高考物理专题突破—力学综合题集锦

合集下载

2023年高考物理:力学综合复习卷(基础必刷)

2023年高考物理:力学综合复习卷(基础必刷)

2023年高考物理:力学综合复习卷(基础必刷)一、单项选择题(本题包含8小题,每小题4分,共32分。

在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题如图所示,两端封闭的玻璃管在常温下竖直放置,管内充有理想气体,一段汞柱将气体封闭成上下两部分,两部分气体的长度分别为,,且,下列判断正确的是( )A.将玻璃管转至水平,稳定后两部分气体长度B.将玻璃管转至水平,稳定后两部分气体长度C.保持玻璃管竖直,使两部分气体升高相同温度,稳定后两部分气体长度D.保持玻璃管竖直,使两部分气体升高相同温度,稳定后两部分气体长度第(2)题某质点P从静止开始以加速度a1做匀加速直线运动,经t(s)立即以反向的加速度a2做匀减速直线运动,又经t(s)后恰好回到出发点,则( )A.a1=a2B.2a1=a2C.3a1=a2D.4a1=a2第(3)题如图所示,OA、OB是竖直面内两根固定的光滑细杆,O、A、B位于同一圆周上,OB为圆的直径。

每根杆上都套着一个小滑环(图中未画出),两个滑环都从O点无初速释放,用t1、t2分别表B示滑环到达A、B所用的时间,则()A.B.C.D.无法比较t1、t2的大小第(4)题如图所示,小钢球m以初速度v0在光滑水平面上运动,后受到磁极的侧向作用力而做图示的曲线运动到达D点,从图可知磁极的位置及极性可能是( )A.磁极在A位置,极性一定是N极B.磁极在B位置,极性一定是S极C.磁极在C位置,极性一定是N极D.磁极在B位置,极性无法确定第(5)题如图所示,绝缘水平面上,虚线左侧有垂直于水平面向上的匀强磁场、右侧有垂直于水平面向下的匀强磁场,磁感应强度大小均为,、、为绝缘水平面上的三个固定点,点在虚线上,、两点在左右两磁场中,两根直的硬导线连接和间,软导线连接在间,连线与垂直,、到的距离均为,,、、三段导线电阻相等,,。

通过、两点给线框通入大小为的恒定电流,待、间软导线形状稳定后线框受到的安培力大小为( )A.0B.C.D.第(6)题如图所示,山上一条输电导线架设在两支架间,M、N分别为导线在支架处的两点,P为导线最低点,则这三处导线中的张力、、大小关系是( )A.B.C.D.第(7)题足够长的光滑斜面上的三个相同的物块通过与斜面平行的细线相连,在沿斜面方向的拉力的作用下保持静止,如图甲所示,物块2的右侧固定有不计质量的力传感器。

高考物理力学压轴综合大题专题复习

高考物理力学压轴综合大题专题复习

高考物理力学压轴综合大题专题复习高考物理压轴综合大题专题复1.一辆质量为M的平板车在光滑的水平地面上以速度v0向右做匀速直线运动。

现在将一个质量为m(M=4m)的沙袋轻轻地放到平板车的右端。

如果沙袋相对平板车滑动的最大距离等于车长的4倍,那么当沙袋以水平向左的速度扔到平板车上时,为了不使沙袋从车上滑出,沙袋的初速度最大是多少?解:设平板车长为L,沙袋在车上受到的摩擦力为f。

沙袋轻轻放到车上时,设最终车与沙袋的速度为v′,则有:Mv = (M+m)v′ - fL2fL = mv/5又因为M=4m,所以可得:2fL = mv/5 = 8fL/5fL = 0因为沙袋不会从车上滑落,所以摩擦力f为0,即沙袋不受任何水平力,初速度最大为0.2.在光滑的水平面上,有一块质量为M=2kg的木板A,其右端挡板上固定一根轻质弹簧,在靠近木板左端的P处有一大小忽略不计质量m=2kg的滑块B。

木板上Q处的左侧为粗糙面,右侧为光滑面,且PQ间距离L=2m。

某时刻,木板A以速度υA=1m/s的速度向左滑行,同时滑块B以速度υB=5m/s的速度向右滑行。

当滑块B与P处相距时,二者刚好处于相对静止状态。

若在二者其共同运动方向的前方有一障碍物,木块A与障碍物碰后以原速率反弹(碰后立即撤去该障碍物)。

求B与A的粗糙面之间的动摩擦因数μ和滑块B最终停在木板A上的位置。

(g取10m/s2)解:设M和m的共同速度为v,由动量守恒得mvB - MυA = (m+M)v代入数据得:v=2m/s对AB组成的系统,由能量守恒得umgL = 2MυA^2 + 2mυB^2 - 2(M+m)v^2代入数据得:μ=0.6木板A与障碍物发生碰撞后以原速度反弹。

假设B向右滑行,并与弹簧发生相互作用。

当AB再次处于相对静止时,共同速度为u。

由动量守恒得mv - Mu = (m+M)u设B相对A的路程为s,由能量守恒得umgs = (m+M)υA^2 - (m+M)u^2代入数据得:s=3m因为s>L/4,所以滑块B最终停在木板A的左端。

高考物理复习专题突破:力学综合:子弹打木块模型

高考物理复习专题突破:力学综合:子弹打木块模型

高考物理复习专题突破:力学综合:子弹打木块模型一、单选题1. ( 2分) (2020高二上·广州期中)质量为m的子弹,以水平速度v0射入静止在光滑水平面上质量为M 的木块,并留在其中.在子弹进入木块过程中,下列说法正确的是()A. 子弹动能减少量等于木块动能增加量B. 子弹动量减少量等于木块动量增加量C. 子弹动能减少量等于子弹和木块内能增加量D. 子弹对木块的冲量大于木块对子弹的冲量2. ( 2分) (2020高二下·东莞月考)将质量为m0的木块固定在光滑水平面上,一颗质量为m的子弹以速度v0沿水平方向射入木块,子弹射穿木块时的速度为.现将同样的木块放在光滑的水平桌面上,相同的子弹仍以速度v0沿水平方向射入木块,设子弹在木块中所受阻力不变,则以下说法正确的是()A. 若m0=3m,则能够射穿木块B. 若m0=3m,子弹不能射穿木块,将留在木块中,一起以共同的速度做匀速运动C. 若m0=3m,子弹刚好能射穿木块,此时子弹相对于木块的速度为零D. 若子弹以3v0速度射向木块,并从木块中穿出,木块获得的速度为v1;若子弹以4v0速度射向木块,木块获得的速度为v2;则必有v1<v23. ( 2分) (2019高一上·鹤岗期中)如图所示,木块A、B并排且固定在水平桌面上,A的长度是L,B的长度是2L,一颗子弹沿水平方向以速度v1射入A,以速度v2穿出B,子弹可视为质点,其运动视为匀变速直线运动,则子弹穿出A时的速度为( )A. B. C. D. v14. ( 2分) (2019高三上·哈尔滨期中)质量为m的均匀木块静止在光滑水平面上,木块左右两侧各有一位持有完全相同步枪和子弹的射击手。

首先左侧射手开枪,子弹水平射入木块的最大深度为d1,然后右侧射手开枪,子弹水平射入木块的最大深度为d2 ,如图所示。

设子弹均未射穿木块,且两颗子弹与木块之间的作用大小均相同。

当两颗子弹均相对于木块静止时,下列判断正确的是( )A. 木块静止,d1=d2B. 木块静止,d1<d2C. 木块向右运动,d1<d2D. 木块向左运动,d1=d2二、多选题5. ( 3分) (2020高二下·四川月考)如图所示,木块静止在光滑水平桌面上,一颗子弹水平射入木块的深度为d时,子弹与木块相对静止,在子弹入射的过程中,木块沿桌面移动的距离为L,木块对子弹的平均阻力为f,那么在这一过程中()A. 木块的机械能增量f LB. 子弹的机械能减少量为f(L+d)C. 机械能保持不变D. 机械能增加了mgh6. ( 3分) (2019·唐山模拟)一子弹以初速度v0击中静止在在光滑的水平面上的木块,最终子弹未能射穿木块,射入的深度为d,木块加速运动的位移为s。

