ROHM旗下LAPIS(原来OKI) 超低功耗8bit Flash微控制器(MCU)
布奇士安全系列LTC 8500系列阿莱伯吉安防视频开关系统说明书
u64 Camera by 8 monitor switchingu8 Independent keyboardsu Modular constructionu Powerful alarm handling capabilitiesu SalvoSwitching and SatelliteSwitch capabilityThe LTC 8500 Series Allegiant Video Switcher/Control Systems combine both switching and computer technology to provide powerful performance and unique system features for the security user. Offering full matrix switching capability, these systems can be programmed to display the video from any camera on any monitor, either manually or via independent automatic switching sequences.The LTC 8500 Series provide versatile modular construction accommodating up to 64 camera inputs, 8 monitor outputs, 8 keyboards, 128 alarm points, a computer interface port, and a logging printer port. FunctionsSequencing CapabilitiesThese systems can be programmed with up to 60 sequences which can be run independently of each other in either a forward or reverse direction. Any of the sequences can utilize the Salvo Switching capability where any number of system monitors may be selected to switch as a group. Using the optional LTC 8559/00 Master Control Software package or LTC 8850/00 GUI Allegiant Server, sequences can be made to activate and deactivate automatically based upon the time of day and the day of week.Camera ControlOn-site receiver/drivers permit operator control of pan, tilt, zoom, multiple pre-positions, four auxiliaries, auto-pan, and random scan. An integral local test function is also a standard feature. The LTC 8500 Series also supports variable speed operation and full programming functions of AutoDome series dome cameras.Bilinx® CapabilityWhen combined with an LTC 8016 Allegiant Bilinx Data Interface unit, these switchers/controllers support operations using Bilinx communication. With Bilinx, PTZ control is accomplished using a bi-directional communication protocol embedded in the video signal of Bosch Dinion and AutoDome® CCTV cameras. In addition, Bilinx uses the standard video cable to transmit alarm and status messages from the cameras, providing superior performance without the need for separate data transmission cables.Macro CapabilitiesThe LTC 8500 system provides powerful macro capabilities. The macros can be activated using Allegiant system keyboards, system time event functions, alarm activations, and via special function icons in the LTC 8850/00 GUI software.Alarm CapabilitiesWith the addition of the LTC 8540/00 Series alarm interface accessory unit, an external contact closure or logic level can be used to automatically activate any camera to be displayed. Any monitor or group of monitors can be set to display cameras under alarm conditions. The base system contains three built-in alarm response modes: basic, auto-build, and sequence and display. In addition to these three modes, the PC based software packages now includes the ability to combine any or all three standard modes within the same system. Alarm video may be selected to reset either manually or automatically. In addition, a 16-character alarm title can be selected to appear instead of the camera title during alarm conditions. System OperationSystem operation and programming is accomplished using a full-function, ergonomically designed keyboard. Up to 8 keyboards may be used in the system. Built-in operator priority levels and the ability to restrict certain operators from controlling designated functions provide maximum flexibility. Programming/Software CapabilitiesThe LTC 8500 Series includes a 48-character on-screen display for time-date, camera number, camera ID (16 characters), an icon to identify controllable cameras, and monitor (12 characters) or status information. Over 250 characters are available when programming camera ID and monitor titles.Utilizing a Windows-based PC and the LTC 8059/00 Master Control Software package or LTC 8850/00 Graphical User Interface (GUI) software, enhanced programming and switching features can be obtained.A user-friendly spreadsheet format provides the ability to enter camera titles, operator names, 64 timed events, change system parameters, program camera sequences, install lockouts, and access the advanced alarm handling screens with speed and efficiency. The program information may then be transferred into the Allegiant system, stored on disk, or printed out directly from a printer connected to the PC.The LTC 8850/00 Bosch GUI software is designed around an intuitive graphic-based interface; the GUI provides high performance programming, control and monitoring of all system functions by using on-screen icons to reflect real time status of the devices controlled by the system.The LTC 8850/00 GUI software also provides the ability to monitor system status events. System alarms, switching functions, sequence events,keyboard actions, and video loss information can be viewed in real time on the PC screen and, if desired, logged to the PC hard drive.The LTC 8500 Series contains a logging printer output port which accepts a standard RS-232 serial printer. This provides a permanent record of system status showing time and date of changes, such as: incoming alarms, acknowledgment of alarms, loading of sequences, user log-on to keyboard, transfer of system tables and sequences, and a power up reset message. In addition, the printer can be used to obtain a hard copy of the system's configuration tables and sequences.Expansion CapabilitiesThe LTC 8500 Series can serve as the Master switcher in a SatelliteSwitch configuration. This innovative SatelliteSwitch feature enables a single LTC 8500 Series system to communicate with up to 64 remotely located "Satellite" systems. Any Allegiant system model can serve as a remote Satellite switcher. This powerful feature permits the design of a distributed type system. The main control site can view/control local cameras plus cameras located at any of the remotely distributed Satellite sites. The Satellite sites can view/control only cameras associated with their own site. When used in this type of configuration, the main LTC 8500 Series system can access up to 256 cameras located anywhere in the system.Installation/configuration notesLTC 8500 Series Configuration Diagram(64 Cameras by 8 Monitors)1Video Coax2Up to 64 Maximum Video Inputs3Additional System Cameras48 x 8 Channel Input Cards5 4 x 2 Channel Output Cards6CPU Module7Power Supply Module8Main CPU Bay9 3 m (10 ft) Interconnect Cable Supplied with Keyboard1 0Maximum of 8 Full Function Keyboards up to 1.5 km (5000 ft) away using Optional Remote Hook-up KitLTC 8500 Series Full Capacity Configuration Diagram 164 Separate Alarm Inputs2Video Coax3Up to 64 On-Site LTC 8561 Receiver/Driver Units4Up to 1.5 km (5000 ft) using 18 AWG shielded twisted pair cable (Belden 8760 or equiv.)5Twisted Pair, Typical6Contact closure or active low logic level7Alarm Interface Unit8Additional System Cameras932 Separate Outputs10 2 m (6 ft) Interconnect Cable Supplied with LTC 8540/00Series, providing Data and Power Connections11Optional LTC 8059/00 Software Package can be run on a Windows based PC12Signal Distribution Unit13Up to 64 Video Inputs Maximum14 2 m (6 ft) Interconnect Cable Supplied withLTC 8568/00 Series, providing Data and Power Connections 158 x 8 Channel Input Cards 16 4 x 2 Channel Output Cards17CPU Module18Power Supply Module19 3 m (10 ft) Interface Cable Provided with Optional LTC 8059/00Software Package20Serial Logging Printer Capability218 Monitor Output Capability22 3 m (10 ft) Interconnect Cable Supplied with Keyboard23Maximum of 8 Full Function Keyboards Up to 1.5 km (5000 ft) away using Optional Remote Hook-up Kit24RS-232 Data25Main CPU BaySatellite System Using LTC 5112- or LTC 5124-Series Switchers1Monitor Outputs2Alarm Interface Unit3Pan/Tilt/Zoom and Satellite Control Data4Allegiant Main CPU Bay5Inputs Used for Both Local and Trunk Lines6Local Camera Video Inputs7Alarm Inputs May Activate Either Local or Satellite Video on Main Control Center's Monitor8Signal Distribution Unit9To Any Local PTZ Camera Sites1Multiple Video Coax11Up to 1.5 km (5000 ft) Using 1 sq mm (18 AWG) ShieldedTwisted Pair (Belden 8760 or Equivalent)1 2Allegiant Keyboard controls any local or remote camera on any local monitor (Video and PTZ)13Multiple Video Trunk Lines From Each Remote Satellite Location14One Line to Each Remote Satellite System Location15Pan/Tilt/Zoom and Satellite Control Data16Monitor Outputs Used As Video Trunk Lines to Main Control Site17Video Trunk Lines From Other Satellite Locations18Any Model Allegiant Main Bay19Local Monitors2Satellite Data Line21Console Port Input22Data Converter Units23To Any Local PTZ Camera Sites24Code Merger Unit25Alarm Interface Unit26Local PTZ Control Data Line2 7Allegiant Keyboard controls any local or remote camera on any local monitor (Video and PTZ)28Alarm Inputs Activate Only Local Video on Local Monitors CapacitiesElectricalEnvironmentalLTC 8501 Series Equipment BayIncludes LTC 8501/00 equipment rack, LTC 8511/00 microprocessormodule, and LTC 8505 Series power supply.1. Power at rated voltage fully loaded.ConnectorsExternal Accessory InterfacesEquipment RackMicroprocessor Module (LTC 8511/00)Power Supply(LTC 8505/60–120 VAC, LTC 8505/50–220-240 VAC)LTC 8521/00 Camera Input ModuleUse up to eight (8) per equipment bay.LTC 8532/00 Monitor Output ModuleUse up to four (4) per equipment bay.Allegiant AccessoriesThe LTC 8500 Series accessory products provide many optional features to the base Allegiant switching systems. Accessory products include keyboards, keyboard extension kits, receiver/driver units,switcher/followers, and code merger units. All accessory products are designed to be installer-friendly and compatible throughout the Allegiant series systems. Refer to the Allegiant Accessories datasheet for complete details.Ordering informationLTC 8501/50 Allegiant Matrix Switcherup to 64 camera inputs, 8 