静力弹塑性分析方法与与动力弹塑性分析方法的优缺点

合集下载

结构静力弹塑性分析方法的研究和改进

结构静力弹塑性分析方法的研究和改进

结构静力弹塑性分析方法的研究和改进一、本文概述随着建筑行业的不断发展,对建筑结构的安全性和稳定性的要求也越来越高。

结构静力弹塑性分析方法作为一种重要的结构分析方法,能够更准确地模拟结构在静力作用下的弹塑性行为,因此在工程实践中得到了广泛应用。

然而,现有的结构静力弹塑性分析方法仍存在一些问题和不足,如计算精度不高、计算效率低等,这些问题限制了其在大型复杂结构分析中的应用。

因此,本文旨在深入研究结构静力弹塑性分析方法,探索其改进策略,以提高计算精度和效率,为工程实践提供更为准确和高效的结构分析方法。

本文首先介绍了结构静力弹塑性分析方法的基本原理和计算流程,分析了现有方法的不足和局限性。

在此基础上,本文提出了一种改进的结构静力弹塑性分析方法,通过引入新的算法和优化计算流程,提高了计算精度和效率。

本文还通过实际工程案例的对比分析,验证了改进方法的可行性和有效性。

本文的研究不仅有助于推动结构静力弹塑性分析方法的发展,提高其在工程实践中的应用水平,同时也为相关领域的研究提供了有益的参考和借鉴。

二、结构静力弹塑性分析方法的理论基础结构静力弹塑性分析方法(Pushover Analysis)是一种在结构工程领域广泛应用的非线性静力分析方法,旨在评估结构在地震等极端荷载作用下的性能。

该方法基于结构在地震作用下的弹塑性反应特点,通过模拟结构的静力加载过程,分析结构的弹塑性变形、内力分布和破坏机制,为结构抗震设计和性能评估提供重要依据。

静力弹塑性分析方法的理论基础主要建立在塑性力学、结构力学和地震工程学等多个学科领域。

其中,塑性力学提供了描述材料在弹塑性阶段的应力-应变关系的本构模型,包括理想弹塑性模型、随动硬化模型等多种模型,这些模型能够反映材料在受力过程中的非线性行为和塑性变形累积。

结构力学则为静力弹塑性分析提供了结构整体和局部的力学分析方法,包括静力平衡方程、变形协调条件等,这些方程和条件构成了静力弹塑性分析的数学模型。

静力弹塑性分析(Pushover分析)两种方法剖析

静力弹塑性分析(Pushover分析)两种方法剖析

静力弹塑性分析(Pushover 分析)■ 简介Pushover 分析是考虑构件的材料非线性特点,分析构件进入弹塑性状态直至到达极限状态时结构响应的方法。

Pushover 分析是最近在地震研究及耐震设计中经常采用的基于性能的耐震设计(Performance-Based Seismic Design, PBSD)方法中最具代表性的分析方法。

所谓基于性能的耐震设计就是由用户及设计人员设定结构的目标性能(target performance),并使结构设计能满足该目标性能的方法。

Pushover 分析前要经过一般设计方法先进行耐震设计使结构满足小震不坏、中震可修的规X 要求,然后再通过pushover 分析评价结构在大震作用下是否能满足预先设定的目标性能。

计算等效地震静力荷载一般采用如图2.24所示的方法。

该方法是通过反应修正系数(R)将设计荷载降低并使结构能承受该荷载的方法。

在这里使用反应修正系数的原因是为了考虑结构进入弹塑性阶段时吸收地震能量的能力,即考虑结构具有的延性使结构超过弹性极限后还可以承受较大的塑性变形,所以设计时的地震作用就可以比对应的弹性结构折减很多,设计将会更经济。

目前我国的抗震规X 中的反应谱分析方法中的小震影响系数曲线就是反应了这种设计思想。

这样的设计方法可以说是基于荷载的设计(force-based design)方法。

一般来说结构刚度越大采用的修正系数R 越大,一般在1~10之间。

但是这种基于荷载与抗力的比较进行的设计无法预测结构实际的地震响应,也无法从各构件的抗力推测出整体结构的耐震能力,设计人员在设计完成后对结构的耐震性能的把握也是模糊的。

