机电传动控制概述资料

合集下载

机电传动与控制资料课件

机电传动与控制资料课件

系统辨识是研究如何通过实验 数据来识别系统的参数和结构 的学科。在机电传动系统中, 系统辨识可用于识别控制系统 的参数和结构,优化控制性能。
鲁棒控制是研究如何在系统存 在不确定性和干扰时,保证控 制系统性能的学科。在机电传 动系统中,鲁棒控制可用于提 高控制系统的稳定性和抗干扰 能力。
03
机电传动控制系统的设计
要点三
数控机床的调速系统
数控机床的调速系统是实现机床稳定 运行的重要部分,包括机械调速、电 气调速和计算机控制调速等。
工业机器人传动控制系统实例分析
工业机器人的传动控 制系统概述
工业机器人是一种自动化生产设备, 其传动控制系统是实现机器人运动的 关键部分。
工业机器人的电机类 型及选用
工业机器人通常使用的电机包括交流 异步电机、直流电机、伺服电机等, 根据机器人的性能要求选用合适的电机。
电机性能的提升
采用高转矩、低惯量、高效率的电机,提高系统的响 应速度和能量转换效率。
减速机的优化
通过改变减速机的传动比、提高传动效率、降低传动 噪音等方面进行优化,提高系统的传动性能。
驱动装置的改进
采用先进的驱动装置,如矢量驱动、直接驱动等技术, 提高系统的驱动能力和稳定性。
控制系统稳定性的提高
控制系统的抗干扰能 力
实现对机电传动系统的精确控制,以满足生产工艺的要求,提高生产效率和质量。
任务
通过对机电传动系统的参数进行测量和控制,确保系统的稳定性和可靠性,同时优化系统的性能和效 率。
机电传动控制的发展历程
早期机电传动控制
主要依赖于手动控制,缺乏自动化和智能化。
现代机电传动控制
随着计算机技术和自动化控制技术的发展,机电传动控制逐渐实现了自动化、智能化和高效化。

机电传动控制(01)概述

机电传动控制(01)概述
► 什么是多电机拖动 ► 多电机拖动的优点 1、电动机的控制方便、灵活; 、电动机的控制方便、灵活; 2、易于实现系统的自动控制; 、易于实现系统的自动控制; 3、机器的机械结构简单,传动件的数量较少。 、机器的机械结构简单,传动件的数量较少。
返回
课程的性质和任务
基于常用的拖动方式, 基于常用的拖动方式,机电传动控制系 统需解决如下问题: 统需解决如下问题: 对单台电动机,需解决: ► 对单台电动机,需解决: 1、电动机的启动、停止; 、电动机的启动、停止; 2、电动机的正反转; 、电动机的正反转; 3、电动机的制动; 、电动机的制动; 4、对电力拖动系统的保护。 、对电力拖动系统的保护。
继续
1、成组拖动 、
► 什么是成组拖动 ► 成组拖动的缺点 1、电动机的功率因素低,且传动效率低,能耗高; 、电动机的功率因素低,且传动效率低,能耗高; 2、劳动条件差,易造成事故; 、劳动条件差,易造成事故; 3、一旦电动机发生事故,将造成许多机器停车。 、一旦电动机发生事故,将造成许多机器停车。
课程的性质和任务
基于常用的拖动方式, 基于常用的拖动方式,机电传动控制系 统需解决如下问题: 统需解决如下问题: 对多台电动机,需解决电动机如何协调地工作, ► 对多台电动机,需解决电动机如何协调地工作, 以满足生产工艺的要求,实现生产过程的自动化。 以满足生产工艺的要求,实现生产过程的自动化。 ► 如何通过调整电动机的工作速度来改变机器的 工作速度,以满足机器的工艺要求。 工作速度,以满足机器的工艺要求。
返回
2、单电机拖动 、
► 什么是单电机拖动 ► 单电机拖动的缺点 1、对运动部件较多时,电动机的功率因素较低, 、对运动部件较多时,电动机的功率因素较低, 且传动效率较低,能耗较高; 且传动效率较低,能耗较高; 2、机器的机械结构复杂,传动件多。 、机器的机械结构复杂,传动件多。

《机电传动控制》PPT课件

《机电传动控制》PPT课件
都要靠电动机及其控制系统来实现。
机电传动控制的任务
一、机电传动的特点
• 5、机电传动系统构成:
电动机。产生原动力 生产机械。拖动对象 传动机构。传递机械能 电气控制设备。控制电动机运转 电源。对电动机和电气控制设备供电
一、机电传动的特点
• 它们之间的关系可表示为
电源
自控设 备
电动机
传动机构
的需要。
电动机
二、机电传动系统发展概况
• 1、传动方式经历了三个阶段:
成组拖动 单机拖动 多电机拖动
二、机电传动系统发展概况
传动方式 成组拖动:一台电动机带动一根天轴,再由天轴
通过带轮和传动带分别拖动各生产机械。特点: 效率低,故障影响广。
单机拖动:一台电动机拖动一个机械。特点:如
一 机电传动系统的动力学方程
电动机 (M)
TL
生产机械
TM
MM
+TL
单轴拖动系统
一 机电传动系统的动力学方程
• 单轴(单级)机电传动系统的运动方程
• 由牛顿第二定律
TM
TL