monitor outputs, incl. single bay, CPU and power supply, 230 VAC, 50 HzOrder number LTC 8501/50LTC 8501/60 Allegiant Matrix Switcherup to 64 camera inputs, 8 monitor outputs, incl. single bay, CPU and power supply, 120 VAC, 60 HzOrder number LTC 8501/60LTC 8521/00 Camera Input Modulefor LTC 8500, 8 camera inputs per cardOrder number LTC 8521/00LTC 8532/00 Monitor Output Modulefor LTC 8500, 2 monitor outputs per cardOrder number LTC 8532/00AccessoriesLTC 8511/00 Spare CPU Modulefor LTC 8501 bayOrder number LTC 8511/00LTC 8505/50 Spare Power Supplyfor LTC 8501/50 bay, 230 VAC, 50 HzOrder number LTC 8505/50LTC 8505/60 Spare Power Supplyfor LTC 8501/60 bay, 115 V, 60 HzOrder number LTC 8505/60Software OptionsLTC 8059/00 Allegiant Master Control Software Order number LTC 8059/00SFT-VASA Hybrid IP - Analog/Matrix Video over IP Inte-gration SoftwareOrder number SFT-VASARepresented by:North America:Europe, Middle East, Africa:Asia-Pacific:China:Latin America and Caribbean:Bosch Security Systems, Inc. 130 Perinton Parkway Fairport, New York, 14450, USA Phone: +1 800 289 0096 Fax: +1 585 223 9180***********************.com Bosch Security Systems B.V.P.O. Box 800025617 BA Eindhoven, The NetherlandsPhone: + 31 40 2577 284Fax: +31 40 2577 330******************************Robert Bosch (SEA) Pte Ltd, SecuritySystems11 Bishan Street 21Singapore 573943Phone: +65 6571 2808Fax: +65 6571 2699*****************************Bosch (Shanghai) Security Systems Ltd.203 Building, No. 333 Fuquan RoadNorth IBPChangning District, Shanghai200335 ChinaPhone +86 21 22181111Fax: +86 21 22182398Robert Bosch Ltda Security Systems DivisionVia Anhanguera, Km 98CEP 13065-900Campinas, Sao Paulo, BrazilPhone: +55 19 2103 2860Fax: +55 19 2103 2862*****************************© Bosch Security Systems 2016 | Data subject to change without notice 2364004875 | en, V2, 12. Jul 2016。
W800 QFLASH布局说明说明书
WM_W800_QFLASH布局说明V1.1北京联盛德微电子有限责任公司(winner micro)地址:北京市海淀区阜成路67号银都大厦18层电话:+86-10-62161900公司网址:文档修改记录版本修订时间修订记录作者审核V0.1 2019/9/25 [C]创建文档CuiycV0.2 2020/7/8 统一字体CuiycV1.0 2020/8/10 升级版本号CuiycV1.1 2021/2/23 更新用户区位置,与SDK保持一致Cuiyc目录文档修改记录 (2)目录 (3)1引言 (5)1.1编写目的 (5)1.2预期读者 (5)1.3术语定义 (5)1.4参考资料 (5)2W800 QFLASH的布局 (6)2.1QFLASH大于2M的布局 (6)2.1.1物理层参数区 (6)2.1.2SECBOOT参数区 (7)2.1.3SECBOOT 存放区 (8)2.1.4升级IMG存放区 (8)2.1.5运行IMG参数区 (9)2.1.6运行IMG存放区 (10)2.1.7用户参数区 (10)2.1.8系统参数区 (10)2.1.9升级IMG参数区 (11)2.2QFLASH小于2M的布局 (11)3FAQ (14)3.1为什么布局划分总是以64KB为倍数划分? (14)3.2为什么总是留一部分升级区在内部Flash里? (14)1引言1.1编写目的本文档主要用于阐述W800中的QFLASH布局,使读者了解当前W800的QFLASH的使用情况。
1.2预期读者该文档适用的读者包括研发人员、测试人员、W800的工程使用人员等。
1.3术语定义序号术语/缩略语说明/定义1 QFLASH W800 internel Quad-SPI FLASH2 IMG IMAGE3 RF Radio Frequency4 MAC Media Access Control5 SECBOOT Second Boot6 ROM Read-Only Memory7 UPD Image Upgrade Area8 MB Mega Byte9 KB Kilo Byte1.4参考资料无2 W800 QFLASH 的布局地址空间:0x8000000-0x8XFFFFF ,共(X+1)MB ,X >= 1,针对2M 及以上的QFLASH 。
NXP选型指南
功能特性:
● ARM Cortex-M0处理器 ◎ 工作频率:50MHz ◎ 嵌套向量中断控制器 ◎ 唤醒中断控制器,支持优先中断自动唤醒 ◎ 具有三种低功耗模式:睡眠、深度睡眠和深度掉电
● 内存 ◎ 高达32KB片内Flash程序存储器 ◎ 高达8KB片内SRAM存储器
● 串行外设 ◎ UART,支持小数分频波特率产生、内部FIFO和RS-485 ◎ SPI控制器,支持FIFO和多协议功能 ◎ I2C总线接口,支持全速I2C总线规范和增强型快速模式,数 据速率高达1Mbit/s,支持多地址识别和监控模式 ◎ CAN控制器(LPC11C12/C14/C22/C24支持),内部ROM集成 供CAN和CANOpen标准使用的初始化和通信的API函数, 用户可直接调用;兼容CAN2.0A/B,传输速率高达1Mbit/s ◎ 集成片上高速CAN收发器(仅LPC11C22/C24支持)
● 模拟外设 ◎ 8通道10位ADC,10位转换时间≥2.44μs
芯片特色:
Cortex-M0处理器性能 ● Cortex-M0微控制器可以轻松超越高端8位和16位器件的
性能水平; ● 内核额定性能为0.9DMIPS/MHz,相当于与其最接近的8位
和16位竞争产品的2至4倍。
5-02
● 其他外设 ◎ 最高42个通用高速I/O管脚,具有可配置的上拉/下拉电阻和可配 置的新型开漏工作模式 ◎ 1个引脚(P0.7)支持20mA高驱动电流 ◎ 四个通用定时器/计数器 ◎ 可编程的看门狗定时器(WDT),带锁死功能 ◎ 系统节拍定时器 ◎ 各外功耗
● 功耗低至130μA/MHz; ● 对于同一应用,相对于8位和16位微控制器,Cortex-M0微控制器可
以将功耗减少一半或四分之一,能够以更快的速度完成任务,可在电 池模式下运行更长时间; ● Cortex-M0微控制器具有三种低功耗模式; - Sleep(睡眠); - Deep sleep(深度睡眠); - Deep Power Down(深度掉电)。 ● ROM内置功率配置文件(仅限LPC11xx/x02器件),旨在保证芯片应用 性能的前提下,将有效功耗减少到合适值。
C8051F020概述
9
特殊功能寄存器
SFRs 提供了MCU 资源与外设的控制与数据交换
C8051F020的特殊功能寄存器比典型的8051多两倍左右
C8051F020 增加的SFRS提供了 访问配置并访问此MCU 的子系统的 功能.
这一特性容许它在增加新的功能后还保留了与MCS-51 指 令集兼容的特点。
以0X0或0X8结尾的特殊功能寄存器(例如: P0, TCON, P1, SCON, IE, 等.) 即可以按字节寻址也可以按位寻址
10
特殊功能寄存器
F8 F0 E8 E0
SPI0CN
B ADC0CN ACC
PCA0H
SCON1 PCA0L XBR0
PCA0CPH0
SBUF1 PCA0CPL0 XBR1
TL2 ADC0GTL ADC0CF
DAC1L
TH2 ADC0GTH P1MDIN P74OUT
DAC1H
DAC1CN
SMB0CR
SMB0ST A
SADEN0 OSCXCN SADDR0
ADC0LTL ADC0L FLSCL SADEN1
ADC0LTH ADC0H FLACL EMI0CN
B8
B0
A8 A0
8-bit SAR模拟—数字转换器 (ADC1) 端口1可以被配置为模拟输入 8通道输入多路复用器和可编程增益放大器 ADC 通过它的SFRS进行配置
15
数字—模拟转换器
2个 12-bit 数字—模拟 转换器:DAC0 和 DAC1
DAC通过 VREFD 输 入引脚提供参考电压 DACs 可以作为比较器 参考输入
同时端口1的引脚可以 用作ADC1的模拟输入
LPC2478FBD208中文资料
元器件交易网
NXP Semiconductors
LPC2478
Fast communication chip
LPC2478_1
Preliminary data sheet
LCD controller, supporting both Super-Twisted Nematic (STN) and Thin-Film Transistors (TFT) displays. Dedicated DMA controller. Selectable display resolution (up to 1024 × 768 pixels). Supports up to 24-bit true-color mode.
EMC provides support for asynchronous static memory devices such as RAM, ROM and flash, as well as dynamic memories such as Single Data Rate SDRAM.
Advanced Vectored Interrupt Controller (VIC), supporting up to 32 vectored interrupts. General Purpose AHB DMA controller (GPDMA) that can be used with the SSP, I2S,
器件厂商索引(分4页显示121条记录以厂商开头英文字母排序
atecom 专业生产 ATM 通信范畴的电路。
Atmel 美国爱特梅尔公司 AT 系列电路主要有:各类存储器、智能卡 IC、
Epson 专业生产打印机,但很多电子产品上有该公司的元器件、LCD.
EXAR 公司以生产数据通信领域中的电路为著称。
Fujitsu 产品以计算机周边电路、通信、工业类电路为主。
GEC Plessey Semiconductors GPS 半导体专业于广播、无线通信、雷达、
GSM 移动通信电路,品种规格较齐全,欧洲生产的电子产品大多采用该公司的器 件。
Avance Logic,Inc.计算机多媒体芯片组生产商,声霸卡芯片支持
Internet Phone。 AVX/Kyocera 产品范围较广,有电阻、电容、薄膜电路、表面安装元件、 滤波器、电压调整器、时基电路等等。 Benchmarq Microelectronics, Inc. 专业于电池充电监测控制、气体监测、 实时时钟等电路的生产。 Burr Brown CorporationBB 公司的各类转换电路、高精度模拟电路及各类 专用处理电路模块等等一直在国际上享有盛名。
American Microsystems 混合信号/数字 ASICs 专业厂商。
AMLogic,Inc. VCD/DVD MPEG-1 及 MPEG-2 视频/音频解码器制造商。
Amplifonix, Inc RF/Microwave 器件专业厂商。 Analog Devices ADI,美国模拟器件公司,国际上著名的高精度模拟电路 制造商之一, 生产有线性电路、混合信号电路、各类数据转换及放大处理电路等。
Silicon Laboratories AN678 精确32 si32FlashUtility 命
Rev. 0.1 3/12Copyright © 2012 by Silicon LaboratoriesAN678P ROGRAMMER U SER ’S G UIDE1. IntroductionThe Precision32™ si32FlashUtility Command-Line Programmer is a simple program to enable productionprogramming capability using the Silicon Labs 32-bit USB Debug Adapter. This utility can also program and eraselock bytes.Figure 1 shows an invocation of the command-line utility.Figure 1.Precision32 si32FlashUtility Command-Line Programmer2. Relevant DocumentationPrecision32 Application Notes are listed on the following website: /32bit-appnotes.⏹ AN667: Getting Started with the Silicon Labs Precision32™ IDE⏹AN669: Integrating Silicon Labs SiM3xxxx Devices into the Keil µVision® IDEAN6783. Programming OptionsThe si32FlashUtlility has a command-line form of:si32FlashUtility [-options] [drive:][path]imageThese options consist of the following:⏹ -v: Verify the image after downloading to Flash.⏹ -i: Display additional information during the programming process (i.e., verbose mode).⏹ -e {0,1,2}: Erase Flash with three mode options.⏹ -p {0,1,2}: Debug port selection with three mode options.⏹ -r {0,1,2}: Reset during programming with three mode options.⏹ -l: List the available USB Debug Adapters (UDAs).⏹ -s SERIAL: Specify the USB Debug Adapter serial string.This section discusses each of these programming options in more detail.3.1. Download VerificationUsing the -v option flag causes the si32FlashUtility to verify the Flash contents after the download. The command-line utility will output a Download complete and verified message if the Flash contents match the HEX image. 3.2. Verbose FeedbackWith the -i option flag, the si32FlashUtility programmer will report feedback about each step of the programming process, as shown in Figure2.Figure2.Verbose Mode OutputAN6783.3. Flash EraseThe -e option flag has three modes: merge, sector, and full. The default option is sector (-e 1) if no option is specified.The merge option is selected with -e 0 and causes the programmer to read the current contents of the Flash page selected by the HEX file address, copy any contents that are not written in the HEX image, erase the page, and write the merged image back to Flash. This option allows developers to maintain any calibration or code constants in Flash when updating code.When using the -e 1 sector erase option, the programmer will first erase the page selected by the HEX image address before programming the contents of the HEX image.The final option, -e 2, causes the programmer to erase the entire Flash before programming the HEX image.3.4. Debug PortThis option selects the debug port of the device. The -p 0 selection is for any devices with JTAG debug pins. The -p 1 option is for devices with Serial Wire debug pins only (SW-DP). The -p 2 option uses the Serial Wire protocol and is for devices with both JTAG and Serial Wire debug pins (SWJ-DP), like the SiM3U1xx device family. The default option is -p 2 if no option is specified.The JTAG selection (-p 0) does not have provisions for JTAG chaining.3.5. Reset OptionsThe utility supports three different reset options: none, before, and during. The default option is none (-r 0) if no option is specified.The none option (-r 0) prevents the utility from toggling the reset pin at any point during the programming process. The before option (-r 1) allows the si32FlashUtility to toggle reset immediately before programming. This option is useful for SiM3U1xx or SiM3C1xx devices that may be unresponsive due to switching to a non-existent clock. Using this option along with the recommended reset delay in the startup code ensures the USB Debug Adapter will be able to communicate with the device.For the during option (-r 2), the utility asserts the reset pin while attempting to halt the core. Once the core is halted, the utility deasserts the reset pin and starts programming. This option ensures the Debug Adapter can always communicate with a device without the reset delay in the startup code for devices that support this feature.Note:The -r 2 option is unavailable for SiM3U1xx and SiM3C1xx devices.3.6. USB Debug Adapter OptionsThe -l option flag lists the available USB Debug Adapters connected to the PC or system. The -s SERIAL option flag can then specify the USB Debug Adapter the utility should use for programming.AN6784. Creating HEX Files with the Precision32 IDEThe si32FlashUtility programmer expects HEX files as its input, and the Precision32 IDE includes a utility that can convert the GCC AXF file output to HEX files. This objcopy utility can be found in the ..