第一讲抛物线中动点问题讲义
抛物线中动点问题讲义
第一讲抛物线中的动点问题一、利用动点(图形)位置进行分类,把运动问题分割成几个静态问题,然后运用转化的思想和方法将几何问题转化为函数和方程问题二、利用函数与方程的思想和方法将所解决图形的性质(或所求图形面积)直接转化为函数或方程。
一、平行四边形与抛物线【例】如图甲,在平面直角坐标系中,A、B的坐标分别为(4,0)、(0,3),抛物线y=x2+bx+c经过点B,且对称轴是直线x=﹣.(1)求抛物线对应的函数解析式;(2)将图甲中△ABO沿x轴向左平移到△DCE(如图乙),当四边形ABCD是菱形时,请说明点C和点D都在该抛物线上;(3)在(2)中,若点M是抛物线上的一个动点(点M不与点C、D重合),经过点M作MN∥y轴交直线CD于N,设点M的横坐标为t,MN的长度为l,求l与t之间的函数解析式,并求当t为何值时,以M、N、C、E为顶点的四边形是平行四边形.变式演练【变式】如图,在平面直角坐标系中,已知Rt△AOB的两条直角边OA、OB分别在y轴和x轴上,并且OA、OB的长分别是方程x2﹣7x+12=0的两根(OA<OB),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点0运动;同时,动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A运动,设点P、Q运动的时间为t秒.(1)求A、B两点的坐标.(2)求当t为何值时,△APQ与△AOB相似,并直接写出此时点Q的坐标.(3)当t=2时,在坐标平面内,是否存在点M,使以A、P、Q、M为顶点的四边形是平行四边形?若存在,请直接写出M点的坐标;若不存在,请说明理由.【变式】如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y 轴交于点N.其顶点为D.(1)抛物线及直线AC的函数关系式;(2)设点M(3,m),求使MN+MD的值最小时m的值;(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD 交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;(4)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.二、梯形与抛物线【例】已知,在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2.若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内.将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处.(1)求点C的坐标;(2)若抛物线y=ax2+bx(a≠0)经过C、A两点,求此抛物线的解析式;(3)若上述抛物线的对称轴与OB交于点D,点P为线段DB上一动点,过P作y轴的平行线,交抛物线于点M,问:是否存在这样的点P,使得四边形CDPM为等腰梯形?若存在,请求出此时点P的坐标;若不存在,请说明理由.变式演练【变式】如图,O为坐标原点,直线l绕着点A(0,2)旋转,与经过点C(0,1)的二次函数y=x2+h的图象交于不同的两点P、Q.(1)求h的值;(2)通过操作、观察,算出△POQ的面积的最小值(不必说理);(3)过点P、C作直线,与x轴交于点B,试问:在直线l的旋转过程中,四边形AOBQ是否为梯形?若是,请说明理由;若不是,请指出四边形的形状.【变式】如图,在平面直角坐标系xOy中,矩形AOCD的顶点A的坐标是(0,4),现有两动点P,Q,点P从点O出发沿线段OC(不包括端点O,C)以每秒2个单位长度的速度匀速向点C运动,点Q从点C出发沿线段CD(不包括端点C,D)以每秒1个单位长度的速度匀速向点D运动.点P,Q同时出发,同时停止,设运动时间为t(秒),当t=2(秒)时,PQ=2.(1)求点D的坐标,并直接写出t的取值范围.(2)连接AQ并延长交x轴于点E,把AE沿AD翻折交CD延长线于点F,连接EF,则△AEF 的面积S是否随t的变化而变化?若变化,求出S与t的函数关系式;若不变化,求出S的值.(3)在(2)的条件下,t为何值时,四边形APQF是梯形?三、等腰三角形、菱形与抛物线【例】在平面直角坐标系xOy中,一块含60°角的三角板作如图摆放,斜边AB在x轴上,直角顶点C在y轴正半轴上,已知点A(﹣1,0).(1)请直接写出点B、C的坐标:B 、C ;并求经过A、B、C三点的抛物线解析式;(2)现有与上述三角板完全一样的三角板DEF(其中∠EDF=90°,∠DEF=60°),把顶点E放在线段AB上(点E是不与A、B两点重合的动点),并使ED所在直线经过点C.此时,EF 所在直线与(1)中的抛物线交于点M.①设AE=x,当x为何值时,△OCE∽△OBC;②在①的条件下探究:抛物线的对称轴上是否存在点P使△PEM是等腰三角形?若存在,请写出点P的坐标;若不存在,请说明理由.变式演练【变式】如图,在平面直角坐标系中,直角三角形AOB的顶点A、B分别落在坐标轴上.O为原点,点A的坐标为(6,0),点B的坐标为(0,8).动点M从点O出发.沿OA向终点A以每秒1个单位的速度运动,同时动点N从点A出发,沿AB向终点B以每秒个单位的速度运动.当一个动点到达终点时,另一个动点也随之停止运动,设动点M、N运动的时间为t秒(t >0).(1)当t=3秒时.直接写出点N的坐标,并求出经过O、A、N三点的抛物线的解析式;(2)在此运动的过程中,△MNA的面积是否存在最大值?若存在,请求出最大值;若不存在,请说明理由;(3)当t为何值时,△MNA是一个等腰三角形?【变式】如图,直线l1经过点A(﹣1,0),直线l2经过点B(3,0),l1、l2均为与y轴交于点C(0,),抛物线y=ax2+bx+c(a≠0)经过A、B、C三点.(1)求抛物线的函数表达式;(2)抛物线的对称轴依次与x轴交于点D、与l2交于点E、与抛物线交于点F、与l1交于点G.求证:DE=EF=FG;(3)若l1⊥l2于y轴上的C点处,点P为抛物线上一动点,要使△PCG为等腰三角形,请写出符合条件的点P的坐标,并简述理由.【变式】如图,在平面直角坐标系中,直角梯形OABC的边OC、OA分别与x轴、y轴重合,AB∥OC,∠AOC=90°,∠BCO=45°,BC=12,点C的坐标为(﹣18,0).(1)求点B的坐标;(2)若直线DE交梯形对角线BO于点D,交y轴于点E,且OE=4,OD=2BD,求直线DE的解析式;(3)若点P是(2)中直线DE上的一个动点,在坐标平面内是否存在点Q,使以O、E、P、Q 为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.【变式】如图,已知抛物线经过原点O和x轴上一点A(4,0),抛物线顶点为E,它的对称轴与x轴交于点D.直线y=﹣2x﹣1经过抛物线上一点B(﹣2,m)且与y轴交于点C,与抛物线的对称轴交于点F.(1)求m的值及该抛物线对应的解析式;(2)P(x,y)是抛物线上的一点,若S△ADP =S△ADC,求出所有符合条件的点P的坐标;(3)点Q是平面内任意一点,点M从点F出发,沿对称轴向上以每秒1个单位长度的速度匀速运动,设点M的运动时间为t秒,是否能使以Q、A、E、M四点为顶点的四边形是菱形?若能,请直接写出点M的运动时间t的值;若不能,请说明理由.四、直角三角形与抛物线【例】如图,抛物线y=与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)求点A、B的坐标;(2)设D为已知抛物线的对称轴上的任意一点,当△ACD的面积等于△ACB的面积时,求点D的坐标;(3)若直线l过点E(4,0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式.【变式】如图,在等腰三角形ABC中,AB=AC,以底边BC的垂直平分线和BC所在的直线建立平面直角坐标系,抛物线y=﹣x2+x+4经过A、B两点.(1)写出点A、点B的坐标;(2)若一条与y轴重合的直线l以每秒2个单位长度的速度向右平移,分别交线段OA、CA 和抛物线于点E、M和点P,连接PA、PB.设直线l移动的时间为t(0<t<4)秒,求四边形PBCA的面积S(面积单位)与t(秒)的函数关系式,并求出四边形PBCA的最大面积;(3)在(2)的条件下,抛物线上是否存在一点P,使得△PAM是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.【变式】如图,顶点为P(4,﹣4)的二次函数图象经过原点(0,0),点A在该图象上,OA 交其对称轴l于点M,点M、N关于点P对称,连接AN、ON,(1)求该二次函数的关系式;(2)若点A在对称轴l右侧的二次函数图象上运动时,请解答下面问题:①证明:∠ANM=∠ONM;②△ANO能否为直角三角形?如果能,请求出所有符合条件的点A的坐标;如果不能,请说明理由.【变式】如图,在平面直角坐标系中,直线y=x+2交x轴于点P,交y轴于点A.抛物线y=x2+bx+c的图象过点E(﹣1,0),并与直线相交于A、B两点.(1)求抛物线的解析式(关系式);(2)过点A作AC⊥AB交x轴于点C,求点C的坐标;(3)除点C外,在坐标轴上是否存在点M,使得△MAB是直角三角形?若存在,请求出点M 的坐标;若不存在,请说明理由.五、相似三角形与抛物线【例】如图1,已知抛物线y=ax2+bx(a≠0)经过A(3,0)、B(4,4)两点.(1)求抛物线的解析式;(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D的坐标;(3)如图2,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,求出所有满足△POD ∽△NOB的点P坐标(点P、O、D分别与点N、O、B对应).变式演练【变式】如图,已知抛物线y=ax2+bx+c(a≠0)的图象经过原点O,交x轴于点A,其顶点B 的坐标为(3,﹣).(1)求抛物线的函数解析式及点A的坐标;(2)在抛物线上求点P,使S△POA =2S△AOB;(3)在抛物线上是否存在点Q,使△AQO与△AOB相似?如果存在,请求出Q点的坐标;如果不存在,请说明理由.【变式】如图,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE 相似?若存在,求m的值;若不存在,请说明理由.【变式】如图,已知二次函数的图象过点A(﹣4,3),B(4,4).(1)求二次函数的解析式:(2)求证:△ACB是直角三角形;(3)若点P在第二象限,且是抛物线上的一动点,过点P作PH垂直x轴于点H,是否存在以P、H、D为顶点的三角形与△ABC相似?若存在,求出点P的坐标;若不存在,请说明理由.【变式】如图,直线AB交x轴于点B(4,0),交y轴于点A(0,4),直线DM⊥x轴正半轴于点M,交线段AB于点C,DM=6,连接DA,∠DAC=90°.(1)直接写出直线AB的解析式;(2)求点D的坐标;(3)若点P是线段MB上的动点,过点P作x轴的垂线,交AB于点F,交过O、D、B三点的抛物线于点E,连接CE.