J
d
dt
(1.1)
J m 2 mD2 / 4
G mg TM----电动机转矩
GD2 J
4g
(1.2)
TL----负载转矩 GD2---飞轮矩
2 n
60
(1.3)
TM
TL

GD2 375
dn dt
(1.4)
n-----转速
t-----时间 ω 为角速度
375 4g 60
2
单位 :
米 秒分
• GD2=4J
• GD2是一个整体,不是G与D2 的乘积, GD2 由产品样本或机械手册上查出。 GD2 中的 D 为回转直径,不是实际直径。

机电传动控制课件ppt精选全文

机电传动控制课件ppt精选全文

第一节 机电传动控制系统得组成与分类
一、自动控制系统分类: (4)按系统稳态时被调量与给定量有无差别,可分为
有静差调节系统与无静差调节系统。
(5)按给定量变化得规律,可分为 定值调节系统、程序控制系统与随动系统。
(6)按调节动作与时间得关系,可分为 断续控制系统与连续控制系统;
(7)按系统中所包含得元件特性,可分为 线性控制系统与非线性控制系统。
机电传动控制课件
第一节 机电传动控制系统得组成与分类
一、自动控制系统分类: (1)从组成原理上分类
开环控制系统: 特点:系统简单;控制精度不高。 闭环控制系统: 特点:系统较复杂;控制精度高。 (2)按反馈方式得不同,可分为 转速负反馈、电势负反馈、电压负反馈及电流 正反馈控制系统; (3)按系统得复杂程度,可分为 单环自动调节系统与多环自动调节系统;
3)调速得平滑性,通常用两个相
邻调速级得转速差来衡量。
S2
n02 nN n02
D nmax
nmax
nmin n02 nN
nmax S2
nN (1 S2 )
第二节 机电传动控制系统调速方案选择
动态指标:
1)最大超调量
MP
nmax n2 n2
100%
2) 过渡过程时间 T
3) 振荡次数 N
第一节 机电传动控制系统得组成与分类
二、一般自动控制系统组成:
比较
给定 Ug + U 放大
环节 — EBR 调节环节
执行 环节
测量 环节
扰动
被调 被调量
对象
n
第二节 机电传动控制系统调速方案选择
一、调速方法 ➢纯机械方法调速: 通过变速齿轮箱或几套变速皮带轮 或其她变速机构来实现; ➢纯电气方法调速: 通过改变电动机得机械持性实现, 这时机械变速机构简单、只一套变速齿轮或皮带轮; ➢电气与机械配合调速: 用电动机来得到多种转速,同 时,又用机械变速机构得换档来进行变速。

机电传动控制(全套课件250P)

机电传动控制(全套课件250P)

9.55F N vm / s TL c nr / min 2.对直线运动(上升):
3.对直线运动(下降): TL
ppt课件
9.55 c F N vm / s nr / min
13
2.3 生产机械的机械特性 在同一轴上,负载转矩和转速之间的函数关系,称为生产机 械的机械特性。 一、恒转矩型机械特性
速度。
ppt课件
18
二、机电系统稳定运行的条件
1. 必要条件
电动机的输出转矩T和负载转矩TL大小相等,方向相反。 n=f(T)和n=f(TL)必须有交点,交点被称为平衡点。
2. 充分条件 系统受到干扰后,要具有恢复到原平衡状态的能力,即:
当干扰使速度上升时,有 T<TL ;
当干扰使速度下降时,有T>TL 。这是稳定运行的充分条件。 符合稳定运行条件的平衡点称为稳定平衡点。
ppt课件 9
四、T、TL 、n的参考方向 以ω(或n)的转动方向为参考来确定转矩的正负。
拖动转距促进运动;制动转距阻碍运动。 1. T的符号与性质 当T的方向与n同向时,符号与n相同;T为 拖动转矩 当T的方向与n反向时,符号与n相反;T为制动转矩 2. TL的符号与性质 当TL的方向与n同向时,符号与n相反;TL为 拖动转矩 当TL的方向与n反向时,符号与n相同;TL为制动转矩
1)可以实现无级调节 2)特性曲线互相平行,机械特
性硬度不变,调速范围较大;
3)恒转矩调速 4)U≤UN,n≤nN
ppt课件
47
3.改变电动机主磁通
UN Ra n T 2 K e 9.55( K e )
1)可以实现无级调节 2)随着Φ 的减小,n0增加,k 变大,特性变软; 3)恒功率调速 4)Φ ≤Φ N,n≥nN