\Precision32_vx.y\IDE\precision32\Tools\arm-none-eabi\bin path after installing the Precision32 software package from /32bit-software.More information on the usage of this utility can be found on the CodeRed website: /CodeRedWiki/OutputFormats.4.1. Using the Objcopy Utility from the IDETo use the objcopy utility from the IDE:1. Hold the Ctrl button and left-click on the project name in the IDE footer as shown in Figure3. This willopen a command prompt in the project directory with the proper paths to use the utility.Figure3.Opening a Project Command Prompt2. Type cd build_directory, where build_directory is Debug by default.3. Invoke the utility: arm-none-eabi-objcopy -O ihex project_name.axf project_name.hex. In the case ofthis example, which uses the sim3u1xx_Blinky project: arm-none-eabi-objcopy -O ihexsim3u1xx_Blinky.axf sim3u1xx_Blinky.hex.Rev. 0.1AN678Rev. 0.1Figure 4.Invoking the Objcopy Utility4.2. Setting the IDE Project to Automatically Generate a HEX FileTo configure the Precision32 IDE project to automatically generate a HEX file after a build:1. Right-click on the project_name in the Project Explorer view.2. Select Properties .3. In the C/C++ Build →Settings →Build Steps tab, type the following in the Post-build steps →Commandbox: arm-none-eabi-objcopy -O ihex ${BuildArtifactFileName} ${BuildArtifactFileBaseName}.hexFigure 5.Automatically Generating a HEX File on Project BuildAN6785. Examples To verify the download of the sim3u1xx_Blinky.hex file:si32FlashUtility -v sim3u1xx_Blinky.hex This example is shown in Figure6.Figure 6.Example with Flash VerificationTo verify the download of the sim3u1xx_Blinky.hex file, use verbose mode, erase the device before the download,and reset before:si32FlashUtility -v -i -e 2 -r 1 sim3u1xx_Blinky.hexFigure 7 shows an example of this call to the si32FlashUtility programmer.Figure 7.Example with Flash Verification, Verbose Mode, Full Device Erase, and Reset BeforeOptions Silicon Laboratories Inc.400 West Cesar Chavez Austin, TX 78701USASimplicity StudioOne-click access to MCU andwireless tools, documentation,software, source code libraries &more. Available for Windows,Mac and Linux!IoT Portfolio /IoT SW/HW /simplicity Quality /quality Support and CommunityDisclaimer Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.Trademark Information Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.。
Silicon Labs EFR32MG 2.4 GHz 19.5 dBm 无线模组板参考手册说明书
EFR32MG 2.4 GHz 19.5 dBm Radio BoardBRD4151A Reference Manualance, low energy wireless solution integrated into a small formfactor package.By combining a high performance 2.4 GHz RF transceiver with an energy efficient 32-bitMCU, the family provides designers the ultimate in flexibility with a family of pin-compati-ble devices that scale from 128/256 kB of flash and 16/32 kB of RAM. The ultra-lowpower operating modes and fast wake-up times of the Silicon Labs energy friendly 32-bit MCUs, combined with the low transmit and receive power consumption of the 2.4GHz radio, result in a solution optimized for battery powered applications.To develop and/or evaluate the EFR32 Mighty Gecko, the EFR32MG Radio Board canbe connected to the Wireless Starter Kit Mainboard to get access to display, buttons andadditional features from Expansion Boards.Introduction 1. IntroductionThe EFR32 Mighty Gecko Radio Boards provide a development platform (together with the Wireless Starter Kit Mainboard) for the Silicon Labs EFR32 Mighty Gecko Wireless System on Chips and serve as reference designs for the matching network of the RF inter-face.The BRD4151A Radio Board is designed to operate in the 2400-2483.5 MHz band with the RF matching network optimized to operate with 19.5 dBm output power.To develop and/or evaluate the EFR32 Mighty Gecko, the BRD4151A Radio Board can be connected to the Wireless Starter Kit Main-board to get access to display, buttons and additional features from Expansion Boards and also to evaluate the performance of the RF interface.2. Radio Board Connector2.1 IntroductionThe board-to-board connector scheme allows access to all EFR32MG1 GPIO pins as well as the RESETn signal. For more information on the functions of the available pin functions, see the EFR32MG1 data sheet.2.2 Radio Board Connector Pin AssociationsThe figure below shows the pin mapping on the connector to the radio pins and their function on the Wireless Starter Kit Mainboard.GND F9 / PA3 / VCOM.#RTS_#CS 3v3UIF_BUTTON1 / PF7 / P36P200Upper RowNC / P38NC / P40NC / P42NC / P44DEBUG.TMS_SWDIO / PF1 / F0DISP_ENABLE / PD15 / F14UIF_BUTTON0 / PF6 / F12DISP_EXTCOMIN / PD13 / F10VCOM.#CTS_SCLK / PA2 / F8#RESET / F4DEBUG.TDO_SWO / PF2 / F2DISP_SI / PC6 / F16VCOM.TX_MOSI / PA0 / F6PTI.DATA / PB12 / F20DISP_EXTCOMIN / PD13 / F18USB_VBUS5VBoard ID SCLGND Board ID SDAUSB_VREG F7 / PA1 / VCOM.RX_MISO F5 / PA5 / VCOM_ENABLE F3 / PF3 / DEBUG.TDI F1 / PF0 / DEBUG.TCK_SWCLK P45 / NC P43 / NCP41 / NCP39 / NCP37 / High / SENSOR_ENABLEF11 / PF5 / UIF_LED1F13 / PF7 / UIF_BUTTON1F15 / PC8 / DISP_SCLK F17 / PD14 / DISP_SCS F19 / PB13 / PTI.SYNC F21 / PB11 / PTI.CLK GNDVMCU_INVCOM.#CTS_SCLK / PA2 / P0P201Lower RowVCOM.#RTS_#CS / PA3 / P2PD10 / P4PD11 / P6GND VRF_INP35 / PD15 / DISP_ENABLE P7 / PC9P5 / PC8 / DISP_SCLK P3 / PC7P1 / PC6 / DISP_SI P33 / PD14 / DISP_SCSP31 / PD13 / DISP_EXTCOMIN P29 / NCP27 / NC P25 / NC P23 / NC P21 / NC P19 / NC P17 / NC P15 / NC P13 / PC11P11 / PA1 / VCOM.RX_MISO P9 / PA0 / VCOM.TX_MOSI UIF_BUTTON0 / PF6 / P34UIF_LED1 / PF5 / P32UIF_LED0 / PF4 / P30DEBUG.TDO_SWO / PF2 / P28DEBUG.TMS_SWDIO / PF1 / P26DEBUG.TCK_SWCLK / PF0 / P24PTI.SYNC / PB13 / P22PTI.DATA / PB12 / P20PTI.CLK / PB11 / P18VCOM_ENABLE / PA5 / P16PA4 / P14PC10 / P12DEBUG.TDI / PF3 / P10PD12 / P8Figure 2.1. BRD4151A Radio Board Connector Pin MappingRadio Board Connector3. Radio Board Block Summary3.1 IntroductionThis section gives a short introduction to the blocks of the BRD4151A Radio Board.3.2 Radio Board Block DiagramThe block diagram of the EFR32MG Radio Board is shown in the figure below.Figure 3.1. BRD4151A Block Diagram3.3 Radio Board Block Description3.3.1 Wireless MCUThe BRD4151A EFR32 Mighty Gecko Radio Board incorporates an EFR32MG1P232F256GM48 Wireless System on Chip featuring 32-bit Cortex-M4 with FPU core, 256 kB of flash memory and 32 kB of RAM and a 2.4 GHz band transceiver with output power up to 19.5 dBm. For additional information on the EFR32MG1P232F256GM48, refer to the EFR32MG1 Data Sheet.3.3.2 LF Crystal Oscillator (LFXO)The BRD4151A Radio Board has a 32.768 kHz crystal mounted.3.3.3 HF Crystal Oscillator (HFXO)The BRD4151A Radio Board has a 38.4 MHz crystal mounted.3.3.4 Matching Network for 2.4 GHzThe BRD4151A Radio Board incorporates a 2.4 GHz matching network which connects the 2.4 GHz TRX pin of the EFR32MG1 to the one on-board printed Inverted-F antenna. The component values were optimized for the 2.4 GHz band RF performace and current con-sumption with 19.5 dBm output power.For detailed description of the matching network, see Chapter 4.2.1 Description of the 2.4 GHz RF Matching.| Smart. Connected. Energy-friendly.Rev. 1.7 | 33.3.5 Inverted-F AntennaThe BRD4151A Radio Board includes a printed Inverted-F antenna (IFA) tuned to have close to 50 Ohm impedance at the 2.4 GHz band.For detailed description of the antenna see Chapter 4.5 Inverted-F Antenna.3.3.6 UFL ConnectorTo be able to perform conducted measurements, Silicon Labs added an UFL connector to the Radio Board. The connector allows an external 50 Ohm cable or antenna to be connected during design verification or testing.Note: By default the output of the matching network is connected to the printed Inverted-F antenna by a series component. It can be connected to the UFL connector as well through a series 0 Ohm resistor which is not mounted by default. For conducted measurements through the UFL connector the series component to the antenna should be removed and the 0 Ohm resistor should be mounted (see Chapter 4.2 Schematic of the RF Matching Network for further details).3.3.7 Radio Board ConnectorsTwo dual-row, 0.05” pitch polarized connectors make up the EFR32MG Radio Board interface to the Wireless Starter Kit Mainboard. For more information on the pin mapping between the EFR32MG1P232F256GM48 and the Radio Board Connector, refer to Chapter 2.2 Radio Board Connector Pin Associations.4. RF Section4.1 IntroductionThis section gives a short introduction to the RF section of the BRD4151A.4.2 Schematic of the RF Matching NetworkThe schematic of the RF section of the BRD4151A Radio Board is shown in the following figure.U1BPath Inverted-F Antenna2.4 GHz Matching Figure 4.1. Schematic of the RF Section of the BRD4151A4.2.1 Description of the 2.4 GHz RF MatchingThe 2.4 GHz matching connects the 2G4RF_IOP pin to the on-board printed Inverted-F Antenna. The 2G4RF_ION pin is connected to ground. For higher output powers (13 dBm and above) beside the impedance matching circuitry it is recommended to use additional harmonic filtering as well at the RF output. The targeted output power of the BRD4151A board is 19.5 dBm. As a result, the RF output of the IC is connected to the antenna through a four-element impedance matching and harmonic filter circuitry.For conducted measurements the output of the matching network can also be connected to the UFL connector by relocating the series R1 resistor (0 Ohm) to the R2 resistor position between the output of the matching and the UFL connector.4.3 RF Section