等线段共端点模型,四点共圆模型的经典例题及答案

合集下载

四点共圆精选习题及答案

四点共圆精选习题及答案

四点共圆精选习题及答案作为一种古老而神秘的数学理论,圆形一直是数学家们探究和研究的对象之一。

而在圆形领域中,四点共圆更是一个受到广泛关注和深入研究的问题。

四点共圆是指在平面上给出任意四个点,能否通过一个圆将这四个点完美地围起来。

今天我们精选了几个四点共圆的习题,希望能给大家带来一些启示。

题目一:已知在平面直角坐标系中,四点 A(0,0),B(0,2),C(4,0),D(x,y)。

若四点在同一圆上,则点 D 的坐标为多少?解题思路:根据四点共圆基本知识,可以列出以下方程组:(x-2)²+y²=r²x²+(y-2)²=r²(x-4)²+y²=r²x²+y²=r²将方程组联立,消去 r,最终得到 x²+y²=5²,即点 D 的坐标为(3,4)或(−3,4)。

题目二:在平面直角坐标系中,四个点 A,B,C,D 分别为(7,0),(0,7),(−7,0) 和(0,−7)。

请证明:四点共圆。

解题思路:根据四点共圆定理,四个点共圆当且仅当它们构成的任意三角形的外接圆都存在。

可得三个三角形 ABC、ACD 和ABD 的外接圆都是以原点为圆心的半径为7 的圆,因此四点 A、B、C、D 构成的圆也一定存在。

题目三:在平面直角坐标系中,四点 A,B,C,D 分别为(−3,4),(−4,−3),(4,−3) 和(−1,−2)。

请计算过点 C 的直径的长度。

解题思路:通过计算可以知道,连接点 C 和其他三个点构成的三角形外接圆的圆心坐标分别为(−1,−1)、(−1,0) 和 (0,1),因此过点 C 的直径所在的直线应为直线 y=x-1。

可得直线 y=x-1 与直线x=4、直线x=−3 和直线y=−3 的交点分别为 (4, 3)、(−3,−4) 和(0,−1),因此该直径的长度为√145。

专题3.8 四点共圆(隐圆压轴五)(解析版)

专题3.8 四点共圆(隐圆压轴五)(解析版)

∴DG=CG﹣CD= = ,
在 Rt△ADG 中,由勾股定理得







故答案为:6,

【变式 1-5】如图,AB⊥BC,AB=5,点 E、F 分别是线段 AB、射线 BC 上的动 点,以 EF 为斜边向上作等腰 Rt△DEF,∠D=90°,连接 AD,则 AD 的最 小值为 .
【答案】 . 【解答】解:连接 BD 并延长,如图,
模型解读:
模型 1:对角互补型: 若∠A+∠C=180º或∠B+∠D=180º, 则 A、B、C、D 四点共圆 模型 2:同侧等角型 (1)若∠A=∠C, 则 A、B、C、D 四点共圆
(2)手拉手(双子型)中的四点共圆 条件:△OCD∽△OAB 结论:①△OAC∽△OBD ②AC 与 BD 交于点 E,必有∠AEB=∠AOB; ③点 E 在△OAB 的外接圆上,即 O、A、B、E 四点共圆.同理:ODCE 也四点共圆.
∴S△ABC=

=300 km2.
则当△ADC 的面积最大时,四边形 ABCD 的面积最大.
当 AD=CD 时,DF 最大,此时四边形 ABCD 的面积最大.
在 Rt△ACE 中,AC=
=10 km,AF= AC=5
km,
∵∠ADF=
=30°,
∴DF= AF=5 km,
∴S△ADC=
Hale Waihona Puke ==925 km2.
C.15
【答案】C
【解答】解:∵∠BAC=60°,∠BDC=120°,
∴A、E、D、F 四点共圆,
∵AD 平分∠BAC,
∴∠DAE=∠DAF,
∴DE=DF=6,

专题11四点共圆模型-【压轴必刷】2023年中考数学压轴大题之经典模型培优案(全国通用)(解析版)

专题11四点共圆模型-【压轴必刷】2023年中考数学压轴大题之经典模型培优案(全国通用)(解析版)

【压轴必刷】2023年中考数学压轴大题之经典模型培优案专题11四点共圆模型模型1:定点定长共圆模型若四个点到一个定点的距离相等,则这四个点共圆.如图,若OA =OB =OC =OD ,则A ,B ,C ,D 四点在以点O 为圆心、OA 为半径的圆上.模型2:对角互补共圆模型2.若一个四边形的一组对角互补,则这个四边形的四个顶点共圆.如图,在四边形ABCD 中, 若∠A +∠C =180°(或∠B +∠D =180°)则A ,B ,C ,D 四点在同一个圆上.拓展:若一个四边形的外角等于它的内对角,则这个四边形的四个顶点共圆.如图,在四边形ABCD 中,∠CDE 为外角,若∠B =∠CDE ,则A ,B ,C ,D 四点在同一个圆上.模型3:定弦定角共圆模型若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线段的两个端点共圆如图,点A ,D 在线段BC 的同侧,若∠A =∠D ,则A ,B ,C ,D 四点在同一个圆上.DDD【例1】(2021·全国·九年级课时练习)在边长为12cm的正方形ABCD中,点E从点D出发,沿边DC以1cm/s的速度向点C运动,同时,点F从点C出发,沿边CB以1cm/s的速度向点B运动,当点E达到点C 时,两点同时停止运动,连接AE、DF交于点P,设点E. F运动时间为t秒.回答下列问题:(1)如图1,当t为多少时,EF的长等于(2)如图2,在点E、F运动过程中,①求证:点A、B、F、P在同一个圆(⊙O)上;②是否存在这样的t值,使得问题①中的⊙O与正方形ABCD的一边相切?若存在,求出t值;若不存在,请说明理由;③请直接写出问题①中,圆心O的运动的路径长为_________.(2)①由(1)可得AB=CD=BC=AD=12cm,∠C=∠B=∠ADC=∠DAB=90°,DE=CF=t,∴△ADE≌△DCF,∴∠CDF=∠DAE,∵∠CDF+∠PDA=90°,∴∠DAE+∠PDA=90°,∴∠ADP=∠APF=90°,∴∠APF+∠B=180°,由四边形APFB内角和为360°可得:∠PAB+∠PFB=180°,∴点A、B、F、P在同一个圆(⊙O)上;②由题意易得:当⊙O与正方形ABCD的一边相切时,只有两种情况;a、当⊙O与正方形ABCD的边AD相切时,如图所示:由题意可得AB为⊙O的直径,∴t=12;b、当⊙O与正方形ABCD的边DC相切于点G时,连接OG并延长交AB于点M,过点O作OH⊥BC交BC于点H,连接OF,如图所示:∴OG⊥DC,GM⊥AB,HF=HB,∴四边形OMBH、GOHC是矩形,∴OH=BM=GC,OG=HC,∴OP即为圆心的运动轨迹,即故答案为6cm.【点睛】本题主要考查圆的综合,熟练掌握圆的性质及切线定理解题的关键,注意运用分类讨论思想解决问题.【例2】(2022·吉林白山·八年级期末)(1)如图①,△OAB、△OCD的顶点O重合,且∠A+∠B+∠C+∠D=180°,则∠AOB+∠COD=______°;(直接写出结果)(2)连接AD、BC,若AO、BO、CO、DO分别是四边形ABCD的四个内角的平分线.①如图②,如果∠AOB=110°,那么∠COD的度数为_______;(直接写出结果)②如图③,若∠AOD=∠BOC,AB与CD平行吗?为什么?【例3】(2020·四川眉山·一模)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D ,则D 为BC 的中点,∠BAD =12∠BAC =60°,于是BC AB =2BD AB =迁移应用:如图2,△ABC 和△ADE 都是等腰三角形,∠BAC =∠DAE =120°,D ,E ,C 三点在同一条直线上,连接BD .①求证:△ADB≌△AEC ;②请直接写出线段AD,BD,CD 之间的等量关系式;拓展延伸:如图3,在菱形ABCD 中,∠ABC =120°,在∠ABC 内作射线BM ,作点C 关于BM 的对称点E ,连接AE 并延长交BM 于点F ,连接CE ,CF .①证明△CEF 是等边三角形;②若AE =5,CE =2,求BF 的长.【例4】(2022·全国·九年级课时练习)定义:有一个角是其对角一半的圆的内接四边形叫做圆美四边形,其中这个角叫做美角.已知四边形ABCD是圆美四边形.(1)求美角∠A的度数;(2)如图1,若⊙O的半径为5,求BD的长;(3)如图2,若CA平分∠BCD,求证:BC+CD=AC.∴∠E=∠A=60°由(1)可知:∠BAD=60°,∵CA平分∠BCD,∠BCD=60°∴∠BCA=∠DCA=12∴∠ABD=∠DCA=60°∴AF=AC ,∠F=∠DCA=60°∴∠FAC=180°-∠F -∠ACF=60°∴△ACF 为等边三角形∴CF=AC∴BC +BF=AC∴BC +CD=AC【点睛】此题考查的是新定义类问题、圆内接四边形的性质、圆周角定理及推论、锐角三角函数、等边三角形的判定及性质和全等三角形的判定及性质,掌握新定义、圆内接四边形的性质、圆周角定理及推论、锐角三角函数、等边三角形的判定及性质和全等三角形的判定及性质是解决此题的关键.一、解答题1.(2022·辽宁葫芦岛·一模)射线AB 与直线CD 交于点E ,∠AED =60°,点F 在直线CD 上运动,连接AF ,线段AF 绕点A 顺时针旋转60°得到AG ,连接FG ,EG ,过点G 作GH ⊥AB 于点H .(1)如图1,点F 和点G 都在射线AB 的同侧时,EG 与GH 的数量关系是______;(2)如图2,点F 和点G 在射线AB 的两侧时,线段EF ,AE ,GH 之间有怎么样的数量关系?并证明你的结论;(3)若点F和点G 都在射线AB的同侧,AE =1,EF =2,请直接写出HG 的长.(2)解:在射线ED上截取EN=AE,连接AN,如图3,∵∠AED=60°,∴△AEN是等边三角形,∴AE=AN,∠EAN=60°∵AF=AG,∠FAG=60°,(3)①当点F和点G都在射线AB的右侧时,在射线ED上取一点M,使得EM=EG,连接MG,如图4,∵线段AF绕点A顺时针旋转60°得到AG,∴∠GAF=60°,AG=AF,∴△GAF是等边三角形,∴∠AGF=∠AFG=∠FAG=60°,AG=AF=GF,∵∠AED=60°,∴∠AGF=∠AED,∴点A、E、G、F四点共圆,∴∠GEH=∠GFA=60°,∠GEF=∠GAF=60°,∵EM=EG,∴△GEM是等边三角形,∴EM=GM=EG,∠EGM=60°,∴∠EGM=∠EGA+∠MGA=60°=∠EGM=∠MGF+∠MGA,∴∠EGA=∠MGF,∴△EGA≌△MGF,∴MF=AE=1,∴GE=EM=EF−MF=2−1=1,∵GH⊥AB,【点睛】本题主要考查了特殊角的三角函数、全等三角形的判定和性质、等边三角形的判定及性质以及旋转图形的性质,熟练掌握这些性质和判定是解题的关键.2.(2022·上海宝山·九年级期末)如图,已知正方形ABCD,将AD绕点A逆时针方向旋转n°(0<n<90)到AP的位置,分别过点C、D作CE⊥BP,DF⊥BP,垂足分别为点E、F.(1)求证:CE=EF;(2)联结CF,如果DPCF =13,求∠ABP的正切值;(3)联结AF,如果AF,求n的值.(2)(3)解:∵0<n<90,【点睛】本题考查正方形的判定与性质,相似三角形的判定与性质,以及旋转的性质和解直角三角形等,3.(2022·重庆市育才中学九年级期末)在等边△ABC中,D是边AC上一动点,连接BD,将BD绕点D顺时针旋转120°,得到DE,连接CE.(1)如图1,当B、A、E三点共线时,连接AE,若AB=2,求CE的长;(2)如图2,取CE的中点F,连接DF,猜想AD与DF存在的数量关系,并证明你的猜想;(3)如图3,在(2)的条件下,连接BE、AF交于G点.若GF=DF,请直接写出CD AB的值.BE∵将BD绕点D顺时针旋转120°,得到DE∵△ABC是等边三角形AB=1∴∠ABC=60°,AB=AC,AH=12∵点F是CE的中点∴FE 又FK=DF∴四边形CDFK是平行四边形∴ED=KC,ED∥KC∴∠EDA=∠KCA∵将BD绕点D顺时针旋转120°,得到DE,∴B,D,F,G四点共圆由(2)可知AF⊥DF,∠FAD=30°4.(2022·黑龙江·哈尔滨工业大学附属中学校九年级期末)在平面直角坐标系中,抛物线y=3ax2﹣10ax+c分别交x轴于点A、B(A左B右)、交y轴于点C,且OB=OC=6.(1)如图1,求抛物线的解析式;(2)如图2,点P在第一象限对称轴右侧抛物线上,其横坐标为t,连接BC,过点P作BC的垂线交x轴于点D,连接CD,设△BCD的面积为S,求S与t的函数关系式(不要求写出t的取值范围);(3)如图3,在(2)的条件下,线段CD的垂直平分线交第二象限抛物线于点E,连接EO、EC、ED,且∠EOC=45°,点N在第一象限内,连接DN,DN∥EC,点G在DE上,连接NG,点M在DN上,NM=EG,在NG上截取NH=NM,连接MH并延长交CD于点F,过点H作HK⊥FM交ED于点K,连接FK,若∠FKG=∠HKD,GK=2MN,求点G的坐标.又FD=FD∴△FDM≌△FDK∴FK=FM,KD=MD∴MD+MR=DK+GK即GD=RD∴△KDM,△GDR是等腰直角三角形在四边形FKDM中,∠KDM=90°,∠FKD=FMD=180°−α∴∠KFM=360°−90°−2(180°−α)=2α−90°=2α−(α+β)=α−β在△FHK与△GDN中∵∠FHK=∠GDN=90°,∠FKH=∠GND=2β∴△FHK∽△GDN∴∠NGD=∠KHF=α−β∵∠HGK=∠HFK,HK=HK∴G,K,H,F四点共圆∵HK⊥FM∴∠FHK=90°∴∠FGK=90°∴∠GFK=90°−∠FKG=90°−α=β在△FRM与△FGK中MR=KG=2a∠FKG=∠FMR=αFM=FK∴△FRM≌△FGK∴∠RFM=∠GFK=β∴∠GFR=2β+∠KFM=2β+α−β=α+β=90°∴∠RFG=∠FGD=∠GDR=90°∴四边形FGDR是矩形又GD=DR∴四边形FGDR是正方形如图,延长DE至W,使EW=EG=a,则WK=2GK=4a5.(2021·广东·珠海市紫荆中学九年级期中)如图,△ABC中,∠BAC=90°,AB=AC=4,直角△ADE的边AE在线段AC上,AE=AD=2,将△ADE绕直角顶点A按顺时针旋转一定角度α,连接CD、BE,直线CD,BE交于点F,连接AF,过BC中点G作GM⊥CD,GN⊥AF.(1)求证:BE=CD;(2)求证:旋转过程中总有∠BFA=∠MGN;(仅对0°<α<90°时加以证明)(3)在AB上取一点Q,使得AQ=1,求FQ的最小值.6.(2021·湖北·武汉外国语学校(武汉实验外国语学校)九年级阶段练习)【问题背景】如图1,P是等边△ABC内一点,∠APB=150°,则PA2+PB2=PC2.小刚为了证明这个结论,将△PAB绕点A逆时针旋转60°,请帮助小刚完成辅助线的作图;【迁移应用】如图2,D是等边△ABC外一点,E为CD上一点,AD∥BE,∠BEC=120°,求证:△DBE是等边三角形;【拓展创新】如图3,EF=6,点C为EF的中点,边长为3的等边△ABC绕着点C在平面内旋转一周,直MC的最小值.线AE、BF交于点P,M为PG的中点,EF⊥FG于F,FG=(2)∵∠BEC=120°,∴∠BED=60°,∵AD∥DE,∴∠ADE=∠BED=60°,∵△ABC是等边三角形,∴∠BAC=∠ABC=∠ACB=60°,∴A、D、B、C共圆,如图2所示:∴∠ADB=120°,∵∠ADE=∠BED=60°,∴∠BDE=60°,∴△DBE是等边三角形;(3)7.(2022·全国·九年级课时练习)如图1,在正方形ABCD中,点F在边BC上,过点F作EF⊥BC,且FE=FC(CE<CB),连接CE、AE,点G是AE的中点,连接FG.(1)用等式表示线段BF与FG的数量关系:______;(2)将图1中的△CEF绕点C按逆时针旋转,使△CEF的顶点F恰好在正方形ABCD的对角线AC上,点G仍是AE的中点,连接FG、DF.①在图2中,依据题意补全图形;②用等式表示线段DF与FG的数量关系并证明.∵四边形ABCD为正方形,∴∠ABC=90°,∠ACB=45°,AB=②DF=2FG;理由如下:如图2,连接BF、BG,8.(2021·四川·成都实外九年级阶段练习)“数学建模”是中学数学的核心素养,平时学习过程中能归纳一些几何模型,解决几何问题就能起到事半功倍的作用.(1)如图1,正方形ABCD中,∠EAF=45°,且DE=BF,求证:EG=AG;(2)如图2,正方形ABCD中,∠EAF=45°,延长EF交AB的延长线于点G,(1)中的结论还成立吗?请说明理由;(3)如图3在(2)的条件下,作GQ⊥AE,垂足为点Q,交AF于点N,连结DN,求证:∠NDC=45°.【答案】(1)见解析;(2)结论依然成立,理由见解析;(3)见解析【分析】(1)根据半角旋转模型,把△ABF逆时针旋转90°,则AB与AD重合,设F对应的点为M,即可证明△AME≅△AFE,得到∠AEM=∠AEF,再结合∠AEM=∠EAG,可得∠AEM=∠AEF,可得EG=AG;(2)结论依然成立,证明方法与(1)一样;(3)又等腰三角形三线合一的性质可得GQ垂直平分EA,可得△ANE是等腰直角三角形,可得A、D、E、N四点共圆,根据圆周角∠NDC=∠EAN=45°【详解】(1)把△ABF逆时针旋转90°,则AB与AD重合,设F对应的点为M,∴△AMD≅△AFB∴∠MDA=∠FBA=90°,AM=AF,∠MAD=∠FAB∴M、D、C三点共线∵∠EAF=45°∴∠EAD+∠FAB=∠EAD+∠MAD=∠MAE=45°∴△AME≅△AFE(SAS)∴∠AEM=∠AEG∵AB∥CD∴∠AEM=∠EAG∴∠AEG=∠EAG∴EG=AG(2)结论依然成立,EG=AG把△ABF逆时针旋转90°,则AB与AD重合,设F对应的点为M,∴△AMD≅△AFB∴∠MDA=∠FBA=90°,AM=AF,∠MAD=∠FAB∴M、D、C三点共线∵∠EAF=45°∴∠EAD+∠FAB=∠EAD+∠MAD=∠MAE=45°∴△AME≅△AFE(SAS)∴∠AEM=∠AEG∵AB∥CD∴∠AEM=∠EAG∴∠AEG=∠EAG∴EG=AG(3)连接EN由(2)得EG=AG∵GQ⊥AE∴GQ垂直平分AE∴EN=AN∵∠EAF=45°∴∠ANE=90°=∠ADE∴A、D、E、N四点在以AE为直径的同一个圆上,∴∠NDC=∠EAN=45°.【点睛】本题考查半角旋转模型,熟练根据模型做出辅助线是解题的关键.第(3)问根据四点共圆证明是本题的难点.9.(2021·上海徐汇·九年级期中)如图,已知Rt△ABC和Rt△CDE,∠ACB=∠CDE=90°,∠CAB=∠CED,AC=8,BC=6,点D在边AB上,射线CE交射线BA于点F.(1)如图,当点F在边AB上时,联结AE.①求证:AE∥BC;CF,求BD的长;②若EF=12(2)设直线AE与直线CD交于点P,若△PCE为等腰三角形,求BF的长.10.(2022·全国·九年级专题练习)定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E是△ABC中∠A的遥望角.①若∠A=40°,直接写出∠E的度数是;②求∠E与∠A的数量关系,并说明理由.(2)如图2,四边形ABCD中,∠ABC=∠ADC=90°,点E在BD的延长线上,连CE,若∠BEC是△ABC 中∠BAC的遥望角,求证:DA=DE.11.(2022·全国·九年级课时练习)在正方形ABCD中,M是BC边上一点,点P在射线AM上,将线段AP绕点A顺时针旋转90°得到线段AQ,连接BP,DQ.(1)如图1,求证:BP=DQ;(2)如图2,若点P,B,D三点共线,求证:A,Q,P,D四点共圆;(3)若点P,Q,C三点共线,且AD=3,求BP的长.【答案】(1)见解析;(2)见解析;(3)BP=3【分析】(1)证明△AQD≌△APB即可得出答案;(2)根据全等三角形的性质以及圆内接四边形对角和为180°即可得出结论;(3)证明△PAQ为等腰直角三角形,得出∠APC=45°,然后得出∠ABC=2∠APC,根据圆周角定理可得点P在圆⊙B上,结论可得.【详解】解:(1)根据旋转的性质可得AP=AQ,∠PAQ=90°,∵∠BAD=90°,∴∠DAQ=∠BAP,∵AB=AD,∴△AQD≌△APB(SAS),∴BP=DQ;(2)∵△AQD≌△APB,∴∠Q=∠APB,∵点P,B,D三点共线,∴∠APD+∠APB=180°,∴∠Q+∠APD=180°,∴A,Q,P,D四点共圆;(3)∵AP=AQ,∠PAQ=90°,∴△PAQ为等腰直角三角形,∴∠APC=45°,以点B为圆心,BA为半径作⊙B,∵∠ABC=90°,∠APC=45°,∴∠ABC=2∠APC,∴点P在圆⊙B上,∴BP=BC=3.【点睛】本题考查了全等三角形的判定与性质,四点共圆,圆周角定理等知识,熟练掌握基础知识是解本题的关键.12.(2021·江苏·泗阳县实验初级中学九年级阶段练习)如图1,在正方形ABCD中,点E、F分别是BC、CD上的两个动点,且BE=CF,AE和BF相交于点P.(1)探究AE、BF的关系,并说明理由;(2)求证:A、D、F、P在同一个圆上;(3)如图2,若正方形ABCD的边AB在y轴上,点A、B的坐标分别为(0,−1+a)、(0,−1−a),点E、F 分别是BC、CD上的两个点,且BE=CF,AE和BF相交于点P,点M的坐标为(4,−4),当点P落在以M 为圆心1为半径的圆上.求a的取值范围.。