机电传动第01~03章机电传动控制概述(江苏大学)

机电传动第01~03章机电传动控制概述(江苏大学)

根据运动方程式可知,运动系统有两张不同 的运动状态:
1. 稳态(TM=TL时)
Td
Jd0,即d0
dt
dt
为常数,传动系统以恒速运动
2. 动态(TM≠TL时)
TMTL时 , TdJd d t 0,即 d d t 0, 传 动 系 统 加 速 运 动 TMTL时 , TdJd d t 0,即 d d t 0, 传 动 系 统 减 速 运 动
TL
a点: TM -TL =0
当负载由TL突然增加到T‘L时,由 于机械惯性,速度n和电动机的输
出转矩不能突变,此时有TMT‘L<0。由拖动系统的运动方程式 可知:系统要减速,即n要下降。
当n下降到n ‘ 时,系统在新的平
衡点a ‘
稳定运行,
T

-
M
T‘L=0
当负载波动消除( T‘L回到TL )时,同样由于机械惯性,速 度n和电动机的输出转矩不能突变,此时有T‘M- TL>0。由拖 动系统的运动方程式可知:系统要加速,即n要上升。当n上
闭环控制:经典控制理 论、现代控制理论、自 适应控制、模糊控制、 智能控制
计算机控制技术和现场 总线技术
第二章:机电传动的动力学基础
学习要点:
❖ 机电传动系统的运动方程式; ❖ 多轴传动系统中转矩折算的基本原则和
方法; ❖ 了解几种典型生产机械的负载特性; ❖ 了解机电传动系统稳定运行的条件以及
TL Cn
直线型机械特性
十三、 恒功率型机械特性
如在车床加工过程中, 粗加工时,切削量大, 负载阻力大,开低速; 精加工时,切削量小, 负载阻力小,开高速。 但在不同转速下,切 削功率基本不变。即 呈现恒功率型机械特 性。

《机电传动控制》课件

《机电传动控制》课件

感应电机
基于电磁感应原理,具有成本低 、可靠性高的优点,在工业自动 化、家用电器等领域广泛应用。
先进控制算法的研究与应用
滑模控制
01
通过在状态空间中设计滑模面并选择合适的切换规则,实现对
系统状态的快速响应和鲁棒性。
模糊控制
02
பைடு நூலகம்
利用模糊集合理论将不确定性因素转化为可计算的语言变量,
实现对复杂系统的有效控制。
03
机电传动控制系统的设计与实现
系统需求分析与设计
需求分析
明确系统的功能要求、性能指标和约束条件,为后续 设计提供依据。
总体设计
根据需求分析,确定系统的总体架构、组成模块和相 互关系。
详细设计
对每个模块进行详细设计,包括电路设计、机械结构 设计、软件设计等。
控制算法的选择与实现
算法选择
根据系统需求和性能要求, 选择合适的控制算法,如PID 控制、模糊控制等。
机床的运动状态和加工参数。
数控机床控制系统的应用范围包括航空、航天、汽车、模具等领域,为 现代制造业的发展提供了重要的技术支持。
智能家居控制系统
智能家居控制系统是实现家庭智能化和舒适化的重要手段 之一,它通过控制家庭设备的开关、调节设备的运行状态 和参数等,为家庭生活提供便利和舒适。
智能家居控制系统通常采用无线通信和网络技术,实现家 庭设备的互联互通和控制,同时通过传感器和执行器,实 时监测和调整家庭设备的运行状态和环境参数。
步进电机
利用脉冲信号控制电机转子步 进旋转的原理,实现精确的角
度和位置控制。
伺服电机
利用伺服系统控制电机旋转角 度和速度的原理,实现高精度
和高动态性能的控制。
控制器类型与工作原理

