气体动理论
气体动理论
2.两种不同种类的理想气体,压强相同,温度相同,体积不同, 试
问单位体积内的分子数是否相同?
(答案:相同)
3.两瓶不同种类的气体,分子平均平动动能相同,但气体的分 子数密度不同,试问他们的压强是否相同? (答案:不同)
4.两瓶不同种类的气体,体积不同,但温度和压强相同,问气体 分子的平均平动动能是否相同?单位体积中的分子的总平动 动能是否相同?方均根速率是否相同?(答案:相同,相同,不同)
2. 理想气体的内能包括哪些? 理想气体的内能=所有气体分子动能量的总和;
3. 内能与机械能有什么区别?
机械能可以为零,而内能永不为零。
一摩尔理想气体的内能:
Emol N
i KT i RT
2
2
M千克理想气体的内能: E M i RT i vRT
M mol 2
2
问题:
1.三个容器内分别储有1mol氦气(He),1mol氢气(H2),1mol氨 气(NH3)( 三种气体均 视为刚性分子的理想气体),若它们的 温度都升高 1K , 则三种气体内能的增加分别是多少? (答案:12.5J, 20.8J, 24.9J) 2.写出下列各量的表达式:
(2) 分子沿各个方向运动的机会是均等的,没有任何一个 方向上气体分子的运动比其它方向更占优势。即沿着各 个方向运动的平均分子数应该相等;
(3) 分子速度在各个方向的分量的各种平均值相等。
五、气体动理论的统计方法 (statistical metheds)
用对大量分子的平均性质的了解代替个别分子的 真实性质。对个别分子(或原子)运用牛顿定律求 出其微观量,如:质量、速度、能量等,再用统计的 方法,求出大量分子关于微观量的统计平均值,并 用来解释在实验中直接观测到的物体的宏观性质, 如:温度、压强、热容等。
气体动理论的基本假设
气体动理论的基本假设气体动理论是研究气体行为和性质的学科,它基于一系列假设和原理,用于解释气体分子的运动和相互作用。
这些假设是对实际情况的简化和理想化,使得我们能够通过数学模型更好地理解气体的行为。
本文将就气体动理论的基本假设进行探讨。
1. 气体分子是微观粒子气体动理论的基本假设之一是将气体看作是由大量微观粒子组成的物质。
这些微观粒子可以是分子,也可以是原子。
根据这一假设,气体的物态特性可以通过对这些微观粒子的运动和相互作用进行研究来解释。
这种假设可以追溯到19世纪早期,由波尔特曼和马克斯韦尔等人提出。
2. 碰撞是气体分子的基本作用基于气体分子是微观粒子的假设,气体动理论认为气体分子之间的碰撞是其基本作用。
这些碰撞会导致分子的运动和相互作用,从而决定了气体的性质。
在碰撞中,气体分子之间会交换能量和动量,使得气体分子的速度和方向发生改变。
碰撞的频率和能量转移的大小会受到温度等因素的影响。
3. 气体分子运动是无规则的气体动理论假设气体分子的运动是无规则的。
这意味着在宏观层面上,气体分子的运动是随机的,无法准确预测。
每个气体分子根据自身能量和速度的微小差异,会呈现出不同的运动轨迹和行为。
尽管分子的总体行为是未知的,但是通过大量气体分子的统计平均,可以得到气体的宏观性质,如压强、温度和体积等。
4. 分子之间的相互作用力可以忽略不计气体动理论的另一个基本假设是忽略气体分子之间的相互作用力。
这意味着在描述气体分子的运动时,我们不考虑分子之间的引力或斥力等相互作用。
这一假设在许多情况下是合理的,尤其是当气体分子之间的距离足够远时,相互作用力可以忽略不计。
因此,气体动理论可以建立在这种简化的假设下,更好地解释气体的宏观性质。
总的来说,气体动理论基于一系列假设和原理,用于解释气体分子的运动和相互作用。
这些基本假设包括气体分子是微观粒子、碰撞是气体分子的基本作用、气体分子运动是无规则的以及分子之间的相互作用力可以忽略不计。
气体动理论公式总结
气体动理论公式总结气体动理论是研究气体分子的运动规律和性质的科学理论。
在研究气体动理论时,我们常常会用到一些重要的公式来描述气体的状态和性质。
下面我们将对一些常用的气体动理论公式进行总结和归纳,以便更好地理解和应用这些公式。
1. 理想气体状态方程。
理想气体状态方程是描述气体状态的重要公式之一,它表达了气体的压强、体积和温度之间的关系。
理想气体状态方程的数学表达式为:PV = nRT。
其中,P表示气体的压强,V表示气体的体积,n表示气体的物质量,R为气体常数,T表示气体的温度。
这个方程描述了理想气体在一定条件下的状态,对于理想气体的研究和应用具有重要意义。
2. 理想气体内能公式。
理想气体内能是气体分子的平均动能,它与气体的温度有直接的关系。
理想气体内能的数学表达式为:U = (3/2)nRT。
其中,U表示气体的内能,n表示气体的物质量,R为气体常数,T表示气体的温度。
这个公式表明了理想气体内能与温度的关系,对于研究气体的热力学性质和能量转化具有重要意义。
3. 理想气体压强公式。
理想气体的压强是描述气体状态的重要参数之一,它与气体的温度和体积有直接的关系。