是否存在点P,使△BPF与△FCE相似?若存在,请求出点P的坐标;若不存在,请说明理由.【变式】在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C.(1)求这个二次函数的关系解析式;(2)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP的面积最大?若存在,求出点P的坐标;若不存在,说明理由;(3)在平面直角坐标系中,是否存在点Q,使△BCQ是以BC为腰的等腰直角三角形?若存在,直接写出点Q的坐标;若不存在,说明理由;(4)点Q是直线AC上方的抛物线上一动点,过点Q作QE垂直于x轴,垂足为E.是否存在点Q,使以点B、Q、E为顶点的三角形与△AOC相似?若存在,直接写出点Q的坐标;若不存在,说明理由;(5)点M为抛物线上一动点,在x轴上是否存在点Q,使以A、C、M、Q为顶点的四边形是平行四边形?若存在,直接写出点Q的坐标;若不存在,说明理由.六、抛物线中的翻折问题【例】如图,抛物线y=ax2+bx+2交x轴于A(﹣1,0),B(4,0)两点,交y轴于点C,与过点C且平行于x轴的直线交于另一点D,点P是抛物线上一动点.(1)求抛物线解析式及点D坐标;(2)点E在x轴上,若以A,E,D,P为顶点的四边形是平行四边形,求此时点P的坐标;(3)过点P作直线CD的垂线,垂足为Q,若将△CPQ沿CP翻折,点Q的对应点为Q′.是否存在点P,使Q′恰好落在x轴上?若存在,求出此时点P的坐标;若不存在,说明理由.变式演练【变式】如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A 点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大并求出此时P点的坐标和四边形ABPC 的最大面积.。
中考数学动点问题专题讲解(一)(建立动点问题的函数解析式)
所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想 函数思想 方程思想 数形结合思想 转化思想 注重对几何图形运动变化能力的考查从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢下面结合中考试题举例分析.一、应用勾股定理建立函数解析式例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G.(1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段如果有,请指出这样的线段,并求出相应的长度.(2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围).(3)如果△PGH 是等腰三角形,试求出线段PH 的长.解:(1)当点P 在弧AB 上运动时,OP 保持不变,于是线段GO 、GP 、GH中,有长度保持不变的线段,这条线段是GH=32NH=2132⋅OP=2. (2)在Rt △POH 中, 22236x PH OP OH -=-=, ∴2362121x OH MH -==. 在Rt △MPH 中, H MNG P O A B 图1x y. ∴y =GP=32MP=233631x + (0<x <6). (3)△PGH 是等腰三角形有三种可能情况: ①GP=PH 时,x x =+233631,解得6=x . 经检验, 6=x 是原方程的根,且符合题意. ②GP=GH 时, 2336312=+x ,解得0=x . 经检验, 0=x 是原方程的根,但不符合题意.③PH=GH 时,2=x .综上所述,如果△PGH 是等腰三角形,那么线段PH 的长为6或2.本专题的主要特征是两个点在运动的过程中,直接或间接地构造了直角三角线,因此可以利用勾股定理去建立函数关系式. 勾股定理是初中数学的重要定理,在运用勾股定理写函数解析式的过程中,主要是找边的等量关系,要善于发现这种内在的关系,用代数式去表示这些边,达到解题的目的. 由于是压轴题,有的先有铺垫,再写解析式;有的写好解析式后,再证明等腰三角形、相似三角形等,还有的再解一些与圆有关的体型. 要认真领会,达到举一反三的目的.1 牢记勾股定理:在直角三角形中,两条直角边的平方和等于斜边的平方.例题,扇形中∠AOB=45°,半径OB=2,矩形PQRS 的顶点P 、S 在半径OA 上,Q 在半径OB 上,R 在弧AB 上,连结OR.(1) 当∠AOR=30°时,求OP 长(2) 设OP=x ,OS=y ,求y 与x 的函数关系式及定义域2 在四边形的翻折与旋转中,往往会应用到勾股定理,由此产生些函数解析式的问题,要熟练掌握.例题:如图,正方形ABCD 中,AB=6,有一块含45°角的三角板,把45°角的顶点放在D 点,将三角板绕着点D 旋转,使这个45°角的两边与线段AB 、BC 分别相交于点E 、F (点E 与点A 、B 不重合)(1) 从几个不同的位置,分别测量AE 、EF 、FC 的长,从中你能发现AE 、EF 、FC 的数量之间具有怎样的关系并证明你所得到的结论2222233621419x x x MH PH MP +=-+=+=(2)设AE=x,CF=y,求y与x之间的函数解析式,并写出函数的定义域(3)试问△BEF的面积能否为8如果能,请求出EF的长;如果不能,请说明理由.3 在一些特殊的四边形中,如矩形、正方形,它们都是直角,菱形的对角线互相垂直,这些都有可能构造直角三角形,可以考虑用勾股定理写出函数的解析式.例题:如图,在菱形ABCD中,AB=4,∠B=60°,点P是射线BC上的一个动点,∠PAQ=60°,交射线CD于点Q,设点P到点B的距离为x,PQ=y(1)求证:三角形APQ是等边三角形(2)求y关于x的函数解析式,并写出它的定义域(3)如果PD⊥AQ,求BP的值4 作底边上的高,可以构造直角三角形,利用勾股定理写函数的解析式例题:如图,等边△ABC的边长为3,点P、Q分别是AB、BC上的动点(点P、Q与△ABC的顶点不重合),且AP=BQ,AQ、CP相交于点E.(1)如设线段AP为x,线段CP为y,求y关于x的函数解析式,并写出定义域(2)当△CBP的面积是△CEQ的面积的2倍时,求AP的长(3)点P、Q分别在AB、BC上移动过程中,AQ和CP能否互相垂直如能,请指出P点的位置,请说明理由.5 在解圆的题目时,首选的辅助线是弦心距,它不仅可以运用垂径定理,而且构造了直角三角形,为用勾股定理写函数解析式创造了条件.例题:如图,⊙A和⊙B是外离的两圆,两圆的连心线分别交⊙A、⊙B于E、F,点P 是线段AB上的一动点(点P不与E、F重合),PC切⊙A于点C,PD切⊙B于点D,已知⊙A的半径为2,⊙B的半径为1,AB=5.(1)如设线段BP的长为x,线段CP的长为y,求y关于x的函数解析式,并写出函数的定义域(2)如果PC=PD,求PB的长(3)如果PC=2PD,判断此时直线CP与⊙B的位置关系,证明你的结论6 强调圆的首选辅助线是弦心距,它不仅可以平分弦,而且构造了直角三角形,为解题创建新思路.例题:如图,在△ABC中,AB=15,AC=20,cotA=2,P是边AB上的一个动点,⊙P的半径为定长. 当点P与点B重合时,⊙P恰好与边AC相切;当点P与点B不重合,且⊙P与边AC相交于点M和点N时,设AP=x,MN=y.(1)求⊙P的半径(2)求y关于x的函数解析式,并写出它的定义域(3)当AP=65时,试比较∠CPN与∠A的大小,并说明理由阶梯题组训练1 如图,E是正方形ABCD的边AD上的动点,F是边BC延长线上的一点,且BF=EF,AB=12,设AE=x,BF=y.(1)当△BEF是等边三角形时,求BF的长;(2)求y与x之间的函数解析式,并写出它的定义域;(3)把△ABE沿着直线BE翻折,点A落在点A′处,试探索:△A′BF能否为等腰三角形如果能,请求出AE的长;如果不能,请说明理由.2 如图,在△ABC中,∠ACB=90°,∠A=30°,D是边AC上不与点A、C重合的任意一点,DE⊥AB,垂足为点E,M是BD的中点.(1)求证:CM=EM;(2)如果BC=3设AD=x,CM=y,求y与x的函数解析式,并写出函数的定义域;(3)当点D在线段AC上移动时,∠MCE的大小是否发生变化如果不变,求出∠MCE的大小;如果发生变化,说明如何变化.3 中,对角线AC⊥AB,AB=15,AC=20,点P为射线BC上一动点,AP⊥PM(点M 与点B分别在直线AP的两侧),且∠PAM=∠CAD,连结MD.(1)当点M在ABCD内时,如图,设BP=x,AP=y,求y关于x的函数关系式,并写出函数定义域;(2)请在备用图中画出符合题意的示意图,并探究:图中是否存在与△AMD相似的三角形若存在,请写出并证明;若不存在,请说明理由;(3)当△为等腰三角形时,求BP的长.4 抛物线经过A(2,0)、B(8,0)、C(0,3316).(1)求抛物线的解析式;(2)设抛物线的顶点为P,把△APB翻折,使点Pl落在线段AB上(不与A、B重合),记作P′,折痕为EF,设AP′=x,PE=y,求y关于x的函数关系式,并写出定义域;(3)当点P′在线段AB上运动但不与A、B重合时,能否使△EFP′的一边与x轴垂直若能,请求出此时点P′的坐标;若不能,请你说明理由.5 如图,矩形ABCD中,AD=7,AB=BE=2,点P是EC(包括E、C)上的动点,线段AP的垂直平分线分别交BC、AD于点F、G,设BP=x,AG=y.(1)四边形AFPG是说明图形请说明理由;(2)求y与x的函数关系式;(3)如果分别以线段GP、DC为直径作圆,且使两圆外切,求x的值.6 在梯形ABCD中,ADE为底边BC上一点,以点E为圆心,BE为半径画⊙E交直线DE于点F.(1)如图,当点F在线段DE上时,设BE=x,DF=y,试建立y关于x的函数关系式,并写出自变量x的取值范围;(2)当以CD为直径的⊙O与⊙E相切时,求x的值;(3)连结AF、BF,当△ABF是以AF为腰的等腰三角形时,求x的值.7 如图,在正方形ABCD中,AB=1,弧AC是以点B为圆心,AB长为半径的圆的一段弧,点E是边AD上的任意一点(点E与点A、D不重合),过E作弧AC所在圆的切线,交DC于点F,G为切点.(1)当∠DEF=45°时,求证点G为线段EF的中点;(2)设AE=x,FC=y,求y关于x的函数解析式,并写出函数的解析式;(3)将△DEF沿直线EF翻折后得△D1EF,如图2,当EF=65时,讨论△AD1D与△ED1F是否相似,如果相似,请加以证明;如果不相似,只要求写出结论,不要求写出理由.(2003年上海第27题)二、应用比例式建立函数解析式例2(2006年·山东)如图2,在△ABC中,AB=AC=1,点D,E在直线BC上运动.设BD=,x CE=y.(1)如果∠BAC=30°,∠DAE=105°,试确定y与x之间的函数解析式;(2)如果∠BAC的度数为α,∠DAE的度数为β,当α,β满足怎样的关系式时,(1)中y与x之间的函数解析式还成立试说明理由.解:(1)在△ABC中,∵AB=AC,∠BAC=30°,∴∠ABC=∠ACB=75°, ∴∠ABD=∠ACE=105°.