机电传动控制重点内容总结

机电传动控制重点内容总结

机电传动控制重点内容总结概述机电传动控制的目的与任务机电系统的组成电力拖动电气控制系统机械机电传动控制的任务将电能转换为机械能实现生产机械的启动、停止以及速度的调节完成各种生产工艺过程的要求保证生产过程的正常进行机电传动控制的目的第二章机电传动系统的运动学基础单轴拖动系统的运动方程式单轴拖动系统的运动方程式TM TL J d 2 dn J dt 60 dt 转动惯量和飞轮转矩的折算几种常见的负载特性恒转矩负载,离心式通风机型负载,直线型负载恒功率负载机电系统稳定运行的条件和判定方法第三章直流电机的工作原理及特性直流电机的基本结构和工作原理基本结构定子转子换向器工作原理发电机原理电动机原理电动势的大小和方向电磁转矩的大小和方向E K e nTM K m I a 直流他励电动机的机械特性机械特性的一般形式Ra U n Ia K e K e Ra U n T 2 K e K e K M 固有机械特性人为机械特性Ra U n T 2 K e K e K MU E I a RaP T 9.55 n PE K e n TM K m I a直流他励电动机的启动特性电动机固有的启动特性启动电流大启动转矩大启动方法电枢串电阻启动的方法启动电阻的选择直流他励电动机的调速特性调速方法特点电枢串电阻恒转矩调速特性电枢外加电压恒功率调速特性励磁磁通直流他励电动机的制动特性反馈制动产生的原因、制动过程与特点反接制动产生的原因、制动过程与特点能耗制动作用与特点第四章过渡过程过渡过程分析机电时间常数加快过渡过程的方法第五章交流电动机的工作原理及特性三相交流电动机的基本结构和工作原理基本结构定子转子工作原理旋转磁场的旋转速度旋转磁场的旋转方向转子的旋转速度三相交流电动机的额定参数定子绕组的连接方法额定参数连接方法的选用60 f n0 pn0 n S n0三相交流电动机的转矩特性与机械特性60 f n0 p S R2 n0 nm m X n0 20 U2 Tmax K 2 X 20 R2U 2 Tst K 2 2 R2 X 20 T max TN K 1 / f , X f 20三相交流电动机的启动、制动和调速特性固有启动特性启动方法调速方法与特点制动方法与特性单相交流电动机结构特点启动方法同步交流电动机结构特点特性启动方法第六章控制电机交直流伺服电机的工作原理如何消除自传现象第八章继电器接触器控制系统常用电器工作原理与使用场合接触器热继电器电流继电器电压继电器熔断器基本电路的分析与设计按钮、行程开关等继电器接触器电路的组成常用电动机控制电路按时间原则控制的电路按行程原则控制的电路按电流原则控制的电路按速度原则控制的电路各种保护第十三章步进电动机控制系统步进电动机的结构与工作原理齿数、相数通电方式步距角主要特性第十四章电机的选择电机容量的选择原则电机的发热和冷却不同工作制下电机容量的选择等效功率,力矩的折算电机种类,电压,转速,结构的选择。

《机电传动控制》笔记

《机电传动控制》笔记

《机电传动控制》笔记第一章:绪论1.1 简介《机电传动控制》将机械工程与电气工程相结合,通过研究电机、驱动器以及控制系统来实现对机械设备的有效操作。

本课程旨在培养学生理解并掌握机电一体化系统的设计原理和方法,为将来从事相关领域的科研或工程实践打下坚实的基础。

1.2 机电传动控制系统的基本概念•定义:机电传动控制系统是指利用电气、电子及计算机技术来控制机械设备运动的系统。

•组成要素:o执行机构(如电动机):负责产生驱动力。

o传感器:用于监测系统的状态信息。

o控制器:根据设定的目标值与实际反馈进行比较,并据此调整执行机构的动作。

o被控对象:即需要被控制的机械设备。

•工作流程:输入信号 → 控制器处理 → 输出信号 → 执行机构响应 → 反馈至控制器形成闭环回路。

1.3 发展历程与趋势自20世纪初以来,随着电力技术的发展,人们开始尝试用电能替代传统的蒸汽动力来进行工业生产。

到了20世纪中后期,随着微处理器技术和自动控制理论的进步,机电传动控制逐渐从简单的手动调节向自动化方向转变。

近年来,智能化、网络化成为该领域的主要发展方向之一。

未来,预计还将进一步融入物联网(IoT)、大数据分析等先进技术,提高整个系统的效率与可靠性。

第二章:电力拖动基础2.1 电机类型及其工作原理•直流电机o结构:由定子(包括主磁极、换向极)、转子(电枢铁心+绕组)、换向器三部分组成。

o工作原理:当电流通过电枢绕组时,在磁场作用下会产生电磁力矩使转子旋转;改变电压大小可以调节转速。

•交流电机o异步电机(感应电机)▪特点:简单耐用、成本低。

▪分类:单相、三相。

▪工作原理:依靠定子产生的旋转磁场切割转子导条,从而在转子内部形成闭合电路产生感应电流,进而产生转矩。

o同步电机▪特点:适用于高精度场合。

▪工作方式:转子转速严格等于电网频率与极对数之比,可通过改变励磁电流来调整输出功率因数。

2.2 电动机的选择原则选择合适的电动机对于确保整个系统的性能至关重要。

机电传动控制(第四版)

机电传动控制(第四版)