理想气体压强的数学表达式为:P = (nRT)/V。
其中,P表示气体的压强,n表示气体的物质量,R为气体常数,T表示气体的温度,V表示气体的体积。
这个公式描述了理想气体的压强与温度、体积的关系,对于理想气体的状态和性质具有重要意义。
4. 理想气体密度公式。
理想气体的密度是描述气体物质分布的重要参数,它与气体的压强和温度有直接的关系。
理想气体密度的数学表达式为:ρ = (nM)/V。
其中,ρ表示气体的密度,n表示气体的物质量,M表示气体的摩尔质量,V 表示气体的体积。
这个公式描述了理想气体的密度与物质量、摩尔质量、体积的关系,对于理想气体的物质分布和性质具有重要意义。
5. 理想气体平均速度公式。
理想气体分子的平均速度是描述气体分子运动规律的重要参数,它与气体的温度和摩尔质量有直接的关系。
大学物理气体动理论
气体分子之间的相互作用力产生的势能, 由于气体分子之间的距离非常大,因此气 体分子的势能通常可以忽略不计。
分子动理论的基本假设
分子之间无相互作用力
气体分子之间不存在相互作用的力,它们之间只 存在微弱的范德华力。
分子运动速度服从麦克斯韦分布
气体分子的运动速度服从麦克斯韦分布,即它们 的速度大小和方向都是随机的。
分子碰撞的统计规律
分子碰撞的随机性
01
气体分子之间的碰撞是随机的,碰撞事件的发生和结果都是随
机的。
分子碰撞频率
02
单位时间内分子之间的碰撞次数与分子数密度、分子平均速度
和分子碰撞截面有关。
碰撞结果的统计规律
03
碰撞后分子的速度方向和大小的变化遵循一定的统计规律,可
以用概率密度函数来描述。
热现象的统计解释
大学物理气体动理论
• 引言 • 气体动理论的基本概念 • 气体动理论的基本定律 • 气体动理论的统计解释 • 气体动理论的应用 • 结论
01Biblioteka 引言主题简介气体动理论
气体动理论是通过微观角度研究气体 运动状态和变化的学科。它以分子运 动论为基础,探究气体分子运动的规 律和特性。
分子模型
气体动理论中,将气体分子视为弹性 小球,相互之间以及与器壁之间发生 弹性碰撞。通过建立分子模型,可以 更好地理解气体分子的运动特性。
对未来研究的展望
随着科学技术的发展,气体动理 论仍有很大的发展空间和应用前
景。
未来研究可以进一步探索气体分 子间的相互作用和气体在极端条 件下的行为,例如高温、高压或
低温等。
气体动理论与其他领域的交叉研 究也将成为未来的一个重要方向, 例如与计算机模拟、量子力学和
气体分子动理论
气体分子动理论气体分子动理论是物理学中研究气体行为的理论框架。
它基于原子和分子在气体中的微观运动,试图解释和预测气体的宏观性质。
本文将介绍气体分子动理论的基本原理和相关概念。
分子运动和气体行为气体由大量分子组成,这些分子在气体容器中不断运动,并与容器和其他分子发生碰撞。
气体的宏观性质,如温度、压力和体积,可以从分子的运动状态推导出来。
气体分子动理论通过研究分子之间的相互作用和运动规律,解释了气体的行为。
分子运动规律根据气体分子动理论,分子具有以下运动规律:1.分子无规则运动:分子在气体容器中呈现无规则、自由的运动状态。
它们在容器内沿不同方向高速运动,并不断改变运动方向和速度。
2.分子之间的弹性碰撞:分子之间发生弹性碰撞,碰撞后能量和动量守恒,但在碰撞中的分子可能会发生运动速度和方向的改变。
3.平均运动速度:分子的速度服从Maxwell-Boltzmann分布,即分子的速度呈现连续分布,平均速度与温度相关。
4.分子间距和碰撞:分子之间的距离很大,相对于分子的体积而言,分子之间的相互作用可以忽略不计。
然而,当分子靠近时,它们之间的碰撞会对气体的性质产生影响。
气体宏观性质的解释气体分子动理论通过分子的运动规律,解释了气体的一些宏观性质:1.压力:气体分子运动产生的碰撞力对容器壁施加压力,压力与分子速度和碰撞频率有关。
2.温度:气体分子的平均动能与其速度平方成正比,因此温度可以视为分子的平均运动速度的度量。
3.体积:气体分子之间的距离较大,在碰撞时每个分子所占的体积可以忽略不计,因此气体没有固定的形状和体积,可以完全填满容器。
气体状态方程气体状态方程描述了气体的状态和性质。
根据气体分子动理论,可以推导出理想气体状态方程:PV = nRT其中,P是气体的压力,V是气体的体积,n是气体的摩尔数,R是气体常数,T是气体的温度。
这个方程表明,在一定温度下,气体的压力和体积成正比,与摩尔数成正比。
该方程也可以用来推导气体的其他性质。
气体动理论公式总结
气体动理论公式总结气体动理论是研究气体分子在微观层面上的运动规律的一门学科。
它主要研究气体分子的速度、能量、碰撞等方面的性质。
气体动理论公式是描述气体分子运动规律的数学表达式,可以用来计算气体分子的平均速度、平均能量等参数。
下面将总结一些常见的气体动理论公式。
1. 理想气体状态方程理想气体状态方程描述了理想气体在一定温度、压力和体积下的状态关系。
