环肋圆柱壳结构屈曲特性研究
复合材料圆柱壳轴压屈曲性能分析
![复合材料圆柱壳轴压屈曲性能分析](https://img.taocdn.com/s3/m/857d0ea5960590c69ec3766c.png)
图1
轴压载荷下复合材料圆柱壳结构的屈曲模态
Buckling mode of composite cylindrical shell under axial compression load
究,而试验研究主要是针对小型试件或部分柱壳结
构[1 14],对于带口盖的复合材料圆柱壳结构的力学
2
Fig.1
性能还需进一步研究。本文中以某型导弹弹体舱段 结构为原型,对轴压载荷作用下复合材料圆柱壳结 构进行试验研究与数值计算,得到圆柱壳结构的屈 曲载荷和屈曲变形。在圆柱壳结构上开口并加装口 盖,计算了开口大小以及复合材料圆柱壳的铺层方 式对圆柱壳结构屈曲载荷的影响。分析了完整、带 开口和带口盖的圆柱壳结构的失稳模态,得到了3 种结构的屈曲特性。
268 5
kN(即有限元分析的屈曲载荷的60%)时,按
kN/min载荷级别进行加载,直至达到理论载荷的
80%,即354 kN时,将加载级别改为1 kN/min,
继续进行试验,直至试件破坏。 复合材料圆柱壳结构破坏位置发生在圆柱壳结 构中部偏上部位,与有限元分析结果大致相同,如 图3所示,可以看出破坏位置处的变形复杂。 根据试验测得结构的屈曲载荷和各测量点的变 形情况,选择具有代表性的测量点的载荷一应变曲 线,对结构变形情况进行讨论: 结构的上下端部(1切面和7切面),各测量点 的载荷应变形状大致相同。图4给出了1切面左
COVer
on
the
finite
on
buckling load of the cylindrical shell with
rectan
was
installed
to
reinforce the structure,and the strength of the
带框架肋骨的环肋圆柱壳的总体弹性屈曲
![带框架肋骨的环肋圆柱壳的总体弹性屈曲](https://img.taocdn.com/s3/m/3e9a1c3b3169a4517723a3d0.png)
其 它 方 法 计 算 加 强 圆柱 壳 的屈 曲压 力 是 非 常 困 难 的 。解 决 大 圆 柱 壳 大 分 舱 结 构 的一 个 关 键 问 题 是 求 解 带 框 架 肋 骨 的环 肋 圆柱 壳 的 总体 屈 曲 。为 此 , 提 出 一种 计 算 带 框 架 肋 骨 的环 肋 大 圆柱 壳 总体 弹性 屈 曲 能量 的方 法 。 关键 词 : 框架肋骨 ; 环 肋 圆柱 壳 ; 总体屈曲
wi t h o t h e r me t h o d s a r e v e r y d i f f i c u l t .To c o mp r e h e n d g e n e r a l b u c k l i n g o f r i n g s t i f f e n e d c i r c u l a r c y l i n d r i c a l s h e l l s wi t h h e a v y
中图分类号 : U6 6 1 . 4 文献标志码 : A
Ge n e r a l El a s t i c Bu c kl i ng Pr o b l e m o f Ri n g - S t i f f e n e d Ci r c u l a r
Cy l i n d r i c a l S he l l s wi t h He a v y Fr a me s
0 引 言
虽 然大 圆柱壳 的长 舱段 、 大分 舱结构 已经 成为 当今水 下 钢结构 的发 展趋 势 , 并 已在 某些 发达 国家得 到 了
实 际 的应用 。但带 框架 肋骨 长舱段 总体 失稳 的计算 , 还 没有 给 出准 确 、 有 效 的计算 方法 。略述 了其 中的一些
探 索工 作 , 并 提 出了带框 架肋 骨 的环肋 圆柱壳 运用 能量 表达式 , 通过 R i t z 法求 出其 弹性屈 曲压 力 。
复杂边界条件下圆柱壳—环板耦合结构振动特性分析
![复杂边界条件下圆柱壳—环板耦合结构振动特性分析](https://img.taocdn.com/s3/m/606e5297fd0a79563c1e72df.png)
复杂边界条件下圆柱壳—环板耦合结构振动特性分析作者:石先杰李春丽蒋华兵来源:《振动工程学报》2018年第01期摘要:采用谱几何法(Spectro-Geometric Method,SGM)构建了复杂边界条件/耦合条件下圆柱壳-环板耦合结构动力学特性预报模型,并分别对各自外在边界和二者之间的耦合边界进行建模。
耦合边界通过设置具有线性刚度和旋转刚度的三维弹性耦合器模拟结构之间的各类耦合效应。
圆柱壳和环板的振动位移容许函数被统一地描述为一种谱形式的改进三角级数。
应用哈密尔顿原理从能量的角度推导耦合结构系统的特征方程。
将此方法获得的结果与文献解及有限元结果进行对比,验证了分析模型的有效性。
关键词:结构振动;复杂边界条件;圆柱壳;耦合结构;谱几何法中图分类号:0327;TB532 文献标志码:A 文章编号:1004-4523(2018)01-0118-07DOI:10.16385/ki.issn.1004-4523.2018.01.014引言在实际的工程应用领域中,圆柱壳-环板耦合结构往往是一种更为符合实际的基本结构单元。
当弹性板与圆柱壳存在耦合连接时,由于组成耦合结构的子构件之间存在能量流动和传递,从而使得圆柱壳-环板耦合结构的动力学特性变得更加复杂。
然而,对这类耦合结构的相关动力学特性开展研究工作对一些实际工程应用具有重要的理论价值。
因此,国内外专家学者就圆柱壳一板耦合结构的动力学问题进行了一系列的研究工作。
White采用平均能量和能量流法开创性地对带有端板的圆柱壳结构声传递特性进行了相关研究。
他还通过相关物理实验验证了理论计算研究的正确性。
Cheng和Nicolas采用瑞利一里兹法研究了一端具有弹性圆板的板-壳耦合结构系统的自由振动问题,通过相关数值分析来验证了理论计算模型的正确性,并详细研究了耦合效应和边界条件对耦合结构系统振动特性的影响规律。
之后,Cheng将人工弹簧技术用来分析两端具有端板的封闭圆柱壳结构与其形成的封闭声腔之间的声振特性,其中封闭圆柱壳的一端为弹性端板,而另外一端则为刚性端板。
弹性连续介质中有限长环向加肋圆柱壳的振动特性
![弹性连续介质中有限长环向加肋圆柱壳的振动特性](https://img.taocdn.com/s3/m/48401c9282d049649b6648d7c1c708a1284a0a38.png)
弹性连续介质中有限长环向加肋圆柱壳的振动特性周越;尹涛【摘要】基于Flugge薄壳理论,利用环向加肋圆柱壳中力与壳体中面位移关系,运用波传播理论考虑有限长圆柱壳两端边界条件,得到环向加肋圆柱壳结构的运动控制方程;再基于Navier-Stokes波动理论建立圆柱壳周围无限弹性连续介质的运动方程.在此基础上,通过接触面连续条件与Flugge薄壳理论基本条件,建立基于弹性介质与环向加肋圆柱壳结构耦合作用下的圆柱壳振动控制方程,从而得到弹性介质中环向加肋圆柱壳结构的自振特性参数.通过真空中普通圆柱壳、弹性介质中普通圆柱壳、真空中环向加肋圆柱壳以及弹性介质中环向加肋圆柱壳结构的振动特性分析,同时结合三维有限元仿真分析,验证了本文理论方法的正确性,研究成果可为地下管道等相关结构的抗震设计及无损检测提供理论指导.%By utilizing the wave propagation method for considering the boundary conditions at both ends of the finite-length ring-stiffened cylindrical shell, the equation of motion for the cylindrical shell is firstly developed based on the Flugge shell theory and the relationships between internal force and displacement of middle surface of the ring-stiffened cylindrical shell.Secondly, the governing equation for the elastic medium around the cylindrical shell is set up by employing the Navier-Stokes wave theory of homogeneous, isotropic and linear elastic media.After that, following the continuous contact surface conditions and the principle of Flugge thin shell theory, the governing equation for the ring-stiffened cylindrical shell structures considering the dynamic interaction with surrounded elastic medium is developed, and then the free-vibration characteristics of the ring-stiffenedcylindrical shell structures surrounded by elastic medium are analyzed.Finally, through the free-vibration analysis of the following four situations, i.e., ordinary cylindrical shell in vacuum, ordinary cylindrical shell in elastic medium, ring-stiffened cylindrical shell in vacuum, and ring-stiffened cylindrical shell in elastic medium, and also combined with three-dimensional finite element simulations, the correctness of the proposed theory is verified.The presented research results can provide theoretical guidance for non-destructive testing and seismic design of underground pipelines and other related engineering structures.【期刊名称】《科学技术与工程》【年(卷),期】2017(017)020【总页数】8页(P205-212)【关键词】圆柱壳;环向加肋;弹性介质;自振特性分析【作者】周越;尹涛【作者单位】武汉大学土木建筑工程学院,武汉 430072;武汉大学土木建筑工程学院,武汉 430072【正文语种】中文【中图分类】TU33+3圆柱壳是工程结构中应用最为广泛的基本单元形式之一,随着现代工业发展与城市规模扩大,其在航空航天、石油化工、船舶制造、市政管网以及城市地下轨道交通等领域的应用俞加广泛,相比传统静力问题,其在动荷载作用下所导致的一系列如动力疲劳、动应力集中、整体或局部动力稳定及损伤检测等问题逐渐受到广泛关注。
~~考虑筋板相互作用的环肋圆柱壳屈曲强度分析
![~~考虑筋板相互作用的环肋圆柱壳屈曲强度分析](https://img.taocdn.com/s3/m/db25084f852458fb770b56f6.png)
"
*
$
"
*
$
’//.