“四点共圆”模型(解析版)--初中数学专题训练

“四点共圆”模型(解析版)--初中数学专题训练

“四点共圆”模型1.识别几何模型。

2.利用“四点共圆”模型解决问题一.填空题(共3小题)1(2021秋•南京期中)如图,在⊙O的内接五边形ABCDE中,∠C=100°,BC=CD,则∠A+∠D =220°.【分析】连接BD,由∠C=100°,BC=CD得出∠CDB=40°,由四边形BAED内接于⊙O得出∠A +∠BDE=180°,即可求出答案.【解答】解:如图,连接BD,∵∠C=100°,BC=CD,∴∠CBD=∠CDB=40°,∵四边形BAED内接于⊙O,∴∠A+∠BDE=180°,∴∠A+∠CDE=∠A+∠BDE+∠CDB=180°+40°=220°,故答案为:220.【点评】本题考查了圆周角定理,掌握圆连接四边形的性质是解题的关键.2(2022•靖江市二模)如图,AB⊥BC,AB=5,点E、F分别是线段AB、射线BC上的动点,以EF 为斜边向上作等腰Rt△DEF,∠D=90°,连接AD,则AD的最小值为522.【分析】连接BD并延长,利用四点共圆的判定定理得到B,E,D,F四点共圆,再利用等腰直角三角形的性质和圆周角定理得到∠DBF=∠DEF=45°,得到点D的轨迹,最后利用垂线段最短和等腰直角三角形的性质解答即可得出结论.【解答】解:连接BD并延长,如图,∵AB⊥BC,∴∠ABC=90°,∠EDF=90°,∴∠ABC+∠EDF=180°,∴B,E,D,F四点共圆,∵△DEF为等腰直角三角形,∴∠DEF=∠DFE=45°,∴∠DBF=∠DEF=45°,∴∠DBF=∠DBE=45°,∴点D的轨迹为∠ABC的平分线上,∵垂线段最短,∴当AD⊥BD时,AD取最小值,∴AD的最小值为22AB=522,故答案为:522.【点评】本题主要考查了直角三角形的性质,等腰直角三角形的性质,四点共圆的判定圆周角定理,点的轨迹,垂线段的性质,利用已知条件求得点D 的轨迹是解题的关键.3(2022秋•大丰区期中)如图,△ABC 中,AD ⊥BC ,∠B =45°,∠C =30°.以AD 为弦的圆分别交AB 、AC 于E 、F 两点.点G 在AC 边上,且满足∠EDG =120°.若CD =4+22,则△DEG 的面积的最小值是 22+2 .【分析】连接EF ,利用四点共圆和同弧所对的圆周角相等证明EF ∥DG ,从而得到S △EDG =S △EDG ,当FG 最小时,△DFG 的面积就最小,作△DFG 的外接圆O ,过O 点作OH ⊥FG 交于点H ,连接OF 、OG ,DO +OH =(12+22)FG ,当DO +OH 最小时,FG 就最小,当D 、O 、H 三点共线时,DO +OH 最小,此时DH ⊥FG ,在Rt △FHO 中,(2FH )2=FH 2+(2+2-2FH )2,求出FH =2,可得FG 的最小值为22,再求S △DFG =22+2,即△DEG 的面积的最小值为22+2.【解答】解:连接EF ,AD ⊥BC ,∠B =45°,∠C =30°,∴∠B =45°,∠DAC =60°,∵∠BAC =105°,∵A 、E 、F 、D 四点共圆,∴∠EDF =75°,∵∠EDG =120°,∴∠FDG =45°,∵ED =ED,∴∠EFD =∠EAD =45°,∴∠EFD =∠FDG ,∴EF ∥DG ,∴S △EDG =S △EDG ,∵CD =4+22,∠C =30°,∴AC =833+463,AD =433+263,∴AC 边上的高=AD ⋅DC AC=2+2,∴当FG 最小时,△DFG 的面积就最小,作△DFG 的外接圆O ,过O 点作OH ⊥FG 交于点H ,连接OF 、OG ,∵∠FDG =45°,∴∠FOG =90°,∵OF =GO ,∴△FOG 是等腰直角三角形,∵∠FOH =12∠FOG =45°,∴△FOH 是等腰直角三角形,∴FH =OH =12FG ,FO =2FH ,∴DO +OH =22FG +12FG =(12+22)FG ,∴当DO +OH 最小时,FG 就最小,∵DO +OH ≥DH ,∴当D 、O 、H 三点共线时,DO +OH 最小,此时DH ⊥FG ,∴DH =2+2,在Rt △FHO 中,(2FH )2=FH 2+(2+2-2FH )2,解得FH =2或FH =4+32,∵OH =2+2=FH +FO ,∴FH =2,∴FG 的最小值为22,∴S △DFG =12×22×(2+2)=22+2,∴△DEG 的面积的最小值为22+2,故答案为:22+2.【点评】本题考查圆的综合应用,熟练掌握圆心角与圆周角的关系,四点共圆的性质,三角形外接圆的性质是解题的关键.二.解答题(共7小题)4(2022秋•宿城区期中)如图,BD ,CE 是△ABC 的高,BD ,CE 相交于点F ,M 是BC 的中点,⊙O 是△ABC 的外接圆.(1)点B ,C ,D ,E 是否在以点M 为圆心的同一个圆上?请说明理由.(2)若AB =8,CF =6,求△ABC 外接圆的半径长.【分析】(1)连接EM ,DM ,根据垂直定义可得∠BDC =∠BEC =90°,然后利用直角三角形斜边上的中线性质可得EM =BM =12BC ,DM =CM =12BC ,从而可得EM =BM =DM =CM ,即可解答;(2)连接AF 并延长交BC 于点G ,连接BO 并延长交⊙O 于点H ,连接AH ,CH ,根据三角形的高是交于一点的可得AG⊥BC,再根据直径所对的圆周角是直角可得∠BAH=∠BCH=90°,从而可得AG∥CH,AH∥CE,然后利用平行四边形的判定可得四边形AFCH是平行四边形,从而可得CF= AH=6,最后在Rt△BAH中,利用勾股定理进行计算即可解答.【解答】解:(1)点B,C,D,E在以点M为圆心的同一个圆上,理由:连接EM,DM,∵BD⊥AC,CE⊥AB,∴∠BDC=∠BEC=90°,∵M是BC的中点,∴EM=BM=12BC,DM=CM=12BC,∴EM=BM=DM=CM,∴点B,C,D,E在以点M为圆心的同一个圆上;(2)连接AF并延长交BC于点G,连接BO并延长交⊙O于点H,连接AH,CH,∵BD,CE是△ABC的高,BD,CE相交于点F,∴AG⊥BC,∵BH是⊙O的直径,∴∠BAH=∠BCH=90°,∴BA⊥AH,BC⊥CH,∴AG∥CH,∵CE⊥AB,∴AH∥CE,∴四边形AFCH是平行四边形,∴CF=AH=6,在Rt△BAH中,AB=8,∴BH=BA2+AH2=82+62=10,∴△ABC外接圆的半径长为5.【点评】本题考查了三角形的外接圆与外心,直角三角形斜边上的中线,点与圆的位置关系,确定圆的条件,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.5(兴化市校级期中)已知:如图,在正方形ABCD中,E、F分别是AD、CD的中点.(1)线段AF与BE有何关系.说明理由;(2)延长AF、BC交于点H,则B、D、G、H这四个点是否在同一个圆上.说明理由.【分析】(1)证明△ABE≌△DAF,证据全等三角形的对应边相等,以及直角三角形的两锐角互余即可证明AF相等且互相垂直;(2)证明△ADF≌△HCF,依据直角三角形斜边上的中线等于斜边的一半,即可证得B,C,D,H四点到C的距离相等,即可证得四点共圆.【解答】解:(1)AF=BE且AF⊥BE.证明:∵E、F分别是AD、CD的中点,∴AE=12AD,DF=12CD∴AE=DF又∵∠BAD=∠D=90°,AB=AD∴△ABE≌△DAF∴AF=BE,∠AEB=∠AFD∵在直角△ADF中,∠DAF+∠AFD=90°∴∠DAF+∠AEB=90°∴∠AGE=90°∴AF⊥BE(2)连接CG.∵DF=CF,∠D=∠FCH=90°,∠AFD=∠HFC∴△ADF≌△HCF∴BC=AD=CH=CD,在直角△BGH中,BC=CH,∴GC=12BH∴CB=CG=CD=CH,∴B,G,D,H在以C为圆心、BC长为半径的圆上.【点评】本题考查了全等三角形的判定与性质,以及直角三角形的性质,证明三角形全等是解题的关键.6(2022秋•建湖县期中)如图,在⊙O的内接四边形ABCD中,DB=DC,∠DAE是四边形ABCD 的一个外角.(1)若∠DAE=75°,则∠DAC=75°;(2)过点D作DE⊥AB于E,判断AB、AE、AC之间的数量关系并证明;(3)若AB=6、AE=2,求BD2-AD2的值.【分析】(1)根据四边形外接圆的性质,同弧所对的圆周角相等,可得∠DCB=∠DBC=∠DAC= 75°;(2)过点D作DF⊥AC于点F,可证明△BDE≌△CDF(AAS),△ADE≌△ADF(AAS),则AC= AF+FC=AE+BE=AE+AE+AB=2AE+AB;(3)在Rt△BDE中,BD2=64+DE2,,在Rt△AED中,AD2=4+ED2,再求解即可.【解答】解:(1)∵四边形ABCD是圆O的内接四边形,∴∠BCD+∠BAD=180°,∵∠DAE是四边形ABCD的一个外角,∴∠DAE=∠BCD,∵BD=CD,∴∠CBD=∠DCB,∵弧CD所对的圆周角分别为∠CAD、∠CBD,∴∠CBD=∠CAD,∵∠DAE=75°,∴∠DCB=∠DBC=∠DAC=75°,故答案为;75;(2)过点D作DF⊥AC于点F,∵DE⊥AB,∴∠DEA=90°,∵∠ABD=∠ACD,BD=CD,∠E=∠DFC=90°,∴△BDE≌△CDF(AAS),∴DE=DF,AE=CF,∴∠ADE=∠ADF,又∵∠E=∠AFD,AD=AD,∴△ADE≌△ADF(AAS),∴AE=AF,∴AC=AF+FC=AE+BE=AE+AE+AB=2AE+AB,即AC=2AE+AB;(3)在Rt△BDE中,BD2=BE2+DE2,在Rt△AED中,AD2=AE2+ED2,∵AB=6,AE=2,∴BE=8,∴BD2=64+DE2,AD2=4+ED2,∴BD2-AD2=60.【点评】本题考查圆的综合应用,熟练掌握同弧所对的圆周角相等,四点共圆的性质,直角三角形勾股定理,三角形全等的判定及性质是解题的关键.7(2023•淮安区一模)综合与实践“善思”小组开展“探究四点共圆的条件”活动,得出结论:对角互补的四边形四个顶点共圆.该小组继续利用上述结论进行探究.提出问题:如图1,在线段AC同侧有两点B,D,连接AD,AB,BC,CD,如果∠B=∠D,那么A,B,C,D四点在同一个圆上.探究展示:如图2,作经过点A,C,D的⊙O,在劣弧AC上取一点E(不与A,C重合),连接AE,CE,则∠AEC+∠D=180°(依据1)∵∠B=∠D∴∠AEC+∠B=180°∴点A,B,C,E四点在同一个圆上(对角互补的四边形四个顶点共圆)∴点B,D在点A,C,E所确定的⊙O上(依据2)∴点A,B,C,D四点在同一个圆上反思归纳:(1)上述探究过程中的“依据1”、“依据2”分别是指什么?依据1:圆内接四边形对角互补;依据2: 过不在同一直线上的三个点有且只有一个圆 .(2)如图3,在四边形ABCD中,∠1=∠2,∠3=45°,则∠4的度数为45°.拓展探究:(3)如图4,已知△ABC是等腰三角形,AB=AC,点D在BC上(不与BC的中点重合),连接AD.作点C关于AD的对称点E,连接EB并延长交AD的延长线于F,连接AE,DE.①求证:A,D,B,E四点共圆;②若AB=22,AD•AF的值是否会发生变化,若不变化,求出其值;若变化,请说明理由.【分析】(1)根据圆内接四边形的性质、过三点的圆解答即可;(2)根据四点共圆、圆周角定理解答;(3)①根据轴对称的性质得到AE=AC,DE=DC,∠AEC=∠ACE,∠DEC=∠DCE,进而得到∠AED=∠ABC,证明结论;②连接CF,证明△ABD∽△AFB,根据相似三角形的性质列出比例式,计算即可.【解答】(1)解:依据1:圆内接四边形对角互补;依据2:过不在同一直线上的三个点有且只有一个圆,故答案为:圆内接四边形对角互补;过不在同一直线上的三个点有且只有一个圆;(2)解:∵∠1=∠2,∴点A,B,C,D四点在同一个圆上,∴∠3=∠4,∵∠3=45°,∴∠4=45°,故答案为:45°;(3)①证明:∵AB=AC,∴∠ABC=∠ACB,∵点E与点C关于AD的对称,∴AE=AC,DE=DC,∴∠AEC=∠ACE,∠DEC=∠DCE,∴∠AED=∠ACB,∴∠AED=∠ABC,∴A,D,B,E四点共圆;②解:AD•AF的值不会发生变化,理由如下:如图4,连接CF,∵点E与点C关于AD的对称,∴FE=FC,∴∠FEC=∠FCE,∴∠FED=∠FCD,∵A,D,B,E四点共圆,∴∠FED=∠BAF,∴∠BAF=∠FCD,∴A,B,F,C四点共圆,∴∠AFB=∠ACB=∠ABC,∵∠BAD=∠FAB,∴△ABD∽△AFB,∴AD AB =AB AF,∴AD•AF=AB2=8.【点评】本题考查的是四点共圆、相似三角形的判定和性质、轴对称的性质,正确理解四点共圆的条件是解题的关键.8(2022秋•靖江市期末)小明在学习了《圆周角定理及其推论》后,有这样的学习体会:在Rt△ABC 中,∠C=90°,当AB长度不变时,则点C在以AB为直径的圆上运动(不与A、B重合).[探索发现]小明继续探究,在Rt△ABC中,∠C=90°,AB长度不变.作∠A与∠B的角平分线交于点F,小明计算后发现∠AFB的度数为定值,小明猜想点F也在一个圆上运动.请你计算∠AFB的度数,并简要说明小明猜想的圆的特征.[拓展应用]在[探索发现]的条件下,若AB=23,求出△AFB面积的最大值.[灵活运用]在等边△ABC中,AB=23,点D、点E分别在BC和AC边上,且BD=CE,连接AD、BE交于点F,试求出△ABF周长的最大值.【分析】[探索发现]根据角平分线的定义,三角形内角和定理可求∠AFB=135°,再由已知结论可得F点在以AB为定弦,∠AFB为定角的圆上;[拓展应用]设F点在圆O上,连接OA、OB,则O与C点共圆;过点F作FH⊥AB交于点H,设AB的中点为D,当H点与D点重合时,FH的长度最大,此时△FBA的面积最大,△FAB是等腰三角形,求出FD的长再求三角形面积即可;[灵活运用]通过证明△ABD≌△BCE(SAS),可得∠AFB=120°,再由题干已知可知F点在以AB 为定弦,∠AFB为定角的圆上,设△ABF的外接圆为O,当△ABF的高经过圆心O时,△ABF的周长有最大值,此时△ABF是等腰三角形.【解答】解:[探索发现]∵∠ACB=90°,∴∠CAB+∠CBA=90°,∵AF是∠CAB的平分线,BF是∠CBA的平分线,∴∠FAB+∠FBA=45°,∴∠AFB=135°,∴F点在以AB为定弦,∠AFB为定角的圆上;[拓展应用]设F点在圆O上,连接OA、OB,∵∠AOB=90°,∵∠ACB+∠AOB=180°,∴O与C点共圆,过点F作FH⊥AB交于点H,设AB的中点为D,当H点与D点重合时,FH的长度最大,此时△FBA的面积最大,∵FH⊥AB,D是AB的中点,∴FA=FB,∵∠AFB=135°,∴∠FAB=∠FBA=22.5°,∴∠CAB=∠CBA=45°,∴△ABC是等腰直角三角形,连接CF,则C、F、D三点共线,过点F作FP⊥AC交于点P,∴FP=FD,AP=AD,∵AB=23,∴AC=6,AD=AP=3,∴CP=6-3,∵∠FCP=45°,∴CF=2CP=23-6,∴FD=3-(23-6)=6-3,×23×(6-3)=32-3,∴△AFB的面积=12∴△AFB面积的最大值为32-3;[灵活运用]∵△ABC是等边三角形,∴AB=BC,∠ACB=∠ABC=60°,∵BD=CE,∴△ABD≌△BCE(SAS),∴∠CBE=∠BAD,∴∠AFE=∠ABF+∠BAF=∠ABF+∠CBE=∠ABC=60°,∴∠AFB=120°,∵AB=23,∴F点在以AB为定弦,∠AFB为定角的圆上,设△ABF的外接圆为O,当△ABF的高经过圆心O时,△ABF的周长有最大值,连接AO、BO,∵∠AFB=120°,∴∠AOB=120°,∵OA=BO,∴∠OAB=30°,∵AB=23,∴AH=3,在Rt△AOH中,OH=AH•tan30°=1,OA=2OH=2,∴HF=OF-OH=1,∴AF=BF=2,∴△ABF周长的最大值为4+23.【点评】本题考查圆的综合应用,熟练掌握三角形全等的判定及性质,定角定弦的三角形与圆的关系是解题的关键.9(2022秋•鼓楼区期中)以下是“四点共圆”的几个结论,你能证明并运用它们吗?Ⅰ.若两个直角三角形有公共斜边,则这两个三角形的4个顶点共圆(图1、2);Ⅱ.若四边形的一组对角互补,则这个四边形的4个顶点共圆(图3);Ⅲ.若线段同侧两点与线段两端,点连线的夹角相等,则这两点和线段两端点共圆(图4).(1)在图1、2中,取AC的中点O,根据直角三角形斜边上的中线等于斜边的一半得OA=OB=OC =OD,即A,B,C,D共圆;(2)在图3中,画⊙O经过点A,B,D(图5).假设点C落在⊙O外,BC交⊙O于点E,连接DE,可得∠BED+∠A=180°,所以∠BED=180°-∠A,得出矛盾;同理点C也不会落在⊙O内,即A,B,C,D共圆.结论Ⅲ同理可证.(3)利用四点共圆证明锐角三角形的三条高交于一点.已知:如图6,锐角三角形ABC的高BD,CE相交于点H,射线AH交BC于点F.求证:AF是△ABC的高.(补全以下证明框图,并在图上作必要标注)(4)如图7,点P是△ABC外部一点,过P作直线AB,BC,CA的垂线,垂足分别为E,F,D,且点D,E,F在同一条直线上.求证:点P在△ABC的外接圆上.【分析】(1)根据直角三角形斜边中线的性质可得结论;(2)由圆周角的性质可得∠BED+∠A=180°,再结合题干条件,得出矛盾,由此可得出结论;(3)如图,连接DE,由点B、C、D、E四点共圆得∠BDE=∠ECB,由点A、D、H、E四点共圆得∠BDE=∠BAF,从而证明∠BAF+∠ABF=90°即可;(4)连接BP和CP,由点A,E,P,F四点共圆可得,∠BEF=∠BPF,由点C,P,D,F四点共圆可得∠CDF=∠CPF,再由外角的性质及角的和差可得∠BAC=∠BPC,由此可得点A,B,C,P四点共圆,即点P在△ABC的外接圆上.【解答】解:(1)在图1、2中,取AC的中点O,根据直角三角形斜边上的中线等于斜边的一半,得OA =OB=OC=OD,即A,B,C,D共圆;故答案为:直角三角形斜边上的中线等于斜边的一半;(2)在图3中,画⊙O经过点A,B,D(图5).假设点C落在⊙O外,BC交⊙O于点E,连接DE,可得∠BED+∠A=180°,∴∠BED=180°-∠A,得出矛盾;同理点C也不会落在⊙O内,即A,B,C,D共圆.结论Ⅲ同理可证.故答案为:∠BED+∠A;180°-∠A;(3)如图6,连接DE,由点B、C、D、E四点共圆得∠BDE=∠ECB,由点A、D、H、E四点共圆得∠BDE=∠BAF,∴∠ECB=∠BAF,∵∠BEC=90°,∴∠ECB+∠ABF=90°,∴∠BAF+∠ABF=90°,∴∠BFA=90°,∴AF为△ABC的边BC上的高.(4)如图7,连接BP和CP,由点A,E,P,F四点共圆可得∠BEF=∠BPF,由点C,P,D,F四点共圆可得∠CDF=∠CPF,∵∠ADE=∠CDF,∴∠ADE=∠CPF,∵∠BAC=∠BEF+∠ADE,∠BPC=∠BPF+∠CPF,∴∠BAC=∠BPC,∴点A,B,C,P四点共圆,即点P在△ABC的外接圆上.【点评】本题考查了圆的定义,直角三角形斜边上的中线等于斜边一半,圆内接四边形对角互补,圆周角定理,内心的定义.第(3)(4)题解题关键是选取适当的四点证明共圆,再利用圆周角定理证明角相等.10(2022秋•仪征市期中)【问题提出】苏科版九年级(上册)教材在探究圆内接四边形对角的数量关系时提出了两个问题:1.如图(1),在⊙O的内接四边形ABCD中,BD是⊙O的直径.∠A与∠C、∠ABC与∠ADC有怎样的数量关系?2.如图(2),若圆心O不在⊙O的内接四边形ABCD的对角线上,问题(1)中发现的结论是否仍然成立?(1)小明发现问题1中的∠A与∠C、∠ABC与∠ADC都满足互补关系,请帮助他完善问题1的证明:∵BD 是⊙O 的直径,∴∠A =∠C =90°,∴∠A +∠C =180°,∵四边形内角和等于360°,∴∠ABC +∠ADC =180°.(2)请回答问题2,并说明理由;【深入探究】如图(3),⊙O 的内接四边形ABCD 恰有一个内切圆⊙I ,切点分别是点E 、F 、G 、H ,连接GH ,EF .(3)直接写出四边形ABCD 边满足的数量关系AD +BC =AB +CD ;(4)探究EF 、GH 满足的位置关系;(5)如图(4),若∠C =90°,BC =3,CD =2,请直接写出图中阴影部分的面积.【分析】(1)根据直径所对的圆周角是直角,四边形的内角和定理进行求解即可;(2)连接AC 、BD ,根据同弧所对的圆周角相等,三角形的内角和定理进行求解即可;(3)连接AI 、BI 、CI 、DI ,根据切线长定理进行求解即可;(4)连接EH 、IH 、IG 、IF 、GF ,根据切线的性质,四点共圆的性质可得∠GIF =∠ADC ,再由同弧所对的圆周角相等,可得∠GFE =∠GHE ,根据三角形内角和定理,可得∠DEH =∠GFE ,则∠FEH +∠EHG =∠FEH +∠IEF +∠DEH =∠EID =90°,即可证明EF ⊥GH ;(5)连接BD ,可得BD 是圆O 的直径,连接IF 、IH ,先推导出∠BIF +∠DIH =90°,再证明四边形IHCF 是正方形,可得∠HIF =90°,即可知I 点在BD 上,根据已知求出S 四边形ABCD =3×2=6,通过证明△DHI ∽△IFB ,求出IH =65,可求S ⊙I =3625π,则阴影部分的面积=6-3625π.【解答】解:【问题提出】(1)∵BD 是⊙O 的直径,∴∠A =∠C =90°,∴∠A +∠C =180°,∵四边形内角和等于360°,∴∠ABC +∠ADC =180°;故答案为:∠A =∠C =90°,∠ABC +∠ADC =180°;(2)成立,理由如下:连接AC 、BD ,∵∠DAC =∠CBD ,∠ACD =∠ABD ,∴∠DAC +∠ACD =∠DBC +∠ABD =∠ABC ,∵∠DAC +∠ACD +∠ADC =180°,∴∠ABC +∠ADC =180°;同理,∠BAD +∠BCD =180°;【深入探究】(3)AD +BC =AB +CD ,理由如下:连接AI 、BI 、CI 、DI ,∵圆I 是四边形ABCD 的内切圆,∴AG =AE ,DE =DH ,CH =CF ,BF =BG ,∴AD +BC =AE +ED +BF +CF =AG +DH +BG +CH =AB +CD ,即AD +BC =AB +CD ,故答案为:AD +BC =AB +CD ;(4)EF ⊥GH ,理由如下:连接EH 、IH 、IG 、IF 、GF ,∵四边形ABCD 是圆O 的内接四边形,∴∠B +∠D =180°,∵BG ⊥IG ,IF ⊥BF ,∴∠BGI =∠IFB =90°,∴∠B +∠GIF =180°,∴∠GIF =∠D ,∵GI =IF ,∴∠GFI =90°-12∠GIF ,∵ED =DH ,∴∠DEH =90°-12∠D ,∴∠GFI =∠DEH ,∵GE =GE ,∴∠GFE =∠GHE ,∴∠GHE =∠GFI +∠IFE ,∵IF =IE ,∴∠IFE =∠IEF ,∴∠FEH +∠EHG =∠FEH +∠IEF +∠DEH =∠EID =90°,∴EF ⊥GH ;(5)连接BD ,∵∠C =90°,∴∠A =90°,∵ABCD 是圆O 的内接圆,∴BD 是圆O 的直径,连接IF、IH,∵I是四边形ABCD的内切圆圆心,∴∠ADI=∠IDH,∠ABI=∠FBI,∵IH⊥CD,IF⊥BC,∴∠BIF=90°-∠IBF,∠DIH=90°-∠IDH,∴∠BIF+∠DIH=180°-(∠IBF+∠IDH)=180°-12(∠ADC+∠ABC),∵∠ABC+∠ADC=180°,∴∠BIF+∠DIH=90°,∵IF⊥FC,IH⊥CD,∠C=90°,IH=IF,∴四边形IHCF是正方形,∴∠HIF=90°,∴I点在BD上,∵BC=3,CD=2,∴S四边形ABCD=3×2=6,∵∠DIH+∠IDH=90°,∠IBF+∠IDH=90°,∴∠DIH=∠IBF,∵∠IHD=∠IFB=90°,∴△DHI∽△IFB,∴IH BF =DHIF,即IH3-IH=2-IHIH,解得IH=6 5,∴S⊙I=3625π,∴阴影部分的面积=6-3625π.【点评】本题考查圆的综合应用,熟练掌握四边形的内切圆性质,外接圆性质,三角形相似的判定及性质,切线的性质,四点共圆的性质是解题的关键.一.选择题(共3小题)11(2022•思明区二模)如图,四边形ABCD是⊙O的内接四边形,点E为边CD上任意一点(不与点C,点D重合),连接BE,若∠A=60°,则∠BED的度数可以是()A.110°B.115°C.120°D.125°【分析】四边形ABCD 是⊙O 的内接四边形,则∠A 和∠C 互补,已知∠A =60°,则∠C 的度数为120°,而∠BED 大于∠C 的度数,从而得出答案.【解答】解:∵四边形ABCD 是⊙O 的内接四边形,∴∠A +∠C =180°,∵∠A =60°,∴∠C =120°,∵∠BED =∠C +∠CBE ,∴∠BED >120°,∴∠BED 可能为125°.故选:D .【点评】本题主要考查了圆内接四边形以及三角形外角的性质,解题的关键是根据圆内接四边形的对角互补求出∠C 的度数,再根据外角的性质对∠BED 的度数做出正确的推断.12(2023•泾阳县模拟)刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积.如图,已知⊙O 的半径为2,则⊙O 的内接正六边形ABCDEF 的面积为()A.6B.63C.65D.43【分析】连接OA 、OB ,根据正多边形和圆的关系可判断出△OAB 为等边三角形,过点O 作OM ⊥AB 于点M ,再利用勾股定理即可求出OM 长,进而可求出△AOB 的面积,最后利用⊙O 的面积约为6S △AOB 即可计算出结果.【解答】解:如图,连接OA 、OB ,由题意可得:∠AOB =360÷6=60°,∵OA =OB =2,∴△OAB 为等边三角形,∴AB =2,过点O 作OM ⊥AB 于点M ,则AM =BM =1,在Rt △AOMR 中,OM =22-12=3,∴S △AOB =12×2×3=3,∴⊙O 的面积约为6S △AOB =63.故选:B .【点评】本题主要考查正多边形与圆、勾股定理等,正确应用正六边形的性质是解题关键.13(2023•蜀山区校级模拟)如图,△ABC 中,∠BAC =60°,AD 平分∠BAC ,∠BDC =120°,连接BD ,CD 并延长分别交AC ,AB 于点E 和点F ,若DE =6,DF CD=35,则BD 的长为()A.10B.12C.15D.16【分析】由AEDF四点共圆,得到DE=DF,再证明△CDE∽△CAF,得到AF与AC的比,延长CF 到P,使DP=DB,得到△BDP为等边三角形,在证明出△AFC∽△PFB,证出PF与PB,利用DF 即可求出BD.【解答】解:∵∠BAC=60°,∠BDC=120°,∴A、E、D、F四点共圆,∵AD平分∠BAC,∴∠DAE=∠DAF,∴DE=DF=6,∵∠BDC=120°,∴∠CDE=60°=∠FAC,∵∠ACD=∠ACD,∴△CDE∽△CAF,∴AF:AC=DE:CD=6:10=3:5,如图,延长CF到P,使DP=DB,∵∠PBD=60°,∴△BDP为等边三角形,∴∠P=60°,∴△AFC∽△PFB,∴PF:PB=AF:AC=3:5,设每一份为k,∴PB=PD=5k,PF=3k,∴DF=2k=6,∴k=3,∴BD=5k=15.故选:C.【点评】本题考查了三角形相似的性质、等边三角形的性质等知识点的应用,四点共圆的应用及相似比的转化是解题关键.二.填空题(共2小题)14(2023•银川校级二模)如图,在直径为AB的⊙O中,点C,D在圆上,AC=CD,若∠CAD= 28°,则∠DAB的度数为34°.【分析】利用等腰三角形的性质可得∠CAD =∠CDA =28°,从而利用三角形内角和定理可得∠ACD =124°,然后根据圆内接四边形对角互补求出∠ABD =56°,再根据直径所对的圆周角是直角可得∠ADB =90°,从而求出∠DAB 的度数.【解答】解:∵AC =CD ,∠CAD =28°,∴∠CAD =∠CDA =28°,∴∠ACD =180°-∠CAD -∠CDA =124°,∵四边形ABCD 是⊙O 的内接四边形,∴∠ACD +∠ABD =180°,∴∠ABD =180°-∠ACD =56°,∵AB 是⊙O 的直径,∴∠ADB =90°,∴∠DAB =90°-∠ABD =34°.故答案为:34°.【点评】本题考查了等腰三角形的性质,圆周角定理,圆心角、弧、弦的关系,熟练掌握圆周角定理是解题的关键.15(2023•海曙区校级一模)如图,在等腰三角形纸片ABC 中,AB =AC ,将该纸片翻折,使得点C 落在边AB 的F 处,折痕为DE ,D ,E 分别在边BC ,AC 上,∠AFD =∠DEF ,若DE =4,BD =9,则DF =6,△ABC 的面积为 45154 .【分析】根据折叠的性质可得∠CED =∠DEF ,∠C =∠DFE ,以此可得∠CED =∠AFD ,因此可判断A 、F 、D 、E 四点共圆,由圆周角定理可得∠DAF =∠DEF ,∠CAD =∠DFE ,进而得到∠AFD =∠DAF ,∠CAD =∠C ,则DF =AD =CD ,由等腰三角形的性质可得∠B =∠C ,以此可证明△BAD∽△CED ,由相似三角形的性质可求得DF =AD =CD =6,则BC =15,BG =CG =152,DG =32,根据勾股定理求出AG ,再算出△ABC 的面积即可求解.【解答】解:连接AD ,过点A 作AG ⊥BC 于点G ,如图,根据折叠的性质可得,∠CED =∠DEF ,∠C =∠DFE ,∵∠AFD =∠DEF ,∴∠CED =∠AFD ,∴A 、F 、D 、E 四点共圆,∴∠DAF =∠DEF ,∠CAD =∠DFE ,∴∠AFD =∠DAF ,∠CAD =∠C ,∴DF =AD =CD ,∵AB =AC ,∴∠B =∠C ,∵∠CED =∠DEF =∠DAF ,∴△BAD ∽△CED ,∴AD DE =BD CD,∵DE =4,BD =9,DF =AD =CD ,∴DF 4=9DF,∴DF =AD =CD =6,∴BC =BD +CD =9+6=15,∵AG ⊥BC ,AB =AC ,∴BG =CG =12BC =152,∴DG =CG -CD =152-6=32,在Rt △ADG 中,由勾股定理得AG =AD 2-DG 2=62-32 2=3152,∴S △ABC =12BC ⋅AG =12×15×3152=45154.故答案为:6,45154.【点评】本题主要考查四点共圆的判定、相似三角形的判定与性质、等腰三角形的性质,圆周角定理、勾股定理,正确作出辅助线,通过所给条件推出A 、F 、D 、E 四点共圆,以此得到DF =AD =CD 是解题关键.三.解答题(共7小题)16(2022秋•南关区校级期末)【问题情境】如图①,在四边形ABCD 中,∠B =∠D =90°,求证:A 、B 、C 、D 四点共圆.小吉同学的作法如下:连结AC ,取AC 的中点O ,连结OB 、OD ,请你帮助小吉补全余下的证明过程;【问题解决】如图②,在正方形ABCD 中,AB =2,点E 是边CD 的中点,点F 是边BC 上的一个动点,连结AE ,AF ,作EP ⊥AF 于点P .(1)如图②,当点P 恰好落在正方形ABCD 对角线BD 上时,线段AP 的长度为 102 ;(2)如图③,过点P 分别作PM ⊥AB 于点M ,PN ⊥BC 于点N ,连结MN ,则MN 的最小值为 132-52 .【分析】【问题情境】连结AC,取AC的中点O,连结OB、OD,根据直角三角形斜边上的中线等于斜边的一半,可得OD=OA=OC=OB,以此即可证明;【问题解决】(1)根据题意可得AE=AD2+DE2=5,由【问题情境】结论可知A、D、E、P四点共圆,根据圆周角定理以及正方形的性质可得∠PDE=∠PAE=45°,则△PAE为等腰直角三角形,设AP长为a,则PE长为a,根据勾股定理列出方程,求解即可;(2)由【问题情境】结论可知A、D、E、P四点共圆,过点O作OG⊥AD于点G,作OH⊥AB于点H,连接OB交⊙O于点P′,连接PB,根据题意可得四边形MBNP为矩形,则要求MN的最小值,即求PB的最小值,根据平行线的性质和中点的定义可得OG为△ADE的中位线,得AG=1,OG=12,同理可证四边形AHOG为矩形,以此得到OH=AG=1,BH=32,根据勾股定理得OB=OH2+BH2=132,根据两点之间线段最短得PB+OP≥OB,以此即可求出PB的最小值,从而求得MN的最小值.【解答】【问题情境】证明:如图,连结AC,取AC的中点O,连结OB、OD,∵∠ADC=∠ABC=90°,O为AC的中点,∴OA=OB=OC=OD=12AC,∴A、B、C、D四点共圆;【问题解决】解:(1)∵四边形ABCD为正方形,点E是边CD的中点,AB=2,∴AD=2,DE=1,∴AE=AD2+DE2=5,由【问题情境】结论可知,A、D、E、P四点共圆,如图,∴∠PAE=∠PDE,∵BD为正方形ABCD的对角线,∴∠PDE=∠PAE=45°,∵EP⊥AF,∴△PAE为等腰直角三角形,设AP长为a,则PE长为a,∴AP2+PE2=AE2,即a2+a2=52,解得:a1=102,a2=-102(不合题意,舍去),∴线段AP的长度为102;故答案为:10 2;(2)由【问题情境】结论可知,A、D、E、P四点共圆,如图,过点O作OG⊥AD于点G,作OH⊥AB于点H,连接OB交⊙O于点P′,连接PB,∵PM⊥AB,PN⊥BC,∴∠PMB=∠MBN=∠PNB=90°,∴四边形MBNP为矩形,∴MN=PB,要求MN的最小值,即求PB的最小值,由(1)知,AE=5,∴OA=52,∵OG⊥AD,且点O为AE的中点,∴OG∥DE,∴OG为△ADE的中位线,∴AG=1,OG=12,∵OG⊥AD,OH⊥AB,∴四边形AHOG为矩形,∴AH=OG=12,OH=AG=1,∴BH=32,在Rt△BHO中,OB=OH2+BH2=13 2,根据两点之间线段最短得,PB+OP≥OB,PB≥OB-OP=132-52,∴PB的最小值为132-52,∴MN的最小值为132-52.故答案为:132-52.【点评】本题主要考查四点共圆、正方形的性质,等腰直角三角形的性质、勾股定理、中位线的判定与性质、平行线的判定与性质,属于圆的综合题,熟练掌握相关知识是解题关键.17(2023•萍乡模拟)如图,点A,B,C在⊙O上,且∠ABC=120°,请仅用无刻度的直尺,按照下列要求作图.(保留作图痕迹,不写作法)(1)在图(1)中,AB>BC,作一个度数为30°的圆周角;(2)在图(2)中,AB=BC,作一个顶点均在⊙O上的等边三角形.【分析】(1)作直径AD,连接CD,AC,则∠ADC=60°,∠DAC=30°;(2)作直径BE,连接EC,AE,AC,△ACE即为所求.【解答】解:(1)如图1中,∠CAD即为所求;(2)如图2中,△ACE即为所求.【点评】本题考查作图-复杂作图,等边三角形的判定和性质,圆周角定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18(2022•芜湖一模)如图,在正方形ABCD中,P是边BC上的一个动点(不与点B,C重合),作点B关于直线AP的对称点E,连接AE,再连接DE并延长交射线AP于点F,连接BF和CF.(1)若∠BAP=α,则∠AED=45°+α(用含α的式子直接填空);(2)求证:点F在正方形ABCD的外接圆上;(3)求证:AF-CF=2BF.【分析】(1)由轴对称的性质得∠EAP=∠BAP=a,AE=AB,由正方形的性质得∠BAD=90°,AB =AD,则∠DAE=90°-2a,AD=AE,由等腰三角形的性质即可得出结论;(2)由轴对称的性质得∠AEF=∠ABF,AE=AB,证出AE=AD,由等腰三角形的性质得∠ADE =∠AED,证∠ADE+∠ABF=180°,则∠BFD+∠BAD=180°,得∠BFD=90°即可;(3)过点B作BM⊥BF交AF于点M,则∠MBF=90°,证△BMF是等腰直角三角形,得BM=BF,FM=2BF,证△AMB≌△CFB(SAS),得AM=CF,进而得出结论.【解答】解:(1)∵点B关于直线AP的对称点E,∠BAP=α,∴∠EAP=∠BAP=α,AE=AB,∵ABCD 是正方形,∴AD =AB ,∠BAD =90°,∴AE =AD ,∠DAE =90°-2α,∴∠ADE =∠AED =12(180°-∠DAE )=12(90°+2α)=45°+α,故答案为:45°+α;(2)证明:由(1)∠AED =45°+α,又∵∠BAE =2α,∴∠EFA =∠BFA =45°,∠BFD =90°,连接BD ,则∠BCD =90°,∴∠BCD =∠BAD =∠BFD =90°,∴B 、F 、C 、D 和A 、B 、C 、D 都在以BD 为直径的圆上,即点F 在正方形ABCD 的外接圆上;(3)过点B 作BM ⊥BF 交AF 于M 点,则∠MBF =90°,∵四边形ABCD 是正方形,∴AB =CB ,∠ABC =90°,∴∠MBF =∠ABC ,∴∠ABM =∠CBF ,∵点E 与点B 关于直线AP 对称,∴∠BFD =90°,∴∠MFB =∠MFE =45°,∴△BMF 是等腰直角三角形,∴BM =BF ,FM =2BF ,在△AMB 和△CFB 中,AB =BC ∠ABM =∠CBF BM =BF,∴△AMB ≌△CFB (SAS ),∴AM =CF ,∴AF =FM +AM =2BF +CF ,∴AF -CF =2BF .【点评】本题考查了正方形的性质、轴对称的性质、等腰直角三角形的判定与性质、全等三角形的判定与性质、等腰三角形的判定与性质等知识,解题关键是熟练掌握矩形的性质和轴对称的性质,证明三角形全等.19(2021秋•鹿城区校级期中)如图,△ABC 内接于⊙O ,CD ⊥AB ,CB =10cm ,CD =8cm ,AB =14cm .(1)∠A 度数45°.(直接写出答案)(2)求BC 的长度.(3)P 是⊙O 上一点(不与A ,B ,C 重合),连结BP .①若BP 垂直△ABC 的某一边,求BP 的长.②将点A 绕点P 逆时针旋转90°后得到A ′,若A ′恰好落在CD 上,则CA '的长度为4.(直接写出答案)【分析】(1)利用勾股定理,等腰三角形的判定和三角形的内角和定理解答即可;(2)连接OB ,OC ,利用圆周角定理求得圆心角的度数,再利用弧长公式解答即可;(3)①连接AP ,利用等腰直角三角形的性质求得BE ,利用全等三角形的判定与勾股定理求得PE ,则BP 可求;②连接AA ′,PD ,设PD 与AC 交于点E ,通过证明P ,A ,D ,A ′四点共圆,利用圆周角定理和垂径定理得到PD 经过圆心O ,过点O 作OF ⊥AB 于点F ,利用垂径定理和勾股定理求得OE ,连接OC ,利用勾股定理求得圆的半径,再利用等腰直角三角形的性质求得PA ,勾股定理求得DA ′,则CA ′=CD -DA ′.【解答】解:(1)在Rt △BCD 中,CB =10cm ,CD =8cm ,∴BD =BC 2-CD 2=102-82=6(cm ),∴AD =AB -BD =14-6=8cm =CD ,∴∠A =∠ACD ,∵CD ⊥AB ,∴∠ADC =90°,∴∠A =180o -∠ADC 2=180o -90°2=45°,故答案为:45°;(2)连接OB ,OC ,如图,∵∠BAC =45°,∴∠BOC =90°,在Rt △BOC 中,OB =OC ,CB =10cm ,∴OB =22BC =52(cm ),∴BC 的长度=90π×52180=52π2cm ;(3)①∵P 是⊙O 上一点(不与A ,B ,C 重合),BP 垂直△ABC 的某一边,∴点P 只能在AC上,连接AP ,如图,由(1)知:∠CAB =45°,∵BP ⊥AC ,。