基于性能的耐震设计中可由开发商或设计人员预先设定目标性能,即在预想的地震作用下事先设定结构的破坏程度或者耗能能力,并使结构设计满足该性能目标。

结构的耗能能力与结构的变形能力相关,所以要预测到结构的变形发展情况。

所以基于性能的耐震设计经常通过评价结构的变形来实现,所以也可称为基于位移的设计(displacement-based design)。

结构抗震静力弹塑性分析方法(Pushover)的研究与改进的开题报告

结构抗震静力弹塑性分析方法(Pushover)的研究与改进的开题报告

结构抗震静力弹塑性分析方法(Pushover)的研究与改进的开题报告一、研究背景随着建筑结构设计的发展,抗震设计成为其中的重点和难点。

为了保障建筑安全,结构的抗震能力得到了越来越广泛的重视。

在结构抗震设计中,抗震静力弹塑性分析方法(Pushover)已经成为全球广泛使用的一种分析方法。

该方法根据结构某一方向施加分布荷载,通过对结构力学性能的分析,评估结构抗震能力。

二、研究目的与意义随着现代建筑的不断发展,建筑的结构形式日益复杂。

在这种情况下,传统的计算方法已经不能满足抗震设计的需求。

因此,本研究旨在对抗震静力弹塑性分析方法进行研究和改进,扩充其适用范围,提高其计算精度和效率,以更准确地评估结构的抗震能力。

三、研究内容1. 国内外相关研究的调研和综述,对Pushover分析方法的基本原理和步骤进行总结和阐述。

2. 提出一种结构抗震静力弹塑性分析方法的改进方案,探讨在模型参数、荷载模拟、材料本构关系等方面的改进思路。

3. 基于实际工程,使用所提出的改进方法对不同类型的建筑结构进行抗震分析,评估其抗震能力。

4.设计和编写Pushover分析方法改进程序,验证改进方案的正确性和有效性。

四、预期成果和考核指标本研究旨在对抗震静力弹塑性分析方法进行改进研究。

主要的预期成果包括:1.提出一种结构抗震静力弹塑性分析方法的改进方案,改进方案应能够在某些方面比传统的方法更加准确和高效。

2.通过实际工程评估所提出的改进方法的优缺点,验证其适用性和实用性。

3.设计和编写Pushover分析方法改进程序,展示改进方案的正确性和有效性。

预计的考核指标包括:论文的质量、研究方法是否合理、研究成果是否能够达到预期目标、研究结果的可重复性和实用性。

五、研究步骤与进度安排1.查阅相关文献,了解国内外关于结构抗震静力弹塑性分析方法的研究现状和进展,设计改进方案。

预计用时2周。

2.对所提出的改进方案进行模拟,并对改进方案中涉及的各项参数进行详细分析研究。

07-静力弹塑性和动力弹塑性几个热点问题

07-静力弹塑性和动力弹塑性几个热点问题

“宜”进行弹塑性变形验算的结构如下: (1)《抗规》表5.1.2-1所列高度范围且属于《抗规》表3.4.2-2所列竖向不规 则类型的高层建筑结构; (2)7度Ⅲ、Ⅳ类场地和8度时乙类建筑中的钢筋混凝土结构和钢结构; (3)板柱-抗震墙结构和底部框架砖房; (4)高度不大于150m的高层钢结构。
3. 影响分析结果的四个因素?
6. 如何选取动力弹塑性分析地震波?
① 满足地震动三要素: -频谱特性Tg,有效峰值加速度、持续时间
② 频谱特性Tg - 8度和9度区增加0.05秒 - 如何计算地震波的Tg? ③ 有效峰值加速度(EPA) - 规范:有效峰值加速度 - 地震波:数据上的是峰值加速度PGA - 调幅:用EPA调幅
④ 持续时间 - 不是地震波数据上的时间
楼板与墙连梁等连接位置在横向荷载作用下会产楼板与墙连梁等连接位置在横向荷载作用下会产生应力集中应力集中位置很容易过早进入塑性这是不真实的这会影响分析结果的准确性和分析的收敛性
新 技 术 • 新 流 程 • 个热点问题
2009.11.16

① Pushover分析的加载模式 - 静力荷载工况、等加速度、振型、层地震剪力
② 原则:应反映实际的地震力分布 ③ 一般选择:第一振型 - 原因:多层结构的地震力接近倒三角形,与第一振型接 近 ④ 推荐:层剪力模式,对高层或不规则结构更接近实际的 地震力分布
⑤ 固定加载模式的理论缺陷:加载模式在分析过程中不变
7. 铰模型和纤维模型的优缺点?
纤维模型的特点
8. 需要考虑楼板的动力弹塑性吗?
理论上需要
① 楼板刚度的变化对横向分析结果的影响 ② 可能会影响梁、柱、墙的出铰顺序 实现起来有难度 ① 如何考虑楼板配筋 - 板的单元划分很不规则,如何找到对应位置的配筋 ② 应力集中的影响 - 楼板与墙、连梁等连接位置在横向荷载作用下会产 生应力集中 - 应力集中位置很容易过早进入塑性,这是不真实的 - 这会影响分析结果的准确性和分析的收敛性

建筑结构弹塑性分析方法简介

建筑结构弹塑性分析方法简介

弹塑性分析方法静力弹塑性分析(PUSH-OVER ANAL YSIS)方法也称为推覆法,该方法基于美国的FEMA-273抗震评估方法和A TC-40报告,是一种介于弹性分析和动力弹塑性分析之间的方法,其理论核心是“目标位移法”和“承载力谱法”。

