6.1.1认识多面体与旋转体
多面体和旋转体最新版
多面体和旋转体
多面体——棱柱 棱锥 棱台
1 图形及图形的画法 附:练习 2 棱柱 棱锥 棱台的性质 附:练习 3 多面体的侧面积 附:练习
4 两个重要的定理
棱柱的图形及分类
三棱柱 四棱柱 五棱柱
斜 棱 柱 直正 棱棱 柱柱
正棱锥 斜棱锥
棱 锥
三 棱 锥
o
的
图四
形
棱 锥
o
棱台 O
正棱台的性质
直棱柱的侧面积
直 直棱柱底面周长C
棱 柱 的 高
h
S直棱柱侧 = ch
正棱锥的侧面积
(底面周长为 c, 斜高为h’)
S=
1 2
ch’
h’
h’
a
a
正四棱锥的侧面积
S=
4
×
_a__h_’__ 2
正n棱锥的侧面积 S= n ×__a__h__’_
2
正棱台的侧面积
( c c’ 分S 别= _(为_c_棱+_2_台c_’_)_上h’
O
现代人每天生活在纷繁、复杂的社会当中,紧张、高速的节奏让人难得有休闲和放松的时光。人们在奋斗事业的搏斗中深感身心的疲惫。然而,如果你细心观察,你会发现作 为现代人,其实人们每天都在尽可能的放松自己,调整生活节奏,追求充实快乐的人生。看似纷繁的社会里,人们的生活方式其实也不复杂。大家在忙忙碌碌中体味着平凡的 人生乐趣。由此我悟出一个道理,那就是----生活简单就是幸福。生活简单就是幸福。一首优美的音乐、一支喜爱的歌曲,会让你心境开朗。你可以静静地欣赏你喜爱的音乐, 可以在流荡的旋律中回忆些什么,或者什么都不去想;你可以一个人在房间里大声的放着摇滚,也可以在网上用耳麦与远方的朋友静静地共享;你还可以一边放送着音乐,一 边做着家务....生活简单就是幸福。一杯清茶,或一杯咖啡,放在你的桌边,你的心情格外的怡然。你可以浏览当天的报纸,了解最新的国内外动态,哪怕是街头趣闻;或者捧 一本自己喜欢的杂志、小说,从字里行间获得那种特别的轻松和愉悦....生活简单就是幸福。经过精心的烹制,一桌可心的菜肴就在你的面前,你招呼家人快来品尝,再备上最 喜欢的美酒,这是多么难得的享受!生活简单就是幸福。春暖花开的季节,或是清风送爽的金秋,你和家人一起,或是朋友结伴,走出户外,来一次假日的郊游,享受大自然 带给你的美丽、芬芳。吸一口新鲜的空气,忘却都市的喧嚣,身心仿佛受到一番洗涤,这是一种什么样的轻松感受!生活简单就是幸福。你参加朋友们的一次聚会,那久违的 感觉带给你温馨和激动,在觥酬交错之间你享受与回味真挚的友情。朋友,是那样的弥足珍贵....生活简单就是幸福。周末的夜晚,一家老小围坐在电视机旁,尽享团圆的欢乐 现代人越来越会生活,越来越会用各种不同的方式来放松自己。垂钓、上网、打牌、玩球、唱卡拉OK、下棋.....不一而足。人们根据自己的兴趣爱好寻找放松身心的最佳方式, 在相对固定的社交圈子里怡然的生活,而且不断的扩大交往的圈子,结交新的朋友有时,你会为新添置的一套漂亮时装而快乐无比;有时,你会为孩子的一次小考成绩优异而 倍感欣慰;有时,你会为刚参加的一项比赛拿了名次而喜不自胜;有时,你会为完成了上司交给的一个任务而信心大增生活简单就是幸福!生活简单就是幸福,不意味着我们 放弃了对目标的追逐,是在忙碌中的停歇,是身心的恢复和调整,是下一步冲刺的前奏,是以饱满的精力和旺盛的热情去投入新的“战斗”的一个“驿站”;生活简单就是幸 福,不意味着我们放弃了对生活的热爱,是于点点滴滴中去积累人生,在平平淡淡中寻求充实和快乐。放下沉重的负累,敞开明丽的心扉,去过好你的每一天。生活简单就是 幸福!我的心徜徉于春风又绿的江南岸,纯粹,清透,雀跃,欣喜。