%)>%
() *
" % +% $ 0* " " /0" $ % % 0% 00 1
* , , / * /
:
*!
!* /*
’7!7$ 3 $
!"
其中 !
船舶力学
第 ! 卷第 # 期
!$ !$ % !! " !" % $ !" &% " !$" % !! ’ !$ !" # #!" !"
第 Q 卷第 # 期 "$$R 年 % 月
文章编号 ! !$$PFP"Q#""$$R#$#F$$%QF$Q
船舶力学
U@=:01H @7 2./3 V54.10/49
S@H*Q T@*# +=C* "$$R
考虑筋!板相互作用的环肋圆柱壳 屈曲强度分析
胡 勇 !! 马建军 "! 张 政 "! 崔维成 !
&+ , $ (
$
)
("
!& -.+ ( ( # !"
"
4 )
(
&
(
(
#*"/ $ (
$
)
("
!& 01+ #!"!*
"
("
(
*%)%
&
(
#*"
+$-,
式中 ! .+ 为面板的弯曲刚度 $ 1+ 为面板的扭转刚度 % 外力势能为 !
功能梯度材料圆柱壳屈曲问题的研究的开题报告
![功能梯度材料圆柱壳屈曲问题的研究的开题报告](https://img.taocdn.com/s3/m/3f4505a150e79b89680203d8ce2f0066f533643a.png)
功能梯度材料圆柱壳屈曲问题的研究的开题报告一、研究背景在现代工业生产中,材料是不可缺少的基础建设,其复杂性和多样性使得人们对其研究的方向和方法不断进行探讨。
功能梯度材料(FGM)是一类在不同位置具有不同材料作用的新型复合材料,其材料内部呈现渐变、复合、连续的过程,是材料科学的重要研究领域。
在工程应用中,功能梯度材料可以被用来减少结构的重量、提高结构的刚度、抗裂和抗疲劳等。
圆柱壳作为一种重要的结构形态,广泛应用于航天、机械、建筑和民用工程等领域,因此对其屈曲性能的研究具有重要意义。
研究功能梯度材料圆柱壳的屈曲问题,可以深入了解功能梯度材料与壳的屈曲性能之间的联系,从而可以更好的了解壳的力学性质,为圆柱壳的优化设计提供一定的理论指导。
二、研究目的本研究旨在探索功能梯度材料圆柱壳的屈曲问题,重点考虑不同材料渐变的影响,针对不同的材料参数,分析其对圆柱壳的屈曲性能的影响,并探讨其相关机理和理论。
三、研究方法本研究中将采用数学方法和计算机模拟相结合的研究方式,主要内容包括以下几个方面:1. 基于理论力学和材料科学的知识,建立功能梯度材料圆柱壳的力学模型和数学模型,推导其屈曲方程。
2. 设计相关实验或数值模拟程序,进行屈曲问题的模拟分析,在不同渐变分布下对圆柱壳的力学性能进行分析。
3. 对模拟结果进行数据处理和分析,通过统计分析等方法,深入挖掘不同渐变分布对圆柱壳力学性能的影响(例如材料参数、壳的几何形状等)。
4. 通过对比实验结果和计算结果,验证模拟结果的有效性,并进一步优化模型和理论分析。
四、研究意义本研究的实现,可以深入了解功能梯度材料与壳的屈曲性能之间的联系和影响,为优化设计功能梯度材料圆柱壳提供理论支持。
对于优化功能梯度材料的设计和制造工艺,实现高性能材料的生产和应用具有重要的学术和应用价值。
水下爆炸载荷作用下环肋加筋圆柱壳结构的弹塑性动力屈曲
![水下爆炸载荷作用下环肋加筋圆柱壳结构的弹塑性动力屈曲](https://img.taocdn.com/s3/m/0962806e178884868762caaedd3383c4bb4cb4c2.png)
水下爆炸载荷作用下环肋加筋圆柱壳结构的弹塑性动力屈曲袁建红;朱锡;张振华【摘要】In order to investigate the elastic-plastic bulking of a submarine, an existent simplified model for a submarine, namely the ring-stiffened cylindrical shell, was chosen as the simulation object, and a fluid-solid coupling model was built by using the nonlinear, explicit transient dynamic code, MSC. Dytran to explore the elastic-plastic bulking of the ring-stiffened cylindrical shell subjected to underwater explosion load. The critical dynamic bulking load was obtained by using the Budiansky-Roth rule and the Southwell method. And the following factors were discussed: load intensity, mesh density, radius-to-thickness ratio, length-to-radius ratio, rib spacing and rib size which influencing the dynamic buckling mode and the critical buckling load of the ring-stiffened cylindrical shell subjected to underwater explosive loading. The simulated results show that the built fluid-solid coupling model can be used to simulate the dynamic bulking of the ring-stiffened cylindrical shell by combining MSC. Dytran. And the model mesh size and the structural parameters have a certain influence on the critical dynamic buckling load, in which the radius-to-thickness ratio has more obvious influence.%为研究水下爆炸载荷作用下潜艇结构的动力屈曲现象,以潜艇耐压结构的简化模型—环肋加筋圆柱壳结构为研究对象,建立流固耦合有限元分析模型,应用瞬态有限元分析程序MSC.Dytran对该结构在水下爆炸冲击载荷作用下的弹塑性动力屈曲行为进行研究,基于Budiansky-Roth准则和Southwell方法确定环肋加筋圆柱壳结构的临界屈曲载荷,讨论结构动力屈曲的影响因素如载荷强度、网格密度、径厚比、长径比、加筋截面间距、加筋尺寸等对环肋加筋圆柱壳结构动屈曲模态和临界屈曲载荷的影响.结果表明:采用建立的流固耦合有限元分析模型,应用动力瞬态有限元软件MSC.Dytran可以对加筋圆柱壳结构的动力屈曲行为进行模拟,模型网格尺寸大小、结构几何参数对结构的动力屈曲临界载荷都有一定的影响,其中加筋圆柱壳结构的径厚比对结构的动力屈曲临界载荷影响最为显著.【期刊名称】《爆炸与冲击》【年(卷),期】2012(032)006【总页数】7页(P585-591)【关键词】爆炸力学;弹塑性动屈曲;水下爆炸;加筋圆柱壳【作者】袁建红;朱锡;张振华【作者单位】海军工程大学船舶与动力学院,湖北武汉430033;海军工程大学船舶与动力学院,湖北武汉430033;海军工程大学船舶与动力学院,湖北武汉430033【正文语种】中文【中图分类】O382;U661.4舰船结构受到水下爆炸载荷作用时会产生严重的瞬态突加载荷的作用,在动压力的作用下,不仅板架中的板和骨架可能发生局部塑性变形,而且在载荷足够大时,板和骨架等结构可能产生失稳。
!复杂载荷作用下圆柱壳的弹塑性动力屈曲研究
![!复杂载荷作用下圆柱壳的弹塑性动力屈曲研究](https://img.taocdn.com/s3/m/627e2b808762caaedd33d4f8.png)
第22卷 第2期爆炸与冲击V ol.22,N o.2 2002年4月EXP LOSI ON AND SH OCK W AVES Apr.,2002 文章编号:100121455(2002)022*******刘 理,刘土光,张 涛,李天匀(华中理工大学船舶与海洋工程系,湖北武汉 430074) 摘要:对复杂载荷作用下圆柱壳的弹塑性动力屈曲问题进行了研究。
基于Hamilton变分原理导出圆柱壳的运动方程,本构关系采用增量理论,借助增量数值算法求解动力方程组。
结果表明,均匀径向外压对圆柱壳的轴向冲击的过程或冲击性态有较大的影响,并讨论了径向压力与轴向冲击载荷的幅值对结构临界动力屈曲载荷和临界动力失效载荷的影响。
关键词:圆柱壳;复杂载荷;动力屈曲;动力失效Ξ 中图分类号:O347.3 文献标识码:A1 引 言 在工程实际中,如在深水中受爆炸冲击载荷作用的潜艇、在深水中攻击目标的鱼雷、遭受飞行物撞击的原子能反应堆等结构,在承受冲击载荷之前,已经受到了其它类型载荷的作用,因此它们与结构单独承受冲击载荷时的动力性态有较大的差异。
R. C.T ennys on[1]利用实验和计算的方法对飞行器、化学容器、核反应堆容器和导弹等圆柱壳模型在各种联合载荷作用下的弹性静力屈曲问题进行了研究。
王仁、韩铭宝等[2]对轴向冲击弹塑性圆柱壳的屈曲问题进行了研究,提出了第二临界速度。
