(教案)三角形的高
三角形的高线教案1
一、背景介绍及教学资料
这节课是在学生学习了三角形的角平分线、中线之后安排的,这样安排一方面是学生已掌握了三角形的角平分线、中线的画法,降低了学生对三角形高线的画法的难度。特别是钝角三角形的三条高线的画法;另一方面有利于学生系统地理解三角形中这三种重要的线段,也有利于后续知识(特殊三角形、全等三角形、相似三角形)的系统学习。
解后反思能及时地总结解题的思路,以培养学生良好的学习习惯和思维品质。
巩固新知
评价的方法为:对积极参与探究的小组予以鼓励,对能得到正确答案的小组予以肯定,对能说出理由的小组予以表扬。
培养学生归纳总结能力,给学生创造展示表达能力的机会。
此题是提供给层次较高的学生练习,因为它用到的知识点较多。
通过强调,加深对概念的理解,将概念转化为几何表达式,培养学生的几何语言,为解题提供思路。
教师引导学生在画高时,结合过一点画一条直线的垂线的方法,抓住要领"一落二靠三画"。
让学生有充分时间进行画图,互相交流、帮助。
若学生画钝角三角形的高时有困难,教师也可以示范。
四、合作探究,延伸提高
教科书第13页,分4人一小组进行合作讨论,并将讨论的结果汇报交流,教师给予评价。
五、归纳小结
教师引导学生小结本课内容,并谈谈收获。
六、布置作业:
教科书第13页作业题,根据学生的情况也可以从下列选题中选做。
备选例题:
1.如图,AE、AH分别为△ABC 的角平分线和高,∠B=∠BAC, ∠C=360。
通过学生的充分交流,师生共同总结三角形高的特点,使知识系统化。
培养学生自主探索和互助交流的精神,使学生在轻松愉悦的氛围中获取知识。
三角形的高、中线、角平分线的教案
三角形的高、中线、角平分线的教案一、教学目标:1. 让学生理解三角形的高、中线、角平分线的概念。
2. 让学生掌握三角形的高、中线、角平分线的性质。
3. 培养学生运用三角形的高、中线、角平分线解决问题的能力。
二、教学内容:1. 三角形的高:从三角形的一个顶点向对边所在的直线画垂线,顶点到垂足之间的线段叫做三角形的高。
2. 三角形的中线:连接三角形的一个顶点和它对边中点的线段叫做三角形的中线。
3. 三角形的角平分线:从三角形的一个顶点出发,把这个顶点的角平分成两个相等的角的线段叫做这个角的角平分线。
三、教学重点与难点:1. 教学重点:三角形的高、中线、角平分线的概念及性质。
2. 教学难点:三角形的高、中线、角平分线的画法及运用。
四、教学方法:1. 采用直观演示法,让学生通过观察实物和图形,理解三角形的高、中线、角平分线的概念。
2. 采用讲解法,讲解三角形的高、中线、角平分线的性质和画法。
3. 采用练习法,让学生通过练习巩固所学知识。
五、教学过程:1. 导入:通过展示三角形的高、中线、角平分线的实物模型,引导学生思考三角形的高、中线、角平分线的概念。
2. 讲解:讲解三角形的高、中线、角平分线的定义和性质,让学生理解并掌握。
3. 演示:教师演示如何画三角形的高、中线、角平分线,并讲解画法的注意事项。
4. 练习:学生分组练习,画出给定三角形的的高、中线、角平分线,并互相检查。
5. 总结:教师引导学生总结三角形的高、中线、角平分线的性质和画法,巩固所学知识。
六、教学拓展:1. 引导学生思考:在三角形中,高、中线、角平分线有何联系和区别?2. 讲解三角形的高、中线、角平分线在几何中的应用,如:解直角三角形、证明线段相等等。
七、课堂小结:1. 让学生回顾本节课所学内容,总结三角形的高、中线、角平分线的概念和性质。
2. 强调三角形的高、中线、角平分线在几何问题中的重要性。
八、课后作业:1. 画出给定三角形的的高、中线、角平分线,并标注出来。
最新版初中数学教案《三角形的高、中线与角平分线》精品教案(2022年创作)
三角形的高、中线与角平分线【知识与技能】1.掌握三角形的高、中线与角平分线定义.2.会画三角形的高、中线与角平分线.3.掌握三角形的三条高线、三条中线与三条角平分线的有关性质.【过程与方法】对学生进行操作训练,边训练边讲解,然后学以致用.【情感态度】训练同学们动手操作的能力,提高学习兴趣.【教学重点】画三角形的高线、中线与角平分线.【教学难点】画钝角三角形的高线.一、情境导入,初步认识问题1 如图,△ABC,画它的三条高.问题2 如图,△ABC,画它的三条中线.问题3如图,△ABC,画它的三条角平分线.【教学说明】对问题1,对于钝角三角形的作高要给予集体指导、分类指导,甚至要进行个别指导,以便让绝大局部同学过关.教师讲课前,先让学生完成“自主预习〞.二、思考探究,获取新知思考 1.锐角三角形的三条高、直角三角形的三条高、钝角三角形的三条高的位置有何不同之处?2.三角形的三条高、三条中线、三条角平分线各自有怎样的位置关系?3.三角形的角平分线与角的平分线有什么区别和联系?【归纳结论】1.定义:三角形的高:从三角形的一个顶点向对边所在的直线作垂线,所得的垂线段叫做三角形的一条高.三角形的中线:连接三角形的一个顶点和它对边中点的线段叫做三角形的一条中线.三角形的角平分线:三角形一个角的平分线与对边相交;以这个顶点和交点为端点的线段叫做三角形的角平分线.2.三角形的三条高所在的直线交于一点,这一点有时在形内,有时在直角顶点上,有时在形外;三角形的三条中线交于一点;三角形的三条角平分线交于一点.3.三角形的角平分线与角的平分线的区别是:三角形的角平分线是线段,而角的平分线是一条射线;它们的联系是都是平分角.三、运用新知,深化理解1.如图,AD 是△ABC 的中线;BE 是△ABC 的角平分线,CF 是△ABC 的高,填空:〔1〕BD= =21 ; 〔2〕∠ABE=∠ =21∠ ; 〔3〕∠ =∠ =90°.2.如图,△ABC 中,∠A 是钝角.〔1〕画出AC 、AB 上的高BD 、CE ;〔2〕画出∠ABC 的平分线BF ;〔3〕画出边AB 上的中线CG.3.,如图,AB ⊥BD 于B ,AC ⊥CD 于C ,且AC 与BD 交于点E.那么〔1〕△ADE的边DE 上的高为,边AE 上的高为 ;〔2〕假设AE=5,DE=2,CD=59,那么AB= .4.如下列图,等腰△ABC 中,AB=AC ,一腰上的中线BD 将这个等腰三角形的周长分成15和6两局部,求这个三角形的腰长及底边长.“三角形的高、中线与角平分线〞后,我们知道“三角形的一条中线将原三角形分成两种相等的两局部〞.课后余老师给同学们布置了这样一道思考题:有一块三角形的厚薄均匀的蛋糕,要平均分给6个小朋友,要求只切3刀,请你在图中把你的方案画出来,并说明理由.【教学说明】题1、2、3可让学生自主完成,题4、5教师可给予相应的指导当三角形两条高求其他边长或一高与其他边长求另一高时,常用面积作为中间量.涉及等腰三角形边的问题时,常要分情况讨论,然后看它们是否满足三边关系,不满足的要舍去.【答案】1.〔1〕DCBC〔2〕CBE ABC〔3〕CFA CFB2.图略. DC 29 解析:△△ADE=21DE ·AB=21AE ·DC ,即21×2×AB=21×5×95,AB=29. 4.解:设AB=AC=2x,那么AD=CD=x.(1)当AB+AD=15,BC+CD=6时,有2x+x=15,所以x=5,2x=10,BC=6-5=1.(2)当BC+CD=15,AB+AD=6时,有2x+x=6.所以x=2,2x=4,所以BC=13. 因为4+4<13,故不能组成三角形.所以三角形的腰长为10,底边长为1.5.略.四、师生互动,课堂小结三角形的高、中线与角平分线的定义与性质.请假设干名学生口述小结,老师再利用电子课件将小结放映在屏幕上.1.布置作业:从教材“习题”中选取.2.完成练习册中本课时的练习.本课时教学以“自主探究——合作交流〞为主体形式,先给学生独立思考的时间,提供学生创新的空间与可能,再给不同层次的学生提供一个交流合作的时机,培养学生独立探究,合作学习的能力。
《11.1.2三角形的高、中线与角平分线》教案教学反思-2023-2024学年数学人教版八年级上册
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与三角形高、中线、角平分线相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如利用直尺和圆规作出三角形的高、中线、角平分线。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解三角形的高、中线、角平分线的基本概念。三角形的高是从一个顶点到对边的垂线段,中线是连接顶点和对边中点的线段,角平分线是从一个角的顶点出发,把这个角平分成两个相等的角的线段。它们在解决三角形相关问题中具有重要作用。