弹塑性时程分析方法将结构作为弹塑性振动体系加以分析,直接按照地震波数据输入地面运动,通过积分运算,求得在地面加速度随时间变化期间内,结构的内力和变形随时间变化的全过程,也称为弹塑性直接动力法。

1引言《建筑抗震设计规范》5.5.2条规定,对于特别不规则的结构、板柱-抗震墙、底部框架砖房以及高度不大于150m的高层钢结构、7度三、四类场地和8度乙类建筑中的钢筋混凝土结构和钢结构宜进行弹塑性变形验算。

对于高度大于150m的钢结构、甲类建筑等结构应进行弹塑性变形验算。

《高层建筑混凝土结构技术规程》5.1.13条也规定,对于B级高度的高层建筑结构和复杂高层建筑结构,如带转换层、加强层及错层、连体、多塔结构等,宜采用弹塑性静力或动力分析方法验算薄弱层弹塑性变形。

历史上的多次震害也证明了弹塑性分析的必要性:1968年日本的十橳冲地震中不少按等效静力方法进行抗震设防的多层钢筋混凝土结构遭到了严重破坏,1971年美国San Fernando 地震、1975年日本大分地震也出现了类似的情况。

相反,1957年墨西哥城地震中11~16层的许多建筑物遭到破坏,而首次采用了动力弹塑性分析的一座44层建筑物却安然无恙,1985年该建筑又经历了一次8.1级地震依然完好无损。

可以看出,随着建筑高度迅速增长,复杂程度日益提高,完全采用弹性理论进行结构分析计算和设计已经难以满足需要,弹塑性分析方法也就显得越来越重要。

2静力弹塑性分析计算方法(1) 建立结构的计算模型、构件的物理参数和恢复力模型等;(2) 计算结构在竖向荷载作用下的内力;(3) 建立侧向荷载作用下的荷载分布形式,将地震力等效为倒三角或与第一振型等效的水平荷载模式。

静力弹塑性分析方法

静力弹塑性分析方法
在实际计算中必须注意一下几个问题:
(1)、计算模型必须包括对结构重量、强度、刚度及稳定性有较大影响的所有结构部件。
(2)对结构进行横向力增量加载之前,必须把所有重力荷载(恒载和参加组合的活荷载)施加在相应位置。
(3)结构的整体非线性及刚度是根据增量静力分析所求得的基底剪力-顶点位移的关系曲线确定的。
静力弹塑性分析方法(pushover法)分为两个部分,首先建立结构荷载-位移曲线,然后评估结构的抗震能力,基本工作步骤为:
第一步:准备结构数据:包括建立模型、构件的物理参数和恢复力模型等;
第二步:计算结构在竖向荷载作用下的内力。
第三步:在结构每层质心处,沿高度施加按某种规则分布的水平力(如:倒三角、矩形、第一振型或所谓自适应振型分布等),确定其大小的原则是:施加水平力所产生的结构内力与第一步计算的内力叠加后,恰好使一个或一批构件开裂或屈服。在加载中随结构动力特征的改变而不断调整的自适应加载模式是比较合理的,比较简单而且实用的加载模式是结构第一振型。
静力弹塑性分析方法
静力弹塑性分析方法(pushover法)的确切含义及特点
结构弹塑性分析方法有动力非线性分析(弹塑性时程分析)和静力非线性分析两大类。动力非线性分析能比较准切而完整的得出结构在罕遇地震下的反应全过程,但计算过程中需要反复迭代,数据量大,分析工作繁琐,且计算结果受到所选用地震波及构件恢复力和屈服模型的影响较大,一般只在设计重要结构或高层建筑结构时采用。
第四步:对于开裂或屈服的杆件,对其刚度进行修改,同时修改总刚度矩阵后,在增加一级荷载,又使得一个或一批构件开裂或屈服;
不断重复第三、四步,直到结构达到某一目标位移(当多自由度结构体系可以等效为单自由度体系时)或结构发生破坏(采用性能设计方法时,根据结构性能谱与需求谱相交确定结构性能点)。

YJK静力弹塑性分析

YJK静力弹塑性分析

Sdy
单自由线弹性体系推覆分析是准确的
附加阻尼比计算
add
ED 4Байду номын сангаас S
eff add 5%
结构性能类型
影响附加等效阻尼的计算
eff = add 5(%)
κ用于反映结构新旧程度以及震源与建筑距离对计算 的影响。结构越新,离震源地越近,结构滞回环越饱 满,耗能越多时,结构性能类型选A,反之,选C。结 构性能类型会影响附加阻尼比的调整系数(软件F1) 。
15:41
不同软件本构曲线差异
15:41
结语
一、推荐图书
两期微课,讲解不充分,不详细,知识构成不同。 金土木 陆新征
Chopra
Perform3d手册
文献1
文献2
文献3
文献4
二、共勉
非线性分析的目的并不是要得到“精确的” 结构行为预测,理论上讲,这是不可能的,而是 要提供给设计有用的信息。非线性分析更难,但 更合理,可以提供支持设计决策的信息。 弹塑性分析是评估结构和构件性能的一种有 效手段,可以识别出一些可能出现的反应机制, 并不是所有的反应机制,有限的荷载只能激发出 潜在的部分破坏机制。减少这类破坏机制能大大 降低结构破损概率。
流程
初始阻尼比谱曲 线
ADRS需求谱曲线 迭代求解获取性能点
顶部位移 -底部剪 力曲线 ADRS能 力谱曲线
性能点处指标输出
建立非 线性分 选定推 析模型 覆荷载 形状
单调静力 弹塑性推 覆求解
推覆分析过程后处理输出
ADRS需求谱曲线
α
Sa (T , ) g
Sa
T2 Sd 2 Sa 4
静力弹塑性分析在YJK软件中的实现