之后,韩铭宝等[3]进一步考虑了在径向载荷和轴向冲击联合作用下的圆柱壳塑性稳定性问题,认为复杂载荷下的圆柱壳同样存在着两种临界速度。
但是上述的理论分析是基于小变形下进行的,实际上,薄壁圆柱壳在轴向冲击载荷作用下的屈曲问题属于大变形、大应变的范畴,因此有必要对该类问题继续进行深入的研究。
江松青[4]考察了环向加筋圆柱壳在复杂载荷作用下的弹塑性动力屈曲问题,对均匀径向外压与轴向冲击载荷峰值之间的关系进行了定性的讨论,并得到了一些有意义的结论。
在本文中,我们对复杂载荷作用下圆柱壳的弹塑性动力屈曲问题进行了研究。
圆柱壳在工程领域的应用背景及其研究(可编辑)
![圆柱壳在工程领域的应用背景及其研究(可编辑)](https://img.taocdn.com/s3/m/3872c834580102020740be1e650e52ea5518ce99.png)
圆柱壳在工程领域的应用背景及其研究第一章绪论1.1 圆柱壳在工程领域的应用背景及其研究意义圆柱壳由于具有特殊的几何构型和优良的受力性能,使其在许多上许多工业部门和工程领域获得了极其广泛的应用。
充满固体或液体(气体)的圆柱壳更是在工程中承担重要作用,如火箭的固体燃料箱,激光平台的减震基座,垂直电梯的防坠缓冲装置等等。
对其在各种受载条件下的屈曲强度的研究一直是应用力学界和结构工程界长期关心的重要课题之一,尤其是轴向压缩圆往壳屈曲载荷的实验值与线性理论经典结果之间存在极大差异实验值为理论预测的15%--60% ,大大推动了各种非线性结构稳定理论和屈曲对缺陷敏感性研究的发展。
迄今为止,对于圆柱壳在轴压、均匀外压、扭矩、弯矩等基本荷载以及这些基本载组合作用下的柱壳屈曲问题的研究已经进行了广泛的研究,取得了极其丰富的成果。
但是对于壳内充满颗粒固体介质时的轴压屈曲问题却很少有人问津。
这类问题的研究有着重要的应用前景,它不仅能预测由于屈曲导致的结构失效,而且有可能利用有趣的屈曲模态发展无模具成型工艺。
本章试图对这一领域的若干基本问题、处理方法以及一些主要的成果做一个简要的综述,为后面展开讨论提供一些基础和方便。
首先简要介绍了圆柱壳静态屈曲理论研究的进展,然后着重回顾与我们课题相关的轴向压力和内压联合作用下圆柱壳屈曲己有的研究,总结和评述前人的工作,最后对本文主要工作以及所取得的结果做了概述。
1.2 内空圆柱壳静态屈曲的几个基本问题承受膜力为主的结构当所受载荷达到某一临界值时,若对其施加一微小的扰动,则结构的平衡位形将发生很大的改变,这种平衡状态性质的变化叫做结构丧失稳定,相应的载荷称为临界载荷。
一般说来,结构丧失稳定后的承载能力有时可以增加,有时则减小,这与载荷种类、结构的几何特征等因素有关。
若结构加载到某一临界状态所发生的显著变化,并不是由于材料破坏或软化造成的,则称为结构的屈曲buckling 当结构的一种变形形态变得不稳定,而去寻找另一种稳定的变形形态,这种进一步的屈曲现象称为后屈曲postbuckling.一般,屈曲指结构几何形态的变化,而失稳是指平衡状态性质的变化.近代结构稳定性理论集中研究结构的屈曲形式分支型屈曲或极值型屈曲、屈曲模态、后屈曲平衡路径。
轴压作用下充液圆柱壳的屈曲的实验研究毕业论文
![轴压作用下充液圆柱壳的屈曲的实验研究毕业论文](https://img.taocdn.com/s3/m/a68b67385901020207409c67.png)
1引言1.1研究意义随着航空、航天、原子能利用等飞速发展,结构在冲击载荷作用下的稳定性问题,特别是进入塑性状态以后的稳定性问题,长期以来一直是工程力学和结构工程界十分活跃的研究领域。
随着现代工业技术的发展,大量新型、高强度材料以及轻型结构的广泛应用于航空、航天、原子能、船舰、化工、建筑等许多工业行业中,这使得人们对诸如杆、板、壳等轻型结构元件在各种外载荷的作用下结构平衡稳定性问题愈来愈关注。
最初的研究是弹性状态下的静力失稳问题,随着结构设计的发展,又进一步考虑结构在进入塑性状态以后才失稳。
圆柱壳常常是在内部充满液体介质的条件下工作的,显然,内部液体介质的存在将对圆柱壳的屈曲性能有重要影响,因此,研究充满液体的圆柱壳在轴向作用下的屈曲过程,不仅在结构设计和某些成型工艺中有着强烈的工程应用背景,而且也有重要的理论意义。
对于静态内压和轴压联合作用下圆柱壳的弹性失稳问题,自三十年代, F lügge用小变形理论研究了该问题以来,已取得了一些成果。
张善元等人曾对充满水的圆柱薄壳在轴向压缩下的屈曲性能进行了一系列的实验研究和相应的理论分析。
王仁等人对充满液体的厚壁圆柱壳在轴向冲击载荷下的塑性失稳问题从理论和实验两个方面进行过探讨,认为与无内压时相比较,由于内压的存在,轴向失稳半波数略有减少,失稳形式以轴对称失稳形式为主。
冯元桢( Y.Zung)及席希勒(K Sec~Zer)于二十世纪50年代曾表示过:在某种意义上,薄壳的稳定性同题在经典的弹性理论中仍旧是最引人思考探索的同题。
圆柱形薄壳于轴向压力下的弹性稳定性问题这一经典力学问题由于理论临界压力与实验值差别巨大吸引了无数力学家致力于研究,其理论的选出,从本世纪以来直到70年代依靠了近代实验手段才摸清了屈曲真相,理论才得适应。
早期的线性理论辅压临界力大于实验值的2~5倍,甚至l0倍。
于是L.H.Donnel 于1934年提出采用非线性理论研究这类壳的后屈曲问题。
带框架肋骨的环肋圆柱壳的总体弹性屈曲
![带框架肋骨的环肋圆柱壳的总体弹性屈曲](https://img.taocdn.com/s3/m/f6029a1cf68a6529647d27284b73f242326c3140.png)
带框架肋骨的环肋圆柱壳的总体弹性屈曲左成魁【摘要】求解带肋圆柱壳屈曲压力的方法有很多,至今为止大部分人都把目光集中到了以电能量法来求解,因为用其它方法计算加强圆柱壳的屈曲压力是非常困难的.解决大圆柱壳大分舱结构的一个关键问题是求解带框架肋骨的环肋圆柱壳的总体屈曲.为此,提出一种计算带框架肋骨的环肋大圆柱壳总体弹性屈曲能量的方法.【期刊名称】《上海船舶运输科学研究所学报》【年(卷),期】2014(037)002【总页数】4页(P18-21)【关键词】框架肋骨;环肋圆柱壳;总体屈曲【作者】左成魁【作者单位】中海工业(江苏)有限公司,江苏扬州225211【正文语种】中文【中图分类】U661.40 引言虽然大圆柱壳的长舱段、大分舱结构已经成为当今水下钢结构的发展趋势,并已在某些发达国家得到了实际的应用。
但带框架肋骨长舱段总体失稳的计算,还没有给出准确、有效的计算方法。
略述了其中的一些探索工作,并提出了带框架肋骨的环肋圆柱壳运用能量表达式,通过Ritz法求出其弹性屈曲压力。
1 屈曲形式解决框架肋骨在大圆柱壳上的应用问题,其核心是解决带框架肋骨的环肋圆柱壳的总体屈曲问题。
带框架肋骨的环肋圆柱壳在均匀外压下可能以几种方式弹性屈曲,现将其列为3种可能的组合破坏模式,分别见图1(a)、图1(b)和图1(c)。
图1 带框架肋骨的环肋圆柱壳的几种破坏形式2 带框架肋骨的环肋圆柱壳弹性屈曲公式的推导理论上求解带环肋骨的圆柱壳弹性屈曲问题的关键技术有:(1)完整准确地表达各构件的能量表达式,各种受力因素尽量涵盖;(2)尽量准确地描述附加位移的形状函数,努力逼近真实形状。
然而,由于数学运算的复杂性和对实际形状描述的艰难性,做到这两点很困难。
英国专家Kendrick博士曾对带中间强肋骨的环肋圆柱壳屈曲进行理论分析[1,2]。
运用Kendrick使用过的关于主肋骨屈曲的分析[2,3],自行创建附加位移形状函数,设定一组屈曲位移,从最小势能条件导出屈曲方程,进行比较分析。
关于圆柱壳在法向载荷下的弯曲及应用——袁明清
![关于圆柱壳在法向载荷下的弯曲及应用——袁明清](https://img.taocdn.com/s3/m/8f066c513c1ec5da50e27016.png)
E=2.06×105MPa,泊松比μ=0.3。 根据上述参数和线载荷作用下的理论分析,应用公式(*)、公式(13)和
公式(11)分别求解出ψ
m
(α
)
的特征值
rm
、特解ψ
* m
(α
)
和常数
Cim
。
根据已知条件因为 λm
即 (M1, FS1)α =0 = 0, (M1, FS1)α =a = 0 。这样, 由式(6), 式(8) 和式(11)就可确定柱
7
壳中面的位移场,以及内力场。
3.2、法向线载荷下环向弯曲变形的计算 若在 β = η 处作用有线载荷 Z (α ) ,可近似认为在 β = η 处微小矩形区域
a×dβ
+ κ 2 FT 2 )
+
∂ ∂α
(BFS1 )
+
∂ ∂β
( AFS 2 )
+
ABq 3
=
0
⎪⎪ ⎬ ⎪
(1)
∂ ∂α
(BM 12 ) +
∂B ∂α
M 12
−
∂A ∂β
M1
+
∂ ∂β
( AM 2 ) −
ABF S 2
=
0
⎪ ⎪
∂ ∂β
( AM 12 )
+
∂A ∂β
M 12
−
∂B ∂α
M2
+
∂ ∂α
(BM 1 )
cos
bmα
+C4mshamα sin bmα + C5mchcmα sin dmα + C6mchcmα cos dmα
含凸、凹型加肋锥-环-柱结合壳的连接结构试验研究
![含凸、凹型加肋锥-环-柱结合壳的连接结构试验研究](https://img.taocdn.com/s3/m/4de59404844769eae009ed3a.png)
加肋 锥 一环 一柱结 合壳 是潜 艇耐 压艇 体 圆柱壳
与 圆锥壳 相 连接 的一种 新 型 的 、 越 的结构 形 式. 优 文
用 圆锥壳将大圆柱壳和小圆柱壳连接 , 为消减锥一 柱 结 合部 由于锥壳 与柱 壳之 间存在 折 角产生 的高 应力