∵∠BAC=30°,∠DAE=105°, ∴∠DAB+∠CAE=75°,又∠DAB+∠ADB=∠ABC=75°,∴∠CAE=∠ADB,∴△ADB∽△EAC, ∴ACBDCEAB=,∴11xy=, ∴xy1=.(2)由于∠DAB+∠CAE=αβ-,又∠DAB+∠ADB=∠ABC=290α-︒,且函数关系式成立,∴290α-︒=αβ-, 整理得=-2αβ︒90.当=-2αβ︒90时,函数解析式xy1=成立.例3(2005年·上海)如图3(1),在△ABC中,∠ABC=90°,AB=4,BC=3.点O是边AC上的一个动点,以点O为圆心作半圆,与边AB相切于点D,交线段OC于点E.作EP⊥ED,交射线AB于点P,交射线CB于点F.AEDCB图2FPDCB3(1)(1)求证: △ADE ∽△AEP.(2)设OA=x ,AP=y ,求y 关于x 的函数解析式,并写出它的定义域.(3)当BF=1时,求线段AP 的长.解:(1)连结OD.根据题意,得OD ⊥AB,∴∠ODA=90°,∠ODA=∠DEP.又由OD=OE,得∠ODE=∠OED.∴∠ADE=∠AEP, ∴△ADE ∽△AEP.(2)∵∠ABC=90°,AB=4,BC=3, ∴AC=5. ∵∠ABC=∠ADO=90°, ∴OD ∥BC, ∴53x OD =,54x AD =, ∴OD=x 53,AD=x 54. ∴AE=x x 53+=x 58. ∵△ADE ∽△AEP, ∴AE AD AP AE =, ∴x x y x 585458=. ∴x y 516= (8250≤<x ). (3)当BF=1时,①若EP 交线段CB 的延长线于点F,如图3(1),则CF=4.∵∠ADE=∠AEP, ∴∠PDE=∠PEC. ∵∠FBP=∠DEP=90°, ∠FPB=∠DPE,∴∠F=∠PDE, ∴∠F=∠FEC, ∴CF=CE.∴5-x 58=4,得85=x .可求得2=y ,即AP=2. ②若EP 交线段CB 于点F,如图3(2), 则CF=2.类似①,可得CF=CE.∴5-x 58=2,得815=x . 可求得6=y ,即AP=6.综上所述, 当BF=1时,线段AP 的长为2或6.本专题探究在图形的运动变化过程中,存在平行或相似的三角形,利用比例式来建立函数关系式. 难一些的题目其中的一个变量是比例式,一个变量是线段,也是利用相似或平行来构造比例式,从而写出函数的解析式. 作为最后的一道压轴题,一般情况下写出解析式后还会有一个证等腰或相似或相切的题目,可以二次函数专题中的解题思想进行处理.1 由平行得到比例式,从而建立函数关系式.例题:如图,在△ABC 中,AB=AC=4,BC=21AB ,点P 是边AC 上的一个点,AP=21PD ,∠APD=∠ABC ,连结DC 并延长交边AB 的延长线于点EA C 3(2)(1) 求证:AD证明:△ADE ∽△GFA (2) 设DE=x ,BG=y ,求y 关于x 的函数解析式及定义域(3) 当BH=41时,求DE 的长3 在学习利用相似比建立函数的解析式的时候,初中阶段的知识已经学了不少,对最后的压轴题的综合性的要求已经很高了. 一般会在写解析式前有一些证明或计算,写好解析式后再来一个证明等腰三角形或圆的位置关系等. 如果能够把一道复杂的压轴题拆分成几道小的题目,各个击破,难题也就变简单了.例题:如图,在Rt △ABC 中,∠C=90°,sinB=54,AC=4;D 是BC 的延长线上一个动点,∠EDA=∠B ,AE(1) 找出图中的相似三角形,并加以证明(2) 设CD=x ,AE=y ,求y 关于x 的函数解析式,并写出函数的定义域(3) 当△ADE 为等腰三角形时,求AE 的长4 刚才研究的写函数解析式都是在几何图形中进行的,下面来看在平面直角坐标系中怎样写解析式.例题:如图,在直角坐标系中的等腰梯形AOCD 中,AD OC AD 5253例题:如图,在平面直角坐标系中,点A 的坐标为(1,0),点B 、C 的坐标分别为(-1,0),C (0,b ),且0<b <3,m 是经过点B 、C 的直线,当点C 在线段OC 上移动时,过点A 作AD ⊥m 于点D.(1) 求点D 、O 之间的距离(2) 如果BOCBDA S △△S =ɑ,试求:ɑ与b 的函数关系式及ɑ的取值范围 (3) 当∠ADO 的余切值为2时,求直线m 的解析式(4) 求此时△ABD 与△BOC 重叠部分的面积6 当我们学习到利用相似三角形的相似比来建立函数解析式的时候,初中阶段的知识已经学得差不多了,对于一些貌似很复杂的图形,只要能够分层求解,就能化繁为简.例题:如图,在边长为6的正方形ABCD 的两侧如图作正方形BEFG 、正方形DMNK ,恰好使得N 、A 、F 三点在一直线上,连结MF 交线段AD 于点P ,连结NP ,设正方形BEFG 的边长为x ,正方形DMNK 的边长为y.(1) 求y 关于x 的函数关系式及自变量x 的取值范围(2) 当△NPF 的面积为32时,求x 的值(3) 以P 为圆心,AP 为半径的圆能够与以G 为圆心,GF 为半径的圆相切,若能请求x的值,若不能,请说明理由练习:1. 如图,在三角形中,AB=AC=8,BC=10,点D 、E 分别在BC 、AC 上(点D 不与B 、C 重合),且∠ADE=∠B ,设BD=x ,AE=y.(1) 求y 与x 之间的函数解析式,并写出函数的定义域(2) 点D 在BC 上的运动过程中,△ADE 是否有可能成为一个等腰三角形如有可能,请求出当△ADE 为等腰三角形时x 的值;如不可能,请说明理由.2. 在△ABC 中,AB=4,AC=5,cosA=53,点D 是边AC 上的点,点E 是边AB 上的点,且满足∠AED=∠A ,DE 的延长线交射线CB 于点F ,设AD=x ,EF=y.(1) 如图1,用含x 的代数式表示线段AE 的长(2) 如图1,求y 关于x 的函数解析式及函数的定义域(3) 连结EC ,如图2,求档x 为何值时,△AEC 与△BEF 相似.3. 如图,在矩形ABCD 中,AB=m (m 是大于0的常数),BC=8,E 为线段BC 上的动点(不与B 、C 重合).连结DE ,作EF ⊥DE ,EF 与射线BA 交于点F ,设CE=x ,BF=y.(1) 求y 关于x 的函数关系式(2) 若m=8,求x 为何值时,y 的值最大,最大值是多少(3) 若y=m12,要使△DEF 为等腰三角形,m 的值应为多少(1) 已知在梯形ABCD 中,AD 如图,P 为BC 上的一点,且BP=2. 求证:△BEP ∽△CPD ;(2) 如果点P 在BC 边上移动(点P 与点B 、C 不重合),且满足∠EPF=∠C ,PF 交直线CD 与点F ,同时交直线AD 于点M ,那么(3) 当点F 在线段CD 的延长线上时,设BP=x ,DF=y ,求y 关于x 的函数解析式,并写出函数的定义域;(4) 当S △DMF =49S △BEP 时,求BP 的长.(1) 如图,在四边形ABCD 中,∠B=90°,AD 求y 关于x 的函数解析式,并写出定义域;(2) 当AD=11时,求AG 的长;(3) 如果半径为EG 的⊙E 与半径为FD 的⊙F 相切,求这两个圆的半径.4. 如图,在半径为5的⊙O 中,点A 、B 在⊙O 上,∠AOB=90°,点C 是弧AB 上的一个动点,AC 与OB 的延长线相交于点D ,设AC=x ,BD=y.(1) 求y 关于x 的函数解析式,并写出它的定义域;(2) 若⊙O 1与⊙O 相交于点A 、C ,且⊙O 1与⊙O 的圆心距为2,当BD=31OB 时,求⊙O 1的半径;(3) 是否存在点C ,使得△DCB ∽△DOC 如果存在,请证明;如果不存在,请简要说明理由.(1) 已知∠ABC=90°,AB=2,BC=3,AD PCPQ AB AD当AD=23,且点Q 在线段AB 上时,设点B 、Q 之间的距离为x ,PBCAPQ S S △△=y ,其中S △APQ 表示△APQ 的面积,S △PBC 表示△PBC 的面积,求y 关于x 的函数解析式,并写出函数定义域;(2) 当AD <AB ,且点Q 在线段AB 的延长线上时(如图3所示),求∠QPC 的大小.(2009上海第25题)三、应用求图形面积的方法建立函数关系式例4(2004年·上海)如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,并写出函数的定义域.(2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时,△AOC 的面积.解:(1)过点A 作AH ⊥BC,垂足为H.∵∠BAC=90°,AB=AC=22, ∴BC=4,AH=21BC=2. ∴OC=4-x . ∵AH OC S AOC ⋅=∆21, ∴4+-=x y (40<<x ). (2)①当⊙O 与⊙A 外切时, 在Rt △AOH 中,OA=1+x ,OH=x -2, ∴222)2(2)1(x x -+=+. 解得67=x . A B C O 图8 H此时,△AOC 的面积y =617674=-. ②当⊙O 与⊙A 内切时, 在Rt △AOH 中,OA=1-x ,OH=2-x , ∴222)2(2)1(-+=-x x . 解得27=x . 此时,△AOC 的面积y =21274=-. 综上所述,当⊙O 与⊙A 相切时,△AOC 的面积为617或21.例2、【09广东】正方形ABCD 边长为4,M 、N 分别是BC 、CD 上的两个动点,当M 点在BC 上运动时,保持AM 和MN 垂直.(1)证明:Rt △ABM ∽Rt △MCN ;(2)设BM =x ,梯形ABCN 的面积为y ,求y 与x 之间的函数关系式;当M 点运动到什么位置时,四边形ABCN 面积最大,并求出最大面积;(3)当M 点运动到什么位置时Rt △ABM ∽Rt △AMN ,求此时x 的值练习1.如图,在△ABC 中,BC=8,CA= ,∠C=60°,EF ∥BC ,点E 、F 、D 分别在AB 、AC 、BC 上(点E 与点A 、B 不重合),连接ED 、DF 。
《中考动点问题》课件
常见的动点问题
1 直线运动问题
涉及到速度、时间和距离的计算。
2 相对运动问题
考察两个或多个物体相对运动的速度、时间和相对距离。
3 抛体运动问题
研究抛体在重力作用下的运动轨迹和最大高度等。
动点问题解决方法
理清问题思路
分析题目,明确问题的具体需求, 确定解题思路。
建立数学模型
将问题抽象成数学表达式或方程, 建立数学模型。
与同学合作
和同学一起讨论解题思路和方法, 互相学习和帮助。
与动点问题相关的个人经验分享
1
方法一
尝试将题目中的信息可视化,利用图表和图像辅助计算。
2
方法二
将问题分解为多个小问题,逐步解决每个小问题,最后将结果汇总。
3
方法三
多多练习,熟能生巧。反复做题,培养解题思维和技巧。
动点问题的影响
发展逻辑思维
通过解决动点问学能力
熟练掌握动点问题的解题方法,提高数学成绩。
如何应对动点问题
1 理解数学原理
掌握动点问题的数学概念和原理,深入理解与运动相关的数学知识。
2 创设实际情境
将学习内容与日常生活相结合,创设实际情境,提高解题的兴趣和动力。
3 勤做练习
通过大量练习,掌握不同类型动点问题的解题技巧。
《中考动点问题》PPT课 件
动点问题是中考中常见的考点之一,本课件将详细介绍动点问题的定义、解 决方法,以及个人经验分享,帮助大家更好地应对和解决这一问题。
动点问题介绍
什么是动点问题?
