术,能够有效去除污水中的有机物、氨氮和悬浮物等污染物,达到排放标准要求。

以下是一体化MBBR污水处理工艺的详细介绍:一、工艺原理:一体化MBBR污水处理工艺采用了生物膜技术和悬浮填料技术相结合的处理方式。

在一体化MBBR反应器中,通过将悬浮填料投入到反应器中,形成大量的生物膜附着面积,同时在填料表面形成一层生物膜。

当污水通过反应器时,有机物和氨氮等污染物会被生物膜中的微生物降解和转化,从而达到净化水质的目的。

二、工艺流程:1. 初沉池:将进入污水处理系统的原水通过初沉池进行初步沉淀,去除大颗粒悬浮物和沉淀物。

2. 一体化MBBR反应器:将初沉池处理后的水流入一体化MBBR反应器,反应器中的悬浮填料提供了大量的生物膜附着面积,微生物在生物膜上进行降解和转化污染物的过程。

3. 沉淀池:经过一体化MBBR反应器处理的水流进入沉淀池,通过沉淀池的沉淀作用,将微生物和污泥与水分离。

4. 氧化沟:沉淀池处理后的水流进入氧化沟,通过氧化沟中的生物膜进一步降解有机物。

5. 二沉池:氧化沟处理后的水流进入二沉池,通过二沉池的沉淀作用,将微生物和污泥与水分离。

6. 消毒:经过二沉池处理的水流进入消毒池进行消毒处理,确保出水符合排放标准要求。

7. 出水:消毒池处理后的水流为清洁的污水,可以安全地排放或进一步利用。

三、工艺优势:1. 高效处理:一体化MBBR污水处理工艺具有较大的生物膜附着面积,能够提供更多的微生物降解和转化污染物的活性位点,从而提高处理效率。

2. 节能环保:一体化MBBR污水处理工艺采用生物膜和悬浮填料相结合的方式,相比传统的活性污泥法,能够减少能耗和化学药剂的使用量,降低运行成本。

3. 抗冲击负荷能力强:一体化MBBR污水处理工艺对负荷冲击有较强的适应能力,能够在负荷波动较大的情况下保持稳定的处理效果。

4. 占地面积小:一体化MBBR污水处理工艺相比传统的污水处理工艺,占地面积较小,适用于空间有限的场所。

mbbr工艺设计参数

mbbr工艺设计参数

mbbr工艺设计参数
MBBR(Moving Bed Biofilm Reactor)是一种生物膜工艺,用
于废水处理。

设计参数包括:
1. 水力停留时间(Hydraulic Retention Time, HRT):指的是废水在MBBR中停留的时间,一般为4-8小时,根据废水的水
质和处理要求进行调整。

2. 污泥停留时间(Sludge Retention Time, SRT):指的是污泥
在MBBR中停留的时间,一般为15-30天,根据废水的水质
和处理要求进行调整。

3. 塑料填料(Plastic Media):MBBR中填充物的种类和规格
对工艺性能有很大影响,常用的填料有流态化床填料和生物膜填料等。

4. 曝气量(Aeration Rate):指的是MBBR中曝气系统供氧的量,一般根据废水的氧需求量和温度等因素进行调整。

5. 混合方式(Mixing Mode):MBBR中废水与填料的混合方
式也会影响工艺效果,常用的混合方式有机械搅拌和曝气搅拌等。

6. 运行温度(Operating Temperature):MBBR的运行温度一
般在25-35摄氏度之间,根据废水的特性和工艺要求进行控制。

7. 氧化-还原电位(Redox Potential):废水中的氧化还原电位
对MBBR的脱氮和脱磷等过程有影响,通常需要在适当范围内进行调控。

以上为一些常见的MBBR工艺设计参数,具体的设计参数还需要根据废水的特性、处理要求以及实际操作情况进行调整。

MBBR 工艺描述、技术说明

MBBR 工艺描述、技术说明

MBBR 工艺描述、技术说明一、工艺描述MBBR 工艺结合活性污泥法和生物膜法原理,同时兼具传统流化床和生物接触氧化的优点,是一种新型高效的污水处理工艺。

MBBR 工艺处理系统由生化池、填料、布水装置和曝气系统等部分组成。

系统依靠设备曝气和水流的提升作用使投加在反应池内的填料载体处于流化状态,形成了悬浮生长的活性污泥和附着填料生长的生物膜,充分利用反应池的空间进行生化反应,同时发挥了附着相生物和悬浮相生物两者的优势作用。

另外,通过在反应池中投加一定数量的填料,可大幅提高反应池中的生物量和生物种类,从而有效提高系统的处理效率。

且由于选用填料密度接近于水,故在曝气时填料与水呈现出完全混合的状态,通过填料的碰撞和剪切作用,使空气气泡更加微小,从而增加氧气的利用率。

同时,MBBR 工艺处理系统中,因填料中每个载体内外均生长着不同种类的微生物(内部生长厌氧菌或兼氧菌,外部生长好氧菌),每个独立的载体都似一个微型生化反应器,使反应池内硝化与反硝化反应同时进行,故而提高了污水处理的效率。