集 中, 在锥 一柱结 合 部 分别 嵌 入 一 段 凸 环 壳块 和 凹 环 壳 块 , 样 ,连 接 结 构 包 括 : 圆 柱 壳 一 这 大
潜艇结构设计 中的重要意义 .
关键词 : 加肋锥 一环 一柱结合壳 ; 应力 ; 塑性极限载荷 ; 试验研究
中图分类 号 :E 文献标识码 : 文章编号 :0 67 4 (0 1 0 —100 T2 A 10 -0 3 2 1 )914 - 4
肋骨刚度对环肋圆柱壳屈曲载荷的影响分析
![肋骨刚度对环肋圆柱壳屈曲载荷的影响分析](https://img.taocdn.com/s3/m/d85256c481eb6294dd88d0d233d4b14e85243e06.png)
肋骨刚度对环肋圆柱壳屈曲载荷的影响分析白旭;李金华;王晓天【摘要】在推导环肋圆柱壳屈曲临界载荷的基础上,通过能量与结构刚度之间的关系,分析了肋骨弯曲刚度、扭转刚度和压缩刚度对环肋圆柱壳失稳载荷的影响。
分别折减肋骨弯曲刚度和壳板刚度,研究了不同位置的肋骨在环肋圆柱壳总体稳定性中的作用,并将单根肋骨刚度折减系数转换成所有肋骨的平均折减系数;分析了壳板刚度对环肋圆柱壳总体稳定性的影响,给出了肋骨和壳板刚度同时折减时环肋圆柱壳总体稳定性的计算方法。
为环肋圆柱壳的设计以及含缺陷圆柱壳承载能力的研究提供了一种理论参考。
%Through the relationship between energy and structural stiffness , the effects of bending stiffness , tor-sion stiffness and compression stiffness of ribs on the buckling loads of stiffened cylindrical shells are analyzed based on the critical buckling loads derived in this paper .Then the rib stiffness and shell stiffness are reduced to study the effects of different ribs on general stability of stiffened cylindrical shells and the reduced coefficient of a single rib is transformed to average reduced coefficient of all ribs .The effects of shell stiffness on the general sta-bility of cylindrical shells are analyzed and the calculation method of general stability of cylindrical shells is given with the ribs stiffness and shell stiffness both reduced .This paper can provide a theoretical reference for research of the stability load-carrying capacity of stiffened cylindrical shell with initial imperfection and the design of stiff -ened cylindrical shells .【期刊名称】《江苏科技大学学报(自然科学版)》【年(卷),期】2014(000)004【总页数】6页(P307-312)【关键词】静水压力;环肋圆柱壳;屈曲载荷;肋骨刚度;折减刚度法【作者】白旭;李金华;王晓天【作者单位】江苏科技大学船舶与海洋工程学院,江苏镇江212003;山东省科学院海洋仪器仪表研究所,山东青岛266001;哈尔滨工程大学船舶工程学院,黑龙江哈尔滨150001【正文语种】中文【中图分类】U663.1薄壁环肋圆柱壳结构在船舶与海洋工程领域有着广泛的应用,多年来人们针对圆柱壳屈曲问题进行了大量的理论与试验研究,来试图解释环肋圆柱壳屈曲载荷的理论值与试验值之间的差距[1].目前除了线性和非线性理论方法以及数值计算方法来研究圆柱壳的屈曲问题外,提出了RSM(Reduced Stiffness Method)法来研究圆柱壳的屈曲下限问题,在一定程度上理论值可以与试验值很好的吻合,并将此种方法运用到复合材料圆柱壳的屈曲研究[2-5].2007年美国NASA 开展了SBKF(Shell Buckling Knockdown Factor)项目,此项目的目标是建立一种相对不保守的实用的壳体屈曲设计和分析技术来降低环肋圆柱壳结构的重量[6-8].文献[9]通过“能力减弱系数”修正线弹性方法来求得的壳体临界屈曲载荷值,为壳体结构屈曲研究提供了一种新的方法.针对静水压力载荷作用下的环肋圆柱壳结构,通过折减肋骨刚度和壳板刚度,研究了肋骨各部分刚度以及不同位置的肋骨对环肋圆柱壳稳定性的影响,并给出了同时折减肋骨和壳板刚度时环肋圆柱壳稳定性的计算方法.为环肋圆柱壳的设计和含缺陷圆柱壳承载能力研究提供一种新的思路.承受静水压力载荷的环肋圆柱壳结构如图1所示,总长度为L0,肋骨间距为l,壳体壁厚为t,半径为r,外部静水压力载荷为p,材料的弹性模量为E.由文献[4]可知,控制圆柱壳稳定平衡状态的表达式如式(1).式中:i, j=1,2,3; V为环肋圆柱壳的总势能;和分别为线性应变与位移关系和非线性应变与位移关系引起的应力;为转角引起的弯矩,可由胡克定律得到;为转角;和分别为屈曲前状态的应力和应变;为线性应变与位移关系为非线性的应变与位移关系.Donnell给出的近似的圆柱壳几何方程:式中:(u,v,w)为屈曲后的位移.由胡克定律,则相应的应力和弯矩为式中:K=Et/(1-μ2),D=Et3/12(1-μ2);n′θ和m′θ为肋骨的应力和弯矩;αr=ES/K,βr=EI/D,εr=εθ-zrγ′θ;βθr=6Ir/t3 ;S为肋骨横截面积;zr为肋骨的中性轴与壳板的距离;I为计及壳板的肋骨弯曲惯性矩;Ir为肋骨扭转惯性矩.将屈曲前圆柱壳的轴向和周向应力近似取为将式(2~4)代入式(1)即可求得确定圆柱壳稳定平衡的表达式.环肋圆柱壳丧失总体稳定性时,壳的两端可以认为是自由支持在刚性支座上,因此失稳时的位移函数可以取为:式中:L0为圆柱壳的总长度;i为圆周方向的波数,j为轴向方向的半波数.uij,vij,wij为任意常数.根据壳体稳定条件,对于任意的位移增量(u, v, w),总势能保持不变,即=0,=0,=0将式(5)代入式(6)得式中式中t.因此将环肋圆柱壳的屈曲问题转化为广义特征值问题.令式(7)的系数行列式为0,即可求得静水压力下环肋圆柱壳的总体失稳载荷.采用以下参数:圆柱壳长L0=9200mm,肋骨间距l=450mm,圆柱壳半径(内径)r=875mm,圆柱壳板厚度t=24 mm,肋骨型号为18a球扁钢.比较各种规范和文中环肋圆柱壳公式的计算结果如表1所示.从表1中可以看出,用文中计算静水压力下环肋圆柱壳总体失稳临界载荷的方法所得到的计算结果均低于现有规范和计算方法所得到的理论结果,但现有规范均需对理论结果进行修正.例如,针对以上参数,CCS规范修正后的结果为20.233Mpa,ABS修正后的结果为30.604 Mpa,说明文中的计算结果是可靠的.结构刚度矩阵与应变能之间的关系为:式中:U为能量项;Φ为失稳模态;K为刚度矩阵.由式(9)可知,圆柱壳的各部分刚度对稳定性的影响可以通过分析各部分能量在圆柱壳稳定性中的作用来实现,圆柱壳各部分刚度的折减相当于相应部分能量的损失.由于制造工艺的限制,环肋圆柱壳的尺寸偏差和形状偏差是引起刚度折减的主要原因,因此其刚度折减系数可定义为:式中:κ为圆柱壳结构的刚度折减系数;κsize为由于尺寸偏差引起的刚度折减系数,κsize=实际尺寸肋骨刚度/设计尺寸的肋骨刚度;κshape为由于形状偏差引起的刚度折减系数,与实际肋骨初始缺陷形式有关.图2给出了肋骨各个刚度对圆柱壳总体失稳临界压力Pcr的影响曲线(所有刚度均进行了无量纲处理),从图中可以看出,肋骨的弯曲刚度折减系数κbs对临界载荷的影响最大,随着弯曲刚度的增加,圆柱壳的总体失稳临界压力迅速增加;扭转刚度折减系数κrs对圆柱壳的总体失稳临界压力影响不大,当扭转刚度增加一个数量级时,圆柱壳总体失稳临界压力只增加0.3Mpa,因此忽略肋骨扭转刚度对圆柱壳总体失稳压力的计算结果影响不大;而压缩刚度折减系数κcs对圆柱壳总体失稳压力起负作用,随着压缩刚度的增加圆柱壳总体失稳压力有所下降,因此设计肋骨时,可以将肋骨设计成“细高”的形式.对于L0=9000,l=600,r=2500,t=25,肋骨型号为20a球扁钢的环肋圆柱壳,仅考虑弯曲刚度,其总体失稳载荷为8.4 Mpa,考虑了肋骨扭转刚度,其总体失稳载荷增加为8.6Mpa,考虑肋骨弯曲,压缩和扭转刚度后,其总体失稳载荷为8.67Mpa,由此可见,肋骨弯曲刚度在环肋圆柱壳总体失稳中起着重要作用,肋骨的扭转刚度和压缩刚度对总体失稳载荷的影响较小,可忽略不计.通过前面的分析可知,肋骨对静水压力下环肋圆柱壳总体稳定性起着重要的作用,尤其是肋骨的弯曲刚度,对环肋圆柱壳总体失稳压力具有较大的影响.但是肋骨无论是在制造还是安装的过程中都将会由于工艺的限制存在着各种缺陷,造成实际承载能力远低于理论预测值.文中认为初始缺陷的存在影响了肋骨的弯曲刚度,不同初始缺陷对肋骨弯曲刚度的影响不同,从而造成试验数据的差异性.