原来,真正的愉悦感莫过于触摸到一颗不染的初心。人到中年,初心依然,纯真依然,情怀依然,幸甚至 哉。生而为人,芳华刹那,真的不必太多要求,一盏茶,一本书,一颗笃静的心,三两心灵知己,兴趣爱好一二,足矣。亦舒说:“什么叫做理想生活?不用吃得太好穿得太 好住得太好,但必需自由自在,不感到任何压力,不做工作的奴隶,不受名利的支配,有志同道合的伴侣,活泼可爱的孩子,丰衣足食,已经算是理想。”时间如此猝不及防, 生命如此仓促,忠于自己的内心才是真正的勇敢,以不张扬的姿态,将自己活成一道独一无二的风景,才是最大的成功。试问,你有多久没有靠在门槛上看月亮了,你有多久 没有在家门口的那棵大树下乘凉了,你有多久没有因为一个人一件事而心生感动了,你又有多久没有审视自己的内心了?与命运的较量中,我们被迫前行,却忘记了来时的方
认识多面体和旋转体
课题: 6.1.1 认识多面体和旋转
【教学目标】
了解多面体和旋转体的基本概念,认识多面体的面、棱、顶点、对角线及旋转体的轴和母线;通过学习认识空间几何体的结构特征,提高学生的归纳总结能力,培养学生由具体到抽象,由一般到特殊的思想方法。
【教学重点】
多面体和旋转体的有关概念
【教学难点】
多面体和旋转体的基本概念,初步形成空间想象力
【教学方法】
观察演示探究
【教学过程】
教学
环节教学内容师生活动二次修改
导入
PPT展示:在现实生活中,我们周围存在着很多
形状各异的几何体,让学生观察它们的结构特点
圆形的方形的,多面的,旋转的都有
教师展示图形,并
分析这些图形的结构特
点,学生认真观察,并
回答老师提出的问题:
这些图形各有什么特
点?
估计学生认识到:方的,
圆的,有尖的等多面体
教师分析所展示图形并
板书多面体。
高三立体几何复习讲义:多面体与旋转体
多面体与旋转体一、棱柱1、 由几个多边形围成的封闭的几何体叫做多面体。
2、 两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面围成的多面体叫做棱柱。
棱柱的互相平行的两个面叫做棱柱的底面,其余各面叫做棱柱的侧面,相邻的两个侧面的公共边叫做棱柱的侧棱,两个底面间的距离叫做棱柱的高。
棱柱的基本性质:(1) 棱柱的侧面都是平行四边形。
(2) 棱柱的两个底面及平行于底面的截面都是全等的多边形。
3、 侧棱与底面不垂直的的棱柱叫做斜棱柱。
侧棱与底面垂直的棱柱叫做直棱柱。
底面是正多边形的直棱柱叫做正棱柱。
性质:(1) 直棱柱侧面都是矩形。
(2) 直棱柱侧棱与高相等。
(3) 正棱柱的侧面都是全等的矩形。
4、 底面是平行四边形的棱柱叫做平行六面体。
底面是矩形的直棱柱是长方体。
长方体的对角线平方等于三边长的平方和。
5、 夹在两个平行平面间的两个几何体,如果被平行于这两个平面的任何平面所截得的两个截面的面积都相等,那么这两个几何体的体积相等。
6、 h V S =⋅棱柱底. 二、棱锥1、有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。
棱锥的这个多边形的面叫做底面,其余各个三角形的面叫做侧面。
相邻的两个侧面的公共边叫做棱锥的侧棱。
各个侧面的公共顶点叫做棱锥的顶点,顶点到底面的距离叫做棱锥的高。
棱锥的基本性质:如果一个棱锥被平行于底面的一个平面所截,那么: (1) 侧棱和高被这个平面分成比例线段; (2) 截面和底面都是相似多边形;(3) 截面面积与底面面积之比,等于顶点到截面与顶点到底面的距离平方之比。