高考物理复习 力 学 综 合 一

高考物理复习 力 学 综 合 一

十六、力学综合一绵阳一中向容德张小平学号姓名_________一、选择题(共7小题,每小题7分,共49分.)1,一轻弹簧的上端固定,下端悬挂一个重物,重物静止时,弹簧伸长了8cm,若再将重物向下拉4cm,然后放手,则在释放重物的瞬间,重物的加速度的大小是( )A.g / 4B.g / 2C. 3 g / 2D. g2.质量为5.0×103 kg的汽车,在水平路面上由静止开始做加速度为2.0 m / s2的匀速直线运动,所受阻力是1.0×103 N,汽车在起动后第1 s末牵引力的瞬时功率是( ) A.22 kW B.20 kW C.11 kW D.2.0 kW3.水泥基座上固定一根质量为M的竖直木杆,一个质量为m的人以加速度a沿杆匀加速向上直爬,则此时基座对地面的压力为( )A.Mg+mg-ma B.Mg+ma-mg C.Mg+mg+ma D.Mg-mg-ma 4.关于一对互为作用力和反作用力的滑动摩擦力在某段时间内的作用效果,下列说法正确的是( )A.这两个滑动摩擦力可能都做正功B.这两个滑动摩擦力可能都做负功C.这两个力中必有一个做正功,一个做负功D.这两个力做的总功可能为负也可能为零5.两物体处于静止状态,它们的质量m1=2m2,它们与水平面间的动摩擦因数μ2=2μ1,开始它们之间被细绳连接,并夹一压缩状态的轻质弹簧.当烧断细线后,两物脱离弹簧时的速度均不为零,则()A.两物体脱离弹簧时速度最大B.两物体脱离弹簧时m1与m2的速率比为2:1C.两物体的速率同时达到最大值D.两物体在弹开后不同时达到静止6.质量为0.8 kg的物块静止在倾角为30°的斜面上,若用平行于斜面向上、大小等于3N 的力推物块,物块仍保持静止,则物块所受的摩擦力大小等于( )A.1N B.3N C.4N D.6N7.常用的通讯卫星是地球的同步卫星,它定位于地球赤道上方,已知某同步卫星离地面高度为h,地球自转角速度为ω,地球半径为R,地球表面附近的重力加速度为g,该同步卫星运动的加速度大小为()A.0 B.ω2 (R+h) C.g D.ω2h二、主观题(25分+26分)8.一级方程式(F )汽车大赛中,冠军舒马赫驾着一辆总质量为m(约为1.5 t)的法拉利赛车,经过一半径为R的水平弯道时的速度为υ,工程师为提高赛车的性能,都将赛车形状设计得使其上下方空气存在一个压力差——气压动力(行业术语),从而增大了赛车对地面的正压力,行业中将正压力与摩擦力的比简称为侧向附着系数,用η表示,要使上述赛车转弯时不侧滑,所需气动压力至少为多大?9.在光滑水平面上有两个质量都为0.5㎏的小球(半径可忽略)A和B,假设两球之间的作用力有下面的特点:当球心间的距离大于2 m时,两球间无相互作用力;当两球心间的距离等于或小于2 m并大于1 m时,两球间存在大小等于6 N的相互作用的恒定斥力;当两球心间的距离等于或小于1m时,两球间存在大小等于8N的相互作用的恒定斥力,现A球从远离B 处以8 m / s的速度沿两球的连心线向原来静止的B球运动.求(1)A、B两球最终的速度?(2)两球心间的最小距离?十七、力 学 综 合 二绵阳一中 向容德 邓智 学号 姓名_________一、选择题(共6小题,每小题7分,共42分.)1.宇宙飞船围绕太阳在近似圆形的轨道上运行,若轨道半径是地球轨道半径的9倍,则宇宙飞船绕太阳运行的周期是( )A .3年B .9年C .27年D .81年2.完全相同的两辆汽车,以相同的速度在平直公路上匀速齐头并进,当它们各自推下质量相同的物体后,甲车保持原来的牵引力继续前进,而乙车保持原来的功率继续前进,假定汽车所受阻力与车重成正比,经过一段时间后( )A .甲车超前,乙车落后B .乙车超前,甲车落后C .它们仍齐头并进D .条件不足,无法判断3.关于质点的运动情况,下列叙述正确的是( )A .如果质点做自由落体运动,每1s 内,质点所受重力做功都相同B .如果质点做平抛运动,每1s 内,质点的动量增量都相同C .如果质点做匀速圆周运动,每1s 内,质点所受合力的冲量都相同D .如果质点做简谐运动,每四分之一周期回复力做的功都相同4.如图所示为斧头劈柴的剖面图,图中BC 边为斧头背,AB 、AC 边为斧头的刃面,要使斧头劈柴更容易,则应该( )A .BC 边短一些,AB 边也短一些 B .BC 边长一些,AB 边短一些C .BC 边短一些,AB 边长一些D .BC 边长一些,AB 边也长一些5.物块A 沿斜面体B 倾斜面滑下时,B 处于静止状态,此时B 与水平面间的静摩擦力大小为f 1 ,若A 以某初速沿斜面上滑时,B 仍处于静止状态,此时B 与水平面间的静摩擦力大小为f 2 ,则( )A .f 1可能为零,f 2 不为零B .f 1 不可能为零,f 2 可能为零C .f 1 和f 2 都不可能为零D .f 1 和f 2 都可能为零6.在水平流动的大气中,质量为m 的气球沿着与水平方向成θ角的方向斜向下匀速直线运动,则大气对气球的作用力的方向为( )A .水平向右B .竖直向上C .与气球运动方向相反D .以上均不是 二、主观题(18分+20分+20分)7.2003年10月15日上午9时整,中国自行研制的第一艘载人飞船“神舟”五号从酒泉航天发射场升空,9时10分左右,飞船进入人预定轨道,飞船按计划在太空飞行了14圈后,于10月16日5时56分开始进入返回轨道,6时许成功降落在内蒙古预定区域.假设飞船是沿圆形轨道运动的,已知地球半径R=6.4×103km,地面重力加速度g取10 m / s2,求:地(1)飞船的运行周期;(2)飞船的轨道半径;(3)飞船的绕行速度?8.在光滑水平的地面上,有一辆上表面光滑正以速度v0向右运动的小车,其左端有固定档板P和质量为m = 9㎏的木块,它们之间有少量炸药,在爆炸前小车和木块相对静止,爆炸提供给小车和木块的总机械能为E0 ,求:(1) 爆炸后木块的速度为多大?(2) 在爆炸前小车的速度v0为多大?9.质量为m=2㎏的物体,放在倾角为θ=30°的传送带上,物体于传送带间的动摩擦因数为3/ 3,若物体受到的最大静摩擦力与滑动摩擦力大小相等,传送带足够长,原来物体与传送带都处于静止状态,求当传送带以加速度a=2 m / s2 加速运动时,物体受到的摩擦力大小和方向?(g=10 m / s2)(提示:传送带顺转、逆转)。

2023年高考物理高频考点:力学综合复习卷(基础必刷)

2023年高考物理高频考点:力学综合复习卷(基础必刷)

2023年高考物理高频考点:力学综合复习卷(基础必刷)一、单项选择题(本题包含8小题,每小题4分,共32分。

在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题如图所示,一个带电球体M放在绝缘支架上,把系在绝缘丝线上的带电小球N先后挂在横杆上的、和处,通过调整丝线使M、N在同一高度,当小球N静止时,观察丝线与竖直方向的夹角。

通过观察发现:当小球N挂在时,丝线与竖直方向的夹角最大;当小球N挂在时N丝线与竖直方向的夹角最小。

根据三次实验结果的对比,下列说法中正确的是( )A.小球N与球体M间的作用力与它们的电荷量成正比B.小球N与球体M间的作用力与它们距离的平方成反比C.球体M电荷量越大,绝缘丝线对小球N的作用力越大D.距离球体M越远的位置,绝缘丝线对小球N的作用力越小第(2)题如图,高台跳水项目中要求运动员从距离水面H的高台上跳下,在完成空中动作后进入水中。

若某运动员起跳瞬间重心离高台台面的高度为h1,斜向上跳离高台瞬间速度的大小为v0,跳至最高点时重心离台面的高度为h2,入水(手刚触及水面)时重心离水面的高度为h1。

图中虚线为运动员重心的运动轨迹。

已知运动员的质量为m,不计空气阻力,则运动员跳至最高点时速度及入水(手刚触及水面)时速度的大小分别是( )A.0,B.0,C.,D.,第(3)题北京2022年冬奥会首钢滑雪大跳台局部示意图如图所示。

运动员从a处由静止自由滑下,到b处起跳,c点为a、b之间的最低点,a、c两处的高度差为h。

要求运动员经过c点时对滑雪板的压力不大于自身所受重力的k倍,运动过程中将运动员视为质点并忽略所有阻力,则c点处这一段圆弧雪道的半径不应小于()A.B.C.D.第(4)题核能的利用离不开人类对微观世界的不断探索,核电被视为人类解决能源问题的终极方案,我国在核电应用和研究方面目前都处于国际一流水平。

下列说法正确的是()A.汤姆孙发现电子并提出了原子的核式结构模型B.玻尔的原子理论可以解释所有原子的光谱实验规律C.改变压力、温度或浓度,可以改变放射性元素的半衰期D.重核裂变后,形成的新核的比结合能更大第(5)题如图,在“研究共点力的合成”实验中,弹簧秤A、B通过两细绳把橡皮条上的结点拉到位置O,此时两细绳间夹角小于90°。