因此肋骨的初始缺陷对环肋圆柱壳总体稳定性的影响可以通过折减肋骨刚度的方法实现.利用肋骨弯曲刚度折减系数κbs来研究肋骨刚度折减与临界载荷的关系.因此只需将式(8)中由肋骨弯曲应变能引起的刚度项乘以折减系数κ,则其中的相关项变为:应用式(11)中的系数即可求得不同肋骨弯曲刚度折减系数下的临界载荷值.计算时取环肋圆柱壳的参数为:L0=9000,l=600,r=2500,t=25,肋骨型号为20a球扁钢,则折减系数κ与屈曲载荷之间的关系如图3所示.从图3中可以看出,静水压力下环肋圆柱壳的总体失稳载荷随着肋骨刚度折减系数κ的减小而下降,当κ接近于0时由于失稳模态的改变而迅速收敛于无肋骨时圆柱壳失稳载荷.也就是说肋骨弯曲折减系数κ涵盖了所有环肋圆柱壳可能的总体失稳值,因此可把肋骨的初始缺陷折合成肋骨弯曲刚度折减系数来研究环肋圆柱壳的总体稳定性问题.以上研究是假设每根肋骨具有相同的初始缺陷水平而对肋骨弯曲刚度进行折减的,也就是说每根肋骨具有相同的折减系数,而实际建造中是不可能的.因此,研究每根肋骨的折减系数κn对环肋圆柱壳静水压力下总体失稳临界压力的影响.为了说明每根肋骨对环肋圆柱壳总体失稳压力的影响,忽略肋骨扭转刚度的影响,肋骨总弯曲应变能应写为:则式(11)变为用式(13)替换式(8)相应的系数,则可得到计算单根肋骨对环肋圆柱壳总体屈曲载荷影响的公式.仍以前面的环肋圆柱壳参数为例,而肋骨的编号如图1所示.图4给出了折减单根肋骨弯曲刚度系数对圆柱壳总体稳定性的影响,由于肋骨的位置对称,因此只计算了一半肋骨的肋骨弯曲刚度折减系数对总体稳定性的影响.从图中可以看出,每根肋骨对圆柱壳在总体失稳时的影响是不同的,离圆柱壳长度的中点越近的肋骨对其稳定性影响越大.因此在设计环肋圆柱壳肋骨时,在保证重量不变的前提下,可适当增加圆柱壳中间附近肋骨的刚度而降低边缘位置肋骨的刚度来提高环肋圆柱壳的总体稳定性.当多根肋骨具有不同弯曲刚度折减系数时,为简化计算步骤,可以把单根肋骨的折减系数κn转换成所有肋骨的平均折减系数κ,这样应用式(11)中的系数即可计算每根肋骨具有不同折减系数时的环肋圆柱壳的屈曲载荷,其转换关系可由公式(14)确定.式中:κn为第n跟肋骨弯曲刚度折减系数;χn为第n根肋骨弯曲刚度折减系数相对于总弯曲刚度系数的权重;由于单根肋骨弯曲折减系数与临界载荷是线性关系,因此对于图1所示的环肋圆柱壳,每根肋骨的权重如图5所示.前面已经论述了肋骨对环肋圆柱壳稳定性的影响,现在考虑静水压力下环肋圆柱壳壳板薄膜刚度折减系数β与总体失稳载荷的关系.为此,应将式(8)中与壳板薄膜刚度相关的项乘以折减系数β,变为应用(16)式中的系数即可求得壳板薄膜刚度折减系数与总体失稳载荷之间的关系.下面仍以上节中算例的参数,给出薄膜刚度折减系数与总体失稳载荷之间的关系. 图6给出了壳板薄膜刚度折减系数β与环肋圆柱壳总体失稳载荷的关系,可以看出:临界载荷随着β的减小而减小,β越小,临界载荷下降的速度就越快.当β=0时,临界载荷为无缺陷时临界载荷的71%,下降29%.因此可以说明壳板对环肋圆柱壳的总体稳定性的贡献要小于肋骨的贡献.真实的环肋圆柱壳无论是壳板还是肋骨都不可避免的同时存在着各种缺陷,使壳板和肋骨的刚度同时的降低.图7给出了壳板薄膜刚度和肋骨弯曲刚度K同时折减时临界载荷的变化规律,从图中可以看出,3条曲线随β具有相同的变化趋势,且在β一定的情况下相邻两条曲线的差值几乎相等,因此可以认为壳板和肋骨同时存在缺陷时,可以分别计算壳板和肋骨单独存在缺陷时的临界载荷降低值,然后再相加即为两种缺陷共同作用时临界载荷的降低值,与同时计算两种缺陷时的临界载荷所产生的误差是可以忽略不计的.1)不同位置肋骨对圆柱壳的影响不同,设计时可考虑适当增加中间肋骨刚度,减小边缘肋骨刚度来提高环肋圆柱壳的总体稳定性.2)当圆柱壳同时折减肋骨刚度和壳板刚度时,可分别计算壳板和肋骨刚度单独存在时的临界载荷降低值然后再相加即为两种刚度同时折减时临界载荷的降低值.3)环肋圆柱壳几何非线性对其稳定承载能力的影响可以归结为对环肋圆柱壳壳板刚度和肋骨刚度的影响.含初始缺陷圆柱壳的刚度折减系数,可通过建立含初始缺陷圆柱壳的几何方程,进而得到圆柱壳的总势能.通过圆柱壳的稳定条件,可得含不同形式初始缺陷圆柱壳的刚度折减系数,因此可以研究初始缺陷与环肋圆柱壳各刚度之间的关系来探讨环肋圆柱壳的稳定承载能力,这为含缺陷圆柱壳稳定性的研究提供了一个新的思路.【相关文献】[1] Teng Jinguang.Buckling of thin shells: Recent advances and trends [J]. Appl Mech Rev,1996, 49(4):263-274.[2] Croll J G A,Gavrilenko G D. Reduced-stiffness method in the theory of buckling of stiffened shells[J].Strength of Material,2000, 32(2):168-177.[3] Croll J G A.Stability in shells [J].Nonlinear Dynamics, 2006, 43:17-28.[4] Jaca R C,Godoy L A,Flores F G,et al. A reduced stiffness approach for the buckling of open cylindrical tanks under wind loads [J].Thin-walled Structures,2007, 45: 727-736. [5] Jaca R C,Godoy L A,Croll J G A.Reduced stiffness buckling analysis of aboveground storage tanks with thickness changes [J].Advances in Structural Engineering.2011,14(3):475-487.[6] Hilburger M W.Shell buckling knockdown factor 1st annual workshop[G].USA:NASA Langley Research Center,2009.[7] Hrinda G A. Effects of shell-buckling knockdown factors in large cylindricalshells[G].USA:NASA Langley Research Center, 2012.[8] Hilburger M W. Developing the next generation shell buckling design factors and technologies[G].USA:NASA Langley Research Center,2012.[9] 黄庆,赵飞云,姚伟达. 壳体屈曲分析中关于能力减弱系数的剖析[J]. 压力容器, 2012,29(7):38-43. Huang Qing, Zhao Feiyun, Yao Weida. Dissection of ability reduced factors in shell buckling analysis [J].Pressure Vessel Technology,2012, 29(7):38-43.(in Chinese)[10] 石德新,王晓天. 潜艇强度[M]. 哈尔滨:哈尔滨工程大学出版社,1997:21-33.[11] 冯亮, 佟福山. 基于强度稳定综合理论的深海潜器耐压圆柱壳极限强度的解算[J]. 哈尔滨工程大学学报, 2012, 33(2):1-5. Feng Liang, Tong Fushan. Ultimate strength calculation of pressurized cylindrical shells in deep-sea vehicle by the combined strength andstability[J].Journal of Harbin Engineering University,2012, 33(2):1-5.(in Chinese)[12] 黎庆芬. 可潜器圆柱形耐压结构设计计算方法研究[D].华中科技大学,2007.[13] 龚友根, 贺玲凤. 含有初始凹陷圆柱壳稳定承载能力的实验研究与数值计算[J]. 实验力学, 2010, 25(1):73-80. Gong Youggen, He Lingfeng. Experimental study and numerical calculation of stability and load carrying capacity of cylindrical shell with Initial Dent[J].Journal of Experimental Mechanics,2010, 25(1):73-80.(in Chinese)[14] 王硕, 杨彦军, 岳祖润. 锁口钢管桩抗弯刚度折减行为及其影响因素分析[J]. 中南大学学报:自然科学版,2013, 44(4):1551-1555. Wang Shuo, Yang Yanjun, Yue Zurun. Analysis of reduced modulus action and influence factors in steel pipe sheet piles[J].Journal of Central South University:Science and Technology,2013, 44(4):1551-1555.(in Chinese)。
