《人工智能基础》课程教学大纲(本科)

合集下载

《人工智能》课程教学大纲

《人工智能》课程教学大纲

《⼈⼯智能》课程教学⼤纲⼈⼯智能》课程教学⼤纲、课程基本信息⼆、课程教学⽬标《⼈⼯智能》是计算机科学与技术专业的⼀门专业拓展课,通过本课程的学习使本科⽣对⼈⼯智能的基本内容、基本原理和基本⽅法有⼀个⽐较初步的认识,掌握⼈⼯智能的基本概念、基本原理、知识的表⽰、推理机制和智能问题求解技术。

启发学⽣开发软件的思路,培养学⽣对相关的智能问题的分析能⼒,提⾼学⽣开发应⽤软件的能⼒和⽔平。

三、教学学时分配四、教学内容和教学要求第⼀章⼈⼯智能概述(3 学时)(⼀)教学要求1.掌握⼈⼯智能的基本概念;2.理解⼈⼯智能的发展状况。

3.理解⼈⼯智能的基本技术;4.了解⼈⼯智能的研究途径与⽅法;5.了解⼈⼯智能的分⽀领域;(⼆)教学重点与难点教学重点:⼈⼯智能的基本技术。

教学难点:三⼤学派的研究途径与⽅法。

(三)教学内容第⼀节⼈⼯智能的基本概念1.什么是⼈⼯智能2.强⼈⼯智能与弱⼈⼯智能3.脑智能和群智能4.符号智能和计算智能第⼆节⼈⼯智能发展概况1.⼈⼯智能学科的产⽣2.⼈⼯智能学科的发展3.⼈⼯智能三⼤学派第三节⼈⼯智能研究途径与⽅法1.⼈⼯智能的研究⽬标2.⼈⼯智能的研究⽅法3.⼈⼯智能的研究内容第四节⼈⼯智能基本技术2.搜索技术3.知识库技术4.归纳技术5.联想技术第五节⼈⼯智能的应⽤1.难题求解2.机器定理证明3.⾃动程序设计4.模式识别5.机器翻译6.智能管控7.智能决策8.智能⼈机接⼝第六节⼈⼯智能的影响1.⼈⼯智能对⼈类的影响2.⼈⼯智能对社会的影响本章习题要点:对基本概念、技术、⽅法的理解。

第⼆章智能程序设计语⾔(5 学时)(⼀)教学要求1.了解常见的⼏种⼈⼯智能程序设计语⾔;2.理解逻辑型程序设计语⾔PROLO;G3.掌握Turbo PROLOG程序设计⽅法及常规程序设计。

(⼆)教学重点与难点教学重点:TURBO PROLO常G规程序设计。

教学难点:PROLOG程序的运⾏机理。

(三)教学内容第⼀节⼈⼯智能语⾔概述1.什么是智能程序设计语⾔2.智能程序设计语⾔的特点第⼆节基本PROLOG语⾔1.PROLOG的语句2.PROLOG的程序构成3.PROLOG程序的运⾏机理第三节PROLOG程序设计1.标准领域2.运算符与表达式3.输⼊与输出4.分⽀程序设计5.循环程序设计6.表处理与递归7.回溯控制本章习题要点:对程序结构和设计⽅法的理解,进⾏分⽀、循环、递归程序设计和调试。

2024年《人工智能》详细教学大纲

2024年《人工智能》详细教学大纲
语音情感分析
结合语音识别和自然语言处理技术,对语音中的情感进行 分析和识别,是实现智能语音交互的重要研究方向。
18
05 计算机视觉技术与应用
2024/2/29
19
图像处理和计算机视觉基础概念
1 2
图像处理基础
像素、分辨率、色彩空间、图像变换等基本概念 。
计算机视觉概述
视觉感知、视觉计算模型、视觉任务分类等。
能力目标
能够运用所学知识分析和 解决人工智能领域的实际 问题,具备一定的实践能 力和创新能力。
素质目标
培养学生的创新思维、团 队协作和终身学习能力, 提高学生的综合素质和职 业素养。
5
课程安排与时间表
课程安排
本课程共分为理论授课、实验操作和课程设计三个环节,其中理论授课主要讲解 人工智能的基本原理和方法,实验操作帮助学生掌握相关技术和工具的使用,课 程设计则要求学生综合运用所学知识完成一个实际项目。
分割(如FCN、U-Net)等。
2024/2/29
03
实例分割与语义分割
Mask R-CNN、PANet等实例分割方法;DeepLab、PSPNet等语义分
割方法。
21
三维重建、视频理解等前沿技术介绍
三维重建技术
基于多视图的三维重建、基于深度学习的三维重建(如体素网格 、点云处理)等。
视频理解技术
马尔科夫决策过程在强化学习中的应用
03
将强化学习问题建模为马尔科夫决策过程,利用求解方法求解
最优策略。
25
智能推荐系统、游戏AI等应用场景分析
智能推荐系统
利用强化学习技术,根据用户历史行为和环境反馈,学习推荐策略,实现个性化推荐。例 如,电商平台的商品推荐、音乐平台的歌曲推荐等。