自动化生产线的传动控制系统还 包括各种传感器和检测装置,用 于检测位置、速度、温度等参数,
实现闭环控制和故障诊断。
THANKS FOR WATCHING
感谢您的观看
数控机床的传动控制系统通常采用交 流或直流电动机,通过伺服系统进行 精确控制,实现高精度的位置和速度 控制。
工业机器人的传动控制系统
工业机器人是一种能够实现自动化作业的机械设备,其传动控制系统是实现机器人 运动的关键。
工业机器人的传动控制系统通常采用伺服电动机和减速器,实现高精度的位置和速 度控制,同时还需要考虑机器人的运动学和动力学特性。
行稳定。
系统联调
将软硬件结合进行系统 联调,验证系统整体性
能。
性能优化
根据调试结果,对系统 硬件和软件进行优化,
提高系统性能。
05 机电传动控制系统实例
数控机床的传动控制系统
数控机床的传动控制系统是实现高精 度加工的关键,它通过控制电动机的 旋转和进给运动,实现高精度的切削 和加工。
数控机床的传动控制系统还包括各种 传感器和检测装置,用于检测位置、 速度、温度等参数,实现闭环控制和 故障诊断。
工业机器人的传动控制系统还包括各种传感器和检测装置,用于检测位置、速度、 力等参数,实现闭环控制和故障诊断。
自动化生产线的传动控制系统
自动化生产线是一种高度自动化 的生产系统,其传动控制系统是 实现生产线高效运行的关键。
自动化生产线的传动控制系统通 常采用各种电动机和控制装置, 实现生产线的自动化和智能化控 制,提高生产效率和产品质量。
遗传算法
遗传算法是一种基于生物进化原理的优化算法,它通过模拟自然选择和遗传机制 来寻找最优解。遗传算法在控制系统中的应用可以帮助优化控制参数和规则,提 高系统的性能和稳定性。

《机电传动控制教案》课件

《机电传动控制教案》课件

04
机电传动控制系统的实现
控制系统的硬件实现
01
02
03
控制器选择
根据系统需求选择合适的 控制器,如PLC、单片机 、DSP等。
传感器与执行器
选择并安装适当的传感器 和执行器,确保系统能够 准确检测和响应。
电路设计与布线
根据系统架构进行电路设 计和布线,确保安全可靠 。
控制系统的软件实现
算法设计
光电传感器
利用光电效应检测物体的存在 和运动。
霍尔传感器
利用霍尔效应检测磁场变化。
超声波传感器
利用超声波检测物体的距离和 位置。
压力传感器
利用压力变化检测压力值。
执行器种类与工作原理
电磁阀
利用电磁力控制流体流动。
电动执行器
利用电机驱动执行器动作。
气动执行器
利用压缩气体驱动执行器动作。
液压执行器
利用液压系统驱动执行器动作。
控制系统设计的优化与改进
算法优化
根据实际运行情况,优化控制算法,提高系 统响应速度和稳定性。
硬件升级
根据技术发展,升级系统硬件,提高系统性 能和可靠性。
软件升级
定期更新软件版本,修复漏洞,增加新功能 ,提高软件性能和安全性。
系统维护与改进
定期对系统进行检查和维护,根据用户反馈 和实际需求进行改进和优化。
网络化
随着物联网技术的发展,机电传动 控制系统将逐渐实现网络化,能够 实现远程监控和远程控制等功能。
02
机电传动系统的组成与工作 原理
电机种类与工作原理
直流电机
利用磁场和电流在电机 内部产生转矩,实现电
能和机械能的转换。
交流电机
利用交流电在电机内部 产生旋转磁场,驱动电

机电传动控制-1资料

机电传动控制-1资料

1 绪论1.1 机电传动控制的目的和任务机电传动也称电力拖动或电力传动,是指以电动机为原动机驱动生产机械的系统的总称。

其目的是将电能转变成机械能,实现生产机械的起动/停止和速度调节,以满足生产工艺过程的要求,保证生产过程正常进行。

因此,机电传动控制包括用于拖动生产机械的电动机以及电动机控制系统两大部分。

在现代化生产中,生产机械的先进性和电气自动化程度反映了工业生产发展的水平。

现代化机械设备和生产系统已不再是传统的单纯机械系统,而是机电一体化的综合系统。

机电传动控制已成为现代化机械的重要组成部分。

机电传动控制的任务从狭义上讲,是通过控制电动机驱动生产机械,实现产品数量的增加、产品质量的提高、生产成本的降低、工人劳动条件的改善以及能源的合理利用;而从广义上讲,则是使生产机械设备、生产线、车间乃至整个工厂实现自动化。

随着现代化生产的发展,生产机械或生产过程对机电传动控制的要求越来越高。

例如:一些精密机床要求加工精度达百分之几毫米,甚至几微米;为了保证加工精度和粗糙度,重型镗床要求在极低的速度下稳定进给,因此要求系统的调速范围很宽;轧钢车间的可逆式轧机及其辅助机械操作频繁,要求在不到1s 的时间内就能完成正反转切换,因此要求系统能够快速起动、制动和换向;对于电梯等提升机构,要求起停平稳,并能够准确地停止在给定的位置上;对于冷、热连轧机或造纸机,要求各机架或各部分之间保持一定的转速关系,以便协调运转;为了提高效率,要求对由数台或数十台设备组成的自动生产线实行统一控制和管理。