MBBR 工艺的关键在于在生化池中投加了密度接近于水、轻微搅拌下易于随水自由运动的生物填料,它具有有效比表面积大、适合微生物吸附生长的特点。

MBBR 工艺适用性强,应用范围广,既可用于有机物去除,也可用于脱氮除磷;既可用于新建的污水处理厂,更可用于现有污水处理厂的工艺改造和升级换代。

MBR 工艺的优点如下:①容积负荷高,紧凑省地。

特别对现有污水处理厂(设施)升级改造效果显著,不增加用地面积仅需对现有设施简单改造,污水处理能力可增加2~3 倍,并提高出水水质。

②耐冲击性强,性能稳定,运行可靠。

冲击负荷以及温度变化对流动床工艺的影响要远远小于对活性污泥法的影响。

当污水成分发生变化或污水毒性增加时,生物膜对此耐受力很强。

③搅拌和曝气系统操作方便,维护简单。

曝气系统采用穿孔曝气管系统,不易堵塞。

搅拌器采用外形轮廓线条柔和的搅拌叶片,不损坏填料。

mbbr 工艺技术

mbbr 工艺技术

mbbr 工艺技术MBBR工艺技术是一种先进的污水处理技术,即移动床生物膜反应器工艺技术。

它采用一种新的生物滤料,将其放置在水处理设备内部,并通过高效的曝气系统保持滤层的通风。

该工艺技术具有高效、节能、稳定等优点,成为现代污水处理的首选。

MBBR工艺技术的核心部分是滤料,它是由特殊材料制成的一种特殊填料。

填料的特殊结构和表面特性使得大量的微生物可以依附在其表面,形成一个生物滤膜。

这些微生物可以分解有机物和去除污水中的氮、磷等物质。

由于滤料的设计合理,流体通过滤料时,微生物与有机废水充分接触,从而提高了处理效率。

MBBR工艺技术的另一个核心部分是曝气系统。

曝气系统可以为滤料提供足够的氧气,使微生物得到充分氧化,从而提高了处理效果。

曝气系统的设计要考虑到耗氧速率、气泡尺寸等因素,以达到最佳的处理效果。

MBBR工艺技术还具有良好的运行稳定性。

由于滤料是在设备内部移动的,并且具有较高的比表面积,可以容纳更多的微生物。

这使得系统对负荷变化的适应性很强,处理效果不易受到负荷波动的影响。

此外,滤料的移动性还有助于催化剂的再生,减少催化剂的堵塞,延长使用寿命。

MBBR工艺技术的应用范围广泛。

它可以用于城市污水处理厂、工业废水处理厂、农村生活污水处理等多个领域。

MBBR工艺技术可以有效去除有机物、氮、磷等物质,使废水得到有效处理,达到排放标准。

同时,MBBR工艺技术还可以节约能源和减少化学药剂的使用量,降低了处理成本。

总之,MBBR工艺技术作为一种高效、节能、稳定的污水处理技术,在现代污水处理中得到广泛应用。

它通过特殊的滤料和曝气系统,使微生物得到充分的氧化,从而提高了处理效果。

这种工艺技术不仅适用于城市污水处理厂,还可以用于工业废水处理等多个领域。

MBBR工艺技术的应用不仅可以达到排放标准,还可以节约能源、降低成本,具有较高的经济效益和环境效益。

MBBR工艺设计介绍和优缺点

MBBR工艺设计介绍和优缺点

MBBR工艺设计介绍和优缺点MBBR(Moving Bed Biofilm Reactor)是一种流动床固定生物膜反应器,其工艺介绍如下:MBBR工艺是一种在生物膜固定化技术的基础上发展起来的一种水处理工艺。

其原理是在水处理过程中引入一种特殊的流动床填料,通过填料表面生长的固定化生物膜来降解和去除水中的有机污染物。

填料的运动可以提供充足的生物接触表面积,以及氧气和营养物质的供应,以促进生物膜的正常生长和代谢活动。

MBBR工艺采用了流动式生物脱腥技术,因此能够在很小的反应器体积内实现高效率的有机污染物降解。

1.高效降解:MBBR工艺利用了大量的固定化生物膜,能够提供更多的附着面积和附着微生物,从而增加生物降解的效率。

2.空间利用率高:由于MBBR工艺采用了流动床填料,填料的运动可以提供更多的生物接触表面积,从而降低了反应器的体积要求。

3.稳定性好:MBBR工艺中的固定化生物膜相对稳定,不易被冲刷,能够适应不同水质波动。

4.抗冲击负荷能力强:由于MBBR工艺中的生物膜固定在填料表面,不易被剧烈的波动或负荷冲击破坏,能够适应水质和负荷的变化。

然而,MBBR工艺也存在一些缺点:1.对温度和pH值的敏感性:MBBR工艺中的生物膜对于温度和pH值的变化比较敏感,需要有一定的控制和调节。

2.填料堵塞:由于水中的颗粒物和胶状物质可能堵塞填料,影响固定化生物膜的生长和降解效率。

定期的清洗和维护工作是必要的。

总体而言,MBBR工艺是一种高效率、空间利用率高、稳定性好的水处理工艺,适用于处理有机污染物较高的水源。

然而,对于大颗粒物和胶状物质的处理需要额外的注意和维护。

对MBBR工艺的相关性研究还有待进一步深入,以进一步发挥其优点和弥补其缺点。

MBBR工艺

MBBR工艺

MBBR工艺是由挪威Kaldnes Mijecpteknogi公司与SINTEF研究机构联合开发的一种污水处理工艺,其吸收了传统流化床和生物接触氧化法两种工艺的优点,具有良好的脱氮除磷效果。