人工智能基础教学大纲(自考)

人工智能基础教学大纲(自考)

人工智能基础(8017)考试大纲一、课程性质与设置目的(一)课程性质和特点“人工智能”是21世纪计算机科学发展的主流,为了培养国家建设跨世纪的有用人才,在计算机专业本科开设《人工智能基础》课程是十分必要的。

《人工智能基础》是计算机专业本科的一门必修课程,本课程中涉及的理论、原理、方法和技术有助于学生进一步学习其他专业课程。

开设本课程的目的是培养学生软件开发的“智能”观念;掌握人工智能的基本理论、基本方法和基本技术;提高解决“智能”问题的能力,为今后的继续深造和智能系统研制,以及进行相关的工作打下人工智能方面的基础。

(二)本课程的基本要求(课程总目标)《人工智能基础》是理论性较强,涉及知识面较广,方法和技术较复杂的一门学科。

通过对本课程的学习,学生应掌握人工智能的一个问题和三大技术,即通用问题求解和知识表示技术、搜索技术、推理技术。

具体要求是:学生在较坚实打好的人工智能数学基础(数理逻辑、概率论、模糊理论、数值分析)上,能够利用这些数学手段对确定性和不确定性的知识完成推理;在理解Herbrand域概念和Horn子句的基础上,应用Robinson 归结原理进行定理证明;应掌握问题求解(GPS)的状态空间法,能应用几种主要的盲目搜索和启发式搜索算法(宽度优先、深度优先、有代价的搜索、A算法、A*算法、博弈数的极大—极小法、α―β剪枝技术)完成问题求解;并能熟悉几种重要的不确定推理方法,如确定因子法、主观Bayes方法、D—S证据理论等,利用数值分析中常用方法进行正确计算。

另外,学生还应该了解专家系统的基本概念、研究历史、系统结构、系统评价和领域应用。

学生还应认识机器学习对于智能软件研制的重要性,掌握机器学习的相关概念,机器学习的方法及其相应的学习机制,几个典型的机器学习系统的学习方法、功能和领域应用。

(三)本课程与相关课程的联系、分工或区别与本课程相关的课程有:离散数学、算法设计、数值分析、程序设计语言等。

2024版《人工智能》课程教学大纲

2024版《人工智能》课程教学大纲

计算机体系结构
理解计算机硬件组成、操 作系统及基本工作原理。
数据结构与算法
掌握基本数据结构(如数 组、链表、栈、队列等) 和常用算法(如排序、查 找等)。
计算机网络
了解网络协议、网络架构 及网络安全等基础知识。
数学基础
线性代数
掌握向量、矩阵、线性方程组等基本概念和运算。
概率论与数理统计
理解概率分布、随机变量、数理统计等基本概念 和方法。
介绍神经网络优化的一些常用方 法,如梯度下降、动量法、
Adam等优化算法的原理和应用。
卷积神经网络(CNN)
卷积层
池化层
讲解卷积层的工作原理和实 现方法,包括卷积核、步长、 填充等概念。
介绍池化层的作用和实现方 法,包括最大池化、平均池 化等。
CNN模型
介绍一些经典的CNN模型, 如LeNet-5、AlexNet、 VGGNet、GoogLeNet、 ResNet等,并分析其网络结 构和特点。
无监督学习
K-均值聚类
层次聚类
将数据划分为K个簇,使得同一簇内的数据尽 可能相似,不同簇间的数据尽可能不同。
通过不断将数据点或已有簇合并成新的簇, 直到满足某种停止条件。
主成分分析(PCA)
自编码器
通过线性变换将原始数据变换为一组各维度 线性无关的表示,可用于高维数据的降维。
一种神经网络结构,通过编码器和解码器对 输入数据进行压缩和重构,实现特征提取和 降维。
句ห้องสมุดไป่ตู้分析技术
短语结构分析
识别句子中的短语结构,如名词短语、动词短语等。
依存关系分析
分析句子中单词之间的依存关系,如主谓关系、动宾关系等。
句法树构建
根据短语结构和依存关系构建句子的句法树,表示句子的结构信 息。