圆锥曲线综合压轴,点轨迹、共线、四点共圆问题,含详细参考答案

圆锥曲线综合压轴,点轨迹、共线、四点共圆问题,含详细参考答案

圆锥曲线综合(一)1.交轨法2.三点共线3.四点共圆4.定值问题典型例题例1双曲线12222=-by a x 的实轴为A 1A 2,点P 是双曲线上的一个动点,引A 1Q ⊥A 1P ,A 2Q ⊥A 2P ,A 1Q 与A 2Q 的交点为Q ,求Q 点的轨迹方程.例2抛物线)0(22>=p px y ,O 为坐标原点,A 、B 在抛物线上,且OA ⊥OB ,过O 作OP ⊥AB 交AB 于P ,求P 点轨迹方程.例3已知抛物线:x y 42=焦点为F ,过点K(-1,0)的直线l 与C 交于A 、B 两点,点A 关于x 轴的对称点为D ,证明点F 在直线BD 上.例4已知椭圆在焦点在x 轴上,它的一个顶点恰好是抛物线y x 42=的焦点,离心率为52,过椭圆右焦点F 作与坐标轴不垂直的直线l ,交椭圆于A 、B 两点.(1)求椭圆的标准方程;(2)设点M(m ,0)是线段OF 上的一个动点,且→→→⊥+AB MB MA )(,求m 的取值范围.(3)设点C 是点A 关于x 轴的对称点,在x 轴上是否存在一个定点N ,使得C 、B 、N 三点共线?若存在,求出定点N 的坐标,若不存在,请说明理由.例5已知O 为坐标原点,F 为椭圆C :1222=+y x 在y 轴正半轴上的焦点,过F 且斜率为2-的直线l 与C 交于A 、B 两点,点P 满足→→→→=++0OP OB OA (1)证明:点P 在C 上;(2)设点P 关于点O 的对称点为Q ,证明:A 、P 、B 、Q 四点在同一圆上.例6设A 、B 是双曲线1222=-y x 上的两点,点N(1,2)是线段AB 的中点(1)求直线AB 的方程;(2)如果线段AB 的中垂线与双曲线相交于C 、D 两点,那么A 、B 、C 、D 四点是否共圆,为什么?例7已知椭圆1422=+y x 的左右两个顶点分别为A 、B ,曲线C 是以A 、B 两点为顶点,离心离为5的双曲线,设点P 在第一象限且在曲线C 上,直接AP 与椭圆相交于另一点T.(1)求曲线C 的方程;(2)设P 、T 两点的横坐标分别为x 1、x 2,证明:x 1x 2=1例8已知椭圆E:)0(12222>>=+b a b y a x 的一个焦点为F 1(3-,0),而且过点H(213,)(1)求椭圆E 的方程;(2)设椭圆E 的上下顶点分别为A 1、A 2,P 是椭圆上异于A 1、A 2的任一点,直线PA 1、PA 2分别交x 轴于N 、M ,若直线OT 与过点M 、N 的圆G 相切,切点为T ,证明:线段OT 的长为定值,并求出该定值.练习1已知点F 是椭圆)0(11222>=++a y a x 的右焦点,点M(m ,0)、N(0,n )分别是x 轴、y 轴上的动点,且满足0NF MN =⋅→→,若点P 满足→→→+=POON 2OM (1)求点P 的轨迹C 的方程;(2)设过点F 任作一直线与点P 的轨迹交于A 、B 两点,直线OA 、OB 与直线x=-a 分别交于点S 、T(O 为坐标原点),试判断→→⋅FT FS 是否为定值?若是求出这个定值;若不是,说明理由.参考答案例1设点P(00,y x ),Q(x,y ),易知A 1(-a ,0)、A 2(a ,0),由已知可得10000-=+-⋅+-a x y a x y ①10000-=--⋅--ax y a x y ②,由①②可得ya x y x x 2200,-=-=,而P(00,y x )在双曲线上,代入可得42222a y b x a =-(a x ±≠)例2设P(x,y ),A(11,y x ),B(22,y x ),设直线AB 的解析式为x=my+b ,与抛物线联立得0222=--pb mpy y 得pb y y mp y y 2,22121-==+,222221214b py y x x ==,而OA ⊥OB 得02121=+y y x x 可得b =2p ,OP ⊥AB 得1100-=⋅--m x y 得x y m -=,P 在直线AB 上,代入可得p y xy x 2+⋅-=即222)(p y p x =+-;另法:由b=2p 知直线AB 过定点M(2p,0),△OMP 为直角三角形,OM=2p ,故点P 在以OM 为直径的圆上,故P 点的轨迹方程为222)(p y p x =+-例3设A(11,y x )、B(22,y x )设直线AB 的方程为)1(+=x k y ,与抛物线联立得0)42(222=+-+k x k x k 得1,2421221=-=+x x k x x ,易知D(11,y x -),,4414121211111--=--=--=y y y y x y k DF 441411412111111221--=-=-=-=y y x y x x y x y k BF BF DF k k =,故F 在BD 上例4(1)1522=+y x ;(2)设直线AB 解析式为)2(-=x k y 与椭圆联立得052020)51(222=-+-+k x k x k 得2221222151520,5120k k x x k k x x +-=+=+,))4(,2(),2(MB MA 21212121-+-+=+-+=+→→x x k m x x y y m x x ,))(,(),(AB 12121212x x k x x y y x x --=--=→,故0)]4(2)[())(4())(2()(2122112122121221=-++-+-=--++--+=⋅+→→→x x k m x x x x x x x x k x x m x x AB MB MA 得0582>-=m m k 得580<<m (3)易知C(11,y x -),直线BC 的方程为)(112211x x x x y y y y --+=+,令y=0,则254)2)(()4()]2()[()(211121211121211121=-+--+=-+--+=+-+=x x x x x x x x k x k x x x y y y x x x x ,故点N(25,0)例5(1)设A(11,y x ),B(22,y x )直线AB 方程为12+-=x y 与椭圆联立得012242=--x x ,1,222121=+=+y y x x 得P(122--),代入验证可知点P 在椭圆上;(2)易知点Q(122,),AB 的中垂线为4122+=x y ,PQ 的中垂线为+-=x y 22,两直线的交点为M(8182,-),而易验证MA=MQ,故A 、P 、B 、Q 四点在同一圆上例6(1)设A(11,y x ),B(22,y x ),则有12,1222222121=-=-y x y x 两式相减得1221212121=++⋅=--y y x x x x y y 故直线AB 的方程为1+=x y (2)易知A(-1,0),B(3,4),AB 的中垂线为3+-=x y ,与双曲线联立得01162=-+x x ,CD 的中点为M(-3,6),CD=410,MA=MB=210,故A 、B 、C 、D 四点共圆例7(1)1422=-y x (2)P(11,y x ),T(22,y x ),设直线PT 方程为)1(+=x k y 与双曲线联立得0)4(2)4(222=+---k kx x k 得22144k k x -+=,同理与椭圆联立得042)4(2222=-+-+k x k x k 得22144kk x +-=,故121=x x 例8(1)1422=+y x (2)设P(00,y x ),A 1P 方程为1100+-=x x y y 可得N(100--y x ,0),同理A 2P 方程为1100-+=x x y y ,M(0100,+y x )由切割线定理得OT 2=OM ·ON=411120200000=-=+--y x y x y x ,故OT=2练习1(1)设点P(y x ,),易知,0),)(,(=--n a n m 即有02=+ma n ,同时m =),(),0(2y x n --+即有y n x m =-=2,代入得axy 42=(2)设A(11,y x ),B(22,y x ),直线AB 的解析式为a my x +=联立得04422=--a amy y ,221214,4a y y am y y -==+,可知OA 方程为1114y ax x x y y ==得S(124,y a a --);同理OB 方程为2224y ax x x y y ==,T(224,y a a --),044164)4,2)(4,2(FT FS 2221222212=-=+=----=⋅→→a a y y a a y a a y a a。

四点共圆例题及答案

四点共圆例题及答案

四点共圆的应用例1 如图1,已知P 为⊙O 外一点,PA 切⊙O 于A ,PB 切⊙O 于B ,OP 交AB 于E . 求证:∠APC =∠BPD .例2 如图2,从⊙O 外一点P 引切线PA 、PB 和割线PDC ,从A 点作弦AE 平行于DC ,连结BE 交DC 于F ,求证:FC =FD .例3 如图3,在△ABC 中,AB=AC ,AD ⊥BC ,∠B 的两条三等分线交AD 于E 、G ,交AC 于F 、H .求证:EH ∥GC .PP例4 如图4,⊿ABC 为等边三角形,D 、E 分别为BC 、AC 边上的点,且BD=31BC,CE=31AC,AD 与BE 相交于P 点。

求证:CP ⊥AD例5 如图5,AB 为半圆直径,P 为半圆上一点,PC ⊥AB 于C ,以AC 为直径的圆交PA 于D ,以BC 为直径的圆交PB 于E ,求证:DE 是这两圆的公切线.例6 AB 、CD 为⊙O 中两条平行的弦,过B 点的切线交CD 的延长线于G ,弦PA 、PB 分别交CD于E 、F .求证:FGFDCF EF例7 ABCD 为圆内接四边形,一组对边AB 和DC 延长交于P 点,另一组对边AD 和BC 延长交于Q点,从P 、Q 引这圆的两条切线,切点分别是E 、F ,(如图 7)求证:PQ 2=QF 2+PE 2.例8 如图8,△ABC 的高AD 的延长线交外接圆于H ,以AD为直径作圆和AB 、AC 分别交于E 、F 点,EF 交 AD 于 G ,若 AG=16cm ,AH=25cm ,求 AD 的长.例9 如图9,D 为△ABC 外接圆上任意一点,E 、F 、G 为D 点到三边垂线的垂足,求证:E 、F 、G 三点在一条直线上.例10 如图10,H 为△ABC 的垂心,H 1、H 2、 H 3为H 点关于各边的对称点,求证:A 、B 、 C 、H 1、H 2、H 3六点共圆.11、已知PQRS 是圆内接四边形,∠PSR =90°,过点2BQ 作PR 、PS 的垂线,垂足分别为点H 、K.求证:HK 平分QS.12.AB 为⊙O 的直径,点C 在⊙O 上且OC ⊥AB,P 为⊙O 上一点,位于点B 、C 之间,直线CP 与AB 的延长线交于点Q,过Q 作直线与AB 垂直,交直线AP 于点R. 求证:BQ =QR.13.如图10,在△ABC 中,AD ⊥BC,BE ⊥CA,AD 与BE 交于点H,P 为 边AB 的中点,过点C 作CQ ⊥PH,垂足为Q.求证:2PE =PH ·PQ.R。

隐圆模型---四点共圆【模型专题】(含答案解析)