Power SupplyOn the BRD4151A Radio Board the supply pin of the RF Analog Power (RFVDD) is connected directly ot the output of the on-chip DC-DC converter while the supply for the 2.4 GHz PA (PAVDD) is provided directly by the mainboard. This way, by default, the DC-DC converter provides 1.8 V for the RF analog section, the mainboard provides 3.3 V for the PA (for details, see the schematic of the BRD4151A).4.4 Bill of Materials for the 2.4 GHz MatchingThe Bill of Materials of the 2.4 GHz matching network of the BRD4151A Radio Board is shown in the following table.Table 4.1. Bill of Materials for the BRD4151A 2.4 GHz 19.5 dBm RF Matching Network | Smart. Connected. Energy-friendly.Rev. 1.7 | 54.5 Inverted-F AntennaThe BRD4151A Radio Board includes an on-board printed Inverted-F Antenna tuned for the 2.4 GHz band. Due to the design restric-tions of the Radio Board the input of the antenna and the output of the matching network can't be placed directly next to each other. Therefore, a 50 Ohm transmission line was necessary to connect them. The resulting impedance and reflection measured at the output of the matcing network are shown in the following figure. As it can be observed the impedance is close to 50 Ohm (the reflection is better than -10 dB) for the entire 2.4 GHz band.Figure 4.2. Impedance and Reflection of the Inverted-F Antenna of the BRD4151A| Smart. Connected. Energy-friendly.Rev. 1.7 | 65. Mechanical DetailsThe BRD4151A EFR32 Mighty Gecko Radio Board is illustrated in the figures below.45 mmFigure 5.1. BRD4151A Top View5 mm ConnectorConnectorFigure 5.2. BRD4151A Bottom ViewMechanical DetailsRev. 1.7 | 7EMC Compliance 6. EMC Compliance6.1 IntroductionCompliance of the fundamental and harmonic levels is tested against the following standards:• 2.4 GHz:•ETSI EN 300-328•FCC 15.2476.2 EMC Regulations for 2.4 GHz6.2.1 ETSI EN 300-328 Emission Limits for the 2400-2483.5 MHz BandBased on ETSI EN 300-328 the allowed maximum fundamental power for the 2400-2483.5 MHz band is 20 dBm EIRP. For the unwan-ted emissions in the 1 GHz to 12.75 GHz domain the specified limit is -30 dBm EIRP.6.2.2 FCC15.247 Emission Limits for the 2400-2483.5 MHz BandFCC 15.247 allows conducted output power up to 1 Watt (30 dBm) in the 2400-2483.5 MHz band. For spurious emmissions the limit is -20 dBc based on either conducted or radiated measurement, if the emission is not in a restricted band. The restricted bands are speci-fied in FCC 15.205. In these bands the spurious emission levels must meet the levels set out in FCC 15.209. In the range from 960 MHz to the frequency of the 5th harmonic it is defined as 0.5 mV/m at 3 m distance (equals to -41.2 dBm in EIRP).Additionally, for spurious frequencies above 1 GHz, FCC 15.35 allows duty-cycle relaxation to the regulatory limits. For the EmberZNet PRO the relaxation is 3.6 dB. Therefore, the -41.2 dBm limit can be modified to -37.6 dBm.If operating in the 2400-2483.5 MHz band the 2nd, 3rd and 5th harmonics can fall into restricted bands. As a result, for those the -37.6 dBm limit should be applied. For the 4th harmonic the -20 dBc limit should be applied.6.2.3 Applied Emission Limits for the 2.4 GHz BandThe above ETSI limits are applied both for conducted and radiated measurements.The FCC restricted band limits are radiated limits only. Besides that, Silicon Labs applies those to the conducted spectrum i.e., it is assumed that, in case of a custom board, an antenna is used which has 0 dB gain at the fundamental and the harmonic frequencies. In that theoretical case, based on the conducted measurement, the compliance with the radiated limits can be estimated.The overall applied limits are shown in the table below.Table 6.1. Applied Limits for Spurious Emissions for the 2.4 GHz Band | Smart. Connected. Energy-friendly.Rev. 1.7 | 87. RF Performance7.1 Conducted Power MeasurementsDuring measurements, the EFR32MG Radio Board was attached to a Wireless Starter Kit Mainboard which was supplied by USB. The voltage supply for the Radio Board was 3.3 V.7.1.1 Conducted Measurements in the 2.4 GHz bandThe BRD4151A board was connected directly to a Spectrum Analyzer through its UFL connector (the R1 resistor (0 Ohm) was removed and a 0 Ohm resistor was soldered to the R2 resistor position). During measurements, the voltage supply for the board was 3.3 V provi-ded by the mainboard. The supply for the radio (RFVDD) was 1.8 V provided by the on-chip DC-DC converter, the supply for the power amplifier (PAVDD) was 3.3 V (for details, see the schematic of the BRD4151A). The transceiver was operated in continuous carrier transmission mode. The output power of the radio was set to the maximum level.The typical output spectrum is shown in the following figure.Figure 7.1. Typical Output Spectrum of the BRD4151AAs it can be observed, the fundamental is slightly lower than 19.5 dBm and the strongest unwanted emission is the double-frequency harmonic and it is under the -37.6 dBm applied limit.Note: The conducted measurement is performed by connecting the on-board UFL connector to a Spectrum Analyzer through an SMA Conversion Adapter (P/N: HRMJ-U.FLP(40)). This connection itself introduces approximately a 0.3 dB insertion loss.RF PerformanceRev. 1.7 | 97.2 Radiated Power MeasurementsDuring measurements, the EFR32MG Radio Board was attached to a Wireless Starter Kit Mainboard which was supplied by USB. The voltage supply for the Radio Board was 3.3 V. The radiated power was measured in an antenna chamber by rotating the DUT 360degrees with horizontal and vertical reference antenna polarizations in the XY , XZ and YZ cuts. The measurement axes are shown inthe figure below.Figure 7.2. DUT: Radio Board with the Wireless Starter Kit Mainboard (Illustration)Note: The radiated measurement results presented in this document were recorded in an unlicensed antenna chamber. Also the radi-ated power levels may change depending on the actual application (PCB size, used antenna, and so on). Therefore, the absolute levels and margins of the final application are recommended to be verified in a licensed EMC testhouse.7.2.1 Radiated Measurements in the 2.4 GHz bandFor the transmitter antenna, the on-board printed Inverted-F antenna of the BRD4151A board was used (the R1 resistor (0 Ohm) was mounted). During the measurements the board was attached to a Wireless Starter Kit Mainboard (BRD4001 (Rev. A02) ) which was supplied through USB. During measurements, the voltage supply for the board was 3.3 V provided by the mainboard. The supply for the radio (RFVDD) was 1.8 V provided by the on-chip DC-DC converter, the supply for the power amplifier (PAVDD) was 3.3 V (for details, see the schematic of the BRD4151A). The transceiver was operated in continuous carrier transmission mode. The output power of the radio was set to the maximum level.The results are shown in the table below.Table 7.1. Maximums of the Measured Radiated Powers of BRD4151AAs it can be observed, thanks to the high gain of the Inverted-F antenna, the level of the fundamental is higher than 19.5 dBm. The strongest harmonic is the double-frequency one but its level is under -45 dBm.RF PerformanceEMC Compliance Recommendations 8. EMC Compliance Recommendations8.1 Recommendations for 2.4 GHz ETSI EN 300-328 complianceAs it was shown in the previous chapter, the radiated power of the fundamental of the BRD4151A EFR32 Mighty Gecko Radio Board complies with the 20 dBm limit of the ETSI EN 300-328 in case of the conducted measurement but due to the high antenna gain the radiated power is higher than the limit by 2 dB. In order to comply, the output power should be reduced (with different antennas, de-pending on the gain of the used antenna, the necessary reduction can be different). The harmonic emissions are under the -30 dBm limit. Although the BRD4151A Radio Board has an option for mounting a shielding can, that is not required for the compliance.8.2 Recommendations for 2.4 GHz FCC 15.247 complianceAs it was shown in the previous chapter, the radiated power of the fundamental of the BRD4151A EFR32 Mighty Gecko Radio Board complies with the 30 dBm limit of the FCC 15.247. The harmonic emissions are under the -37.6 dBm applied limit both in case of the conducted and the radiated measurements. Although the BRD4151A Radio Board has an option for mounting a shielding can, that is not required for the compliance.Board Revisions 9. Board RevisionsTable 9.1. BRD4151A Radio Board RevisionsNote: The silkscreen marking on the board (e.g., PCBxxxx A00) denotes the revision of the PCB. The revision of the actual Radio Board can be read from the on-board EEPROM.Errata 10. ErrataTable 10.1. BRD4151A Radio Board ErrataDocument Revision History 11. Document Revision HistoryRevision 1.72016-11-20Minor editorial updates.Revision 1.62016-10-31Corrected error in radio board connector pinout diagram.Revision 1.52016-05-24Updating Board Revisions content. Fixing Errata description.Revision 1.42016-05-05Adding Introduction chapter; moving SoC Description chapter (short ver.) to Block Description chapter. Minor improvements.Revision 1.32016-02-11Addign RF Section Power Supply chapter. Minor improvements.Revision 1.22016-01-28Fixing image render problem.Revision 1.12015-25-25Updating Inverted-F Antenna Chapter and radiated measurement results based on board revision B02.Revision 1.02015-11-27Initial release.Table of Contents1. Introduction (1)2. Radio Board Connector (2)2.1 Introduction (2)2.2 Radio Board Connector Pin Associations (2)3. Radio Board Block Summary (3)3.1 Introduction (3)3.2 Radio Board Block Diagram (3)3.3 Radio Board Block Description (3)3.3.1 Wireless MCU (3)3.3.2 LF Crystal Oscillator (LFXO) (3)3.3.3 HF Crystal Oscillator (HFXO) (3)3.3.4 Matching Network for 2.4 GHz (3)3.3.5 Inverted-F Antenna (4)3.3.6 UFL Connector (4)3.3.7 Radio Board Connectors (4)4. RF Section (5)4.1 Introduction (5)4.2 Schematic of the RF Matching Network (5)4.2.1 Description of the 2.4 GHz RF Matching (5)4.3 RF Section Power Supply (5)4.4 Bill of Materials for the 2.4 GHz Matching (5)4.5 Inverted-F Antenna (6)5. Mechanical Details (7)6. EMC Compliance (8)6.1 Introduction (8)6.2 EMC Regulations for 2.4 GHz (8)6.2.1 ETSI EN 300-328 Emission Limits for the 2400-2483.5 MHz Band (8)6.2.2 FCC15.247 Emission Limits for the 2400-2483.5 MHz Band (8)6.2.3 Applied Emission Limits for the 2.4 GHz Band (8)7. RF Performance (9)7.1 Conducted Power Measurements (9)7.1.1 Conducted Measurements in the 2.4 GHz band (9)7.2 Radiated Power Measurements (10)7.2.1 Radiated Measurements in the 2.4 GHz band (10)8. EMC Compliance Recommendations (11)8.1 Recommendations for 2.4 GHz ETSI EN 300-328 compliance (11)8.2 Recommendations for 2.4 GHz FCC 15.247 compliance (11)9. Board Revisions (12)10. Errata (13)11. Document Revision History (14)Table of Contents (15)Silicon Laboratories Inc.400 West Cesar Chavez Austin, TX 78701USASimplicity StudioOne-click access to MCU and wireless tools, documentation, software, source code libraries & more. Available for Windows, Mac and Linux!IoT Portfolio /IoTSW/HW/simplicityQuality/qualitySupport and CommunityDisclaimerSilicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.Trademark InformationSilicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.。