它的数学表达式为:PV = nRT其中,P为气体的压力,V为气体的体积,n为气体的摩尔数,R为气体常数,T为气体的温度。
2. 平均动能公式平均动能公式描述了气体分子的平均动能与温度之间的关系。
它的数学表达式为:K = (3/2)kT其中,K为气体分子的平均动能,k为玻尔兹曼常数,T为气体的温度。
3. 动量-速度关系动量-速度关系描述了气体分子的动量与速度之间的关系。
它的数学表达式为:p = mv其中,p为气体分子的动量,m为气体分子的质量,v为气体分子的速度。
4. 均方根速度公式均方根速度公式描述了气体分子的速度分布规律。
它的数学表达式为:v = √(3kT/m)其中,v为气体分子的均方根速度,k为玻尔兹曼常数,T为气体的温度,m为气体分子的质量。
5. 平均自由程公式平均自由程公式描述了气体分子在运动过程中与其他分子或壁面碰撞的平均距离。
它的数学表达式为:λ = (1/√2πd^2n)其中,λ为气体分子的平均自由程,d为气体分子的直径,n 为气体分子的密度。
6. 分子碰撞频率公式分子碰撞频率公式描述了气体分子碰撞的频率与气体分子数密度之间的关系。
它的数学表达式为:Z = 4πn(d^2)v其中,Z为气体分子的碰撞频率,n为气体分子的数密度,d 为气体分子的直径,v为气体分子的速度。
以上是一些常见的气体动理论公式总结,它们可以用来描述气体分子的运动规律和性质。
利用这些公式,我们可以进行气体的热力学计算和分析,深入理解气体的特性和行为。
同时,这些公式也为相关实验提供了理论基础,促进了气体动理论的发展。
气体动理论
气体动理论(kinetic theory of gases)是19世纪中叶建立的以气体热现象为主要研究对象的经典微观统计理论。
气体由大量分子组成,分子作无规则的热运动,分子间存在作用力,分子的运动遵循经典的牛顿力学。
根据上述微观模型,采用统计平均的方法来考察大量分子的集体行为,为气体的宏观热学性质和规律,如压强、温度、状态方程、内能、比热以及输运过程(扩散、热传导、黏滞性)等提供定量的微观解释。
气体动理论揭示了气体宏观热学性质和过程的微观本质,推导出宏观规律,给出了宏观量与微观量平均值的关系。
它的成功印证了微观模型和统计方法的正确性,使人们对气体分子的集体运动和相互作用有了清晰的物理图像,标志着物理学的研究第一次达到了分子水平。
气体分子动理论
气体分子动理论气体是物质存在的其中一种形态,它的分子运动对于我们理解气体的性质至关重要。
气体分子动理论是一种描述气体性质的科学理论,它通过解释气体分子的运动行为和碰撞规律,为我们提供了对气体行为的深入认识。
1. 分子运动的基本规律气体分子的运动有其基本规律,其中最重要的是玻尔兹曼分布规律。
根据玻尔兹曼分布规律,气体分子的速度分布服从高斯分布,即呈现一个钟形曲线。
这意味着气体分子的速度有一定的平均值,同时也存在一定的速度分散。
这种分布规律的存在,决定了气体的宏观性质,如压强、温度等。
2. 碰撞与压强气体分子之间的碰撞是气体压强产生的主要原因。
当气体分子运动速度较慢,分子之间碰撞不频繁时,气体的压强较低。
相反,当气体分子运动速度较快,分子之间碰撞频繁时,气体的压强较高。
根据气体分子动理论,气体压强与温度呈正相关,其数学关系为压强和温度的乘积与分子间平均速度的平方成正比。
3. 温度与分子速度气体分子运动的速度与气体的温度有着密切的关系。
根据气体分子动理论,气体温度与分子平均动能成正比。
换句话说,温度越高,气体分子的平均动能越大,分子的平均速度也会增加。
这也解释了为什么在相同温度下,不同气体的分子速度可能不同的原因。
例如,氢气分子较轻,根据等温分子速度公式,它的速度较大;而氮气分子较重,其速度相对较低。
4. 分子扩散与扩散速率分子扩散是气体分子运动的另一个重要现象。
根据气体分子动理论,气体分子会自发地从高浓度区域向低浓度区域扩散。
扩散速率受到多种因素的影响,如温度、分子间相互作用力以及分子质量等。
高温下的气体分子动能较大,扩散速率较快;而分子间的相互作用力越大,扩散速率越慢。
5. 分子间相互作用力气体分子间存在一定的相互作用力,这种作用力对气体性质有着重要影响。
分子间相互作用力可以分为吸引力和斥力。
对于吸引力较大的气体分子,它们的运动速度相对较慢,而分子间距离较小。
这种相互作用力称为范德华力。
相反,当气体分子间的斥力较大时,其运动速度较快,分子间距离较大,这种相互作用力被称为排斥力。
气体动理论
i U RT 2
理想气体的内能是 温度的单值函数!
例题 理想气体系统由氧气组成,压强P =1 atm,温度T = 27oC。 求(1)单位体积内的分子数;(2)分子的平均 平动动能 和平均转动动能;(3)单位体积中的内能。
解(1) 根据
p nkT
p 1.013 10 5 25 3 n 2 . 45 10 m kT 1.38 10 23 300 3 21 J (2) 平 kT 6.21 10 2
理想气体由大量自由、无规则运动 着的弹性质点组成!