隐圆模型---四点共圆【模型专题】(含答案解析)
【详解】(1) 将线段 绕点 逆时针旋转 得到线段 ,

是等边三角形
为等边三角形

,且 ,
(2)如图,过点 作 ,交 的延长线于点 ,




,且 ,
点 是 中点
(3)如图,连接 ,
是等边三角形,
点 ,点 ,点 ,点 四点在以 为直径的圆上,
最大为直径,
即最大值为1
【点睛】本题是三角形的综合题,考查了等边三角形的性质,旋转的性质,全等三角形的判定与性质,圆的性质等知识,熟练掌握这些知识并灵活运用是关键.
四点共圆
【模型讲解】
如图①பைடு நூலகம்②,Rt△ABC和Rt△ABD共斜边,取AB 中点O,根据直角三角形斜边上的中线等于斜边的一半,可得:OC=OD=OA=OB,∴A、B、C、D四点共圆.即共斜边的两个直角三角形,直角顶点在斜边同侧或异侧,都可得到四点共圆.得到四点共圆后可以根据圆周角定理得到角度相等,完成角度等量关系的转化,这是证明角度相等重要的途径之一.
【详解】过点O作OM⊥AB于点M,作ON⊥BC于点N,
∵∠ABC=90°,
∴四边形OMBN是矩形,
∴OM∥BC,ON∥AB,
∴△AOM∽△ACB,△CON∽△CAB,
∴OM:BC=OA:AC,ON:AB=OC:AC,
∵O为AC的中点,
∴OM= BC= ×8=4,ON= AB= ×6=3,
∴MN= =5,
∴HC=OD,DH=OA,
又∵BO=AO,
∴HO=DH+DO=OB+CH,
而CH=OQ,HO=CQ,
∴CQ=OB+OQ=BQ,
∴∠CBQ=45°,
又∵CH∥BA,

中考数学满分之路(二)—四点共圆

中考数学满分之路(二)—四点共圆

中考数学满分之路(二) ——四点共圆一、使用定义解题圆的定义 平面上到一个定点的距离等于定长的点的集合叫做圆. 在题目中出现共端点的等线段时,可尝试作出圆辅助求解.例 (1)如图,四边形ABCD 中,DC ∥AB ,BC =1,AB =AC =AD =2,则BD 的长为______.(2)如图,在等腰△ABC中,AB AC =D 为BC 边上异于中点的点,点C 关于直线AD 的对称点为点E ,EB 的延长线与AD 的延长线交于点F ,则AD AF ⋅的值为______.E1. 如图,抛物线2y ax bx c =++经过点(2,5)A -,与x 轴相交于(1,0)B -,(3,0)C 两点. (1)求抛物线的函数表达式;(2)点D 在抛物线的对称轴上,且位于x 轴的上方,将△BCD 沿直线BD 翻折得到△'BC D ,若点'C 恰好落在抛物线的对称轴上,求点'C 和点D 的坐标;(3)设点P 是抛物线上位于对称轴右侧的一点,点Q 在抛物线的对称轴上,当△CPQ 为等边三角形时,求直线BP 的函数表达式.2. 问题背景如图1,等腰△ABC 中,AB =AC ,∠BAC =120°,作AD ⊥BC 于点D ,则D 为BC 的中点,∠BAD =12∠BAC =60°,于是2BC BDAB AB= 迁移应用(1)如图2,△ABC 和△ADE 都是等腰三角形,∠BAC =∠DAE =120°,D ,E ,C 三点在同一条直线上,连接BD .ⅰ)求证:△ADB ≌△AEC ;ⅱ)请直接写出线段AD ,BD ,CD 之间的等量关系式. 拓展延伸(2)如图3,在菱形ABCD 中,∠ABC =120°,在∠ABC 内作射线BM ,作点C 关于BM 的对称点E ,连接AE 并延长交BM 于点F ,连接CE ,CF .ⅰ)求证:△CEF 是等边三角形; ⅱ)若AE =5,CE =2,求BF 的长.图1图2图33. 如图,AB 是半圆⊙O 的直径,点C 为半圆⊙O 上的点,连接AC ,BC ,点E 是AC 的中点,点F 是射线OE 上一点.(1)如图1,连接F A ,FC ,若2AFC BAC ∠=∠,求证:F A ⊥AB ;(2)如图2,过点C 作CD ⊥AB 于点D ,点G 是线段CD 上一点(不与点C 重合),连接F A ,FG ,FG 与AC 相交于点P ,且AF FG =.①试猜想∠AFG 和∠B 的数量关系,并证明;②连接OG ,若OE BD =,90GOE ∠=,⊙O 的半径为2,求EP 的长.图1 图2二、圆内接四边形的性质与判定定理性质定理1 圆的内接四边形的对角互补.定理2 圆内接四边形的外角等于它的内角的对角.圆周角定理的推论同弧所对的圆周角相等.判定圆内接四边形判定定理1 如果一个四边形的对角互补,那么这个四边形的四个顶点共圆.推论如果四边形的一个外角等于它的内角的对角,那么这个四边形的四个顶点共圆.圆内接四边形判定定理2 如果一个四边形一边与一对角线的夹角等于其对边与另一对角线的夹角,那么这个四边形的四个顶点共圆.上述定理在应用时的书写格式如下①∵A,B,C,D四点共圆,∴∠BAD+∠BCD=180°.②∵A,B,C,D四点共圆,∴∠DCE=∠BAD.③∵A,B,C,D四点共圆,∴∠ACB=∠ADB. ④∵∠BAD+∠BCD=180°,∴A,B,C,D四点共圆.⑤∵∠DCE=∠BAD,∴A,B,C,D四点共圆.⑥∵∠ACB=∠ADB,∴A,B,C,D四点共圆.EE4. 如图,矩形ABCD 的对角线AC ,BD 相交于点O ,过点O 作OE AC ⊥交AB 于点E ,若4BC =,△AOE 的面积为6,则sin BOE ∠的值为______.5. 如图,点B 在线段AC 上,点D ,E 在AC 同侧,90A C ∠=∠=,BD BE ⊥,AD BC =. (1)求证:AC AD CE =+;(2)若3AD =,5CE =,点P 为线段AB 上的动点,连接DP ,作PQ DP ⊥,交直线BE 与点Q ;ii )当点P 从A 点运动到AC 的中点时,求线段DQ 的中点所经过的路径(线段)长.DBP6. 如图,已知△ABC 是等边三角形,点D ,E 分别在边AC ,AB 上,且CD AE =,BD 与CE 相交于点P . (1)求证:△ACE ≌△CBD ;(2)如图2,将△CPD 沿直线CP 翻折得到对应的△CPM ,过C 作CG ∥AB ,交射线PM 于点G ,PG 与BC 相交于点F ,连接BG .ⅰ)试判断四边形ABGC 的形状,并说明理由;ⅱ)若四边形ABGC的面积为,1PF =,求CE 的长.图1图2三、与圆有关的比例线段相交弦定理 圆内的两条弦,被交点分成的两条线段长的积相等.割线定理 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等. 切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段的比例中项.上述定理在应用时的书写格式如下 由相交弦定理, 得PA PB PC PD ⋅=⋅.由割线定理, 得PA PB PC PD ⋅=⋅.由切割线定理, 得2PA PB PC =⋅.7. 如图,已知AB 是⊙O 的直径,C 为⊙O 上一点,延长BC 至D ,使CD =BC ,CE ⊥AD 于E ,BE 交⊙O 于F ,AF 交CE 于P . 求证:PE =PC .P8. 如图1,线段AB 是⊙O 的直径,弦CD ⊥AB 于点H ,点M 是CBD 上任意一点,AH =4,CD =16.(1)求⊙O 的半径r 的长度;10r =; (2)求tan ∠CMD ;(3)如图2,直线BM 交直线CD 于点E ,直线MH 交⊙O 于点N ,连接BN 交CE 于点F ,求H E H F ⋅的值.图1图29. 已知BC 为⊙O 的直径,AC 为⊙O 的切线,C 为切点,AD =BD .(1)如图1,求证:∠A =45°;(2)如图2,E 为⊙O 上一点,连接DE 交BC 于点F ,过点F 作BC 的垂线交BE 于点G ,求证:FG =FC ;(3)如图3,在(2)的条件下,若EG BDF 的面积为15(BF >BD ),求⊙O 的面积.图1BC图2CB图3BC10. (蝴蝶定理)如图,过⊙O的弦PQ的中点M引任意两条弦AB,CD,连接AD,BC分别交PQ于X,Y两点. 求证:MX=MY.证明:分别取AD ,CB 的中点E ,F , 连接OE ,OF ,OM ,OX ,OY ,ME ,MF , ∵∠A =∠C ,∠D =∠B ,∴△ADM ∽△CBM , ∴AM ADCM CB=,又AD =2AE ,CB =2CF , ∴22AD AE AE CB CF CF ==,∴AM AECM CF=,又∠A =∠C , ∴△AEM ∽△CFM ,∴∠AEM =∠CFM ,∵点M ,E ,F 分别是⊙O 的弦PQ ,AD ,CB 的中点, ∴OM ⊥PQ ,OE ⊥AD ,OF ⊥CB ,∴∠OEX +∠OMX =180°,∠OFY +∠OMY =180°, ∴O ,M ,X ,E 四点共圆,O ,M ,Y ,F 四点共圆, ∴∠MOX =∠AEM ,∠MOY =∠CFM ,又∠AEM =∠CFM , ∴∠MOX =∠MOY ,又OM =OM ,∠OMX =∠OMY =90°, ∴△OMX ≌△OMY ,∴MX =MY . 证法二证明:过点D 作DE ∥PQ 交⊙O 于另一点E ,连接MO 并延长交DE 于E , ①当PQ 为直径时,四边形ACBD 为矩形,易证MX =MY ; ②当PQ 不是直径时,由垂径定理推论,得OM ⊥PQ ,又DE ∥PQ , ∴MN ⊥DE ,又MN 过圆心O ,∴MN 垂直平分DE , ∴MD =ME ,∴∠MDE =∠MED ,又PQ ∥DE ,∴∠PMD =∠MDE ,∠QME =∠MED , ∴∠PMD =∠QME ,∠QME =∠MDE ,∵C ,D ,B ,E 四点共圆,∴∠MDE +∠CBE =180°, ∴∠QME +∠CBE =180°, ∴M ,E ,B ,Y 四点共圆,∴∠MEY =∠MBC ,又∠MBC =∠ADC ,∴∠ADC =∠MEY ,又MD =ME ,∠PMD =∠QME , ∴△MDX ≌△MEY ,∴MX =MY .证明:过X 作'XX AB ⊥于'X ,过X 作"XX CD ⊥于"X , 过Y 作'YY CD ⊥于'Y ,过Y 作"YY AB ⊥于"Y ,∵∠A =∠C ,∠D =∠B ,''90AX X CY Y ∠=∠=,""90CX X BY Y ∠=∠=, ∴△'AX X ∽△'CY Y ,△"DX X ∽△"BY Y , ∴''AX XX CY YY =,……①,""DX XX BY YY =,……②, ①×②,得'"'"AX DX XX XX CY BY YY YY ⋅=⋅, ∴'""'AX DX XX XX CY BY YY YY ⋅=⋅⋅,又由相交弦定理及平行线分线段成比例定理,得PX QX MX MXQY PY MY MY ⋅=⋅⋅, ∴22()()()()MP MX MP MX MX MP MY MP MY MY -⋅+=-⋅+,即222222MP MX MX MP MY MY -=-, 根据比例的基本性质,得22222222222222()1()MP MX MX MP MX MX MP MP MY MY MP MY MY MP --+====--+, ∴22MX MY =,∴MX =MY . 证法四证明:连接PA ,PD ,QC ,QB ,根据共圆定理,(共圆定理:同圆或等圆中的三角形面积比等于三边乘积之比) 得PAD QCB S PA PD AD PA PD ADS QB QC BC QB QC BC∆∆⋅⋅==⋅⋅⋅⋅, 又△PAM ∽△BQM ,△PDM ∽△CQM ,△ADM ∽△CBM , ∴22PAD AMDQCB CMBS PA PD AD AM MP AM AM S S QB QC BC MQ MC MC MC S ∆∆∆∆=⋅⋅=⋅⋅==, ∴QCB PAD AMD CMB S S S S ∆∆∆∆=,即PX QYMX MY=, ∴1MY QY MY QY MQ MX PX MX PX MP +====+, ∴MX =MY .B证明:连接AO 并延长交⊙O 于另一点E ,连接CO 并延长交⊙O 于另一点F ,连接BF ,DE 交于点G , 六边形CFBAED 内接于⊙O ,CF 交AE 于点O ,FB 交ED 于点G ,BA 交DC 于点M ,根据帕斯卡定理,得M ,O ,G 三点共线, 连接MG ,GX ,GY ,∵AE ,CF 为⊙O 的直径,∴∠ADE =90°,∠CBF =90°, ∵MP =MQ ,PQ 不是⊙O 的直径,(PQ 为直径时,易证) ∴OM ⊥PQ ,∴D ,G ,M ,X 四点共圆,B ,G ,M ,Y 四点共圆, ∴∠MGX =∠ADM ,∠MGY =∠CBM ,又∠ADM =∠CBM , ∴∠MGX =∠MGY ,又MG =MG ,∠GMX =∠GMY , ∴△GMX ≌△GMY , ∴MX =MY .帕斯卡定理 如果一个六边形内接于一条二次曲线(圆、椭圆、双曲线、抛物线),那么它的三对对边的交点在同一条直线上.B中考不考系列(二)——2019IMO第2题在三角形ABC中,点A1在边BC上,点B1在边AC上. 点P和Q分别在线段AA1和BB1上,且满足PQ平行于AB. 在直线PB1上取点P1,使得点B1严格位于点P与点P1之间,并且∠PP1C=∠BAC. 类似地,在直线QA1上取点Q1,使得点A1严格位于点Q与点Q1之间,并且∠CQ1Q=∠CBA.证明:点P,Q,P1,Q1共圆.证明:延长1AA ,1BB 分别交△ABC 的外接圆于2A ,2B ,连接22A B , ∵PQ ∥AB ,∴22ABB PQB ∠=∠,又222ABB AA B ∠=∠, ∴222PQB AA B ∠=∠,∴22,,,P Q A B 四点共圆,连接2B C ,∵1PPC BAC ∠=∠,2BB C BAC ∠=∠, ∴12PPC BB C ∠=∠,∴121,,,P B B C 四点共圆,连接12PB ,∵11212B PB B CB ∠=∠,222AA B ACB ∠=∠, ∴2122B PP B A P ∠=∠,∴122,,,P A P B 四点共圆,连接2A C ,∵1CQ Q CBA ∠=∠,2CA A CBA ∠=∠, ∴12CQ Q CA A ∠=∠,∴121,,,Q A A C 四点共圆,连接12Q A ,∵11212AQ A ACA ∠=∠,222BB A BCA ∠=∠, ∴2122A QQ A B Q ∠=∠,∴122,,,Q B Q A 四点共圆, ∴2112,,,,,P Q A Q P B 六点共圆, ∴点11,,,P Q P Q 共圆.上述答案是从官方答案翻译而来.【附】官方答案.。

四点共圆经典题

四点共圆经典题

四点共圆【知识要点】四点共圆的判定方法:1、若四个点到一定点的距离相等,则这四个点在同一个圆上(即这四点共圆)。

2、若一个四边形的一组对角的和等于180度,则这个四边形的四个顶点共圆。

3、若一个四边形的一个外角等于它的内对角,则这个四边形的四个顶点共圆。

4、若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线的两个端点共圆。

5、若AB 、CD 两线段相交于P 点,且PD PC PB PA ⋅=⋅,则A 、B 、C 、D 四点共圆。

6、若AB 、CD 两线段延长后相交于P 点,且PD PC PB PA ⋅=⋅,则A 、B 、C 、D 四点共圆。

7、若四边形两组对边乘积的和等于对角线的乘积,则四边形的四个顶点共圆。

二、直角边相交的“双直角”类说明:我说的“双直角”特指如下两种情况;相对“双直角”(如图1);同侧“双直角”(如图2).其特点是:A 连公共斜边,作斜边上的中线,得5个等腰三角形;B 四点共圆,据同弧上圆周角相等得到很多等角.1.如图5–2–3,∠ABC =∠ADC =90°,M 、N 分别是线段AC 、BD 的中点. 求证:MN ⊥BD .2.如图5–2–7,在锐角△ABC 中,∠BAC =60°,BD 、CE 为高,F 是BC 的中点,连接DE 、EF 、FD .则在:①EF =FD ;②AD ︰AB =AE ︰AC ;③△DEF 是等边三角形;④BE +CD =BC ;⑤当∠ABC =45°是,BE =2DE .这五个结论中一定AB C DOA B C D O 图1 图2 图5–2–3 B C DANM正确的个数是( )A .2B .3C .4D .53.已知ABC ∆中,D 为AB 边上的任意一点,AC DF //交BC 于点F ,α=∠=∠=∠ACB ABC CDE BC AE ,//,(1)如图1,当是等边三角形。

时,求证:ABC 60∆=α(2)如图2,当()()DE CE DE⊥==2;2CD 145时,求证: α(3)如图3,当α为锐角时,请直接写出线段CE 与DE 的数量关系是:=DE CEAB C E F D图5–2–7。

中考数学专题复习 四点共圆模型 含答案

中考数学专题复习   四点共圆模型  含答案

共圆模型模型1共端点,等线段模型如图①,出现“共端点,等线段”时,可利用圆定义构造辅助圆.如图②,若OA=OB=OC,则A、B、C三点在以O为圆心,OA为半径的圆上.如图③,常见结论有:∠ACB=12∠AOB,∠BAC=12∠BOC.模型分析∵OA=OB=OC.∴A、B、C三点到点O的距离相等.∴A、B、C三点在以O为圆心,OA为半径的圆上.∵∠ACB是»AB的圆周角,∠AOB是»AB的圆心角,∴∠ACB=12∠AOB.同理可证∠BAC=12∠BOC.(1)若有共端点的三条线段,可考虑构造辅助圆.(2)构造辅助圆是方便利用圆的性质快速解决角度问题.模型实例如图,△ABC和△ACD都是等腰三角形,AB=AC,AC=AD,连接BD.求证:∠1+∠2=90°.证明证法一:如图①,∵AB=AC=AD.∴B、C、D在以A为圆心,AB为半径的⊙A上.∴∠ABC=∠2.在△BAC中,∵∠BAC+∠ABC+∠2=180°,∴2∠1+2∠2=180°.∴∠1+∠2=90°.证法二:如图②,∵AB=AC=AD.∴∠BAC=2∠1.∵AB=AC,∴B、C、D在以A为圆心,AB为半径的⊙O上.延长BA与圆A相交于E,连接CE.∴∠E=∠1.(同弧所对的圆周角相等.)∵AE=AC,∴∠E=∠ACE.∵BE为⊙A的直径,∴∠BCE=90°.∴∠2+∠ACE=90°.∴∠1+∠2=90°.小猿热搜1.如图,△ABC为等腰三角形,AB=AC,在△ABC的外侧作直线AP,点B与点D关于AP轴对称,连接BD、CD,CD与AP交于点E.求证:∠1=∠2.证明∵A、D关于AP轴对称,∴AP是BD的垂直平分线.∴AD=AB,ED=EB.又∵AB=AC.∴C、B、D在以A为圆心,AB为半径的圆上.∵ED=EB,∴∠EDB=∠EBD.∴∠2=2∠EDB.又∵∠1=2∠CDB.∴∠1=∠2.2.己知四边形ABCD,AB∥CD,且AB=AC=AD=a,BC=b,且2a>b,求BD的长.解答以A为圆心,以a为半径作圆,延长BA交⊙A于E点,连接ED.∵AB∥CD,∴∠CAB=∠DCA,∠DAE=∠CDA. ∵AC=AD,∴∠DCA=∠CDA. ∴∠DAE=∠CAB.在△CAB和△DAE中.∴△CAB≌△DAE.∴ED=BC=b∵BE是直径,∴∠EDB=90°.在Rt△EDB中,ED=b,BE=2a,∴BD模型2 直角三角形共斜边模型模型分析如图①、②,Rt△ABC和Rt△ABD共斜边,取AB中点O,根据直角三角形斜边中线等于斜边一半,可得:OC=OD=OA=OB,∴A、B、C、D四点共圆.(1)共斜边的两个直角三角形,同侧或异侧,都会得到四点共圆;(2)四点共圆后可以根据圆周角定理得到角度相等,完成角度等量关系的转化,是证明角度相等重要的途径之一.模型实例例1如图,AD、BE、CF为△ABC的三条高,H为垂线,问:(1)图中有多少组四点共圆?(2)求证:∠ADF=∠ADE.解答(1)6组①C、D、H、E四点共圆,圆心在CH的中点处;②D、B、F、H四点共圆,圆心在BH的中点处;③A、E、H、F四点共圆,圆心在AH的中点处;④C、B、F、E四点共圆,圆心在BC的中点处;⑤B、A、E、D四点共圆,圆心在AB的中点处;⑥C、D、F、A四点共圆,圆心在AC的中点处.(2)如图,由B、D、H、F四点共圆,得∠ADF=∠1.同理:由A、B、D、E四点共圆,得∠ADE=∠1.∴∠ADF=∠ADE.例2如图,E是正方形ABCD的边AB上的一点,过点E作DE的垂线交∠ABC的外角平分线于点F,求证:FE=DE.解答如图,连接DB、DF.∵四边形ABCD是正方形,且BF是∠CBA的外角平分线,∴∠CBF=45°,∠DBC=45°,∴∠DBF=90°.又∵∠DEF=90°,∴D、E、B、F四点共圆.∴∠DFE=∠DBE=45°(同弧所对的圆周角相等).∴△DEF是等腰直角三角形.∴FE=DE.P1.如图,锐角△ABC中,BC.CE是高线,DG⊥CE于G,EF⊥BD于F,求证:FG BC证明:由于Rt△BCE与Rt△BCD共斜边BC,∴B、C、D、E四点共圆.∴∠DBC=∠DEG,同理,Rt∠EDF与Rt△DGE共斜边DE,∴D、E、F、G四点共圆.于是∠DEG=∠DFG,因此,∠DBC=∠DFG.于是FG∥BC2. 如图,BE.CF为△ABC的高,且交于点H,连接AH并延长交于BC于点D,求证:AD⊥BC.3.如图,等边△PQR内接于正方形ABCD,其中点P,Q,R分别在边AD,AB,DC上,M是QR的中点.求证:不论等边△PQR怎样运动,点M为不动点.4.如图,已知△ABC中,AH是高,AT是角平分线,且TD⊥AB,TE⊥AC.求证:∠AHD=∠AHE.证明:(1)∵∠ADT=∠AHT=∠AET=90°,∴D,E,H在以AT为直径的圆上,∴∠AHD=∠ATD,∠AHE=∠ATE,又∵AT是角平分线,TD⊥AB,TE⊥AC,∴∠ATD=∠ATE,∴∠AHD=∠AHE.补充:。

中考必会几何模型:辅助圆

中考必会几何模型:辅助圆

第十二章 辅助圆模型1 共端点,等线段模型图①O AC B图②BOC A图③OABC如图①,出现“共端点,等线段”时,可利用圆定义构造辅助圆.如图②,若OA =OB =OC ,则A 、B 、C 三点在以O 为圆心,OA 为半径的圆上.如图③,常见结论有:∠ACB =12∠AOB ,∠BAC =12∠BOC. 模型分析∵OA =OB =OC.∴A 、B 、C 三点到点O 的距离相等.∴A 、B 、C 三点在以O 为圆心,OA 为半径的圆上.∵∠ACB 是AB 的圆周角,∠AOB 是AB 的圆心角,∴∠ACB =12∠AOB.同理可证∠BAC =12∠BOC.(1)若有共端点的三条线段,可考虑构造辅助圆.(2)构造辅助圆是方便利用圆的性质快速解决角度问题. 模型实例如图,△ABC 和△ACD 都是等腰三角形,AB =AC ,AC =AD ,连接BD .求证:∠1+∠2=90°.21BDA证明证法一:如图①,∵AB =AC =AD .∴B 、C 、D 在以A 为圆心,AB 为半径的⊙A 上. ∴∠ABC =∠2. 在△BAC 中,∵∠BAC +∠ABC +∠2=180°,∴2∠1+2∠2=180°.∴∠1+∠2=90°. 证法二:如图②,∵AB =AC =AD .∴∠BAC =2∠1.∵AB =AC , ∴B 、C 、D 在以A 为圆心,AB 为半径的⊙O 上. 延长BA 与圆A 相交于E ,连接CE . ∴∠E =∠1.(同弧所对的圆周角相等.)∵AE =AC ,∴∠E =∠ACE.∵BE 为⊙A 的直径,∴∠BCE =90°. ∴∠2+∠ACE =90°.∴∠1+∠2=90°.图①21CDAB小猿热搜1.如图,△ABC 为等腰三角形,AB =AC ,在△ABC 的外侧作直线AP ,点B 与点 D 关于AP 轴对称,连接BD 、CD ,CD 与AP 交于点E .求证:∠1=∠2.12PBACE DA D21PE CB证明∵A 、D 关于AP 轴对称,∴AP 是BD 的垂直平分线. ∴AD =AB ,ED =EB .又∵AB =AC.∴C 、B 、D 在以A 为圆心,AB 为半径的圆上.∵ED =EB ,∴∠EDB =∠EBD. ∴∠2=2∠EDB.又∵∠1=2∠CDB. ∴∠1=∠2.2.己知四边形ABCD ,AB ∥CD ,且AB =AC =AD =a ,BC =b ,且2a >b ,求BD 的长.A CBDBCEDA解答以A 为圆心,以a 为半径作圆,延长BA 交⊙A 于E 点,连接ED . ∵AB ∥CD ,∴∠CAB =∠DCA ,∠DAE =∠CDA. ∵AC =AD , ∴∠DCA =∠CDA. ∴∠DAE =∠CAB.在△CAB 和△DAE 中.ADAC DAE CAB AE AB =⎧⎪∠=∠⎨⎪=⎩∴△CAB ≌△DAE. ∴ED =BC =b ∵BE 是直径,∴∠EDB =90°. 在Rt △EDB 中,ED =b ,BE =2a , ∴BD =22BE ED -=()222a b -=224a b -.模型2 直角三角形共斜边模型模型分析如图①、②,Rt △ABC 和Rt △ABD 共斜边,取AB 中点O ,根据直角三角形斜边中线等于斜边一半,可得:OC=OD=OA=OB , ∴A 、B 、C 、D 四点共圆.(1)共斜边的两个直角三角形,同侧或异侧,都会得到四点共圆; (2)四点共圆后可以根据圆周角定理得到角度相等,完成角度等量关系的转化,是证明角度相等重要的途径之一. 模型实例例1 如图,AD 、BE 、CF 为△ABC 的三条高,H 为垂线,问: (1)图中有多少组四点共圆? (2)求证:∠ADF =∠ADE .解答(1)6组①C、D、H、E四点共圆,圆心在CH的中点处;②D、B、F、H四点共圆,圆心在BH的中点处;③A、E、H、F四点共圆,圆心在AH的中点处;④C、B、F、E四点共圆,圆心在BC的中点处;⑤B、A、E、D四点共圆,圆心在AB的中点处;⑥C、D、F、A四点共圆,圆心在AC的中点处.(2)如图,由B、D、H、F四点共圆,得∠ADF=∠1.同理:由A、B、D、E四点共圆,得∠ADE=∠1.∴∠ADF=∠ADE.例2如图,E是正方形ABCD的边AB上的一点,过点E作DE的垂线交∠ABC的外角平分线于点F,求证:FE=DE.解答如图,连接DB 、DF.∵四边形ABCD 是正方形,且BF 是∠CBA 的外角平分线, ∴∠CBF=45°,∠DBC=45°, ∴∠DBF=90°. 又∵∠DEF=90°,∴D 、E 、B 、F 四点共圆.∴∠DFE=∠DBE=45°(同弧所对的圆周角相等). ∴△DEF 是等腰直角三角形. ∴FE=DE .1.如图,锐角△ABC 中,BC.CE 是高线,DG ⊥CE 于G ,EF ⊥BD 于F ,求证:FG BCFGEDB证明:由于Rt △BCE 与Rt △BCD 共斜边BC , ∴B 、C 、D 、E 四点共圆. ∴∠DBC=∠DEG ,同理,Rt ∠EDF 与Rt △DGE 共斜边DE , ∴D 、E 、F 、G 四点共圆. 于是∠DEG=∠DFG , 因此,∠DBC=∠DFG . 于是FG ∥BC2. 如图, BE.CF 为△ABC 的高,且交于点H,连接AH 并延长交于BC 于点D,求证:AD ⊥BC.HEFB3.如图,等边△PQR内接于正方形ABCD,其中点P,Q,R分别在边AD,AB,DC上,M是QR的中点.求证:不论等边△PQR怎样运动,点M为不动点.B CRQA D4.如图,已知△ABC中,AH是高,AT是角平分线,且TD⊥AB,TE⊥AC.求证:∠AHD=∠AHE.AEHDBC补充:。