2.案例分析:接下来,我们来看一个具体的案例。通过案例分析,展示三角形的高、中线、角平分线在实际中的应用,以及如何帮助我们解决问题。
在实践活动环节,我发现学生们在分组讨论时,有些小组的讨论效率不高,个别同学过于依赖他人,缺乏独立思考。为了提高学生的自主学习能力,我计划在接下来的教学中,加强对学生讨论过程的引导,鼓励他们提出自己的观点和想法。
此外,学生在进行实验操作时,对于三角形高、中线、角平分线的作图方法掌握程度不一。针对这一问题,我将在下一节课中增加示范和指导,让学生在实践中掌握正确的作图方法。
五、教学反思
在本次教学过程中,我发现学生们对三角形的高、中线、角平分线这一部分内容表现出较大的兴趣。他们在课堂上积极参与,尤其是在实践活动和小组讨论环节,大家热情高涨,这让我感到很欣慰。
然而,我也注意到,在理论讲解环节,部分学生对三角形高、中线、角平分线的定义和性质掌握不够扎实。在后续的教学中,我需要更加关注这一点,通过增加典型例题和练习,帮助学生巩固基础知识。
《三角形的高》教案
-突破方法:提供丰富的实际情境问题,指导学生如何运用三角形高的知识进行问题分析和解决。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《三角形的高》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要测量三角形物体高度的情况?”(如测量小树的高度)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索三角形高的奥秘。
此外,我还发现,对于三角形高与底边比例关系这一难点,虽然通过画图和计算进行了解释,但似乎还有学生对此感到困惑。因此,我计划在下一节课的复习环节中,再次强调这一关系,并通过更多的例子来帮助学生巩固记忆。
-能够在具体情境中识别三角形的高,并运用高的概念解决实际问题。
-能够通过实际操作和绘图,掌握三角形高的作法,发展空间想象力和创造力。
2.培养学生的逻辑思维和问题解决能力,通过探索三角形高的性质,学会运用分类讨论和归纳总结的方法分析问题。
-能够分析不同类型三角形高的特点,并进行有效分类。
-能够运用所学知识,解决与三角形高相关的综合问题,提升解题策略和技巧。
-钝角三角形有3个高,其中一条在三角形内部,另外两条在三角形外部。
3.应用三角形高的知识解决实际问题。
-利用三角形高的性质测量距离或计算面积。
-探索三角形高与底边的关系,理解等腰三角形底边两侧高的相等性。
二、核心素养目标
1.培养学生的空间观念和几何直观能力,通过观察、操作、推理等过程,深化对三角形高的理解,提高对几何图形的认识和操作技能。
-举例:通过计算不同形状三角形面积的练习,让学生感受高与底边长度对面积的影响。
11.1.2三角形的高 初中八年级上册数学教案教学设计课后反思 人教版
教师姓名王婷单位名称阿克苏市第十五中学填写时间2020.08.08学科数学年级/册八年级上册教材版本人教版课题名称11.12三角形的高难点名称三角形高的位置关系难点分析从知识角度分析为什么难能够正确地画出三角形的“高线”、并理解它概念的含义、联系和区别。
从学生角度分析为什么难在钝角三角形中作高,学生不容易掌握。
通过三角形的高,解决数学问题。
难点教学方法通过引导讲授法,让学生知道三角形高的定义。
利用三角形的高,通过数形结合方法解决数学问题教学环节教学过程导入1.你还记得“过一点画已知直线的垂线”吗?2.请你和老师一起复习“过一点画已知直线的垂线”的画法 A3.过三角形的一个顶点,你能画出它的对边的垂线吗?B C知识讲解(难点突破)(一)探究三角形的高1.三角形高的定义:(通过画图引出三角形的高的定义)三角形的高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高。
(总结三角形的画法)2.理解三角形高:如图,在△ ABC 中, AD是△ABC 的一条高。
∵AD是△ ABC的高∴∠ADB=∠ADC=90°(二)分类学习三角形的高锐角三角形动手做一做:在纸上画一个锐角三角形.(1)你能画出这个三角形的三条高吗?(2)这三条高之间有怎样的位置关系?锐角三角形的三条高是在三角形的内部还是外部?锐角三角形的三条高交于同一点锐角三角形的三条高都在三角形的内部 B D CAEF直角三角形直角三角形的三条高在纸上画一个直角三角形.(1)画出直角三角形的三条高.直角边BC边上的高是直角边AB边上的高是 ;斜边AC边上的高是 .2)它们有怎样的位置关系?将你的结果与同伴进行交流直角三角形的三条高交于直角顶点.钝角三角形在纸上画一个钝角三角形.(1)画出钝角三角形的三条高.(2)钝角三角形的三条高交于一点吗?钝角三角形的三条高不相交于一点(3)它们所在的直线交于一点吗?钝角三角形的三条高所在直线交于一点(三)小结:三角形的高从三角形中的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形这边的高三角形的三条高所在直线交于一点1.如图,(1)(2)和(3)中的三个∠B有什么不同?这三条△ABC的边BC上的高AD在各自三角形的什么位置?你能说其中的规律吗?课堂练习(难点巩固)2.如图,AD,BE分别是△ABC中BC,AC边上的高,AD=4cm,BC=5 cm,AC=6 cm,则BE=_____.小结三角形的高(1)定义(2)画法(3)数学方法。
2022年数学精品初中教学设计《三角形的高、中线与角平分线》特色教案
三角形的高、中线与角平分线一、新课导入1.导入课题:在与三角形有关的线段中, 除了它的三边外, 还有它的高、中线和角平分线, 这节课我们来学习三角形的高, 中线和角平分线的意义、作法和发现的规律性结论.2.学习目标:(1)了解三角形的高、中线和角平分线的意义.(2)会画出三角形的高、中线和角平分线.(3)结合图形写出三种线段分别得到的相应结论.3.学习重、难点:重点:三角形的高、中线和角平分线的意义和画法.难点:结合三角形高、中线和角平分线的定义探索相应的规律结论.二、分层学习1.自学指导:〔1〕自学内容:教材第4页《11.1.2 三角形的高、中线与角平分线》的第1自然段.〔2〕自学时间:6分钟.〔3〕自学要求:认真阅读课本的内容, 划出你认为是重点的语句.〔4〕自学参考提纲:①表述出什么是三角形的高?从三角形的一个顶点向它的对边作垂线, 所得线段叫做三角形的高.②如图1, ∵AD是△ABC的高,∴AD⊥BC于点D〔或∠ADB=∠ADC=90°〕.反之, ∵AD⊥BC于点D〔或∠ADB=∠ADC=90°〕,∴AD是△ABC中BC边上的高.③请画出以下三角形三边上的高, 并说说你有什么发现?发现:三角形的高可以在三角形内, 也可以在三角形边上, 还可以在三角形外.2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:三角形的高, 这局部知识实际上是探讨线与线之间的位置关系, 学生会作锐角三角形的高, 但直角三角形、钝角三角形三边上的高线, 学生容易混淆, 所以应跟踪学情点拨引导.②差异指导:引导学生找准要作哪条边上的高, 及掌握直角三角板的两条直角边的用法.〔2〕生助生:学生互助交流不同类别三角形的高的画法.4.强化:〔1〕强调三角形的高线是一条线段.〔2〕作三角形高的方法.〔3〕练习:如图, 写出以AE为高的三角形.解:△ABE, △ABD,△ABC,△AED,△AEC,△ADC.1.自学指导:〔1〕自学内容:教材第4页《11.1.2 三角形的高、中线与角平分线》的第2自然段到第5页的第1自然段.〔2〕自学时间:6分钟.〔3〕自学要求:认真阅读课本的内容, 结合图形划出你认为是重点的语句及存有疑点之处.〔4〕自学参考提纲:①连接三角形一个顶点和它对边中点的线段, 叫做三角形的中线.②结合右图填空:∵AD是△ABC的中线,∴BD=CD=1BC.2S△ABC.∴S△ABD=S△ADC=12反之:∵BD=DC, ∴AD是△ABC的中线.③画出以下三角形三边的中线, 说说你的发现.发现:它们的中线都在三角形内部且相交于一点.④要找到一块质地均匀的三角形钢板的平衡点, 你应怎样做?作它的三条中线, 交点即为平衡点〔即重心〕.2.自学:同学们可结合自学指导进行自学.3.助学:〔1〕师助生:①明了学情:重点了解学生对画中线的根本步骤, 及三条中线交于一点即重心的掌握.②差异指导:引导学生寻找画中线的方法:a.先要找准边的中点;b.连接该中点与这边所对的顶点的线段.〔2〕生助生:学生相互讨论交流学习疑难点.4.强化:〔1〕强调三角形的中线是一条线段.〔2〕三角形的中线的概念和中线的画法.〔3〕练习:如下图, AM是△ABC的中线, 假设△ABM的面积是20平方厘米, 求△ABC的面积.S△ABC=2S△ABM=40平方厘米1.