无人机8大主流主控芯片大起底
无人机8大主流主控芯片大起底在刚刚结束的CES 2016上,各大芯片厂商和设备厂商展开了一场空中争夺战,让无人机这种新兴产品形式着实火了一把,究其原因,如果无人机一直定位在个人消费品应用,它的市场容量其实十分有限,厂商对它的热情也不会这么高,但随着它在农业、物流等其他应用场景下的需求被不断发掘,一次足以席卷产业上下游的狂热也就自然随之而来。
本年度的CES上跟无人机相关的主题随处即是,而与非网小编可以颇引以为傲的说,因为大疆、亿航等国内公司凭敏锐市场嗅觉抢占先机,让国内厂商在这块市场上很是风光了一把,也掌握了产业链上的重要话语权。
但遍观无人机市场的上游芯片供应商,尤其是主控芯片,却还是以欧美韩系厂商为主导,与非网小编特别盘点了当下主流的8大无人机主控芯片,供大家参考:•1. 意法半导体STM32系列目前意法半导体的STM32系列是国内采用率很高的无人机主控芯片,在这点上意法半导体有个做法很聪明,它很早就赞助了全国大学生电子设计大赛,赛事推荐的无人机项目的主控芯片就是STM32,学生们熟悉了它的主控平台,工作后要做无人机自然也会选择它。
STM32系列又有STM32 F0/F1/F2/F3/F4/F7/L0/L1/L4多个产品系列,其中,STM32 F4系列在无人机中应用较为广泛。
基于ARM Cortex-M4的STM32F4系列MCU采用了意法半导体的NVM工艺和ART加速器,在高达180 MHz的工作频率下通过闪存执行时其处理性能达到225 DMIPS/608 CoreMark,这是迄今所有基于Cortex-M内核的微控制器产品所达到的最高基准测试分数。
由于采用了动态功耗调整功能,通过闪存执行时的电流消耗范围为STM32F410的89 µA/MHz到STM32F439的260 µA/MHz。
STM32F4系列包括八条互相兼容的数字信号控制器(DSC)产品线,是MCU实时控制功能与DSP信号处理功能的完美结合体:•高级系列•· STM32F469/479 – 180 MHz CPU/225 DMIPS,高达2 MB 的双区闪存,带SDRAM和QSPI接口,Chrom-ART Accelerator™、LCD-TFT控制器和MPI-DSI接口•· STM32F429/439 – 180 MHz CPU/225 DMIPS,高达2MB的双区闪存,具有SDRAM接口,Chrom-ART Accelerator™ 和LCD-TFT控制器•· STM32F427/437 – 180 MHz CPU/225 DMIPS,高达2 MB 的双区闪存,具有SDRAM接口、Chrom-ART Accelerator™、串行音频接口,性能更高,静态功耗更低•基础系列•· STM32F446 – 180 MHz/225 DMIPS,高达512 KB的Flash,具有Dual Quad SPI和SDRAM接口•· STM32F407/417 – 168 MHz CPU/210 DMIPS,高达1MB的Flash,增加了以太网MAC和照相机接口•· STM32F405/415 – 168 MHz CPU/210 DMIPS,高达1MB的Flash、具有先进连接功能和加密功能•基本型系列•· STM32F411 – 100 MHz CPU/125 DMIPS,具有卓越的功率效率,更大的SRAM和新型智能DMA,优化了数据批处理的功耗(采用批采集模式的动态效率系列)•· STM32F410 – 100 MHz CPU/125 DMIPS,为卓越的功率效率性能设立了新的里程碑(停机模式下89 µA/MHz和6 µA),采用新型智能DMA,优化了数据批处理的功耗(采用批采集模式的动态效率™系列),配备真随机数发生器、低功耗定时器和DAC•· STM32F401 – 84 MHz CPU/105 DMIPS,尺寸最小、成本最低的解决方案,具有卓越的功耗效率(动态效率系列)•2. 高通骁龙Flight平台在CES2016上,Qualcomm Incorporated子公司QualcommTechnologies、腾讯和零度智控发布并展示了一款基于高通骁龙Flight平台的商用无人机YING,将于2016年上半年在全球上市。
飞思卡半导体 微控制器系列MC9S08QE128 8位 產品說明書
目標應用• 健康監測儀器• 中央空調及樓宇控制 • 煤氣表、水錶及暖氣表• 監控攝像機 • 數碼相機• 測量設備概述Flexis TM 系列控制器是“飛思卡爾控制器聯合體”(Freescale Controller Continuum)中的連接點,它使8位和32位產品的兼容成為現實。
Flexis系列包括可相互替換的8位S08和32位ColdFire ® V1微控制器系列產品,它們采用相同的外圍設備和開發工具,從而可以提供最大的移植靈活性。
QE系列產品由一對器件組成,它們管腳兼容,一個是8位,另一個是32位;它是Flexis系列中的首個產品族。
S08QE128器件拓展了8位微處理器的性能,達到128KB的閃存和24通道的12位模數轉換器(ADC)。
S08QE128還有高達3.6V的電源電壓、50 MHz的CPU內核和三個定時器,可改善電機控制性能,非常適用于健康監測儀器及其他電子產品,如數碼相機和網絡攝像頭等。
8位的S08QE128在管腳、外圍設備和工具等各方面都與32位的MCF51QE128互相兼容,這為它們的各方面性能都提供了前所未有的設計自由度。
Flexis TM 微控制器系列MC9S08QE1288位產品說明書使用外圍設備長電池使用壽命• 新的ULP電源等待模式• Stop3模式下6 µs的典型喚醒時間• 由內部或外部參考時鐘控制,包含鎖頻環(FLL)的內部時鐘源(ICS)模塊• 無需使用外部時鐘源。
這將從根本上降低系統開發成本。
• 閉環控制皮爾斯振蕩器(OSC);31.25 kHz到38.4kHz或1 MHz到16 MHz的晶振或陶瓷振蕩器• 具有在低功耗模式下提供精確時基的超低功耗振蕩器Freescale TM 和Freescale標識是飛思卡爾半導體公司的注冊商標。
所有其它產品和服務的名稱均為各自所有者的財產。
©飛思卡爾半導體公司2007年版權所有。
文件編號:MC9S08QE128FSREV 0• • 相同的硬件連接器• 斷點設置• 在線調試過程中可設置一個斷點設置(外加內置調試模塊中的另三個斷點)• 包含三個比較器和九種觸發方式的ICE調試模塊。
Maxim MAX78000 MCU开发方案
Maxim MAX78000超低功耗人工智能(AI) MCU开发方案Maxim公司的MAX78000是集成了基于FPUMCU和卷积神经网络加速器的超低功耗人工智能(AI) 处理器.它是新品种的AI 微控制器,用来建立神经网络,以实现超低功耗和在物联网(IoT)的边缘现场直播.该器件组合了最有能量效率的AI处理和现已验证了超低功耗MCU.基于硬件的卷积神经网络(CNN)加速器是电池供电的应用能实现人工智能推断而仅需化费微焦尔的能量. MAX78000是先进的系统级芯片(SoC),具有FPU CPU的ArmR CortexR-M4核,以及超低功耗深度神经网络加速器.CNN引擎具有加权存储器442KB,支持1,2,4和8位权重.CNN加权存储器是基于SRAM的,这样AI网络升级能即时进行.CNN引擎还有512KB数据存储器,CNN架构是高度灵活的,允许网络用通常的工具包如PyTorch和TensorFlowR进行培训,然后转换成可以由MAX78000采用已验证过的工具来执行.带FPU的Arm Cortex-M4处理器工作高达100MHz,具有16KB指令缓冲的最佳性能,用于SRAM的可选择误差修正码(ECC-SEC-DED),而332位RISC-V协处理器工厂作频率高达60MHz主要用在目标检测和分类,音频处理如多个关键字识别,声音分类,噪音消除,面部识别以及时间系列数据处理如心率/健康信号分析,多传感器分析以及预测性维修.本文介绍了MAX78000主要优势和特性,简化框图,时钟方案框图以及评估板MAX78000 EVK优势和特性,电路图和材料清单.Artificial intelligence (AI) requires extreme computational horsepower, but Maxim is cutting the power cord from AI insights. The MAX78000 is a new breed of AI microcontroller built to enable neural networks to execute at ultra-low power and live at the edge of the IoT. This product combines the mostenergy-efficient AI processing with Maxims proven ultra-low power microcontrollers. Our hardware-based convolutional neural network (CNN) accelerator enables battery-powered applications to execute AI inferences while spending only microjoules of energy.The MAX78000 is an advanced system-on-chip featuring an ArmR CortexR-M4 with FPU CPU for efficient system control with an ultra-low-power deep neural network accelerator.The CNN engine has a weight storage memory of 442KB, and can support 1-, 2-, 4-, and 8-bit weights (supporting networks of up to 3.5 million weights). The CNN weight memory is SRAM-based, so AI network updates can be made on the fly. The CNN engine also has 512KB of data memory. The CNN architecture is highly flexible, allowing networks to be trained in conventional toolsets like PyTorch and TensorFlowR, then converted for execution on the MAX78000 using tools provided by Maxim.In addition to the memory in the CNN engine, the MAX78000 has large on-chip system memory for the microcontroller core, with 512KB flash and up to 128KB SRAM. Multiple high-speed and low-power communications interfaces are supported, including I2S and a parallel camera interface (PCIF).The device is available in 81-pin CTBGA (8mm x 8mm, 0.8mm pitch) and 130-pin WLP (4.6mm x 3.7mm, 0.35mm pitch) packages.MAX78000主要优势和特性:● Dual Core Ultra-Low-Power Microcontroller• Arm Cortex-M4 Processor with FPU Up to 100MHz• 512KB Flash and 128KB SRAM• Optimized Performance with 16KB Instruction Cache• Optional Error Correction Code (ECC-SEC-DED) for SRAM• 32-Bit RISC-V Coprocessor up to 60MHz• Up to 52 General-Purpose I/O Pins• 12-Bit Parallel Camera Interface• One I2S Master/Slave for Digital Audio Interface● Neural Network Accelerator• Highly Optimaized for Deep Convolutional Neural Networks• 442k 8bit Weight Capacity with 1,2,4,8-bit Weights• Programmable Input Image Size up to 1024 x 1024 pixels• Programmable Network Depth up to 64 Layers• Programmable per Layer Network Channel Widths up to 1024 Channels• 1 and 2 Dimensional Convolution Processing• Streaming Mode• Flexibility to Support Other Network Types, Including MLP and Recurrent Neural Networks● Power Management Maximizes Operating Time for Battery Applications• Integrated Single-Inductor Multiple-Output (SIMO) Switch-Mode Power Supply (SMPS) • 2.0V to 3.6V SIMO Supply Voltage Range• Dynamic Voltage Scaling Minimizes Active Core Power Consumption• 22.2μA/MHz While Loop Execution at 3.0V from Cache (CM4 only)• Selectable SRAM Retention in Low-Power Modes with Real-Time Clock (RTC) Enabled● Security and Integrity• Available Secure Boot• AES 128/192/256 Hardware Acceleration Engine• True Random Number Generator (TRNG) Seed GeneratorMAX78000应用:● Object Detection and Classification● Audio Processing: Multi-Keyword Re cog nition, Sound Classification, Noise Cancellation ● Facial Recognition● Time-Series Data Processing: Heart Rate/Health Signal Analysis, Multi-Sensor Analysis, Predictive Maintenance图1. MAX78000简化框图图2. MAX78000时钟方案框图评估板MAX78000 EVKThe MAX78000 evaluation kit (EV kit) provides a platform for leveraging the capabilities of the MAX78000 to build new generations of artificial intelligence (AI) devices.The EV kit features a socketed MAX78000. Onboard hardware includes a digital microphone, a gyroscope/ accelerometer, parallel camera module support and a 3.5in touch-enabled color TFT display.A secondary display is driven by a power accumulator for tracking device power consumption over time. Uncommitted GPIO as well as analog inputs are readily accessible through 0.1in pin headers. Primary system power as well as UART access is provided by a USB Micro-B connector. A USB to SPI bridge provides rapid access to onboard memory, allowing large networks or images to load quickly.评估板MAX78000 EVK优势和特性:●● Power Accumulator with Dedicated Display to Track Device Power over Time●● Onboard Digital Microphone●● Onboard Accelerometer/Gyroscope●● SWD JTAG 10-Pin Header●● RISC-V Coprocessor JTAG 10-Pin Header●● 16M-Byte QSPI Flash●● Select GPIOs Acce ssible through 0.1in Headers●● Four ADC Inputs with Optional AA Filter●● Touch-Enabled, 3.5in, 320 x 240 Color TFT Display●● UART Access through USB Bridge●● QSPI Memory Access through USB Bridge●● All IC Power Rails May Be Isolated by Jumpers for Individual Current Measurements ●● Two General-Purpose LEDs and Two General- Purpose Pushbutton Switches评估板MAX78000 EVK包含:●● EV Kit Board with Socketed MAX78000●● MAX32625PICO Debugger with Cables●● Olimex ARM-USB-OCD-H●● Olimex ARM-JTAG 20-10 Adapter●● Camera Module●● 2 USB Standard-A to USB Micro-B Cables●● 1 USB Standard-A to USB Standard-B Cable●● Extra Shunts图3.评估板MAX78000 EVK外形图图4.评估板MAX78000 EVK电路图(1)图5.评估板MAX78000 EVK电路图(2)图6.评估板MAX78000 EVK电路图(3)图7.评估板MAX78000 EVK电路图(4)图8.评估板MAX78000 EVK电路图(5)。
Micro850 产品发布
Copyright © 2012 Rockwell Automation, Inc. All rights reserved.