统计规律
必然事件 必然发生。
必然不发生。 随机事件 ——在一次试验中是否发生不能事先确定, 但是,大量重复试验,遵从一定的规律。 例:抛硬币N次, NA次正面向上。 N不大时,
NA 1 N很大时, N 2
NA N
不确定;
NA 1 p A lim N N 2
2 a 3v 0
N
2 mol 氢气
1 mol 氧气
U
H2
U O 2 U H 2O U H 2O
7.5 6 25% 6
16.4
麦克斯韦速率分布
一、速率分布函数 处于平衡态的气体,每个分子 朝各个方向运动的概率均等。 一个分子,某一时刻速度
可是大量分子速度分 量的方均值相等。
v
2 i
通常 v xv y v z
分子的每一个自由度对应一份相同的能量 分子的每一个平动自由度对应一份相同的能量 单原子 总 分子平均 总动能
二、能量均分定理
总
i kT 2
双原子 多原子
3 kT 2 5 总 kT 2
总 3kT
气体动理论公式总结
1.自由度i=t+r
单原子分子 i=t=3
刚性双原子 i=t+r=3+2 刚性三原子i=t+r=3+3
2.分子平均平动动能
t
t 2
kT
3 2
kT
3.分子平均转动动能
r
r 2
kT
4.分子平均动能
k
i kT 2
5.气体内能
E
i RT
2
i pV 2
2
四、麦克斯韦速率分布律
1.速率分布函数: f (v) dN Ndv
3、均匀带电无限长直导线
E 2 0 r
4.半径为R的均匀带电球面
E外
q
4 0r 2
E内 0
q
q
U外 4 0r U内 40R
5.无限大均匀带电平面
E
2 0
15
七、静态平衡时的导体 1. 导体内部场强为0。导体表面附近场强方向与导
体表面垂直。 2.导体为等势体(电势处处相等)。
3. 导体内无电荷,所有电荷分布于表面。
(1)
D dS q0 电场的高斯定律
(2)
E dl
L
S
B
d
S
电 场 的
环路定理
t
(变化的磁场激发电场)
(3) B d S 0
磁场的高斯定律
(4)
S
H dl
L
Ic
d D
dt
Ic
D dS t
磁 场 的 环 路 定 理 (变化的电场激发磁场)
27
第13 章量子物理
一、黑体辐射
v2 b v2 f (v)dv / b f (v)dv
a
气体动理论
1 k m0 v 2 2 3kT 3 RT 2 v T, 3 m0 M k kT 2 2 称为方均根速率 (root-mean-square speed) v
例 . 在273K时: 3 k kT 5.65 10 21 J 2
2
3.53 10 eV
i E RT 2
pV RT
i E pV 2
i E NkT 2
i E RT 2
蓝皮书p50:35
若理想气体的体积为V,压强为p,温度为T,一个分子 的质量为m,/ m . (B) pV / (kT). (C) pV / (RT). (D) pV / (mT).
10-2 理想气体状态方程的微观解释
一 理想气体压强的统计意义
前提: 平衡态, 忽略重力, 分子看成质点 (即只考虑分子的平动); 讨论对象: 同 一种气体,分子质量为 m0 , N…… 总分子数, ……体积, V
N ……分子数密度(足够大), n V
设第i 组分子的速度在 vi vi d vi
一定量某理想气体按pV2=恒量的规律膨胀,则膨胀后 理想气体的温度 (A) 将升高. (B) 将降低. (C) 不变. (D)升高还是降低,不能确定.
把所有分子按速度分为若干组,在每一 组内的分子速度大小,方向都几乎相等。
区间内。
Ni 速度为第 组的分子数密度, i ni V N N i , n ni
压强公式的推导步骤:
i i
器壁
一个分子对器壁的冲量
一组分子对器壁的冲量 各组分子对器壁的冲量
i
dS
x
整个气体对器壁的压强
3 k kT 2 m m R N NA M M k
气体动理论公式总结
气体动理论公式总结气体动理论是研究气体运动的基本理论,涉及到气体的压力、体积、温度等性质。
在研究气态物质的行为和性质时,气体动理论公式是非常重要的工具。
本文将对一些常用的气体动理论公式进行总结和解析。
1. 状态方程公式状态方程是描述气体状态的物理方程,常见的状态方程包括理想气体状态方程和范德华方程。
理想气体状态方程:PV = nRT其中,P表示气体的压力,V表示气体的体积,n表示气体的摩尔数,R为气体常数,T表示气体的绝对温度。
范德华方程:(P + an^2/V^2)(V - nb) = nRT其中,a和b为范德华常数,和实际气体分子之间的作用有关。
2. 理想气体状态方程的推导理想气体状态方程可以通过气体分子的平均动能推导得到。
根据气体分子的平均运动能量定理,可得到以下公式:KE = (3/2)kT其中,KE表示气体分子的平均动能,k为玻尔兹曼常数,T表示气体的绝对温度。
另外,气体分子的动能与气体分子的速度和质量有关:KE = (1/2)mv^2其中,m为气体分子的质量,v为气体分子的速度。
将上述两个公式相等,可以得到:(1/2)mv^2 = (3/2)kT由此,可以推导出理想气体状态方程:PV = (1/3)Nm<v^2>其中,N为气体分子的个数,<v^2>表示气体分子速度的平方的平均值。
3. 分子平均自由程公式分子平均自由程是指气体分子在碰撞间隔期间所飞过的平均距离。
分子平均自由程与气体分子的摩尔数、体积和气体分子直径有关。
分子平均自由程的公式为:λ = (1/√2) * (V/nπd^2)其中,λ表示分子平均自由程,V表示气体的体积,n表示气体的摩尔数,d表示气体分子的直径。
4. 均方根速度公式气体分子的运动速度可以用均方根速度来描述,均方根速度是指所有气体分子速度平方的平均值的平方根。
均方根速度的公式为:v(rms) = √(3kT/m)其中,v(rms)表示气体分子的均方根速度。
气体动理论
2 x
2 y
2 z
1 2
3
二、理想气体的压强公式
对压强的统计解释
气体的压强是由大量分子 在和器壁碰撞中不断给器 壁以力的作用所引起的, 压强是气体分子给容器壁 冲量的统计平均量。
例: 雨点对伞的持续作用。
压强公式的推导:
单位时间内分子a作用在A面上的作用力:
l3 l2 z
y
v a vx A
Fa 2mvx vx 2l
§1 气体的微观图像
一、原子(atom)
“假如在一次浩劫中所有的科学知识都被摧毁, 只剩下一句话留给后代,什么语句可用最少的 词包含最多的信息?我相信,这是原子假说,即 万物由原子(微小粒子)组成.”——费曼
道尔顿确立 了原子概念
原子是化学元素的基本单元
现代的仪器已可以观察和测量原子的大小 以及它们在物体中的排列情况, 例如 X 光 分析仪,电子显微镜, 扫描隧道显微镜等.
引言
气体动理论是从气体分子热运动的观点出发, 运用统计方法研究大量气体分子的宏观性质和统 计规律的科学,它是统计物理学最基本的内容。 本章将根据气体分子模型,研究气体的压强与温 度等宏观性质和分子速率分布规律与能量分布规 律等统计规律,从微观角度揭示这些性质和规律 的本质,同时穿插介绍这些理论的一些应用.