人工智能教学大纲

人工智能教学大纲

人工智能课程教学大纲【课程编码】JSZX0300【适用专业】计算机科学与技术【课时】 72(理论)+28(实验)【学分】 3【课程性质、目标和要求】人工智能是计算机科学的重要分支,是计算机科学与技术专业本科生的专业限选课之一。

本课程介绍如何用计算机来模拟人类智能,即如何用计算机实现诸如问题求解、规划推理、模式识别、知识工程、自然语言处理、机器学习等只有人类才具备的"智能",使得计算机更好得为人类服务.作为本科生一个学期的课程,重点掌握人工智能的基础知识和基本技能,以及人工智能的一般应用.完成如下教学目标:(1)了解人工智能的概念和人工智能的发展,了解国际人工智能的主要流派和路线,了解国内人工智能研究的基本情况,熟悉人工智能的研究领域.(2)较详细地论述知识表示的各种主要方法。

重点掌握状态空间法、问题归约法和谓词逻辑法,熟悉语义网络法,了解知识表示的其他方法,如框架法、剧本法、过程法等。

(3)掌握盲目搜索和启发式搜索的基本原理和算法,特别是宽度优先搜索、深度优先搜索、等代价搜索、启发式搜索、有序搜索、A*算法等.了解博弈树搜索、遗传算法和模拟退火算法的基本方法.(4) 掌握消解原理、规则演绎系统和产生式系统的技术、了解不确定性推理、非单调推理的概念.(5)概括性地介绍人工智能的主要应用领域,如专家系统、机器学习、规划系统、自然语言理解和智能控制等.(6)简介人工智能程序设计的语言和工具.(7) 掌握Visual Prolog编程环境,会使用Prolog语言编写简单的智能程序。

要求学生已修过《数据结构》、《离散数据》和《编译原理》。

【教学时间安排】本课程计 3 学分,理论课时72 ,实验课时28。

学时分配如下表所示:【教学内容要点】教学要求的层次课程的教学要求大体上分为三个层次:了解、理解和认识。

了解即能正确判别有关概念和方法;理解是能正确表达有关概念和方法的含义;认识是在理解的基础上加以灵活应用。

《人工智能基础教程》课程教学大纲

《人工智能基础教程》课程教学大纲

《人工智能基础教程》课程教学大纲课程名称:人工智能导论课程类别:公共基础课适应专业:全校各专业学时学分:2学时/周,共32学时,2学分1.课程性质和任务本课程为以培养学生具备基本的人工智能思维能力为目标,重点培养高职学生的人工智能素养、计算思维能力和人工智能应用能力。

课程使学生初步了解人工智能的概念,发展历程、经典算法、应用领域及对社会的深远影响,主要内容包括:人工智能的历史和发展、大数据与人工智能、专家系统、机器学习、深度学习、计算机视觉、自然语言理解、智能机器人技术。

课程设计理念以提高人工智能素养为切入点,通过生动形象的案例,把目前人工智能领域的热点问题,以科普性、技术性的形式进行展现,让学习者在学习人工智能理论的同时,激发学生学习人工智能知识的兴趣。