sap2000弹塑性分析方法

sap2000弹塑性分析方法

SAP2000弹塑性分析方法运用总结结构的抗震设计一般可通过三个方面来实现,一种是增加结构的截面和刚度来“抗震”,此时如果要使结构在大震作用下保持弹性状态,结构需要具有如右图所示的承载能力,此时结构的设计截面会变得非常不经济;第二种方法是容许结构发生一定的塑性变形,并保证结构不发生倒塌的"耐"震设计(或叫延性设计);第三种方法是通过一些装置地震响应比较(如阻尼器、隔振装置等)来吸收能量的"减"震或"隔"震设计。

当结构和结构构件具有一定的延性时,大震作用下部分构件会发生屈服,此时结构的周期会变长,结构周期的变长反过来减小了地震引起的惯性力,即塑性铰的出现吸收了部分地震能量,从而避免了结构的倒塌。

对结构抗震性能的评价以往多从强度入手,但结构在发生屈服后仍具有一定的耗能和变形能力,因此用能够反映结构延性和耗能能力的变形评价结构的抗震性能应更为合适。

通过动力弹塑性分析我们不仅要了解结构发生屈服和倒塌时的地震作用的大小,同时也要了解结构的变形能力(弹塑性层间位移角、延性系数等)、构件的变形能力、铰出现顺序等,从而实现“小震不坏、中震可修、大震不倒”的三水准设防目标。

目的:1) 评价建筑在罕遇地震下的抗震性,根据主要构件的塑性破坏情况和整体变形情况,确认结构是否满足性能目标的要求。

2) 研究超限对结构抗震性能的影响,包括罕遇地震下的最大层间位移;3)根据以上分析结果,针对结构薄弱部位和薄弱构件提高相应的加强措施。

弹塑性分析两种方法:1、静力弹塑性方法push-over2、动力弹塑性时程分析《建筑抗震设计规范》GB50011-2010(以下简称《抗规》)第1.0.1条中规定了三水准设防目标为“小震不坏、中震可修、大震不倒”。

《抗规》5.5.2条中分别规定了"应"进行弹塑性变形验算和"宜"进行弹塑性变形验算的结构。

高层建筑结构静力弹塑性分析的理论与应用研究

高层建筑结构静力弹塑性分析的理论与应用研究
高层建筑结构静力弹塑性分析 的理论与应用研究
基本内容
摘要:
随着社会的快速发展和城市化进程的加速,高层建筑结构的设计与安全性显 得尤为重要。静力弹塑性分析方法作为一种评估结构在静力荷载作用下的弹塑性 响应的重要工具,在高层建筑结构设计中具有重要意义。本次演示阐述了静力弹 塑性分析的基本原理和流程,并通过实际工程案例,探讨了静力弹塑性分析在高 层建筑结构中的应用及其优越性。
为了帮助读者更好地理解和应用MIDASGEN进行高层建筑结构的静力弹塑性分 析,建议参考MIDASGEN用户手册和其他相关文献资料。这些资料将提供更详细的 信息和指导,帮助读者掌握MIDASGEN的分析功能和操作方法。
在实际工程实践中,还需要结合实际情况和专业知识进行具体决策。静力弹 塑性分析只是评估高层建筑结构安全性的一种手段,还需要综合考虑其他因素 (如结构设计、施工工艺、维护保养等)来确保建筑结构的长期稳定性和安全性。
在进行静力弹塑性分析时,需要考虑多种荷载工况,例如自重、风载、地震 作用等。通过在MIDASGEN中设置相应的荷载工况,可以模拟高层建筑结构在不同 荷载作用下的响应。同时,还需要根据建筑结构的特点,选择合适的分析方法和 计算参数,例如静力弹塑性分析方法、屈服准则等。
在MIDASGEN中,可以通过输出位移、应力、应变等结果,对高层建筑结构的 静力弹塑性进行分析。通过与其他方法(如有限元方法、实验方法等)的比较, 可以发现MIDASGEN在分析高层建筑结构的静力弹塑性方面具有较高的精度和可靠 性。
研究目的
本次演示的研究目的是对比研究高层建筑结构的静力与动力弹塑性抗震分析 方法,分析各自的优势和不足,并提出改进建议。通过对比两种方法的计算结果, 希望能够为高层建筑结构的抗震设计提供更为准确可靠的分析手段。