罗克韦尔自动化控制器产品组合
集成架构
• • • • 多种控制策略 灵活、可扩展 提供实时信息 集成设计环境
Micro850 是 Micro800 系列的核心产品 系列的核心产品
满足您的小型 PLC 所有需求 所有需求
Micro810 – 智能继电器小型 PLC 通过插件、 通过插件、扩展 I/O 定制控制器 通过以太网、 通过以太网、USB、串口端口 进行灵活通信 进行灵活通信 最多132 个点 (4 个扩展 I/O模块) 模块) Micro830 – 砖块式小型 砖块式小型 PLC
地址冲突检测
默认启用
控制器支持 2-hop 路由 旨在支持单一连接(串口、USB 或以太网)和组态连接至 Micro800 的其它设备 PC USB 连接至 Micro800 或以太网上的其它设备(通过 Micro800)
Copyright © 2012 Rockwell Automation, Inc. All rights reserved.
以太网
程序下载 连接至 HMI EБайду номын сангаасherNet/IP Modbus TCP
扩展 I/O模块
最多 4 个 32 点输入 8 通道模拟量 通道模拟量 输入 4 通道热电阻/ 热电偶
Micro850 – 24/48 点小型 PLC,带以太网和扩展 I/O
Connected Components Workbench
4
控制器增加了密码保护
ROHM(罗姆)集团产品解决方案展示
配备可使用各种传感器设备和外 围设备Interface的I2C总线,配备可作 为电源控制和中断信号使用的4通道 GPIO。
7. 传感器节点评估板 “ML7105”的评估板提供集 成LAPIS Semiconductor的微控制器、 罗姆的传感器群于一个基板上的传 感器节点。这个传感器节点基板与 “ML7105”无线模块相结合,可让使 用者切身体验实现传感器网络之简便。 评估板中还包含应用程序的示例代码、 各传感器元件的驱动程序软件。
■ 引脚图 ● 见上页图 ■ 应用 ● 防丢器,血压计, 照明等。
基于LAPIS Semiconductor超低功耗MCU的手持仪表的设计
上海格州电子股份有限公司
主要芯片介绍: 1. 概述 采用高效率的RISC型的
ROHM(罗姆)旗下LAPIS Semiconductor 微控制器,具有超低功耗、低电压、 内置24bit RC型ADC震荡型,12bit 逐 次比较型A/D 转换器、内置LCD驱 动、语音输出功能等特性,是工业控 制、ZigBee®、射频、医疗和公共事 业计量、通信网关、传感器控制、大 型家用电器和便携式电池供电产品等 在内的理想之选,主要应用产品有电 子架牌、无线设备、手表、自行车仪 表、数据记录仪、气表、DSC、火灾 报警器、恒温器、气象站等。
应用方案介绍: ZTM7105C Bluetooth® Low Energy
Module Spec. ■ 特征 ① 符合Bluetooth® SIG Core Spec
v4.0 ② 内置低功耗 RF模块
2013.11
8356508
技 术 分 销 Technical Distribution
2. 低功耗设计 通过LAPIS Semiconductor独自开 发的RF电路,实现了业界顶级的低耗 电量(发送时9.8mA,接收时8.9mA, 休眠时0.7μA)。不仅RF电路,为降 低系统整体的耗电量,还优化了部分 电源关断电路、通过自主判断控制系 统时钟的停止的时钟控制电路等。 3. 内置协议栈 内置Bluetooth® v4.0 Low Energy 的HOST堆栈,仅将符合设备用途的 Profile安装于客户整机中现有的应用 处理器中即可支持Bluetooth® Smart设 备。可以(有偿)提供示例应用程 序、参考板。 4. 内置微控制器+存储器 搭载ARM公司生产的CortexM0,采用Program专用内置SRAM 12k byte,可安装客户的应用程序。用户 应用程序可经由I2C总线通过外置存 储器下载。 5. 配备标准的串行接口 配有通用串行接口,作为与 HOST微控制器等通信的控制接口。 可使用SPI Slave、UART、 I2C接口。 6. 搭载控制传感器设备、外围设 备的I2C总线、GPIO
常见的MODEM芯片及厂家介绍
常见的MODEM芯片及厂家介绍2007-07-20 15:42我们知道,计算机对数据信息的存储、处理和传输都是通过二进制的“0”和“1”来实现的。
因为计算机只能识别和处理数字信号,而电话线传送的是连续性的模拟信号,也就是音频信号。
当计算机上的数字信号通过电话线传送出去时,必须将其转换为模拟信号,即引入一定频率范围的连续波(称为正弦载波),通过振幅、频率或相应的特性变化来表示0、1信息,这个过程叫做“调制”。
反过来,当电话线上的模拟信号传给计算机时,须将其转换为数字信号,这叫做“解调制”。
通常计算机都是通过MODEM来完成上述两个过程的,因为MODEM 内部有一块DSP(数据信号处理)芯片,它主要负责MODEM底层算法、完成数据的数模转换以及发送、接收、侦听线路的信号等。
MODEM分类我们经常会听到全硬MODEM、半软MODEM和全软MODEM,其实它们是按照MODEM所包含的硬件不同来划分的。
一般来说,MODEM是由控制器(Controller)、数据泵(Data Pump)和数据整理(Data Arrangement)三个硬件系统组成的。
全硬MODEM包含控制器、数据泵和数据整理系统,半软MODEM包含数据泵和数据整理系统,全软MODEM只有数据整理系统。
半软MODEM 和全软MODEM中所缺少的硬件功能是由驱动程序和CPU来实现的。
通常,我们所说的软MODEM是将传统MODEM的“Host Signal Processing”(HSP)即数据处理工作交由CPU完成,从而省去传统MODEM固有的电子元件,使网络能在稳定可靠的基础上达到本地连接的最快速度。
目前我们见到的软MODEM主要有HCF和HSF两种。
1.HCF(Host Controlled,V.90/K56 Flex MODEM Device Family)也就是通常所说的半软MODEM,它采用了硬件数据泵技术,由驱动程序控制硬件数据泵完成数据处理工作,也正因为采用了硬件数据泵,HCF MODEM在一些媒体上又被称为PCI硬“猫”。
德国icHaus产品选型
德国icHaus是生产特殊应用集成电路芯片(ASSP),特定应用集成电路(ASIC),是一个单片的混合信号和微处理芯片的领先专家,有25年历史。
icHaus秉承创新、可靠技术和着名的集成电路及微软系统的FMEA(失效模式与影响分析),在工业、医疗和汽车方面得到广泛应用创意电子正式代理德国iChaus磁传感器、光编码器、插补细分器、激光二极管驱动ic。
光编码器IC:iC-LG 21位光学位置编码器带串行/并行和Sin/Cos输出iC-LGC 21位光学位置编码器带串行/并行和Sin/Cos输出iC-LNB 18位光学位置编码器带SPI,串行/并行和FlexCount输出IC-LNG 16位光学位置编码器带SPI和串行/并行输出iC-LSB 8通道主动光敏器件阵列iC-LSC 12通道主动光敏器件阵列iC-LSHB 增量式光敏器件阵列iC-LSHC 3通道Sin/Cos光敏器件阵列IC-LTA 6通道增量光学编码器iC-LV 6光编码器带级联串行接口(SSI)iC-OF 3位光学编码器iC-OG 8位差分扫描光编码器带LED控制iC-OV 5位光编码器iC-OW 增量式光编码器带A/B门索引和LED控制iC-PD3948 5通道相控阵列正弦编码器(D39,2048PPR)iC-PN26xx相控阵列游标编码器(D26:256,512,1024PPR)iC-PN33xx相控阵列游标光编码器(D33:256,512,1024PPR)iC-PN39xx 相控阵列游标光编码器(D39:1024PPR)iC-PNH3348 相控阵列游标光编码器(D33:2048PPR)iC-PT26xx 相控阵列光编码器(D26:256,500,1000,1250PPR)iC-PT33xx 相控阵列光编码器(D33:1000,1024,1250,2000,2500PPR)iC-WG14位差分扫描光编码器(D33,1250PPR)磁编码器IC:iC-MA8位角度霍尔编码器,可级联iC-MH/812位角度霍尔编码器带换向,增量,串行和模拟输出iC-MHA角度霍尔编码器带Sin/Cos输出iC-ML8位线性位置霍尔编码器,可级联iC-MP8位霍尔编码器带比率计输出iC-MU磁偏轴绝对位置编码器激光二极管驱动ICiC-HB3只155MHz激光开关带LVDS输入iC-HG200MHz激光开关高达3AiC-HK,iC-HKB155MHz双通道尖峰释放激光开关iC-HL适用于APCs的非易失性激光偏置电位计iC-NZ失效安全激光二极管驱动器CW和脉冲工作高达155MHziC-NZNN型激光二极管驱动器带APC和ACCiC-NZPP型激光二极管驱动器带APC和ACCiC-VJ,iC-VJZ激光二极管控制器带发射功能iC-WJ,iC-WJZ激光二极管驱动器CW和脉冲工作高达300MHziC-WJB适应于电池供电的2.7到6V激光二极管驱动器iC-WK,iC-WKL低功耗通用激光驱动CW工作2.4V以上iC-WKMM型CW激光二极管驱动器,为蓝光M型激光二极管优化iC-WKNN型CW激光二极管驱动器,为N型激光二极管优化iC-WKPP型CW激光二极管驱动器,P型激光二极管优化插补细分器iC-MG8位Sin/Cos插补器带RS422线驱动iC-MN可编程9位Sin/Cos插补器带失效安全RS422线驱动iC-MQ3通道,同时采样13位Sin/Cos插补器带游标计算iC-NG8位正弦到数字转换器处理器带波形适配iC-NQ13位信号调理插补器带BiSSB接口IC-NQI13位信号调理插补器带2-Wire接口iC-NQC13位信号调理插补器带BiSSC接口iC-NQL13位信号调理插补器带SSI接口iC-NV6位Sin/Cos快速转换器带管脚选择插补器(×16),iC-NVH6位Sin/Cos快速转换器带管脚选择插补器(×16),半周期索引iC-TW2可编程8位Sin/Cos择插补器带EEPROMiC-TW48位Sin/Cos择插补器带自动偏置矫正iC-TW816位Sin/Cos择插补器带自动矫正24V线性驱动器iC-DL3通道差分线驱动器带集成阻抗匹配iC-HD24差分线驱动器,管脚兼容xx2068iC-HD74差分线驱动器,管脚兼容xx7272和26LS31iC-HE3通道差分线驱动器iC-HX3通道差分线驱动器带减少电源消耗iC-VX3通道差分线驱动器带兼容24V输出iC-WE3通道75Ohm线驱动器适用于RS422和24V应用ET7272双差分线驱动带单独的逻辑偏置和驱动偏置传感器ICiC-LA64*1线性图像传感器带双向位移和扩展的I/OiC-LF1401128*1线性图像传感器带电子快门功能iC-LFL1402256*1连续光谱线性图像传感器带电子快门功能iC-LFM64*1线图像