自学指导:〔1〕自学内容:教材第5页图11.1-5到“练习〞前的内容.〔2〕自学时间:6分钟.〔3〕自学要求:认真阅读课本的内容, 结合图形完成参考提纲.划出你认为重点的语句和学习疑点.〔4〕自学参考提纲:①定义:三角形一个内角的平分线与它的对边相交, 这个角的顶点与对边上的交点之间的线段, 叫做三角形的角平分线.②结合右图填空:∵AD是△ABC的角平分线,∴∠1=∠2=1∠BAC.2反之, ∵∠1=∠2, ∴AD是△ABC的角平分线.③如右图, △ABC中, ∠B、∠C的平分线相交于O, ∠A=70°, 那么∠BOC=125°.④画出以下三角形的三条角平分线, 你有什么发现?发现:三角形的角平分线都在三角形内部且相交于一点.⑤你怎样来区别三角形的高线、中线、角平分线?三角形的高线垂直于三角形的边;三角形的中线平分三角形的边;三角形的角平分线平分三角形的角.2.自学:同学们可结合自学指导进行自学.3.助学:〔1〕师助生:①明了学情:三角形的角平分线是探究角之间的数量关系, 学生已经掌握了量角器的用法, 能很快地画出一个角的角平分线.②差异指导:引导学生从概念、画法等方面区别高线、中线、角平分线.〔2〕生助生:学生之间相互交流帮助解决学习中的疑惑.4.强化:(1)三角形的角平分线的概念及其画法.(2)练习:①, AD是△ABC的中线, AE是∠BAC的平分线, 那么BD=DC=12BC,∠BAE=∠CAE=12∠BAC.②, BD是△ABC的角平分线, DE∥BC, ∠DBC=20°, 求∠AED.解:∵BD是△ABC的角平分线, ∴∠DBC=12∠ABC.∵DE∥BC,∠DBC=20°,∴∠AED=∠ABC=2∠DBC=40°.三、评价1.学生自我评价〔围绕三维目标〕:学生交流自己的学习收获和存在的困惑.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、学习方法、学习成果及存在的缺乏进行点评.(2)纸笔评价:课堂评价检测.3.教师自我评价〔教学反思〕:本课时教学以“自主探究——合作交流〞为主体形式, 先给学生独立思考的时间, 提供学生创新的空间与可能, 再给不同层次的学生提供一个交流合作的时机, 培养学生独立探究, 合作学习的能力.一、根底稳固〔每题10分, 共50分〕1.三角形的高、中线和角平分线都是〔C〕2.如图,在△ABC中, AD是角平分线, AE是中线, AF是高, 那么:(1)BE=EC=12BC;(2)∠BAD=∠DAC=12∠BAC;(3)∠AFB=∠AFC=90°;(4)△ABC的面积=12BC·AF.3.如图, 在△ABC中, AD平分∠BAC且与BC相交于点D, ∠B=40°, ∠BAD=30°, 那么∠C的度数是80°.4.以下说法错误的选项是〔A〕D.一个三角形的三条高、中线、角平分线分别交于同一个点5.如下图, 在△ABC中, ∠1=∠2, G为AD的中点, 连接BG并延长, 交AC于点E, CF⊥AD于点H, 交AB于点F.以下说法中, 正确的有〔A〕①AD是△ABE的角平分线②BE是△ABD的边AD上的中线③CH是△ACD的边AD上的高.二、综合应用〔每题10分, 共20分〕6.直角三角形两锐角的平分线所夹的钝角为多少度?解:如图, △ABC中, ∠B=90°,AD、CE是△ABC的角平分线, 那么∠DAC+∠ECA=12〔∠BAC+∠BCA〕=45°,∴∠AFC=180°-(∠ECA+∠DAC)=135°.所以直角三角形两锐角的平分线所夹的钝角为135°.7.如图, AD是△ABC的边BC上的中线, AB=5cm,AC=3cm.△ABD的面积为acm 2,(1)S △ABC=2acm 2;(2)△ABD 与△ACD 的周长之差为2cm.三、拓展延伸〔每题15分, 共30分〕△ABC 中, AD 是∠A 的平分线, DE ∥AC 交AB 于E, EF ∥AD 交BC 于F, 试问EF 是△BED 的角平分线吗?说说你的理由.解:EF 是△BED 的角平分线, 理由如下:∵AD 是∠BAC 的平分线, ∴∠1=∠2.∴DE ∥AC,∴∠5=∠2=∠1. ∵EF ∥AD,∴∠3=∠5,∠4=∠1,∴∠3=∠4,∴EF 是△BED 的角平分线.△ABC 中, ∠ACB=90°,CD ⊥AB 于D, AB=13,CD=6,BC=10, 求AC 的长.解:∵S △ABC=12AB·CD=12AC·BC, AB=13,CD=6,BC=10, ∴AC=AB CD BC •=13610⨯=7.8. 三角形全等的判定一、教学目标知识技能1掌握三角形全等的“ASA 和AAS 〞条件.2.能初步应用ASA 和AAS 〞条件判定两个三角形全等.数学思考1.使学生经历探索三角形全等条件的过程, 体会利用操作、归纳获得数学结论的过程.2.在探索三角形全等条件及其运用过程中, 能够进行有条理的思考并进行简单的推理.解决问题会用ASA 和AAS 〞条件证明两个三角形全等.情感态度1.通过探索和实际的过程体会数学思维的乐趣,激发应用数学的意识.2.通过合作交流,培养合作意识,体验成功的喜悦.二、教学方法探究式、讨论式三、教学手段多媒体辅助教学.四、教学过程Ⅰ、创设情境, 引入新课一天, 小明的妈妈叫他去玻璃店画一块三角形玻璃,小明不小心把画的三角形玻璃打碎成了三块,他为了省事,他从打碎的三块玻璃中选一块去,小明想法能办得到吗? 假设能,你认为小明应该拿哪块玻璃去呢? 为什么?【师生行为】教师通过〔Flash课件〕展示视频内容, 提出情境问题.学生独立思考, 发表自己的见解.【设计意图】创设性的设计问题, 变“教教材〞为“用教材〞.①使学生快速集中精力, 调整听课状态.②知识的呈现过程与学生已有的生活密切联系起来, 学有用的数学, 激发学生的学习兴趣. ③使学生产生认知上的冲突, 从而引入本课课题, 明确本节课的探究方向, 激发学习欲望.Ⅱ、实践操作、探索新知问题1、如图, △ABC是任意一个三角形, 画△A1B1C1,使A1B1=AB,∠A1=∠A,∠B1=∠B把画得△A1B1C1剪下来放在△ABC进行比拟, 它们是否重合?问题2、如图,△ABC是任意一个三角形, 画△A1B1C1,使A1C1=AC, ∠A1=∠A,∠B1=∠B, 请你猜想△A1B1C1与△ABC是否全等? 假设它们全等,你能用"ASA"来证明你猜想结论成立吗?【师生行为】教师提出问题, 学生思考问题, 动手实践、小组讨论、交流.学生在探索过程中, 难免有困难, 教师要鼓励学生争论和启发引导下及时作出正确的结论. 教师通过动画演示作图过程. 得出结论:有两角和它们的夹边对应相等的两个三角形全等〔可以简写成“角边角〞或“ASA〞〕用数学语言表示为:在△ABC与△A1B1C1中∠A=∠A1AB=A1B1∠B=∠B1∴△ABC≌△A1B1C1(ASA)【设计意图】对于问题1, 因为学生已经在学习“SSS〞条件有了一定的作图和探究图形的根底. 所以这里就直接提出问题让学生动手操作, 教师适时引导. 对于问题2, 学生在问题1的根底上通过类比思想可以得出结论. 〔即:可以通过"角边角"(ASA)来证明在△ABC和△A1B1C1中因为∠A1=∠A,∠B1=∠B所以∠C1=∠C在△ABC与△A1B1C1中∠A=∠A1AC=A1C1∠C=∠C1∴△ABC≌△A1B1C1(ASA)〕让学生在合作学习中共同解决问题, 使学生主动探究三角形全等的条件,培养学生分析、探究问题的能力. 培养学生的合作意识和竞争意识. 体会合作交流的重要性.Ⅲ、例题讲解、应用新知例1、如图,点D在AB上, 点E在AC上, BE和CD相交于点O, AB=AC,∠B=∠C,求证:BE=CD例2、例2、如图, 海岸上有A、B两个观测点, 点B在点A的正东方, 海岛C在观测点A的正北方, 海岛D在观测点B的正北方, 从观测点A看C, D的视角∠CAD与从观测点B看海岛C, D的视角∠CBD相等, 那么点A到海岛C的距离与点B到海岛D的距离相等, 为什么?【师生行为】先让学生独立思考, 在互相讨论、交流.然后引导学生分析题设中的条件, 以及两个三角形全等还需要的条件, 判断两个三角形全等的过程.证明:〔1〕在△ADC和△AEB中,∠A=∠A 〔公共角〕AC=AB∠C=∠B∴△ACD≌△ABE (ASA)∴AD=AE 〔全等三角形的对应边相等〕又AB=AC∴BE=CD证明:〔2〕∵∠CAD=∠CBD, ∠1=∠2∴∠C=∠D.在△ABC与△BAD∠CAB=∠ABD〔〕∠C=∠D 〔已证〕AB=BA 〔公共边〕∴△ABC≌△BAD〔AAS〕∴AC=BD即点A到海岛C的距离与点B到海岛D的距离相等【设计意图】培养学生的逻辑推理能力、独立思考能力, 会用“ASA或AAS“判断三角形全等, 标准地书写证明过程. 