2、如果一个棱锥的底面是正多边形,且顶点在底面的射影是底面的中心,这个棱锥叫做正棱锥。
正棱锥的性质:(1) 各侧棱相等,各侧面都是全等的等腰三角形。
(2) 正棱锥的高、斜高和斜高在底面上的射影组成一个直角三角形。
正棱锥的高、侧棱和侧棱在底面上的射影也组成一个直角三角形。
最新认识多面体与旋转体教案
二、探索新知
探究1:多面体的相关概念
新知1:由若干个平面围成的几何体几何体叫做多面体.围成每个多面体的多边形叫做多面体的面,如面ABCD ; 两个面的公共边叫多面体的棱,如棱AB ;棱和棱的公共点叫多面体的顶点,如顶点A .连结不在同一平面上的两个顶点的线段叫做多面体的对角线,
具体如下图所示:
生回答问题,教师总结。
面 顶
点
棱
A B 'C 'D 'A 'C B
目,
探究2:旋转体的相关概念
生回答问题,教师
总结。
新知2:
由一条平面曲线绕一条定直线旋转所形成的曲面叫
旋转面,封闭的旋转面围成的几何体叫做旋转体,这条定
直线叫旋转体的轴.这条曲线叫做旋转体的母线。
如下图
的旋转体:
目,。
简单旋转体与多面体PPT课件
A' D
B'
L
c
C
=A B 2A D 2D D 2
=a2b2c2
A
a
b
B
L= a2b2c2
第36页/共38页
B组---2、
第37页/共38页
感谢您的观看!
第38页/共38页
球
半圆 直径 所在的直线
第31页/共38页
二、多面体的结构特征
多面体
结构特征
棱柱
有两个面 互相平行 ,其余各面都是四边形,并 且每相邻两个面的交线都_平__行__且__相_等___
有一个面是 多边形 ,而其余各面都是有一个公共 棱锥 __顶__点
的三角形
棱台
棱锥被平行于 底面 的平面所截, 截面 和 底面 之间的部分
三棱锥 四面体 直棱锥
四棱锥 正棱锥
第27页/共38页
五棱锥
2. 棱台
用一个平行于棱锥底面的平面去截棱锥 ,底面与截面之间的部分的多面体叫做棱台.
A1
D1
C1
B1
上底面
侧棱 侧面
下底面
正棱台:用正棱椎截得的棱 台叫正棱台
四棱台ABCD--A'B'C'D'
顶点
第28页/共38页
几何体的分类
柱体
锥体
D.圆锥所有的轴截面是全等的等腰三角形
2. 下列命题是真命题的是( )
A 以直角三角形的一直角边所在的直线为轴旋转所得 的几何体为圆锥;
B 以直角梯形的一腰所在的直线为轴旋转所得的旋转 体为圆柱;
C 圆柱、圆锥、棱锥的底面都是圆;
D 有一个面为多边形,其他各面都是三角形的几何体 是棱锥。
人教版中职数学基础模块下册《多面体与旋转体》课件 (一)
人教版中职数学基础模块下册《多面体与旋转体》课件 (一)人教版中职数学基础模块下册《多面体与旋转体》课件是一本涉及多面体与旋转体知识的教学课件,可以帮助中职学生更深入地学习数学知识,培养学生的逻辑思维和运算能力。
一、课件介绍该课件主要包括多面体的定义、分类及性质,旋转体的定义、计算公式和常见例题。
课件内容生动有趣、易于理解,配有丰富多样的图片、图表和实例,可供学生用于课堂学习和自主学习。
二、课件特点1.贴近生活实例课件中常以各种建筑结构、物体等为例,通过图像等形象化的方式,帮助学生理解与掌握多面体与旋转体的基本概念,激发学生对数学的兴趣。
2.重点难点突出课件突出了多面体和旋转体的重点内容和难点问题,旨在帮助学生更加深入、全面地理解数学知识,准确把握各种计算方法和技巧,并能够在实际中熟练运用。
3.自主学习方便该课件中设置了丰富的练习题和习题答案,让学生能够以不同的方式自主学习和巩固所学知识。