高考物理真题专项解析—力学综合计算题

高考物理真题专项解析—力学综合计算题
(1)A与B的挡板碰撞后,二者的速度大小 与 ;
(2)B光滑部分的长度d;
(3)运动过程中A对B的摩擦力所做的功 ;
(4)实现上述运动过程, 的取值范围(结果用 表示)。
【答案】(1) , ;(2) ;(3) ;(4)
【解析】
(1)设水平向右为正方向,因为 点右侧光滑,由题意可知A与B发生弹性碰撞,故碰撞过程根据动量守恒和能量守恒有
【答案】(1) ;(2) ;(3)
【解析】
(1)篮球下降过程中根据牛顿第二定律有
mg-λmg=ma下
再根据匀变速直线运动的公式,下落的过程中有
v下2=2a下H
篮球反弹后上升过程中根据牛顿第二定律有
mg+λmg=ma上
再根据匀变速直线运动的公式,上升的过程中有
v上2=2a上h
则篮球与地面碰撞的碰后速率与碰前速率之比
【答案】
【解析】
频闪仪每隔0.05s发出一次闪光,每相邻两个球之间被删去3个影像,故相邻两球的时间间隔为
设抛出瞬间小球的速度为 ,每相邻两球间的水平方向上位移为x,竖直方向上的位移分别为 、 ,根据平抛运动位移公式有
令 ,则有
已标注的线段 、 分别为
则有
整理得
故在抛出瞬间小球的速度大小为
【母题来源二】2022年高考全国乙卷
(1)若释放点距B点的长度l=0.7m,求滑块到最低点C时轨道对其支持力FN的大小;
(2)设释放点距B点的长度为 ,滑块第一次经F点时的速度v与 之间的关系式;
(3)若滑块最终静止在轨道FG的中点,求释放点距B点长度 的值。
【答案】(1)7N;(2) ;(3)见解析
【解析】
(1)到C点过程
C点时
(2)能过最高点时,则能到F点,则恰到最高点时

2021届高考物理三轮冲刺重难点训练:力学综合题(解析版)

2021届高考物理三轮冲刺重难点训练:力学综合题(解析版)

力学综合题【原卷】1.(2021届福建省莆田一中高三期中)如图,质量为M=4kg 的木板AB静止放在光滑水平面上,木板右端B点固定一根轻质弹簧,弹簧自由端在C点,C到木板左端的距离L=0.5m,质量为m=1kg 的小木块(可视为质点)静止放在木板的左端,木块与木板间的动摩擦因数为μ=0.2,木板AB受到水平向左的恒力F=14N,作用一段时间后撤去,恒力F撤去时木块恰好到达弹簧自由端C处,此后运动过程中弹簧最大压缩量x=5cm,g=10m/s2.求:(1)水平恒力F作用的时间t;(2)撤去F后,弹簧的最大弹性势能E P;(3)整个过程产生的热量Q.2.(2021届福建省三明市一中高三期中)用长L =0.6 m的绳系着装有m =0.5 kg水的小桶,在竖直平面内做圆周运动,成为“水流星”.G =10 m/s2.求:(1) 最高点水不流出的最小速度为多少?(2) 若过最高点时速度为3 m/s,此时水对桶底的压力多大?3.(2021届福建省三明市一中高三期中)一种氢气燃料的汽车,质量为3m=⨯,发动机的额定输出功率为80kW,行驶在平直公路上时所受阻力恒2.010kg为车重的0.1倍.若汽车从静止开始先匀加速启动,加速度的大小为2a=.达1.0m/s到额定输出功率后,汽车保持功率不变又加速行驶了800m,直到获得最大速度后才匀速行驶,g取210m/s.试求:(1)汽车的最大行驶速度;(2)汽车匀加速启动阶段结束时的速度;(3)汽车从静止到获得最大行驶速度所用的总时间.4.(2021届福建省三明市一中高三期中)传送带在工农业生产和日常生活中都有着广泛的应用.如图甲,倾角为θ的传送带以恒定速率逆时针转动,现将2kgm=的货物放在传送带上的A点,货物与传送带的速度v随时间t变化的图像如图乙,整个过程传送带是紧绷的,货物经过1.2s到达B点.(重力加速度2g=)10m/s(1)A、B两点间的距离L;(2)货物从A运动到B的过程中,货物与传送带间因摩擦产生的热量Q.5.(2021届福建省三明市一中高三期中)如图所示,固定斜面的倾角θ=30°,物体A与斜面之间的动摩擦因数μ=3,轻弹簧下端固定在斜面底端,弹簧处于原长时上端位于C点.用一根不可伸长的轻绳通过轻质光滑的定滑轮连接物体A 和B,滑轮右侧绳子与斜面平行,A的质量为2m,B的质量为m,初始时物体A 到C点的距离为L.现给A、B一初速度v0(v0>gL),使A开始沿斜面向下运动,B向上运动,物体A将弹簧压缩到最短后又恰好能弹到C点.已知重力加速度为g,不计空气阻力,整个过程中,轻绳始终处于伸直状态,求:(1)物体A向下运动刚到C点时的速度大小;(2)弹簧的最大压缩量;(3)弹簧的最大弹性势能.6.(2021届广东省华南师大附中高三综合测试)粗糙的水平面上,一物体在水平方向拉力作用下做直线运动,水平拉力F及运动速度v随时间变化的图线如图中(甲)(乙)所示,取重力加速度g=10m/s2,求物体与地面间的动摩擦因数 。

高三物理力学综合题及答案

高三物理力学综合题及答案

高三物理力学综合检测题一、选择题(1-6题单选,每小题5分;7-12题多选,每小题5分,共60分)1.如图所示,质量为m的木块A放在地面上的质量为M的三角形斜劈B上,现用大小均为F,方向相反的力分别推A和B,它们均静止不动,则()A.A与B之间一定存在弹力B.地面受向右的摩擦力C.B对A的支持力一定等于mgD.地面对B的支持力的大小一定等于Mg2. 如图,长为L的轻质细绳悬挂一个质量为m的小球,其下方有一个倾角为θ的光滑斜面体,放在光滑水平面上.开始时小球刚好与斜面接触无压力,现在用水平力F缓慢向左推动斜面体,直至细绳与斜面平行为止,对该过程中有关量的描述正确的是()A.绳的拉力和球对斜面的压力都在逐渐减小B.绳的拉力在逐渐减小,球对斜面的压力逐渐增大C.重力对小球做负功,斜面弹力对小球不做功D.推力F做的功是mgL(1-cos θ)3. 如图,斜面上a、b、c三点等距,小球从a点正上方O点抛出,做初速度为v0的平抛运动,恰落在b点.若小球初速度为v,其落点位于c,则()A.v0<v<2v0B.v=2v0C.2v0<v<3v0D.v>3v04.火星表面特征非常接近地球,可能适合人类居住.已知火星半径是地球半径的12,质量是地球质量的19,自转周期基本相同.地球表面重力加速度是g,若王跃在地面上能向上跳起的最大高度是h,在忽略自转影响的条件下,下述分析正确的是()A.王跃在火星表面所受火星引力是他在地球表面所受地球引力的2 9B.火星表面的重力加速度是2g 3C.火星的第一宇宙速度是地球第一宇宙速度的2 3D.王跃在火星上能向上跳起的最大高度是3h 25. 甲、乙两物体在同一地点同时开始做直线运动的v-t图像如图所示。

根据图像提供的信息可知()A. 6 s末乙追上甲B. 在乙追上甲之前,甲、乙相距最远为10 mC. 8 s末甲、乙两物体相遇,且离出发点有22 mD. 在0~4 s内与4~6 s内甲的平均速度相等6.竖直向上抛出一小球,小球在运动过程中,所受空气阻力大小不变.规定向上方向为正方向,小球上升到最高点所用时间为t0,下列关于小球在空中运动过程中的加速度a、位移x、重力的瞬时功率P和机械能E随时间t变化的图象中,正确的是()7.(多选)(2015·广州毕业班测试)如图,甲、乙、丙是位于同一直线上的离其他恒星较远的三颗恒星,甲、丙围绕乙在半径为R的圆轨道上运行,若三颗星质量均为M,引力常量为G,则()A.甲星所受合外力为5GM2 4R2B.乙星所受合外力为GM2 R2C.甲星和丙星的线速度相同D.甲星和丙星的角速度相同8.为了探测X星球,总质量为m1的探测飞船载着登陆舱在以该星球中心为圆心的圆轨道上运动,轨道半径为r1,运动周期为T1.随后质量为m2的登陆舱脱离飞船,变轨到离星球更近的半径为r2的圆轨道上运动,则()A.X星球表面的重力加速度g X=4π2r1 T21B.X星球的质量M=4π2r31 GT21C.登陆舱在r1与r2轨道上运动时的速度大小之比v1v2=m1r2m2r1D.登陆舱在半径为r2的轨道上做圆周运动的周期T2=r32 r31T19.我国自行研制的新一代8×8轮式装甲车已达到西方国家第三代战车的水平,将成为中国军方快速部署型轻甲部队的主力装备.设该装甲车的质量为m,若在平直的公路上从静止开始加速,前进较短的距离s速度便可达到最大值v m.设在加速过程中发动机的功率恒定为P,装甲车所受阻力恒为F f,当速度为v(v<v m)时,所受牵引力为F.以下说法正确的是() A.装甲车速度为v时,装甲车的牵引力做功为FsB.装甲车的最大速度v m=P F fC.装甲车速度为v时加速度为a=F-F f mD.装甲车从静止开始达到最大速度v m所用时间t=2s v m10. 半径分别为R和R/2的两个半圆,分别组成图甲、乙所示的两个圆弧轨道,一小球从某一高度下落,分别从图甲、乙所示的开口向上的半圆轨道的右侧边缘进入轨道,都沿着轨道内侧运动并恰好能从开口向下半圆轨道的最高点通过,则下列说法正确的是( )A.图甲中小球开始下落的高度比图乙中小球开始下落的高度高B.图甲中小球开始下落的高度和图乙中小球开始下落的高度一样高C.图甲中小球对轨道最低点的压力比图乙中小球对轨道最低点的压力大D.图甲中小球对轨道最低点的压力和图乙中小球对轨道最低点的压力一样大11. 如图所示,轻质弹簧一端固定,另一端与一质量为m、套在粗糙竖直固定杆A处的圆环相连,弹簧水平且处于原长.圆环从A处由静止开始下滑,经过B处的速度最大,到达C 处的速度为零,AC=h.圆环在C处获得一竖直向上的速度v,恰好能回到A.弹簧始终在弹性限度内,重力加速度为g.则圆环()A.下滑过程中,加速度一直减小B.下滑过程中,克服摩擦力做的功为14mv2C.在C处,弹簧的弹性势能为14mv2-mghD.上滑经过B的速度大于下滑经过B的速度12.质量为M的物块以速度v运动,与质量为m的静止物块发生正撞,碰撞后两者的动量正好相等,两者质量之比Mm可能为()A.2 B.3 C.4 D.5一.选择题答案1 2 3 4 5 6 7 8 9 10 11 12二、非选择题(共4小题,共40分。