培养学生合情合理的逻辑推理能力, 语言表达能力, 标准地书写证明过程.培养学生的符号感, 体会数学知识的严谨性. Ⅳ、课堂练习、稳固新知1、如图1,小明把一块三角形的玻璃打碎成了三块, 现在要到玻璃店去配一块完全一样的玻璃, 那么最省事的方法〔〕A、选①去,B、选②C、选③去2、如图2, O是AB的中点, 要使通过角边角〔ASA〕来判定△OAC≌△OBD, 需要添加一个条件,以下条件正确的选项是(〕A、∠A=∠BB、AC=BDC、∠C=∠D3、如图, 要测量河两岸相对的两点A、B的距离, 可以在AB的垂线BF上取两点C、D, 使BC=CD, 再定出BF 的垂线DE, 使A, C, E在一条直线上, 这时测得DE的长度就是AB的长度, 为什么?4、如图, AB⊥BC, AD⊥DC, ∠BAC=∠CAD, 求证:AB=AD【师生行为】教师提出问题. 学生思考、交流, 解答问题. 教师正确引导学生正确运用〞ASA/AAS条件来解决实际问题. 针对练习可以通过让学生来演示结果, 形成共识.【设计意图】使学生正确地理解定理, 并能用它来解决实际问题. 稳固知识, 及时了解学生掌握定理的情况.Ⅴ、反思小结、布置作业1、通过本节课你学到了哪些内容?你有何收获?2、判断两个三角形全等有哪些方法呢?【师生行为】教师以问题的形式提出, 让学生归纳、总结所学知识, 进行自我评价, 自我总结.学生把作业做在作业本上, 教师检查、批改.【设计意图】通过回忆本节课的所学内容, 从知识、技能、数学思考等方面加以归纳, 有利于学生掌握、运用知识.教学反思《数学课程标准》明确指出:“有效的数学活动不能单纯地依赖于模仿与记忆, 学生学习数学的重要方式是动手实践、自主探索与合作交流, 以促进学生自主、全面、可持续开展〞.数学教学是数学活动的教学, 是师生之间、学生之间相互交往、积极互动、共同开展的过程, 是“沟通〞与“合作〞的过程.本节课我结合情景问题自然地引入课题, 让学生亲身体验到数学知识来源于实践, 从而激发学生的学习积极性.为学生提供了大量的操作、思考和交流的学习时机,通过“画图〞——“观察“——“操作〞——“交流〞发现“ASA/AAS〞定理. 在信息社会, 信息技术与课程的整合必将带来教育者的深刻变化.我充分地利用多媒体教学, 为学生创设了生动、直观的现实情景, 具有强列的吸引力, 能激发学生的学习欲望.本节课, 通过情景引入问题, 让学生亲身体验、动手操作来探究三角形全等的条件. 整个探索过程, 不仅教师引导学生的过程, 同时也是教师从学生的角度考虑问题, 顾及全面、充分准备好自己的心理提升.缺乏之处:本节课安排学生的活动较多, 教师必须准备到位, 操作有序、收放自如. 教学中出现学生有自己的语言描述时、语言不够准确简练, 描述不够完整等等, 都需要教师及时纠正.。
初中数学八年级《三角形的高、中线、角平分线》优秀教学设计
7.1.2《三角形的高、中线、角平分线》教案
教学目标分析
本节课的教学设计力图体现“尊重学生,注重发展”的教学理念,着重培养和发展学生基本作图能力、语言表达能力、观察能力等,根据这一目的确定本节教学目标为:
教学流程
依据本节课的教材知识结构及学生认知规律和发展水平,为优化教学过程,实现“尊
教学过程
2 你能描述三角形的高
3 一个三角形有几边?那么高有几条呢?
4 你能做出下列三角形的高吗?
②若一个三角形有高在它的外部,则这个三角形为
∆的中线交于点ABC
线吗?
ABC中的A
∠的平分线,。
《三角形的高、中线、角平分线》优秀教案
用户可将本文地内容或服务用于个人学习、研究或欣赏,以及其他非商
业性或非盈利性用途,但同时应遵守著作权法及其他相关法律地规定,不得
侵犯本网站及相关权利人地合法权利 . 除此以外,将本文任何内容或服务用
于其他用途时,须征得本人及相关权利人地书面许可,并支付报酬 . Zzz6ZB2Ltk
Users may use the contents or services of this article for
AB=2 ,BD=,AE=
1
.
2
5.如图 2, AD , BE, CF 是 Δ ABC地三条角平分线,则∠ 1= ,
1
∠ 3=
,
2
∠ ACB=2.
A
F
E
A F 12 E
B
D
C
B
3 D
4
C
图1
图2
6.如图
3,
1
BD=
BC,则
BC边上地中线为
______,△ ABD地面积 =地面积.
2
图 3图 4 7.如图 4,△ ABC中,高 CD、 BE、AF 相交于点 O,则△ BOC?地三条高分别为线段 . 8.如图 5,在△ ABC中, D、 E 分别是 BC、AD地中点, S△ABC =4cm2,则 S△ABE = .
personal study, research or appreciation, and other non-commercial
or non-profit purposes, but at the same time, they shall abide by the
provisions of copyright law and other relevant laws, and shall not
人教版小学四下数学《三角形的高》教案
人教版小学四下数学《三角形的高》教案教学目标:1.理解三角形高的概念。
知道三角形有三条高。
2.学会画三角形的高。
3.了解直角三角形、钝角三角形三条高的画法及特征。
教学重点:理解三角形高的概念。
教学难点:了解三角形三条高的画法。
教学过程:同学们好,这节课我们研究三角形的高。
一、回顾旧知,导入新课在前面的学习中,我们已经知道了三角形有三条边、三个顶点、三个角,这节课我们继续研究三角形高的有关知识。
二、操作演示,观察发现1. 如果我们从三角形的一个顶点到它的对边作一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。
这样看来,从C点到它的对边AB能作一条高,从B 点到它的对边AC也能做一条高。
一个三角形可以画出三条高,三角形的底和高是相互依存的。
锐角三角形的三条高在三角形内相交于一点。
2.我们再来看直角三角形,以直角三角形一条直角边BC为底,作高时,要从A点向它的对边BC作一条垂线,发现高与另一条直角边AB重合;如果以直角边 AB为底,作高时,要从C点向它的对边作垂线,发现高与另一直角边BC重合,也就是直角三角形两条直角边,如果一条是底,那么另一条直角边就是它的高。
以斜边AC为底,作高时,要从顶点B向它的对边AC作垂直线,发现高在三角形内。
直角三角形也有三条高,其中一条在三角形内,另外两条高与两直角边重合。
3.我们再来看钝角三角形,从钝角三角形的B点向它的对边作高,高在三角形内;从A点向它的对边作高,需要把对边BC延长,高在三角形外;从C点向它的对边作高,需要把对边AB延长,高也在三角形外。
钝角三角形也有三条高,其中一条高在三角形内,另外两条高在三角形外。
三、总结归纳通过研究,我们发现任何三角形都有三条高,其中锐角三角形的三条高在三角形内,并且相交于一点;直角三角形其中一条在三角形内,另外两条高与两直角边重合;而钝角三角形其中一条高在三角形内,另外两条高在三角形外。
这节课我们就研究到这儿,同学们再见!。
人教版八年级数学上册11.1.2《三角形的高、中线与角平分线》 教案
第十一章三角形11.1与三角形有关的线段11.1.2三角形的高、中线与角平分线一、教学目标1.理解三角形的高、中线、角平分线的概念,让学生感受数学的严谨性。