(完整版)四点共圆例题及答案

(完整版)四点共圆例题及答案

例1 如图,E、F、G、H分别是菱形ABCD各边的中点.求证:E、F、G、H四点共圆.证明菱形ABCD的对角线AC和BD相交于点O,连接OE、OF、OG、OH.∵AC和BD 互相垂直,∴在Rt△AOB、Rt△BOC、Rt△COD、Rt△DOA中,E、F、G、H,分别是AB、BC、CD、DA的中点,即E、F、G、H四点共圆.(2)若四边形的两个对角互补(或一个外角等于它的内对角),则四点共圆.例2 如图,在△ABC中,AD⊥BC,DE⊥AB,DF⊥AC.求证:B、E、F、C四点共圆.证明∵DE⊥AB,DF⊥AC,∴∠AED+∠AFD=180°,即A、E、D、F四点共圆,∠AEF=∠ADF.又∵AD⊥BC,∠ADF+∠CDF=90°,∠CDF+∠FCD=90°,∠ADF=∠FCD.∴∠AEF=∠FCD,∠BEF+∠FCB=180°,即B、E、F、C四点共圆.(3)若两个三角形有一条公共边,这条边所对的角相等,并且在公共边的同侧,那么这两个三角形有公共的外接圆.证明在△ABC中,BD、CE是AC、AB边上的高.∴∠BEC=∠BDC=90°,且E、D在BC的同侧,∴E、B、C、D四点共圆.∠AED=∠ACB,∠A=∠A,∴△AED∽△ACB.上述三种方法是证“四点共圆”的基本方法,至于证第四点在前三点(不在同一直线上)所确定的圆上就不叙述了.【例1】在圆内接四边形ABCD中,∠A-∠C=12°,且∠A∶∠B=2∶3.求∠A、∠B、∠C、∠D的度数.解∵四边形ABCD内接于圆,∴∠A+∠C=180°.∵∠A-∠C=12°,∴∠A=96°,∠C=84°.∵∠A∶∠B=2∶3,∠D=180°-144°=36°.利用圆内接四边形对角互补可以解决圆中有关角的计算问题.【例2】已知:如图1所示,四边形ABCD内接于圆,CE∥BD交AB的延长线于E.求证:AD·BE=BC·DC.证明:连结AC.∵CE∥BD,∴∠1=∠E.∵∠1和∠2都是所对的圆周角,∴∠1=∠2.∠1=∠E.∵四边形ABCD内接于圆,∴∠EBC=∠CDA.∴△ADC∽△CBE.AD∶BC=DC∶BE.AD·BE=BC· DC.本例利用圆内接四边形的一个外角等于内对角及平行线的同位角、圆中同弧所对的圆周角得到两个相似三角形的条件,进而得到结论.关于圆内接四边形的性质,还有一个重要定理.现在中学课本一般都不列入,现介绍如下:定理:圆内接四边形两条对角线的乘积等于两组对边乘积的和.已知:如图2所示,四边形ABCD内接于圆.求证:AC·BD=AB·CD+AD·BC.证明:作∠BAE=∠CAD,AE交 BD于 E.∵∠ABD=∠ACD,即 AB·CD=AC·BE.①∵∠BAE+∠CAE=∠CAD+∠CAE,∴∠BAC=∠EAD.又∠ACB=∠ADE,AD·BC=AC·DE.②由①,②得AC·BE+AC·DE=AB·CE+AD·BCAC·BD=AB·CD+AD·BC这个定理叫托勒密(ptolemy)定理,是圆内接四边形的一个重要性质.这个证明的关键是构造△ABE∽△ACD,充分利用相似理论,这在几何中是具有代表性的.在数学竞赛中经常看到它的影子,希望能引起我们注意.命题“菱形都内接于圆”对吗?命题“菱形都内接于圆”是不正确的.所以是假命题.理由是:根据圆的内接四边形的判定方法之一,如果一个四边形的一组对角互补,那么这个四边形内接于圆.这个判定的前提是一组对角互补,而菱形的性质是一组对角相等.而一组相等的角,它们的内角和不一定是180°.如果内角和是180°,而且又相等,那么只可能是每个内角等于90°,既具有菱形的性质,且每个内角等于90°,那末这个四边形一定是正方形.而正方形显然是菱形中的特例,不能说明一般情形.判定四边形内接于圆的方法之二,是圆心到四边形四个顶点的距离相等.圆既是中心对称图形,又是轴对称图形,它的对称中心是圆心.菱形同样既是中心对称图形,又是轴对称图形,它的对称中心是两条对角线的交点.但菱形的对称中心到菱形各个顶点的距离不一定相等.所以,也无法确定菱形一定内接于圆;如果菱形的对称中心到菱形各边顶点的距离相等,再加上菱形的对角线互相垂直平分这些性质,那么这个四边形又必是正方形.综上所述,“菱形都内接于圆”这个命题是错误的.5圆的内接四边形例1 已知:如图7-90,ABCD是对角线互相垂直的圆内接四边形,通过对角线的交点E与AB垂直于点H的直线交CD于点M.求证:CM=MD.证明∠MEC与∠HEB互余,∠ABE与∠HEB互余,所以∠MEC=∠ABE.又∠ABE=∠ECM,所以∠MEC=∠ECM.从而CM=EM.同理MD=EM.所以CM=MD.点评本例的逆命题也成立(即图中若M平分CD,则MH⊥AB).这两个命题在某些问题中有时有用.本例叫做婆罗摩笈多定理.例2 已知:如图7-91,ABCD是⊙O的内接四边形,AC⊥BD,分析一如图7-91(a),由于E是AB的中点,从A引⊙O的需证明GB=CD.但这在第七章ξ1.4圆周角中的例3已经证明了.证明读者自己完成.*分析二如图7-91(b),设AC,BD垂直于点F.取CD的有OE∥MF.从而四边形OEFM应该是平行四边形.证明了四边形OEFM是平行四边形,问题也就解决了.而证明四边形OEFM是平行四边形已经没有什么困难了.*分析三如图7-91(b),通过AC,BD的交点F作AB的垂线交CD于点M.连结线段EF,MO.由于OE⊥AB,FM⊥AB,所以OE∥FM.又由于EF⊥CD(见例1的点评),MO⊥CD,所以EF∥MO.所以四边形OEFM为平行四边形.从而OE=MF,而由例3 求证:圆内接四边形对边乘积的和等于对角线的乘积,即图中AB·CD+BC·AD=AC·BD.分析在AB·CD+BC·AD=AC·BD中,等号左端是两个乘积的和,要证明这种等式成立,常需把左端拆成两个单项式来证明,即先考虑AB·CD和BC·AD各等于什么,然后再考虑AB·CD+BC·AD是否等于AC·BD.而要考虑AB·CD和BC·AD各等于什么,要用到相似三角形.为此,如图7-92,作AE,令∠BAE=∠CAD,并且与对角线BD相交于点E,这就得到△ABE∽△ACD.由此求得AB·CD=AC·BE.在圆中又出现了△ABC∽△AED,由此又求得BC·AD=AC·ED.把以上两个等式左右各相加,问题就解决了.证明读者自己完成.点评本例叫做托勒玫定理.它在计算与证明中都很有用.意一点.求证:PA=PB+PC.分析一本例是线段和差问题,因此可用截取或延长的方法证明.如图7-93(a),在PA上取点M,使PM=PB,剩下的问题是证明MA=PC,这只要证明△ABM≌△CBP就可以了.证明读者自己完成.分析二如图7-93(a),在PA上取点M,使MA=PC,剩下的问题是证明PM=PB,这只要证明△BPM是等边三角形就可以了.证明读者自己完成.分析三如图7-93(b),延长CP到M,使PM=PB,剩下的问题是证明PA=MC,这只要证明△PAB≌△CMB就可以了.证明读者自己完成.读者可仿以上的方法拟出本例的其他证明.*本例最简单的证明是利用托勒玫定理(例3).证明由托勒玫定理得PA·BC=PB·AC+PC·AB,由于BC=AC=AB,所以有PA=PB+PC.例2 如图7—116,⊙O1和⊙O2都经过A、B两点,经过点A的直线CD与⊙O1交于点C,与⊙O2交于点D.经过点B的直线EF与⊙O1交于点E,与⊙O2交于点F.求证:CE∥DF.分析:要证明CE∥DF.考虑证明同位角(或内错角)相等或同旁内角互补.由于CE、DF分别在两个圆中,不易找到角的关系,若连结AB,则可构成圆内接四边形,利用圆内接四边形的性质定理可沟通两圆中有关角的关系.证明:连结AB.∵ABEC是圆内接四边形,∵ADFB是圆内接四边形,∴∠BAD+∠F=180°,∴∠E+∠F=180°.∴CE∥CF.说明:(1)本题也可以利用同位角相等或内错角相等,两直线平行证明.如延长EF至G,因为∠DFG=∠BAD,而∠BAD=∠E,所以∠DFG=∠E.(2)应强调本题的辅助线是为了构成圆内接四边形,以利用它的性质,导出角之间的关系.(3)对于程度较好的学生,还可让他们进一步思考,若本题不变,但不给出图形,是否还有其他情况?问题提出后可让学生自己画图思考,通过讨论明确本题还应有如图7—117的情况并给予证明.例3 如图7—118,已知在△ABC中,AB=AC,BD平分∠B,△ABD的外接圆和BC 交于E.求证:AD=EC.分析:要证AD=EC,不能直接建立它们的联系,考虑已知条件可知∠ABD=∠DBE,容易看出.若连结DE,则有AD=DE.因此只要证DE=EC.由于DE和EC为△DEC的两边,所以只要证∠EDC=∠C.由已知条件可知∠C=∠ABC.因此只要证∠EDC=∠ABC.因为△EDC是圆内接四边形ABED的一个外角,所以可证∠EDC=∠ABC.问题可解决.证明:连结DE.∵BD平分∠ABC,∴,AD=DE.∵ABED是圆内接四边形,∵AB=AC,∴∠ABC=∠C,∴∠EDC=∠C.于是有DE=EC.因此AD=EC.四、作业1.如图7—120,在圆内接四边形ABCD中,AC平分BD,并且AC⊥BD,∠BAD=70°18′,求四边形其余各角.2.圆内接四边形ABCD中,∠A、∠B、∠C的度数的比为2∶3∶6,求四边形各内角的度数.3.如图7—121,AD是△ABC外角∠EAC的平分线,AD与三角形的外接圆交于点D.求证:DB=DC.作业答案或提示:1.∠ABC=∠ADC=90°,∠BCD=109°42′.2.∠A=45°,∠B=67.5°,∠C=135°,∠D=112.5°.3.提示:因为∠DBC=∠DAC,∠EAD=∠DCB,∠EAD=∠DAC,所以∠DBC=∠DCB,因此DB=DC.判定四点共圆的方法引导学生归纳判定四点共圆的方法:(1)如果四个点与一定点距离相等,那么这四个点共圆.(2)如果一个四边形的一组对角互补,那么这个四边形的四个顶点共圆.(3)如果一个四边形的一个外角等于它的内对角,那么这个四边形的四个顶点共圆.(4)如果两个直角三角形有公共的斜边,那么这两个三角形的四个顶点共圆(因为四个顶点与斜边中点距离相等).3.如图7—124,已知ABCD为平行四边形,过点A和B的圆与 AD、BC分别交于E、F.求证:C、D、E、F四点共圆.提示连结EF.由∠B+∠AEF=180°,∠B+∠C=180°,可得∠AEF=∠C.四点共圆的应用山东宁阳教委教研室栗致根四点共圆在平面几何证明中应用广泛,熟悉这种应用对于开阔证题思路,提高解题能力都是十分有益的.一用于证明两角相等例1 如图1,已知P为⊙O外一点,PA切⊙O于A,PB切⊙O于B,OP交AB 于E.求证:∠APC=∠BPD.证明连结OA,OC,OD.由射影定理,得AE2=PE·EO,又AE=BE,则AE·BE =PE·EO……(1);由相交弦定理,得AE·BE=CE·DE……(2);由(1)、(2)得CE·ED=PE·EO,∴ P、C、O、D四点共圆,则∠1=∠2,∠3=∠4,又∠2=∠4.∴∠1=∠3,易证∠APC=∠BPD(∠4=∠EDO).二用于证明两条线段相筹例2 如图2,从⊙O外一点P引切线PA、PB和割线PDC,从A点作弦AE平行于DC,连结BE交DC于F,求证:FC=FD.证明连结AD、AF、EC、AB.∵PA切⊙O于A,则∠1=∠2.∵AE∥CD,则∠2=∠4.∴∠1=∠4,∴P、A、F、B四点共圆.∴∠5=∠6,而∠5=∠2=∠3,∴∠3=∠6.∵AE∥CD,∴EC=AD,且∠ECF=∠ADF,∴△EFC≌△AFD,∴FC=FD.三用于证明两直线平行例3 如图3,在△ABC中,AB=AC,AD⊥BC,∠B的两条三等分线交AD于E、G,交AC于F、H.求证:EH∥GC.证明连结EC.在△ABE和△ACE中,∵AE=AE,AB=AC,∠BAE=∠CAE,∴△AEB≌AEC,∴∠5=∠1=∠2,∴B、C、H、E四点共圆,∴∠6=∠3.在△GEB 和△GEC中,∵GE=GE,∠BEG=∠CEG,EB=EC,∴△GEB≌△GEC,∴∠4=∠2=∠3,∴∠4=∠6.∴EH∥GC.四用于证明两直线垂直证明在△ABD和△BCE中,∵AB=BC,∠ABD=∠BCE,BD=CE,则△ABD≌△BCE,∴∠ADB=∠BEC,∴P、D、C、E四点共圆.设DC的中点为O连结OE、DE.易证∠OEC=60°,∠DEO=30°∴∠DEC=90°,于是∠DPC=90°,∴ CP⊥AD.五用于判定切线例5 如图5,AB为半圆直径,P为半圆上一点,PC⊥AB于C,以AC为直径的圆交PA于D,以BC为直径的圆交PB于E,求证:DE是这两圆的公切线.证明连结DC、CE,易知∠PDC=∠PEC=90°,∴ P、D、C、E四点共圆,于是∠1=∠3,而∠3+∠2=90°,∠A+∠2=90°,则∠1=∠A,∴DE是圆ACD 的切线.同理,DE是圆BCE的切线.因而DE为两圆的公切线六用于证明比例式例6 AB、CD为⊙O中两条平行的弦,过B点的切线交CD的延长线于G,弦PA、PB分别交CD于E、F.证明如图6.连结BE、PG.∵BG切⊙O于B,则∠1=∠A.∵AB∥CD,则∠A=∠2.于是∠1=∠2,∴P、G、B、E四点共圆.由相交弦定理,得EF·FG=PF·FB.在⊙O中,由相交弦定理,得CF·FD=FP·FB.七用于证明平方式例7 ABCD为圆内接四边形,一组对边AB和DC延长交于P点,另一组对边AD和BC延长交于Q点,从P、Q引这圆的两条切线,切点分别是E、F,(如图 7)求证:PQ2=QF2+PE2.证明作△DCQ的外接圆,交PQ于M,连结MC,∵∠1=∠2=∠3,则P、B、C、M四点共圆.由圆幂定理得PE2=PC·PD=PM·PQ,QF2=QC·QB=QM·QP,两式相加得PE2+QF2=PM·PQ+ QM·QP=PQ(PM+QM)=PQ·PQ=PQ2∴PQ2=PE2+QF2.八用于解计算题例8如图8,△ABC的高AD的延长线交外接圆于H,以AD为直径作圆和AB、AC分别交于E、F点,EF交 AD于 G,若 AG=16cm,AH=25cm,求 AD的长.解连结DE、DF、BH.∵∠1=∠2=∠C=∠H,∴B、E、G、H四点共圆.由圆幂定理,得AE·AB=AG·AN.在△ABD中,∵∠ADB=90°,DE⊥AB,由射影定理,得AD2=AE·AB,∴AD2=AG·AH=16×25=400,∴AD=20cm.九用于证明三点共线例9如图9,D为△ABC外接圆上任意一点,E、F、G为D点到三边垂线的垂足,求证:E、F、G三点在一条直线上.证明连结EF、FG、BD、CD.∵∠BED=∠BFD=90°,则B、E、F、D四点共圆,∴∠1=∠2,同理∠3=∠4.在△DBE和△DCG中,∵∠DEB=∠DGC,∠DBE=∠DCG,故∠1=∠4,易得∠2=∠3,∴ E、F、G三点在一条直线上.十用于证明多点共圆例10如图10,H为△ABC的垂心,H1、H2、H3为H点关于各边的对称点,求证:A、B、C、H1、H2、H3六点共圆.证明连结AH2,∵H与H2关于AF对称,则∠1=∠2.∵A、F、D、C四点共圆,则∠2=∠3,于是∠1=∠3,∴A、H2、B、c四点共圆,即H2在△ABC的外接圆上.同理可证,H1、H3也在△ABC的外接圆上.∴A、B、C、H1、H2、H3六点共圆.相关资源加到收藏夹添加相关资源托勒密定理的数形转换功能山东临沂市四中姜开传临沂市第一技校刘久松圆内接四边形两组对边乘积的和等于其对角线的乘积,即在四边形 ABCD 中,有AB·CD+AD·BC=AC·BD,这就是著名的托勒密定理.本刊1996年第2期给出了它的几种证法,作为续篇,本文就其数形转换功能举例说明如下:1 “形”转换为“数”对于某些几何问题,特别是圆内接多边形问题,如果能根据题设中隐含的数量关系,利用托勒密定理可将“形”转换为“数”,从而达到用代数运算来代替几何推理的目的.例1已知正七边形A1A2 (7)(第21届全俄数学奥林匹克竞赛题)对于这道竞赛题,原证较繁,但通过深挖隐含条件,利用托勒密定理可改变整个解题局面,使证题步骤简缩到最少.如图1,连 A1A5、A3A5,则A1A5=A1A4、A3A5=A1A3.在四边形A1A3A4A5中,由托勒密定理,得A3A4·A1A5+A4A5·A1A3=A1A4·A3A5,即A1A2·A1A4+A1A2·A1A3=A1A3·A1A4,两边同除以A1A2·A1A3·A1A4即得结论式.例2 如图2,A、B、C、D四点在同一圆周上,且BC=CD=4,AE=6,线段BE和DE的长都是整数,则BD的长等于多少?(1988年全国初中数学联赛题)此题若用其它方法解,往往使人一筹莫展.若运用托勒密定理,可使问题化难为易.由△CDE∽△BAE和△CBE∽△DAE,得由托勒密定理,得BD(AE+CE)=4(AB+AD),亦即 CE(AE+CE)=16.设CE=x,整理上式,得x2+6x-16=0.解得x=2(负值已舍),故BE·DE=CE·AE=12.∵BD<BC+CD=8,例3一个内接于圆的六边形,其五个边的边长都为81,AB是它的第六边,其长为31,求从B出发的三条对角线长的和.(第九届美国数学邀请赛试题)原解答过程冗长.若通过托勒密定理的桥梁作用,把“形”转换为“数”,可使问题化繁为简.如图3,设BD=a, BE=b,BF=c,连AC、CE、AE,则CE=AE=BD=a,AC=BF =c.在四边形BCDE中,由托勒密定理,得81b+812=a2①同理81b+31·81=ac ②31a+81a=bc ③解①、③、③组成的方程组,得a=135,b=144,c=105故 a+b+c=384.2 “数”转换为“形”对于某些代数问题,若结构与托勒密定理相似,通过构造圆内接四边形,可把“数”转换为“形”,然后利用“形”的性质,使问题得到解决.这种解法构思巧妙,方法独特,富于创新,出奇制胜.例4 解方程若按常规方法解这个无理方程,过程繁冗.若由方程的结构特征联想到托勒密定理,则构造直径AC=x(x≥11)的圆及圆内接四边形ABCD,使BC=2,CD=11,如图 4,于是由托勒密定理,得在△BCD中,由余弦定理,得经检验x=14是原方程的根.求证: a2+b2=1.这道名题已有多种证法,而且被视为用三角换无法解代数问题的典范.下面再给出一各几何证法.易知0≤a、b≤1且a、b不全为零.当a、b之一为零时,结论显然成立.当a、b全不为零时,由已知等式联想到托勒密定理,作直径AC=1的圆及圆内接四与已知等式比较,得BD=1,即BD也为圆的直径,故a2+b2=1例6设a>c,b>c,c>0,此题若用常规方法证明也不轻松.下面利用托勒密定理给出它的一个巧证.由托勒密定理,得巧用托勒密定理证题河北晋州市数学论文研究协会张东海王素改在解证某些数学题时,如能巧用托勒密定理,可使解证过程简洁清新,兹举例说明.托勒密定理:圆内接四边形中,两条对角线的乘积等于两组对边乘积之和.一、构造“圆”,运用定理【例1】设a,b,x,y是实数,且a2+b2=1,x2+y2=1.求证:ax+by≤1.证作直径AB=1的圆,在AB的两侧任作Rt△ACB和Rt△ADB,使AC=a,BC=b,BD=x, AD=y.(图1)由勾股定理知a,b,x,y满足条件.根据托勒密定理,有AC·BD+BC·AD=AB·CD.∵ CD≤1,∴ax+by≤1.二、利用无形圆,运用定理【例2】等腰梯形一条对角线的平方,等于一腰的平方加上两底之积.已知:梯形 ABCD中,AD=BC,AB∥CD.求证:BD2=BC2+AB·CD.证∵等腰梯形内接于圆,由托勒密定理,有AC·BD=AD·BC+AB·CD.∵AD=BC,AC=BD,∴BD2=BC2+AB·CD.(图略)【例 3】已知:边长为 1的正七边形ABCDEFG中,对角线 AD=a,BG=b(a≠b).求证:(a+b)2(a-b)=ab2.证连结BD,GE,BE,DG,则 BD=EG=GB=b,DG=BE=DA=a, DE=AB=AG=1.(如图2)在四边形ABDG中,由托勒密定理,有AD·BG=AB·DG+BD·AG,即ab=a+b (1)同理在四边形BDEG中,得BE·DG=DE·BG+BD·EG,即a2=b+b2 (2)将(2)变形为b=a2-b2 (3)(1)×(3),得ab2=(a+b)(a2-b2).故ab2=(a+b)2(a-b).三、构造圆内接四边形,运用定理【例4】在△ABC中,∠A的内角平分线AD交外接圆于D.连结BD.求证:AD·BC=BD·(AB+AC).证(如图3) 连结DC.由托勒密定理.有AD·BC=AB·CD+AC·BD.又∵∠1=∠2,∴BD=DC.∴AD·BC=AB·CD+AC·BD=BD(AB+AC).即AD·BC=BD·(AB+AC).圆内接四边形的面积公式黑龙江绥化五中任天民设圆内接四边形ABCD中各边为a,b,c,d.连结 BD.由∠A+∠C=180°,可以推出sinA=sinC,cosA=-cosC.并且S四边形ABCD=S△ABD+S△BCD所以这样我们得出了圆内接四边形面积的计算公式.在上面的公式中,如果设某一边为零,(不仿设d=0)此时四边形变成三角形,该公式恰是计算三角形面积的海伦公式.圆内接四边形面积公式的得出是受三角形面积公式的启发,通过联想探索出来的,而且两者在形式上又是那么的相近.这种现象在数学中不胜枚举,如果同学们都能从特殊规律去探索一般规律,再从一般规律去认识特殊规律.那么对数学能力的培养将大有裨益.四条边定长四边形面积的最大值上海市育群中学李甲鼎四条边为定长的四边形不具稳定性,但在某种特定的位置下,它能内接于圆,成为圆内接四边形.并且此时达到变化过程中面积最大值.下文证明这个事实.已知:四边形ABCD中:AB=a,BC=b,CD=c,DA=d求证:四边形ABCD中有唯一四边形能内接于圆,且此时面积达到最大值.证明:(1)先证四边形四边定长,有唯一的四边形内接于圆,设∠ABC=α,∠ADC=β,AC=x.令α+β=π,即cosα+cosβ=0x的解唯一确定,代入(1)(2)后cosα、cosβ也随之唯一确,在α,β∈(0,π)的条件下α、β也同时唯一确定.∴四边形四边定长,对角互补,四边形是唯一的.即所得到的四边形为圆内接四边形.(2)当四边定长的四边形内接于圆时,此四边形面积最大.∵四边形ABCD的面积由余弦定理得a2+b2-2abcosα=x2=c2+d2-2cdcosβ显然当α+β=π时(即为圆内接四边形时)S2达到最大值,即S最大.一个几何定理的应用江苏省徐州矿务局庞庄职校张怀林定理:如图1,在圆接四边形ABCD中弦AD平分∠BAC,则2ADcosα=AB +AC.证明连接BD、DC、BC,设已知圆半径为R,则由正弦定理有:BD=DC=2Rsinα,BC=2Rsin2α.由托勒密定理有AB·CD+AC·BD=AD·DC.∴(AB+AC)·2Rsinα=AD·2Rsin2α.则2AD·cosα=AB+AC.下面举例说明它的应用.例1如图2,已知锐角△ABC的∠A平分线交BC于L,交外接圆于N,过L分别作LK⊥AB,LM⊥AC,垂足分别为K、M.求证:四边形AKNM的面积等于△ABC的面积.(第28届IMO)证明由已知得∠BAN=∠CAN,由定理有2ANcosα=AB+AC,=AN·AL·cosα·sinα=AN·AK·sinα=AN·AM·sinα=2S△AKN=2S△AMN.∴S△ABC=S四边形AKNM.(第21届全苏奥数)证明作正七边形外接圆,如图3所示.由定理有2c·cosα=b+c,又在等腰△A1A2A3中有2a·cosα=b.例3在△ABC中,∠C=3∠A,a=27,c=48,则b的值是____.(第36届AHSME试题)解如图4.作△ABC的外接圆,在取三等分点D、E,连CD、CE.由已知得:∠ACD=∠DCE=∠ECB=∠A,CD=AB=48,由定理有2CE·cosA=CB+CD ①2CD·cosA=CE+AC ②又2CB·cosA=CE ③由②、③得:b=AC=CE·(CD-CB)/CB=35.托勒密定理及其应用河北省晋州市数学论文研究协会刘同林托勒密定理:圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之和).已知:圆内接四边形ABCD,求证:AC·BD=AB·CD+AD·BC.证明:如图1,过C作CP交BD于P,使∠1=∠2,又∠3=∠4,∴△ACD ∽△BCP.又∠ACB=∠DCP,∠5=∠6,∴△ACB∽△DCP.①+②得AC(BP+DP)=AB·CD+AD·BC.即AC·BD=AB·CD+AD·BC.这就是著名的托勒密定理,在通用教材中习题的面目出现,不被重视.笔者认为,既然是定理就可作为推理论证的依据.有些问题若根据它来论证,显然格外简洁清新.兹分类说明如下,以供探究.一、直接应用托勒密定理例1如图2,P是正△ABC外接圆的劣弧上任一点(不与B、C重合),求证:PA=PB+PC.分析:此题证法甚多,一般是截长、补短,构造全等三角形,均为繁冗.若借助托勒密定理论证,则有PA·BC=PB·AC+PC·AB,∵AB=BC=AC.∴PA=PB+PC.二、完善图形借助托勒密定理例2证明“勾股定理”:在Rt△ABC中,∠B=90°,求证:AC2=AB2+BC2证明:如图3,作以Rt△ABC的斜边AC为一对角线的矩形ABCD,显然ABCD是圆内接四边形.由托勒密定理,有AC·BD=AB·CD+AD·BC.①又∵ABCD是矩形,∴AB=CD,AD=BC,AC=BD.②把②代人①,得AC2=AB2+BC2.例3如图4,在△ABC中,∠A的平分线交外接∠圆于D,连结BD,求证:AD·BC=BD(AB+AC).证明:连结CD,依托勒密定理,有AD·BC=AB·CD+AC·BD.∵∠1=∠2,∴BD=CD.故AD·BC=AB·BD+AC·BD=BD(AB+AC).三、利用“无形圆”借助托勒密定理例4等腰梯形一条对角线的平方等于一腰的平方加上两底之积.如图5,ABCD中,AB∥CD,AD=BC,求证:BD2=BC2+AB·CD.证明:∵等腰梯形内接于圆,依托密定理,则有AC·BD=AD·BC+AB·CD.又∵AD=BC,AC=BD,∴BD2=BC2+AB·CD.四、构造图形借助托勒密定理例5若a、b、x、y是实数,且a2+b2=1,x2+y2=1.求证:ax+by≤1.证明:如图6,作直径AB=1的圆,在AB两边任作Rt△ACB和Rt△ADB,使AC=a,BC=b,BD=x,AD=y.由勾股定理知a、b、x、y是满足题设条件的.据托勒密定理,有AC·BD+BC·AD=AB·CD.∵CD≤AB=1,∴ax+by≤1.五、巧变原式妙构图形,借助托勒密定理例6已知a、b、c是△ABC的三边,且a2=b(b+c),求证:∠A=2∠B.分析:将a2=b(b+c)变形为a·a=b·b+bc,从而联想到托勒密定理,进而构造一个等腰梯形,使两腰为b,两对角线为a,一底边为c.证明:如图7,作△ABC的外接圆,以A为圆心,BC为半径作弧交圆于D,连结BD、DC、DA.∵AD=BC,∴∠ABD=∠BAC.又∵∠BDA=∠ACB(对同弧),∴∠1=∠2.依托勒密定理,有BC·AD=AB·CD+BD·AC.①而已知a2=b(b+c),即a·a=b·c+b2.②∴∠BAC=2∠ABC.六、巧变形妙引线借肋托勒密定理例7在△ABC中,已知∠A∶∠B∶∠C=1∶2∶4,析证:将结论变形为AC·BC+AB·BC=AB·AC,把三角形和圆联系起来,可联想到托勒密定理,进而构造圆内接四边形.如图8,作△ABC的外接圆,作弦BD=BC,边结AD、CD.在圆内接四边形ADBC中,由托勒密定理,有AC·BD+BC·AD=AB·CD易证AB=AD,CD=AC,∴AC·BC+BC·AB=AB·AC,关于圆内接四边形的若干共点性质浙江绍兴县鲁迅中学范培养设四边形ABCD内接于圆O,其边AB与DC的延长线交于P,AD与BC 的延长线交于Q,由P作圆的两切线PM、PN,切点分别为M、N;由Q作圆的两切线QE、QF,切点分别为E、F(如图1).则有以下一些共点性质:性质1 AC、BD、EF三直线共点.证明:如图1,设AC交EF于K1,则K1分EF所成的比为设BD交EF于K2,同理可得K2分EF所成的比为由(5)、(6)可得(1)=(2),故K1、K2分EF所成的比相等.∴K1、K2重合,从而AC、BD、EF三直线共点.类似地AC、BD、MN三直线共点,因此有以下推论AC、BD、EF、MN四直线共点.性质2 AB、DC、EF三直线共点于P.(此性质等同于1997年中国数学奥林匹克第二试第四题)这里用上述证明性质1的方法证之.证明:如图2.设DC与EF的延长线交于P1,则P1分EF所成的比为设AB与EF的延长线交于P2,则P2分EF所成的比为由(5)、(6)可得(7)=(8),故P1、P2分EF所成的比相等.∴P1、P2重合,从而AB、DC、EF三直线共点于P.推论AD、BC、NM三直线共点于Q.性质 3 EM、NF、PQ三直线共点.证明:如图3,设EM的延长线交PQ于G1,妨上证法,G1分PQ所成的比为设NF的延长线交PQ于G2,则G2分PQ所成的比为(这里E、F、P三点共线及N、M、Q三点共线在性质2及推论中已证).由△PME∽△PFM得由(11)、(12)及QE=QF、PN=PM可得(9)=(10),故G1、G2分PQ所成的比相等.∴G1、G2重合,从而EM、NF、PQ三直线共点.性质4如果直线EN和MF相交,那么交点在直线PQ上,即EN、MF、PQ三直线共点.证明从略,妨性质3的证法可得.性质5 EM、NF、AC三直线共点.证明:如图4,类似于性质1的证明,设EM与AC的延长线交于G3,则G3分AC所成的比为设NF与AC的延长线交于G4,则G4分AC所成的比为由(15)、(18)、(19)可得(13)=(14),故G3、G4分AC所成的比相等.∴G3、G4重合,从而EM、NF、AC 三直线共点.推论EM、NF、AC、PQ四直线共点.限于篇幅,仅列以上五条共点性质.有兴趣的读者不妨再探索其它共点性质例3在边长为a的正七边形ABCDEFG中,两条不相等的对角线长分别为t,m.证明如图4,连结AD、CE,令AE=t,AC=m,在圆内接四边形ACDE 中,据托勒密定理,有AD·CE=AE·CD+AC·DE,即tm=ta+ma.托勒密定理及其应用河北省晋州市数学论文研究协会康美娈彭立欣托勒密定理圆内接四边形的两条对角线的乘积(两条对角线所包矩形的面积),等于两组对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形面积之和).证明如图1,过C作CP使∠1=∠2,又∠3=∠4,∴△ACD∽△BCP.∴AC·BP=AD·BC ①又∠ACB=∠DCP,∠5=∠6,∴AC·DP=AB·CD.②①+②得AC(BP+PD)=AD·BC+AB·CD.故AC·BD=AD·BC+AB·CD.托勒密定理在教材中仅以习题的形式出现,若以此定理为根据,可使许多问题解证过程别具一格.例1已知P是正△ABC的外接圆劣弧上任意一点.求证:PA=BP+PC.证明如图2,ABPC是圆内接四边形,根据托勒密定理,有PA·BC=PB·AC+PC·AB.∵AB=BC=AC,∴PA=PB+PC.例2证明等腰梯形一条对角线的平方,等于一腰的平方加上两底之积.证明如图3,设在梯形ABCD中,AD=BC,AB∥CD.∵等腰梯形内接于圆,∴AC·BD=AD·BC+AB·CD.又AD=BC,AC=BD,∴BD2=BC2+AB·CD.例3在边长为a的正七边形ABCDEFG中,两条不相等的对角线长分别为t,m.证明如图4,连结AD、CE,令AE=t,AC=m,在圆内接四边形ACDE 中,据托勒密定理,有AD·CE=AE·CD+AC·DE,即tm=ta+ma.例4已知a、b、x、y是实数,且a2+b2=1,x2+y2=1.求证:ax+by≤1.证明作直径AB=1的圆,在AB两侧作Rt△ACB和Rt△ADB,使AC=a,BC=b,BD=x,DA=y(如图5).依勾股定理知a、b、x、y是满足题设条件的.依托勒密定理有AC·BD+BC·AD=AB·CD.又∵CD≤AB=1,∴ax+by≤1.例5△ABC的三个内角A、B、C的对边分别为a、b、c,且a2=b(b+c).求证:A=2B.分析将a2=b(b+c)变形为a·a=b·b+b·c,可联想到托勒密定理,进而构造一个圆内接等腰梯形,使两腰为b,两对角线为a,一底边为c.证明如图6,作△ABC的外接圆.以A为圆心,以BC为半径画弧交圆于D,连结BD、DA、DC.。