高中物理力学综合习题

高中物理力学综合习题

高中物理力学综合习题力学综合习题一.选择题(共8小题)1.从斜面上某一位置,每隔0.1s释放一个小球,在连续释放几颗小球后,对在斜面上滚动的小球拍下照片,如图所示,测得xAB =15cm,xBC=20cm,则下列说法正确的是()A.小球的加速度为500m/s2B.拍摄时B球的速度为3.5m/sC.拍摄时xCD的大小为0.35mD.A球上方滚动的小球还有2颗2.已知地球的半径为R,地球的自转周期为T,地表的重力加速度为g,要在地球赤道上发射一颗近地的人造地球卫星,使其轨道在赤道的正上方,若不计空气的阻力,那么()A.向东发射与向西发射耗能相同,均为mgR﹣m()2B.向东发射耗能为m(﹣)2,比向西发射耗能多C.向东发射与向西发射耗能相同,均为m(﹣)2D.向西发射耗能为m(+)2,比向东发射耗能多3.长L的轻杆两端分别固定有质量为m的小铁球,杆的三等分点O处有光滑的水平转动轴.用手将该装置固定在杆恰好水平的位置,然后由静止释放,当杆到达竖直位置时,求轴对杆的作用力F的大小和方向为()A.2.4mg 竖直向上B.2.4mg 竖直向下C.6mg 竖直向上D.4mg 竖直向上4.做匀变速直线运动的物体的速度v随位移x的变化规律为v2﹣4=2x,v与x 的单位分别为m/s和m,据此可知()A.初速度v0=4m/s B.初速度v=1m/sC.加速度 a=2 m/s2D.加速度a=1 m/s25.将一个小球从光滑水平地面上一点抛出,小球的初始水平速度为u,竖直方向速度为v,忽略空气阻力,小球第一次到达最高点时离地面的距离为h。

小球和地面发生第一次碰撞后,反弹至离地面的高度。

以后每一次碰撞后反弹的高度都是前一次的(每次碰撞前后小球的水平速度不变),小球在停止弹跳时所移动的总水平距离的极限是()A.B.C.D.6.假设地球可视为质量均匀分布的球体,已知一颗人造地球卫星绕地球做匀速圆周运动的半径为R,周期为T;地球的半径为R0,自转周期为T.则地球表面赤道处的重力加速度大小与两极处重力加速度大小的比值为()A.B.C.D.7.工地上的箱子在起重机钢绳的作用下由静止开始竖直向上运动,运动过程中箱子的机械能E与其位移x关系的图象如图所示,其中O~x1过程的图线为曲线,x1~x2过程的图线为直线,根据图线可知()A.O~x1过程中钢绳的拉力逐渐增多B.O~x1过程中箱子的动能一直增加C.x1~x2过程中钢绳的拉力一直不变D.x1~x2过程中起重机的输出功率保持不变8.如图所示,在一粗糙水平面上有两个质量分别为m1和m2的木块中间用一原长为L、劲度系数为K的轻弹簧连接起来,木块与地面间的滑动摩擦因数均为μ,现用一与水平方向成θ的力F作用在m1上如图所示,问两木块一起向左沿地面匀速运动时(弹簧形变在弹性限度内),它们之间的距离是()A.B.C.D.9.关于质点的位移和路程,下列说法中正确的是()A.位移是矢量,位移的方向即质点运动的方向B.位移的大小不会比路程大C.路程是标量,即位移的大小D.当质点作运动方向不变的直线运动时,路程等于位移的大小10.重150N的光滑球A悬空靠在竖直墙和三角形木块B之间,木块B的重力为1500N,且静止在水平地面上,如图所示,则()A.地面所受压力的大小为1650NB.地面所受压力的大小为1500NC.木块B所受水平地面摩擦力大小为150ND.木块B所受水平地面摩擦力大小为N11.如图所示,在倾角为θ=53°的足够长固定斜面底端,一质量m=lkg的小物块以某一初速度沿斜面上滑,一段时间后返回出发点.物块上滑所用时间t1和下滑所用时间t2大小之比为t1:t2=:,则()A.物块由斜面底端上滑时初速度vl 与下滑到底端时速度v2的大小之比为:B.物块上滑时的初速度α1与下滑的加速度的α2大小之比为:C.物块和斜面之间的动摩擦因数为0.5D.物块沿斜面上滑和下滑的过程中,系统机械能的改变量相同三.解答题(共7小题)12.如图所示,一辆平板小车静止在水平地面上,小车的质量M=3.0kg,平板车长度L=l.0m,平板车的上表面距离店面的高度H=0.8m.某时刻,一个质量m=1.0kg 的小物块(可视为质点)以v=3.0m/s的水平速度滑上小车的左端,与此同时相对小车施加一个F=15N的水平向右的恒力.物块与小车之间的动摩擦因数μ=0.30,不计小车与地面间的摩擦.重力加速度g取10m/s2.求:(1)物块相对小车滑行的最大距离;(2)物块落地时,物块与小车左端之间的水平距离.14.如图为某种鱼饵自动投放器中的投饵管装置示意图,其下半部AB是一长为2R的竖直细管,上半部BC是半径为R的四分之一圆弧弯管,管口沿水平方向,AB管内有一原长为R、下端固定的轻质弹簧,投饵时,每次总将弹簧长度压缩到0.5R后锁定,在弹簧上段放置一粒鱼饵,解除锁定,弹簧可将鱼饵弹射出去,设质量为m的鱼饵到达管口C时,对管壁的作用力恰好为零.不计鱼饵在运动过程中的机械能损失,且锁定和解除锁定时,均不改变弹簧的弹性势能,已知重力加速度为g.求:;(1)质量为m的鱼饵到达管口C时的速度大小v1(2)弹簧压缩到0.5R时的弹性势能Ep;(3)已知地面与水面相距1.5R,若使该投饵管绕AB管的中轴线OO′在90°角的范围内来回缓慢转动,每次弹射时只放置一粒鱼饵,鱼饵的质量在m到m之间变化,且均能落到水面.持续投放足够长时间后,鱼饵能够落到水面的最大面积S是多少?15.一探险队在探险时遇到一山沟,山沟的一侧OA竖直,另一侧的坡面OB呈抛物线形状,与一平台BC相连,如图所示.已知山沟竖直一侧OA的高度为2h,平台离沟底h高处,C点离竖直OA的水平距离为2h.以沟底的O点为原点建立坐标系xOy,坡面的抛物线方程为y=.质量为m的探险队员从山沟的竖直一侧,沿水平方向跳向平台.人视为质点,忽略空气阻力,重力加速度为g.求:水平跳出时,掉在坡面OB的某处,则他在空中运动(1)若探险队员以速度v的时间为多少?(2)为了能跳在平台上,他的初速度应满足什么条件?请计算说明.=1.55mgh,则他跳出时(3)若已知探险队员水平跳出,刚到达OBC面的动能Ek的水平速度可能为多大?16.如图,与水平面成θ=25°角的倾斜的绷紧传送带,AB长为S=6m,在电动机带动下,始终以v=m/s顺时针匀速转动;台面BC与传送带平滑连接于B 点,BC长L=2.2m;半圆形光滑轨道半径R=1.0m,与水平台面相切于C点.一个质量为m=0.1kg的待加工小工件(可以视为质点),从A点无初速释放,小工件与传送带的动摩擦因数μ1=0.5,小工件与台面的动摩擦因数μ2=0.01.(注意:小工件能够以相同速率在台面与传送带间的B点相互平稳滑动;已知sin25°=0.4;cos25°=0.9;重力加速度取g=10m/s2).求:(1)小工件从A点第一次运动到B点所用的时间;(2)小工件最后停留在何处;(3)若小工件从A点无初速释放,三次经过B点,因传送工件电动机要多消耗多少的电能.(本小题计算中,取=7.3,=1.7)17.如图所示,光滑杆AB长为L,B端固定一根劲度系数为k,原长为l的轻弹簧,质量为m的小球套在光滑杆上并与弹簧的上端连接,OO′为过B点的竖直轴,杆与水平面间的夹角始终为θ.(1)杆保持静止状态,让小球从弹簧的原长位置静止释放,求小球释放瞬间的;加速度大小a及小球速度最大时弹簧的压缩量△l1(2)当球随杆一起绕OO′轴匀速转动时,弹簧伸长量为△l,求匀速转动的角2速度ω;=匀速转动时,小球(3)若θ=30°,移去弹簧,当杆绕OO′轴以角速度ω恰好在杆上某一位置随杆在水平面内匀速转动,球受轻微扰动后沿杆向上滑动,,求小球从开始滑动到离开杆过程中,到最高点A时求沿杆方向的速度大小为v杆对球所做的功W.=10m/s的初速度从水平面的某点向右运18.如图甲,质量m=1.0kg的物体以v动并冲上半径R=1.0m的竖直光滑半圆环,物体与水平面间的动摩擦因数μ=0.5.(1)物体能从M点飞出,落到水平面时落点到N点的距离的最小值为多大?(2)如果物体从某点出发后在半圆轨道运动过程途中离开轨道,求出发点到N 点的距离x的取值范围.(3)设出发点到N点的距离为x,物体从M点飞出后,落到水平面时落点到N 点的距离为y,通过计算在乙图中画出y2随x变化的关系图象.。