2.能正确作出一个三角形的高、中线、角平分线.提高学生动手操作及解决问题的能力二、教学重点、难点重点:了解三角形的高、中线及角平分线概念的同时还要掌握它们的画法难点:钝角三角形的高的画法及不同类型的三角形高线的位置关系.三、教学用具刻度尺、直尺、量角器四、相关资源三角形三线的动态演示五、教学过程(一)复习导入把一根橡皮筋的一端固定在△ABC的顶点A上,再把橡皮筋的另一端从点B沿着BC边移动到点C.观察移动过程中形成的无数条线段(AD,AE,AF,AG…)中有没有特殊位置的线段?你认为有哪些特殊位置?学生根据以往的经验积累,找到以下特殊位置的线段(AD,AE,AF).设计意图:初步感知三角形的高、中线、角平分线,为下面抽象出它们的概念做准备.(二)探索新知1.教师布置学习任务,学生通过自学完成下表:设计意图:通过完成表格,使学生通过自主学习,掌握有关的概念.2.教师布置学习任务,要求学生按照三角形高线的定义分别画出锐角三角形、直角三角形、钝角三角形的高线,观察各个图形间的相同或不同点,并要求学生进行归纳.(1)任意画一个锐角△ABC,请你画出BC边上的高.(2)你能画出其他两边上的高吗?(3)通过画图你发现了什么?三角形的重要线段概念图形几何语言表示三角形的高线从三角形的一个顶点向它的对边所在直线作垂线段,顶点和垂足之间的线段叫做三角形的高∵AD是△ABC的BC上的高,∴AD⊥BC∠ADB=∠ADC=90°.三角形的中线三角形中,连接顶点和对边中点的线段叫做三角形的中线∵AE是△ABC的BC上的中线,∴BE=CE=12BC.三角形的角平分线三角形一个内角的平分线与它的对边相交,这个角的顶点与交点间的线段叫做三角形的角平分线∵AF是△ABC的∠BAC的角平分线,∴∠BAF=∠CAF=12BAC锐角三角形的三条高交于同一点.(4)锐角三角形的三条高是在三角形的内部还是外部?锐角三角形的三条高都在三角形的内部.(5)画出直角三角形的三条高,它们有怎样的位置关系?直角三角形的三条高交于直角顶点.直角边BC边上的高是AB;直角边AB边上的高是CB;斜边AC边上的高是BD.(6)钝角三角形的三条高交于一点吗?钝角三角形的三条高不相交于一点.(7)它们所在的直线交于一点吗?钝角三角形的三条高所在直线交于一点.学生操作,观察,交流,归纳.归纳:三角形的三条高的特性:锐角三角形直角三角形钝角三角形高在三角形内部的数量 3 1 1 高之间是否相交相交相交不相交高所在的直线是否相交相交相交相交三条高所在直线的交点的位置三角形内部直角顶点三角形外部三角形的三条高所在直线交于一点.在此过程中,教师要关注学生能否正确地画出钝角三角形的高,这是本节课的难点. 设计意图:通过学生的动手操作、交流,讨论掌握三角形高线的画法,通过进一步观察,归纳得出三角形高线的特性.3.类似地,要求学生按照三角形中线与角平分线线的定义分别画出锐角三角形、直角三角形、钝角三角形的中线与角平分线,观察各个图形间的相同或不同点,并要求学生进行归纳.结论:三角形的三条中线在三角形的内部交于一点.结论:三角形的三条角平分线在三角形的内部交于一点.设计意图:类比三角形的高的探究,得出三角形中线、角平分线的画法和相关性质,培养学生的观察与概括能力,体验学习数学的过程.(三)课堂练习1.三角形的三条高在( ).A .三角形的内部B .三角形的外部C .三角形的边上D .三角形的内部、外部或边上2.如图,BO ,CO 分别平分∠ABC 和∠ACB ,∠A =40°,则∠BOC = .3.如图,AD 是△ABC 的中线,则ABD S △ ACD S △.学生独立完成.答案:1.D.2.110°.3.=.设计意图:通过练习,加深对三角形的高、中线、角平分线的认识.六、课堂小结1.三角形的高、中线、角平分线等有关概念及它们的画法.2.三角形的高、中线、角平分线的几何表达及简单应用.注意:(1)每个三角形都有三条高、三条中线、三条角平分线.(2)三角形的三条高交于一点:锐角三角形的高交于三角形内一点,直角三角形的高交于直角的顶点,钝角三角形的高交于三角形外一点.三角形的三条中线交于三角形内一点,三角形的三条角平分线也交于三角形内一点.(3)三角形的高、中线、角平分线都是线段.(4)能将三角形的面积平均分成两部分的线是三角形的中线.设计意图:通过小结,使学生梳理本节所学内容,培养学生总结概括的能力.七、板书设计11.1.2三角形的高、中线与角平分线三角形的高:从三角形的一个顶点向它的对边所在直线作垂线段,顶点和垂足之间的线段叫做三角形的高三角形的中线:三角形中,连接顶点和对边中点的线段叫做三角形的中线三角形的角平分线:三角形一个内角的平分线与它的对边相交,这个角的顶点与交点间的线段叫做三角形的角平分线三角形的高、中线、角的平分线的作法。
三角形的高中线角平分线教案
三角形的高中线角平分线教案目标(1)知识与技能目标:通过观察、画、折等实践操作、想像、推理、交流等过程,认识三角形的高线、角平分线、中线;会画出任意三角形的高线、角平分线、中线,通过画图、折纸了解三角形的三条高线、三条角平分线、三条中线会交于一点.(2)过程与方法目标:经历画、折等实践操作活动过程,发展学生的空间观念,推理能力及创新精神.学会用数学知识解决实际问题能力,发展应用和自主探究意识,并培养学生的动手实践能力.(3)情感与态度目标:通过对问题的解决,使学生有成就感,培养学生的合作精神,树立学好数学的信心.教案重点能够正确地画出三角形的“高”、“角平分线”和“中线”,并理解它们概念的含义、联系和区别.教案难点在钝角三角形中作高.教案过程本节课按照“创设情境,引入新课”——“合作交流,探求新知”——“拓展创新,挑战自我”——“课堂小结,感悟反思”——“走出课堂,应用数学”的流程展开.合作交流探究新知(一)探究角形的高教案环节1 .三角形高的定义:(你能描述三角形的高吗?)三角形的高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.如图,在△ ABC中,AD丄BC,点D是垂足,AD是厶ABC的一条高.2 .做一做:(每一个同学准备一个锐角三角形的纸片)你能画出这个三角形的三条高吗?你能用折纸的方法得到它们吗?从这三条高中你发现了什么?(这三条高之间有怎样的位置关系)((可以反过来画好高后,找哪条边上高))3 .议一议:(使折痕过顶点,,顶点的对边边缘重合)如果用直角三角形和钝角三角形纸片,你能通过折或画的方法找到它的高吗?它们的高有几条?它们又有什么样的位置关系?4 .练一练:(1)AD 为.\ABC 的高,则.ADB ==B L __ □—(2)如果一个三角形的三条高的交点恰是三角形的一个顶点,‘那么这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.锐角三角形教案过程借助学生对问题的解决,唤醒学生对三角形的高的认识与确认,有助于新知的解决,并且发展学生的观察力与语言表述能力.通过折或画出三角形的高,提高学生的基本作图能力,发展其空间观念.小组合作交流,并通过观察、猜想经历知识的发展形成过程,体验了“发现”知识的快乐,变被动接受为主动探究.设计练习,使学生对三角形高的的有关知识加以巩固,让学生从运用所学知识解决问题的过程,获得成功的体验,从而激发他们学习的积极性.设计意图合作交流探究新知(二)活动3(三)探究角形的角平问题1你能将ABC分为面积相等的两个三角形吗?(引出三角形中线)1 .三角形中线的定义:三角形的中线:在三角形中,连接一个顶点与它对边的中点的线段,叫做这个三角形的中线.)如图,D是BC的中点,则线段人。
苏教版数学四下《三角形的高》教案
苏教版数学四下《三角形的高》教案一. 教材分析苏教版数学四年级下册《三角形的高》一课,是在学生已经掌握了三角形的基本概念和性质的基础上进行教学的。
本节课主要让学生了解三角形的高的概念,学会用三角板和直尺画三角形的高,并能正确计算三角形的高。
通过本节课的学习,使学生进一步理解三角形的特点,提高解决实际问题的能力。
二. 学情分析四年级的学生已经具备了一定的空间观念和几何知识,对于三角形的基本概念和性质有一定的了解。
但是,对于三角形的高的概念和求法还比较陌生,需要通过实践操作和讲解来加深理解。
此外,学生的学习习惯和动手操作能力参差不齐,需要在教学中给予个别指导和关注。
三. 教学目标1.知识与技能:学生能够理解三角形的高的概念,学会用三角板和直尺画三角形的高,并能正确计算三角形的高。
2.过程与方法:通过观察、操作、讨论等环节,培养学生的空间观念和几何思维能力。
3.情感态度与价值观:学生能够积极参与数学学习,体验成功的喜悦,培养合作意识和解决问题的能力。
四. 教学重难点1.重点:学生能够理解三角形的高的概念,学会用三角板和直尺画三角形的高,并能正确计算三角形的高。
2.难点:学生能够理解三角形的高的性质,解决实际问题。
五. 教学方法1.情境教学法:通过设置情境,引导学生观察、思考、操作,激发学生的学习兴趣。
2.合作学习法:引导学生分组讨论、合作交流,培养学生的团队精神和解决问题的能力。
3.实践操作法:让学生动手操作,直观地感受三角形的高的概念和求法。
六. 教学准备1.教具:三角板、直尺、多媒体课件。
2.学具:每个学生准备一套三角板、直尺、练习纸。
七. 教学过程导入(5分钟)教师通过课件展示三角形的高的图片,引导学生观察并提问:“你们知道三角形的高是什么吗?”让学生回顾三角形的高的概念。
呈现(10分钟)教师通过讲解和示范,讲解三角形的高的概念和求法。
讲解三角形的高是指从三角形的顶点到对边的垂线段,并用三角板和直尺演示如何画三角形的高。
七年级数学下册《7.1.2三角形的高、中线与角平分线》教案 人教新课标版
三角 形的中线
连结ΔABC的顶点A和它所对的边BC的中点D,线段AD叫做ΔABC的边BC上的中线。
(1)画出ΔABC的另外两边上的中线;(2)说出哪条线段是ΔABC的哪条边上的中线;观察ΔABC的三条中线,说说你的发现。
把刚才的锐角三角形换成直角三角 形或钝角三角形,结果又怎么样呢?