静力弹塑性和动力弹塑性分析方法在结构抗震分析中的应用_张洪伟

静力弹塑性和动力弹塑性分析方法在结构抗震分析中的应用_张洪伟
Beijing Civil King Software Technology Co., Ltd.
金土木用户大会
一、静力弹塑性分析方法(Pushover)
金土木用户大会
Pushover分析在结构抗震分析中的应用
1、利用Pushover分析进行结构抗震性能评估 的基本思路。
2、框架、剪力墙的模拟。 3、模型的合理简化。 4、加载模式的选择及Pushover工况定义。 5、结果读取、性能评价。 6、需要关注的几个问题。
金土木用户大会结构性能评估根据pushover曲线和求得的性能点检查结构在性能点的基底剪力顶点位移并利用结构的最大层间位移角限值来评估结构在既定地震作用下的延性性能从而判断结构的抗震能力是否达到既定地震作用下的要求
金土木用户大会
静力弹塑性及动力弹塑性分析在结构 抗震分析中的应用
张洪伟
北京金土木软件技术有限公司
选择用于评估的地震水准
北京金土木软件技术有限公司
Beijing Civil King Software Technology Co., Ltd.
金土木用户大会
选择用于评估的性能水准
北京金土木软件技术有限公司
Beijing Civil King Software Technology Co., Ltd.
Beijing Civil King Software Technology Co., Ltd.
金土木用户大会
性能点

北京金土木软件技术有限公司
Beijing Civil King Software Technology Co., Ltd.
金土木用户大会
Ca、Cv参数确定
• Ca与Cv为UBC规范反应谱与中国规范反应谱转换参 数

静力弹塑性分析方法(Pushover方法)与动力弹塑性分析方法的优缺点比较

静力弹塑性分析方法(Pushover方法)与动力弹塑性分析方法的优缺点比较

静力弹塑性分析方法(Pushover方法)与动力弹塑性分析方法的优缺点比较一、Pushover分析法1、Pushover分析法优点:(1)作为一种简化的非线性分析方法,Pushover方法能够从整体上把握结构的抗侧力性能,可以对结构关键机构及单元进行评估,找到结构的薄弱环节,从而为设计改进提供参考。

(2)非线性静力分析可以获得较为稳定的分析结果,减小分析结果的偶然性,同时花费较少的时间和劳力,较之时程分析方法有较强的实际应用价值。

2、Pushover分析法缺点:(1)它假定所有的多自由度体系均可简化为等效单自由度体系,这一理论假定没有十分严密的理论基础。

(2)对建筑物进行Pushover分析时首先要确定一个合理的目标位移和水平加载方式,其分析结果的精确度很大程度上依赖于这两者的选择。

(3)只能从整体上考察结构的性能,得到的结果较为粗糙。

且在过程中未考虑结构在反复加载过程中损伤的累积及刚度的变化。

不能完全真实反应结构在地震作用下性状。

二、弹塑性时程分析法1、时程分析法优点:(1)采用地震动加速度时程曲线作为输入,进行结构地震反应分析,从而全面考虑了强震三要素,也自然地考虑了地震动丰富的长周期分量对高层建筑的不利影响。

(2)采用结构弹塑性全过程恢复力特性曲线来表征结构的力学性质,从而比较确切地、具体地和细致地给出结构的弹塑性地震反应。

(3)能给出结构中各构件和杆件出现塑性铰的时刻和顺序,从而可以判明结构的屈服机制。

(4)对于非等强结构,能找出结构的薄弱环节,并能计算出柔弱楼层的塑性变形集中效应。

2、时程分析法缺点:(1)时程分析的最大缺点在于时程分析的结果与所选取的地震动输入有关,地震动时称所含频频成分对结构的模态n向应有选择放大作用,所以不同时称输入结果差异很大。

(2)时程分析法采用逐步积分的方法对动力方程进行直接积分,从而求得结构在地震过程中每一瞬时的位移、速度和加速度反应。

所以此法的计算工作十分繁重,必须借助于计算机才能完成。

浅谈静力弹塑性分析(Pushover)的明白得与应用

浅谈静力弹塑性分析(Pushover)的明白得与应用

浅谈静力弹塑性分析(Pushover )的明白得与应用摘要:本文第一介绍采纳静力弹塑性分析(Pushover )的要紧理论基础和分析方式,以Midas/Gen 程序为例,采纳计算实例进行具体说明弹塑性分析的步骤和进程,说明Pushover 是罕遇地震作用下结构分析的有效方式。

关键词:静力弹塑性 Pushover Midas/Gen 能力谱 需求谱 性能点一、大体理论静力弹塑性分析方式,也称Pushover 分析法,是基于性能评估现有结构和设计新结构的一种静力分析方式,在必然精度范围内对结构在罕遇地震作用下进行弹塑性变形分析。