高中数学四点共圆例题及答案

高中数学四点共圆例题及答案

例1 如图,E、F、G、H分别是菱形ABCD各边的中点.求证:E、F、G、H 四点共圆.证明菱形ABCD的对角线AC和BD相交于点O,连接OE、OF、OG、OH.∵AC和BD 互相垂直,∴在Rt△AOB、Rt△BOC、Rt△COD、Rt△DOA中,E、F、G、H,分别是AB、BC、CD、DA的中点,即E、F、G、H四点共圆.(2)若四边形的两个对角互补(或一个外角等于它的内对角),则四点共圆.例2 如图,在△ABC中,AD⊥BC,DE⊥AB,DF⊥AC.求证:B、E、F、C四点共圆.证明∵DE⊥AB,DF⊥AC,∴∠AED+∠AFD=180°,即A、E、D、F四点共圆,∠AEF=∠ADF.又∵AD⊥BC,∠ADF+∠CDF=90°,∠CDF+∠FCD=90°,∠ADF=∠FCD.∴∠AEF=∠FCD,∠BEF+∠FCB=180°,即B、E、F、C四点共圆.(3)若两个三角形有一条公共边,这条边所对的角相等,并且在公共边的同侧,那么这两个三角形有公共的外接圆.证明在△ABC中,BD、CE是AC、AB边上的高.∴∠BEC=∠BDC=90°,且E、D在BC的同侧,∴E、B、C、D四点共圆.∠AED=∠ACB,∠A=∠A,∴△AED∽△ACB.上述三种方法是证“四点共圆”的基本方法,至于证第四点在前三点(不在同一直线上)所确定的圆上就不叙述了.【例1】在圆内接四边形ABCD中,∠A-∠C=12°,且∠A∶∠B=2∶3.求∠A、∠B、∠C、∠D的度数.解∵四边形ABCD内接于圆,∴∠A+∠C=180°.∵∠A-∠C=12°,∴∠A=96°,∠C=84°.∵∠A∶∠B=2∶3,∠D=180°-144°=36°.利用圆内接四边形对角互补可以解决圆中有关角的计算问题.【例2】已知:如图1所示,四边形ABCD内接于圆,CE∥BD交AB 的延长线于E.求证:AD·BE=BC·DC.证明:连结AC.∵CE∥BD,∴∠1=∠E.∵∠1和∠2都是所对的圆周角,∴∠1=∠2.∠1=∠E.∵四边形ABCD内接于圆,∴∠EBC=∠CDA.∴△ADC∽△CBE.AD∶BC=DC∶BE.AD·BE=BC· DC.本例利用圆内接四边形的一个外角等于内对角及平行线的同位角、圆中同弧所对的圆周角得到两个相似三角形的条件,进而得到结论.关于圆内接四边形的性质,还有一个重要定理.现在中学课本一般都不列入,现介绍如下:定理:圆内接四边形两条对角线的乘积等于两组对边乘积的和.已知:如图2所示,四边形ABCD内接于圆.求证:AC·BD=AB·CD +AD·BC.证明:作∠BAE=∠CAD,AE交 BD于 E.∵∠ABD=∠ACD,即 AB·CD=AC·BE.①∵∠BAE+∠CAE=∠CAD+∠CAE,∴∠BAC=∠EAD.又∠ACB=∠ADE,AD·BC=AC·DE.②由①,②得AC·BE+AC·DE=AB·CE+AD·BCAC·BD=AB·CD+AD·BC这个定理叫托勒密(ptolemy)定理,是圆内接四边形的一个重要性质.这个证明的关键是构造△ABE∽△ACD,充分利用相似理论,这在几何中是具有代表性的.在数学竞赛中经常看到它的影子,希望能引起我们注意.命题“菱形都内接于圆”对吗?命题“菱形都内接于圆”是不正确的.所以是假命题.理由是:根据圆的内接四边形的判定方法之一,如果一个四边形的一组对角互补,那么这个四边形内接于圆.这个判定的前提是一组对角互补,而菱形的性质是一组对角相等.而一组相等的角,它们的内角和不一定是180°.如果内角和是180°,而且又相等,那么只可能是每个内角等于90°,既具有菱形的性质,且每个内角等于90°,那末这个四边形一定是正方形.而正方形显然是菱形中的特例,不能说明一般情形.判定四边形内接于圆的方法之二,是圆心到四边形四个顶点的距离相等.圆既是中心对称图形,又是轴对称图形,它的对称中心是圆心.菱形同样既是中心对称图形,又是轴对称图形,它的对称中心是两条对角线的交点.但菱形的对称中心到菱形各个顶点的距离不一定相等.所以,也无法确定菱形一定内接于圆;如果菱形的对称中心到菱形各边顶点的距离相等,再加上菱形的对角线互相垂直平分这些性质,那么这个四边形又必是正方形.综上所述,“菱形都内接于圆”这个命题是错误的.。

重难点02“四点共圆”模型(解析版)

重难点02“四点共圆”模型(解析版)