2.教学目标(1)知识目标1)了解人工智能的基本概念及发展历史。

2)了解人工智能的研究领域及发展现状。

3)了解大数据与人工智能的关系。

4)熟悉专家系统的结构及应用。

5)熟悉知识表示及常用的搜索算法。

6)熟悉机器学习、深度学习的概念及主流算法。

7)熟悉计算机视觉、自然语言处理的主流技术及应用。

8)熟悉智能机器人技术及应用。

(2)思政与素质目标1)通过人工智能起源与发展的学习,培养学生的科学精神、奋斗精神和开拓创新精神。

2)学习人工智能学科先驱模范事迹,培养学生探索未知、追求真理、勇攀科学高峰的责任感和使命感。

3)通过人工智能发展现状认识,激发学生科技报国的家国情怀和使命担当。

4)通过人工智能安全教育,培养学生遵纪守法,诚实守信,树立正确的世界观、人生观、价值观。

5)通过人工智能中的算法学习,帮助学生建立科学思维、推理机制,培养解决实际问题的能力。

6)通过人工智能应用案例,培养学生精益求精的大国工匠精神及勇攀科学高峰的责任感。

4.教学评价(1)评价形式平时作业(含考勤)+阶段测试(含期中测试)+期末测试。

(2)评分等级评分等级以百分制为标准。

《人工智能基础》教学大纲

《人工智能基础》教学大纲

引言概述(ArtificialIntelligence,简称)是一门涉及计算机科学、机器学习和认知科学的学科,致力于使机器能够模拟人类智能的一系列技术和方法。

随着科技的不断发展和应用的推广,已经成为当今世界最热门的前沿领域之一。

为了满足对人才的需求和引导学生深入了解技术,特编制了本《基础》教学大纲。

正文内容一、概述1.1的定义和发展历程1.2的基本原理1.3的应用领域和前景二、智能代理与搜索算法2.1智能代理的概念和基本特点2.2搜索算法的分类和应用2.3与搜索算法的结合应用三、机器学习的基础理论3.1机器学习的定义和基本模型3.2监督学习和无监督学习的区别和应用3.3与机器学习的结合应用四、神经网络与深度学习4.1神经网络的基本原理和结构4.2深度学习的核心思想和常用模型4.3与深度学习的结合应用五、自然语言处理与语音识别5.1自然语言处理的基本概念和技术5.2语音识别的基本原理和方法5.3与自然语言处理、语音识别的结合应用总结通过本《基础》教学大纲,学生将能够全面了解的基本概念、发展历程、基本原理和应用领域。

同时,学生还将深入了解智能代理、搜索算法、机器学习、神经网络、深度学习、自然语言处理和语音识别等领域的相关知识和技术。

这些知识和技术不仅有助于学生理解的核心思想和方法,还能为学生未来的学习和研究提供有力的支持。

1.掌握的基础概念和基本原理;2.熟悉智能代理和搜索算法的基本思想和方法;3.理解机器学习的基本理论和应用;4.了解神经网络和深度学习的基本原理和模型;5.掌握自然语言处理和语音识别的基本技术和应用。

同时,本门课程将通过讲授理论知识和实践案例,鼓励学生进行实际操作和项目实践,以提高他们的问题解决能力和创新能力。

通过与教师和同学的互动交流,学生将有机会扩展他们的思维边界,并形成对的综合理解和深入认识。

本《基础》教学大纲将帮助学生建立起的基础知识和技能,为他们未来在领域的学习和研究奠定坚实的基础。

人工智能课程教学大纲

人工智能课程教学大纲

《人工智能》课程教学大纲课程代码:H0404X课程名称:人工智能适用专业:计算机科学与技术专业及有关专业课程性质:本科生专业基础课(学位课)主讲教师:中南大学信息科学与工程学院智能系统与智能软件研究所蔡自兴教授总学时:40学时(课堂讲授36学时,实验教学4学时)课程学分:2学分预修课程:离散数学,数据结构一. 教学目的和要求:通过本课程学习,使学生对人工智能的发展概况、基本原理和应用领域有初步了解,对主要技术及应用有一定掌握,启发学生对人工智能的兴趣,培养知识创新和技术创新能力。

人工智能涉及自主智能系统的设计和分析,与软件系统、物理机器、传感器和驱动器有关,常以机器人或自主飞行器作为例子加以介绍。

一个智能系统必须感知它的环境,与其它Agent和人类交互作用,并作用于环境,以完成指定的任务。

人工智能的研究论题包括计算机视觉、规划与行动、多Agent系统、语音识别、自动语言理解、专家系统和机器学习等。

这些研究论题的基础是通用和专用的知识表示和推理机制、问题求解和搜索算法,以及计算智能技术等。

此外,人工智能还提供一套工具以解决那些用其它方法难以解决甚至无法解决的问题。

这些工具包括启发式搜索和规划算法,知识表示和推理形式,机器学习技术,语音和语言理解方法,计算机视觉和机器人学等。

通过学习,学生能够知道什么时候需要某种合适的人工智能方法用于给定的问题,并能够选择适当的实现方法。

二. 课程内容简介人工智能的主要讲授内容如下:1.叙述人工智能和智能系统的概况,列举出人工智能的研究与应用领域。

2.研究传统人工智能的知识表示方法和搜索推理技术,包括状态空间法、问题归约法谓词逻辑法、语义网络法、盲目搜索、启发式搜索、规则演绎算法和产生式系统等。

3.讨论高级知识推理,涉及非单调推理、时序推理、和各种不确定推理方法。

4.探讨人工智能的新研究领域,初步阐述计算智能的基本知识,包含神经计算、模糊计算、进化计算和人工生命诸内容。

8017《人工智能基础》教学大纲(自考)

8017《人工智能基础》教学大纲(自考)

人工智能基础(8017)考试大纲一、课程性质与设置目的(一)课程性质和特点“人工智能”是21世纪计算机科学发展的主流,为了培养国家建设跨世纪的有用人才,在计算机专业本科开设《人工智能基础》课程是十分必要的。