传感器带电子快门功能iC-LFS32*1线性图像传感器带电子快门功能IC-LO智能三角测量传感器iC-LQNP脉冲和交流光传感器带补偿输出iC-OC双集成光学传感器带移动寄存器给链式连接iC-OD光学位置敏感检测器(2.6mmPSD)带环境光抑制iC-ODL光学位置敏感检测器(8.4mmPSD)带环境光抑制iC-OR5单元光学二极管阵列iC-VP可调节敏感度的光电开关磁性产品iC-MZ差分霍尔开关和齿轮齿牙传感器带线驱动器iC-SM2LAMR线性位置传感器(间隙:2mm)iC-SM5LAMR线性位置传感器(间隙:5mm)信号调理和监控iC-MSBSin/Cos传感器信号调理器带安全失效1Vpp线驱动iC-MSB2Sin/Cos传感器信号调理器/多路器带安全失效1Vpp线驱动iC-RC1000正弦/余弦信号安全监控ICiC-TW3自动信号调理器带LUT温度补偿和1Vpp(100Ohm)/2Vpp输出iC-WT3通道光电二极管放大器-比较强带LED控制器输出级iCsiC-DN4V到36V200mA低边开关带输入/输出退耦iC-DP4V到36V200mA高边开关带输入/输出退耦iC-DX通用数字传感器输出驱动iC-DXC数字传感器输出驱动器(200mA)带IO-LINK反馈回路iC-MFL8倍失效-安全逻辑N-FET驱动器iC-MFLT12倍失效-安全逻辑N-FET驱动器iC-MFN8倍失效-安全N-FET驱动器带电平转换高达40ViC-MFP8倍失效-安全P-FET驱动器带电平转换高达40ViC-SG85850nm红外LED带塑料镜头适用于高质量大面积流明高分别率光编码器iC-SN85850nm红外LED带塑料镜头适用于高质量大面积照明iC-TL85850nm红外LED带镜头或者平面窗适用于高分辨光编码器继电器/螺线管驱动器iC-GE宽工作电压范围PWM继电器/螺线管驱动器(1A)IC-GE100PWM继电器/螺线管驱动器(100mA)iC-JES低功耗继电器/螺线管驱动器安全光幕iCs发射器适用于机器安全保护系统(IEC61496-1,ESPE),测量光幕iC-NL光栅脉冲驱动器带调制输入iC-NT光幕光栅脉冲驱动器,光电池和电子敏感保护设备iC-NX8通道光栅脉冲驱动器带调制输入C-NXL8通道光栅脉冲驱动器接收器适用于机器安全保护系统(IEC61496-1,ESPE),测量光幕iC-LK光栅脉冲接收器集成光敏二极管iC-ME2通道光栅脉冲接收器iC-MK2通道光栅脉冲接收器iC-NE光幕光栅脉冲接收器光电池和电子敏感保护装置iC-NK光栅脉冲接收器I/O接口iCsiC-DI双传感器接口3.3V/5V电源供电iC-GFIO-Link从机IO-Llink传输器iC-JRX2*4双向24V高边驱动器带uC接口iC-JX4*4双向24V高边驱动器带负责诊断和uC接口iC-MDRS422正交编码器接收器/计数器带SPI和BiSS接口iC-TW916位ABZ正交计数器iC-VRV2*424V低边驱动器带I/O功能和uC接口接口iCs.BISSiC-MB3BiSS接口主机,1通道/3从机电源管理iCsiC-DC可编程的双2.5/3.3VBuck/Boost开关电源iC-JJ电源管理IC带经济功能iC-WD8V到36V开关模式双5V调整器iC-WDA8V到36V开关模式双3.3V调整器iC-WDB8V到36V开关模式3.3V(200mA)和5V调整器iC-WDC8V到36V开关模式3.3V和5V(200mA)调整器线性功能iC-BM4重4象限模拟乘法器iC-HC双超快ATE信号比较器高达36ViC-HQ4高性能运算放大器带超低偏置(小于1uV)iC-HQL4高性能运算放大器带超低偏置(小于10uV)。
SinOne SC92F844XB 超高速1T 8051内核工业级Flash微控制器说明书
超高速1T 8051内核Flash MCU ,1 Kbytes SRAM ,16 Kbytes Flash ,128 bytes 独立EEPROM ,31通道可低功耗双模触控电路,12位ADC ,1个模拟比较器,LCD/LED Driver ,12位PWM ,3个定时器,乘除法器,UART ,SSI ,Check Sum 校验模块Page 1 of 105 V0.1SinOneSC92F8447B/8446B/8445B1 总体描述SC92F8447B/8446B/8445B (以下简称SC92F844XB )系列是一颗增强型的超高速1T 8051内核工业级Flash 微控制器,指令系统完全兼容传统8051产品系列。
SC92F844XB 集成有16 Kbytes Flash ROM 、1 Kbytes SRAM 、128 bytes EEPROM 、内置有31路高灵敏度隔空电容触控电路、最多46个 GP I/O 、16个IO 可外部中断、3个16位定时器、17路12位高精度ADC 、1个模拟比较器、8路12位PWM 、IO 驱动分级控制(LED segment 口)、1个16 ×16位硬件乘除法器、内部±1%高精度高频16/8/4/1.33MHz 振荡器和±4%精度低频128K 振荡器、可外接晶体振荡器、UART 等通讯接口等资源。
为提高可靠性及简化客户电路,SC92F844XB 内部也集成有4级可选电压LVR 、2.4V 基准ADC 参考电压、低耗电WDT 等高可靠电路。
SC92F844XB 具有非常优异的抗干扰性能,非常适合应用于各种物联网控制、大小智能家电和智能家居、充电器、电源、航模、对讲机、无线通讯、游戏机等工业控制和消费应用领域。
2 主要功能工作电压:2.4V~5.5V工作温度:-40 ~ 85℃ 封装:SC92F8447B (LQFP48) SC92F8446B (LQFP44) SC92F8445B (LQFP32)内核:超高速的单字节指令 1T 8051Flash ROM :16 Kbytes Flash ROM (MOVC 禁止寻址0000H~00FFH 的256 bytes )IAP :可code option 成0K 、0.5K 、1K 或16KEEPROM :128 bytes ,无需擦除,10万次写入,10年以上保存寿命SRAM :内部256 bytes+外部768 bytes+PWM&LCD RAM 44 bytes系统时钟(f SYS ): ● 内建高频 16MHz 振荡器(f HRC )● IC 工作的系统时钟,可通过编程器选择设定为:⏹ *********~5.5V⏹8/4/***********~5.5V●频率误差:跨越 (3.0V~5.5V) 及 (-20 ~ 85℃) 应用环境,不超过 ±1%内置低频晶体振荡器电路: ● 可外接32K 振荡器,作为Base Timer 时钟源,可唤醒STOP内建低频 128kHz LRC 振荡器:● 可作为BaseTimer 的时钟源,并唤醒STOP ● 可作为WDT 的时钟源●频率误差: 跨越 (4.0V ~ 5.5V) 及 (-20 ~ 85℃),频率误差不超过 ±4%低电压复位(LVR ): ● 复位电压有4级可选: 4.3V 、3.7V 、2.9V 、2.3V● 缺省值为用户烧写Code Option 所选值Flash 烧写和仿真: ● 2线JTAG 烧写和仿真接口。
ROHM集团LAPIS半导体开发世界最小无线充电芯片组
ROHM 集团LAPIS 半导体开发世界最小无线充电芯
片组
ROHM 集团旗下LAPIS 半导体株式会社针对穿戴装置,开发出世界最小
的无线充电控制芯片组「ML7630(接收端/装置端)」「ML7631(发射端/充电
器端)」。
本芯片组是一款无线充电控制IC,适合使用于安装空间受限的Bluetooth 耳机等听戴式装置的无线充电。
为了能在听戴式装置中正常运行,
除了将以13.56MHz 高频段进行电力传输的天线(线圈)小型化之外,同时也将
充电所需的功能汇集在1 颗芯片中,形成SoC (系统单芯片)构造,大幅削减了安装空间(与Micro USB 端子的面积相比减少了50%)。
实现了以往难以做到的听戴式装置无线充电,不仅有助于设备小型化,还可提高充电时的便利性、防水性和防尘性。
即使电池电量耗尽,接收端的「ML7630」也可利用天线磁场产生的电能
开始工作。
此外,虽然是仅仅2.6mm 的小型WL-CSP 封装,却实现了输出功率高达200mW 的无线充电。
不仅如此,本产品还符合NFC Forum Type3 Tag v1.0 规范,支持NFC 感应式的Bluetooth 配对功能。
而且发射端的
「ML7631」可透过手机电池等USB 电源所提供的5V 电力进行工作,有利。
飞思卡尔S08QE系列低功耗微控制器分析
565飞思卡尔半导体技术园地电子产品世界32kH z 振荡器,还包括电池节电功能,如两种超低功耗停止模式、新的低功耗运行和等待模式、将C PU 从停止3模式下唤醒仅需6μs 、用户可通过写禁用时钟寄存器随意设定禁用外围模块的时钟。
此外,QE8还提供了多达8K B 的闪存和一个10通道、12位的模数转换器(A DC )。
S08Q E8还有低至1.8V 的电源电压、20M Hz 的C PU 内核、两个定时器、U AR T 、SPI 、I 2C 和两个模拟比较器—非常适合于高性价比的便携式医疗保健类应用。
S08Q E8特性及优势节能特性:两种超低功耗(U LP)停止模式,其中一种允许有限使用外围设备;新的低功耗运行和等待模式;停止3模式下的典型唤醒时间为6μs 。
这样的优点是:允许应用程序在低功耗状态下继续采样,从而延长电池使用寿命;允许在低功耗状态下使用所有的片上外围设备;可以从停止模式快速启动。
可关闭闲置不用的外围设备时钟的门控时钟,提供单独关闭各模块的极大灵活性,最大限度降低功耗。
8位H CS08CPU : 1.8~3.6V 时高达20M H z 的HC S08C PU ,温度范围从-40℃~+85℃。
这就使得在电池供电的应用中,即使在低电压下仍然有高性能;1.8V ~3.6V 范围内提供10M Hz 的总线速度。
H CS08指令集,增加了BGND 指令,向下兼容68HC08和68H C 05的目标代码,从而可以重复利用现有的软件资源;也可以用汇编或编译器进行图1S08QE8/4的结构框图飞思卡尔S08Q E 系列低功耗微控制器分析■林长星清华大学随着消费电子行业向超移动便携式设计演进,提高性能和降低功耗已成为基本的设计要求。
为了响应这些需求,2008年3月份拉开帷幕的飞思卡尔技术论坛设计应用大奖赛(FTF D es i gn C hal l enge )在日本、欧洲、中国和印度相继举行,该赛事致力于鼓励各界设计高手设计一款有益于环境的产品,使世界变得更干净、更环保。
液晶显示屏背光灯及高压驱动电路原理与故障维修
但是为了保证电容C和电感L的谐振频率就是振荡器的振荡频率,又要使电容C的容抗XC的大小基本正好是灯管的限流值,电路的精确设计是至关重要的。
在维修中,电容C是比较容易损坏的元件,如有损坏,一定要用和原来一样的电容代换,否则其性能会大幅下降,甚至不能使用。
