第11章 叶片式泵与风机得理论基础PPT课件

合集下载

11 叶片式泵与风机的理论基础

11 叶片式泵与风机的理论基础
14
叶轮中液体的流动情况
速度v1与u1和v2与u2的夹角,称为α1和α2角--工作角 w1与负v1 和 w2与负v2 间的夹角,称为β1和β2角 --安装角
15
欧 拉 方 程
叶轮出口处的速度三角形: 图中速度v2的分解: 切向分速用符号 vu2 表示 径向分速用符号 vr2 表示
v2 w2
β2
vr2
α2
vu2
β2
u2
vu 2 = v2 cos α 2 = u2 vr 2 ctgβ 2 vr 2 = v2 sin α 2
16
欧 拉 法 加 速 度
r r r r r r du u u u u = + uzz u yy + ux + a= u u y dt t x z
r r + uy + u z u a = + ux t x y z
式中
ΣM
QT
--作用于全部水流的所有力矩之和 --通过叶轮的理论流量
25
基本方程式的推导
叶轮是在无水力损失下运转,故叶轮上的功率全部 传给了液体--假定3,则
N T = ΣMω ( kg m / s )
式中
NT
--叶轮的理论功率 --作用于全部水流的所有力矩之和 --叶轮旋转角速度
26
ΣM
ω
基本方程式的推导
泵 与 风 机
Pump and Fan
第十一章
叶片式泵与风机的理论基础
第一节
工作原理:
工作原理及性能参数
敞口圆筒绕中轴旋转时, 在离心力的作用下,液面 呈抛物面状,液体沿筒壁 上升。转的越快上升越高 离心泵是利用叶轮旋转而 使水产生离心力来工作的
2

泵与风机完整PPT课件

泵与风机完整PPT课件

03
泵与风机运行调节与维护
运行调节方法
01
02
03
变速调节
通过改变泵与风机的转速 来调节流量,适用于电动 机驱动的设备。
节流调节
通过改变管道中阀门的开 度来调节流量,简单易行 但效率较低。
汽蚀调节
通过改变泵入口压力或温 度来调节流量,适用于某 些特定类型的泵。
维护保养措施
定期检查
对泵与风机的运行状态进 行定期检查,包括振动、 噪音、温度等指标。
高效水力设计
01
通过优化水力模型,降低水力损失,提高泵与风机的运行效率。
高效电机设计
02
采用高效电机,提高电机效率,降低能源消耗。
高效控制系统设计
03
采用先进的控制系统,实现泵与风机的智能控制和优化运行,
提高整体运行效率。
系统节能改造方案
系统诊断与优化
通过对现有泵与风机系统进行全 面诊断,找出能源浪费的症结所
实验讨论
03
04
05
1. 分析实验结果与理论 2. 讨论实验操作过程中 3. 提出改进实验方案或
预测的差异及原因;
遇到的问题及解决方法; 方法的建议。
THANKS
感谢观看
发生。
04
泵与风机节能技术及应用
节能技术概述
节能技术定义
通过改进设备设计、提高运行效率、减少能源浪费等手段,实现 能源的有效利用和节约。
节能技术分类
包括设备节能技术、系统节能技术广泛应用于工业、建筑、交通等领域,是实现可持续发展的重要 手段。
高效节能产品设计
确定转速n和功率P
根据所选类型和性能参数确定 转速和功率。
选型原则
根据实际需求,综合考虑性能 参数、可靠性、经济性等因素 进行选型。

泵与风机课件--泵与风机的叶轮理论

泵与风机课件--泵与风机的叶轮理论

叶轮类型包括 离心式、轴流 式、混流式等, 适用于不同的 流体输送场景
叶轮的分类
离心式叶轮:叶片沿径向分布,适用于低压、大流量场合
轴流式叶轮:叶片沿轴向分布,适用于高压、小流量场合
混流式叶轮:叶片沿径向和轴向混合分布,适用于中压、中流 量场合
旋流式叶轮:叶片沿径向和轴向旋转分布,适用于高压、大流 量场合
铸造工艺:砂型铸造、金属型铸造、离心铸造等 材料选择:不锈钢、铸铁、铝合金、铜合金等 铸造方法:重力铸造、低压铸造、高压铸造等 材料性能:耐磨性、耐腐蚀性、耐热性等 铸造缺陷:气孔、缩孔、裂纹等 铸造工艺优化:提高铸造质量,降低成本,提高生产效率
焊接工艺与材料选择
焊接工艺:包括电弧焊、激光焊、电子束焊等 材料选择:根据叶轮的工作环境和性能要求选择合适的材料,如不锈钢、铝合金、钛合金等 焊接质量控制:通过无损检测、金相分析等方法确保焊接质量 焊接工艺优化:通过优化焊接参数、改进焊接设备等方法提高焊接效率和质量
斜流式叶轮:叶片沿斜向分布,适用于低压、中流量场合
轴向流叶轮:叶片沿轴向分布,适用于低压、大流量场合
叶轮的工作原理
叶轮是泵与风机的核心部件,负责将流体能量转化为机械能
叶轮由叶片和轮毂组成,叶片负责将流体能量转化为机械能,轮毂负责支撑叶片
叶轮通过旋转将流体吸入,加速,排出,பைடு நூலகம்现流体能量的转换 叶轮的工作原理涉及到流体力学、机械工程等多个学科领域
风压:气流通过叶轮的压力
叶片角度与风量、风压的关系:叶片角度越大,风量越大,风压越小;叶片角度越小, 风量越小,风压越大。
叶片形状对风量与风压的影响
叶片形状:影响 风量与风压的主 要因素
叶片形状与风量: 叶片形状不同, 风量也不同