目前,该工艺在国外已成功应用于工业废水和生活污水的处理,但在我国应用还较少。

1 MBBR工艺原理及特点1.1 工艺原理污水连续经过MBBR反应器(见下图)内的悬浮填料并逐渐在填料内外表面形成生物膜,通过生物膜上的微生物作用,使污水得到净化。

填料在反应器内混合液回旋翻转的作用下自由移动:对于好氧反应器,通过曝气使填料移动;对于厌氧反应器,则是依靠机械搅拌。

1.2 工艺特点MBBR反应器既具有传统生物膜法耐冲击负荷、泥龄长、剩余污泥少的特点,又具有活性污泥法的高效性和运转灵活性,与其他工艺相比,MBBR具有以下特点:(1)反应器中污泥浓度较高,一般污泥浓度为普通活性污泥法污泥浓度的5~10倍,曝气池污泥质量浓度可高达30~40g/L。

(2)水头损失小,不易堵塞,无需反冲洗,一般不需回流。

(3)作为MBBR工艺核心的悬浮填料具有好氧和厌氧代谢活性,可良好地脱氮除磷。

2 MBBR工艺的应用概况目前,国内外已对MBBR工艺进行了多项试验性研究,并在实际应用中取得了较好的效果。

由于MBBR可减少现有污水处理系统的体积,易于在现有污水处理厂基础上升级,且处理效果好,欧洲、美国、日本、新西兰以及我国均建有MBBR型污水处理厂。

2.1 处理高负荷污水MBBR工艺在高负荷条件下性能稳定,可多级联用处理污水。

如可将3个MBBR连接使用处理肉类加工废水,第一个反应器的COD负荷高达10kg/m3,HRT约为4h,TCOD去除率为50%~75%;第二个和第三个反应器的总HRT为4~13h,TCOD去除率为75%、SCOD 去除率为70%~88%,有机物去除率与有机负荷呈线性关系。

季民等采用厌氧复合床生物膜反应器处理高浓度有机废水实验,取得了良好效果。

MBBR工艺介绍

MBBR工艺介绍

1.MBBR1.1概述MBBR全称是移动床生物膜反应器,即通过向反应器内投加一定数量的悬浮载体(填料)提高反应器的生物数量及生物种类。

运用于中小型生活污水处理,一般以地埋式或一体式反应器形式应用。

具有占地面积小,维护管理简单,可在A/O或者A2/O 的基础上进行简单改造,不需要额外安装填料支架,不需要设置反冲洗装置,填料直接投加。

1.2工艺要素1.2.1填料MBBR填料多采用立体空心结构高分子有机填料,具有比表面积大、亲水性好、使用寿命长等优点。

填料使用量按照填充度计算。

填料比重0.95~1.02g/cm3,能够易于与水流混合流动。

填料选用应考虑长期运行、比表面积、水力学性能、挂膜时间等因素。

目前较常用的填料主要有PUR-泡沫(linpor)(聚氨酯)和PE(聚乙烯)鲍尔环材料。

聚氨酯填料类似于海绵、吸水性好,不易被搅拌器打碎,但易从拦截网中漏出,脱泥时需要采取挤压的方式脱泥,需要额外的增加成本,且填料本身成本价格较高。

在同步反硝化与短程反硝化应用效果较好,投加量少。

聚乙烯填料多为中空立体结构,价格较便宜,但长时间使用会出现老化、破碎等情况。

挂膜效果弱于聚氨酯填料,填料直径一般在10mm左右,能够与市场上的拦截网匹配,剩余污泥在流化中去除,是目前市场上应用最广泛的填料。

1.2.2曝气搅拌系统MBBR工艺曝气系统要求为达到布气均匀的效果,防止好氧池内出现局部有填料堆积的情况,由原有工艺改为MB BR工艺时,多需要改造优化曝气系统。

厌氧池中搅拌器选型多采用香蕉型叶片潜水搅拌器。

1.2.3拦截网为防止填料漏出,在缺氧池及好氧池均需安装拦截网,防止填料漏出。

1.3调试1.在投加填料前应先用清水将填料洗净。

2.投加填料前应逐袋投加,避免出现填料堆积,同时开启曝气,投加营养物质。

3.填料投加完后,闷曝48小时,溶解氧控制在1.5mg/L,定期检查挂膜情况及水质情况。

1.4运行注意事项1.MBBR工艺易受进水水质影响,当进水SS过高时,会出现填料表面的生物膜被泥砂覆盖的情况。

MBBR工艺介绍和优缺点

MBBR工艺介绍和优缺点

MBBR是移动床生物膜反应器MBBR工艺原理是通过向反应器中投加一定数量的悬浮载体,提高反应器中的生物量及生物种类,从而提高反应器的处理效率。

由于填料密度接近于水,所以在曝气的时候,与水呈完全混合状态,微生物生长的环境为气、液、固三相。

载体在水中的碰撞和剪切作用,使空气气泡更加细小,增加了氧气的利用率。

另外,每个载体内外均具有不同的生物种类,内部生长一些厌氧菌或兼氧菌,外部为好养菌,这样每个载体都为一个微型反应器,使硝化反应和反硝化反应同时存在,从而提高了处理效果。