高考物理专题突破【“三大观点”解答力学综合问题】

高考物理专题突破【“三大观点”解答力学综合问题】

械能守恒.
(4)弹簧处于原长时,弹性势能为零.
第 2 维度:“滑块—平板”模型 (1)“滑块”问题是动量和能量的综合应用之一,由于滑块与平板之间常存在一对相 互作用的摩擦力,这对摩擦力使滑块、平板的动量发生变化,也使它们的动能发生改变, 但若将两者视为系统,则这对摩擦力是系统的内力,它不影响系统的总动量,但克服摩 擦力做功,使系统机械能损失,所以解决“滑块”问题常用到动量守恒定律. (2)解决“滑块”问题时一般要根据题意画出情景示意图,有助于分析物理过程,也 有助于找出物理量尤其是位移之间的关系.
考点一 动量与能量的综合问题
多维探究
1.解决力学问题的三大观点
动力学观点
运用牛顿运动定律结合运动学知识,可解决匀变速运动问题
能量观点
用动能定理和能量守恒定律等,可解决非匀变速运动问题
动量观点
用动量守恒定律等,可解决非匀变速运动问题
2.动量观点和能Βιβλιοθήκη 观点的比较 (1)研究对象都是相互作用的物体组成的系统
第 3 维度:子弹与木块模型 (1)当子弹和木块的速度相等时木块的速度最大,两者的相对位移(子弹射入木块的 深度)取得极值. (2)系统的动量守恒,但系统的机械能不守恒,摩擦力与两者相对位移的乘积等于系 统机械能的减少,当两者的速度相等时,系统机械能损失最大.由 ΔEk=m+MM Ek0 可 以看出,子弹的质量越小,木块的质量越大,动能损失越多. (3)根据能量守恒,系统损失的动能等于系统其他形式能的增加. (4)解决该类问题,既可以从动量、能量两方面解题,也可以从力和运动的角度借助 图象求解.
相同点 (2)研究过程都是某一运动过程 动量守恒定律是矢量表达式,还可以写出分量表达式;而动能定理和能量守
不同点 恒定律都是标量表达式,绝无分量表达式

高中物理力学综合测试题(附答案)

高中物理力学综合测试题(附答案)

力学综合测试题一、选择题(每小题4分,共40分。

每小题至少有一个选项是正确的)1.根据牛顿运动定律,以下选项中正确的是( )A .人只有在静止的车厢内,竖直向上高高跳起后,才会落在车厢的原来位置B .人在沿直线匀速前进的车厢内,竖直向上高高跳起后,将落在起跳点的后方C .人在沿直线加速前进的车厢内,竖直向上高高跳起后,将落在起跳点的后方D .人在沿直线减速前进的车厢内,竖直向上高高跳起后,将落在起跳点的后方2.如图所示,三个木块A 、B 、C 在水平推力F 的作用下靠在竖直墙上,且处于静止状态,则下列说法中正确的是( )A .A 与墙的接触面可能是光滑的B .B 受到A 作用的摩擦力,方向可能竖直向下C .B 受到A 作用的静摩擦力,方向与C 作用的静摩擦力方向一定相反D .当力F 增大时,A 受到墙作用的静摩擦力一定不增大3.一个物体,受n 个力的作用而做匀速直线运动,现将其中一个与速度方向相反的力逐渐减小到零,而其他的力保持不变,则物体的加速度和速度 ( ) A .加速度与原速度方向相同,速度增加得越来越快 B .加速度与原速度方向相同,速度增加得越来越慢 C .加速度与原速度方向相反,速度减小得越来越快 D .加速度与原速度方向相反,速度减小得越来越慢4.如图所示,在粗糙水平面上放一三角形木块a ,当b 按下列四种不同方式运动时,a 三角形物体始终对地静止,试问,在哪种或哪几种情形下,a 三角形物体对地面有向右的静摩擦力.( ) A .b 物体沿斜面加速下滑 B .b 物体沿斜面减速下滑 C .b 物体沿斜面匀速下滑D .b 物体受到一次冲击后沿斜面减速上滑 5 题 5.如图所示,一物体分别从3个不同高度,但同底的光滑斜面的顶端由静止开始滑下,斜面与水平面夹角分别为30°、45°、60°,滑到底端所用的时间t 1、t 2、t 3的关系是( ) A .t 1=t 2=t 3 B .t 1=t 3>t 2 C .t 1>t 2>t 3 D .t 1<t 2<t 36.如图所示,不计重力的轻杆OP 能以O 为轴在竖直平面内自由转动,P 端悬挂一重物,另用一根轻绳通过定滑轮系在P 端。

高考物理专题【“三大观点”解答力学综合问题】典型题(带解析)

高考物理专题【“三大观点”解答力学综合问题】典型题(带解析)