同时,还提供了学习建议和注意事项,帮助学生高效地学习,提高学习质量。
三、使用建议1.选择合适的学习方式:学生可以根据自己的学习习惯,选择合适的学习方式,如跟随老师课堂上讲解,自主学习或进行小组探究等。
2.注重练习巩固:在学习过程中,学生要注重做练习题,及时巩固和消化所学知识,进一步熟悉各种计算方法和技巧。
3.注意思维逻辑推理:多面体和旋转体的计算过程涉及到许多推理和逻辑运算,学生在学习过程中,要注重思考,积极发挥自己的创新意识和逻辑思维能力。
总之,《多面体与旋转体》课件是一本优质的数学教育资源,可以帮助中职学生更好地探究多面体与旋转体的性质和应用,培养学生的数学思维和计算能力,促进学生全面发展。
认识多面体和旋转体课件
体积计算
对于多面体,体积可以通过计算各个 面的体积之和得到。对于旋转体,体 积可以通过计算底面圆的体积或整个 旋转体的体积得到。
角度和弧度的计算
角度计算
在多面体中,角度可以通过测量各个 面之间的夹角得到。在旋转体中,角 度可以用来描述旋转体的旋转角度。
弧度计算
在旋转体中,弧度可以用来描述旋转 体的旋转程度,通常用于旋转轴的角 度测量。
旋转体的建模
旋转体的建模可以使用旋转几何公式进行,例如圆柱和圆锥可以使用旋转面的几何公式进行建模。
建模方法的比较和选择
01 02
精度和复杂性
使用CAD软件进行建模可以获得高精度的模型,但需要一定的技能和经 验。而使用数学公式进行建模可以创建相对简单的模型,但对于复杂模 型可能不够精确。
适用范围
CAD软件适用于各种类型的多面体和旋转体建模,而数学公式适用于某 些特定类型的模型,例如正多面体和旋转体。
在科学研究和教学中的应用
多面体和旋转体的科学研究价值
多面体和旋转体的研究涉及到几何学、拓扑学、物理学等多个学科领域,对于推动数学 和科学的发展具有重要意义。
多面体和旋转体的教学价值
在数学和工程学科的教学中,多面体和旋转体是重要的教学素材,有助于培养学生的空 间思维、几何直觉和解决实际问题的能力。
THANKS
该直线称为旋转轴, 平面图形称为旋转面 。
旋转体的分类
根据旋转面的形状,旋转体可以 分为圆柱、圆锥、圆台等类型。
根据旋转轴的方向,旋转体可以 分为正轴和斜轴两类。
根据旋转轴与旋转面的关系,旋 转体可以分为直纹和单叶两类。
旋转体的性质
旋转体的侧面是曲面,其展开 后是平面图形。
旋转体的体积和表面积与旋转 面和旋转轴的形状、大小和位 置有关。
多面体和旋转体
第二章多面体和旋转体一多面体§2.1 棱柱一、素质教育目标(一)知识教学点1、棱柱的概念及性质。
2、平等六面体,长方体的概念及长方体的性质。
3、直棱柱直观图的画法4、棱柱侧面积的计算(二)能力训练点1、在学习棱住概念和性质过程中,努力提高学生的观察、抽象和概括能力。
2、通过直棱柱直观图的画法的教学,进一步提高学生的作图和识图能力。
3、通过直棱柱侧面积公式的教学,进一步增强学生把空间形转化为平面图形的意识,使学生进一步掌握化归的数学思想和方法,以提高学生分析问题、解决问题的能力。
(三)德育渗透点1、棱柱概念的形成,是从特殊到一般、具体到抽象的过程;通过教学使学生初步认识辩证唯物主义认识论的观点。
2、通过四面体、平行六面体、直平行六面体、长方体、正方体之间相互关系的教学,使学生树立普遍联系的唯物主义观点。
3、通过运用侧面积公式计算生产实践中具体零件的面积,使学生懂得数学对工、农业生产的意义,激励学生努力学好数学,将来为祖国的“四化”建设做出更大的贡献。
二、教学重点、难点、疑点及解决办法1、教学重点:理解棱柱的概念,掌握棱柱的性质及直棱柱侧面积公式,能利用性质及侧面积公式解决有关问题。