动点问题是数学中一个重要的概念,它涉及到物体运动的速度、时间和距离等因素,并需要 求解未知数。
动点问题的难点
动点问题常常需要将抽象的数学概念与具体的现实情境相结合,提高了解题的难度。
抛物线讲义
第五讲 抛物线教学目标:1.掌握抛物线的定义、几何图形、标准方程及简单性质(范围、对称性、顶点、离心率等).2.了解圆锥曲线的简单应用.了解抛物线的实际背景,了解抛物线在刻画现实世界和解决实际问题中的作用.3.理解数形结合的思想.一、知识回忆 课前热身知识点1.抛物线的定义满足以下三个条件的点的轨迹是抛物线: (1)在平面内;(2)动点到定点F 距离与到定直线l 的距离相等; (3)定点不在定直线上.知识点2.抛物线的标准方程和几何性质 标准方程y 2=2px (p >0)y 2=-2px (p >0)x 2=2py (p >0)x 2=-2py (p >0)p 的几何意义:焦点F 到准线l 的距离图形顶点 O (0,0)对称轴 y =0x =0焦点 F ⎝⎛⎭⎫p 2,0F ⎝⎛⎭⎫-p2,0 F ⎝⎛⎭⎫0,p 2 F ⎝⎛⎭⎫0,-p2 离心率 e =1准线方程 x =-p 2x =p 2 y =-p2y =p 2 范围 x ≥0,y ∈Rx ≤0,y ∈Ry ≥0,x ∈Ry ≤0,x ∈R开口方向 向右 向左 向上 向下 焦半径(其中P (x 0,y 0)|PF |=x 0+p2|PF |=-x 0+p2|PF |=y 0+p2|PF |=-y 0+p2例题辨析 推陈出新例1设P是抛物线y2=4x上的一个动点.(1)求点P到点A(-1,1)的距离与点P到直线x=-1的距离之和的最小值;(2)假设B(3,2),求|PB|+|PF|的最小值.[自主解答](1)如图,易知抛物线的焦点为F(1,0),准线是x=-1.由抛物线的定义知:点P到直线x=-1的距离等于点P到焦点F的距离.于是,问题转化为:在曲线上求一点P,使点P到点A(-1,1)的距离与点P到F(1,0)的距离之和最小.显然,连接AF交曲线于P点,那么所求的最小值为|AF|,即为 5.(2)如图,自点B作BQ垂直准线于Q,交抛物线于点P1,那么|P1Q|=|P1F|.那么有|PB|+|PF|≥|P1B|+|P1Q|=|BQ|=4.即|PB|+|PF|的最小值为4.变式练习1.(1)假设点P到直线y=-1的距离比它到点(0,3)的距离小2,那么点P的轨迹方程是________.(2)过抛物线y2=4x的焦点作直线l交抛物线于A,B两点,假设线段AB中点的横坐标为3,那么|AB|等于________.解析:(1)由题意可知点P到直线y=-3的距离等于它到点(0,3)的距离,故点P的轨迹是以点(0,3)为焦点,以y=-3为准线的抛物线,且p=6,所以其标准方程为x2=12y.(2)抛物线的准线方程为x=-1,那么AB中点到准线的距离为3-(-1)=4.由抛物线的定义得|AB|=8.答案:(1)x2=12y(2)8例2(1)抛物线y2=24ax(a>0)上有一点M,它的横坐标是3,它到焦点的距离是5,那么抛物线的方程为()A.y2=8x B.y2=12xC.y2=16x D.y2=20x(2)设抛物线y 2=2px (p >0)的焦点为F ,点A (0,2).假设线段F A 的中点B 在抛物线上,那么B 到该抛物线准线的距离为________.[自主解答] (1)由题意知,3+6a =5,a =13,那么抛物线方程为y 2=8x .(2)抛物线的焦点F 的坐标为⎝⎛⎭⎫p 2,0,线段F A 的中点B 的坐标为⎝⎛⎭⎫p 4,1,代入抛物线方程得1=2p ×p 4, 解得p =2,故点B 的坐标为⎝⎛⎭⎫24,1,故点B 到该抛物线准线的距离为24+22=324. [答案] (1)A (2)324变式练习2.直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,|AB |=12,P 为C 的准线上一点,那么△ABP 的面积为( )A .18B .24C .36D .48解析:选C 设抛物线方程为y 2=2px ,那么焦点坐标为⎝⎛⎭⎫p 2,0,将x =p2代入y 2=2px 可得y 2=p 2,|AB |=12,即2p =12,得p =6.点P 在准线上,到AB 的距离为p =6,所以△P AB 的面积为12×6×12=36.例3过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 1)两点,且|AB |=9.(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,假设OC =OA +λOB ,求λ的值. [自主解答] (1)直线AB 的方程是y =22⎝⎛⎭⎫x -p2,与y 2=2px 联立, 从而有4x 2-5px +p 2=0,所以x 1+x 2=5p4.由抛物线定义得|AB |=x 1+x 2+p =9, 所以p =4,从而抛物线方程是y 2=8x .(2)由p =4,4x 2-5px +p 2=0可简化为x 2-5x +4=0,从而x 1=1,x 2=4,y 1=-22,y 2=42, 从而A (1,-22),B (4,42).设OC =(x 3,y 3)=(1,-22)+λ(4,42)=(4λ+1,42λ-22),又y 23=8x 3,即[22(2λ-1)]2=8(4λ+1),即(2λ-1)2=4λ+1, 解得λ=0或λ=2.变式练习3.直线y =k (x +2)(k >0)与抛物线C :y 2=8x 相交于A ,B 两点,F 为C 的焦点,假设|F A |=2|FB |,求k 的值.解:设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =k (x +2),y 2=8x ,得k 2x 2+(4k 2-8)x +4k 2=0,所以x 1+x 2=8k 2-4,x 1x 2=4.又由抛物线的定义可知|F A |=x 1+2,|FB |=x 2+2, 所以x 1+2=2(x 2+2),即x 1=2(x 2+1),代入x 1x 2=4 得2(x 2+1)x 2=4,解得x 2=1(x 2=-2舍去),将x 2=1,x 1=4代入x 1+x 1=8k 2-4得k 2=89,由k >0,所以k =223.三、归纳总结 方法在握归纳4个结论——直线与抛物线相交的四个结论抛物线y 2=2px (p >0),过其焦点的直线交抛物线于A ,B 两点,设A (x 1,y 1),B (x 2,y 2),那么有以下结论:(1)|AB |=x 1+x 2+p 或|AB |=2psin 2α(α为AB 所在直线的倾斜角);(2)x 1x 2=p 24;(3)y 1y 2=-p 2;(4)过抛物线焦点且与对称轴垂直的弦称为抛物线的通径,抛物线的通径长为2p . 3个注意点——抛物线问题的三个注意点(1)求抛物线的标准方程时一般要用待定系数法求p 的值,但首先要判断抛物线是否为标准方程,假设是标准方程,那么要由焦点位置(或开口方向)判断是哪一种标准方程.(2)注意应用抛物线定义中的距离相等的转化来解决问题.(3)直线与抛物线有一个交点,并不说明直线与抛物线相切,因为当直线与对称轴平行(或重合)时,直线与抛物线也只有一个交点.1.随着新课程改革的深入,一些以圆锥曲线在生活和生产中实际应用为背景的应用问题已经进入教材,并且越来越受重视,在一些考试中越来越多的表达.2.解决此类问题,要把实际问题抽象为数学问题,建立数学模型,抓住问题实质,利用数形结合,根据这些圆锥曲线的几何性质解决问题.四、拓展延伸 能力升华例1(2021·陕西高考)下列图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米,水位下降1米后,水面宽____________米.[解析] 以拱顶为坐标原点建立平面直角坐标系,设抛物线的方程为x 2=-2py (p >0),由题意知抛物线过点(2,-2),代入方程得p =1,那么抛物线的方程为x 2=-2y ,当水面下降1米时,为y =-3,代入抛物线方程得x =±6,所以此时水面宽为26米.[答案] 2 6变式练习 1.海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y 轴正方向建立平面直角坐标系(以1海里为单位长度),那么救援船恰好在失事船正南方向12海里A 处,如下图.现假设:①失事船的移动路径可视为抛物线y =1249x 2;②定位后救援船即刻沿直线匀速前往救援;③救援船出发t 小时后,失事船所在位置的横坐标为7t .(1)当t =0.5时,写出失事船所在位置P 的纵坐标.假设此时两船恰好会合,求救援船速度的大小;(2)问救援船的时速至少是多少海里才能追上失事船?解:(1)t =0.5时,P 的横坐标x P =7t =72,代入抛物线方程y =1249x 2,得P 的纵坐标y P =3.由|AP |=9492,得救援船速度的大小为949海里/时. (2)设救援船的时速为v 海里,经过t 小时追上失事船,此时位置为(7t,12t 2). 由v t =(7t )2+(12t 2+12)2, 整理得v 2=144⎝⎛⎭⎫t 2+1t 2+337. 因为t 2+1t 2≥2,当且仅当t =1时等号成立.所以v 2≥144×2+337=252,即v ≥25.因此,救援船的时速至少是25海里才能追上失事船.五、课后作业 稳固提高一、选择题(本大题共6小题,每题5分,共30分)1.抛物线x 2=(2a -1)y 的准线方程是y =1,那么实数a =( ) A.52B.32C .-12D .-32解析:选D 把抛物线方程化为x 2=-2⎝⎛⎭⎫12-a y ,那么p =12-a ,故抛物线的准线方程是y =p 2=12-a2,那么12-a 2=1,解得a =-32.2.抛物线y 2=4x ,假设过焦点F 且垂直于对称轴的直线与抛物线交于A ,B 两点,O 是坐标原点,那么△OAB 的面积是( )A .1B .2C .4D .6解析:选B 焦点坐标是(1,0),A (1,2),B (1,-2),|AB |=4,故△OAB 的面积S =12|AB ||OF |=12×4×1=2.3.直线y =x +1截抛物线y 2=2px 所得弦长为26,此抛物线方程为( ) A .y 2=2xB .y 2=6xC .y 2=-2x 或y 2=6xD .