考虑肋骨偏心的环肋圆柱壳弹性稳定性研究
![考虑肋骨偏心的环肋圆柱壳弹性稳定性研究](https://img.taocdn.com/s3/m/793c9ece7e192279168884868762caaedd33ba6e.png)
考虑肋骨偏心的环肋圆柱壳弹性稳定性研究邱昌贤;万正权【摘要】采用2种满足简支边界条件的形函数,基于Ritz法建立环肋圆柱壳结构在静水外压下弹性失稳压力的直接计算方法,能区分肋骨的内外布置方式,且含有肋骨抗压刚度项,可推广至带有大肋骨的圆柱壳结构,或退化为无肋骨圆柱壳.分析表明,理论方法解和有限元结果较为一致,形式简单的3系数形函数具有较好的计算精度,内环肋圆柱壳的总体弹性稳定性比外环肋优越,大肋骨内置比外置更容易达到临界刚度,内、外肋骨圆柱壳的弹性局部失稳压力基本相当,忽略肋骨压缩应变能可使弹性总体失稳压力有所降低.【期刊名称】《舰船科学技术》【年(卷),期】2015(037)007【总页数】6页(P14-19)【关键词】环肋圆柱壳;弹性稳定性;肋骨偏心;能量法【作者】邱昌贤;万正权【作者单位】中国船舶科学研究中心,江苏无锡214082;中国船舶科学研究中心,江苏无锡214082【正文语种】中文【中图分类】U674.76环肋圆柱壳结构在外部静水压力下的稳定性问题一直得到国内外研究者的广泛关注,鉴于精确求解工作的难度和复杂性,工程上一般先求得弹性失稳压力,再对初始缺陷、几何非线性和材料塑性等影响因素进行半经验性修正[1-2]。
但即使是理论模型较为简化的弹性稳定性,求解也很复杂,现有计算方法主要为基于能量原理的Rayleigh-Ritz法,用较容易求解的代数方程组代替微分方程,目前的规范公式是在此基础上略去能量式中的次要项,并进行简化而来。
现行规范不考虑环肋形心偏离圆柱壳中曲面的影响,弹性总体稳定性公式对内、外肋骨给出相同的计算结果[2]。
对于带特大肋骨的舱段总体稳定性,由于理论基础相同,虽然大肋骨截面偏心距大得多,计算时也仅考虑了其计及带板的中和轴半径。
对于通常被忽略的肋骨压缩应变能,戴自昶[3]导出了含肋骨抗压刚度项的环肋圆柱壳弹性总体稳定性方程,将肋骨面积平均分配到壳板上,以考虑肋骨抗压刚度对临界压力的贡献,认为当总体失稳的周向整波数n≤5或mα1>10时,肋骨压缩应变能的影响将不能忽略。
考虑肋骨偏心的环肋圆柱壳弹性稳定性研究
![考虑肋骨偏心的环肋圆柱壳弹性稳定性研究](https://img.taocdn.com/s3/m/036136e648649b6648d7c1c708a1284ac950054a.png)
考虑肋骨偏心的环肋圆柱壳弹性稳定性研究在工程设计中,肋骨偏心是一个常见的问题。
肋骨偏心会导致环肋圆柱壳的弹性稳定性受到影响,从而影响了结构的安全性。
针对这一问题,现在有很多研究在进行,本文就肋骨偏心的环肋圆柱壳弹性稳定性研究进行探讨。
首先,环肋圆柱壳的弹性稳定性受到肋骨偏心的影响是很自然的。
因为肋骨偏心会导致肋骨所承受的负荷不同,从而影响肋骨的扭转行为。
在设计阶段,需要考虑肋骨的偏置高度和偏置角度,这些因素会影响肋骨的弯曲刚度和扭转刚度。
因此,需要通过数学模型和计算方法来分析肋骨偏心对环肋圆柱壳的影响。
其次,在研究肋骨偏心的环肋圆柱壳弹性稳定性时,需要考虑多种因素。
例如,在分析肋骨偏心的情况下,需要将弹性稳定性分析建立在几何非线性的基础之上。
此外,还需要考虑壳体的初始外力和变形,以及壳体的非线性本构关系。
针对这些因素,需要建立相应的数学模型和计算方法,通过数值模拟和实验验证来进行研究。
最后,在肋骨偏心的环肋圆柱壳弹性稳定性研究中,需要考虑其应用领域和实际工程应用。
例如,在航空航天、海洋工程和建筑工程中,肋骨偏心的环肋圆柱壳是非常常见的结构形式。
因此,需要将研究成果应用于实际工程设计中,提高设计水平和产品质量。
综上所述,肋骨偏心的环肋圆柱壳弹性稳定性研究是一个非常重要的课题。
通过对其数学模型和计算方法进行探讨,可以提高环肋圆柱壳的弹性稳定性,为实际工程设计提供参考。
希望未来有更多的工程技术人员投身于该领域,为肋骨偏心的环肋圆柱壳的研究和应用做出更大的贡献。
肋骨偏心的环肋圆柱壳弹性稳定性研究需要大量的数据进行分析,以建立数学模型和预测结构的性能。
其中,以下是一些常见的相关数据:1. 壳体的几何尺寸:这包括壳体的半径、高度和材料的厚度等。
这些数据对于建立壳体的数学模型很重要,用于计算壳体的质量、面积和强度等。
2. 肋骨的几何尺寸:肋骨的高度、宽度等几何参数是非常重要的数据。
肋骨的几何尺寸决定着肋骨能够承受的力和扭矩,从而影响壳体的强度和稳定性。
圆柱曲壳固有特性分析
![圆柱曲壳固有特性分析](https://img.taocdn.com/s3/m/129b3ca9f524ccbff1218497.png)
圆柱曲壳固有特性分析摘要:圆柱壳在航空航天结构、潜水设备、大型管道系统等领域中均有广泛的应用,圆柱曲壳则是其中必不可少的组成要素。
基于经典壳体理论,建立曲壳的自由振动微分方程,进而分析圆柱曲壳的固有频率和振型等特性。
结果表明,梁函数组合法可以较好地逼近曲壳的固有振动;约束条件对曲壳的固有频率有较大影响。
关键词:曲壳模型、固有频率、振动特性1.引言圆柱壳体具有重量低、强度高、刚度高、跨度大等优点,因此在很多工业和国防领域得到广泛应用,比如热交换器壳体、各种管道和容器、飞机和潜艇的外壳等,成为现代工程中广泛采用的一种基本结构单元。
作为不可或缺的组成部分,曲壳具有改变传输介质流动方向、满足空间设计需要、调整安装位置、补偿热胀冷缩等作用。
曲壳的固有特性对整个结构的安全运行起着非常重要的作用,因此一直是结构动力学研究的重要内容。
张振华[1]分析了输液管道系统动力响应的研究进展情况。
胡平[2]用退化的曲壳单元模拟了厚钣金件的翻边与回弹变形问题。
李俊海[3]证明利用曲壳模型可以反映地质构造的真实情况,满足油田分析地层地应力的要求。
刘霞光[4]采用曲壳有限元法求得各种形状的开孔支轮筒壳的应力和位移。
李尧臣[5]利用曲壳理论解决了金属板材在成型过程的相关问题。
本文以曲壳为研究对象,同时考虑壳体的轴向、切向和径向位移。
其中,曲壳的横截面形状假定为一个完整的圆,圆周方向的振型可以表示成三角函数之和的形式;轴向的振型可以用具有相同边界条件的梁的振型函数来近似。
利用二者的组合以表示圆柱曲壳的振型函数,进而求解圆柱曲壳的固有频率和振型。
2.自由振动微分方程此处考虑的是薄壁圆柱曲壳。
在中曲面上任取一微元,其轴力、剪力和弯矩如图1所示。
把微元本身的惯性力考虑进来,建立如下的动力平衡方程应用经典壳体理论得出中曲面上的薄膜应变与中曲面位移、弯曲应变与中曲面位移之间的关系式,将各关系式带入公式(1)~(3),可得曲壳自由振动控制方程如下:3.振动方程求解根据曲壳关于赤道面的振动是否对称,把位移表达式写成如下两种形式。
圆柱壳变形计算方法研究
![圆柱壳变形计算方法研究](https://img.taocdn.com/s3/m/49e58a0e2379168884868762caaedd3383c4b505.png)
圆柱壳变形计算方法研究周海波;彭云飞;吴鸿敏;计方【摘要】圆柱壳的变形特性计算一直受到广泛的重视,解决这一问题的经典板壳理论解法主要有解析法、数值法和半解析法。
由于环肋圆柱壳结构的复杂性,采用纯解析的方法求解非常困难。
随着计算机技术的发展,有限元法在船体结构分析中已占主导地位,并已成为数值解法的典型代表。
本文通过对底部简支和悬臂薄壁圆柱壳的受力状态进行分析,建立有限元模型进行仿真计算并与理论计算结果加以比对,分析不同计算方法对圆柱壳变形结果的影响。
%Calculation on the deformation of cylindrical shell is a key problem, analytical method, numerical method and semi-analytic method become effective method to solve these problems. Because of the complexity of ring-stiffened cylindrical shell,it is difficult to use analytical method, FEM becomes the representation of numerical method by the developing of computer technology. The stress condition of typical cylindrical shell was anslysed in this paper, and the FEM model was established. According to the contrast of analytical method and numerical method, The influence of different methods to the cylindrical shell deformation was analysed.【期刊名称】《舰船科学技术》【年(卷),期】2016(038)003【总页数】4页(P1-4)【关键词】圆柱壳;变形;解析法;数值法【作者】周海波;彭云飞;吴鸿敏;计方【作者单位】武汉第二船舶设计研究所,湖北武汉 430064;武汉第二船舶设计研究所,湖北武汉 430064;武汉第二船舶设计研究所,湖北武汉 430064;中国舰船研究院,北京 100192【正文语种】中文【中图分类】U661.44水下结构物的主要载荷是承受深水静压力,这一受力特性决定了其耐压结构采用横剖面为圆形的薄壳结构,同时为了有效地提高耐压结构的稳定性,还必须在壳板上设置一系列横向加强筋(肋骨)。