2、教学难点:直棱柱直观图的画法3、教学疑点:直棱柱的判断,注意引导学生严格按定义三、课时安排本课题建议安排3课时四、教与学过程设计第一课时节棱柱的概念及性质(一)引入将画有图2-1、图2-2、图2-3的小黑板挂出师:今天这一节课我们学习棱柱的概念和性质(给出课题),以上三个图形所表示的模型均为棱柱,下面我们一起来研究它们的共同特点。
(二)棱柱及有关概念的定义师:大家注意到图2-1到图2-3所表示的几何本均由一些面围成,而面与面之间有交线,因此可以从“面”和“线”两个角度去找它们的特点,先观察图2-1。
(1)首先看面:从面和面的关系及面的开头引导学生讨论,得出结论;有两个面互相平行,其余各面为四边形。
(2)再看线:从线与线之间的引导学生得出结论:每相邻两个四边形的公共边都互相平行。
多面体与旋转体[优质ppt]
今天我们就一起走进这美妙的几何体世界中 ,从科学的角度来体验和研究其中的奥妙。
商金贸字盒大塔鱼子厦缸
方便面桶 可冰乐激地瓶凌球
观察下列物体的形状和大小,试给出相应的空 间几何体,说说它们的共同特征。
由若干平面多边形围成的几何体叫做多面体
由观一察个下平列面物图体形的绕形它状所和在大的小平,面试 内给的出一相条应定的直空线间旋几转何所体成,的说封说闭有几它何们 体的叫共做同旋特转征体。.
课堂小结 空间几何体
多面体
旋转体
棱棱棱 圆圆圆球 柱台锥 柱台锥体
畅想网络 Imagination Network 感谢观看!
文章内容来源于网络,如有侵权请联系我们删除。
E’
D’
F’ A’
C’ B’ห้องสมุดไป่ตู้
E
F A
D C
B
棱柱的概念
侧面与底面的 公共顶点叫 做棱柱的
顶点
底
·E’ · A’
·D’
两个互相
· · C’ 平行的面
B’
叫做棱柱
的底
其两余个各面面的叫做
相邻侧公棱面共柱的边的叫侧做面
E
· 公共边叫棱做柱的棱
· · 棱柱的侧棱 A
底
D
· · B
C
棱柱的性质
E’
D’
F’ A’
多面体和旋转体
③棱锥的侧面积与底面积的射影公式: S 侧 = 附:
a l b
S底 cos α
(侧面与底面成的二面角为 α )
c
以知 c ⊥ l , cos α ⋅ a = b , α 为二面角 a − l − b . 则 S1 =
S 1 1 a ⋅ l ①, S 2 = l ⋅ b ②, cos α ⋅ a = b ③ ⇒ ①②③得 S 侧 = 底 . 2 2 cos α
【巩固练习 B】
1.若三棱锥的三条侧棱两两垂直,且侧棱长均为 3 ,则其外接球的表面积是
2.一个六棱柱的底面是正六边形, 其侧棱垂直底面。 已知该六棱柱的顶点都在同一个球面上, 且该六棱柱的高为 3 , 底面周长为 3,那么这个球的体积为 _________ 3.连结球面上两点的线段称为球的弦.半径为 4 的球的两条弦 AB、CD 的长度分别等于 2 7 、 4 3 ,每条弦的两
精锐教育网站: -6精锐教育· 考试研究院
中国领先的个性化教育品牌 端都在球面上运动,则两弦中点之间距离的最大值为 .
4.在体积为 4 3π 的球的表面上有 A、B,C 三点,AB=1,BC= 2 ,A,C 两点的球面距离为 ABC 的距离为_________.
3 π ,则球心到平面 3
O
注:球内切于四面体: V B − ACD = ⋅S 侧 ⋅R ⋅ 3 + S 底 ⋅R =S 底 ⋅h
R
②外接球:球外接于正四面体,可如图建立关系式.