简腹地说,在结构计算模型上施加按某种规那么散布的水平侧向力或侧向位移,单调加荷载(或位移)并逐级加大;一旦有构件开裂(或屈服)即修改其刚度(或使其退出工作),进而修改结构总刚度矩阵,进行下一步计算,依次循环直到操纵点达到目标位移或建筑物倾覆为止,取得结构能力曲线,以后对照确信条件下的需求谱,并判定是不是显现性能点,从而评判结构是不是能知足目标性能要求。

Pushover 分析的大体要素是能力谱曲线和需求谱曲线,将两条曲线放在同一张图上,得出交会点的位移值,同位移允许值比较,查验是不是知足特定地震作用下的弹塑性变形要求。

能力谱曲线由能力曲线(基底剪力-极点位移曲线)转化而来(图1)。

与地震作用相应的结构基底剪力与结构加速度为正相关关系,极点位移与谱位移为正相关关系,两种曲线形状一致。

其对应关系为:1/αGV S a = roofroof d X S ,11γ∆=,图1 基底剪力-极点位移曲线转换为能力谱曲线其中1α、1γ、roof X ,1别离为第一阵型的质量系数,参与系数、极点位移。

该曲线与要紧建筑材料的本构关系曲线具有相似性,其实其物理意义亦有对应,在初始时期作使劲与变形为线性关系,随着作使劲的增大,慢慢进入弹塑性时期,变形显著增加,不论关于构件,仍是结构整体,都是那个规律。

静力弹塑性和动力弹塑性几个热点问题课件

静力弹塑性和动力弹塑性几个热点问题课件
静力弹塑性和动力弹塑性几个热点问题课件
静力弹塑性分析动力弹塑性分析静力与动力弹塑性的比较热点问题探讨未来发展方向
静力弹塑性分析
静力弹塑性分析是指在静力荷载作用下,材料发生的弹性和塑性变形分析。它考虑了材料的弹性和塑性行为,是结构分析和设计的重要基础。
静力弹塑性分析主要关注的是材料在受力过程中发生的变形和应力分布,以及材料的屈服和失效行为。
静力弹塑性的优点
能够更好地模拟材料在动态加载条件下的行为,适用于分析结构的动态响应和稳定性问题。缺点:相对于静力弹塑性,动力弹塑性的分析计算更为复杂,需要更多的计算资源和时间。
动力弹塑性的优点
根据分析问题的类型选择
01
如果需要分析结构在长期恒定外力作用下的稳定性问题,可以选择静力弹塑性进行模拟;如果需要分析结构在动态、瞬态外力作用下的响应和稳定性问题,可以选择动力弹塑性进行模拟。
静力弹塑性分析方法通常用于大型复杂结构的非线性分析,如地震工程、核工程和重型机械等领域。
有限元法
有限元法是一种常用的数值计算方法,通过将结构离散化为有限个小的单元,然后对每个单元进行力学分析,最后将所有单元的结果汇总得到整体结构的响应。在静力弹塑性分析中,有限元法可以模拟材料的弹性和塑性行为,以及结构的非线性变形。
根据材料的性质选择
02
对于一些具有明显时间依赖性的材料,如粘弹性材料,选择动力弹塑性进行模拟可能更为准确。而对于一些传统材料,如金属和混凝土等,静力弹塑性通常能够提供较为准确的结果。
根据计算资源和时间限制选择
03
如果计算资源和时间有限,选择静力弹塑性进行模拟可能更为合适,因为其计算相对简单。反之,如果计算资源和时间充足,选择动力弹塑性进行模拟能够获得更准确的模拟结果。

基于SAP2000的平面单层框架结构弹塑性分析

基于SAP2000的平面单层框架结构弹塑性分析

基于SAP2000的平面单层框架结构弹塑性分析摘要:本文基于SAP2000软件,对一常规的单层平面框架结构进行弹塑性分析,分别使用静力弹塑性方法和动力弹塑性方法进行结构分析,对静力分析所得的基底剪力-位移曲线和动力分析所得的顶点位移的时程曲线进行对比,分析这两种方法对结构抗震弹塑性分析的区别与优缺点。

关键词:SAP2000;静力弹塑性;动力弹塑性中图分类号:我国的结构设计规范目前采用多阶段抗震设计,具体措施是3水准设防(小震不坏,中震可修,大震不倒)。

大部分普通结构设计采用小震计算,少部分复杂结构进行中震和大震性能化抗震设计。

结构在进入中震和大震的阶段后,部分会进入弹塑性,因此传统的线弹性分析模型不再适用。

目前基于纤维模型、分层壳模型等微观精细化模型已经进入实用化阶段,SAP2000、Perform-3D等商用软件能够较好地解决非线性结构弹塑性分析问题。

本文基于SAP2000平台,对一常规的单层平面框架结构采用静力弹塑性和动力弹塑性方法进行分析,对比静力分析生成的基底剪力-位移曲线和动力分析得到的时程分析曲线,总结这两种方法的特征、区别和优缺点,为工程实践提供参考。