《人工智能基础》是计算机专业本科的一门必修课程,本课程中涉及的理论、原理、方法和技术有助于学生进一步学习其他专业课程。

开设本课程的目的是培养学生软件开发的“智能”观念;掌握人工智能的基本理论、基本方法和基本技术;提高解决“智能”问题的能力,为今后的继续深造和智能系统研制,以及进行相关的工作打下人工智能方面的基础。

(二)本课程的基本要求(课程总目标)《人工智能基础》是理论性较强,涉及知识面较广,方法和技术较复杂的一门学科。

通过对本课程的学习,学生应掌握人工智能的一个问题和三大技术,即通用问题求解和知识表示技术、搜索技术、推理技术。

具体要求是:学生在较坚实打好的人工智能数学基础(数理逻辑、概率论、模糊理论、数值分析)上,能够利用这些数学手段对确定性和不确定性的知识完成推理;在理解Herbrand域概念和Hom 子句的基础上,应用Robinson 归结原理进行定理证明;应掌握问题求解 (GPS) 的状态空间法,能应用几种主要的盲目搜索和启发式搜索算法(宽度优先、深度优先、有代价的搜索、 A 算法、 A* 算法、博弈数的极大一极小法、α—β剪枝技术)完成问题求解;并能熟悉几种重要的不确定推理方法,如确定因子法、主观Bayes 方法、D—S 证据理论等,利用数值分析中常用方法进行正确计算。

另外,学生还应该了解专家系统的基本概念、研究历史、系统结构、系统评价和领域应用。

学生还应认识机器学习对于智能软件研制的重要性,掌握机器学习的相关概念,机器学习的方法及其相应的学习机制,几个典型的机器学习系统的学习方法、功能和领域应用。

(三)本课程与相关课程的联系、分工或区别—1—与本课程相关的课程有:离散数学、算法设计、数值分析、程序设计语言等。

人工智能课程教学大纲-2024鲜版

人工智能课程教学大纲-2024鲜版
17
卷积神经网络在图像处理中的应用
2024/3/27
卷积层与池化层
解释卷积层如何通过卷积核提取图像特征,池化层如何降低数据 维度,减少计算量。
经典卷积神经网络结构
介绍LeNet-5、AlexNet、VGGNet等经典卷积神经网络的结构和 特点。
图像分类与目标检测
阐述卷积神经网络在图像分类和目标检测任务中的应用,包括数据 集、评估指标等。
目标检测
讲解目标检测的任务和方法,包括基于滑动窗口的目标检测、基于区域提议的目标检测等 ,以及常见的目标检测算法,如R-CNN、Fast R-CNN、Faster R-CNN等。
图像分割
介绍图像分割的概念和方法,包括基于阈值的分割、基于边缘的分割、基于区域的分割等 ,以及常见的图像分割算法,如K-means聚类、水平集方法等。
人工智能课程教学大纲
2024/3/27
1
目录
2024/3/27
• 课程介绍与目标 • 基础知识与技能 • 机器学习原理及方法 • 深度学习原理及应用 • 自然语言处理技术 • 计算机视觉技术 • 人工智能伦理、法律和社会影响
2
01
课程介绍与目标
Chapter
2024/3/27
3
人工智能定义及应用领域
图像描述生成
讲解图像描述生成的基本方法和模型,包括基于卷积神经 网络和循环神经网络的方法,介绍图像描述生成的评估指 标和优化方法。
23
06
计算机视觉技术
Chapter
2024/3/27
24
图像识别、目标检测等基础知识
2024/3/27
图像识别
介绍图像识别的基本原理,包括特征提取、分类器设计等,以及常见的图像识别算法,如 卷积神经网络(CNN)。

人工智能基础教学大纲

人工智能基础教学大纲

人工智能基础教学大纲智能手机、智能家电、智能机器人,人们身边充斥着各种智能产品,但是究竟什么是智能、智能又是怎么实现的呢?我们将通过人工智能基础、模式识别、机器学习、智能机器人等系列课程为大家揭晓智能的奥秘。

本课程以通俗易懂的案例,为大家讲解人工智能的基本概念、原理和方法,是人工智能入门的不二选择。

课程概述人工智能作为智能科学与技术专业的专业核心课,是计算机科学的一个分支,主要研究如何利用计算机来模拟人类的智能活动。

其主要任务是建立智能信息处理理论,从定性角度拓展计算机的能力。

它是一门综合性、实践性、创新性和广泛性的科学应用领域。

本课程通过绪论、盲目搜索、知情搜索、博弈中的搜索、经典逻辑推理、不确定性推理、专家系统七部分内容,介绍人工智能的基本知识、基本概念、基本特点以及人工智能的应用领域,启发开拓学生思路,使之了解人工智能的概念和人工智能的发展,了解国际人工智能的主要流派和路线,了解国内人工智能研究的基本情况,熟悉人工智能的研究领域。