以上都不对解析:选C 由⎩⎪⎨⎪⎧y =x +1,y 2=2px ,得x 2+(2-2p )x +1=0.x 1+x 2=2p -2,x 1x 2=1.那么26=1+12·(x 1+x 2)2-4x 1x 2= 2·(2p -2)2-4. 解得p =-1或p =3,故抛物线方程为y 2=-2x 或y 2=6x .4.点M (1,0),直线l :x =-1,点B 是l 上的动点,过点B 垂直于y 轴的直线与线段BM 的垂直平分线交于点P ,那么点P 的轨迹是( )A .抛物线B .椭圆C .双曲线的一支D .直线解析:选A 由点P 在BM 的垂直平分线上,故|PB |=|PM |.又PB ⊥l ,因而点P 到直线l 的距离等于点P 到点M 的距离,所以点P 的轨迹是抛物线.5.(2021·湛江模拟)以坐标轴为对称轴,原点为顶点且过圆x 2+y 2-2x +6y +9=0圆心的抛物线方程是( )A .y =3x 2或y =-3x 2B .y =3x 2C .y 2=-9x 或y =3x 2D .y =-3x 2或y 2=9x解析:选D 圆的标准方程为(x -1)2+(y +3)2=1,故圆心坐标为(1,-3),设抛物线方程为y 2=2p 1x 或x 2=-2p 2y ,那么(-3)2=2p 1或1=6p 2,得2p 1=9或2p 2=13,故抛物线方程为y 2=9x 或x 2=-13y ,那么y 2=9x 或y =-3x 2.6.(2021·衡水模拟)设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A ,假设△OAF (O 为坐标原点)的面积为4,那么抛物线的方程为( )A .y 2=±4xB .y 2=±8xC .y 2=4xD .y 2=8x解析:选B 由题可知抛物线焦点坐标为⎝⎛⎭⎫a 4,0,于是过焦点且斜率为2的直线的方程为y =2⎝⎛⎭⎫x -a 4,令x =0,可得A 点坐标为⎝⎛⎭⎫0,-a 2,所以S △OAF =12·|a |4·|a |2=4. 得a =±8故抛物线方程为y =±8x .二、填空题(本大题共3小题,每题5分,共15分)7.以抛物线x 2=-4y 的顶点为圆心,焦点到准线的距离为半径的圆的方程是______________. 解析:抛物线的顶点在原点,焦点到准线的距离为2,所以所求圆的方程为x 2+y 2=4. 答案:x 2+y 2=48.(2021·厦门模拟)动圆圆心在抛物线y 2=4x 上,且动圆恒与直线x =-1相切,那么此动圆必过定点________.解析:因为动圆的圆心在抛物线y 2=4x 上,且x =-1是抛物线y 2=4x 的准线,所以由抛物线的定义知,动圆一定过抛物线的焦点(1,0).答案:(1,0)9.(2021·安徽高考)过抛物线y 2=4x 的焦点F 的直线交该抛物线于A ,B 两点.假设|AF |=3,那么|BF |=________.解析:如图,设A (x 0,y 0)(y 0<0),易知抛物线y 2=4x 的焦点为F (1,0),抛物线的准线方程为x =-1,故由抛物线的定义得|AF |=x 0-(-1)=3,解得x 0=2,所以y 0=-2 2.故点A (2,-22).那么直线AB 的斜率为k =-22-02-1=-22,直线AB的方程为y =-22x +22,联立⎩⎨⎧y =-22x +22,y 2=4x ,消去y 得2x 2-5x +2=0,由x 1x 2=1,得A ,B 两点横坐标之积为1,所以点B 的横坐标为12.再由抛物线的定义得|BF |=12-(-1)=32.答案:32三、解答题(本大题共3小题,每题12分,共36分)10.圆C 过定点F ⎝⎛⎭⎫-14,0,且与直线x =14相切,圆心C 的轨迹为E ,曲线E 与直线l :y =k (x +1)(k ∈R )相交于A ,B 两点.(1)求曲线E 的方程;(2)当△OAB 的面积等于10时,求k 的值.解:(1)由题意,点C 到定点F ⎝⎛⎭⎫-14,0和直线x =14的距离相等, 故点C 的轨迹E 的方程为y 2=-x .(2)由方程组⎩⎪⎨⎪⎧y 2=-x ,y =k (x +1)消去x 后,整理得ky 2+y -k =0. 设A (x 1,y 1),B (x 2,y 2),由韦达定理有y 1+y 2=-1k ,y 1y 2=-1.设直线l 与x 轴交于点N ,那么N (-1,0). ∵S △OAB =S △OAN +S △OBN =12|ON ||y 1|+12|ON ||y 2|,=12|ON ||y 1-y 2|=12·1·(y 1+y 2)2-4y 1y 2 =12⎝⎛⎭⎫1k 2+4. ∵S △OAB =10,所以12⎝⎛⎭⎫1k 2+4=10, 解得k =±16.11.假设椭圆C 1:x 24+y 2b 2=1(0<b <2)的离心率等于32,抛物线C 2:x 2=2py (p >0)的焦点在椭圆C 1的上顶点.(1)求抛物线C 2的方程;(2)假设过M (-1,0)的直线l 与抛物线C 2交于E ,F 两点,又过E ,F 作抛物线C 2的切线l 1,l 2,当l 1⊥l 2时,求直线l 的方程.解:(1)椭圆的长半轴长为a =2,半焦距c =4-b 2, 由离心率e =c a =4-b 22=32得,b 2=1.那么椭圆的上顶点为(0,1),即抛物线的焦点为(0,1), 所以p =2,抛物线的方程为x 2=4y .(2)由题知直线l 的斜率存在且不为零,那么可设直线l 的方程为y =k (x +1),E (x 1,y 1),F (x 2,y 2), ∵y =14x 2,∴y ′=12x .∴切线l 1,l 2的斜率分别为12x 1,12x 2,当l 1⊥l 2时,12x 1·12x 2=-1,即x 1·x 2=-4,由⎩⎪⎨⎪⎧y =k (x +1),x 2=4y ,得x 2-4kx -4k =0,那么Δ=(-4k )2-4×(-4k )>0,解得k <-1或k >0.又x 1·x 2=-4k =-4,得k =1. ∴直线l 的方程为y =x +1.12.(2021·珠海模拟)在平面直角坐标系xOy 中,设点F ⎝⎛⎭⎫12,0,直线l :x =-12,点P 在直线l 上移动,R 是线段PF 与y 轴的交点,RQ ⊥FP ,PQ ⊥l .(1)求动点Q 的轨迹方程C ;(2)设圆M 过A (1,0),且圆心M 在曲线C 上,TS 是圆M 在y 轴上截得的弦,当M 运动时,弦长|TS |是否为定值?请说明理由.解:(1)依题意知,点R 是线段FP 的中点,且RQ ⊥FP , ∴RQ 是线段FP 的垂直平分线. ∵|PQ |是点Q 到直线l 的距离. 点Q 在线段FP 的垂直平分线上, ∴|PQ |=|QF |.故动点Q 的轨迹是以F 为焦点,l 为准线的抛物线, 其方程为y 2=2x (x >0).(2)弦长|TS |为定值.理由如下:取曲线C 上点M (x 0,y 0), M 到y 轴的距离为d =|x 0|=x 0, 圆的半径r =|MA |=(x 0-1)2+y 20,那么|TS |=2r 2-d 2=2y 20-2x 0+1, 因为点M 在曲线C 上,所以x 0=y 202,所以|TS |=2y 20-y 20+1=2,是定值.。
抛物线动点问题解题思路
抛物线动点问题解题思路一、问题描述某人站在离地面为h的平台上,用力将一个物体以初速度v0水平抛出,物体沿抛出方向的轨迹为抛物线。
我们希望了解在给定初速度和高度的情况下,物体在不同时间点的位置以及其他相关信息。
二、解题思路为了解决这个问题,我们可以按照以下步骤进行分析和计算:1.计算物体的运动时间首先,我们需要计算物体在空中飞行的总时间。
这个时间可以通过以下公式得到:时间=2*初速度*si n(抛射角度)/g,其中初速度为v0,抛射角度为α,g为重力加速度。
2.计算物体的飞行距离接下来,我们可以计算物体在空中飞行的总距离。
这个距离可以通过以下公式得到:距离=2*初速度^2*s in(抛射角度)*co s(抛射角度)/g,其中初速度为v0,抛射角度为α,g为重力加速度。
3.计算物体在特定时间点的位置在了解了物体的运动时间和飞行距离后,我们可以得到物体在不同时刻的位置。
物体在x轴方向的位置可以通过以下公式得到:x=初速度*c os(抛射角度)*时间,其中初速度为v0,抛射角度为α,时间可以取0~飞行总时间的任意值。
物体在y轴方向的位置可以通过以下公式得到:y=h+初速度*si n(抛射角度)*时间-0.5*g*时间^2,其中初速度为v0,抛射角度为α,时间可以取0~飞行总时间的任意值,h为平台高度,g为重力加速度。
三、实例演算下面,我们以一个具体的实例来演算一下抛物线动点问题的解题思路。
假设物体被以初速度v0=20m/s水平抛出,初始高度为h=5m,请问物体在t=1s的位置是多少?首先,我们可以计算出物体在空中飞行的总时间:时间=2*20*si n(α)/g=2*20*0.5/9.8≈2.04s。
接下来,我们可以计算出物体在空中飞行的总距离:距离=2*20^2*si n(α)*c o s(α)/g=2*20^2*0.5*0.5/9.8≈20.41m。
然后,我们可以根据给定的时间点t=1s来计算物体的位置。
抛物线与动点问题
Q SPCB SCPQ SBPQ =3 1 OB PQ 3
2 1 3 PQ=3
2 1 3(-m2 3m) 3
2 m2 3m 2 0
m1 1, m2 2 P1(1, 4)P2 (2,3)
过P点作BC的平行线交y轴于点E 则SCEB =SCPB 3 1 CE 3=3
2 CE =2 E(0,5)
lPE: y x 5 联立:y x 5, y x2 2x 3 x2 2x 3 x 5 x2 3x 2 0
x1 1, x2 2 P1(1, 4)P2 (2, 3)
思考
抛物线 y=-x2 +2x+3与x轴交于点A和点B,
与y轴交于点C
设P(m,-m2 2m 3)
SBPC SCOP SOBP SCOB
3 1 3 m 1 3(-m2 2m 3) 1 33
2
2
2
m2 3m 2 0
1, m2 2 P1(1, 4)P2(2,3)
过P点作PQ x轴交BC于点Q, 设P(m, -m2 2m 3), Q lBC: y x 3,点Q在BC上 可设Q(m, m 3)
二次函数中的动点问题 ----已知面积求点的坐标
常青第一学校九年级数学组
y D
C
x
AO
B
SBCD怎么求?