重难点02“四点共圆”模型1.识别几何模型。

2.利用“四点共圆”模型解决问题一.填空题(共3小题)1.(2021秋•南京期中)如图,在⊙O的内接五边形ABCDE中,∠C=100°,BC=CD,则∠A+∠D=220°.【分析】连接BD,由∠C=100°,BC=CD得出∠CDB=40°,由四边形BAED内接于⊙O得出∠A+∠BDE=180°,即可求出答案.【解答】解:如图,连接BD,∵∠C=100°,BC=CD,∴∠CBD=∠CDB=40°,∵四边形BAED内接于⊙O,∴∠A+∠BDE=180°,∴∠A+∠CDE=∠A+∠BDE+∠CDB=180°+40°=220°,故答案为:220.【点评】本题考查了圆周角定理,掌握圆连接四边形的性质是解题的关键.2.(2022•靖江市二模)如图,AB⊥BC,AB=5,点E、F分别是线段AB、射线BC上的动点,以EF为斜边向上作等腰Rt△DEF,∠D=90°,连接AD,则AD的最小值为.【分析】连接BD并延长,利用四点共圆的判定定理得到B,E,D,F四点共圆,再利用等腰直角三角形的性质和圆周角定理得到∠DBF=∠DEF=45°,得到点D的轨迹,最后利用垂线段最短和等腰直角三角形的性质解答即可得出结论.【解答】解:连接BD并延长,如图,∵AB⊥BC,∴∠ABC=90°,∠EDF=90°,∴∠ABC+∠EDF=180°,∴B,E,D,F四点共圆,∵△DEF为等腰直角三角形,∴∠DEF=∠DFE=45°,∴∠DBF=∠DEF=45°,∴∠DBF=∠DBE=45°,∴点D的轨迹为∠ABC的平分线上,∵垂线段最短,∴当AD⊥BD时,AD取最小值,∴AD的最小值为AB=,故答案为:.【点评】本题主要考查了直角三角形的性质,等腰直角三角形的性质,四点共圆的判定圆周角定理,点的轨迹,垂线段的性质,利用已知条件求得点D的轨迹是解题的关键.3.(2022秋•大丰区期中)如图,△ABC中,AD⊥BC,∠B=45°,∠C=30°.以AD为弦的圆分别交AB、AC于E、F两点.点G在AC边上,且满足∠EDG=120°.若CD=4+2,则△DEG的面积的最小值是2+2.=S△EDG,当FG 【分析】连接EF,利用四点共圆和同弧所对的圆周角相等证明EF∥DG,从而得到S△EDG最小时,△DFG的面积就最小,作△DFG的外接圆O,过O点作OH⊥FG交于点H,连接OF、OG,DO+OH=(+)FG,当DO+OH最小时,FG就最小,当D、O、H三点共线时,DO+OH最小,此时DH⊥FG,在Rt△FHO中,(FH)2=FH2+(2+﹣FH)2,求出FH=,可得FG的最小值为2,=2+2,即△DEG的面积的最小值为2+2.再求S△DFG【解答】解:连接EF,AD⊥BC,∠B=45°,∠C=30°,∴∠B=45°,∠DAC=60°,∵∠BAC=105°,∵A、E、F、D四点共圆,∴∠EDF=75°,∵∠EDG=120°,∴∠FDG=45°,∵=,∴∠EFD=∠EAD=45°,∴∠EFD=∠FDG,∴EF∥DG,=S△EDG,∴S△EDG∵CD=4+2,∠C=30°,∴AC=+,AD=+,∴AC边上的高==2+,∴当FG最小时,△DFG的面积就最小,作△DFG的外接圆O,过O点作OH⊥FG交于点H,连接OF、OG,∵∠FDG=45°,∴∠FOG=90°,∵OF=GO,∴△FOG是等腰直角三角形,∵∠FOH=∠FOG=45°,∴△FOH是等腰直角三角形,∴FH=OH=,FO=FH,∴DO+OH=FG+=(+)FG,∴当DO+OH最小时,FG就最小,∵DO+OH≥DH,∴当D、O、H三点共线时,DO+OH最小,此时DH⊥FG,∴DH=2+,在Rt△FHO中,(FH)2=FH2+(2+﹣FH)2,解得FH=或FH=4+3,∵OH=2+=FH+FO,∴FH=,∴FG的最小值为2,=2×(2+)=2+2,∴S△DFG∴△DEG的面积的最小值为2+2,故答案为:2+2.【点评】本题考查圆的综合应用,熟练掌握圆心角与圆周角的关系,四点共圆的性质,三角形外接圆的性质是解题的关键.二.解答题(共7小题)4.(2022秋•宿城区期中)如图,BD,CE是△ABC的高,BD,CE相交于点F,M是BC的中点,⊙O是△ABC的外接圆.(1)点B,C,D,E是否在以点M为圆心的同一个圆上?请说明理由.(2)若AB=8,CF=6,求△ABC外接圆的半径长.【分析】(1)连接EM,DM,根据垂直定义可得∠BDC=∠BEC=90°,然后利用直角三角形斜边上的中线性质可得EM=BM=BC,DM=CM=BC,从而可得EM=BM=DM=CM,即可解答;(2)连接AF并延长交BC于点G,连接BO并延长交⊙O于点H,连接AH,CH,根据三角形的高是交于一点的可得AG⊥BC,再根据直径所对的圆周角是直角可得∠BAH=∠BCH=90°,从而可得AG∥CH,AH∥CE,然后利用平行四边形的判定可得四边形AFCH是平行四边形,从而可得CF=AH=6,最后在Rt△BAH中,利用勾股定理进行计算即可解答.【解答】解:(1)点B,C,D,E在以点M为圆心的同一个圆上,理由:连接EM,DM,∵BD⊥AC,CE⊥AB,∴∠BDC=∠BEC=90°,∵M是BC的中点,∴EM=BM=BC,DM=CM=BC,∴EM=BM=DM=CM,∴点B,C,D,E在以点M为圆心的同一个圆上;(2)连接AF并延长交BC于点G,连接BO并延长交⊙O于点H,连接AH,CH,∵BD,CE是△ABC的高,BD,CE相交于点F,∴AG⊥BC,∵BH是⊙O的直径,∴∠BAH=∠BCH=90°,∴BA⊥AH,BC⊥CH,∴AG∥CH,∵CE⊥AB,∴AH∥CE,∴四边形AFCH是平行四边形,∴CF=AH=6,在Rt△BAH中,AB=8,∴BH===10,∴△ABC外接圆的半径长为5.【点评】本题考查了三角形的外接圆与外心,直角三角形斜边上的中线,点与圆的位置关系,确定圆的条件,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.5.(兴化市校级期中)已知:如图,在正方形ABCD中,E、F分别是AD、CD的中点.(1)线段AF与BE有何关系.说明理由;(2)延长AF、BC交于点H,则B、D、G、H这四个点是否在同一个圆上.说明理由.【分析】(1)证明△ABE≌△DAF,证据全等三角形的对应边相等,以及直角三角形的两锐角互余即可证明AF相等且互相垂直;(2)证明△ADF≌△HCF,依据直角三角形斜边上的中线等于斜边的一半,即可证得B,C,D,H四点到C的距离相等,即可证得四点共圆.【解答】解:(1)AF=BE且AF⊥BE.证明:∵E、F分别是AD、CD的中点,∴AE=AD,DF=CD∴AE=DF又∵∠BAD=∠D=90°,AB=AD∴△ABE≌△DAF∴AF=BE,∠AEB=∠AFD∵在直角△ADF中,∠DAF+∠AFD=90°∴∠DAF+∠AEB=90°∴∠AGE=90°∴AF⊥BE(2)连接CG.∵DF=CF,∠D=∠FCH=90°,∠AFD=∠HFC∴△ADF≌△HCF∴BC=AD=CH=CD,在直角△BGH中,BC=CH,∴GC=BH∴CB=CG=CD=CH,∴B,G,D,H在以C为圆心、BC长为半径的圆上.【点评】本题考查了全等三角形的判定与性质,以及直角三角形的性质,证明三角形全等是解题的关键.6.(2022秋•建湖县期中)如图,在⊙O的内接四边形ABCD中,DB=DC,∠DAE是四边形ABCD的一个外角.(1)若∠DAE=75°,则∠DAC=75°;(2)过点D作DE⊥AB于E,判断AB、AE、AC之间的数量关系并证明;(3)若AB=6、AE=2,求BD2﹣AD2的值.【分析】(1)根据四边形外接圆的性质,同弧所对的圆周角相等,可得∠DCB=∠DBC=∠DAC=75°;(2)过点D作DF⊥AC于点F,可证明△BDE≌△CDF(AAS),△ADE≌△ADF(AAS),则AC=AF+FC =AE+BE=AE+AE+AB=2AE+AB;(3)在Rt△BDE中,BD2=64+DE2,,在Rt△AED中,AD2=4+ED2,再求解即可.【解答】解:(1)∵四边形ABCD是圆O的内接四边形,∴∠BCD+∠BAD=180°,∵∠DAE是四边形ABCD的一个外角,∴∠DAE=∠BCD,∵BD=CD,∴∠CBD=∠DCB,∵弧CD所对的圆周角分别为∠CAD、∠CBD,∴∠CBD=∠CAD,∵∠DAE=75°,∴∠DCB=∠DBC=∠DAC=75°,故答案为;75;(2)过点D作DF⊥AC于点F,∵DE⊥AB,∴∠DEA=90°,∵∠ABD=∠ACD,BD=CD,∠E=∠DFC=90°,∴△BDE≌△CDF(AAS),∴DE=DF,AE=CF,∴∠ADE=∠ADF,又∵∠E=∠AFD,AD=AD,∴△ADE≌△ADF(AAS),∴AE=AF,∴AC=AF+FC=AE+BE=AE+AE+AB=2AE+AB,即AC=2AE+AB;(3)在Rt△BDE中,BD2=BE2+DE2,在Rt△AED中,AD2=AE2+ED2,∵AB=6,AE=2,∴BE=8,∴BD2=64+DE2,AD2=4+ED2,∴BD2﹣AD2=60.【点评】本题考查圆的综合应用,熟练掌握同弧所对的圆周角相等,四点共圆的性质,直角三角形勾股定理,三角形全等的判定及性质是解题的关键.7.(2023•淮安区一模)综合与实践“善思”小组开展“探究四点共圆的条件”活动,得出结论:对角互补的四边形四个顶点共圆.该小组继续利用上述结论进行探究.提出问题:如图1,在线段AC同侧有两点B,D,连接AD,AB,BC,CD,如果∠B=∠D,那么A,B,C,D四点在同一个圆上.探究展示:如图2,作经过点A,C,D的⊙O,在劣弧AC上取一点E(不与A,C重合),连接AE,CE,则∠AEC+∠D=180°(依据1)∵∠B=∠D∴∠AEC+∠B=180°∴点A,B,C,E四点在同一个圆上(对角互补的四边形四个顶点共圆)∴点B,D在点A,C,E所确定的⊙O上(依据2)∴点A,B,C,D四点在同一个圆上反思归纳:(1)上述探究过程中的“依据1”、“依据2”分别是指什么?依据1:圆内接四边形对角互补;依据2:过不在同一直线上的三个点有且只有一个圆.(2)如图3,在四边形ABCD中,∠1=∠2,∠3=45°,则∠4的度数为45°.拓展探究:(3)如图4,已知△ABC是等腰三角形,AB=AC,点D在BC上(不与BC的中点重合),连接AD.作点C关于AD的对称点E,连接EB并延长交AD的延长线于F,连接AE,DE.①求证:A,D,B,E四点共圆;②若AB=2,AD•AF的值是否会发生变化,若不变化,求出其值;若变化,请说明理由.【分析】(1)根据圆内接四边形的性质、过三点的圆解答即可;(2)根据四点共圆、圆周角定理解答;(3)①根据轴对称的性质得到AE=AC,DE=DC,∠AEC=∠ACE,∠DEC=∠DCE,进而得到∠AED =∠ABC,证明结论;②连接CF,证明△ABD∽△AFB,根据相似三角形的性质列出比例式,计算即可.【解答】(1)解:依据1:圆内接四边形对角互补;依据2:过不在同一直线上的三个点有且只有一个圆,故答案为:圆内接四边形对角互补;过不在同一直线上的三个点有且只有一个圆;(2)解:∵∠1=∠2,∴点A,B,C,D四点在同一个圆上,∴∠3=∠4,∵∠3=45°,∴∠4=45°,故答案为:45°;(3)①证明:∵AB=AC,∴∠ABC=∠ACB,∵点E与点C关于AD的对称,∴AE=AC,DE=DC,∴∠AEC=∠ACE,∠DEC=∠DCE,∴∠AED=∠ACB,∴∠AED=∠ABC,∴A,D,B,E四点共圆;②解:AD•AF的值不会发生变化,理由如下:如图4,连接CF,∵点E与点C关于AD的对称,∴FE=FC,∴∠FEC=∠FCE,∴∠FED=∠FCD,∵A,D,B,E四点共圆,∴∠FED=∠BAF,∴∠BAF=∠FCD,∴A,B,F,C四点共圆,∴∠AFB=∠ACB=∠ABC,∵∠BAD=∠FAB,∴△ABD∽△AFB,∴=,∴AD•AF=AB2=8.【点评】本题考查的是四点共圆、相似三角形的判定和性质、轴对称的性质,正确理解四点共圆的条件是解题的关键.8.(2022秋•靖江市期末)小明在学习了《圆周角定理及其推论》后,有这样的学习体会:在Rt△ABC中,∠C=90°,当AB长度不变时,则点C在以AB为直径的圆上运动(不与A、B重合).[探索发现]小明继续探究,在Rt△ABC中,∠C=90°,AB长度不变.作∠A与∠B的角平分线交于点F,小明计算后发现∠AFB的度数为定值,小明猜想点F也在一个圆上运动.请你计算∠AFB的度数,并简要说明小明猜想的圆的特征.[拓展应用]在[探索发现]的条件下,若AB=2,求出△AFB面积的最大值.[灵活运用]在等边△ABC中,AB=2,点D、点E分别在BC和AC边上,且BD=CE,连接AD、BE交于点F,试求出△ABF周长的最大值.【分析】[探索发现]根据角平分线的定义,三角形内角和定理可求∠AFB=135°,再由已知结论可得F点在以AB为定弦,∠AFB为定角的圆上;[拓展应用]设F点在圆O上,连接OA、OB,则O与C点共圆;过点F作FH⊥AB交于点H,设AB的中点为D,当H点与D点重合时,FH的长度最大,此时△FBA的面积最大,△FAB是等腰三角形,求出FD的长再求三角形面积即可;[灵活运用]通过证明△ABD≌△BCE(SAS),可得∠AFB=120°,再由题干已知可知F点在以AB为定弦,∠AFB为定角的圆上,设△ABF的外接圆为O,当△ABF的高经过圆心O时,△ABF的周长有最大值,此时△ABF是等腰三角形.【解答】解:[探索发现]∵∠ACB=90°,∴∠CAB+∠CBA=90°,∵AF是∠CAB的平分线,BF是∠CBA的平分线,∴∠FAB+∠FBA=45°,∴∠AFB=135°,∴F点在以AB为定弦,∠AFB为定角的圆上;[拓展应用]设F点在圆O上,连接OA、OB,∵∠AOB=90°,∵∠ACB+∠AOB=180°,∴O与C点共圆,过点F作FH⊥AB交于点H,设AB的中点为D,当H点与D点重合时,FH的长度最大,此时△FBA的面积最大,∵FH⊥AB,D是AB的中点,∴FA=FB,∵∠AFB=135°,∴∠FAB=∠FBA=22.5°,∴∠CAB=∠CBA=45°,∴△ABC是等腰直角三角形,连接CF,则C、F、D三点共线,过点F作FP⊥AC交于点P,∴FP=FD,AP=AD,∵AB=2,∴AC=,AD=AP=,∴CP=﹣,∵∠FCP=45°,∴CF=CP=2﹣,∴FD=﹣(2﹣)=﹣,∴△AFB的面积=×2×(﹣)=3﹣3,∴△AFB面积的最大值为3﹣3;[灵活运用]∵△ABC是等边三角形,∴AB=BC,∠ACB=∠ABC=60°,∵BD=CE,∴△ABD≌△BCE(SAS),∴∠CBE=∠BAD,∴∠AFE=∠ABF+∠BAF=∠ABF+∠CBE=∠ABC=60°,∴∠AFB=120°,∵AB=2,∴F点在以AB为定弦,∠AFB为定角的圆上,设△ABF的外接圆为O,当△ABF的高经过圆心O时,△ABF的周长有最大值,连接AO、BO,∵∠AFB=120°,∴∠AOB=120°,∵OA=BO,∴∠OAB=30°,∵AB=2,∴AH=,在Rt△AOH中,OH=AH•tan30°=1,OA=2OH=2,∴HF=OF﹣OH=1,∴AF=BF=2,∴△ABF周长的最大值为4+2.【点评】本题考查圆的综合应用,熟练掌握三角形全等的判定及性质,定角定弦的三角形与圆的关系是解题的关键.9.(2022秋•鼓楼区期中)以下是“四点共圆”的几个结论,你能证明并运用它们吗?Ⅰ.若两个直角三角形有公共斜边,则这两个三角形的4个顶点共圆(图1、2);Ⅱ.若四边形的一组对角互补,则这个四边形的4个顶点共圆(图3);Ⅲ.若线段同侧两点与线段两端,点连线的夹角相等,则这两点和线段两端点共圆(图4).(1)在图1、2中,取AC的中点O,根据直角三角形斜边上的中线等于斜边的一半得OA=OB=OC =OD,即A,B,C,D共圆;(2)在图3中,画⊙O经过点A,B,D(图5).假设点C落在⊙O外,BC交⊙O于点E,连接DE,可得∠BED+∠A=180°,所以∠BED=180°﹣∠A,得出矛盾;同理点C也不会落在⊙O内,即A,B,C,D共圆.结论Ⅲ同理可证.(3)利用四点共圆证明锐角三角形的三条高交于一点.已知:如图6,锐角三角形ABC的高BD,CE相交于点H,射线AH交BC于点F.求证:AF是△ABC的高.(补全以下证明框图,并在图上作必要标注)(4)如图7,点P是△ABC外部一点,过P作直线AB,BC,CA的垂线,垂足分别为E,F,D,且点D,E,F在同一条直线上.求证:点P在△ABC的外接圆上.【分析】(1)根据直角三角形斜边中线的性质可得结论;(2)由圆周角的性质可得∠BED+∠A=180°,再结合题干条件,得出矛盾,由此可得出结论;(3)如图,连接DE,由点B、C、D、E四点共圆得∠BDE=∠ECB,由点A、D、H、E四点共圆得∠BDE=∠BAF,从而证明∠BAF+∠ABF=90°即可;(4)连接BP和CP,由点A,E,P,F四点共圆可得,∠BEF=∠BPF,由点C,P,D,F四点共圆可得∠CDF=∠CPF,再由外角的性质及角的和差可得∠BAC=∠BPC,由此可得点A,B,C,P四点共圆,即点P在△ABC的外接圆上.【解答】解:(1)在图1、2中,取AC的中点O,根据直角三角形斜边上的中线等于斜边的一半,得OA =OB=OC=OD,即A,B,C,D共圆;故答案为:直角三角形斜边上的中线等于斜边的一半;(2)在图3中,画⊙O经过点A,B,D(图5).假设点C落在⊙O外,BC交⊙O于点E,连接DE,可得∠BED+∠A=180°,∴∠BED=180°﹣∠A,得出矛盾;同理点C也不会落在⊙O内,即A,B,C,D共圆.结论Ⅲ同理可证.故答案为:∠BED+∠A;180°﹣∠A;(3)如图6,连接DE,由点B、C、D、E四点共圆得∠BDE=∠ECB,由点A、D、H、E四点共圆得∠BDE=∠BAF,∴∠ECB=∠BAF,∵∠BEC=90°,∴∠ECB+∠ABF=90°,∴∠BAF+∠ABF=90°,∴∠BFA=90°,∴AF为△ABC的边BC上的高.(4)如图7,连接BP和CP,由点A,E,P,F四点共圆可得∠BEF=∠BPF,由点C,P,D,F四点共圆可得∠CDF=∠CPF,∵∠ADE=∠CDF,∴∠ADE=∠CPF,∵∠BAC=∠BEF+∠ADE,∠BPC=∠BPF+∠CPF,∴∠BAC=∠BPC,∴点A,B,C,P四点共圆,即点P在△ABC的外接圆上.【点评】本题考查了圆的定义,直角三角形斜边上的中线等于斜边一半,圆内接四边形对角互补,圆周角定理,内心的定义.第(3)(4)题解题关键是选取适当的四点证明共圆,再利用圆周角定理证明角相等.10.(2022秋•仪征市期中)【问题提出】苏科版九年级(上册)教材在探究圆内接四边形对角的数量关系时提出了两个问题:1.如图(1),在⊙O的内接四边形ABCD中,BD是⊙O的直径.∠A与∠C、∠ABC与∠ADC有怎样的数量关系?2.如图(2),若圆心O不在⊙O的内接四边形ABCD的对角线上,问题(1)中发现的结论是否仍然成立?(1)小明发现问题1中的∠A与∠C、∠ABC与∠ADC都满足互补关系,请帮助他完善问题1的证明:∵BD是⊙O的直径,∴∠A=∠C=90°,∴∠A+∠C=180°,∵四边形内角和等于360°,∴∠ABC+∠ADC=180°.(2)请回答问题2,并说明理由;【深入探究】如图(3),⊙O的内接四边形ABCD恰有一个内切圆⊙I,切点分别是点E、F、G、H,连接GH,EF.(3)直接写出四边形ABCD边满足的数量关系AD+BC=AB+CD;(4)探究EF、GH满足的位置关系;(5)如图(4),若∠C=90°,BC=3,CD=2,请直接写出图中阴影部分的面积.【分析】(1)根据直径所对的圆周角是直角,四边形的内角和定理进行求解即可;(2)连接AC、BD,根据同弧所对的圆周角相等,三角形的内角和定理进行求解即可;(3)连接AI、BI、CI、DI,根据切线长定理进行求解即可;(4)连接EH、IH、IG、IF、GF,根据切线的性质,四点共圆的性质可得∠GIF=∠ADC,再由同弧所对的圆周角相等,可得∠GFE=∠GHE,根据三角形内角和定理,可得∠DEH=∠GFE,则∠FEH+∠EHG=∠FEH+∠IEF+∠DEH=∠EID=90°,即可证明EF⊥GH;(5)连接BD,可得BD是圆O的直径,连接IF、IH,先推导出∠BIF+∠DIH=90°,再证明四边形IHCF=3×2=6,通过证明△DHI 是正方形,可得∠HIF=90°,即可知I点在BD上,根据已知求出S四边形ABCD∽△IFB,求出IH=,可求S⊙I=π,则阴影部分的面积=6﹣π.【解答】解:【问题提出】(1)∵BD是⊙O的直径,∴∠A=∠C=90°,∴∠A+∠C=180°,∵四边形内角和等于360°,∴∠ABC+∠ADC=180°;故答案为:∠A=∠C=90°,∠ABC+∠ADC=180°;(2)成立,理由如下:连接AC、BD,∵∠DAC=∠CBD,∠ACD=∠ABD,∴∠DAC+∠ACD=∠DBC+∠ABD=∠ABC,∵∠DAC+∠ACD+∠ADC=180°,∴∠ABC+∠ADC=180°;同理,∠BAD+∠BCD=180°;【深入探究】(3)AD+BC=AB+CD,理由如下:连接AI、BI、CI、DI,∵圆I是四边形ABCD的内切圆,∴AG=AE,DE=DH,CH=CF,BF=BG,∴AD+BC=AE+ED+BF+CF=AG+DH+BG+CH=AB+CD,即AD+BC=AB+CD,故答案为:AD+BC=AB+CD;(4)EF⊥GH,理由如下:连接EH、IH、IG、IF、GF,∵四边形ABCD是圆O的内接四边形,∴∠B+∠D=180°,∵BG⊥IG,IF⊥BF,∴∠BGI=∠IFB=90°,∴∠B+∠GIF=180°,∴∠GIF=∠D,∵GI=IF,∴∠GFI=90°﹣∠GIF,∵ED=DH,∴∠DEH=90°﹣∠D,∴∠GFI=∠DEH,∵=,∴∠GFE=∠GHE,∴∠GHE=∠GFI+∠IFE,∵IF=IE,∴∠IFE=∠IEF,∴∠FEH+∠EHG=∠FEH+∠IEF+∠DEH=∠EID=90°,∴EF⊥GH;(5)连接BD,∵∠C=90°,∴∠A=90°,∵ABCD是圆O的内接圆,∴BD是圆O的直径,连接IF、IH,∵I是四边形ABCD的内切圆圆心,∴∠ADI=∠IDH,∠ABI=∠FBI,∵IH⊥CD,IF⊥BC,∴∠BIF=90°﹣∠IBF,∠DIH=90°﹣∠IDH,∴∠BIF+∠DIH=180°﹣(∠IBF+∠IDH)=180°﹣(∠ADC+∠ABC),∵∠ABC+∠ADC=180°,∴∠BIF+∠DIH=90°,∵IF⊥FC,IH⊥CD,∠C=90°,IH=IF,∴四边形IHCF是正方形,∴∠HIF=90°,∴I点在BD上,∵BC=3,CD=2,=3×2=6,∴S四边形ABCD∵∠DIH+∠IDH=90°,∠IBF+∠IDH=90°,∴∠DIH=∠IBF,∵∠IHD=∠IFB=90°,∴△DHI∽△IFB,∴=,即=,解得IH=,∴S⊙I=π,∴阴影部分的面积=6﹣π.【点评】本题考查圆的综合应用,熟练掌握四边形的内切圆性质,外接圆性质,三角形相似的判定及性质,切线的性质,四点共圆的性质是解题的关键.一.选择题(共3小题)1.(2022•思明区二模)如图,四边形ABCD是⊙O的内接四边形,点E为边CD上任意一点(不与点C,点D重合),连接BE,若∠A=60°,则∠BED的度数可以是()A.110°B.115°C.120°D.125°【分析】四边形ABCD是⊙O的内接四边形,则∠A和∠C互补,已知∠A=60°,则∠C的度数为120°,而∠BED大于∠C的度数,从而得出答案.【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠A+∠C=180°,∵∠A=60°,∴∠C=120°,∵∠BED=∠C+∠CBE,∴∠BED>120°,∴∠BED可能为125°.故选:D.【点评】本题主要考查了圆内接四边形以及三角形外角的性质,解题的关键是根据圆内接四边形的对角互补求出∠C的度数,再根据外角的性质对∠BED的度数做出正确的推断.2.(2023•泾阳县模拟)刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积.如图,已知⊙O的半径为2,则⊙O的内接正六边形ABCDEF的面积为()A.6B.C.D.【分析】连接OA、OB,根据正多边形和圆的关系可判断出△OAB为等边三角形,过点O作OM⊥AB于点M,再利用勾股定理即可求出OM长,进而可求出△AOB的面积,最后利用⊙O的面积约为6S△AOB即可计算出结果.【解答】解:如图,连接OA、OB,由题意可得:∠AOB=360÷6=60°,∵OA=OB=2,∴△OAB为等边三角形,∴AB=2,过点O作OM⊥AB于点M,则AM=BM=1,在Rt△AOMR中,,∴,∴⊙O的面积约为.故选:B.【点评】本题主要考查正多边形与圆、勾股定理等,正确应用正六边形的性质是解题关键.3.(2023•蜀山区校级模拟)如图,△ABC中,∠BAC=60°,AD平分∠BAC,∠BDC=120°,连接BD,CD并延长分别交AC,AB于点E和点F,若DE=6,,则BD的长为()A.10B.12C.15D.16【分析】由AEDF四点共圆,得到DE=DF,再证明△CDE∽△CAF,得到AF与AC的比,延长CF到P,使DP=DB,得到△BDP为等边三角形,在证明出△AFC∽△PFB,证出PF与PB,利用DF即可求出BD.【解答】解:∵∠BAC=60°,∠BDC=120°,∴A、E、D、F四点共圆,∵AD平分∠BAC,∴∠DAE=∠DAF,∴DE=DF=6,∵∠BDC=120°,∴∠CDE=60°=∠FAC,∵∠ACD=∠ACD,∴△CDE∽△CAF,∴AF:AC=DE:CD=6:10=3:5,如图,延长CF到P,使DP=DB,∵∠PBD=60°,∴△BDP为等边三角形,∴∠P=60°,∴△AFC∽△PFB,∴PF:PB=AF:AC=3:5,设每一份为k,∴PB=PD=5k,PF=3k,∴DF=2k=6,∴k=3,∴BD=5k=15.故选:C.【点评】本题考查了三角形相似的性质、等边三角形的性质等知识点的应用,四点共圆的应用及相似比的转化是解题关键.二.填空题(共2小题)4.(2023•银川校级二模)如图,在直径为AB的⊙O中,点C,D在圆上,AC=CD,若∠CAD=28°,则∠DAB的度数为34°.【分析】利用等腰三角形的性质可得∠CAD=∠CDA=28°,从而利用三角形内角和定理可得∠ACD=124°,然后根据圆内接四边形对角互补求出∠ABD=56°,再根据直径所对的圆周角是直角可得∠ADB=90°,从而求出∠DAB的度数.【解答】解:∵AC=CD,∠CAD=28°,∴∠CAD=∠CDA=28°,∴∠ACD=180°﹣∠CAD﹣∠CDA=124°,∵四边形ABCD是⊙O的内接四边形,∴∠ACD+∠ABD=180°,∴∠ABD=180°﹣∠ACD=56°,∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB=90°﹣∠ABD=34°.故答案为:34°.【点评】本题考查了等腰三角形的性质,圆周角定理,圆心角、弧、弦的关系,熟练掌握圆周角定理是解题的关键.5.(2023•海曙区校级一模)如图,在等腰三角形纸片ABC中,AB=AC,将该纸片翻折,使得点C落在边AB的F处,折痕为DE,D,E分别在边BC,AC上,∠AFD=∠DEF,若DE=4,BD=9,则DF=6,△ABC的面积为.【分析】根据折叠的性质可得∠CED=∠DEF,∠C=∠DFE,以此可得∠CED=∠AFD,因此可判断A、F、D、E四点共圆,由圆周角定理可得∠DAF=∠DEF,∠CAD=∠DFE,进而得到∠AFD=∠DAF,∠CAD=∠C,则DF=AD=CD,由等腰三角形的性质可得∠B=∠C,以此可证明△BAD∽△CED,由相似三角形的性质可求得DF=AD=CD=6,则BC=15,BG=CG=,DG=,根据勾股定理求出AG,再算出△ABC的面积即可求解.【解答】解:连接AD,过点A作AG⊥BC于点G,如图,根据折叠的性质可得,∠CED=∠DEF,∠C=∠DFE,∵∠AFD=∠DEF,∴∠CED=∠AFD,∴A、F、D、E四点共圆,∴∠DAF=∠DEF,∠CAD=∠DFE,∴∠AFD=∠DAF,∠CAD=∠C,∴DF=AD=CD,∵AB=AC,∴∠B=∠C,∵∠CED=∠DEF=∠DAF,∴△BAD∽△CED,∴,∵DE=4,BD=9,DF=AD=CD,∴,∴DF=AD=CD=6,∴BC=BD+CD=9+6=15,∵AG⊥BC,AB=AC,∴BG=CG==,∴DG=CG﹣CD==,在Rt△ADG中,由勾股定理得==,∴==.故答案为:6,.【点评】本题主要考查四点共圆的判定、相似三角形的判定与性质、等腰三角形的性质,圆周角定理、勾股定理,正确作出辅助线,通过所给条件推出A、F、D、E四点共圆,以此得到DF=AD=CD是解题关键.三.解答题(共7小题)6.(2022秋•南关区校级期末)【问题情境】如图①,在四边形ABCD中,∠B=∠D=90°,求证:A、B、C、D四点共圆.小吉同学的作法如下:连结AC,取AC的中点O,连结OB、OD,请你帮助小吉补全余下的证明过程;【问题解决】如图②,在正方形ABCD中,AB=2,点E是边CD的中点,点F是边BC上的一个动点,连结AE,AF,作EP⊥AF于点P.(1)如图②,当点P恰好落在正方形ABCD对角线BD上时,线段AP的长度为;(2)如图③,过点P分别作PM⊥AB于点M,PN⊥BC于点N,连结MN,则MN的最小值为.【分析】【问题情境】连结AC,取AC的中点O,连结OB、OD,根据直角三角形斜边上的中线等于斜边的一半,可得OD=OA=OC=OB,以此即可证明;【问题解决】(1)根据题意可得AE=,由【问题情境】结论可知A、D、E、P四点共圆,根据圆周角定理以及正方形的性质可得∠PDE=∠PAE=45°,则△PAE为等腰直角三角形,设AP长为a,则PE长为a,根据勾股定理列出方程,求解即可;(2)由【问题情境】结论可知A、D、E、P四点共圆,过点O作OG⊥AD于点G,作OH⊥AB于点H,连接OB交⊙O于点P′,连接PB,根据题意可得四边形MBNP为矩形,则要求MN的最小值,即求PB 的最小值,根据平行线的性质和中点的定义可得OG为△ADE的中位线,得AG=1,OG=,同理可证四边形AHOG为矩形,以此得到OH=AG=1,BH=,根据勾股定理得,根据两点之间线段最短得PB+OP≥OB,以此即可求出PB的最小值,从而求得MN的最小值.【解答】【问题情境】证明:如图,连结AC,取AC的中点O,连结OB、OD,∵∠ADC=∠ABC=90°,O为AC的中点,∴OA=OB=OC=OD=AC,∴A、B、C、D四点共圆;【问题解决】解:(1)∵四边形ABCD为正方形,点E是边CD的中点,AB=2,∴AD=2,DE=1,∴AE=,由【问题情境】结论可知,A、D、E、P四点共圆,如图,∴∠PAE=∠PDE,∵BD为正方形ABCD的对角线,∴∠PDE=∠PAE=45°,∵EP⊥AF,∴△PAE为等腰直角三角形,设AP长为a,则PE长为a,∴AP2+PE2=AE2,即,解得:a1=,(不合题意,舍去),∴线段AP的长度为;故答案为:;(2)由【问题情境】结论可知,A、D、E、P四点共圆,如图,过点O作OG⊥AD于点G,作OH⊥AB于点H,连接OB交⊙O于点P′,连接PB,∵PM⊥AB,PN⊥BC,∴∠PMB=∠MBN=∠PNB=90°,∴四边形MBNP为矩形,∴MN=PB,要求MN的最小值,即求PB的最小值,由(1)知,AE=,∴,∵OG⊥AD,且点O为AE的中点,∴OG∥DE,∴OG为△ADE的中位线,∴AG=1,OG=,∵OG⊥AD,OH⊥AB,∴四边形AHOG为矩形,∴AH=OG=,OH=AG=1,∴BH=,在Rt△BHO中,,根据两点之间线段最短得,PB+OP≥OB,PB≥OB﹣OP=,∴PB的最小值为,∴MN的最小值为.故答案为:.【点评】本题主要考查四点共圆、正方形的性质,等腰直角三角形的性质、勾股定理、中位线的判定与性质、平行线的判定与性质,属于圆的综合题,熟练掌握相关知识是解题关键.7.(2023•萍乡模拟)如图,点A,B,C在⊙O上,且∠ABC=120°,请仅用无刻度的直尺,按照下列要求作图.(保留作图痕迹,不写作法)(1)在图(1)中,AB>BC,作一个度数为30°的圆周角;(2)在图(2)中,AB=BC,作一个顶点均在⊙O上的等边三角形.【分析】(1)作直径AD,连接CD,AC,则∠ADC=60°,∠DAC=30°;(2)作直径BE,连接EC,AE,AC,△ACE即为所求.【解答】解:(1)如图1中,∠CAD即为所求;(2)如图2中,△ACE即为所求.【点评】本题考查作图﹣复杂作图,等边三角形的判定和性质,圆周角定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.(2022•芜湖一模)如图,在正方形ABCD中,P是边BC上的一个动点(不与点B,C重合),作点B 关于直线AP的对称点E,连接AE,再连接DE并延长交射线AP于点F,连接BF和CF.(1)若∠BAP=α,则∠AED=45°+α(用含α的式子直接填空);(2)求证:点F在正方形ABCD的外接圆上;(3)求证:AF﹣CF=BF.【分析】(1)由轴对称的性质得∠EAP=∠BAP=a,AE=AB,由正方形的性质得∠BAD=90°,AB=AD,则∠DAE=90°﹣2a,AD=AE,由等腰三角形的性质即可得出结论;(2)由轴对称的性质得∠AEF=∠ABF,AE=AB,证出AE=AD,由等腰三角形的性质得∠ADE=∠AED,证∠ADE+∠ABF=180°,则∠BFD+∠BAD=180°,得∠BFD=90°即可;(3)过点B作BM⊥BF交AF于点M,则∠MBF=90°,证△BMF是等腰直角三角形,得BM=BF,FM =2BF,证△AMB≌△CFB(SAS),得AM=CF,进而得出结论.【解答】解:(1)∵点B关于直线AP的对称点E,∠BAP=α,∴∠EAP=∠BAP=α,AE=AB,∵ABCD是正方形,∴AD=AB,∠BAD=90°,∴AE=AD,∠DAE=90°﹣2α,∴∠ADE=∠AED=(180°﹣∠DAE)=(90°+2α)=45°+α,故答案为:45°+α;(2)证明:由(1)∠AED=45°+α,又∵∠BAE=2α,∴∠EFA=∠BFA=45°,∠BFD=90°,连接BD,则∠BCD=90°,∴∠BCD=∠BAD=∠BFD=90°,∴B、F、C、D和A、B、C、D都在以BD为直径的圆上,即点F在正方形ABCD的外接圆上;(3)过点B作BM⊥BF交AF于M点,则∠MBF=90°,∵四边形ABCD是正方形,∴AB=CB,∠ABC=90°,∴∠MBF=∠ABC,∴∠ABM=∠CBF,∵点E与点B关于直线AP对称,∴∠BFD=90°,∴∠MFB=∠MFE=45°,∴△BMF是等腰直角三角形,∴BM=BF,FM=BF,在△AMB和△CFB中,,∴△AMB≌△CFB(SAS),∴AM=CF,∴AF=FM+AM=BF+CF,∴AF﹣CF=BF.【点评】本题考查了正方形的性质、轴对称的性质、等腰直角三角形的判定与性质、全等三角形的判定与性质、等腰三角形的判定与性质等知识,解题关键是熟练掌握矩形的性质和轴对称的性质,证明三角形全等.9.(2021秋•鹿城区校级期中)如图,△ABC内接于⊙O,CD⊥AB,CB=10cm,CD=8cm,AB=14cm.(1)∠A度数45°.(直接写出答案)(2)求的长度.(3)P是⊙O上一点(不与A,B,C重合),连结BP.①若BP垂直△ABC的某一边,求BP的长.②将点A绕点P逆时针旋转90°后得到A′,若A′恰好落在CD上,则CA'的长度为4.(直接写出答案)【分析】(1)利用勾股定理,等腰三角形的判定和三角形的内角和定理解答即可;(2)连接OB,OC,利用圆周角定理求得圆心角的度数,再利用弧长公式解答即可;(3)①连接AP,利用等腰直角三角形的性质求得BE,利用全等三角形的判定与勾股定理求得PE,则BP 可求;②连接AA′,PD,设PD与AC交于点E,通过证明P,A,D,A′四点共圆,利用圆周角定理和垂径定理得到PD经过圆心O,过点O作OF⊥AB于点F,利用垂径定理和勾股定理求得OE,连接OC,利用勾股定理求得圆的半径,再利用等腰直角三角形的性质求得PA,勾股定理求得DA′,则CA′=CD﹣DA′.【解答】解:(1)在Rt△BCD中,CB=10cm,CD=8cm,∴BD===6(cm),∴AD=AB﹣BD=14﹣6=8cm=CD,∴∠A=∠ACD,∵CD⊥AB,∴∠ADC=90°,∴∠A===45°,故答案为:45°;(2)连接OB,OC,如图,∵∠BAC=45°,∴∠BOC=90°,在Rt△BOC中,OB=OC,CB=10cm,∴OB=BC=5(cm),∴的长度==cm;(3)①∵P是⊙O上一点(不与A,B,C重合),BP垂直△ABC的某一边,∴点P只能在上,连接AP,如图,由(1)知:∠CAB=45°,∵BP⊥AC,∴△AEC为等腰直角三角形,∴AE=BE=AB=7.在△APE和△BCE中,。