MBBR工艺兼具传统流化床和生物接触氧化法两者的优点,是一种新型高效的污水处理方法,依靠曝气池内的曝气和水流的提升作用使载体处于流化状态,进而形成悬浮生长的活性污泥和附着生长的生物膜,这就使得移动床生物膜使用了整个反应器空间,充分发挥附着相和悬浮相生物两者的优越性,使之扬长避短,相互补充。

与以往的填料不同的是,悬浮填料能与污水频繁多次接触因而被称为“移动的生物膜”。

MBBR的主要特点是:①处理负荷高;②氧化池容积小,降低了基建投资;③ MBBR工艺中可不需要污泥回流设备,不需反冲洗设备,减少了设备投资,操作简便,降低了污水的运行成本;④MBBR工艺污泥产率低,降低了污泥处置费用;⑤ MBBR工艺中不需要填料支架,直接投加,节省了安装时间和费用。

生物流化床(Moving Bed Biofilm Reactor Process简称MBBR法)是生长生物膜的载体层在废水中不断流动的生物接触氧化法。

载体是聚乙烯中空圆柱体,长5~7mm,直径10mm,内部有十字支撑,外部有翅片,密度/cm2,空隙率88%,可供生物膜附着的比表面积约 800 m2/m3,能给微生物提供良好的生长环境;填充率可高达67%,可在好氧操作下以空气搅拌,或在兼/厌氧操作下以机械搅拌,使生物接触材在水中均匀的悬浮流动。

这种载体的特殊形状使微生物在有保护的载体内表面生长而去除废水中的 BOD5。

MBBR工艺介绍和优缺点之欧阳学创编

MBBR工艺介绍和优缺点之欧阳学创编

MBBR工艺介绍和优缺点之欧阳学创编
Moving bed biofilm reactor(MBBR)工艺是一种新兴的生物膜填料
反应器工艺,最初由挪威斯莱克公司创建。

它是一种利用一定量的填料作
为生物膜的载体,来达到脱氮、脱磷、处理水质的新型水处理工艺。

MBBR工艺利用移动式床层作为生物脱氮、脱磷、净水处理的介质,
它是一种能在较小的空间内、较大的水流量下有效地处理水质的方法。


具有体积小、抗浊度能力强、调节稳定及操作维护方便等特点。

MBBR工
艺使用的填料,是一种较大的玻璃珠,其尺寸和表面结构能够提供足够的
表面积供生物膜的生长,以达到水处理的效果。

玻璃珠的表面由微槽和细
孔组成,提供了更大的接触面积,抑制细菌脱离。

玻璃珠可以动态移动,
这样能够把水分散在整个颗粒表面,为细菌提供充足的接触润湿条件,从
而达到最佳的处理效果。

1、抗浊度能力优良比水中悬浮物尺寸小的MBBR填料,有着更好的抗
浊度能力,能够把细小的悬浮颗粒捕集起来,从而达到出水更清澈的目的。

2、体积小MBBR工艺体积较小,节省空间,降低建设成本,具有更好
的经济性能。

3、操作维护方便MBBR工艺采用自动化的控制,对操作维护的要求极低,使用成本较低。

MBBR工艺

MBBR工艺

MBBR工艺MBBR工艺,即流态化床生物膜反应器工艺,是一种高效、稳定、节能的废水处理工艺,主要用于处理有机物高浓度废水和难以降解的污染物。

MBBR工艺的核心是由微生物所构成的生物膜,通过生物膜吸附、解吸附、菌落浮游动态平衡等生物过程,降解有机物及氨氮、硝酸盐等污染物。

MBBR工艺流程主要包括预处理、MBBR反应器、二沉池、消毒等几个阶段。

预处理:将进入MBBR反应器前的原水进行简单的筛分、调节和混合等处理,主要是为了防止大颗粒物、气体等对MBBR反应器的影响。

MBBR反应器:是整个MBBR工艺的核心部分,容器内装有活性物质类似海绵卡片条片状,投加到反应器中,形成长度宽度相等的填料,然后加入充足的曝气量,使空气含氧充足,微生物可以在填料上生长、繁殖,降解污水中的有机物质,同时繁殖的微生物还可以吸附氨氮、硝酸盐等物质,从而实现对水质的去除作用。

二沉池:处理完成的水经过MBBR反应器的处理后,流入二沉池中,通过引流池均匀引流,将悬浮物与废水分离开来,悬浮物沉淀到池底,水由出水口进入消毒操作。

消毒:消毒通常采取紫外线消毒、臭氧消毒、氯消毒等方法,以消灭水中携带的病原体,保证出水的卫生水质。

1.高效:MBBR工艺利用生物膜进行有机物降解,反应器内系微生物活性分布均匀,细胞密度高,降解速度快,具备高处理效率;2.运行稳定:MBBR反应器采用高度活性填料,具有良好的抗冲击负载能力,反应器内微生物资料部分脱落不影响生化反应进行,因此运行稳定;3.操作方便:MBBR工艺不需要特殊操作,只需定期清理设备,不停工时曝气装置也可以安静下来,便于设备维护管理。