上述这些要求都要依靠机电传动控制来实现。

随着计算机技术、微电子技术、自动控制理论、精密测量技术、电动机和电器制造业及自动化元件的发展,机电传动控制正在不断创新与发展,如直流或交流无级调速控制系统取代了复杂笨重的变速箱系统,简化了生产机械的结构,使生产机械向性能优良、运行可靠、体积小、重量轻、自动化方向发展。

因此,在现代化生产中,机电传动控制具有极其重要的地位。

机电传动控制课件第1章

机电传动控制课件第1章

计算机控制:
微处理器取代模拟电路作为电动机控制 器,可使电路更简单、实现较复杂的控制 、无零点飘移、控制精度高、可提供人机 交互界面、能多机联网工作等
数字伺服控制:
伺服系统:
是使物体的位置、方位、状态等输出被控量能够跟 随输入目标值(或给定值)任意变化的自动控制系统。
当今世界伺服驱动的主流及发展方向是交流伺服系统,采 用嵌入式控制器的电动机数字交流伺服系统的出现,使机电 传动控制技术进入了信息化时代
第1章 概述
传动 ——运动的传递
(1)机械传动 (2〕流体传动
第1章 概述
1.1 基本概念:(什么是机电传动?)
生产机械组成: 工作机构、传动机构、 原动机、控制系统。
机电传动:原动机为电 动机时,由电动机通过 传动机构带动工作机构 进行工作。
机电传动系统
“机电传动”部分
包括电动机、电动机和运动部件相互联系的传 动机构及电气控制电路
课程的性质与任务
• 机电一体化技术的主要课程,是以驱动 系统为主导,以控制为主线,将元、器 件与控制系统有机结合的综合性课程。
• 通过本门课程的学习,希望同学们掌握 机电传动系统中主要运用到得元、器件 原理,了解机电传动系统的设计,尤其 是其控制电路设计的主要思路。
(1)成组拖动(初期):一台电动机拖动一根 天轴,由天轴通过皮带轮和皮带分别拖动各生产 机械,一旦电动机出了故障,成组生产机械停车。
(2)单电机拖动:一台电动机拖动一 台生产机械,但当一台生产机械的运动 部件较多时,机械传动机构仍十分复杂。
20世纪40-50年代:老式切削机床 现今:一些中小型通用机床,运动部件较少
“机电传动控制”部分
电梯
机电传动系统的任务

机电传动控制复习总结

机电传动控制复习总结

输标02入题
机电传动控制系统在工业自动化生产线中发挥着关键 作用,能够提高生产效率、降低能耗、减少人工干预, 并确保产品质量和生产安全。
01
03
工业自动化生产线控制中,机电传动控制系统需要具 备高精度、高稳定性和可靠性,以确保生产过程的稳
定性和产品质量。
04
机电传动控制系统在工业自动化生产线中的应用包括 物料搬运、加工、装配、检测等环节,涉及到的设备 包括传送带、装配机械手、包装机械等。
VS
应用前景
这些创新技术的应用将进一步拓展机电传 动控制系统的应用领域,特别是在智能制 造、新能源等领域,具有广阔的应用前景 和市场潜力。
THANKS
感谢观看
特点
具有高精度、高效率、高可靠性、低 能耗等优点,广泛应用于工业自动化、 智能制造等领域。
工作原理与系统组成
工作原理
通过控制器对电机的输入电压或电流 进行调节,实现对电机转矩和转速的 控制,进而实现机械设备的运动控制 。
系统组成
主要包括控制器、电机、传感器、执 行器等部分,其中控制器是核心部分 ,负责接收输入信号并输出控制信号 。
机器人技术中的电机控制
机器人技术是现代制造业和智能制造领域的重要 发展方向,电机控制作为机器人技术的核心组成 部分,对于机器人的运动控制和精确操作具有至 关重要的作用。
机器人技术中的电机控制需要具备快速响应、高 精度和良好的动态性能,以确保机器人的运动轨 迹和控制精度。
在机器人技术中,机电传动控制系统负责驱动机 器人的各个关节和执行机构,实现机器人的各种 复杂动作和精确位置控制。
机电传动控制复习总结
• 机电传动控制概述 • 机电传动控制系统基础知识 • 机电传动控制系统的分析与设计 • 机电传动控制系统的实践应用 • 机电传动控制系统的挑战与发展趋势