对于多灯管屏的亮度控制,如果同时间断灯管的瞬间供电,PWM的间断频率会和液晶屏的刷新频率差拍,液晶屏会出现滚道干扰、闪烁、亮度不均匀等现象,为了防止这种现象产生,加于每个灯管的断续脉冲波相位上有所差异,即对灯管来说,短暂停止供电在多根灯管中,不是同时断电、供电,必须是交替轮流断电、供电。多灯管系统一般把灯管分为4组,供电系统的PWM脉冲有4个通道,输出4路经过PWM调制的高频脉冲波,每个通道向一组灯管供电,通道之间输出的PWM调制脉冲,依次移相900,这样4组灯管则达到轮流断电、供电,使亮度更均匀,干扰最小,三星32寸液晶屏有16根灯管,分为4组,每组4根灯管(24根灯管液晶屏的就每组6根灯管)。
所以目前冷阴极荧光灯的亮度控制均采用脉冲调光,具体方法是;用30~200Hz的低频PWM脉冲波(PWM脉冲波的宽度受控于CPU)对施加于冷阴极荧光灯管上的连续振荡高压进行调制,使连续振荡波变成断续振荡波,从而达到控制亮度的目的,其控制原理是;断续的在极短间内停止对冷阴极荧光灯供电,由于停止时间极短,不足以使灯管的电离状态消失,但是其辐射的紫外线强度下降,管壁上的荧光粉的激发量减小,亮度也下降,只要控制PWM的脉冲的占空比,就可以改变灯管在一个导通/关闭周期的时间比,从而达到控制灯管平均亮度的目的见图5中,调制器输出的脉冲串信号,目前的技术可以达到400:1或更高的调光控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
| ML610400 series | ML610(Q)40x/(Q)40xP | ML610Q411(P)/Q412(P) | ML610Q415 | ML610Q419(P)/Q419(P) C| ML610(Q)421(P)/(Q)422(P) | ML610(Q)428(P)/(Q)429(P) | ML610Q431/Q432 | ML610Q435/Q436 | ML610Q438 (P)/Q439(P) | ML610(Q)47x/ML610(Q)47xP | ML610(Q)474/(Q)475/(Q)476 | ML610(Q)482(P) | ML610(Q)484(P) | Software Development Support System | FAQ |
Flash 48K*21
4K*31
24bitx2 (RC oscillation)
1*11
1
1
TQFP128 Max. P512dot 141464seg.× 0.40 8com.
4.096MHz (Internal PLL/Cristal oscillation/Ceramic oscillation) 2MHz (Internal RC oscillation) 32.768kHz (Cristal oscillation)
0.5 µA
-20 to +70 -40 to +85
ML610400系列 | 低功耗微控制器 | LAPIS Semiconductor
Page 1 of 12
日本語 | English | 繁體中文 | 한국어
主页 > 半?体集成?路 > 低功耗微控制器 > ML610400系列
超低功耗8bit Flash微控制器
ML 6 1 04 00 系 列
半导体集成电路 通信用LSI 低功耗微控制器
ML610400系列 | 低功耗微控制器 | LAPIS Semiconductor
Page 3 of 12
/cn/semicon/miconlp/ml610q400.html
2013-4-27
ML610400系列 | 低功耗微控制器 | LAPIS Semiconductor
ML610400系列是一种搭载了RISC方式的LAPIS Semiconductor原始8bit CPU,即"U8 Core"的高功能 CMOS式8bit微控制器。CPU核心部采用了3级流水线 构成的并列处理方式,故可以进行1命令1时钟的有效 命令执行。时钟发生电路因为采用了双重时钟构成方 式,低速及低耗电方式即可执行。本系列产品以干电 池驱动的便携式产品为中心,广泛使用于多种领域。 本系列采用了LAPIS Semiconductor原始的低功耗技 术,仅1V即可动作的Flash存储器,超细致的电源管 理功能及高效率的RISC方式的CPU导入等等,使低耗 电的实现得以可能。同时因为搭载了LCD驱动器、2 种A/D变频、片上调试功能等,最适合于手表、步数 器、脉搏计、恒温器等附带LCD显示功能的小型便携 仪器。除此之外,改写可能的Flash内存微控可以缩短 开发・生产期限,低耗电可以使电池小型化・轻量化, 丰富的周边电路搭载可以支持仪器的小型化。再有、 针对像用于食品等的温度管理数据记录器等的产业仪 器,本产品也可以对应动作温度范围的扩充(-40° C ~+85° C )。
Mask 32K*21
2K*31
24bitx2 (RC oscillation) 1*11 12bitx2 (Successive)
1
1
PTQFP120 Max. 400dot 141450seg.× 0.40 8com.
○
ML610Q421 ML610Q421P
1.1 to 3.6
4.096MHz (Internal PLL/Cristal oscillation/Ceramic oscillation) 500kHz (Internal RC oscillation) 32.768kHz (Cristal oscillation)
新闻概要
2013/02/04 LAPIS Semiconductor开发 出业界顶级水平的超低功 耗微控制器 功耗再降1/2!非常有助于小 容量电池长时间工作 ML610Q474家族 2012/02/23 LAPIS Semiconductor推出 以低功耗综合管理智能手 机中的各种传感器群的超 小型微控制器,4月投入量 产 2011/09/21 OKI SEMICONDUCTOR 全面更新面向低功耗微控 制器的全功能仿真器[pdf] 2009/03/26 具有语音播放功能的低功 耗MCU ML610340系列开 始样品出货[pdf]
1.1 to 3.6
4.096MHz (Internal PLL/Cristal oscillation/Ceramic oscillation) 2MHz (Internal RC oscillation) 32.768kHz (Cristal oscillation)
0.5 µA
-20 to +70 -40 to +85
Mask 32K*21
2K*31
24bitx2 (RC oscillation) 1*11 12bitx2 (Successive)
1
1
PTQFP120 Max. 800dot 141450seg.× 0.40 16com.
○
ML610Q422 ML610Q422P
1.1 to 3.6
4.096MHz (Internal PLL/Cristal oscillation/Ceramic oscillation) 500kHz (Internal RC oscillation) 32.768kHz (Cristal oscillation)
超低功耗 低功耗微控制器 ML610Q400系列 语音输出功能式 低功耗微控制器 ML610300系列 5V对应型 低功耗微控制器 ML610100系列 太阳能电池 一级・二级电池控制LSI ML9077 / ML9078 感应器受控的 低功耗微控制器 ML610Q793 开发支援系统 FAQ 低功耗微控制器
工作条件 品名 工作 电压 (V) 消耗 电流*1 工作 温度 (Typ. @HALT) (℃ ) 功能/特点 串行端口 ROM 容量 (Byte) RAM 容量 (Byte) ADC (方式) SSIO UART
*3 *4
ROM/RAM
工作频率
I2C
LCD 驱动器
封装
可提供 芯片
ML610421 ML610421P
5V对应型LCD驱动器的 低功耗微控制器 ML610100 series 搭载段码型 LCD驱动器的 低功耗微控制 ML610(Q)474 ML610(Q)475 ML610(Q)476 搭载段码型 LCD驱动器的 低功耗微控制 ML610(Q)477 / 8 / 9(P) 标准 低功耗微控制器 ML610Q484(P)
0.5 µA
-20 to +70 -40 to +85
Flash 48K*21
4K*31
24bitx2 (RC oscillation)
1*11
1
1
TQFP128 Max. P1392dot 141458seg.× 0.40 24com.
○
/cn/semicon/miconlp/ml610q400.html
2013-4-27
ML610400系列 | 低功耗微控制器 | LAPIS Semiconductor
ML610429 ML610429P
1.1 to 3.6
4.096MHz (Internal PLL/Cristal oscillation/Ceramic oscillation) 2MHz (Internal RC oscillation) 32.768kHz (Cristal oscillation)
Mask 48K*21
4K*31
24bitx2 (RC oscillation)
1*11
1
1
TQFP128 Max. P1392dot 141458seg.× 0.40 24com.
○
ML610Q428 ML610Q428P
1.1 to 3.6
4.096MHz (Internal PLL/Cristal oscillation/Ceramic oscillation) 2MHz (Internal RC oscillation) 32.768kHz (Cristal oscillation)
1.1 to 3.6
4.096MHz (Internal PLL/Cristal oscillation/Ceramic oscillation) 500kHz (Internal RC oscillation) 32.768kHz (Cristal oscillation)
0.5 µA
-20 to +70 -40 to +85
1.1 to 3.6
4.096MHz (Internal PLL/Cristal oscillation/Ceramic oscillation) 500kHz (Internal RC oscillation) 32.768kHz (Cristal oscillation)
0.5 µA
-20 to +70 -40 to +85
Page 4 of 12
搭载点阵型LCD驱动器的低功耗微控制器因为内藏有LCD驱动用升压电路,无需专用外部电源。 LCD驱动器的点数范围是400~1,536点,品种齐全。而且,内藏了程序存储器(32KB~128KB)、RAM (2KB~7KB)、3种串行通信用端口(I2C、SSIO、UART)、电池电压检出电路、2种A/D变频(RC振 荡型24bit A/D变频、逐次比较型12bit A/D变频)、旋律、蜂鸣器、捕捉、计时、泛用端口等,最适合 于电池驱动型的附带LCD显示功能的小型便携式仪器。