MBBR工艺广泛应用于城市污水处理、钢铁冶炼、化工、制药、食品、印染等工业废水的处理。

当然,MBBR工艺也可以用于海水淡化等领域的水处理。

其处理效果稳定,并能适应水质的变化,具有很高的适用范围。

污水处理MBBR工艺介绍

污水处理MBBR工艺介绍

污水处理MBBR工艺介绍简介MBBR(Moving Bed Biofilm Reactor)工艺是一种先进的污水处理技术,通过在反应器内添加特殊的生物载体,利用生物膜对污水进行降解处理。

该工艺具有高效、稳定、灵活等优点,被广泛应用于污水处理领域。

工艺原理MBBR工艺采用了生物膜附着方式进行污水处理。

在反应器内,生物载体以悬浮态存在,并随污水流动而发生运动。

这些生物载体提供了附着生物膜的生长基质,使底物有机物通过降解转化为更简单的无机物,从而实现对污水的处理。

工艺特点1. 高降解效率:MBBR工艺具有较高的降解能力,能够有效去除多种有机物及氨氮等污染物,达到环境排放标准。

2. 灵活性强:MBBR工艺适应性广泛,可处理各类污水,包括生活污水、工业废水等,具有很强的适应性。

3. 抗冲击负荷能力强:MBBR反应器内的生物载体能够快速适应负荷变化,对冲击负荷具有较强的抵抗能力。

4. 占地面积小:MBBR工艺相比传统工艺,占地面积较小,适用于场地受限的工程项目。

5. 运行管理简单:MBBR工艺的运行管理相对简单,维护成本较低。

工艺应用MBBR工艺广泛应用于各个领域的污水处理,包括城市污水处理厂、工业废水处理厂、农村生活污水处理等。

它被认为是一种经济、高效的处理技术,可以满足不同规模、不同水质的污水处理需求。

工艺改进随着科技发展,MBBR工艺也不断改进创新。

一些工程中加入了先进的控制系统,如智能监测和远程控制,实现了更高效的运行管理。

此外,也通过改进生物载体的材料和结构,进一步提高了降解效率和稳定性。

结论MBBR工艺作为一种先进的污水处理技术,具有高效、稳定、灵活等优点,被广泛应用于各个领域。

随着相关技术的进一步创新和改进,MBBR工艺将在未来的污水处理中发挥更重要的作用。

一体化mbbr污水处理工艺

一体化mbbr污水处理工艺

一体化mbbr污水处理工艺引言概述:一体化MBBR污水处理工艺是一种高效、节能、环保的污水处理技术,广泛应用于城市污水处理厂、工业废水处理厂等场所。

本文将详细介绍一体化MBBR 污水处理工艺的原理、优势、应用范围、工艺流程和设备特点。

一、原理1.1 MBBR(Moving Bed Biofilm Reactor)技术是一种生物膜反应器,通过在悬浮载体上附着生物膜来降解污水中的有机物。

1.2 悬浮载体在反应器中随着水流动而运动,有效地增加了生物膜与废水之间的接触面积,提高了生物降解效率。

1.3 MBBR工艺结合了生物膜法和悬浮生物法的优点,具有高效、稳定、易操作等特点。

二、优势2.1 MBBR工艺具有较高的去除效率,可有效去除COD、BOD、NH3-N等有机物和氨氮。

2.2 与传统的生物处理工艺相比,MBBR工艺占地少、投资低、运行成本低。

2.3 MBBR工艺适用于不同水质的处理,具有较强的适应性和稳定性。

三、应用范围3.1 城市污水处理厂:MBBR工艺可用于城市污水处理厂的二级、三级处理,提高出水水质。

3.2 工业废水处理厂:MBBR工艺适用于各类工业废水的处理,如印染废水、食品废水等。

3.3 农村污水处理:MBBR工艺可用于农村地区的污水处理,解决农村污水排放问题。

四、工艺流程4.1 进水预处理:对进水进行初步处理,去除大颗粒杂质。

4.2 MBBR生物反应器:将进水通过悬浮载体进行生物降解处理。

4.3 出水处理:对处理后的水进行沉淀、过滤等工艺,达到排放标准。

五、设备特点5.1 悬浮载体:采用高效生物载体,具有较大的比表面积,有利于生物膜的附着。

5.2 气体分配系统:通过气体分配系统,保证反应器内氧气充足,促进生物降解。

5.3 自动控制系统:采用自动控制系统,实现对MBBR工艺的自动监控和调节,提高运行效率。

总结:一体化MBBR污水处理工艺以其高效、节能、环保等优势,被广泛应用于城市污水处理厂、工业废水处理厂等场所。

MBBR工艺介绍和优缺点

MBBR工艺介绍和优缺点

MBBR工艺介绍和优缺点MBBR是移动床反应器MBBR工艺原理是通过向反应器中投加一定数量的悬浮载体,提高反应器中的及生物种类,从而提高反应器的处理效率。

由于密度接近于水,所以在曝气的时候,与水呈完全混合状态,微生物生长的环境为气、液、固三相。

载体在水中的碰撞和剪切作用,使空气气泡更加细小,增加了氧气的利用率。

另外,每个载体内外均具有不同的生物种类,内部生长一些或兼氧菌,外部为好养菌,这样每个载体都为一个微型反应器,使和反同时存在,从而提高了处理效果。

MBBR工艺兼具传统和两者的优点,是一种新型高效的方法,依靠内的曝气和水流的提升作用使载体处于流化状态,进而形成悬长的和附着生长的,这就使得移动床使用了整个反应器空间,充分发挥附着相和悬浮相生物两者的优越性,使之,相互补充。