高考物理专题【“三大观点”解答力学综合问题】典型题1.(多选)质量为M和m0的滑块用轻弹簧连接,以恒定的速度v沿光滑水平面运动,与位于正对面的质量为m的静止滑块发生碰撞,如图所示,碰撞时间极短,在此过程中,下列情况可能发生的是()A.M、m0、m速度均发生变化,分别为v1、v2、v3,而且满足(M+m0)v=M v1+m0v2+m v3B.m0的速度不变,M和m的速度变为v1和v2,而且满足M v=M v1+m v2C.m0的速度不变,M和m的速度都变为v′,且满足M v=(M+m)v′D.M、m0、m速度均发生变化,M、m0速度都变为v1,m的速度变为v2,且满足(M +m0)v=(M+m0)v1+m v2解析:选BC.在M与m碰撞的极短时间内,m0的速度来不及改变,故A、D均错误;M与m碰撞后可能同速,也可能碰后不同速,故B、C均正确.2.(多选)如图所示,在光滑的水平面上,有一质量为M的木块正以速度v向左运动,一颗质量为m(m<M)的弹丸以速度v向右水平击中木块并最终停在木块中.设弹丸与木块之间的相互作用力大小不变,则在相互作用过程中()A.弹丸和木块的速率都是越来越小B.弹丸在任一时刻的速率不可能为零C.弹丸对木块一直做负功,木块对弹丸先做负功后做正功D.弹丸对木块的水平冲量与木块对弹丸的水平冲量大小相等解析:选CD.弹丸击中木块前,由于m<M,两者速率相等,所以两者组成的系统总动量向左,弹丸水平击中木块并停在木块中的过程,系统的动量守恒,由动量守恒定律可知,弹丸停在木块中后它们一起向左运动,即弹丸开始时向右运动,后向左运动,故弹丸的速率先减小后增大,木块的速率一直减小,由以上分析知,弹丸的速率在某一时刻可能为零,故A、B错误;木块一直向左运动,弹丸对木块一直做负功,弹丸先向右运动后向左运动,则木块对弹丸先做负功后做正功,故C正确;由牛顿第三定律知,弹丸对木块的水平作用力与木块对弹丸的水平作用力大小相等,相互作用的时间相等,由冲量的定义式I=Ft知,弹丸对木块的水平冲量与木块对弹丸的水平冲量大小相等,故D 正确.3.(多选)如图所示,水平光滑轨道宽度和轻弹簧自然长度均为d ,m 2的左边有一固定挡板.m 1由图示位置静止释放,当m 1与m 2相距最近时m 1的速度为v 1,则在以后的运动过程中( )A .m 1的最小速度是0B .m 1的最小速度是m 1-m 2m 1+m 2v 1C .m 2的最大速度是v 1D .m 2的最大速度是2m 1m 1+m 2v 1解析:选BD .由题意结合题图可知,当m 1与m 2相距最近时,m 2的速度为0,此后,m 1在前,做减速运动,m 2在后,做加速运动,当再次相距最近时,m 1减速结束,m 2加速结束,因此此时m 1速度最小,m 2速度最大,在此过程中系统动量守恒和机械能守恒,m 1v 1=m 1v 1′+m 2v 2,12m 1v 21=12m 1v 1′2+12m 2v 22,可解得v 1′=m 1-m 2m 1+m 2v 1,v 2=2m 1m 1+m 2v 1,B 、D 选项正确.4.如图所示,一小车置于光滑水平面上,小车质量m 0=3 kg ,AO 部分粗糙且长L =2 m ,物块与AO 部分间动摩擦因数μ=0.3,OB 部分光滑.水平轻质弹簧右端固定,左端拴接物块b ,另一小物块a ,放在小车的最左端,和小车一起以v 0=4 m/s 的速度向右匀速运动,小车撞到固定竖直挡板后瞬间速度变为零,但不与挡板粘连.已知车OB 部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内.a 、b 两物块视为质点,质量均为m =1 kg ,碰撞时间极短且不粘连,碰后以共同速度一起向右运动.(g 取10 m/s 2)求:(1)物块a 与b 碰后的速度大小;(2)当物块a 相对小车静止时小车右端B 到挡板的距离; (3)当物块a 相对小车静止时在小车上的位置到O 点的距离. 解析:(1)对物块a ,由动能定理得-μmgL =12m v 21-12m v 2代入数据解得a 与b 碰前a 的速度v 1=2 m/s ;a 、b 碰撞过程系统动量守恒,以a 的初速度方向为正方向, 由动量守恒定律得:m v 1=2m v 2 代入数据解得v 2=1 m/s.(2)当弹簧恢复到原长时两物块分离,物块a 以v 2=1 m/s 的速度在小车上向左滑动,当与小车同速时,以向左为正方向,由动量守恒定律得m v 2=(m 0+m )v 3, 代入数据解得v 3=0.25 m/s.对小车,由动能定理得μmgs =12m 0v 23 代入数据解得,同速时小车B 端到挡板的距离s =132 m.(3)由能量守恒得μmgx =12m v 22-12(m 0+m )v 23 解得物块a 与车相对静止时与O 点的距离:x =0.125 m. 答案:(1)1 m/s (2)132m (3)0.125 m5.如图甲所示,质量m 1=4 kg 的足够长的长木板静止在光滑水平面上,质量m 2=1 kg 的小物块静止在长木板的左端.现对小物块施加一水平向右的作用力F ,小物块和长木板运动的速度—时间图象如图乙所示.2 s 后,撤去F ,g 取10 m/s 2.求:(1)小物块与长木板之间的动摩擦因数μ; (2)水平力的大小F ;(3)撤去F 后,小物块和长木板组成的系统损失的机械能ΔE . 解析:(1)由题图可知:长木板的加速度a 1=12m/s 2=0.5 m/s 2由牛顿第二定律可知:小物块施加给长木板的滑动摩擦力F f =m 1a 1=2 N小物块与长木板之间的动摩擦因数:μ=F fm 2g =0.2.(2)由题图可知,小物块的加速度a 2=42 m/s 2=2 m/s 2由牛顿第二定律可知:F -μm 2g =m 2a 2 解得F =4 N.(3)撤去F 后,小物块和长木板组成的系统动量守恒,以向右为正方向,最终两者以相同速度(设为v )运动m 1v 1+m 2v 2=(m 1+m 2)v 代入数据解得v =1.6 m/s 则系统损失的机械能ΔE =⎝⎛⎭⎫12m 1v 21+12m 2v 22-12()m 1+m 2v 2=3.6 J.答案:(1)0.2 (2)4 N (3)3.6 J6.如图所示,质量为m 1=0.5 kg 的小物块P 置于台面上的A 点并与水平弹簧的右端接触(不拴接),轻弹簧左端固定,且处于原长状态.质量M =1 kg 的长木板静置于水平面上,其上表面与水平台面相平,且紧靠台面右端.木板左端放有一质量m 2=1 kg 的小滑块Q .现用水平向左的推力将P 缓慢推至B 点(弹簧仍在弹性限度内),撤去推力,此后P 沿台面滑到边缘C 时速度v 0=10 m/s ,与小车左端的滑块Q 相碰,最后物块P 停在AC 的正中点,滑块Q 停在木板上.已知台面AB 部分光滑,P 与台面AC 间的动摩擦因数μ1=0.1,A 、C 间距离L =4 m .滑块Q 与木板上表面间的动摩擦因数μ2=0.4,木板下表面与水平面间的动摩擦因数μ3=0.1(g 取10 m/s 2),求:(1)撤去推力时弹簧的弹性势能; (2)长木板运动中的最大速度; (3)长木板的最小长度.解析:(1)小物块P 由B 点到C 点的过程: W 弹-μ1m 1gL =12m 1v 20-0 解得:W 弹=27 J E p =W 弹=27 J即:撤去推力时弹簧的弹性势能为27 J.(2)小物块P 和滑块Q 碰撞过程动量守恒,以v 0的方向为正方向 m 1v 0=-m 1v P +m 2v Q 小物块P 从碰撞后到静止 -12μ1m 1gL =0-12m 1v 2P 解得v Q =6 m/s滑块Q 在长木板上滑动过程中: 对Q :-μ2m 2g =m 2a 1对木板:μ2m 2g -μ3(M +m 2)g =Ma 2 解得:a 1=-4 m/s 2 a 2=2 m/s 2当滑块Q 和木板速度相等时,木板速度最大, 设最大速度为v ,滑行时间为t 0 对Q :v =v Q +a 1t 0 对木板:v =a 2t 0 解得:t 0=1 s v =2 m/s则长木板运动中的最大速度为2 m/s. (3)在滑块Q 和木板相对滑动过程中 Q 的位移:x Q =12(v Q +v )·t 0木板的位移:x 板=12(0+v )·t 0木板的最小长度:L =x Q -x 板 解得:L =3 m.答案:(1)27 J (2)2 m/s (3)3 m7.如图所示,固定点O 上系一长L =0.6 m 的细绳,细绳的下端系一质量m =1.0 kg 的小球(可视为质点),原来处于静止状态,球与平台的B 点接触但对平台无压力,平台高h =0.80 m ,一质量M =2.0 kg 的物块开始静止在平台上的P 点,现对物块M 施予一水平向右的初速度v 0,物块M 沿粗糙平台自左向右运动到平台边缘B 处与小球m 发生正碰,碰后小球m 在绳的约束下做圆周运动,经最高点A 时,绳上的拉力恰好等于小球的重力,而物块M 落在水平地面上的C 点,其水平位移x =1.2 m ,不计空气阻力,g =10 m/s 2.(1)求物块M 碰撞后的速度大小;(2)若平台表面与物块M 间的动摩擦因数μ=0.5,物块M 与小球的初始距离为x 1=1.3 m ,求物块M 在P 处的初速度大小.解析:(1)碰后物块M 做平抛运动,设其平抛运动的初速度为v 3,平抛运动时间为t h =12gt 2①x =v 3t ② 得:v 3=xg2h=3.0 m/s ③ (2)物块M 与小球在B 点处碰撞,设碰撞前物块M 的速度为v 1,碰撞后小球的速度为v 2,由动量守恒定律:M v 1=m v 2+M v 3④碰后小球从B 点处运动到最高点A 过程中机械能守恒,设小球在A 点的速度为v A ,则 12m v 22=12m v 2A+2mgL ⑤ 小球在最高点时有:2mg =m v 2AL ⑥由⑤⑥解得:v 2=6.0 m/s ⑦由③④⑦得:v 1=m v 2+M v 3M=6.0 m/s ⑧物块M 从P 点运动到B 点过程中,由动能定理: -μMgx 1=12M v 21-12M v 20⑨解得:v 0=v 21+2μgx 1=7.0 m/s ⑩答案:(1)3.0 m/s (2)7.0 m/s8.静止在水平地面上的两小物块A 、B ,质量分别为m A =1.0 kg ,m B =4.0 kg ;两者之间有一被压缩的微型弹簧,A 与其右侧的竖直墙壁距离l =1.0 m ,如图所示.某时刻,将压缩的微型弹簧释放,使A 、B 瞬间分离,两物块获得的动能之和为E k =10.0 J .释放后,A 沿着与墙壁垂直的方向向右运动.A 、B 与地面之间的动摩擦因数均为μ=0.20.重力加速度取g =10 m/s 2.A 、B 运动过程中所涉及的碰撞均为弹性碰撞且碰撞时间极短.(1)求弹簧释放后瞬间A 、B 速度的大小;(2)物块A 、B 中的哪一个先停止?该物块刚停止时A 与B 之间的距离是多少? (3)A 和B 都停止后,A 与B 之间的距离是多少?解析:(1)设弹簧释放瞬间A 和B 的速度大小分别为v A 、v B ,以向右为正,由动量守恒定律和题给条件有0=m A v A -m B v B ① E k =12m A v 2A +12m B v 2B ② 联立①②式并代入题给数据得 v A =4.0 m/s ,v B =1.0 m/s.③(2)A 、B 两物块与地面间的动摩擦因数相等,因而两者滑动时加速度大小相等,设为a .假设A 和B 发生碰撞前,已经有一个物块停止,此物块应为弹簧释放后速度较小的B .设从弹簧释放到B 停止所需时间为t ,B 向左运动的路程为s B ,则有m B a =μm B g ④s B =v B t -12at 2⑤v B -at =0⑥在时间t 内,A 可能与墙发生弹性碰撞,碰撞后A 将向左运动,碰撞并不改变A 的速度大小,所以无论此碰撞是否发生,A 在时间t 内的路程s A 都可表示为s A =v A t -12at 2⑦联立③④⑤⑥⑦式并代入题给数据得 s A =1.75 m ,s B =0.25 m .⑧这表明在时间t 内A 已与墙壁发生碰撞,但没有与B 发生碰撞,此时A 位于出发点右边0.25 m 处,B 位于出发点左边0.25 m 处,两物块之间的距离s 为s=0.25 m+0.25 m=0.50 m.⑨(3)t时刻后A将继续向左运动,假设它能与静止的B碰撞,碰撞时速度的大小为v A′,由动能定理有12-12m A v2A=-μm A g(2l+s B)⑩2m A v A′联立③⑧⑩式并代入题给数据得v A′=7 m/s⑪故A与B将发生碰撞.设碰撞后A、B的速度分别为v A″和v B″,由动量守恒定律与机械能守恒定律有m A(-v A′)=m A v A″+m B v B″⑫12=12m A v A″2+12m B v B″2⑬2m A v A′联立⑪⑫⑬式并代入题给数据得v A″=375m/s,v B″=-275m/s⑭这表明碰撞后A将向右运动,B继续向左运动.设碰撞后A向右运动距离为s A′时停止,B向左运动距离为s B′时停止,由运动学公式2as A′=v A″2,2as B′=v B″2⑮由④⑭⑮式及题给数据得s A′=0.63 m,s B′=0.28 m⑯s A′小于碰撞处到墙壁的距离.由上式可得两物块停止后的距离s′=s A′+s B′=0.91 m.⑰答案:(1)4.0 m/s 1.0 m/s(2)物块B先停止0.50 m(3)0.91 m。