探究
如图,抛物线 y=-x2 +2x+3与x轴交于点A和
点B,与y轴交于点C
在BC上方抛物线上是否存在点P,使得S△PBC=3, 若存在,求出点P的坐标;若不存在,说明理由。
y
D
C
x
AO
B
连OP
点P在BC上方抛物线上运动过程中是否存在某个 时刻,使得S△PBC最大?此时点P在哪个位置?
中考数学中的动点问题
不变:
AOB的形状大小不变, 前后两个三角形全等。
y
B' A'
O'
AO
C
x
B
解决方案
借助全等巧妙设元
y
B' A'
O'
关键:将点B '的横坐标加2,
AO
C
x
B
纵坐标减1就可得到点A'的坐标。
变式实战
如图1,二次函数y=ax2+bx+c的图象经过点A(﹣2, 0),B(6,0),C(0,6),点P是抛物线上一 点. (1)求抛物线的表达式;
∴沿射线AB方向平移可理解为: 抛物线上任意一点向右平移2m个单位, 再向上平移m个单位。
实战举例
在平面直角坐标系xOy中,抛物线y=ax2+ 2 3 x+c与y
3
轴交于点C,与x轴交于A、B两点(点A在点B的左侧), 其中A( 3 ,0),tan∠ACO= 3 .
3
(1)求抛物线的解析式;
(1)解: A( 3, 0),OA 3,
中考数学中的动点问题
问题一:平移问题
基本模型: 如图,将抛物线 y 1 x2 3 x 2
22
沿射线AB方向平移。
思维方式
变:抛物线位置的变化
不变: 抛物线上的任意一点平移的方向 和距离是相同的
解决方案
由y 1 x2 3 x 2可得:A(4,0)、B(0,2), 22
直线AB为:y= 1 x 2, 2
思维方法: 变中寻找不变 抓关键: 点C平移至C′处, 且OC′=OC,
不难发现: ∠OCB=60 °, ∴ △OCC ′为等边三角形, 作C′F⊥OC,
初中数学抛物线上的动点问题
初中数学抛物线上的动点问题抛物线上的动点问题,这听起来像是数学课上最无聊的内容了,但它就像那杯热腾腾的奶茶,里面藏着不少惊喜呢!想象一下,一个小球在空中飞来飞去,它的轨迹就像一条优美的抛物线,哦,真是太酷了。
这个动点问题就像是在跟我们讲一个故事,讲述着这个小球如何在某个特定的时刻、某个特定的地方,和我们发生奇妙的碰撞。
咱们得明白什么是抛物线。
想象一下,小时候玩风筝,放得太高了,风一吹,风筝就会沿着一个弯曲的轨迹下落。
那就是抛物线的感觉。
抛物线有点像是大自然给我们的一个玩具,它可以用来解决许多有趣的问题,比如说,投篮的时候,篮球的弧线也是抛物线啊!所以,咱们一边学习,心里还得想着这些有趣的场景,真是两全其美。
什么是动点呢?小球就像是一个小精灵,它在抛物线上跳来跳去,不停地变化位置。
我们要想象一下,这个小精灵在做什么。
它可能在追逐小鸟,或者在寻找糖果。
哦,想到糖果我都想流口水了!这个动点就是一个在抛物线上不断移动的点,简单吧?我们用数学的语言来描述它,其实就是用公式来告诉我们它的位置随时间的变化。
想想看,多有趣啊,这小精灵跟着时间的脚步在舞动。
再说说,为什么要研究这些动点问题呢?生活中到处都是这样的抛物线和动点。
比如说,你扔一个苹果,苹果的轨迹就像抛物线一样。
你知道的,苹果掉下来可能会砸到人的头上,哈哈,那就很尴尬了。
不过,从这个角度看,苹果的落点就成了一个动点的问题,咱们要算好它落在哪里,避免意外发生,这就是用数学来保护自己啊。
说到这里,不得不提一提动点的速度和位置,这俩家伙简直就是双胞胎。
动点的速度就像是你在追赶公交车的时候,心里的那个紧张感。
咱们得知道,这小精灵在每一秒钟的位置变化得有多快。
速度快了,位置就变得飞快;速度慢了,哎,可能就得慢慢来,像在沙滩上走路一样,费劲。
有些同学可能觉得数学公式枯燥无味,其实这些公式就像是调料,少了它们,整个故事就没味道。
比如说,抛物线的方程y = ax² + bx + c,这些字母就像是调皮的小精灵,代表着不同的数值。
抛物线中的动点问题专题复习【精品】
抛物线中的动点问题专题复习【精品】本文档将介绍抛物线中的动点问题的相关知识,并提供复材料和练题。
一、概述抛物线中的动点问题是数学中涉及到抛物线和动点运动的问题。
通过研究动点在抛物线上的运动,可以解决与速度、加速度、时间等相关的物理问题。
二、相关概念在抛物线中的动点问题中,有几个重要的概念需要掌握:1. 抛物线:抛物线是一种特殊的曲线,具有对称性和顶点。
它可以用一条二次函数的图像来表示。
抛物线:抛物线是一种特殊的曲线,具有对称性和顶点。
它可以用一条二次函数的图像来表示。
2. 动点:动点是在抛物线上移动的一个点,其位置随时间的变化而变化。
动点:动点是在抛物线上移动的一个点,其位置随时间的变化而变化。
3. 速度:动点在抛物线上的运动速度可以用速度向量表示。
速度是动点在单位时间内所移动的距离。
速度:动点在抛物线上的运动速度可以用速度向量表示。
速度是动点在单位时间内所移动的距离。
4. 加速度:动点在抛物线上的运动加速度是速度的导数,表示速度的变化率。
加速度:动点在抛物线上的运动加速度是速度的导数,表示速度的变化率。
三、解题方法在解决抛物线中的动点问题时,可以采用以下方法:1. 分析曲线方程:首先要了解抛物线的方程以及其特点,例如顶点坐标、对称轴等。
分析曲线方程:首先要了解抛物线的方程以及其特点,例如顶点坐标、对称轴等。
2. 确定动点的运动方程:根据题目给出的条件,可以推导出动点的运动方程,通常是关于时间的函数。
确定动点的运动方程:根据题目给出的条件,可以推导出动点的运动方程,通常是关于时间的函数。
3. 计算速度和加速度:利用导数和微分的知识,可以计算动点在抛物线上的速度和加速度。
计算速度和加速度:利用导数和微分的知识,可以计算动点在抛物线上的速度和加速度。
4. 解决相关问题:根据题目的要求,可以利用速度、加速度等参数解决与动点运动相关的物理问题。
解决相关问题:根据题目的要求,可以利用速度、加速度等参数解决与动点运动相关的物理问题。
七年级上册数学人教版动点问题讲解
七年级上册数学人教版动点问题讲解一、动点问题的定义在数学中,动点问题是指随着时间变化而变化的点的位置。
在七年级上册数学人教版中,动点问题是一个非常基础但重要的概念,它为我们理解和应用数学知识提供了重要的基础。
动点问题可以涉及到直线运动、曲线运动、加速度、速度、位移等概念,通过动点问题的学习可以帮助我们更好地理解数学知识,并且应用到日常生活和实际问题中去。
二、动点问题的分类在七年级上册数学人教版中,动点问题主要可以分为直线运动和曲线运动两大类。
直线运动是指点按直线运动的情况,可以包括匀速直线运动和变速直线运动。
而曲线运动则指的是点按曲线运动的情况,比如圆周运动、抛物线运动等。
这两类动点问题都有各自的特点和解题方法,我们需要根据具体的情况来进行分析和解题。
三、直线运动问题的讲解在数学教材中,我们经常会遇到直线运动的相关问题。
一个小车以20米/秒的速度匀速行驶,那么在5秒钟内它会走多远?又或者,一个物体以2米/秒^2的加速度做匀速直线运动,那么经过3秒钟它的速度是多少?这类问题都属于直线运动问题,我们可以通过公式和图像来解决这类问题。
四、曲线运动问题的讲解和直线运动类似,曲线运动问题也是数学教材中的重要内容。
一个物体以一定的初速度和加速度做抛物线运动,那么在t秒钟内它的位移是多少?对于这类问题,我们需要运用抛物线运动的公式来进行求解,同时也需要理解抛物线运动的特点和规律。
五、动点问题的实际应用除了在数学教材中学习动点问题的知识,动点问题在现实生活中也有着广泛的应用。
我们可以通过动点问题来分析汽车的行驶路线和速度、投放飞行物体的轨迹和速度、天体的运动规律等。
动点问题的学习不仅可以帮助我们提高数学解题的能力,也可以为我们理解和解释现实世界中的一系列现象提供重要的数学工具。
六、个人观点和理解在学习七年级上册数学人教版中的动点问题时,我深深感受到了动点问题的重要性和应用价值。
通过学习动点问题,我不仅提高了对数学知识的理解和掌握,也培养了解决实际问题的能力。
33_抛物线讲义专题讲座
y M(x,y)
化简得:
O
Fx
L
*
解法二:以定点 为原点,过点 垂直于 旳直线为 轴建
立直角坐标系(如下图所示),则定点
, 旳方程
为
y
设动点
,由抛物线定义得
M(x,y)
化简得:
F(O) x L
*
M
p F(- 2 ,0)
y L
p χ= 2
Fo
x
y2=-2pχ
(p>0)
*
F·
*
例4
M是抛物线y2 = 2px(P>0)上一点,若点
p M 旳横坐标为X0,则点M到焦点旳距离是
X + — 0
2 ————————————
y M(X0, y0)
.
OF
x
*
X= - p/2
解法一:以 为 轴,过点 垂直于 旳直线为 轴建
立直角坐标系(如下图所示),则定点
设动点
点
,由抛物线定义得:
寻找:区别与联络
二、四种形式原则方程旳区别
1、一次项(X或Y)定焦点 2、一次项系数符号定开口方向.