2 x
2 y
2 z
v y
o
vv x
2
2 x
2 y
2 z
v z
12
2 1x
12y
12z
22
2 2x
22y
2 2z
……
N112 N112x N112y N112z N222 N222x N222y N222z
……
气体动理论知识点总结
气体动理论知识点总结简介气体动理论是研究气体分子运动和相应的宏观性质的一门学科,它为气体力学、热力学、物理化学等学科提供了理论基础。
本文将从气体分子运动、状态方程、麦克斯韦速度分布定律、运动学理论、能量分配等方面进行详细阐述。
气体分子运动气体分子运动是气体动理论研究的核心内容,它是气体宏观性质的微观基础。
气体分子的运动状态大致可以由速度、位置、能量和运动方向等参数确定。
其中,气体分子的平均速度和平均动能是气体动理论所研究的重要内容。
气体的平均速度可以通过麦克斯韦速度分布定律求解,它描述了气体分子速度在不同方向上的分布情况。
麦克斯韦速度分布定律表明,气体分子的速度服从麦克斯韦-波尔兹曼分布,即$$f(v)=4\pi(\frac{m}{2\pi kT})^{\frac{3}{2}}v^2e^{-\frac{mv^2}{2kT}},$$其中,$f(v)$表示速度为$v$的气体分子在速度空间中的密度,$m$为分子质量,$k$为玻尔兹曼常数,$T$为温度。
气体分子的平均速度可以用麦克斯韦速度分布定律求算,它的表达式为$$\bar{v}=\sqrt{\frac{8kT}{\pi m}}.$$气体分子的平均动能同样可以用温度、分子质量和玻尔兹曼常数表示为$$\bar{E_k}=\frac{3}{2}kT.$$状态方程状态方程是气体动理论研究的另一个重要内容,它描述了气体在不同温度、压强下的状态。
热力学气体状态方程的一般形式为$$PV=nRT,$$其中,$P$表示气体压强,$V$为气体体积,$n$表示气体摩尔数,$T$为气体温度,$R$为气体常数。
可以通过研究气体微观特性,推导出不同热力学气体状态方程。
对于理想气体,由于气体分子之间没有相互作用力,可以用下列状态方程来描述$$PV=nRT,$$其中,$P$表示气体压强,$V$表示气体体积,$n$为摩尔数,$R$为气体常数,$T$为气体的热力学温度。
麦克斯韦速度分布定律麦克斯韦速度分布定律是描述气体分子运动速度分布的定律,在研究气体分子运动性质、气体热力学性质等方面有重要的应用。
气体动理论
0
a vd v Nv0
2 v0
v0
a dv 1 N
2N a 3v0
八 热学
1 N N Nf ( v ) d v a d v av0 2 3 1.5 v0 1 .5 v 0
2 v0 2 v0
a 2 v vf ( v ) d v v dv Nv0 0 0
T ( K),t ( o C)
平衡态
t T 273.15
若某种气体处于热平衡、力学平衡与化学平衡之中, 就说它处在热力学平衡状态。
八 热学
与外界没有能量交换,内部没有能量转换,
也没有外场作用。 气体分子的热运动和相互碰撞永不停息,
在宏观上表现为热动平衡状态——
密度均匀、温度均匀、压强均匀。
M mol N A m
M 代入 pV RT M mol
分子数密度
M Nm
N R p T V NA
N n V
p nkT
R 玻尔兹曼常量 k 1.38 10 23 J/K NA
八 热学 2 理想气体的压强公式和温度公式 分子热运动的统计规律 分子热运动具有无序性与统计性。 气体处在平衡状态时,在容器中密度处处 均匀,因此—— 沿各个方向运动的分子数目相等,分子速 度在各个方向的分量的各种平均值也相等。
8 RT M mol RT 1.60 M mol
八 热学 2)方均根速率2 Nhomakorabeav
0
2
v v 2 f ( v) d v
v
2
3k T m
3RT RT 1.73 M mol M mol
八 热学
3)最概然速率 v p
气体动理论
3
统计规律有以下几个特点: 2、统计规律有以下几个特点:
(1)只对大量偶然的事件才有意义。 只对大量偶然的事件才有意义。 (2)它是不同于个体规律的整体规律。 它是不同于个体规律的整体规律。 (3)总是伴随着涨落。 总是伴随着涨落。 但就前面其中的每一次实验来看, 但就前面其中的每一次实验来看,所得的分布曲线只能 近似重合,不能完全一致,由此说明,在统计规律中一 近似重合,不能完全一致,由此说明, 定出现起伏或涨落现象。 定出现起伏或涨落现象。
p,V ,T
2、气体压强 :作用于容器壁上单位 面积的正压力 压强-----帕斯卡 压强---帕斯卡 1 a =1 ⋅ m 2 P N −
1 atm= 760 m g = 1.013×105 P m H a
气体冷热程度的量度. 3、温度 : 气体冷热程度的量度. 温度---开尔文 温度---开尔文 --T ) = 273.15+ t(0C (K )
(N、V、M)
l3
l2 B
A
O
l1
X
设一个分子的质量为 m
Z
仅讨论大量分子与一面A的碰撞产生的压强 压 强
23
个分子与A面发生碰撞时 面发生碰撞时, 第i个分子与 面发生碰撞时,由于碰撞为完全弹性的 并且分子的质量远远小于器壁的质量。 ,并且分子的质量远远小于器壁的质量。 Y 面所受到的冲量为: 所以A面所受到的冲量为:
T1 = T2
p1 = p 2
M PV= R T M mol
(D) 那种的密度较大是无法判断的 那种的密度较大是无法判断的.