机电传动与控制资料课件

机电传动与控制资料课件

03
CATALOGUE
机电传动控制系统
控制系统的基本组成与工作原理
控制系统的基本组成
控制器、执行器、被控对象和反馈环节。
工作原理
通过反馈环节获取被控对象的输出信息,与 设定值进行比较,控制器根据比较结果产生 控制信号,执行器根据控制信号调整被控对
象的输入,从而改变其输出。
常用控制策略与方法
PID控制
02
CATALOGUE
电机与电力电子器件
电机的工作原理与分类
电机的工作原理
电机是机电传动与控制中的重要组成部分,其工作原理基于电磁感应定律和磁场对电流的作用力。当 电流通过电机内部的导体时,会产生磁场,该磁场与电流相互作用产生转矩,从而使电机转动。
电机的分类
根据工作原理和应用场景的不同,电机有多种分类。常见的电机类型包括直流电机、交流电机、步进 电机、伺服电机等。
04
CATALOGUE
机电传动系统的控制技术
数字控制技术
总结词:高效精确
详细描述:数字控制技术通过将控制信号数字化,实现对机电传动系统的精确控制。它具有高效、可靠、灵活的特点,能够 提高系统的稳定性和精度。
智能控制技术
总结词:自主决策
详细描述:智能控制技术利用人工智能、神经网络等技术,使系统具备自主学习和决策的能力。它可 以自动识别和适应不同的工况,优化控制效果,提高系统的智能化水平。
常用电力电子器件及其应用
晶体管
晶体管是一种常用的电力电子器件,具有电 流放大作用。晶体管在电路中可以作为开关 或放大器使用,常见于各种电子设备和控制 系统,如计算机、通信设备等。
可控硅整流器
可控硅整流器是一种具有开关功能的电力电 子器件,广泛应用于交流电的控制和整流。 可控硅整流器在工业自动化、电力控制等领 域有广泛应用,如变频器、调速器等。

《机电传动控制教案》课件

《机电传动控制教案》课件

《机电传动控制教案》课件第一章:机电传动控制概述1.1 机电传动的概念1.2 机电传动控制的作用1.3 机电传动控制的发展趋势第二章:机电传动元件2.1 电动机的基本原理与结构2.2 常用电动机及其特性2.3 机电传动元件的选型与安装第三章:机电传动控制系统3.1 机电传动控制系统的组成3.2 控制器的选择与设置3.3 传感器的选择与安装3.4 执行器的选择与安装第四章:机电传动控制策略4.1 速度控制4.2 位置控制4.3 力矩控制4.4 节能控制第五章:机电传动控制实例分析5.1 电梯控制系统5.2 数控机床控制系统5.3 控制系统5.4 电动汽车控制系统本教案旨在帮助学生了解机电传动控制的基本概念、元件、控制系统及策略,并通过实例分析使学生能够将理论知识应用于实际工程中。

希望对您有所帮助!第六章:机电传动控制系统的稳定性与动态响应6.1 系统稳定性的概念6.2 机电传动控制系统的建模6.3 系统动态响应的分析6.4 稳定性分析在控制系统设计中的应用第七章:机电传动控制系统的性能优化7.1 系统性能指标7.2 控制器参数优化方法7.3 系统辨识与参数估计7.4 性能优化算法及其应用第八章:故障诊断与容错控制8.1 故障诊断的基本方法8.2 机电传动系统的故障模型8.3 容错控制策略8.4 故障诊断与容错控制在机电传动控制中的应用第九章:节能控制与环保技术9.1 节能控制的重要性9.2 节能控制策略9.3 环保技术在机电传动控制中的应用9.4 节能与环保技术的未来发展趋势第十章:案例分析与实践10.1 机电传动控制系统设计案例10.2 故障诊断与容错控制案例10.3 节能控制与环保技术应用案例10.4 综合实践项目设计与实施本教案通过系统稳定性与动态响应、性能优化、故障诊断与容错控制、节能控制与环保技术等内容的学习,使学生掌握机电传动控制技术的综合应用。