高中力学综合练习题及讲解

高中力学综合练习题及讲解

高中力学综合练习题及讲解一、选择题1. 一个物体在水平面上做匀速直线运动,其受到的摩擦力大小与以下哪个因素无关?A. 物体的质量B. 物体与地面的接触面积C. 物体的运动速度D. 物体与地面间的摩擦系数2. 根据牛顿第二定律,一个物体的加速度与作用力成正比,与物体的质量成反比。

如果一个物体受到两个力的共同作用,这两个力的合力与物体的加速度的关系是:A. 合力越大,加速度越大B. 合力越小,加速度越小C. 合力与加速度成正比D. 合力与加速度成反比3. 一个物体从静止开始自由下落,其下落过程中重力势能转化为:A. 动能B. 内能C. 弹性势能D. 电能二、填空题1. 牛顿第三定律指出,作用力与反作用力大小相等、方向相反、作用在______的物体上。

2. 一个物体在斜面上下滑时,除了重力外,还受到______力的作用。

3. 根据能量守恒定律,一个物体在没有外力作用的情况下,其机械能______。

三、计算题1. 一个质量为2kg的物体在水平面上以5m/s²的加速度加速运动。

如果物体与地面间的摩擦系数为0.2,求物体受到的摩擦力大小。

2. 一个物体从高度为10m的悬崖上自由下落,忽略空气阻力,求物体落地时的速度。

四、实验题1. 描述如何使用弹簧秤测量物体的重力,并说明实验中可能出现的误差来源。

2. 设计一个实验来验证牛顿第二定律,并说明实验的步骤和预期结果。

五、解答题1. 解释为什么在没有外力作用的情况下,物体会保持匀速直线运动或静止状态。

2. 讨论在日常生活中,我们如何利用摩擦力来完成各种活动,并举例说明。

以上练习题涵盖了高中力学的基本概念和原理,通过这些练习,学生可以更好地理解和掌握力学知识。

在解答这些问题时,重要的是要理解物理定律的基本原理,并能够将这些原理应用到具体的物理问题中。

高考物理复习题型专练—力学三大观点的综合应用

高考物理复习题型专练—力学三大观点的综合应用

高考物理复习题型专练—力学三大观点的综合应用这部分知识单独考查一个知识点的试题非常少,大多数情况都是同时涉及到几个知识点,而且都是牛顿运动定律、动能定理和机械能守恒定律或能量守恒定律、动量定理和动量守恒定律的内容结合起来考查,考查时注重物理思维与物理能力的考核.例题1.竖直面内一倾斜轨道与一足够长的水平轨道通过一小段光滑圆弧平滑连接,小物块B静止于水平轨道的最左端,如图(a)所示。

t=0时刻,小物块A 在倾斜轨道上从静止开始下滑,一段时间后与B发生弹性碰撞(碰撞时间极短);当A返回到倾斜轨道上的P点(图中未标出)时,速度减为0,此时对其施加一外力,使其在倾斜轨道上保持静止。

物块A运动的v­t图象如图(b)所示,图中的v1和t1均为未知量。

已知A的质量为m,初始时A与B的高度差为H,重力加速度大小为g,不计空气阻力。

(a)(b)(1)求物块B的质量;(2)在图(b)所描述的整个运动过程中,求物块A克服摩擦力所做的功;(3)已知两物块与轨道间的动摩擦因数均相等。

在物块B停止运动后,改变物块与轨道间的动摩擦因数,然后将A从P点释放,一段时间后A刚好能与B 再次碰上。

求改变前后动摩擦因数的比值。

例题2.如图所示,半径R=2.8m的光滑半圆轨道BC与倾角θ=37°的粗糙斜面轨道在同一竖直平面内,两轨道间由一条光滑水平轨道AB 相连,A 处用光滑小圆弧轨道平滑连接,B 处与圆轨道相切。

在水平轨道上,两静止小球P 、Q 压紧轻质弹簧后用细线连在一起。

某时刻剪断细线后,小球P 向左运动到A 点时,小球Q 沿圆轨道到达C 点;之后小球Q 落到斜面上时恰好与沿斜面向下运动的小球P 发生碰撞。

已知小球P 的质量m 1=3.2kg ,小球Q 的质量m 2=1kg ,小球P 与斜面间的动摩擦因数μ=0.5,剪断细线前弹簧的弹性势能E p =168J ,小球到达A 点或B 点时已和弹簧分离。

重力加速度g 取10m/s 2,sin 37°=0.6,cos 37°=0.8,不计空气阻力,求:(1)小球Q 运动到C 点时的速度大小;(2)小球P 沿斜面上升的最大高度h ;(3)小球Q 离开圆轨道后经过多长时间与小球P 相碰。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

力学综合题集锦1.长为L的轻绳,将其两端分别固定在相距为d的两坚直墙面上的A、B两点。

一小滑轮O跨过绳子下端悬挂一重力为G的重物C,平衡时如图所示,则AB绳中的张力为。

2.如图所示,由物体A和B组成的系统处于静止状态.A、B的质量分别为mA和m B,且m A>m B,滑轮的质量和一切摩擦不计.使绳的悬点由P点向右移动一小段距离到Q点,系统再次达到静止状态.则悬点移动前后图中绳与水平方向的夹角θ将( )A.变大B.变小C.不变D.可能变大,也可能变小3.如图所示,三个木块A、B、C在水平推力F的作用下靠在竖直墙上,且处于静止状态,则下列说法中正确的是()A.A与墙的接触面可能是光滑的B.B受到A作用的摩擦力,方向可能竖直向下C.B受到A作用的静摩擦力,方向与C作用的静摩擦力方向一定相反D.当力F增大时,A受到墙作用的静摩擦力一定不增大4.如图所示,水平桌面光滑,A、B物体间的动摩擦因数为μ(可认为最大静摩擦力等于滑动摩擦力),A物体质量为2m,B和C物体的质量均为m,滑轮光滑,砝码盘中可以任意加减砝码.在保持A、B、C三个物体相对静止且共同向左运动的情况下,B、C间绳子所能达到的最大拉力是 ( )A.12μmg B.μmg C.2μmg D.3μmg5.如图所示,物体B叠放在物体A上,A、B的质量均为m,且上、下表面均与斜面平行,它们以共同速度沿倾角为θ的固定斜面C匀速下滑,则( )A.A,B间没有静摩擦力B.A受到B的静摩擦力方向沿斜面向上C.A受到斜面的滑动摩擦力大小为2mgsinθD.A与B间的动摩擦因数μ=tanθ6.如图所示,自动卸货车始终静止在水平地面上,车厢在液压机的作用下可以改变与水平面间的倾角θ,用以卸下车厢中的货物.下列说法正确的是()A.当货物相对车厢静止时,随着θ角的增大货物与车厢间的摩擦力增大B.当货物相对车厢静止时,随着θ角的增大货物与车厢间的支持力增大C.当货物相对车厢加速下滑时,地面对货车没有摩擦力D.当货物相对车厢加速下滑时,货车对地面的压力小于货物和货车的总重力7.如图所示,在倾角为α的传送带上有质量均为m的三个木块1、2、3,中间均用原长为L、劲度系数为k的轻弹簧连接起来,木块与传送带间的动摩擦因数均为μ,其中木块1被与传送带平行的细线拉住,传送带按图示方向匀速运行,三个木块处于平衡状态.下列结论正确的是 ( )A .2、3两木块之间的距离等于L +μmg cos αkB .2、3两木块之间的距离等于L +sin α+μcos αmg kC .1、2两木块之间的距离等于2、3两木块之间的距离D .如果传送带突然加速,相邻两木块之间的距离将不变8.物体B 放在物体A 上,A 、B 的上下表面均与斜面平行(如图),当两者以相同的初速度靠惯性沿光滑固定斜面C 向上做匀减速运动时,A .A 受到B 的摩擦力沿斜面方向向上。