正号朝正向,负号朝负向。
*
例1 已知抛物线旳原则方程是y2 = 6x,
求它旳焦点坐标和准线方程;
解: ∵2P=6,∴P=3
所以抛物线旳焦点坐标是(
准线方程是x=
是一次项系数旳 ,0)
是一次项系数旳
旳相反数
*
练习1
求下列抛物线旳焦点坐标和准线方程
(1)y 2 = -20 x 焦点F ( -5 , 0 ) 准线:x =5
(2) y = 6 x 2
焦点F ( 0 , 1 ) 准线:y = - 1
抛物线上的动点
抛物线上的动点教学目标1.巩固二次函数及图像的知识,会利用二次函数及图像的知识探究相关的数学问题.2.学会构建函数模型解决数学综合问题,培养学生分析问题和解决问题的能力.教学重点利用动点(图形)位置进行分类,然后运用转化的思想和方法将函数问题转化为几何和方程问题.教学难点函数动点问题转化过程的理解.教学过程一、新课引入1.课前预备:音乐欣赏蔡健雅《抛物线》,动画《抛物线上的动点》.三、新课讲解1.课前热身(1)点A(-2,m)在抛物线y=x2上,则m的值为_______.(2)函数y=x2-4x-5与x轴的交点坐标是_____________,与y轴的交点坐标是____________. (3)直线y=x与抛物线y=-3x2的交点是_____________.(4)动点P(x,y)在抛物线y=x2-4x+3 (-3≤x≤3)上,则y的最小值是________, 最大值是________.预设目标:简单复习抛物线上点的意义、交点坐标与二次函数的性质.2.例题讲解视频欣赏《脑洞巨开:理科生的投篮》.预设目标:情境引入,激发状态.例在《理科生投篮》动画中,篮球的运动路线是抛物线y=a x2+bx+3,下表给出了抛物线与自变量x的一些对应值:((2)抛物线与x轴分别交于点A,点B(3,0),与y轴相交于点C,若在抛物线的对称轴上有一点P,要使PA+PC的值最小,求点P的坐标.那么ΔPAC周长的最小值呢?预设目标:通过一个点的运动,让学生掌握利用抛物线的轴对称性,通过特殊点求线段和或周长的最值问题.(3)若点M是抛物线在直线BC上方的动点,连结MC,MB,那么ΔMBC的有最大值吗?如果有,请求出面积的最大值.(动画演示,直观理解求三角形面积最大即求底边的最大值)预设目标:通过图形中两个点的运动,让学生理解可以把面积的最值问题转化为求底边最值(或函数最值)问题.(4)点P 为x 轴上的一动点,在抛物线上是否存在一点Q ,使以A ,C ,P ,Q 四点构成 的四边形为平行四边形?若存在,求点Q 的坐标;若不存在,请说明理由.预设目标:通过图形中的两个动点,把抛物线上平行四边形的存在问题转化为全等三角形问题建方程求解.(5)动点E 从O 点出发,沿着OB 方向以1个单位/秒的速度向终点匀速运动,同时, 动点F 从点B 出发,沿着BC个单位/秒的速度向终点C 匀速运动,当E , F 中任意一点到达终点时另一点也随之停止运动,连接EF ,设运动时间为t 秒,当t 为何值时,△EF 为直角三角形?预设目标:通过图形中的两个动点,把抛物线上直接三角形的存在问题转化为相似三角形问题(或勾股定理)建方程求解.(6)当a 取a 1时,抛物线与x 轴正半轴交于点A (m ,0);当a 取a 2时,抛物线与 x 轴交于点B (n ,0).若点A 在点B 左边,试比较a 1与a 2的大小.预设目标:通过抛物线的变化,把二次项系数a 的大小比较转化为代数式的比较.三、小结四、作业良渚二中 盛华2017.4.18。
二次函数5抛物线动点问题
如图所示,在平面直角坐标系xOy 中,矩形OABC 的边长OA 、OC 分别为12cm 、6cm ,点A 、C 分别在y 轴的负半轴和x 轴的正半轴上,抛物线y=ax 2+bx+c 经过点A 、B ,且18a+c=0. (1)求抛物线的解析式.(2)如果点P 由点A 开始沿AB 边以1cm/s 的速度向终点B 移动,同时点Q 由点B 开始沿BC 边以2cm/s 的速度向终点C 移动.①移动开始后第t 秒时,设△PBQ 的面积为S ,试写出S 与t 之间的函数关系式,并写出t 的取值范围.②当S 取得最大值时,在抛物线上是否存在点R ,使得以P 、B 、Q 、R 为顶点的四边形是平行四边形?如果存在,求出R 点的坐标;如果不存在,请说明理由.如图,在平面直角坐标系xOy 中,一次函数54y x m =+ (m 为常数)的图象与x 轴交于点A(3-,0),与y 轴交于点C .以直线x=1为对称轴的抛物线2y ax bx c =++ (a b c ,, 为常数,且a ≠0)经过A ,C 两点,并与x 轴的正半轴交于点B .(1)求m 的值及抛物线的函数表达式;(2)设E 是y 轴右侧抛物线上一点,过点E 作直线AC 的平行线交x 轴于点F .是否存在这样的点E ,使得以A ,C ,E ,F 为顶点的四边形是平行四边形?若存在,求出点E 的坐标及相应的平行四边形的面积;若不存在,请说明理由; (3)若P 是抛物线对称轴上使△ACP 的周长取得最小值的点,过点P 任意作一条与y 轴不平行的直线交抛物线于111M ()x y , ,222M ()x y ,两点,试探究2112P PM M M M ⋅ 是否为定值,并写出探究过程.已知二次函数22(3(1)22)t y t x x =++++在0x =与2x =的函数值相等. (1)求二次函数的解析式;(2)若一次函数6y kx =+的图象与二次函数的图象都经过点A (3-,m ),求m 与k 的值;(3)设二次函数的图象与x 轴交于点B ,C (点B 在点C 的左侧 ),将二次函数的图象B ,C 间的部分(含点B 和点C )向左平移n (0n >)个单位后得到的图象记为G ,同时将(2)中得到的直线y kx b =+向上平移n 个单位.请结合图象回答:平移后的直线与图象G 有公共点时,n 的取值范围.如图,在平面直角坐标系中放置一直角三角板,其顶点为(0,1),(2,0),(0,0)A B O ,将此三角板绕原点O 逆时针旋转90︒,得到A B O ''∆.(1)一抛物线经过点A '、B '、B ,求该抛物线的解析式;(2)设点P 是在第一象限内抛物线上的一动点,是否存在点P ,使四边形PB A B ''的面积是A B O ''∆面积的4倍?若存在,请求出点P 的坐标;若不存在,请说明理由.(3)在(2)的条件下,试指出四边形PB A B ''是哪种形状的四边形?并写出四边形PB A B ''的两条性质.如图,在平面直角坐标系中,点A 的坐标为(m ,m ),点B 的坐标为(n ,﹣n ),抛物线经过A 、O 、B 三点,连接OA 、OB 、AB ,线段AB 交y 轴于点C .已知实数m 、n (m <n )分别是方程x 2﹣2x ﹣3=0的两根. (1)求抛物线的解析式;(2)若点P 为线段OB 上的一个动点(不与点O 、B 重合),直线PC 与抛物线交于D 、E 两点(点D 在y 轴右侧),连接OD 、BD .①当△OPC 为等腰三角形时,求点P 的坐标; ②求△BOD 面积的最大值,并写出此时点D 的坐标.xyO-11 22 A BA 'B '如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (-1,0)、B (3,0),与y 轴交于点C (0,3).(1)求抛物线的解析式及顶点D 的坐标;(2)P 为线段BD 上的一个动点,过点P 作PM ⊥x 轴于点M ,求四边形PMAC 的面积的最大值和此时点P 的坐标; (3)点Q 是抛物线第一象限上的一个动点,过点Q 作QN ∥AC 交x 轴于点N .当点Q 的坐标为时,四边形QNAC 是平行四边形;当点Q 的坐标为 时,四边形QNAC 是等腰梯形(直接写出结果,不写求解过程).如图,在直角坐标系xOy 中,点P 为函数214y x =在第一象限内的图象上的任一点,点A 的坐标为(01),,直线l 过(01)B -,且与x 轴平行,过P 作y 轴的平行线分别交x 轴,l 于C Q ,,连结AQ 交x 轴于H ,直线PH 交y 轴于R .(1)求证:H 点为线段AQ 的中点;(2)求证:①四边形APQR 为平行四边形;②平行四边形APQR 为菱形;(3)除P 点外,直线PH 与抛物线214y x =有无其它公共点?并说明理由.x lQC PA OB HR y抛物线y=ax2+bx+c经过A(-3,0)、B(3,0)、C(0,3)三点,线段BC与抛物线的对称轴l相交于点D。
抛物线动点问题探究
81[2014.3]抛物线动点问题是最近几年中考的一个热点题型,中考常将抛物线的动点问题作为压轴题出现。
所谓“抛物线动点问题”,是指题设图形中存在一个或多个动点,它们在抛物线上运动的一类开放性题目。
解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题,结合已经学过的平面图形的性质,再根据已知条件找出动点的运动规律进行求解。
既然是动点,能否用运动的观点来解决呢?下面用几个例子来探究怎样用运动的观点解决此类问题。
例1:如图1,抛物线y=-x 2+bx+c 与x 轴交于A (1,0),B (-3,0)两点。
(1)求该抛物线的解析式;(2)在抛物线上的第二象限上是否存在一点P,使△PBC 的面积最大?若存在,求出点P 的坐标及△PBC 的面积最大值;若没有,请说明理由。
分析:(1)由A、B 点坐标可求出抛物线解析式:y=-x 2-2x+3.(2)由题知点B (-3,0),点C (0,3),点P 是第二象限的抛物线上的点,△PBC 的面积最大值,也就是取决于动点P 的位置。
若过点P 做x 轴的垂线交BC 于点G,交x 轴于H,则可将△PBC 分成两个同底的三角形,分别为△PGB 与△PGC,同时这两个三角形的高可以平移到x 轴上,则S △PBC =S △PGB +S △PGC =12PG×BG+12PG×OG=12PG(BG+OG)=12PG×OB.题中OB 的长度是确定的,也就转化成求PG 的最大值。
而PG 的长度可由P 点的纵坐标和G 点的纵坐标的差求得,可设P 点的横坐标是x,则P(x,-x 2-2x+3),G 点的横坐标也是x,而直线BC 解析式可由点B、C 求得y=x+3.所以,G(x,x+3),则PG=(-x 2-2x+3)-(x+3)=-x 2-3x=-(x+32)2+94,可见当P(32,94),△PBC 的面积最大。
此方法适用于在抛物线上寻找一点与已知点构成的三角形面积最大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一讲抛物线中的动点问题一、利用动点(图形)位置进行分类,把运动问题分割成几个静态问题,然后运用转化的思想和方法将几何问题转化为函数和方程问题二、利用函数与方程的思想和方法将所解决图形的性质(或所求图形面积)直接转化为函数或方程。