【典型例题】 典型例题】
例 1: (1)在棱柱中( ) A.只有两个面平行 C.所有的面都是平行四边形 B.所有的棱都平行 D.两底面平行,且各侧棱也互相平行
多面体与旋转体复习课件市公开课一等奖省赛课微课金奖PPT课件
多面体与旋转体复习课件
第14页
的直棱柱。
4、直棱柱的性质:(1)侧棱都相等,侧面是 矩形 ;
(2)底面与平行于底面的截面是 全等 的多边形; (3)对角面是 矩形 ;
(4)侧棱长是棱柱的高。
5、正棱柱的性质:
多面体与旋转体复习课件 (1)底面与平行于底面的截面是 全等 的正多边形; (2)侧面是全等的 矩形 。
第2页
6、几种特殊的四棱柱:(1)平行六面体:底面是 平行四边形 的四棱柱; (2)直平行六面体:侧棱与底面 垂直 的平行六面体; (3)长方体:底面是 矩形 的直平行六面体; (4)正四棱柱:底面是 正方形 的长方体; (5)正方体:棱长都 相等 的正四棱柱。 7、长方体对角线性质:
底面
D
C
棱锥也用表
示顶点和底
A
B
面各顶点字
棱锥结构特征
母表示。
第4页
二、棱锥的概念与性质:
1、棱锥的概念:
有一个面是 多边形 ,其余各面是有一个公共顶点的三角形,由这些面所围成的多面体叫
棱锥。其中棱锥的 多边形 的面叫做棱锥的底面,其余的面叫做棱锥的侧面。不在底面上的棱
叫做棱锥的 侧棱 ,侧面的公共顶点叫做棱锥的 顶点 ,顶点与底面间的距离叫做棱锥的高。
2、正棱锥: 若棱锥的底面是正多边形,且 顶点在底面射影是底面中心
,那么这个棱锥叫做正棱锥。
3、几个特殊的三棱锥:
(1)正三棱锥:底面是等边三角形,顶点在底面的射影是底面的中心;
(2)正四面体:棱长都相等(侧棱长与底面边长相等)的正三棱锥。
多面体与旋转体复习课件
第5页
二、圆柱
(一)概念
• 定义:将矩形ABCD及其内部
高职6.1.1多面体和旋转体学案
6.1.1认识多面体和旋转体(1课时)
【知识链接】(复习是为了更好地开始)
1.什么是平面图形?常见的图像有哪些?
2.什么是立体图形?常见的立体图形有哪些?
【学习目标】(学习如果没有目标,就如航海时没有灯塔,很容易迷失了方向。
)
通过观察实物模型和大量的空间图形,认识多面体和旋转体。
【探究过程】(我参与、我快乐、我自信、我成功)
探究1.分析下列实例,完成后面的问题:
(1)上述轮廓线表示的几何体有何特征?
(2)在下面的几何体上标出对应的元素:探究2:分析下列实例,完成后面的问题:
(1)上述轮廓线表示的几何体有何特征?(2)在下面的几何体上标出对应的元素:
判断下列几何体中,哪些是多面体?哪些是旋转体?