与以往的不同的是,悬浮能与污水频繁多次接触因而被称为“移动的生物膜”。

MBBR的主要特点是:①处理负荷高;②氧化池容积小,降低了投资;③ MBBR 工艺中可不需要回流设备,不需反冲洗设备,减少了设备投资,操作简便,降低了污水的运行成本;④MBBR工艺产率低,降低了处置费用;⑤ MBBR工艺中不需要填料支架,直接投加,节省了安装时间和费用。

生物(Moving Bed Biofilm Reactor Process简称MBBR法)是生长生物膜的载体层在废水中不断流动的。

载体是中空,长5~7mm,直径10mm,内部有十字支撑,外部有翅片,密度/cm2,空隙率88%,可供生物膜附着的约 800 m2/m3,能给微生物提供良好的生长环境;填充率可高达67%,可在好氧操作下以空气搅拌,或在兼/操作下以机械搅拌,使生物接触材在水中均匀的悬浮流动。

这种载体的特殊形状使微生物在有保护的载体内表面生长而去除废水中的BOD5。

生物运用的基本原理,并结合了传统的优点,而又超越了及的缺点及限制。

(PVDF)的应用取代传统中的,进行固液分离,有效的达到了泥水分离的目的。

MBBR工艺背景介

MBBR工艺背景介

MBBR工艺背景介随着现代化工业得进程与人口急剧得膨胀,水污染问题已经成为社会焦点之一,目前污水处理得方法主要有活性污泥法与生物膜法两大类:活性污泥法从20世纪初英国开创以来,经过几十年得发展革新已经拥有多种运行方式,同时由于其极好得污水处理效果而逐渐成为大家认可得比较成熟得工艺;生物膜法就是利用附着在填料上得生物对水体进行净化得一种工艺,近年来也得到迅速得发展与提高。

从多年得运行实践来瞧,活性污泥法虽较为成熟,但也存在很多得缺点与不足,如曝气池容积大、占地面积高、基建费用高等,同时对水质、水量变化得适应性较低,运行效果易受水质、水量变化得影响等。

鉴于上述因素,这种污水处理方法逐渐被后来得生物膜法所取代。

生物膜法弥补了活性污泥法得很多不足,如它得稳定性好、承受有机负荷与水力负荷冲击得能力强、无污泥膨胀、无回流,对有机物得去除率高,反应器得体积小、污水处理厂占地面积小等优点。

但就是生物膜法也有其特有得缺陷,如生物滤池中得滤料易堵塞、需周期性反冲洗、同时固定填料以及填料下曝气设备得更换较困难、生物流化床反应器中得载体颗粒只有在流化状态下才能发挥作用、工艺得稳定性较差…等。

介于以上两种工艺得缺点与不足,移动床生物膜反应器(moving-bed-biofilm-reactor,简称MBBR)应运而生。

MBBR 法在80年代末就有所介绍并很快在欧洲得到应用,它吸取了传统得活性污泥法与生物接触氧化法两者得优点而成为一种新型、高效得复合工艺处理方法。

接投加到曝气池中作为微生物得活性载体,依靠曝气池内得曝气与水流得提升作用而处于流化状态,当微生物附着在载体上,漂浮得载体在反应器内随着混合液得回旋翻转作用而自由移动,从而达到污水处理得目得。

作为悬浮生长得活性污泥法与附着生长得生物膜法相结合得一种工艺,MBBR法兼具两者得优点:占地少——在相同得负荷条件下它只需要普通氧化池20%得容积;微生物附着在载体上随水流流动所以不需活性污泥回流或循环反冲洗;载体生物不断脱落,避免堵塞;有机负荷高、耐冲击负荷能力强,所以出水水质稳定;水头损失小、动力消耗低,运行简单,操作管理容易;同时适用于改造工程等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

流动床TM生物膜反应器(MBBR TM)工艺及在市政污水处理中的应用Moving Bed TM Biofilm Reactor (MBBR TM) Process and its Application in Municipal Wastewater Treatment1廖足良(Zuliang Liao) AnoxKaldnes AS,P. O. Box 2011, 3103 Tønsberg Norway挪威2喻培洁(Pia Welander) AnoxKaldnes AB,22647 Lund Sweden瑞典Hallvard Ødegaard (哈尔瓦˙欧德格) 挪威科技大学水与环境工程系,7491 Trondheim Norway 挪威摘要流动床TM生物膜反应器(MBBR TM)工艺基于生物膜工艺的基本原理,又利用活性污泥工艺中生物量悬浮生长的特性。