①AD是⊿ABE的角平分线( )②BE是⊿ABD边AD上的中线( )
③BE是⊿ABC边AC上的中线( )④CH是⊿ACD边AD上的高( )
六、课堂小结:1、本节课你有哪些收获?你还有哪些疑惑?
①三角形的高:②三角形的中线③三角形的角平分线
七、作业:69页ቤተ መጻሕፍቲ ባይዱ3、8题
师提出问题,学生思考后师生共同完成
生自学课本师生对照课件共同学习三角形的高、中线、角平分线
三角形的三条角平分线在三角形的内部交 于一点
小结:①任何三角形有三条角平分线,并且都在三角形的内部,交于 一点。②三角形的角平分线线是一条线段。而角平分线是 一条射线。
三、应用举例:填空:(1)如图(1),AD,BE,CF是ΔABC的三条中线, 则AB=2,BD=,AE=
2)如图(2),AD,BE,CF是ΔABC的三条角平分线,则∠1=,∠3=,∠ACB=2。
四、巩固练习:
如图,在ΔABC中,AE是中线,AD是角平分线,AF是高。填空:
(1)BE== ;
(2)∠BAD==;
(3)∠AFB==90°;
(4)SΔABC=
五、自我检测:如图,在⊿ABC中,∠1=∠2,G为AD中点,延长BG 交AC于E,F为AB上一点,CF⊥AD于H,判断下列说法那些是正确的,哪些是错误的.
三角形的高、中线、角平分线教案
三角形的高、中线、角平分线教案章节一:三角形的高教学目标:1. 理解三角形高的概念,掌握三角形高的作法。
2. 能够运用三角形高解决实际问题。
教学内容:1. 三角形高的定义:从三角形的顶点向对边作垂线,顶点到垂足之间的线段称为三角形的高。
2. 三角形高的作法:a. 以一条边为底,作这条边的垂直平分线。
b. 垂直平分线与对边相交,交点即为垂足。
c. 连接顶点与垂足,即为所求的高。
教学活动:1. 导入:通过举例说明三角形高的概念,引导学生思考三角形高的作用。
2. 讲解:结合图形,讲解三角形高的定义和作法。
3. 练习:让学生独立完成一些三角形高的作图练习,巩固所学内容。
章节二:三角形的中线教学目标:1. 理解三角形中线的概念,掌握三角形中线的性质和作法。
2. 能够运用三角形中线解决实际问题。
教学内容:1. 三角形中线的定义:连接三角形的一个顶点与对边中点的线段称为三角形的中线。
2. 三角形中线的性质:a. 三角形的中线等于第三边的一半。
b. 三角形的中线平行于第三边,并且等于第三边的一半。
教学活动:1. 导入:通过举例说明三角形中线的概念,引导学生思考三角形中线的作用。
2. 讲解:结合图形,讲解三角形中线的定义、性质和作法。
3. 练习:让学生独立完成一些三角形中线的作图练习,巩固所学内容。
章节三:三角形的角平分线教学目标:1. 理解三角形角平分线的概念,掌握三角形角平分线的性质和作法。
2. 能够运用三角形角平分线解决实际问题。
教学内容:1. 三角形角平分线的定义:从三角形的顶点出发,将顶点与对边连接,并把这条线段分为两部分,使这两部分的长度相等的线段称为三角形的角平分线。
2. 三角形角平分线的性质:a. 三角形的角平分线与对边相交,交点将对边分为两部分,这两部分的长度相等。
b. 三角形的角平分线将顶点的角平分为两个相等的角。
教学活动:1. 导入:通过举例说明三角形角平分线的概念,引导学生思考三角形角平分线的作用。
人教初中数学八上《第2课时 三角形的高、中线与角平分线》教案 (公开课获奖)
三角形的高、中线与角平分线教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+教研组审阅 意见及建议(2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、(1)2x (2)ba ab- (3)3 五、1.(1)22yx xy- (2)21-a (3)z 1 2.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标(一)教学知识点1.等腰三角形的概念. 2.等腰三角形的性质.3.等腰三角形的概念及性质的应用. (二)能力训练要求1.经历作(画)出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点. 2.探索并掌握等腰三角形的性质. (三)情感与价值观要求通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质. 2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用. 教学方法 探究归纳法. 教具准备师:多媒体课件、投影仪; 生:硬纸、剪刀. 教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是.[师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.ABICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,则可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.(演示课件)1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴.[师]你们说的是同一条直线吗?大家来动手折叠、观察.[生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高. [师]很好,大家看屏幕. (演示课件)等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程). (投影仪演示学生证明过程)[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD (SSS ). 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD .所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范.下面我们来看大屏幕.(演示课件)[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. (课件演示)[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD (等边对等角).设∠A=x ,则∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.D CA BD CABDC A B在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来巩固这节课所学的知识. Ⅲ.随堂练习(一)课本练习 1、2、3. 练习1. 如图,在下列等腰三角形中,分别求出它们的底角的度数.(2)120︒36︒(1)答案:(1)72° (2)30° 2.如图,△ABC 是等腰直角三角形(AB=AC ,∠BAC=90°),AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?DCAB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和∠C 的度数.答:∠B=77°,∠C=38.5°.(二)阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业(一)习题13.3 第1、3、4、8题. (二)1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .D C ABEDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC .∴∠P=∠ACD . 又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .同理可证:AE=DE .∴AE=C E .板书设计一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一 三、例题分析 四、随堂练习 五、课时小结 六、课后作业 备课资料 参考练习1.如果△ABC 是轴对称图形,则它的对称轴一定是( ) A .某一条边上的高 B .某一条边上的中线 C .平分一角和这个角对边的直线 D .某一个角的平分线 2.等腰三角形的一个外角是100°,它的顶角的度数是( ) A .80° B .20° C .80°和20° D .80°或50° 答案:1.C 2.C3. 已知等腰三角形的腰长比底边多2 cm ,并且它的周长为16 cm .求这个等腰三角形的边长. 解:设三角形的底边长为x cm ,则其腰长为(x+2)cm ,根据题意,得 2(x+2)+x=16.解得x=4.所以,等腰三角形的三边长为4 cm 、6 cm 和6 cm .15.2.2 分式的加减E DC A B P教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案: 四、(1)2x (2)ba ab- (3)3 五、1.(1)22yx xy- (2)21-a (3)z 1 2.原式=422--a a ,当=a -1时,原式=-31.。