通过案例分析与实践,培养学生解决实际工程问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

•织布机 减速器
控制
•造纸机
电动机
•轧钢机
•电力机车
•电梯
•雷达 •洗衣机
•自动洗车房
1、汽车停在可移动平台上; 2、可移动平台移动至位置1,上部及左右旋转喷水装置启动,几秒后停止; 3、平台前移至位置2,喷淋清洁剂,上部清洁毛刷上下运动并旋转,左右毛
刷旋转清洁车体; 4、平台前移至位置3时,毛刷停止运动,喷水装置喷水,几秒后停止; 5、平台前移出洗车房。
三、机电传动控制的目的
从广义上讲,机电传动控制的目的就是要使生产设备、生产 线、车间乃至整个工厂都实现自动化。
从狭义上讲,则指控制电动机驱动生产机械,实现生产产品数 量的增加(效率)、质量的提高(精度)、生产成本的降低、工人 劳动条件的改善以及能量的合理利用等。
四、机电传动系统的应用
广泛应用于工农业生产、航天航空、交通运输、 日常生活等方面
• 汽车车身部件上的电(动)机,使用在中央门锁装置、 电动后视镜、自动升降天线、电动天窗、自动前灯、 电动汽车座椅调整器、电动玻璃升降器、电动刮水器、 空调系统、电子车速里程表等
• 汽车附件上的电(动)机,应用于吸尘器、充气机、 气泵、抛光机、电动座椅按摩器等装置
二.机电传动控制系统的发展 控制系统的发展伴随控制器件的发展而发展。随着功率器件、
其中所有的运动部件均由相应电动机带动,各运动部 件的协调工作由控制系统完成。
港口起重机械中的机电传动与控制
• 四大机构—起 升、变幅、行 走和回转
• 测试、调试技 术
• 以提高生产效 率为目标的新 型电控技术
1.2 机电传动控制的发展
机电传动及其控制系统总是随着社会生产的发展而发展的。机 电传动控制的发展可从机电传动和控制系统两方面来讨论。
为了实现制造过程的高效率、高柔性、高质量,研制计算机集 成制造系统(CIMS)是人们现在的任务。
参考书
• 电工学(上册)---高教出版社,秦曾煌 • 电机与拖动基础--- 清华大学出版社,李发海 • 电力电子技术-------机械工业出版社,黄俊,王兆安 • 可编程控制器原理.应用.实验 -----机械工业出版社,
第一章 概 述
1.1 机电传动控制的目的与任务 一、机电系统的组成
驱动运动部件的原动机 (这里指的是各种电动机) 之总称
控制电动机的系统
机电系统完成生 产任务的基础
驱动生产机械的电 动机和控制电动机 的一整套电气系统
二、机电传动控制的任务 ➢ 将电能转换为机械能; ➢ 实现生产机械的启动、停止以及速度的调节; ➢ 完成各种生产工艺过程的要求; ➢ 作业
每周四交
实验
第十五周
成绩
期末考试 :
70%
实验:
10%
平时成绩(作业、考勤): 20%
人有了知识,就会具备各种分析能力, 明辨是非的能力。 所以我们要勤恳读书,广泛阅读, 古人说“书中自有黄金屋。 ”通过阅读科技书籍,我们能丰富知识, 培养逻辑思维能力; 通过阅读文学作品,我们能提高文学鉴赏水平, 培养文学情趣; 通过阅读报刊,我们能增长见识,扩大自己的知识面。 有许多书籍还能培养我们的道德情操, 给我们巨大的精神力量, 鼓舞我们前进。
全斗南
• 网络课程----华工、西南科技大学等校精品课程
课程的内容安排
第1章 第2章 第3章 第4章 第5章 第6章 第7章 第8章 第9章 第10章 第11章
概述 机电传动系统的运动学基础 直流电机的工作原理及特性 交流电动机的工作原理及特性 控制电机 继电器-接触器控制系统 可编程序控制器 电力电子学-晶闸管及其基本电路 直流传动控制系统 交流传动控制系统 步进电动机传动控制系统
柔性制造系统(FMS) —由数控机床、工业机器人、自动搬 运车等组成的统一由中心计算机控制的机械加工自动线,它是实现 自动化车间和自动化工厂的重要组成部分。
机械制造自动化高级阶段是走向设计、制造一体化,即利用计 算机辅助设计(CAD)与计算机辅助制造(CAM)形成产品设计 和制造过程的完整系统,对产品构思和设计直到装配、试验和质量 管理这一全过程实现自动化。
放大器件的不断更新,机电传动控制系统的发展日新月异,它主要 经历了四个阶段:
1.继电器—接触器控制:出现在20世纪初,它仅借助于简单 的接触器.器与继电器,实现对控制对象的启动、停车以及有级调 速等控制,它的控制速度慢,控制精度差;
2.电机放大机控制:
3.磁放大器控制和大功率可控制水银整流器控制:
4.数字控制(NC) :自动化程度、通用性和加工效率。
一、机电传动的发展 成组拖动——一台电动机拖动一根天轴(或地轴),然后再
由天轴(或地轴)通过皮带轮和皮带分别拖动多台生产机械。
特点是生产效率低、劳动条件差、一旦电动机出现故障,将造 成成组的生产机械停车;
单电机拖动——一台电动机拖动一台生产机械的各运动部件。 这种拖动方式较成组拖动前进了一步,但当一台生产机械的运 动部件较多时,其传动机构仍十分复杂;
多电机拖动——一台生产机械的各个运动部件分别由不同的电 动机来拖动。
实例:汽车上的电(动)机
• 汽车上的电(动)机广泛分布于汽车的发动机、底盘、 车身三大部位及附件中
• 汽车发动机部件上的电(动)机,应用在汽车起动机、 电喷控制系统、水箱散热器及发电机中
• 汽车底盘车架上的电(动)机,主要应用在汽车电子 悬架控制系统、电动助力转向装置、汽车稳定性控制 系统、汽车巡行控制系统、防抱死控制系统及驱动动 力控制系统
相关文档
最新文档