B .A 受到B 的摩擦力沿斜面方向向下。

C .A 、B 之间的摩擦力为零。

D .A 、B 之间是否存在摩擦力取决于A 、B 表面的性质。

9.如图所示,放在水平地面上的物体a 上叠放着物体b ,a 和b 间用轻质弹簧相连,已知弹簧处于压缩状态,整个装置处于静止状态,则关于a 、b 的受力分析正确的是:( )A .b 受到向右的摩擦力B .a 受到m 对它的向左的摩擦力C .地面对a 的摩擦力向右D .地面对a 无摩擦力作用10.两滑杆上分别套A 、B 两圆环,两环上分别用细线悬吊着两物体C 、D ,如图所示,当它们都沿滑杆向下滑动时,A 的悬线始终与杆垂直,B的悬线始终竖直向下.则( )A .A 环做的是匀速运动B .B 环做的是匀速运动C .A 环与杆之间一定有摩擦力D .B 环与杆之间一定无摩擦力11.两物体M 、m 用跨过光滑定滑轮的轻绳相连,如图所示,OA 、OB 与水平面的夹角分别为30°、60°,M 、m 均处于静止状态.则( )A .绳OA 对M 的拉力大小大于绳OB 对M 的拉力B .绳OA 对M 的拉力大小等于绳OB 对M 的拉力C .m 受到水平面的静摩擦力大小为零D .m 受到水平面的静摩擦力的方向水平向左12.质量为m 的小球放在光滑水平面上,在竖直线MN 的左方受到水平恒力1F 作用(m 可视为质点),在MN 的右方除受1F 外还受到与1F 在同一条直线上的水平恒力2F 作用,现设小球从A 点由静止开始运动,如图(a )所示,小球运动的v t -图象如图所示。

由图可知下列说法正确的是( )A.小球在MN 的右方加速度大小为132v t t - B.2F 的大小为1312mv t t -C.小球在MN 右方运动的时间为42t t -D.小球在0t =到4t t =这段时间最大位移为12v t13.如图所示,小车上固定着三角硬杆,杆的端点固定着一个质量为m 的小球.当小车有水平向右的加速度且逐渐增大时,杆对小球的作用力的变化(用F 1至F 4变化表示)可能是下图中的(OO '沿杆方向)14.如图所示,小车向右做匀加速运动的加速度大小为a ,bc 为固定在小车上的水平横杆,物块M 串在杆上,M 通过细线悬吊着一小铁球m ,M 、m 均相对小车静止,细线与竖直方向的夹角为θ.若小车的加速度逐渐增大到2a 时,M 仍与小车保持相对静止,则A .横杆对M 的作用力增加到原来的2倍B .细线的拉力增加到原来的2倍C .细线与竖直方向的夹角增加到原来的2倍D .细线与竖直方向夹角的正切值增加到原来的2倍15.如图甲所示,轻弹簧一端竖直固定在水平地面上,其正上方有一个物块,物块从高处自由下落到弹簧的上端O 处,将弹簧压缩了x 0时,物块的速度变为零.从物块与弹簧接触开始,在图乙中能正确反映物块加速度的大小随下降的位移x 变化的图象可能是D16.如图所示,一质量为M 的直角劈B 放在水平面上,在劈的斜面上放一质量为m 的物体A ,用一沿斜面向上的力F 作用于A 上,使其沿斜面匀速上滑,在A 上滑的过程中直角劈B 相对地面始终静止,则关于地面对劈的摩擦力f 及支持力N 正确的是 ( ) A .f = 0 ,N = Mg +mg B .f 向左,N <Mg +mg C .f 向右,N <Mg +mg D .f 向左,N =Mg +mg17.某人拍得一张照片,上面有一个倾角为α的斜面,斜面上有一辆小车,小车上悬挂一个小球,如图所示,悬挂小球的悬线与垂直斜面的方向夹角为β,下面判断正确的是A .如果β=α,小车一定处于静止状态B .如果β=0,斜面一定是光滑的C .如果β>α,小车一定是沿斜面加速向下运动D .无论小车做何运动,悬线都不可能停留图中虚线的右侧O ’ F 2 F 1 O F 3 F 4 A O '’ F 2 F 1 O F 3 F 4 B O ’ F 2 F 1 O F 3 F 4 C O O ’ F 2 F 1 F 3 F 4 D O x 0 x a 0 x A g x a 0 x B g x a 0 x D g x a 0 x C g 图甲 图乙 αF V B A αβ18.为了测量小木板和斜面间的摩擦因数,某同学设计如图所示实验,在小木板上固定一个轻弹簧,弹簧下端吊一个光滑小球,弹簧长度方向与斜面平行,现将木板连同弹簧、小球放在斜面上,用手固定木板时,弹簧示数为F 1,放手后,木板沿斜面下滑,稳定后弹簧示数为F 2,测得斜面斜角为θ,则木板与斜面间动摩擦因数为多少?(斜面体固定在地面上)19.如图所示,小车上放着由轻弹簧连接的质量为m A =1kg ,m B =0.5kg 的A 、B 两物体,两物体与小车间的最大静摩擦力分别为4N 和1N ,弹簧的劲度系数k =0.2N/cm 。

①为保证两物体随车一起向右加速运动,弹簧的最大伸长是多少?②为使两物体随车一起向右以最大的加速度向右加速运动,弹簧的伸长是多少?20.如图所示,倾角为θ的光滑斜面上放有一个质量为m1的长模板,当质量为m2的物块以初速度v0在木板上平行斜面向上滑动时,木板恰好相对斜面体静止。

已知物块在木板上滑的整个过程中,斜面体相对底面没有滑动。

求:(1)物块沿木板上滑过程中,鞋面题受到底面的摩擦力;(2)物块沿木板上滑过程中,物块由速度v 0变为20v 时所通过的距离21.如图所示,固定在水平面上的斜面倾角θ=37°,长方体木块A 的MN面上钉着一颗小钉子,质量m =1.5kg 的小球B 通过一细线与小钉子相连接,细线与斜面垂直,木块与斜面间的动摩擦因数μ=0.50.现将木块由静止释放,木块将沿斜面下滑.求在木块下滑的过程中小球对木块MN 面的压力.(取g =10m/s 2, sin37°=0.6, cos37°=0.8)22.如图所示,在光滑水平地面上,静止放着一质量m 1=0.2kg 的绝缘平板小车,小车的右边处在以PQ 为界的匀强电场中,电场强度E 1=1×104V/m ,小车A 点正处于电场的边界.质量m 2 = 0.1kg ,带电量q = 6×10-5C 的带正电小物块(可视为质点)置于A 点,其与小车间的动摩擦因数μ = 0.40(且最大静摩擦力与滑动摩擦力相等).现给小物块一个v 0 = 6m/s 的速度.当小车速度减为零时,电场强度突然增强至E 2 = 2×104V/m ,而后保持不变.若小物块不从小车上滑落,取g = 10m/s 2.试解答下列问题: (1)小物块最远能向右运动多远? (2)小车、小物块的最终速度分别是多少?(3)小车的长度应满足什么条件?m m v 0 P Q A E图12 23.如图所示,游乐列车由许多节车厢组成。

列车全长为L ,圆形轨道半径为R ,(R 远大于一节车厢的高度h 和长度l ,但L>2πR).已知列车的车轮是卡在导轨上的光滑槽中只能使列车沿着圆周运动,在轨道的任何地方都不能脱轨。

试问:在没有任何动力的情况下,列车在水平轨道上应具有多大初速度v0,才能使列车通过圆形轨道而运动到右边的水平轨道上?24.如图12所示,在同一竖直平面内两正对着的相同半圆光滑轨道,相隔一定的距离,虚线沿竖直方向,一小球能在其间运动,今在最低点与最高点各放一个压力传感器,测试小球对轨道的压力,并通过计算机显示出来,当轨道距离变化时,测得两点压力差与距离x 的图象如右下图所示。

(不计空气阻力,g 取10 m/s 2)求:(1)小球的质量;(2)相同半圆光滑轨道的半径;(3)若小球在最低点B 的速度为20m/s ,为使小球能沿光滑轨道运动,求x 的最大值。

25.如图所示,物块M 和m 用一不可伸长的轻绳通过定滑轮连接,m 放在倾角 =300的固定的光滑斜面上,而穿过竖直杆PQ 的物块M 可沿杆无摩擦地下滑,M=3m ,开始时将M 抬高到A 点,使细绳水平,此时OA 段的绳长为L=4.0m ,现将M 由静止开始下滑,求当M 下滑到3.0m 至B 点时的速度?(g=10m/s 2)26.如图所示,质量为m 1的物体A 经一轻质弹簧与下方地面上的质量为m 2的物体B 相连,弹簧的劲度系数为k ,A 、B 都处于静止状态.一条不可伸长的轻绳绕过轻滑轮,一端连物体A,另一端连一轻挂钩.开始时各段绳都处于伸直状态,A 上方的一段绳沿竖直方向.现在挂钩上挂一质量为m 3的物体C 并从静止状态释放,已知它恰好能使B 离开地面但不继续上升.若将C 换成一个质量为(m 1+m 3)的物体D,仍从上述初始位置由静止状态释放,则这次B 刚离地时D 的速度的大小是多少?已知重力加速度为g.m 1 m 2 B A。

相关文档
最新文档