三角形的高、中线和角平分线教案
7.1.2三角形的高、中线与角平分线教案【教学重点与难点】教学重点:1.了解三角形的高、中线与角平分线的概念.2.能利用三角形的高、中线和角平分线的性质进行简单计算.教学难点:1.能用自己的语言说出三角形高、中线与角平分线的概念.2.熟练运用三角形的高、中线和角平分线的性质进行有关计算.【教学目标】1.了解三角形的高、中线与角平分线的概念2.准确区分三角形的高、中线与角平分线.3.能够独立完成与三角形的高、中线和角平分线有关的计算.【教学方法】以学生实践为主,在已学内容的基础上进行更进一步的探究,从而发现新的结论,以此培养学生发现和解决问题的能力.【教学过程】一.回顾旧知(设计说明:通过对已学知识的回忆来巩固基础知识的运用,并借此引入新课.)问题1:数一数,图中共有多少个三角形?请将它们全部用符号表示出来.学生回答:图中共有5个三角形.它们分别是:△ABC、△ABD、△ACD、△ADE、△CDE.问题2:利用长为3、5、6、9的四条线段可以组成几个三角形?为什么?学生回答:可以组成2个三角形.从四条线段中任选三条组成三角形,共有四种选法:①3、5、6,②3、5、9,③3、6、9,④5、6、9,其中,满足“三角形两边之和大于第三边”的只有第①、④这两组.问题3:利用△ABC的一条边长为4cm,面积是24 cm2这两个条件,你能求出什么结论?学生回答:能够求出的△ABC高是3 cm.(教学说明:教师利用问题让学生回顾所学知识,特别是问题3内容的变化,可以引起学生注意和疑问,将学生的思路引入与三角形有关的线段中.)二、自主探究1.通过作图探索三角形的高(设计说明:通过经历画三角形的高的过程,使学生在头脑中留下清晰形象,并能结合这些具体形象叙述高的定义.)问题1:你能画出下列三角形的所有的高吗?学生画出三角形所有的高,观察这些高的特点.问题2:根据画高的过程说明什么叫三角形的高?学生讨论回答,师完善并归纳:从三角形的一个顶点向它的对边所在直线作垂线,连接顶点和垂足之间的线段称为三角形的高.问题3:在这些三角形中你能画出几条高?它们有什么相同点和不同点?学生回答:每个三角形都能画出三条高.相同点是:三角形的三条高交于同一点.不同点是:锐角三角形的高交于三角形内一点,直角三角形的高交于直角的顶点,钝角三角形的高交于三角形外一点.问题4:如图所示,如果AD是△ABC的高,你能得到哪些结论?学生回答:如果AD是△ABC的高,则有:AD⊥BC于D,∠ADB=∠ADC=90°.(教学说明:三角形的高的概念在书中并没有具体给出,所以学生在归纳定义的时候会有一定的困难.那么在授课时就要留给学生充足的时间进行思考和讨论,教师可以引导学生先利用具体图形进行定义,再由具体图形中抽出准确、简明的语言,同时要强调:三角形的高是一条线段.在问题3中,有些学生会认为直角三角形只能画出斜边上的一条高,这时教师要给予讲解,说明另外两条直角边也是这个直角三角形的高.而问题4是要将三角形的高用符号语言表示出来,这是为以后学习证明打基础.)2.类比探索三角形的高的过程探索三角形的中线(设计说明:利用类比的方法进行探索,可以留给学生更多思考与探究的空间,有得于拓展学生的思维,培养学生自主探究的学习习惯.)问题1:如图,如果点C是线段AB的中点,你能得到什么结论?学生回答:.问题2:如图,如果点D是线段BC的中点,那么线段AD就称为△ABC 的中线.类比三角形的高的概念,试说明什么叫三角形的中线?由三角形的中线能得到什么结论?学生回答:三角形中连结一个顶点和它对边中点的线段称为三角形的中线.如果线段AD是△ABC的中线,那么.问题3:画出下列三角形的所有的中线,并讨论说明三角形的中线有什么特点?学生回答:无论哪种三角形,它们都有三条中线,并且这三条中线都会交于一点,这一点都在三角形的内部.问题4:如图所示,在△ABC中,AD是△ABC的中线,AE是△ABC的高.试判断△ABD和△ACD的面积有什么关系?为什么?学生回答:△ABD和△ACD的面积相等.理由:∵AD是△ABC的中线∴BD=CD∵AE既是△ABD的高,也是△ACD的高∴△ABD和△ACD的面积相等.问题5:通过问题4你能发现什么规律?学生回答:三角形的中线将三角形的面积平均分成两份.(教学说明:让学生利用对三角形的高的探究过程,利用类比的方法进行对三角形的中线的探究.“类比思想”是数学学习中常用的一种思想,所以在授课过程中要让学生体会运用这种思想进行探究的好处,培养自主探究的能力.问题4和问题5的设立是对三角形中线的知识进行扩展,并不是教科书中的内容,但能够使学生更深刻地体会三角形中线的特点,同时,根据课堂时间的需要,对于这两个问题的讲授,教师可以自行调节.)3.通过类比的方法探究三角形的角平分线(设计说明:再次使用类比的方法进行探究,让学生经历动脑思考探索的过程,对知识有进一步的理解.)问题1:如图,若OC是∠AOB的平分线,你能得到什么结论?学生回答:.问题2:如图,在△ABC中,如果∠BAC的平分线AD交BC边于点D,我们就称AD是△ABC的角平分线.类比探索三角形的高和中线的过程,你能得到哪些结论?三角形的角平分线与角的角平分线相同吗?为什么?学生回答:三角形一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段称为三角形的角平分线.三角形有三条角平分线,并且这三条角平分线在三角形内交于一点.如果AD是△ABC的角平分线,那么就有.三角形的角平分线与一个角的角平分线不一样,三角形的角平分线是一条线段,有长度,而角的平分线是一条射线,没有长度.(教学说明:对于三角形的角平分线的探究,教师要给学生足够的空间和时间,如果漏下了哪一点没有探究到,教师可以给予提示.)三、尝试应用(设计说明:通过比较练习,帮助学生掌握三角形的高、中线和角平分线的基本性质,熟练基本技能.)练习1:如图,在△ABC中画出这个三角形的高BD,中线CE和角平分线BF.练习2:如图,已知AD,BE,CF都是△ABC的三条中线.则AE= =,BC=2 ,AF= .学生:CE,AC,BD或CD,BF.练习3:如图,已知AD,BE,CF都是△ABC的三条角平分线.则∠1=,∠2= =,∠ABC=2 .学生:∠BAC,∠3,∠ACB,∠4或∠ABE.练习3:如图,△ABC中,AC=12 cm,BC=18 cm,△ABC的高AD与BE 的比是多少?学生:解:由三角形的面积公式得所以有解得(教学说明:练习的设计以基础知识为主,要让学生独立完成.而练习3是所学知识的一个应用,要让学生有利用面积求高的意识,开阔思路.)四、成果展示(设计说明:围绕三个问题,师生以谈话交流的形式,共同总结本节课的学习收获。
《三角的高、中线与角平分线》 教案精品 2022年数学
11.1.2三角形的高、中线与角平分线1.掌握三角形的高、中线和角平分线的定义,并能够对其进行简单的应用.(重点) 2.能够准确的画出三角形的高、中线和角平分线.(难点)一、情境导入这里有一块三角形的蛋糕,如果兄弟两个想要平分的话,你该怎么办呢?本节我们一起来解决这个问题.二、合作探究探究点一:三角形的高【类型一】三角形高的画法画△ABC的边AB上的高,以下画法中,正确的选项是( )解析:三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段.根据概念可知.解:过点C作边AB的垂线段,即画AB边上的高CD,所以画法正确的选项是D.应选D.方法总结:三角形任意一边上的高必须满足:(1)过该边所对的顶点;(2)垂足必须在该边或在该边的延长线上.【类型二】根据三角形的面积求高如下图,在△ABC 中,AB =AC =5,BC =6,AD ⊥BC 于点D ,且AD =4,假设点P 在边AC 上移动,那么BP 的最小值为________.解析:根据垂线段最短,可知当BP ⊥AC 时,BP 有最小值.由△ABC 的面积公式可知12AD ·BC=12BP ·AC ,解得BP =245. 方法总结:解答此题可利用面积相等作桥梁(但不求面积)求三角形的高,这种解题方法通常称为“面积法〞.探究点二:三角形的中线【类型一】 应用三角形的中线求线段的长在△ABC 中,AC =5cm ,AD 是△ABC 的中线,假设△ABD 的周长比△ADC 的周长大2cm ,那么BA =________.解析:如图,∵AD 是△ABC 的中线,∴BD =CD ,∴△ABD 的周长-△ADC 的周长=(BA +BD +AD )-(AC +AD +CD )=BA -AC ,∴BA -5=2,∴BA =7cm.方法总结:通过此题要理解三角形的中线的定义,解决问题的关键是将△ABD 与△ADC 的周长之差转化为边长的差.【类型二】 利用中线解决三角形的面积问题如图,在△ABC 中,E 是BC 上的一点,EC =2BE ,点D 是AC 的中点,设△ABC ,△ADF 和△BEF 的面积分别为S △ABC ,S △ADF 和S △BEF ,且S △ABC =12,那么S △ADF -S △BEF =________.解析:∵点D 是AC 的中点,∴AD =12AC .∵S △ABC =12,∴S △ABD =12S △ABC =12×12=6.