【课堂小结】(梳理知识,归纳收获)
1.平面图形是指构成图形的所有点都在同一个平面内;立体图形是指构成图形的所有点不在同一平面内。
2.了解多面体和旋转体的相关概念。
【效果训练】(学以致用,轻松跨越)
1.如图所示的图1,在这个多面体中,有()顶点;有()棱;有()面,对角线有()条。
2. 如图所示的图2,在这个旋转体中,它是由()绕一条定
直线旋转一周所围成的几何体。
3.如图所示的图3,在这个旋转体中,它是由()绕一条定直线旋转一周所围成的几何体。
4.下列几何体中,哪些是多面体?哪些是旋转体?。
【数学课件】多面体和旋转体
O
O
O’
棱柱的性质
1 侧棱都相等,侧面都是平行四边形。 2 两底面与平行于底面的截面是全等多边形。
3 过不相邻的两条侧棱的截面是平行四边形。
正棱锥的性质
1 各侧棱都相等,各侧面都是全等的等腰三 角形。
2 棱锥的高,斜高和斜高在底面上的射影组 成一个直角三角形;棱锥的高,侧棱和侧棱 在底面上的射影也组成一个直角三角形。
心就是流淌在班级之池中的水,时刻滋润着学生的心田。——夏丐尊 20、教育不能创造什么,但它能启发儿童创造力以从事于创造工作。——陶行知
立体几何第二章
多面体和旋转体
多面体——棱柱 棱锥 棱台
1 图形及图形的画法 附:练习 2 棱柱 棱锥 棱台的性质 附:练习 3 多面体的侧面积 附:练习
4 两个重要的定理
棱柱的图形及分类
三棱柱 四棱柱 五棱柱
斜 棱 柱 直正 棱棱 柱柱
正棱锥 斜棱锥
棱 锥
三 棱 锥
o
的
图四
形
棱 锥
o
棱台 O
底面周长)
a
a
h’
h’
b
b
S
=
n×
_(_a_+__b__)_h’ 2
长方体一条对角线的平方等于 一 个顶点上三条棱的长的平方和
多面体和旋转体高品质版课件
长方体一条对角线的平方等于 一 个顶点上三条棱的长的平方和
b
a
d2 = a2 +b2 +c2
cd
习题1: 用符号“ ” 填空
A=直平行六面体集合 B=正方体集合 C=长方体集合 D=四棱柱集合 E=平行六面体集合
BC A E D
习题2:判断题
1 上下底面是正多边形的棱台为正棱台。
2 底面是正多边形的棱锥是正棱锥。
业后一起到广州闯天下。
多面体——棱柱 棱锥 棱台
1 图形及图形的画法 附:练习 2 棱柱 棱锥 棱台的性质 附:练习 3 多面体的侧面积 附:练习
4 两个重要的定理
棱柱的图形及分类
三棱柱 四棱柱 五棱柱
斜 棱 柱 直正 棱棱 柱柱
正棱锥 斜棱锥
棱三
锥 的
棱 锥
o
图 形
四 棱
锥 o
O 棱台 O
O
O’
棱柱的性质
1 侧棱都相等,侧面都是平行四边形。 2 两底面与平行于底面的截面是全等多边形。
3 长方体一定是正四棱柱。 1 NO 2 N
4 正三棱锥就是正四面体。
3N
4N
习题1 证明:正三棱锥相对的两棱 互相垂直
A
知识点 :
1 正三棱锥定义 2 三垂线定理
B
O
D
E
C
已知:正三棱锥的棱 AC ,AD,BC, BD的中点分别为E,F,G ,H。
A 证明:四边形EFGH 为矩形。
F E
B
G
D
正棱锥的侧面积
(底面周长为 c, 斜高为h’)
S=
1 2
ch’
h’
h’
a
a
6.1.1认识多面体和旋转体
机电部 丁立新
多面体棱角分明,它使建筑气势磅礴,充满阳刚
旋转体曲线曼妙,它让建筑婀娜多姿,秀丽端庄
多面体——由若干个平面图形围成的几何体
• 多面体的面数是几我们就说它是几面体
围成多面体的每个多边形叫做多面体的 面,两个面的公共边叫做多面体的棱, 棱和棱的公共点叫做多面体的顶点连结 不在同一面上的两个顶点的连线叫做多 面体的对角线
旋转体——一条平面曲线绕一条定直线旋转一周所围成的曲 面叫做旋转面,封闭的旋转面围成的几何体叫做旋转体,这 条定直线叫做旋转体的轴,这条曲线叫做旋转体的母线。
侧面 轴
底面
指出下列旋转体的的顶点数、面数和棱数。
小结:
1、多面体 2、旋转体
作业:列举出生活中你常见的多面体旋转体的种类
中等职业教育规划教材数学(山东省基础类)目录