[A ]
M ρ= V
1
M mol 1 ρ1 = ρ 2 M mol 2
H2 O2
2
气体动理论ppt课件
一 自由度
kt
1 mv2 2
3 kT 2
v
2 x
v
2 y
v2z
1 v2 3
z
oy
x
1 2
m
v
2 x
1 2
mv2y
1 2
mv2z
1 kT 2
28
第六章 气体动理论
单原子分子平均能量
3 1 kT
2
刚性双原子分子
分子平均平动动能
kt
1 2
mvC2 x
1 2
mvC2 y
1 2
mvC2 z
29
第六章 气体动理论
摩尔热容比
E m i RT M2
dE m i RdT M2
CV ,m
i 2
R
C p,m
i
2 2
R
Cp,m i 2
CV ,m i
36
第六章 气体动理论
7-6 麦克斯韦气体分子速率分布律
一 测定气体分子速率分布的实验
实验装置
接抽气泵
2
l v vl
Hg
金属蒸汽 狭缝
l
显 示
屏
37
第六章 气体动理论 分子速率分布图
12
第六章 气体动理论
二 分子力
现主为要当斥表力 现r; 为当 引r力0r时.,r分0时子,力分主子要力表
F
o
r 109 m, F 0
r0 ~ 1010 m
r0
r
分子力
三 分子热运动的无序性及统计规律
热运动:大量实验事实表明分子都在作永不停止的
无规运动 . 例 : 常温和常压下的氧分子
v 450m/s ~ 107 m; z ~ 1010次 / s
气体动理论
A1上的压强
m F 2 p vix l2l3 l1l2l3 i
Nm v1x v2 x vNx V N
2 2
2
nm vx
2 2
2
1 2 vx v y vz v 3
2
1 2 p nmv 3
1 2 p nmv 3
2 1 2 2 p n mv n k 3 2 3
体分子对器壁碰撞的宏观表现。(力学描述) 换算: 单位: 5 帕斯卡Pa—牛/米2(N·-2) 1atm=1.01325×10 P a=76 m
标准大气压—atm
cmHg
T —气体冷热程度的量度,反映物质内部分子运动的
剧烈程度。(热学描述) 规定较热的物体有较高的温度。
温标 (温度的分度方法):
华氏温标:1714年荷兰华伦海特建立,以水结
x'
x
2.气体分子的自由度
常温下可不考虑分子的振动
平动自由度 计 单原子分子
转动自由度
总
双原子分子 三原子以上分子
3 3 3
0 2 3
3 5 6
二.能量按自由度均分原理(玻尔兹曼假设) 1 2 3 2 3 结论:共有三个 k mv mvx kT 2 2 1 2 平动自由度,每 1 1 2 2 2 mvx mv y mvz 1 kT 分子在平动中的 2 2 2 2 平动动能3kT/2,
2.热力学的研究方法:
从能量守恒和转换的角度 来研究热运动的规律。
方法:根据由观察和实验所总结出的基本规律(热 一、二律)运用逻辑推理的方法,研究物体的宏观 性质以及在物质状态变化过程中,有关热功转换的 关系和条件。
方法的特点:只处理宏观量之间的关系,不涉及物 质的微观结构。
气体分子动理论
气体分子动理论气体分子动理论是指根据分子动力学原理来描述气体分子的运动和行为的理论。
它的提出和发展对于解释气体的物理性质和行为具有重要的意义。
本文将就气体分子动理论的起源、基本假设和应用等方面进行探讨。
一、气体分子动理论的起源气体分子动理论的起源可以追溯到19世纪。
在那个时候,科学家们对气体的行为和性质提出了许多疑问。
为了解释这些现象,克劳修斯和麦克斯韦等科学家开始研究气体分子的运动规律,并提出了气体分子动理论。
二、气体分子动理论的基本假设气体分子动理论的基本假设有以下几点:1. 气体分子是微小的无质量的粒子,它们之间没有相互作用。
2. 气体分子的运动是完全混乱的,没有任何规律性。
3. 气体分子之间的碰撞是弹性碰撞,即在碰撞过程中能量守恒、动量守恒。
4. 气体分子之间的平均距离远大于分子本身的大小。
这些假设为描述气体的性质和行为提供了基础。
三、气体分子动理论的应用气体分子动理论在许多方面都有广泛的应用,下面将就几个重要的应用领域进行介绍。
1. 描述气体的物态变化:根据气体分子动理论,当气体受到加热时,分子的平均动能增加,分子之间的碰撞频率和力量都会增加,从而导致气体的压强增加。
当气体受到冷却时,则相反。
2. 热力学理论的基础:气体分子动理论为热力学的发展提供了理论基础。
根据理论的推导,可以得到诸如理想气体状态方程和分子平均动能与温度的关系等重要的热力学性质。
3. 涨落理论:根据气体分子动理论,气体分子的运动是混乱的,因此气体在微观尺度上会存在一定的涨落。
这种涨落现象不仅在气体中存在,在固体和液体中也同样适用。
4. 扩散和输运现象:气体分子动理论对于扩散和输运现象的研究有很大的帮助。
通过分析气体分子的速度和运动方式,可以更好地理解扩散和输运的原理和机制。
总结:气体分子动理论是对气体分子运动和行为进行描述的理论。
它的起源可以追溯到19世纪,科学家们根据气体的性质和行为提出了基本假设,并在许多领域中得到了应用。
气体动理论知识点总结
气体动理论知识点总结气体动理论是研究气体的微观运动状态及宏观性质的一门物理学理论,是现代物理学中较为重要的分支之一。
气体动理论不仅对实际问题的探究有着重要的作用,它的理论体系及方法也为其他学科提供了有力的支持。
下面将围绕着气体运动状态、气体的性质以及气体的热力学定律三个方面,介绍气体动理论中的相关知识点。
一、气体运动状态气体动理论认为,气体分子的运动状态决定了气体的宏观控制状态。
因此,研究气体分子的运动状态对于了解气体的性质及可控性具有重要的意义。
1.分子移动气体分子无序地、自由地运动,并且分子的速度是高度非一致性的。
分子的速度与温度、分子的种类有关。
分子受温度影响,速度随温度的升高而增加。
2.分子运动轨迹气体分子在空间中做无规则运动,但可以将其平均运动速度视为直线运动。
分子的运动具有随机性,在时间、位置上无法精确定位。
