埃舍尔画作
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
埃舍尔画作
《爬虫动物》
《越来越小》
《瀑布》
《水和天》
《循环》
《印刷走廊》
《解放》
《手与反光球》
《递增与递减》
《莫比斯带》
《上和下》
《双倍小行星》
《凹与凸》
《画图的手》
《圆盘》
介绍
自画像(36k)
埃舍尔把自己称为一个"图形艺术家",他专门从事于木版画和平版画。1898年他出生在荷兰的Leeuwarden,全名叫Maurits Cornelis Escher。他的家庭设想他将来能跟随他的父亲从事建筑事业,但是他在学校里那可怜的成绩以及对于绘画和设计的偏爱最终使得他从事图形艺术的职业。他的工作成果直到五十年代才被注意,1956年他举办了他的第一次重要的画展, 这个画展得到了《时代》杂志的好评, 并且获得了世界范围的名望。在他的最热情的赞美者之中不乏许多数学家, 他们认为在他的作品中数学的原则和思想得到了非同寻常的形象化。因为这个荷兰的艺术家没有受过中学以外的正式的数学训练,因而这一点尤其令人赞叹。随着他的创作的发展,他从他读到的数学的思想中获得了巨大灵感,他工作中经常直接用平面几何和射影几何的结构,这使他的作品深刻地反映了非欧几里德几何学的精髓,下面我们将看到这一点。他也被悖论和"不可能"的图形结构所迷住,并且使用了罗杰·彭罗斯的一个想法发展了许多吸引人的艺术成果。这样, 对于学数学的学生,埃舍尔的工作围绕了两个广阔的区域:"空间几何学"和我们或许可以叫做的"空间逻辑学"。
镶嵌图形
豪华装饰的草图(92k)
规则的平面分割叫做镶嵌,镶嵌图形是完全没有重叠并且没有空隙的封闭图形的排列。一般来说, 构成一个镶嵌图形的基本单元是多边形或类似的常规形状, 例如经常在地板上使用的方瓦。然而, 埃舍尔被每种镶嵌图形迷住了,不论是常规的还是不规则的; 并且对一种他称为metamorphoses(变形)的形状特别感兴趣,这其中的图形相互变化影响,并且有时突破平面的自由。他的兴趣是从1936年开始的,那年他旅行到了西班牙并且在Alhambra看到了当地使用的瓦的图案。他花了好几天勾画这些瓦面,过后宣称这些"
是我所遇到的最丰富的灵感资源",1957年他写了一篇关于镶嵌图形的文章,其中评论道:"在数学领域,规则的平面分割已从理论上研究过了. . . ,难道这意味着它只是一个严格的数学的问题吗?按照我的意见, 它不是。数学家们打开了通向一个广阔领域的大门,但是他们自己却从未进入该领域。从他们的天性来看他们更感兴趣的是打开这扇门的方式,而不是门后面的花园。"
无论这对数学家是否公平, 有一点是真实的--他们指出了在所有的常规的多边形中,仅仅三角形,正方形,和正六边形能被用于镶嵌。但许多其他不规则多边形平铺后也能形成镶嵌,例如有许多镶嵌就使用了不规则的五角星形状。埃舍尔在他的镶嵌图形中利用了这些基本的图案,他用几何学中的反射、平滑反射、变换和旋转来获得更多的变化图案。他也精心地使这些基本图案扭曲变形为动物、鸟和其他的形状。这些改变不得不通过三次、四次甚至六次的对称以便得到镶嵌图形。这样做的效果既是惊人的,又是美丽的。
鸟分割的平面( 21k)
蜥蜴( 65k )
循环( 40k )
逐步展开1 ( 59k )
在"蜥蜴"里,镶嵌而成的蜥蜴嬉笑地逃离二维平面的束缚到桌面放风, 然后又重新陷入原来的图案。埃舍尔在许多六边形的镶嵌图形中使用了这个图案模式。在"逐步展开1" 中,可以追溯到这个方形的镶嵌图形从边缘到中间的不断扭曲转化。
多面体
四个规则的几何体(42k)
规则的几何体, 例如多面体,对埃舍尔而言具有特殊的魅力。他把它们作为许多作品的主题,并且在许多作品中作为第二重要的元素出现。仅仅只有五种多面体被称为理想的多面体。四面体有四个三角形的表面;正方体有六个正方形的表面;八面体有八个三角形的表面;十二面体有十二个五边形的表面;而二十面体有二十个三角形的表面。在木版画"四个常规的几何体"中,埃舍尔把理想多面体中的四个匀称地交叉了,并且使它们呈半透明状以便每个都可以透过其它得以辨认,请看漏了哪个?
有序和无序(61k)
有许多有趣的几何体可以通过理想几何体的交叉和星形化来获得,即几何体的每一面都由表面为三角形的金字塔形来替代,通过这种变换,多面体转变成了一个尖锐的, 三维的星形几何体。在埃舍尔的作品"有序和无序"中我们可以发现.一个美丽的星形十二面体,星形的轮廓隐现在一个水晶球中,严谨构造的美丽与在桌子上混乱摆放的其他的杂物形成了鲜明的对比。注意一下还可以猜测到光的来源,球面上反射出左上方有一个明亮的窗口。
星(44k)
交叉的几何体也常常出现在埃舍尔的作品中, 其中最有趣的是一幅木版画"星"。这是一个由八面体、四面体、立方体和其他东西交叉构成的几何体,我们不妨这样认为,如果埃舍尔简单地画一些数学的形状并且把它们放在一起,我们也许永远不可能听说他或他的作品。相反, 通过将变色龙放置在多面体内并向我们嘲笑和恐吓的构思,埃舍尔给了我们一种奇异的视觉刺激,使我们对他的画刮目相看。显然,数学家们对埃舍尔的作品颇为赞赏的另外的原因就是所有伟大的数学发现背后都具有与此相同的感性和创意。
空间的形状
三个方向交叉的平面(27k)
在埃舍尔用数学观点完成的所有重要的作品中,最重要是处理空间性质的那些。他的木版画"三个方向交叉的平面"是评论这些作品的好例子, 因为它显示了艺术家对空间维度的关心,以及用二维的方式表现三维的能力。在下一节我们将看到,埃舍尔经常利用了后者的特征来获得令人震惊的视觉效果。
圆形限制III(71k)
受一位名叫H.S.M Coxeter的数学家在一本书中绘画的启发, 埃舍尔创造了许多美丽的双曲线空间的作品,例如木版画"圆形限制III"。这是非欧几里德几何学的二种空间之一,在埃舍尔的作品中它的原型实际上源自法国数学家Poincaré。要得到这个空间的感觉,必须想象你实际上是在图像的内部。当你从它的中心走向图像的边缘,你会象图像里的鱼一样缩小, 从而到达你移动后实际的位置,这似乎是无限度的,而实际上你仍然在这个双曲线空间的内部,你必须走无限的距离才能到达欧几里德空间的边缘,这一点确实不是显而易见的。然而, 如果你能仔细观察的话,你还可以注意到一些其他的事情, 例如所有类似的三角形都一样大小,以及你能画没有直边却有四个直角的图形,这就是说,这个空间没有任何正方形或矩形。这确实是一个奇怪的地方!
蛇(72k)
更不平常的是木版画"蛇"所表现的空间,在缠绕和缩小的环的表现下,空间既向边界也向中心延伸并且无穷无尽。如果你在这一空间里,你将是什么模样?