本文试图总结该工艺的主要特点和优势,总结该工艺在市政污水处理中去除有机物和脱氮除磷方面的研究和工程应用。

1 简介生物膜广泛存在于自然界和人类活动中。

例如,自然界中,土壤中的微生物吸附在土壤颗粒表面,形成生物膜,当从土壤的空隙流过的水中污染物(或基质)与土壤表面的生物膜接触,污染物被生物降解,因而污水被净化。

生物膜一般具有很长的固体停留时间(SRT)。

这有利于在不断的液流流过和基质利用过程中形成较为致密又布满孔隙的生物膜的微型空间结构。

仅管生物膜的致密程度由于各方面因素(液流流速,基质浓度,供氧状态等)不同而异,其共同的非整形(FRACTAL)结构特征已被广泛认同。

非整形的空隙孔径分布使得不同颗粒粒径的污染物(基质)都能够被生物膜通过不同的途经被捕获和生物降解。

生物分解的产物也通过空隙传输到生物膜以外,进入水流中。

当生物膜厚度达到基质难以进入最内层时,营养不足将导致生物膜本身被内源分解。

这样,生物膜的厚度将随其生长的外部条件的变化而变化,并处于动态平衡。

由于单位体积的生物膜量很大,生物反应器容积则可以很小,达到高效紧凑的工艺流程目标。

然而,在自然界的生物膜和固定式生物膜反应器中,被处理的污染物不很容易扩散到生物膜的内部,在好氧状态,氧分子也不很容易均匀扩散到生物膜内。

同时,老化的生物膜和生物降解产物也不易于传送到生物膜外。

这样,固定式生物膜反应器在理论上的优越性并没有得到充分的发挥。

加上采用的挂膜材料(生物填料)可能易于变形和垮塌,使固定式生物膜反应器的应用受到很大的影响。

生物流化床工艺利用流化的颗粒填料,很好地解决了脱落的生物膜堵塞反应器的问题。

流化床中采用的填料是颗粒填料,如砂,或其他人工烧结的以黏土为骨料的轻质填料。

粒径小的颗粒填料虽易于流化,也易于被水流带走,颗粒大的填料不易于流化,需要很高的流化速度。

为使填料保留在反应器中,适当的结构措施(如斜板)是必要的。

为达到流化的目的,流化床反应器的结构设计必然较为复杂。

当流化速度大时,生物膜不易于附着在颗粒填料表面,所以,颗粒填料的巨大表面积并没有得到充分利用。

多孔型轻质填料虽然使有效表面积增加,但并不能根本改变这一局面。

此外,当采用好氧生物流化床时,曝气充氧不易于与流化过程结合起来。

活性污泥法在二十世纪初应用于污水处理以来得到很大的发展,主要是由于其系统相对简单,处理效果在系统运行稳定情况下比较好。

但长期以来,活性污泥经受负荷冲击,温度变化(特别是低温),毒性影响,污泥膨胀的脆弱性困扰。

污泥流失和系统效率低下是许多污水处理厂经常面对的问题。

一种能结合生物膜法的较高的污泥浓度,长泥龄和不需污泥回流,以及活性污泥法的无堵塞和配水及混合均匀的特点的生物处理工艺将使生物处理变得高效,稳定,和容易维护管理。

流动床TM生物膜反应器(MBBR TM)工艺很好地反映了这样的要求。

由AnoxKaldnes集团完成的采用MBBR TM工艺的市政和工业污水处理项目已达350多个,广泛应用于包括中国在内的全球43个国家。

2 流动床TM生物膜反应器工艺的基本原理和工艺特点2-1 基本原理流动床TM生物膜工艺运用生物膜法的基本原理,充份利用了活性污泥法的优点,又克服了传统活性污泥法及固定式生物膜法的缺点。

技术关键在于研究和开发了比重接近于水,轻微搅拌下易于随水自由运动的生物填料。

生物填料具有有效表面积大,适合微生物吸附生长的特点。

填料的结构以具有受保护的可供微生物生长的内表面积为特征。

当曝气充氧时,空气泡的上升浮力推动填料和周围的水体流动起来,当气流穿过水流和填料的空隙时又被填料阻滞,并被分割成小气泡。

在这样的过程中,填料被充分地搅拌并与水流混合,而空气流又被充分地分割成细小的气泡,增加了生物膜与氧气的接触和传氧效率。

在厌氧条件下,水流和填料在潜水搅拌器的作用下充分流动起来,达到生物膜和被处理的污染物充分接触而生物分解的目的。

流动床TM生物膜反应器工艺由此而得名。

其原理示意图如图1所示。

因此,流动床TM生物膜工艺突破了传统生物膜法(固定床生物膜工艺的堵塞和配水不均,以及生物流化床工艺的流化局限)的限制,为生物膜法更广泛地应用于污水的生物处理奠定了较好的基础。

a) 好氧反应器b) 厌氧反应器图1 流动床TM生物膜工艺原理示意图2-2 工艺特点流动床TM生物膜工艺的特点包括:1.容积负荷高,紧凑省地:容积负荷取决于生物填料的有效比表面积。

不同填料的比表面积相差很大。

AnoxKaldnes集团开发的填料比表面积可以从200平方米/立方米到1200平方米/立方米填料体积的范围内变化,以适应不同的预处理要求和应用情况。

2.耐冲击性强,性能稳定,运行可靠:冲击负荷以及温度变化对流动床TM工艺的影响要远远小于对活性污泥法的影响。

当污水成分发生变化,或污水毒性增加时,生物膜对此的耐受力很强。

3.搅拌和曝气系统操作方便,维护简单:曝气系统采用穿孔曝气管系统,不易堵塞。

搅拌器采用具有香蕉型搅拌叶片,外形轮廓线条柔和,不损坏填料。

整个搅拌和曝气系统很容易维护管理。

4.生物池无堵塞,生物池容积得到充分利用,没有死角:由于填料和水流在生物池的整个容积内都能得到混合,从根本上杜绝了生物池的堵塞可能,因此,池容得到完全利用。

5.灵活方便:工艺的灵活性体现在两方面。

一方面,可以采用各种池型(深浅方圆都可),而不影响工艺的处理效果。

另一方面,可以很灵活地选择不同的填料填充率,达到兼顾高效和远期扩大处理规模而无需增大池容的要求。

对于原有活性污泥法处理厂的改造和升级,流动床TM生物膜工艺可以很方便地与原有的工艺有机结合起来,形成活性污泥-生物膜集成工艺(HYBAS TM工艺)或流动床TM-活性污泥组合工艺 (BAS TM工艺)。