矩形大开孔对圆柱壳薄壁体系结构屈曲的影响及动力反应特性研究
![矩形大开孔对圆柱壳薄壁体系结构屈曲的影响及动力反应特性研究](https://img.taocdn.com/s3/m/c29c8ced6294dd88d0d26b50.png)
第43卷增刊2010年土 木 工 程 学 报CH I NA C I V I L ENG I NEER I NG J OURNALV o.l 432010基金项目: 十一五 国家科技支持计划项目(2006BA J 13B04)作者简介:宋浩,博士,高级工程师收稿日期:2010 09 29矩形大开孔对圆柱壳薄壁体系结构屈曲的影响及动力反应特性研究宋 浩1宋 波2贺文山2(1.上海太阳膜结构有限公司,上海200030;2.北京科技大学,北京100083)摘要:利用数值方法研究有矩形大开孔的薄壁圆柱壳在轴压作用下的屈曲性能。
首先通过特征值屈曲分析,得到开孔圆柱壳的一阶屈曲模态,并预测屈曲荷载的上限;分析表明,矩形开孔圆柱壳临界屈曲荷载的上限值远小于无开孔圆柱壳的下限值,影响矩形开孔圆柱壳轴压作用下稳定性的主要因素为壳体的径厚比,临界荷载值随径厚比的增大迅速下降。
采用有限元程序模拟模型结构在地震作用下的动力反应,研究其在地震波作用下加速度及位移沿高度的变化,基于不同液位高度,不同地震波输入的角度以及不同地震波加速度峰值对结构动力反应影响,考察流固耦合现象对结构动力特性的影响,研究发现,液体对结构自振特性影响明显,以30 输入方向为结构的最不利输入方向。
关键词:薄壁圆柱壳;矩形大开孔;特征值屈曲;流固耦合中图分类号:TU 33+3 文献标识码:A 文章编号:1000 131X (2010)增 0286 06The influence of rectangular openi ng i n the cyli ndrical shells tothe dyna m ic behavi or of structuresSong H ao 1Song B o 2H e W enshan2(1.ShanghaiTa i y o Kogyo Co .,Ltd .,Shangha i 200030,Ch i n a ;2.Un i v ersity of Sc ience and Technology Be ijing ,Be ijing 100083,Ch i n a)Abst ract :U si n g fi n ite ele m entm et h ods ,t h e buck li n g behav ior of cy li n drical she lls w ith large rectangular open i n g w asanalyzed .E i g en value buck li n g w as firstly carried out to predict the buck li n g m ode and critica l l o ad .The resu lt sho w s t h at t h e upper li m it buck li n g critica l load of cylindrica l she llw ith rectangular open i n g is m uch less than the l o w er li m it val u e o f the perfect cylindrica l shell and the buck li n g load of cy li n drical she llw it h rectangular open i n g ism a i n ly a ffected by the rad i u s to th ickness rati o o f t h e shel.l The critica l load declines sharply w it h the i n crease of the radius to thickness rati o .By si m u lating the dyna m ic response o f str ucture under seis m ic w ave usi n g fi n ite ele m ent pr ogra m,the var i a ti o n of structure s acceleration and displace m ent under d ifferent liquid levelw as stud ied .The i n fl u ence o f flu i d so li d coup li n g on dyna m ic characteristics o f structure w as also investi g ated through st u dy i n g the effect of different li q u i d leve,l different ang les of the inputting se is m ic w ave and d ifferen t accelerati o n values on structura l dyna m ic response and it sho w s t h at the im pact o f liquid on natura l v i b rati o n characteristics is si g nifican,t the m ost negati v e se is m ic i n put d irection is the direction o f 30degrees .K eywords :thin w a ll e d cy li n drical shel;l large rectangular open i n g ;e i g en va l u e buck li n g ;fl u i d so li d coupli n g E m ai:l songbo @ces .ust b .edu .cn引 言筒仓、储罐、脱硫塔等储液结构在其服役期间,由于其内部有液体存在,在地震中很容易发生破坏[1],从震害形式来看,罐壁屈曲是该类结构的主要破坏形式之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
环肋圆柱壳结构屈曲特性研究
摘要:基于ANSYS软件对环肋圆柱壳进行屈曲特性研究,分析形成不同屈曲模态的原因以及主导作用力。
研究表明:弯矩参与作用对结构稳定性影响存在不均匀性;环向力与轴向力共同作用时环肋圆柱壳结构变形增加明显。
各种作用力的组合作用下,应力的最大值均出现在环肋间的壳板处,同时在环肋的附近有明显的应力集中。
加强环肋和壳板之间产生的相互作用极有必要。
环肋圆柱壳结构屈曲学特性分析结论对工程实践有一定指导意义。
关键词:环肋圆柱壳;稳定性;有限元;屈曲模态
Buckling Mode Analysis of Ring-reinforced Cylindrical Shell
LV Bao-huaZHOU Jian-ping
Abstract:Ring-stiffened cylindrical shell structures in submarine design is in a wide range of applications. This paper showed the static stability analysis and buckling analysis results of ring-stiffened cylindrical shell under the one-way and complex loads based on ANSYS. T he reinforce effects such as the displacement map and the buckling mode map have been compared with the different reasons and buckling mode of the dominant force. The results shows under the action of a combination of various forces, both the maximum stress in the shell plate at the intercostals ring, but does not appear on the rib in the ring, the ring rib of the stress concentration near the apparent need to strengthen the ring rib and the interaction between the shell plate. This paper will help further understanding of ring-stiffened cylindrical shell component of the instability mechanism.