掌握盲目搜索、知情搜索和博弈中搜索的基本原理、知识表示方法和相关算法;掌握规则演绎系统和产生式系统的推理技术;掌握运用概率推理、可信度方法、证据理论、模糊理论进行不确定性推理;了解专家系统的原理、建立和使用方法。

课程大纲1 绪论1.1人工智能的基本概念1.2人工智能的发展简史1.3人工智能研究的基本内容1.4未来人工智能社会畅想1绪论单元测验绪论单元作业2 搜索技术2.1引子2.2搜索问题2.3搜索问题的表示2.4解的搜索2.5盲目搜索2.6小结2搜索技术单元测验2搜索技术单元作业3 知情搜索3.1启发搜索3.2知情搜索--找到任何解3.3知情搜索--找到最优解3.4知情搜索--高级搜索算法:约束满足搜索3.5小结3 知情搜索单元测验4 博弈中的搜索4.1博弈原理4.2博弈树及其评估4.3极小化极大算法博弈中的搜索单元测验5 经典逻辑推理5.1 逻辑与知识表示5.2 自然演绎推理5.3 归结演绎推理5 经典逻辑推理单元测试6 不确定性推理16.1产生式系统6.2 可信度方法6.3 证据理论6 不确定性推理1测试7 不确定性推理27.1 模糊理论7.2 模糊推理7不确定性推理2测试8 专家系统8.1 专家系统简介8.2 专家系统的工作原理8.3 知识获取的主要过程与模式8.4 专家系统的建立8.5 两个著名的专家系统的案例8.6 专家系统的开发工具参考资料[1] [美]史蒂芬·卢奇,丹尼·科佩克著。

人工智能教学大纲

人工智能教学大纲

人工智能教学大纲【引言】本教学大纲旨在为人工智能课程的教学提供一个全面而系统的指导框架。

人工智能是如今热门的领域之一,该领域的快速发展为学生提供了广阔的职业发展机会。

因此,设计一份科学合理的人工智能教学大纲对学生的学习效果至关重要。

【一、课程概述】1.1 课程名称:人工智能基础1.2 学时安排:40学时1.3 课程目标:通过本课程的学习,学生应该能够1.3.1 理解人工智能的基本概念及相关技术的发展历程;1.3.2 掌握人工智能的基本原理和常用算法,并能够应用于实际问题;1.3.3 培养学生的创新思维和解决问题的能力。

【二、教学内容与学时安排】2.1 人工智能概述(2学时)2.1.1 人工智能定义及相关概念介绍2.1.2 人工智能的发展历史及应用领域2.1.3 人工智能对社会与经济的影响2.2 人工智能基础知识(8学时)2.2.1 机器学习基础2.2.1.1 监督学习2.2.1.2 无监督学习2.2.2 深度学习2.2.2.1 神经网络原理2.2.2.2 卷积神经网络2.2.2.3 递归神经网络2.2.3 自然语言处理2.2.3.1 词向量表示2.2.3.2 语言模型与文本生成2.3 人工智能算法与应用(20学时)2.3.1 人工智能算法概述2.3.2 决策树算法及应用2.3.3 支持向量机算法及应用2.3.4 随机森林算法及应用2.3.5 深度学习算法应用案例2.3.6 人工智能在图像处理中的应用2.3.7 人工智能在自然语言处理中的应用2.4 人工智能伦理与社会影响(6学时)2.4.1 人工智能的道德问题2.4.2 人工智能对就业市场的影响2.4.3 人工智能的隐私与安全问题【三、教学方法与手段】3.1 授课方法3.1.1 讲授:通过理论讲解传授基本概念、原理和算法知识;3.1.2 实践:通过实验、案例分析和项目实践培养学生的动手能力和解决问题的能力;3.1.3 讨论:通过课堂讨论激发学生的思维,培养创新能力。

《人工智能》课程教学大纲(本科)

《人工智能》课程教学大纲(本科)

《人工智能》课程教学大纲注:课程类别是指公共基础课/学科基础课/专业课;课程性质是指必修/限选/任选。

一、课程地位与课程目标(-)课程地位《人工智能》是自动化专业选修的专业选修课,是关于人工智能领域的一门介绍性课程,本课程中涉及的理论、原理、方法和技术有助于学生进一步学习其他专业课程。