中等职业教育规划教材数学目录数学—101第一章集合1.1集合及其表示1.1.1集合1.1.2集合地表示方法1.2集合之间的关系1.3集合的基本运算1.3.1交集1.3.2并集1.3.3补集1.4充要条件阅读与实践02第二章2.1一元二次方程2.2不等式2.2.1不等式的基本性质2.2.2不等式的解集与区间2.2.3含绝对值的不等式2.2.4一元二次不等式阅读与实践03第三章函数3.1函数的概念3.2函数的表示方法3.3函数的单调性3.4函数的奇偶性3.5二次函数的图像和性质3.6函数的应用阅读与实践04第四章指数函数与对数函数4.1实数指数4.2指数函数4.3对数及其运算4.3.1对数4.3.2对数的运算4.4对数函数4.5幂函数4.6指数函数与对数函数的应用阅读与实践05第五章数列5.1数列5.2等差数列5.2.1等差数列的概念5.2.2等差数列的前n项和5.3等比数列5.3.1等比数列的概念5.3.2等比数列的前n项和5.4等差数列与等比数列的应用阅读与实践06第六章空间几何体6.1认识空间几何体6.1.1认识多面体与旋转体6.1.2棱柱、棱锥6.1.3圆柱、圆锥、球6.2空间几何体的表面积与体积6.2.1空间几何体的表面积6.2空间几何体的体积阅读与实践数学—207三角函数7.1任意角的概念与弧度制7.1.1任意角的概念7.1.2弧度制7.2任意角的三角函数7.2.1任意角的三角函数的定义7.2.2单位圆与正弦、余弦线7.2.3利用计算器求三角函数值7.2.4三角函数值在各象限的符号7.3同角三角函数的基本关系式7.4三角函数的诱导公式7.5正弦、余弦函数的图像、性质7.5.1正弦函数的图像和性质7.5.2余弦函数的图像和性质7.6已知三角函数值求角阅读与实践08第八章平面向量8.1向量的概念8.2向量的线性运算8.2.1向量的加法2.2向量的减法8.2.3数乘向量8.3平面向量的直角坐标运算8.3.1平面向量的直角坐标及其运算8.3.2平面向量平行的坐标表示8.3.3向量的长度公式和中点公式8.4向量的内积8.4.1向量的内积8.4.2向量的内积的直角坐标运算阅读与实践09第九章直线与圆的方程9.1直线的方程9.1.1直线的方向向量和向式方程9.1.2直线的斜率和点斜式方程9.1.3直线的法向量与点法式方程9.1.4直线的一般式方程9.2两条直线的位置关系9.2.1两条直线的平行99.2.2两条直线的交点与垂直9.3点到直线的距离9.4圆的方程9.4.1圆的标准方程9.4.2圆的一般方程阅读与实践10第十章立体几何初步10.1平面的基本性质10.2空间两条直线的位置关系10.3直线与平面的位置关系10.4平面与平面的位置关系阅读与实践11第十一章概率与统计初步11.1技术的基本原理11.2概率初步11.2.1随机事件与样本空间11.2.2古典概率11.3随机抽样11.3简单的随机抽样11.3系统抽样11.3分层抽样11.4用样本估计总体11.4.1用样本的概率分布估计总体发布11.4.2用样本的数字特征估计数字特征11.5一元线性回归分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B
O
A
O
B
轴
练习:课本117 页试一试
母线
认识多面体 认识旋转体
课后作业:
• 1.学习指导与练习6.1. 1 • 2.手工制作:本节课课本上出现的几何体或 自由制作。 • 要求: • a:每人至少一个,可以合作完成,最 好不重复。 • b:模型大小:拿在手中,站在讲台上, 所有同学都能看清。
多面体上两个面的公共边叫做多面体的棱,棱和棱的公共点 叫做多面体的顶点.连结不在同一面上的两个顶点的线段叫 多面体的对角线.
认识旋转体
由一条封闭的平面曲线绕其一边所在的定直线旋转 一周所围成的几何体叫做旋转体.
这条定直线叫做旋转体的轴,那条曲线叫做旋转体的母线。
圆柱
O1 A
识多面体与旋转体
多面体棱角分明, 她使耸天的大楼气势 磅礴、充满阳刚
旋转体曲线曼妙, 她让建筑物婀娜多姿, 秀丽端庄
认识多面体
练习:课本第 117页第1题
由若干个平面多边形围成的几何体叫做多面体.
四面体
六面体
八面体
十二面体
二十面体
多面体的面数是几,我们就说它是几面体.