Key words:Ring-reinforced cylindrical shell; Finite element; buckling mode
环肋圆柱壳通常采用环形加劲肋骨加强,以提高圆柱壳的稳定性。
加劲环肋在圆柱壳上的应用有效地加强了弯曲和轴向刚度,避免了初始弹性屈曲的发生。
以下将对比分析单向荷载作用下环肋圆柱壳结构屈曲特性与荷载组合作用下的环肋圆柱壳结构的屈曲特性。
一、单向荷载作用下的环肋圆柱壳屈曲特性
1、荷载取值
利用有限元ANSYS分析软件分析轴向、环向和弯矩这三种单向荷载作用下的环肋圆柱壳稳定性。
假设荷载均匀,壳体无初始缺陷。
仅受横向均匀压力,失稳压力总是随失稳跨度的减小而加大,即随的加大而加大,且半失稳波数m恒
等于1。
表1:计算参数(m=1;n=3)
D I
34258 6.7×10-8 0.872 1.272
对于仅受轴向外压力的圆柱壳总体失稳临界力:=1.215Mpa,弯矩值设定为=1。
2、计算结果
(1) 在自由端施加轴向力荷载作用
环肋圆柱壳结构在轴向力作用的情况屈曲图和等效应力图如图1、图2。
在轴向荷载作用
下,变形图呈现出凹凸交替波形,说明是在肋骨之间壳板丧失了局部的稳定性,即结构发生局部失稳破坏。
这种破坏形式是发生在肋骨之间壳板上的。
在轴向力作用下结构环肋与壳体位置形成规律的失稳波形,能够很直观的确定模型中的危险区域,即壳体处的应力值达到最大,而在环肋上相对较小。
图1轴向力作用下的屈曲图图2 轴向力作用下的等效应力图
(2) 在壳体上施加环向力荷载作用
环向力作用下的屈曲变形模态图如图3。
屈曲图呈现出标准的三角函数波形,图左可以看到在自由端的波形最明显,越靠近固定端,波形逐渐变小。
应力最大值产生在环肋间的板壳处,在波形图的波峰和波谷处取得,具体的值在图左上角有显示,并且随着波形的变弱,应力在固定端附近也逐渐变小。
图3 环向力作用下的屈曲图图4弯矩作用下的屈曲模态图
(3)在自由端施加弯矩的作用
图4所示为弯矩作用下特征值屈曲模态图。
可以看到在受压一侧有明显的屈曲,呈现出对称的锯齿状的波形图。
通过特征值屈曲的等效应力表明最大等效应力发生在波峰处。
图5轴向力和环向力共同作用下的屈曲模态图
图6 轴向力和弯矩共同作用下的屈曲模态图
二、复合荷载作用下的环肋圆柱壳受力分析
对不同的荷载组合作用下的环肋圆柱壳结构稳定性的力学模型进行系列屈曲分析。
1、复合荷载的取值
假设荷载均匀,壳体无初始缺陷,分别讨论圆柱壳在以下荷载组合情况下的失稳:轴向力和环向力联合作用;轴向力和弯矩联合作用下;弯矩和环向力联合作用;轴向、环向和弯矩共同作用下的失稳。
荷载组合施加的值如表2所示。
表2施加荷载值
作用力
加载值/
7.7466 1.272 1
轴向应力转换成节点上的力:P=
2、计算结果
图5为轴向力与环向力共同作用下的屈曲图。
轴向力和环向力共同作用下环肋圆柱壳的稳定性屈曲主要受环向力控制,轴向力的影响很小。
图6为轴向力和弯矩共同作用下的屈曲模态图。
屈曲模态图呈现出较均匀的失稳波形,受弯矩的
影响,在受压一侧形成两个环向三角函数波形。
通过等效应力表明最大应力发生在受压屈曲一侧的肋骨上,应力逐渐向壳板传递变小。
图7为弯矩和环向力共同作用下的屈曲图。
共同作用下环肋圆柱壳的稳定性屈曲,主要是受弯矩作用的控制,环向力的影响很小。
当轴向力与环向力共同作用时,环向力起主要作用,而当环向力与弯矩共同作用时,弯矩起主要的作用。
通过等效应力可知应力的最大值也是取在波峰处。
图7 弯矩和环向力共同作用下的屈曲模态图
图8轴向力、环向力和弯矩共同作用下屈曲模态图
图8为轴向力、环向力和弯矩共同作用下的屈曲图。
轴向力、环向力和弯矩共同作用下屈曲模态的波形图与单向荷载差别不大,呈现出非常对称有规律的三角函数波形图。
通过等效应力可知应力的最大值取在波峰或波谷处,破坏发生在环肋间的板壳位置,应力逐步向两边的环肋传递。
四个组合荷载作用下得到的屈曲分析结果如表3所示。
表3 有限元分析结果
作用力屈曲分析
Z向位移/m 屈曲分析
应力最小值/
屈曲分析
应力最大值/
轴向力和环向力作用0.431247 14.1 571
轴向力和弯矩作用0.107533 0.169345 1340
环向力和弯矩作用0.207542 0.0432 2650
轴向力、环向力和
弯矩作用0.431308 14.0 571
三、结论
(1)有限元分析结果可得到:对稳定性敏感的结构,应将特征值屈曲分析作为附加计算要求,以便进行进一步分析。
(2) 比较这三种单向荷载作用下的应力最小最大值,肋骨起主要的承载作用,两者的值相差很大,工程设计上应加强肋骨与壳体之间的连结。
(3) 弯矩作用下的应力最大值与最小值之间的比值最大,在受压一端产生的应力值远远大于在受拉一端的应力值。
在工程应用中,要注意弯矩作用端结构的加强,以防止因受力不均导致的材料的破坏与浪费。
(4) 各种荷载组合屈曲模态图对比:当轴向力与环向力共同作用时,环向力起主要作用;当环向力与弯矩共同作用时,弯矩起主要的作用;当轴向力与弯矩共同作用时,两者力的贡献均衡,呈现的是对称的屈曲图。
当三个力共同作用时,环向力的破坏力比较大。
(5) 屈曲分析应力最大值对比表示,有弯矩作用参与的得到的值都比较大,弯矩对结构作用的不均匀。
除加强环肋与壳体的连结处的刚度外,为避免实际工程中在弯矩作用下的不均匀受力,有必要在受力作用处做好补强措施。
参考文献
1、考罗特金等.板与圆筒形壳的弯曲及稳定性.北京:高等教育出版社,1958.140~150 .
2、陈文,任文敏,张维.加肋圆柱壳稳定性计算方法若干间题探讨.清华大学学报(自然科学版)1994.34(5)。