一、平行四边形与抛物线【例】如图甲,在平面直角坐标系中,A、B的坐标分别为(4,0)、(0,3),抛物线y=x2+bx+c经过点B,且对称轴是直线x=﹣.(1)求抛物线对应的函数解析式;(2)将图甲中△ABO沿x轴向左平移到△DCE(如图乙),当四边形ABCD是菱形时,请说明点C和点D都在该抛物线上;(3)在(2)中,若点M是抛物线上的一个动点(点M不与点C、D重合),经过点M作MN∥y轴交直线CD于N,设点M的横坐标为t,MN的长度为l,求l 与t之间的函数解析式,并求当t为何值时,以M、N、C、E为顶点的四边形是平行四边形.变式演练【变式】如图,在平面直角坐标系中,已知Rt△AOB的两条直角边OA、OB分别在y轴和x轴上,并且OA、OB的长分别是方程x2﹣7x+12=0的两根(OA<OB),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点0运动;同时,动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A运动,设点P、Q运动的时间为t秒.(1)求A、B两点的坐标.(2)求当t为何值时,△APQ与△AOB相似,并直接写出此时点Q的坐标.(3)当t=2时,在坐标平面内,是否存在点M,使以A、P、Q、M为顶点的四边形是平行四边形?若存在,请直接写出M点的坐标;若不存在,请说明理由.【变式】如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N.其顶点为D.(1)抛物线及直线AC的函数关系式;(2)设点M(3,m),求使MN+MD的值最小时m的值;(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD 交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;二、梯形与抛物线【例】已知,在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2.若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内.将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处.(1)求点C的坐标;(2)若抛物线y=ax2+bx(a≠0)经过C、A两点,求此抛物线的解析式;(3)若上述抛物线的对称轴与OB交于点D,点P为线段DB上一动点,过P作y轴的平行线,交抛物线于点M,问:是否存在这样的点P,使得四边形CDPM为等腰梯形?若存在,请求出此时点P的坐标;若不存在,请说明理由.变式演练【变式】如图,O为坐标原点,直线l绕着点A(0,2)旋转,与经过点C(0,1)的二次函数y=x2+h的图象交于不同的两点P、Q.(1)求h的值;(2)通过操作、观察,算出△POQ的面积的最小值(不必说理);(3)过点P、C作直线,与x轴交于点B,试问:在直线l的旋转过程中,四边形AOBQ是否【变式】如图,在平面直角坐标系xOy中,矩形AOCD的顶点A的坐标是(0,4),现有两动点P,Q,点P从点O出发沿线段OC(不包括端点O,C)以每秒2个单位长度的速度匀速向点C运动,点Q从点C出发沿线段CD(不包括端点C,D)以每秒1个单位长度的速度匀速向点D运动.点P,Q同时出发,同时停止,设运动时间为t(秒),当t=2(秒)时,PQ=2.(1)求点D的坐标,并直接写出t的取值范围.(2)连接AQ并延长交x轴于点E,把AE沿AD翻折交CD延长线于点F,连接EF,则△AEF 的面积S是否随t的变化而变化?若变化,求出S与t的函数关系式;若不变化,求出S的值.(3)在(2)的条件下,t为何值时,四边形APQF是梯形?三、等腰三角形、菱形与抛物线【例】在平面直角坐标系xOy中,一块含60°角的三角板作如图摆放,斜边AB在x轴上,直角顶点C在y轴正半轴上,已知点A(﹣1,0).(1)请直接写出点B、C的坐标:B 、C ;并求经过A、B、C三点的抛物线解析式;(2)现有与上述三角板完全一样的三角板DEF(其中∠EDF=90°,∠DEF=60°),把顶点E放在线段AB上(点E是不与A、B两点重合的动点),并使ED所在直线经过点C.此时,EF 所在直线与(1)中的抛物线交于点M.②在①的条件下探究:抛物线的对称轴上是否存在点P使△PEM是等腰三角形?若存在,请写出点P的坐标;若不存在,请说明理由.变式演练【变式】如图,在平面直角坐标系中,直角三角形AOB的顶点A、B分别落在坐标轴上.O为原点,点A的坐标为(6,0),点B的坐标为(0,8).动点M从点O出发.沿OA向终点A以每秒1个单位的速度运动,同时动点N从点A出发,沿AB向终点B以每秒个单位的速度运动.当一个动点到达终点时,另一个动点也随之停止运动,设动点M、N运动的时间为t秒(t >0).(1)当t=3秒时.直接写出点N的坐标,并求出经过O、A、N三点的抛物线的解析式;(2)在此运动的过程中,△MNA的面积是否存在最大值?若存在,请求出最大值;若不存在,请说明理由;(3)当t为何值时,△MNA是一个等腰三角形?【变式】如图,直线l1经过点A(﹣1,0),直线l2经过点B(3,0),l1、l2均为与y轴交于点C(0,),抛物线y=ax2+bx+c(a≠0)经过A、B、C三点.(1)求抛物线的函数表达式;(2)抛物线的对称轴依次与x轴交于点D、与l2交于点E、与抛物线交于点F、与l1交于点G.求证:DE=EF=FG;(3)若l1⊥l2于y轴上的C点处,点P为抛物线上一动点,要使△PCG为等腰三角形,请写出符合条件的点P的坐标,并简述理由.【变式】如图,在平面直角坐标系中,直角梯形OABC的边OC、OA分别与x轴、y轴重合,AB∥OC,∠AOC=90°,∠BCO=45°,BC=12,点C的坐标为(﹣18,0).(1)求点B的坐标;(2)若直线DE交梯形对角线BO于点D,交y轴于点E,且OE=4,OD=2BD,求直线DE的解析式;(3)若点P是(2)中直线DE上的一个动点,在坐标平面内是否存在点Q,使以O、E、P、Q 为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.【变式】如图,已知抛物线经过原点O和x轴上一点A(4,0),抛物线顶点为E,它的对称轴与x轴交于点D.直线y=﹣2x﹣1经过抛物线上一点B(﹣2,m)且与y轴交于点C,与抛物线的对称轴交于点F.(1)求m的值及该抛物线对应的解析式;(2)P(x,y)是抛物线上的一点,若S△ADP =S△ADC,求出所有符合条件的点P的坐标;(3)点Q是平面内任意一点,点M从点F出发,沿对称轴向上以每秒1个单位长度的速度匀速运动,设点M的运动时间为t秒,是否能使以Q、A、E、M四点为顶点的四边形是菱形?若能,请直接写出点M的运动时间t的值;若不能,请说明理由.四、直角三角形与抛物线【例】如图,抛物线y=与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)求点A、B的坐标;(2)设D为已知抛物线的对称轴上的任意一点,当△ACD的面积等于△ACB的面积时,求点D的坐标;(3)若直线l过点E(4,0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式.【变式】如图,在等腰三角形ABC中,AB=AC,以底边BC的垂直平分线和BC所在的直线建立平面直角坐标系,抛物线y=﹣x2+x+4经过A、B两点.(1)写出点A、点B的坐标;(2)若一条与y轴重合的直线l以每秒2个单位长度的速度向右平移,分别交线段OA、CA 和抛物线于点E、M和点P,连接PA、PB.设直线l移动的时间为t (0<t<4)秒,求四边形PBCA的面积S(面积单位)与t(秒)的函数关系式,并求出四边形PBCA的最大面积;(3)在(2)的条件下,抛物线上是否存在一点P,使得△PAM是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.【变式】如图,顶点为P(4,﹣4)的二次函数图象经过原点(0,0),点A在该图象上,OA 交其对称轴l于点M,点M、N关于点P对称,连接AN、ON,(1)求该二次函数的关系式;(2)若点A在对称轴l右侧的二次函数图象上运动时,请解答下面问题:①证明:∠ANM=∠ONM;②△ANO能否为直角三角形?如果能,请求出所有符合条件的点A的坐标;如果不能,请说明理由.【变式】如图,在平面直角坐标系中,直线y=x+2交x轴于点P,交y轴于点A.抛物线y=x2+bx+c的图象过点E(﹣1,0),并与直线相交于A、B两点.(1)求抛物线的解析式(关系式);(2)过点A作AC⊥AB交x轴于点C,求点C的坐标;(3)除点C外,在坐标轴上是否存在点M,使得△MAB是直角三角形?若存在,请求出点M 的坐标;若不存在,请说明理由.五、相似三角形与抛物线【例】如图1,已知抛物线y=ax2+bx(a≠0)经过A(3,0)、B(4,4)两点.(1)求抛物线的解析式;(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D的坐标;(3)如图2,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,求出所有满足△POD ∽△NOB的点P坐标(点P、O、D分别与点N、O、B对应).变式演练【变式】如图,已知抛物线y=ax2+bx+c(a≠0)的图象经过原点O,交x轴于点A,其顶点B 的坐标为(3,﹣).(1)求抛物线的函数解析式及点A的坐标;(2)在抛物线上求点P,使S△POA =2S△AOB;(3)在抛物线上是否存在点Q,使△AQO与△AOB相似?如果存在,请求出Q点的坐标;如果不存在,请说明理由.【变式】如图,已知抛物线的方程C:y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点B、C,1与y轴相交于点E,且点B在点C的左侧.过点M(2,2),求实数m的值;(1)若抛物线C1(2)在(1)的条件下,求△BCE的面积;(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE (4)在第四象限内,抛物线C1相似?若存在,求m的值;若不存在,请说明理由.【变式】如图,已知二次函数的图象过点A(﹣4,3),B(4,4).(1)求二次函数的解析式:(2)求证:△ACB是直角三角形;(3)若点P在第二象限,且是抛物线上的一动点,过点P作PH垂直x轴于点H,是否存在以P、H、D为顶点的三角形与△ABC相似?若存在,求出点P的坐标;若不存在,请说明理由.【变式】如图,直线AB交x轴于点B(4,0),交y轴于点A(0,4),直线DM⊥x轴正半轴于点M,交线段AB于点C,DM=6,连接DA,∠DAC=90°.(1)直接写出直线AB的解析式;(2)求点D的坐标;(3)若点P是线段MB上的动点,过点P作x轴的垂线,交AB于点F,交过O、D、B三点的抛物线于点E,连接CE.是否存在点P,使△BPF与△FCE相似?若存在,请求出点P的坐标;若不存在,请说明理由.【变式】在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C.(1)求这个二次函数的关系解析式;(2)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP的面积最大?若存在,求出点P的坐标;若不存在,说明理由;(3)在平面直角坐标系中,是否存在点Q,使△BCQ是以BC为腰的等腰直角三角形?若存在,直接写出点Q的坐标;若不存在,说明理由;(4)点Q是直线AC上方的抛物线上一动点,过点Q作QE垂直于x轴,垂足为E.是否存在点Q,使以点B、Q、E为顶点的三角形与△AOC相似?若存在,直接写出点Q的坐标;若不存在,说明理由;(5)点M为抛物线上一动点,在x轴上是否存在点Q,使以A、C、M、Q为顶点的四边形是平行四边形?若存在,直接写出点Q的坐标;若不存在,说明理由.六、抛物线中的翻折问题【例】如图,抛物线y=ax2+bx+2交x轴于A(﹣1,0),B(4,0)两点,交y轴于点C,与过点C且平行于x轴的直线交于另一点D,点P是抛物线上一动点.(1)求抛物线解析式及点D坐标;(2)点E在x轴上,若以A,E,D,P为顶点的四边形是平行四边形,求此时点P的坐标;(3)过点P作直线CD的垂线,垂足为Q,若将△CPQ沿CP翻折,点Q的对应点为Q′.是否存在点P,使Q′恰好落在x轴上?若存在,求出此时点P的坐标;若不存在,说明理由.变式演练【变式】如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A 点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大并求出此时P点的坐标和四边形ABPC 的最大面积.。