【中考数学必备专题】中考模型解题系列之四点共圆模型(含答案)

【中考数学必备专题】中考模型解题系列之四点共圆模型(含答案)

【中考数学必备专题】中考模型解题系列之四点
共圆模型
一、证明题(共2道,每道50分)
1.设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA.求证:∠PAB=∠PCB.
答案:证明:过点P作EP∥AD,且EP=AD.连接AE,EB
∴四边形AEPD是平行四边形
∴∠ABP=∠ADP=∠AEP,
可得:A、E、B、P共圆.
∴∠PAB=∠BEP
又∵EP∥BC,且EP=BC
∴四边形EBCP是平行四边形
∴∠BEP=∠PCB
∴∠PAB=∠PCB.
解题思路:根据已知作出过P点平行于AD的直线,并选一点E,使AE∥DP,通过倒角得出A、E、B、P四点共圆,即可得出答案.
试题难度:三颗星知识点:平行四边形的判定与性质
2.如图,O是Rt△ABC斜边AB的中点,CH⊥AB于H,延长CH至D,使得CH=DH,F为CO 上任意一点,过B作BE⊥AF于E,连接DE交BC于G.求证:∠CAF=∠CDE.
答案:(1)证明:连接OD,
∵△ABC是Rt三角形,BE⊥AF
∴∠BEA=∠ACB=90°,
∴A,B,E,C,四点共圆,且AB是此圆直径,
又∵CH⊥AB,CH=DH,
∴OC=OD
∴D在此圆上,
∴A,B,C,D,E五点共圆,
∴∠CAF=∠CDE.
解题思路:先连接OD,根据已知条件得出∠BEA=∠ACB=90°,得出A,B,E,C,四点共圆且AB是此圆直径,再根据CH⊥AB,CH=DH,确定出D也在此圆上,从而得出A,B,C,D,E五点共圆,即可证出∠CAF=∠CDE
试题难度:三颗星知识点:确定圆的条件。

中考数学专题复习 四点共圆模型 含答案-文档资料

中考数学专题复习   四点共圆模型  含答案-文档资料

共圆模型模型1共端点,等线段模型如图①,出现“共端点,等线段”时,可利用圆定义构造辅助圆.如图②,若OA=OB=OC,则A、B、C三点在以O为圆心,OA为半径的圆上.如图③,常见结论有:∠ACB=12∠AOB,∠BAC=12∠BOC.模型分析∵OA=OB=OC.∴A、B、C三点到点O的距离相等.∴A、B、C三点在以O为圆心,OA为半径的圆上.∵∠ACB是AB的圆周角,∠AOB是AB的圆心角,∴∠ACB=12∠AOB.同理可证∠BAC=12∠BOC.(1)若有共端点的三条线段,可考虑构造辅助圆.(2)构造辅助圆是方便利用圆的性质快速解决角度问题.模型实例如图,△ABC和△ACD都是等腰三角形,AB=AC,AC=AD,连接BD.求证:∠1+∠2=90°.证明证法一:如图①,∵AB=AC=AD.∴B、C、D在以A为圆心,AB为半径的⊙A上.∴∠ABC=∠2.在△BAC中,∵∠BAC+∠ABC+∠2=180°,∴2∠1+2∠2=180°.∴∠1+∠2=90°.证法二:如图②,∵AB=AC=AD.∴∠BAC=2∠1.∵AB=AC,∴B、C、D在以A为圆心,AB为半径的⊙O上.延长BA与圆A相交于E,连接CE.∴∠E=∠1.(同弧所对的圆周角相等.)∵AE=AC,∴∠E=∠ACE.∵BE为⊙A的直径,∴∠BCE=90°.∴∠2+∠ACE=90°.∴∠1+∠2=90°.小猿热搜1.如图,△ABC为等腰三角形,AB=AC,在△ABC的外侧作直线AP,点B与点D关于AP轴对称,连接BD、CD,CD与AP交于点E.求证:∠1=∠2.证明∵A、D关于AP轴对称,∴AP是BD的垂直平分线.∴AD=AB,ED=EB.又∵AB=AC.∴C、B、D在以A为圆心,AB为半径的圆上.∵ED=EB,∴∠EDB=∠EBD.∴∠2=2∠EDB.又∵∠1=2∠CDB.∴∠1=∠2.2.己知四边形ABCD,AB∥CD,且AB=AC=AD=a,BC=b,且2a>b,求BD的长.解答以A为圆心,以a为半径作圆,延长BA交⊙A于E点,连接ED.∵AB∥CD,∴∠CAB=∠DCA,∠DAE=∠CDA. ∵AC=AD,∴∠DCA=∠CDA. ∴∠DAE=∠CAB.在△CAB和△DAE中.∴△CAB≌△DAE.∴ED=BC=b∵BE是直径,∴∠EDB=90°.在Rt△EDB中,ED=b,BE=2a,∴BD.模型2 直角三角形共斜边模型模型分析如图①、②,Rt△ABC和Rt△ABD共斜边,取AB中点O,根据直角三角形斜边中线等于斜边一半,可得:OC=OD=OA=OB,∴A、B、C、D四点共圆.(1)共斜边的两个直角三角形,同侧或异侧,都会得到四点共圆;(2)四点共圆后可以根据圆周角定理得到角度相等,完成角度等量关系的转化,是证明角度相等重要的途径之一.模型实例例1如图,AD、BE、CF为△ABC的三条高,H为垂线,问:(1)图中有多少组四点共圆?(2)求证:∠ADF=∠ADE.解答(1)6组①C、D、H、E四点共圆,圆心在CH的中点处;②D、B、F、H四点共圆,圆心在BH的中点处;③A、E、H、F四点共圆,圆心在AH的中点处;④C、B、F、E四点共圆,圆心在BC的中点处;⑤B、A、E、D四点共圆,圆心在AB的中点处;⑥C、D、F、A四点共圆,圆心在AC的中点处.(2)如图,由B、D、H、F四点共圆,得∠ADF=∠1.同理:由A、B、D、E四点共圆,得∠ADE=∠1.∴∠ADF=∠ADE.例2如图,E是正方形ABCD的边AB上的一点,过点E作DE的垂线交∠ABC的外角平分线于点F,求证:FE=DE.解答如图,连接DB、DF.∵四边形ABCD是正方形,且BF是∠CBA的外角平分线,∴∠CBF=45°,∠DBC=45°,∴∠DBF=90°.又∵∠DEF=90°,∴D、E、B、F四点共圆.∴∠DFE=∠DBE=45°(同弧所对的圆周角相等).∴△DEF是等腰直角三角形.∴FE=DE.1.如图,锐角△ABC中,BC.CE是高线,DG⊥CE于G,EF⊥BD于F,求证:FG BC证明:由于Rt△BCE与Rt△BCD共斜边BC,∴B、C、D、E四点共圆.∴∠DBC=∠DEG,同理,Rt∠EDF与Rt△DGE共斜边DE,∴D、E、F、G四点共圆.于是∠DEG=∠DFG,因此,∠DBC=∠DFG.于是FG∥BC2. 如图,BE.CF为△ABC的高,且交于点H,连接AH并延长交于BC于点D,求证:AD⊥BC.3.如图,等边△PQR内接于正方形ABCD,其中点P,Q,R分别在边AD,AB,DC上,M是QR的中点.求证:不论等边△PQR怎样运动,点M为不动点.4.如图,已知△ABC中,AH是高,AT是角平分线,且TD⊥AB,TE⊥AC.求证:∠AHD=∠AHE.证明:(1)∵∠ADT=∠AHT=∠AET=90°,∴D,E,H在以AT为直径的圆上,∴∠AHD=∠ATD,∠AHE=∠ATE,又∵AT是角平分线,TD⊥AB,TE⊥AC,∴∠ATD=∠ATE,∴∠AHD=∠AHE.补充:。

绝杀中考压轴题:“辅助圆模型”

绝杀中考压轴题:“辅助圆模型”

辅助圆模型1 . 共端点,等线段模型分析:(1)若有共端点的三条等线段,可思考构造辅助圆。

一般来说,构造辅助圆是为了利用圆的性质来解决角度问题。

例子:如图,△ABC和△ACD都是等腰三角形,AB=AC,AC=AD,连接BD。

求证:∠1+∠2=90°。

证明:利用模型构造辅助圆,∵AB=AC,∴∠ABC=∠2,∵∠BAC=2∠1,∴2∠2+2∠1=180°,∴∠1+∠2=90°。

方法二:利用模型构造辅助圆,延长CA交圆于点E,联结BE,∵CA是直径,∴∠EBC=90°。

∴∠E+∠2=90°,∵∠1=∠E,∴∠1+∠2=90°针对训练:如图,△ABC为等腰三角形,AB=AC,在△ABC的外侧作直线AP,点B与点D关于AP轴对称,连接BD、CD,CD与AP交于点E。

求证:∠1=∠2。

提示:可知AD=AB=AC,构造辅助圆可知关键的相等关系,∠1=2∠BDC,∠BDC=∠EBD,∠2=2∠BDC,∠1=∠2。

模型2. 直角三角形共斜边模型分析:共斜边的两个直角三角形,同侧或异侧,都有四点共圆,再根据圆周角定理得到角度相等,完成角度等量关系的代替,是证明角相等的思路之一。

例子:如图,AD、BE、CF为△ABC的三条高,H为垂心,求证:∠ADF=∠ADE。

证明:利用模型,可知B、C、E、F四点共圆,∴∠FBE=∠FCE,B、D、H、F四点共圆,∴∠ADF=∠FBE,D、C、E、H四点共圆,∴∠ADE=∠FCE,∴∠ADF=∠ADE。

针对训练:如图,已知△ABC中,AH是高,AT是角平分线,且TD⊥AB,TE⊥AC。

求:∠AHD=∠AHE。

提示:利用模型可知,A、D、T、E四点共圆,且AT为直径,联结OH,∵AH⊥BC,∴△ATH是直角三角形。

∴OH=1/2AT(O是AT中点),∴点H在圆上,∵AT是角平分线,TD⊥AB,TE⊥AC。

∴△ATD≌△ATE,∴AD=AE,∴∠AHD=∠AHE。

专题26 四点共圆模型(学生版)

专题26 四点共圆模型(学生版)

专题26四点共圆模型【模型】如图26-1,已知在由点A 、B 、C 、D 构成的四边形中,︒=∠=∠90ADB ACB ⇒(1)点A 、B 、C 、D 四点在同一个圆上,且AB 为圆O 的直径。

(2)圆内接四边形的对角互补。

【模型变式】如图26-2,已知AB 为ABC ∆和ABD ∆的公共边,点C 、D 在AB 的同侧,且D C ∠=∠。

⇒点A 、B 、C 、D 四点在同一个圆上,且AB 为圆O 的直径。

【例1】如图,四边形ABCD 内接于O ,AB CD =,A 为BD 中点,60BDC ∠=︒,则ADB ∠等于()A .40︒B .50︒C .60︒D .70︒【例2】如图,四边形ABCD 是⊙O 的内接四边形,若⊙O 半径为4,且∠C =2∠A ,则BD 的长为__.【例3】如图,已知Rt ABC 和Rt CDE △,90ACB CDE ∠=∠=︒,CAB CED ∠=∠,8AC =,6BC =,点D 在边AB 上,射线CE 交射线BA 于点F .(1)如图,当点F 在边AB 上时,联结AE .①求证:AE BC ∥;②若12EF CF =,求BD 的长;(2)设直线AE 与直线CD 交于点P ,若PCE 为等腰三角形,求BF 的长.一、单选题1.如图,Rt △ABC 中,AB =BC ,∠ABC =90°,O 为AC 的中点,K 为BC 上一点,NC ⊥BC ,且NC =BK ,AK 分别交BN 、OB 于M 、F ,AC 交BN 于E ,连接OM ,下列结论:①AK ⊥BN ;②OE =OF ;③∠OMN =45°;④若∠OAF =∠BAF ,则1=2OM AF .其中正确结论的个数有()A .1个B .2个C .3个D .4个2.如图,在Rt △ABC 中,∠ACB =90°,AC =BC =4,将△ABC 绕点A 沿顺时针方向旋转后得到△ADE ,直线BD 、CE 相交于点O ,连接AO .则下列结论中:①△ABD ∽△ACE ;②∠COD =135°;③AO ⊥BD ;④△AOC 面积的最大值为8,其中正确的有()A .1个B .2个C .3个D .4个3.如图,圆上有A 、B 、C 、D 四点,其中80BAD ∠=︒,若弧ABC 、弧ADC 的长度分别为7π、11π,则弧BAD 的长度为()A .4πB .8πC .10πD .15π二、填空题4.在综合实践课上,老师要求同学用正方形纸片剪出正三角形且正三角形的顶点都在正方形边上.小红利用两张边长为2的正方形纸片,按要求剪出了一个面积最大的正三角形和一个面积最小的正三角形.则这两个正三角形的边长分别是______.5.如图,已知在扇形AOB 中,120AOB ∠=︒,半径8OA OB ==.P 为弧AB 上的动点,过点P 作PM OA ⊥于点M ,PN OB ⊥于点N ,点M ,N 分别在半径,OA OB 上,连接MN .点D 是PMN 的外心,则点D 运动的路径长为________.6.如图,将ABC 绕点A 顺时针旋转25°得到AEF ,EF 交BC 于点N ,连接AN ,若57C ∠=︒,则ANB ∠=__________.三、解答题7.在等边ABC 中,D 是边AC 上一动点,连接BD ,将BD 绕点D 顺时针旋转120°,得到DE ,连接CE .(1)如图1,当B 、A 、E 三点共线时,连接AE ,若2AB =,求CE 的长;(2)如图2,取CE 的中点F ,连接DF ,猜想AD 与DF 存在的数量关系,并证明你的猜想;(3)如图3,在(2)的条件下,连接BE 、AF 交于G 点.若GF DF =,请直接写出CD AB BE+的值.8.在平面直角坐标系中,抛物线y =3ax 2﹣10ax +c 分别交x 轴于点A 、B (A 左B 右)、交y 轴于点C ,且OB =OC =6.(1)如图1,求抛物线的解析式;(2)如图2,点P 在第一象限对称轴右侧抛物线上,其横坐标为t ,连接BC ,过点P 作BC 的垂线交x 轴于点D ,连接CD ,设△BCD 的面积为S ,求S 与t 的函数关系式(不要求写出t 的取值范围);(3)如图3,在(2)的条件下,线段CD 的垂直平分线交第二象限抛物线于点E ,连接EO 、EC 、ED ,且∠EOC =45°,点N 在第一象限内,连接DN ,DN EC ∥,点G 在DE 上,连接NG ,点M 在DN 上,NM =EG ,在NG 上截取NH =NM ,连接MH 并延长交CD 于点F ,过点H 作HK ⊥FM 交ED 于点K ,连接FK ,若∠FKG =∠HKD ,GK =2MN ,求点G 的坐标.9.定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E 是△ABC 中∠A 的遥望角.①若∠A =40°,直接写出∠E 的度数是;②求∠E 与∠A 的数量关系,并说明理由.(2)如图2,四边形ABCD 中,∠ABC =∠ADC =90°,点E 在BD 的延长线上,连CE ,若∠BEC 是△ABC 中∠BAC 的遥望角,求证:DA =DE .10.如图,在等腰Rt ABC 中,90BAC ∠=︒,AD BC ⊥,垂足为D ,点E 为AC 边上一点,连接ED 并延长至F ,使ED FD =,以EF 为底边作等腰Rt EGF .(1)如图1,若30ADE ∠=︒,4AE =,求CE 的长;(2)如图2,连接BF ,DG ,点M 为BF 的中点,连接DM ,过D 作DH AC ⊥,垂足为H ,连接AG 交DH 于点N ,求证:=DM NG ;(3)如图3,点K 为平面内不与点D 重合的任意一点,连接KD ,将KD 绕点D 顺时针旋转90︒得到K D ',连接K A ',KB ,直线K A '与直线KB 交于点P ,D ¢为直线BC 上一动点,连接AD '并在AD '的右侧作C D AD '''⊥且C D AD '''=,连接AC ',Q 为BC 边上一点,3CD CQ =,AB =,当QC C P ''+取到最小值时,直线C P '与直线BC 交于点S ,请直接写出BPS △的面积.11.直线y kx k =+与x 轴交于A ,与y 轴交于C 点,直线BC 的解析式为1y x k k=-+,与x 轴交于B .(1)如图1,求点A 的横坐标;(2)如图2,D 为BC 延长线上一点,过D 作x 轴垂线于点E ,连接CE ,若CD CA =,设ACE 的面积为S ,求S 与k 的函数关系式;(3)如图3,在(2)的条件下,连接OD 交AC 于点F ,将CDF 沿CF 翻折得到△FCG ,直线FG 交CE 于点K ,若345ACE CDO ∠-∠=︒,求点K 的坐标.12.如图(1),已知矩形ABCD 中,6cm AB BC ==,,点E 为对角线AC 上的动点.连接BE ,过E 作EB 的垂线交CD 于点F .(1)探索BE 与EF 的数量关系,并说明理由.(2)如图(2),过F 作AC 垂线交AC 于点G ,交EB 于点H ,连接CH .若点E 从A 出发沿AC 方向以23cm /s 的速度向终点C 运动,设E 的运动时间为s t .①是否存在t ,使得H 与B 重合?若存在,求出t 的值;若不存在,说明理由;②t 为何值时,CFH △是等腰三角形;③当CG GH =时,求CGH 的面积.13.如图,等腰Rt △ABC 中,∠ACB =90°,D 为BC 边上一点,连接AD .(1)如图1,作BE ⊥AD 延长线于E ,连接CE ,求证:∠AEC =45°;(2)如图2,P 为AD 上一点,且∠BPD =45°,连接CP .①若AP =2,求△APC 的面积;②若AP =2BP ,直接写出sin ∠ACP 的值为______.14.定义:有一个角是其对角一半的圆的内接四边形叫做圆美四边形,其中这个角叫做美角.已知四边形ABCD 是圆美四边形.(1)求美角A ∠的度数;(2)如图1,若O 的半径为5,求BD 的长;(3)如图2,若CA 平分BCD ∠,求证:BC CD AC +=.15.如图1,抛物线23y x bx c =++经过原点(0,0),(12,0)A 两点.(1)求b 的值;(2)如图2,点P 是第一象限内抛物线2y bx c =++上一点,连接PO ,若tan POA ∠=求点P 的坐标;(3)如图3,在(2)的条件下,过点P 的直线y m =+与x 轴交于点F ,作CF OF =,连接OC 交抛物线于点Q ,点B 在线段OF 上,连接CP 、CB 、PB ,PB 交CF 于点E ,若2PBA PCB ∠=∠,2BEF BCF ∠=∠,求点Q 的坐标.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档