3.分子碰撞气体分子之间存在碰撞,碰撞时能量和动量都会发生变化,同时碰撞前和碰撞后分子的速度方向也会发生改变。
二、气体的性质气体的性质不仅涉及气体的物理状态,还涉及气体的化学性质,气体与其他物质的相互作用,气体的电学性质等方面,其中,最为重要的性质包括以下几个方面:1.流动性:气体具有流动性,能够流动并具有一定的流动性质。
2.扩散性:气体分子具有无序运动状态,具有自由的运动方式。
在一定条件下,气体分子能够通过物质间的空隙扩散到其他区域。
3.压缩性:气体分子间的间隔较大,气体分子之间的相互作用力较弱,分子之间可以变形并发生相对位移,气体具有较好的压缩性。
4.热膨胀性:在一定温度下,气体分子具有较大的运动能,随着温度的升高,气体分子之间的反向作用力会减小,会引起体积的增加。
5.气体的状态方程:气体在不同温度下具有不同的压强、体积关系,可以利用理想气体状态方程(P V/ nRT)来描述气体的状态。
三、气体的热力学定律气体动理论依据物理实验,建立了气体的热力学学说体系,包括状态方程、热力学过程、热力学定律等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 气体动理论2-4-1选择题:1、处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,都处于平衡态。
以下说法正确的是:(A )它们的温度、压强均不相同。
(B )它们的温度相同,但氦气压强大于氮气压强。
(C )它们的温度、压强都相同。
(D) 它们的温度相同,但氦气压强小于氮气压强。
2、三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,方均根速率之比4:2:1::222=C B A v v v ,则其压强之比C B A p p p ::为:(A) 1 : 2 : 4 (B) 1 : 4 : 8 (C) 1 : 4 : 16 (D) 4 : 2 : 13、一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m . 根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值为: (A) 2x v =m kT 3 (B) 2x v = m kT331 (C) 2xv = m kT 3 (D) 2x v = m kT4、关于温度的意义,有下列几种说法:(1) 气体的温度是分子热运动平均平动动能的量度.(2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义.(3) 温度的高低反映物质内部分子热运动剧烈程度的不同.(4) 从微观上看,气体的温度表示每个气体分子的冷热程度.上述说法中正确的是(A ) (1)、(2)、(4) (B ) (1)、(2)、(3)(C ) (2)、(3)、(4) (D) (1)、(3)、(4)5、两容器内分别盛有氢气和氦气,若它们的温度和质量分别相等,则:(A) 两种气体分子的平均平动动能相等.(B) 两种气体分子的平均动能相等.(C) 两种气体分子的方均根速率相等.(D) 两种气体的内能相等.6、一容器内装有N 1个单原子理想气体分子和N 2个刚性双原子理想气体分子,当该系统处在温度为T 的平衡态时,其内能为(A)⎪⎭⎫ ⎝⎛++kT kT N N 2523)(21 (B) ⎪⎭⎫ ⎝⎛++kT kT N N 2523)(2121(C)kT N kT N 252321+ (D) kT N kT N 232521+7、有一截面均匀的封闭圆筒,中间被一光滑的活塞分割成两边,如果其中的一边装有0.1kg 某一温度的氢气,为了使活塞停留在圆筒的正中央则另一边应装入同一温度的氧气质量为:(A ) kg 161 (B) 0.8 kg (C ) 1.6 kg (D) 3.2 kg8、若室内生火炉以后,温度从15°C 升高到27°C ,而室内的气压不变,则此时室内的分子数减少了:(A) 0.5% (B) 4% (C) 9% (D) 21%9、有容积不同的A 、B 两个容器,A 中装有单原子分子理想气体,B 中装有双原子分子理想气体。
如果两种气体的压强相同,那么这两种气体的单位体积的内能A V E ⎪⎭⎫ ⎝⎛和B V E ⎪⎭⎫ ⎝⎛的关系为:(A )B A V E V E ⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛ (B) B A V E V E ⎪⎭⎫ ⎝⎛>⎪⎭⎫ ⎝⎛(C) B A V E V E ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛ (D) 不能确定。
10、4 mol 的多原子分子理想气体,当温度为T 时,其内能为:(A )12 kT (B ) 10 kT (C ) 10 RT (D ) 12 RT11、.给同一汽车轮胎打气,使之达到同样的压强。
对在冬天和夏天打入轮胎内的空气的质量(设冬天和夏天轮胎的容积相同),下面说法正确的是:(A )冬天和夏天打入轮胎中空气的质量相同。
(B )冬天打入的质量多,夏天打入的质量少。
(C )冬天打入的质量少,夏天打入的质量多。
(D) 不能确定。
12、两种不同种类的气体,它们分子的平均平动动能相同,但气体的分子数密度不同。
对它们的温度和压强,下面的说法正确的是:(A )两种气体的温度相同,但压强不同。
(B) 两种气体的温度不同,但压强相同。
(C) 两种气体的温度和压强都不相同。
(D) 以上情况都有可能出现。
13、质量为M ,摩尔质量为μ的双原子分子理想气体,处于温度为T 的平衡态,其内能的表达式为:(A ) RT Mμ (B )RT M 23μ(C )RT M 27μ (D )RTM 25μ14、关系式222231v v v v z y x ===的正确性是基于:(A )空间均匀性假设。