1静力弹塑性分析基本原理和应用静力弹塑性分析法(下文简称NSF,Nonlinear Static Procedure),方法是采用一定的结构分析模型进行推覆分析(Pushover Analysis),在分析结果基础上结合抗震性能需求(如需求谱、目标位移等),对结构抗震性能进行分析。

基本假定如下:(1)仅能考虑结构第一振型的影响,忽略高阶振型的影响。

(2)结构沿高度方向的变形可使用形状向量表示,且在地震作用的全过程,形状向量保持不变。

(3)楼板的平面内刚度无限大,不考虑楼板的平面外刚度,楼板在平面内仅发生刚体位移。

分析基本思路如下:(1)建立弹塑性模型,确定侧向推覆力的形式,得到顶点位移—侧向力曲线。

(2)选择用于评估的地震水准(中国规范、ATC40)。

静力弹塑性和动力弹塑性几个热点问题45分钟

静力弹塑性和动力弹塑性几个热点问题45分钟

动力弹塑性模型的应用
动力弹塑性模型广泛应用于结构动力 学、冲击动力学、材料科学等领域。 它可以用于预测结构在冲击、振动等 动态载荷作用下的响应,以及材料的 变形、损伤和破坏行为。
动力弹塑性模型还可以用于评估材料 的抗冲击性能和结构的安全性。通过 模拟和分析不同动态载荷下的材料行 为,可以优化材料和结构的性能,提 高其安全性和可靠性。
动力弹塑性模型的基本概念
动力弹塑性模型是一种用于描述材料在动态载荷作用下的 行为的理论模型。它结合了弹性理论和塑性理论,以描述 材料在受到冲击、振动等动态载荷时的响应。
动力弹塑性模型考虑了材料的弹性和塑性行为,以及它们 在动态载荷作用下的相互作用。这种模型能够预测材料在 不同动态载荷下的变形、损伤和破坏行为。
静力弹塑性和动力弹 塑性几个热点问题
目录
• 静力弹塑性模型 • 动力弹塑性模型 • 静力弹塑性与动力弹塑性的比较 • 热点问题与展望
01
静力弹塑性模型
静力弹塑性模型的基本概念
静力弹塑性模型是一种描述材料在静力载荷作用下发生弹塑性变形的模型。它基 于弹塑性理论,将材料的变形分为弹性变形和塑性变形两个阶段,并考虑了两者 之间的相互影响。
进一步探索复杂应力状态下的本构模型:未来研究将进 一步探索复杂应力状态下材料的本构模型,提高模型的 预测精度和普适性。
动力弹塑性
发展跨时间尺度的模拟方法:未来将发展跨时间尺度的 模拟方法,实现从微观到宏观的连续模拟,更好地理解 材料的动态行为。
THANKS FOR WATCHING
感谢您的观看
2
静力弹塑性通常假设材料性质是恒定的,而动力 弹塑性需要考虑材料性质随时间的变化。
3
静力弹塑性通常采用准静态实验方法进行研究, 而动力弹塑性则需要采用动态实验方法进行研究。

动力时程分析和静力弹塑性分析方法的相同于不同点

动力时程分析和静力弹塑性分析方法的相同于不同点

时程分析法又称直接动力法,在数学上又称步步积分法。

顾名思义,是由初始状态开始一步一步积分直到地震作用终了,求出结构在地震作用下从静止到振动以至到达最终状态的全过程。

它与底部剪力法和振型分解反应谱法的最大差别是能计算结构和结构构件在每个时刻的地震反应(内力和变形)。

当用此法进行计算时,系将地震波作为输入。

一般而言地震波的峰值应反映建筑物所在地区的烈度,而其频谱组成反映场地的卓越周期和动力特性。

当地震波的作用较为强烈以至结构某些部位强度达到屈服进入塑性时,时程分析法通过构件刚度的变化可求出弹塑性阶段的结构内力与变形。

这时结构薄弱层间位移可能达到最大值,从而造成结构的破坏,直至倒塌。

作为高层建筑和重要结构抗震设计的一种补充计算,采用时程分析法的主要目的在于检验规范反应谱法的计算结果、弥补反应谱法的不足和进行反应谱法无法做到的结构非弹性地震反应分析。