“人工智能''是21世纪计算机科学发展的主流,为了培养国家建设跨世纪的有用人才,在自动化专业本科开设《人工智能》课程是十分必要的。

本课程开设的任务是培养学生软件开发的“智能”观念;使学生掌握人工智能的基本理论、基本方法和基本技术;提高学生解决“智能”问题的能力,希望通过学习使学生了解人工智能领域中主要涉及的问题以及采用的解决方法,掌握目前人工智能领域的主流研究方向,为今后的继续深造和智能系统研制,以及进行相关的工作打下人工智能方面的基础。

(二)课程目标《人工智能》是理论性较强,涉及知识面较广,方法和技术较复杂的一门学科。

通过对本课程的学习,学生应掌握人工智能的一个问题和三大技术,即通用问题求解和知识表示技术、搜索技术、推理技术。

具体要求是:1、基本理论要求:课程介绍人工智能的主要思想和基本技术、方法以及有关问题的入门知识。

要求学生了解人工智能的主要思想和方法;2、基本技能要求:学生在较坚实打好的人工智能数学基础(数理逻辑、概率论、模糊理论、数值分析)上,能够利用这些数学手段对确定性和不确定性的知识完成推理;学生认识机器学习对于智能软件研制的重要性,掌握机器学习的相关概念,机器学习的方法及其相应的学习机制,几个典型的机器学习系统的学习方法、功能和领域应用,具有针对复杂控制工程问题进行计算和模拟的能力;3、职业素质要求:结合实战,初步理解和掌握人工智能的相关技术,引入“智能服务机器人”案例,通过对“智能服务机器人”的开发应用,可以对学生进行思想政治教育引导。

让他们明白,科技是第一生产力,人工智能作为一个关键技术,会影响一个国家的格局和国际竞争力。

《人工智能基础》教学大纲

《人工智能基础》教学大纲

人工智能基础第一部分:课程基本信息第二部分:课程简介中文课程简介人工智能基础是一门前沿和交叉学科,尽管它的形成和发展已近50多年的历史,也取得了许多引人瞩目的成就,逐渐形成了诸如专家系统、机器学习、模式识别、自然语言理解、机器人学等多个研究领域。

然而,时至今日,离它要在机器上再现人的智能的目标还相差甚远。

现今所有研究人类智能和利用计算机软、硬件实现人类某些智能的有关理论研究、实现及应用系统开发,都是人工智能学科的研究范畴。

《人工智能基础》是一门面向全校非计算机专业本科生的公共选修课程,该课程要求学生掌握人工智能的基本原理,了解人工智能中常用的基本技术,诸如:知识表示和搜索策略等技术问题,能够运用掌握的基本方法技术解决实际生活中的一些基本问题,并且能够理解有关计算思维方面的基本思想。

该课程的学习内容,主要以宏观人工智能为基础,讲授符号主义人工智能的基本原理与方法。

使学生能够了解基于产生式系统的知识表示方法和基于逻辑的知识表示方法,并在此基础上,了解产生式系统表示下的适用于机器的基本搜索理论、方法和技术,了解人工智能中有关博奕的基本理论,了解不确定性推理,掌握基于逻辑的问题求解方法,进一步了解机器学习及专家系统等前沿领域,学会基本的人工智能程序设计语言。

本课程的学时为30,学分为2,授课方式为理论授课。

教学要求是通过该课程的学习使非计算机专业的学生能够对人工智能这门学科有一个总体的认知,并掌握一些基本的人工智能原理,解决现实生活中的一些基本问题,拓宽知识领域的同时,培养一种计算思维的能力,为以后工作和学习遇到的各种问题提供一种有效的解决思路。