(B )空间各向同性假设。
(C )空间均匀性和空间各向同性假设。
(D )气体平衡态的性质。
15、对一定量的理想气体,其温度确定以后,关于它的内能,下面说法正确的是:(A )压强越大,体积越大,内能就越大。
(B )压强越大,体积越小,内能就越大。
(C )压强越小,体积越大,内能就越大。
(D )气体的内能与压强和体积无关。
2-4-2填空题:1、在相同的温度和压强下,各为单位体积的氢气与氧气的内能之比为 ,各为单位质量的氢气与氧气的内能之比为 .2、一容器中储有氧气,其压强为1.01×105Pa ,温度为27°C 。
该氧气的分子数密度为n = ;分子的平均平动动能为 。
3、温度为100°C 时,理想气体分子的平均平动动能为 ;欲使分子的平均平动动能等于1eV (1eV =1.6×10-19 J ),气体的温度应达到 。
4、温度为300.0 K 时,氢分子的方均根速率为 。
在星际空间温度约为2.7 K ,这时氢分子的方均根速率为 。
5、.某些恒星的温度可达到约1.0 × 10 8 K ,这是发生聚变反应所需的温度。
通常在此温度下的恒星可视为由质子组成。
若把这些质子组成的系统看成理想气体,则质子的平均动能为 ;质子的方均根速率为 。
6、三个容器A 、B 、C 中装有同种理想气体,其分子数密度之比为n A : n B : n C = 4 : 2 : 1,方均根速率之比4:2:1::222=C B A v v v ,则其压强之比C B A p p p :: = 。
7、体积为V = 1 × 10 - 3 m 3压强p = 1×105 Pa 的气体,其分子平均平动动能的总和='k U 。
若该气体为质量M = 1.28 × 10 – 3 kg 的氧气,则气体的温度为 。
8、一氧气瓶的容积为V,充入氧气后的压强为p1,用了一段时间后压强降为p2,则瓶中剩下的氧气的内能与未用前氧气的内能之比为。
9、一容器内储有某种理想气体,若已知气体的压强为3×105 Pa,温度为27°C,密度为0.24 kg·m – 3,则此种气体的摩尔质量μ= ,可以确定此种气体为气。
10、体积为V = 1.20 × 10 - 2 m 3的容器中储有氧气,其压强为p = 8.31×105 Pa ,温度为T = 300 K则该气体的单位体积的分子数n = ;该气体的内能为U = 。
11、一个能量为1012eV(1eV = 1.6×10-19J )的宇宙射线粒子射入氖管中,氖管中含有0.01 mol 的氖气,如果宇宙射线粒子的能量全部被氖气分子所吸收而变为热运动能量,则氖气的温度能升高。
12、现有10g 氧气盛在容积为2 L 的容器内,压强为90.659 kPa ,则该氧气的温度为;单位体积的分子数为。
13、理想气体的微观模型认为:分子的线度比起分子间的来说可以忽略不计;除碰撞的瞬间外,分子之间以及分子与器壁之间都;分子之间以及分子与器壁之间的碰撞都是碰撞。
14、温度是大量分子运动的平均的量度。
15、压强是无规则热运动的大量气体对不断连续碰撞的平均结果。
2-4-3计算题:1、一容器中储有氧气,其压强为1.01×105 Pa ,温度为27°C。
求:(1)氧气的密度。
(2)分子间的平均距离。
2、一个容积为V = 1.0 m3的容器内装有N1 = 1.0 × 10 24个氧分子和N2 = 3.0 × 10 24个氮分子的混合气体,混合气体的压强是p = 2.58×104 Pa 。
试求:(1)分子的平均平动动能。
(2)混合气体的温度。
3、一容积为11.2 × 10 -3 m 3的真空系统,在室温(20°C)时已被抽到1.3158×10 - 3 Pa的真空。
为了提高其真空度,将它放在300°C的烘箱内烘烤,使器壁释放出所吸附的气体分子。
若烘烤后压强增为1.3158 Pa 。
试问器壁原来吸附了多少个气体分子?4、将1 mol 温度为T的水蒸气分解为同温度的氢气和氧气。
试问:氢气和氧气的内能之和比水蒸气的内能增加了多少?5、在容积为V 的容器内,盛有质量不等的两种单原子分子理想气体。
如果处于平衡态时它们的内能相等,且都为U 。
试证明:混合气体的压强公式为:V U p 34= 。
6、一容器被中间隔板分成相等的两半,一半装有温度为250 K 的氦气,另一半装有温度为310 K 的氧气。
二者压强相等。
试求:去掉隔板两种气体混合后的温度。
7、一密封房间的体积为5 × 3 × 3 m 3 ,室内温度为20°C 。
已知空气的密度ρ = 1.29 kg · m – 3 ,摩尔质量μ= 2 9× 10 - 3 kg ·mol – 1 ,且空气分子可认为是双原子分子。
试问:(1)室内空气分子热运动平均平动动能的总和是多少?(2)如果气体温度升高1.0 K 而体积不变,则气体的内能变化多少?(3)气体分子的方均根速率增加多少?8、一容积为10 cm 3的电子管,当温度T= 300 K 时,用真空泵把管内空气抽成压强为6.7×10 - 4 Pa 的高真空。
试求:(1)此时管内有多少个空气分子?(2)这些空气分子的平均平动动能的总和是多少?(3)这些空气分子的平均转动动能的总和是多少?(4)这些空气分子的平均动能的总和是多少?9、在温度为127°C 时,1 mol 的氧气中具有的分子平动总动能和分子转动总动能各为多少?10、质量为0.1 kg ,温度为27°C 的氮气装在容积为0.01 m 3 的容器中。
容器以 v = 100 m ·s -1的速率做匀速直线运动。
若容器突然停下来,定向运动的动能全部转化为分子热运动的内能,则平衡后氮气的温度和压强各增加多少?参考答案2-4-1选择题:1、处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,都处于平衡态。
以下说法正确的是:(A )它们的温度、压强均不相同。