6.使用寿命长:优质耐用的生物填料,曝气系统和出水装置可以保证整个系统长期使用而不需要更换,折旧率较低。

2-3 工艺基本物理要素流动床TM生物膜工艺的基本物理要素包括:生物填料;曝气系统或搅拌器系统;出水装置;池体。

图2所示为工艺基本物理要素示意图。

生物填料:针对不同性质的污水及出水排放标准,我们开发了一系列不同的生物填料,比表面积界于200-1200平方/立方(如K1,K3,NATRIX,BIOFILM-CHIP等),以适用各种处理要求。

当预处理要求较低,或污水中含有大量纤维物质时,采用比表面积较小的尺寸较大的生物填料,比如在市政污水处理中不采用初沉池,或者,在处理含有大量纤维的造纸废水时。

当已有较好的预处理,或用于硝化时,采用比表面积大的生物填料。

生物填料由塑料制成。

填料的比重界于0.96-1.30 之间。

曝气系统:由于生物填料在生物池中的不规则运动,不断地阻挡和破碎上升的气泡,曝气系统只需采用开有中小孔径的多孔管系,这样,不存在微孔曝气中常有的堵塞问题和较高的维护要求。

曝气系统要求达到布气均匀,供气量由设计而定,并可以控制。

搅拌器系统:厌氧反应池中采用香蕉型叶片的潜水搅拌器。

在均匀而慢速搅拌下,生物填料和水体产生回旋水流状态,达到均匀混合的目的。

搅拌器的安装位置和角度可以调节,达到理想的流态。

生物填料不会在搅拌过程中受到损坏。

出水装置:出水装置要求达到把生物填料保持在生物池中,其孔径大小由生物填料的外形尺寸而定。

出水装置的形状有多孔平板式或缠绕焊接管式(垂直或水平方向)。

出水面积取决于不同孔径的单位出流负荷。

出水装置没有可动部件,不易磨损。

池体:池体的形状规则与否,深浅以及三个尺度方向的比例基本不影响生物处理的效果,可以根据具体情况灵活选择。

搅拌器系统的布置也需根据池型进行优化调整。

池体的材料不限。

在需要的时候,池体可以加盖并留有观察窗口。

出水装置填料好氧反应池厌氧反应池本图仅为示意图--流程选择取决于污水性质和处理要求图2 流动床生物膜工艺的基本物理要素:生物填料,曝气系统,搅拌系统,出水装置,池体3 流动床TM生物膜反应器工艺的常用流程污水生物处理的目标包括去除有机物,生物脱氮和除磷。

去除有机物的工艺流程相对简单一些,而脱氮除磷工艺则较为复杂。

3-1 去除有机物工艺流程一般而言,去除有机物工艺流程较为简单。

对于一般二级生物处理,出水BOD要求为25毫克/升时,一般采用两级流动床TM流程。

如二沉池前设有混凝单元,或一级处理中采用化学沉淀,则可采用一级流动床TM流程。

对于出水BOD要求为10毫克/升时,采用两级流动床TM流程,并需要采用化学沉淀一级处理,或者混凝沉淀二沉池。

对于采用流动床TM工艺作为活性污泥工艺的生物预处理对付冲击负荷时,则可采用一级流动床TM流程。

以上各种情况的设计负荷因预处理工艺的不同和BOD去除要求的不同而异。

表1列举了可能的工艺流程。

TM3-2 生物脱氮工艺流程生物脱氮的途经一般包括两步。

第一步是硝化,将氨氮氧化为亚硝酸盐氮和硝酸盐氮。

这一步由于硝化菌生长缓慢而需要很大的生物池容积。

硝化只有在有机物氧化基本完成后才易于进行,是因为氧化有机物的异养菌生长迅速。

硝化可以单独进行。

第二步是反硝化,在厌氧条件下将硝酸盐氮还原为分子氮而逸出。

这一步很快,不是脱氮的控制因素。

硝化是否前置或后置,取决于污水中碳源的质和量。

3-2-1 硝化工艺流程当采用常规一级处理时,一般采用三级流动床TM工艺流程,其中第一个反应池用于有机物的去除,第二和第三个反应池用于硝化。

当采用化学沉淀强化一级处理去除大部分悬浮物和胶体物质时,可以采用两级流动床TM工艺流程,溶解性有机物的氧化和部分硝化在第一反应池中进行,而第二反应池则用于硝化。

当采用活性污泥法全流程(预沉-活性污泥-二沉)去除有机物时,可以采用一级或两级流动床TM工艺进行硝化。

当对活性污泥法工艺去除有机物的污水处理厂升级改造为硝化工艺时,采用活性污泥-生物膜集成(HYBAS TM)工艺能够很灵活地解决问题。

相关文档
最新文档