∵EC =2BE ,S△ABC=12,∴S△ABE=13S△ABC=13×12=4.∵S△ABD-S△ABE=(S△ADF+S△ABF)-(S△ABF+S△BEF)=S△ADF-S△BEF,即S△ADF-S△BEF=S△ABD-S△ABE=6-4=2.故答案为2.方法总结:三角形的中线将三角形分成面积相等的两局部;高相等时,面积的比等于底边的比;底相等时,面积的比等于高的比.探究点三:三角形的角平分线如图,:AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=40°,求∠ADB的度数.解析:根据AD是△ABC的角平分线,∠BAC=60°,得出∠BAD=30°,再利用CE是△ABC 的高,∠BCE=40°,得出∠B的度数,进而得出∠ADB的度数.解:∵AD是△ABC的角平分线,∠BAC=60°,∴∠DAC=∠BAD=30°.∵CE是△ABC 的高,∠BCE=40°,∴∠B=50°,∴∠ADB=180°-∠B-∠BAD=180°-50°-30°=100°.方法总结:通过此题要灵活掌握三角形的角平分线的表示方法,同时此类问题往往和三角形的高综合考查.三、板书设计三角形的高、中线与角平分线1.三角形的高:从三角形的一个顶点向它的对边作垂线,顶点和垂足间的线段叫做三角形的高.2.三角形的中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.3.三角形的角平分线:三角形的一个角的平分线与这个角的对边相交,连接这个角的顶点与交点的线段叫做三角形的角平分线.本节课由实际问题“平分三角形蛋糕〞引入,让学生意识到数学与实际生活的密切联系,明确数学来源于实践应用于实践,进而学习用数学方法解决实际问题.然后从画图入手,分三种情况:即锐角三角形、直角三角形和钝角三角形,培养学生形成分类讨论思想,同时,可以在学生头脑中对这三种线段留下清晰的形象,然后结合这些具体形象表达它们的定义以及表示方法,最后通过例题进一步稳固.15.1.2分式的根本性质1.通过类比分数的根本性质,说出分式的根本性质,并能用字母表示.(重点)2.理解并掌握分式的根本性质和符号法那么.(难点)3.理解分式的约分、通分的意义,明确分式约分、通分的理论依据.(重点)4.能正确、熟练地运用分式的根本性质,对分式进行约分和通分.(难点)一、情境导入中国古代的数学论著中就有对“约分〞的记载,如?九章算术?中就曾记载“约分术〞,并给出了详细的约分方法,这节课我们就来学习分式化简的相关知识,下面先来探索分式的根本性质.二、合作探究探究点一:分式的根本性质【类型一】利用分式的根本性质对分式进行变形以下式子从左到右的变形一定正确的选项是( )A.a+3b+3=abB.ab=acbcC.3a3b=abD.ab=a2b2解析:A中在分式的分子与分母上同时加上3不符合分式的根本性质,故A错误;B中当c=0时不成立,故B错误;C中分式的分子与分母同时除以3,分式的值不变,故C正确;D中分式的分子与分母分别乘方,不符合分式的根本性质,故D错误;应选C.方法总结:考查分式的根本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.【类型二】不改变分式的值,将分式的分子、分母中各项系数化为整数不改变分式0.2x +12+0.5x的值,把它的分子、分母的各项系数都化为整数,所得结果正确的为( )A.2x +12+5xB.x +54+x C.2x +1020+5x D.2x +12+x解析:利用分式的根本性质,把0.2x +12+0.5x 的分子、分母都乘以10得2x +1020+5x .应选C.方法总结:观察分式的分子和分母,要使分子与分母中各项系数都化为整数,只需根据分式的根本性质让分子和分母同乘以某一个数即可.【类型三】 分式的符号法那么不改变分式的值,使以下分式的分子和分母都不含“-〞号. (1)-3b 2a ;(2)5y -7x 2;(3)-a -2b 2a +b. 解析:在分子的符号,分母的符号,分式本身的符号三者当中同时改变其中的两个,分式的值不变.解:(1)原式=-3b 2a ;(2)原式=-5y 7x 2;(3)原式=-a +2b 2a +b.方法总结:这类题目容易出现的错误是把分子的符号,分母的项的符号,特别是首项的符号当成分子或分母的符号.探究点二:最简分式、分式的约分和通分 【类型一】 判定分式是否是最简分式以下分式是最简分式的是( ) A.2a 2+a ab B.6xy 3aC.x 2-1x +1D.x 2+1x +1解析:A 中该分式的分子、分母含有公因式a ,那么它不是最简分式.错误;B 中该分式的分子、分母含有公因数3,那么它不是最简分式.错误;C 中分子为(x +1)(x -1),所以该分式的分子、分母含有公因式(x +1),那么它不是最简分式.错误;D 中该分式符合最简分式的定义.正确.应选D.方法总结:最简分式的标准是分子,分母中不含公因式.判断的方法是把分子、分母分解因式,并且观察有无公因式.【类型二】 分式的约分约分:(1)-5a 5bc 325a 3bc 4;(2)x 2-2xyx 3-4x 2y +4xy 2. 解析:先找分子、分母的公因式,然后根据分式的根本性质把公因式约去. 解:(1)-5a 5bc 325a 3bc 4=5a 3bc 3〔-a 2〕5a 3bc 3·5c =-a25c; (2)x 2-2xy x 3-4x 2y +4xy 2=x 〔x -2y 〕x 〔x -2y 〕2=1x -2y. 方法总结:约分的步骤:(1)找公因式.当分子、分母是多项式时应先分解因式;(2)约去分子、分母的公因式.【类型三】 分式的通分通分: (1)b 3a 2c 2,c -2ab ,a5cb 3; (2)1a 2-2a ,a a +2,1a 2-4. 解析:确定最简公分母再通分.解:(1)最简公分母为30a 2b 2c 2,b 3a 2c 2=10b 430a 2b 3c 2,c -2ab =-15ab 3c 330a 2b 3c 2,a 5cb 3=6a 3c30a 2b 3c2;(2)最简公分母为a (a +2)(a -2),1a 2-2a =a 2+2a a 〔a +2〕〔a -2〕,aa +2=a 3-2a 2a 〔a +2〕〔a -2〕,1a 2-4=aa 〔a +2〕〔a -2〕.方法总结:通分的一般步骤:(1)确定分母的最简公分母.(2)用最简公分母分别除以各分母求商.(3)用所得到的商分别乘以分式的分子、分母,化成同分母的分式.三、板书设计分式的根本性质1.分式的根本性质:分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变.2.符号法那么:分式的分子、分母及分式本身,任意改变其中两个符号,分式的值不变;假设只改变其中一个的符号或三个全变号,那么分式的值变成原分式值的相反数.本节课的流程比拟顺畅,先探究分式的根本性质,然后顺势探究分式变号法那么.在每个活动中,都设计了具有启发性的问题,对各个知识点进行分析、归纳总结、例题示范、方法指导和变式练习.一步一步的来完成既定目标.整个学习过程轻松、愉快、和谐、高效.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.3 三角形的高
一、背景介绍及教学资料
这节课是在学生学习了三角形的角平分线、中线之后安排的,这样安排一方面是学生已掌握了三角形的角平分线、中线的画法,降低了学生对三角形高线的画法的难度。
特别是钝角三角形的三条高线的画法;另一方面有利于学生系统地理解三角形中这三种重要的线段,也有利于后续知识(特殊三角形、全等三角形、相似三角形)的系统学习。
有关资料可以查阅初中数学网。
(/index.asp)
二、教学设计
教学内容分析
本节课内容有三角形的高的概念,锐角三角形、钝角三角形及直角三角形的三种高线的画法,三角形高线性质的应用等,是一节概念课,也是一节应用课。
对三角形高的概念的理解是关键,它将直接影响到不同类型的三角形高的画法,以及三角形高的性质在解题过程中的应用。
教学目标:
1.经历折纸和画图等实践过程,认识三角形的高,培养学生动手操作能力。
2.会画任意三角形的高。
3.通过新旧知识的认知冲突,激发学生求知欲望,树立认识来源于实践,又服务于实践的观点。
教学重点、难点
重点:三角形高的概念,会画出任意三角形的三条高,了解三角形三条高的位置会随着三角形的形状改变而改变。
难点:钝角三角形高的画法。
教学准备:一张锐角三角形纸片三角板量角器
教学过程:
设计思路:
从复习三角形的中线和角平分线的概念和性质,到复习过一点如何作一条已知直线的垂线后,引出三角形高的概念,做到以旧带新,符合学生的认识规律。
掌握三角形的三条高的画法,
特别是掌握直角三角形和钝角三角形的三条高的画法有一定的难度,教师应给学生以充足的时间
和空间,让他们在自主探讨和合作交流的过程中,真正理解和掌握基本的知识与技能,数学思想与方法,使他们体验成功的喜悦。
教师不仅要激发学生的学习兴趣,而且要对学生的画法进行必
要的指导,使学生能逐步改进获取知识的方法,充分体现了交互式学习的新理念。
教学后记:
锐角三角形和直角三角形的高掌握得较好。
钝角三角形的高,特别是钝角边上的两条高较差。