IntroductionArtificial intelligence foundation is a frontier and interdisciplinary, although its formation and development has been nearly 50 years of history, it has made many remarkable achievements, gradually formed such as expert system, machine learning, pattern recognition, natural language understanding, robotics and other research fields. However, to this day, it is still far from the goal of reproducing human intelligence on machines. All the current theoretical researches, realizations, and application systems that study human intelligence and use human computer intelligence and hardware to achieve certain human intelligence are all research areas of artificial intelligence.The “Artificial Intelligence Foundation”is a public elective course for undergraduates of non-computer majors across the university. This course requires students to master the basic principles of artificial intelligence and understand the basic technologies commonly used in artificial intelligence, such as: knowledge representation and search strategy and other technical issues. Can use the basic methods of technology to solve some of the basic problems in real life, and can understand the basic thinking of the computing thinking.The content of this course is based on macroscopic artificial intelligence and teaches the basic principles and methods of symbolic artificial intelligence. Enable students to understand knowledge representation methods based on production systems and logic-based knowledge representation methods, and on this basis, understand the basic search theory, methods, and technologies applicable to machines under the representation of production systems, and understand the relevant aspects of artificial intelligence.The course hours are 30, credits are 2 and the way of teaching is theoretical. The teaching requirement is to enable non-computer major students to have an overall knowledge of the discipline of artificial intelligence through the learning of this course, and to master some basic principles of artificial intelligence, to solve some basic problems in real life, and to broaden the knowledge field. At the same time, develop a kind of ability to calculate thinking, and provide an effective solution to various problems encountered in future work and study.第三部分:教学目的、教学要求、教学重点、考核方式(一)教学目的《人工智能基础》是面向全校非计算机专业本科生的一门选修课程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《人工智能基础》课程教学大纲
课程编号:04291
课程名称:人工智能基础
英文名称:Artificial Intelligence Foundation
课程性质:学科基础
课程要求:必修
学时/学分:48/3 (讲课学时:36实验学时:12 )
适用专业:智能科学与技术
一、课程性质与任务
《人工智能基础》是一门探索、揭示人类思维本质,研究将人类智能转化为机器智能的学科。

通过本课程的学习,培养学生拥有能够解决复杂问题的基本能力,为今后在专家系统、智能机器人、智能计算机等方面知识掌握奠定比较扎实的理论基础。

本课程的主要任务是介绍知识表示、基本的搜索算法、模拟人类思维的不确定性推理,使学生对专家系统、智能计算机等方面具有一定的理论基础与实践能力。

(支撑毕业要求1.3, 2.2, 4.2, 5.2, 10.1, 11.2)
二、课程与其他课程的联系
《人工智能基础》的先修课程包括《概率论与数理统计》、《智能优化方法》、《C语言程序设计》等课程。

《概率论与数理统计》在复杂问题求解中的主观Bayes决策与不确定性理论方面支撑《人工智能基础》课程。

《智能优化方法》在搜索技术问题的理解方面支撑
《人工智能基础》课程。

《C语言程序设计》在搜索算法、贝叶斯决策与专家系统的实现方面支撑《人工智能基础》课程。

《人工智能基础》的后续课程包括《智能机器人》,为《智能机器人》提供理论基础方法方面的支撑。

三、课程教学目标
1.学习人工智能的基础理论知识,掌握解决复杂问题的基本能力,为今后在专家系统、智能机器人、智能计算机等方面知识掌握奠定比较扎实的理论基础,对智能机器人的应用方面提供理论与实践支撑。

(支撑毕业能力要求13, 10.1, 11.2)
2认识到知识表示在本学科发展中所处的地位与扮演的角色,能够掌握本领域经典的知识表示方法,如谓词逻辑、状态空间、语义网络等,并能运用这些知识解决一些实际工程问题。

(支撑毕业能力要求1.3, 2.2, 5.2)
1掌握搜索的基本思想,比如宽度优先、深度优先等传统搜索方法。

(支撑毕业能力要求 1.3, 2.2)
4培养学生具有不确定性理论与推理思想。

(支撑毕业能力要求1.3, 2.2)
S培养学生具有专家系统的有关理论与应用能力。

(支撑毕业能力要求1.3, 2.2, 4.2,
11.2)
四、教学内容、基本要求与学时分配
五、其他教学环节(课外教学环节、要求、目标)

六、教学方法
本课程以课堂教学为主,结合实验教学手段和形式完成课程教学任务。

在课堂教学中,通过讲授、提问、讨论、演示等教学方法和手段让学生理解人工智能的理论体系、主线,掌握基本概念、基本原理和各种分析方法。

在实验环节中,要求学生完成各种算法与应用的计算机语言的实现,培养学生具有实际的编程与系统实现能力。

七、考核及成绩评定方式
最终成绩由平时成绩、期末考试成绩组合而成。

各部分所占比例如下:
平时成绩:30%。

其中,平时表现占10%,主要考核符堂课学生的出勤与参与问题讨论的情况;实验成绩占20%,主要考核学生的实际编程能力与开发系统能力。

期末考试成绩:70%。

主要考核本课程的各知识点。

闭卷考试,卷面满分100分,取70%计入总成绩,题型为:1、概念题,2、选择题,3、问答题,4、计算题等。

八、教材及参考书目
1. 教材:
[1]蔡自兴等,人工智能及其应用(第5版)(普通高等教育“十二五”国家级规划教材),清华大学出版社,2016.
2. 参考书目:
[1] 金聪,郭京蕾,人工智能原理与应用,清华大学出版社,2013.
[2] 人工智能学习辅导与实验指导,周金海,清华大学出版社,2008.。

相关文档
最新文档