时程分析法的主要功能有:1)校正由于采用反应谱法振型分解和组合求解结构内力和位移时的误差。

特别是对于周期长达几秒以上的高层建筑,由于设计反应谱在长周期段的人为调整以及计算中对高阶振型的影响估计不足产生的误差。

2)可以计算结构在非弹性阶段的地震反应,对结构进行大震作用下的变形验算,从而确定结构的薄弱层和薄弱部位,以便采取适当的构造措施。

3)可以计算结构和各结构构件在地展作用下每个时刻的地震反应(内力和变形),提供按内力包络值配筋和按地震作用过程每个时刻的内力配筋最大值进行配筋这两种方式。

总的来说,时程分析法具有许多优点,它的计算结果能更真实地反映结构的地震反应,从而能更精确细致地暴露结构的薄弱部位。

时程分析法有关的几个问题:1、恢复力特性曲线;恢复力特性曲线应用于计算必须模型化,常用的有双线型模型与退化三线型模型;退化三线型模型(附图)能较好地反映以弯曲破坏为主的钢筋混凝土构件的的特性,所以适用于此类构件计算。

2、结构计算模型及分析方法;3、地震波的选用;4、时程分析计算结果的处理。

弹塑性时程分析与静力分析方法算例比较

弹塑性时程分析与静力分析方法算例比较
I. .’
一一)蜂掣
!耋



!;




¨
¨
图5结构9度Taft地震波下的一层和顶层位移响应
固4结构8度Taft地震波下的一层和顶层位移响应
输入8度罕遇Tafl地震波,结构位移如图4所示,结构顶层峰值位移为0.140米。在9度罕 遇TafI地震波下结构的位移如图5所示。结构顶层峰值位移为0.260米。
8度罕遇EI centro地震波下,结构的楼层位移和层间位移如图6所示,结构的最大层间位移 发生在结构一层。表明在EI Centro地震波作用下结构一层是薄弱层。在8度罕遇TaR波下,结 构一层、五层都有较大的层间位移,表明这两层相对薄弱。
在8度罕遇地震下。结构的层间位移角如图,最大层间位移角发生在底层但小于规范要求的 1,50。表明在8度罕遇地震作用下结构是安全的。在9度罕遇地震下,结构一层的层间位移角分 别为O.0206、0.020l超过了抗震规范规定的l/50的限定。表明结构不能满足9度罕遇地震下的抗 震要求。
Comparison of Elasto—plastic Time History Analysis and NonIinear static Analysis
Ling、,un‘
Hu锄gBingshen矿
Institute
(Shall曲ai Nucle盯Engineering Research锄d Design Institute,Shan曲ai 200233;Engineering ofN砌ing UniVerSity Ofl’echnology'Nanjing 2lO009)
(5)按第一振型分布的侧向荷载
E:—竺t圪
∑%≯l州
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

静力弹塑性分析方法与与动力弹塑性分析方法的优缺点
Pushover)分析法
1、静力弹塑性分析方法(Pushover)分析法优点:
(1)作为一种简化的非线性分析方法,Pushover方法能够从整体上把握结构的抗侧力性能,可以对结构关键机构及单元进行评估,找到结构的薄弱环节,从而为设计改进提供参考。

(2)非线性静力分析可以获得较为稳定的分析结果,减小分析结果的偶然性,同时花费较少的时间和劳力,较之时程分析方法有较强的实际应用价值。

2、静力弹塑性分析方法(Pushover)分析法缺点:
(1)它假定所有的多自由度体系均可简化为等效单自由度体系,这一理论假定没有十分严密的理论基础。

(2)对建筑物进行Pushover分析时首先要确定一个合理的目标位移和水平加载方式,其分析结果的精确度很大程度上依赖于这两者的选择。

(3)只能从整体上考察结构的性能,得到的结果较为粗糙。

且在过程中未考虑结构在反复加载过程中损伤的累积及刚度的变化。

不能完全真实反应结构在地震作用下性状。

二、弹塑性时程分析法
1、时程分析法优点:
(1)采用地震动加速度时程曲线作为输入,进行结构地震反应分析,从而全面考虑了强震三要素,也自然地考虑了地震动丰富的长周期分量对高层建筑的不利影响。

(2)采用结构弹塑性全过程恢复力特性曲线来表征结构的力学性质,从而比较确切地、具体地和细致地给出结构的弹塑性地震反应。

(3)能给出结构中各构件和杆件出现塑性铰的时刻和顺序,从而可以判明结构的屈服机制。

(4)对于非等强结构,能找出结构的薄弱环节,并能计算出柔弱楼层的塑性变形集中效应。

2、时程分析法缺点:
(1)时程分析的最大缺点在于时程分析的结果与所选取的地震动输入有关,地震动时称所含频频成分对结构的模态n向应有选择放大作用,所以不同时称输入结果差异很大。

(2)时程分析法采用逐步积分的方法对动力方程进行直接积分,从而求得结构在地震过程中每一瞬时的位移、速度和加速度反应。

所以此法的计算工作十分繁重,必须借助于计算机才能完成。

而且对于大型复杂结构对计算机要求更高,耗时耗力。

(3)对工程技术人员素质要求较高,工程应用要求较高。

从结构模型建立,材料本构的选取、地震波选取,到参数控制及庞大计算结果的整理及甄别都要求技术人员具有扎实的专业素质以及丰厚的工程经验。

相关文档
最新文档