第11章 叶片式泵与风机得理论基础分析

第11章  叶片式泵与风机得理论基础分析

=Ne/N
• 泵或风机的轴功率:
N Ne QH pQ 1000 1000

风机的静压效率j :
j
pj
p
• 通常泵或风机的效率,是由实验确定的。
5.转速:指泵或风机叶轮每分钟的转数,即“r/min”
上一内容 下一内容 回主目录
返回
2020/7/5
第二节 基本方程—欧拉方程
• 叶轮几何形状及参数 • 速度三角形 • 叶轮的欧拉方程式 • 叶轮及其对性能的影响
上一内容 下一内容 回主目录
返回
2020/7/5
推导依据是“动量矩”:质点系对某一转轴的动量矩 对时间的变化率等于作用于该质点系的所有外力对该 轴的合力矩。 dL M
dt
L mvur Qdtvur dL Q(vu2r2 vu1r1)dt
单位时间内流经叶轮进出口流体动量矩的变化则为
M QT (vu2Tr2 vu1Tr1)
上一内容 下一内容 回主目录
返回
2020/7/5
而加在转轴上的外功率 N M 理想流体下,轴功率等于有效功率 N QT HT
1
H T g u2T vu2T u1T vu1T
上一内容 下一内容 回主目录
返回
2020/7/5
三、叶轮的欧拉方程式
• 理想叶轮的欧拉方程式
• 定义:泵所输送的单位重量流量的流体从进口至出口的 能量增值。也就是单位重量流量的流体通过泵所获得的 有效能量,以p表示,单位是m。
• 单位重量流量的流体所获得的能量增量可用能量方程来 计算。如分别取泵或风机的入口与出口为计算断面,列 出它们的表达式可得:
H
Z2
p2
v22 2g
Z1

叶片式泵与风机的理论

叶片式泵与风机的理论

第八章叶片式泵与风机的理论第一节离心式泵与风机的叶轮理论离心式泵与风机是由原动机拖动叶轮旋转,叶轮上的叶片就对流体做功,从而使流体获得压能及动能。

因此,叶轮是实现机械能转换为流体能量的主要部件。

一、离心式泵与风机的工作原理泵与风机的工作过程可以用图2—l来说明。

先在叶轮内充满流体,并在叶轮不同方向上取A、B、C、D几块流体,当叶轮旋转时,各块流体也被叶轮带动一起旋转起来。

这时每块流体必然受到离心力的作用,从而使流体的压能提高,这时流体从叶轮中心被甩向叶轮外缘,,于是叶轮中心O处就形成真空。

界流体在大气压力作用下,源源不断地沿着吸人管向O处补充,而已从叶轮获得能量的流体则流人蜗壳内,并将一部分动能转变为压能,然后沿压出管道排出。

由于叶轮连续转动,就形成了泵与风机的连续工作过程。

流体在封闭的叶轮中所获得的能(静压能):上式指出:流体在封闭的叶轮内作旋转运动时,叶轮进出口的压力差与叶轮转动角速度的平方成正比关系变化;与进出口直径有关,内径越小,外径越大则压力差越大,但进出口直径均受一定条件的限制;且与密度成正比关系变化,密度大的流体压力差也越大。

二、流体在叶轮内的运动及速度三角形为讨论叶轮与流体相互作用的能量转换关系,首先要了解流体在叶轮内的运动,由于流体在叶轮内的运动比较复杂,为此作如下假设:①叶轮中叶片数为无限多且无限薄,即流体质点严格地沿叶片型线流动,也就是流体质点的运动轨迹与叶片的外形曲线相重合;②为理想流体,即无粘性的流体,暂不考虑由粘性产生的能量损失;③流体作定常流动。

流体在叶轮中除作旋转运动外,同时还从叶轮进口向出口流动,因此流体在叶轮中的运动为复合运动。

当叶轮带动流体作旋转运动时,流体具有圆周运动(牵连运动),如图2—3(a)所示。

其运动速度称为圆周速度,用符号u表示,其方向与圆周切线方向一致,大小与所在半径及转速有关。

流体沿叶轮流道的运动,称相对运动,如图2—3(b)所示,其运动速度称相对速度,符号w表示,其方向为叶片的切线方向、大小与流量及流道形状有关。

泵与风机培训资料PPT课件

泵与风机培训资料PPT课件

第23页/共97页
V单 V并 V双
离心泵串联
同一流量下,串联泵的压头为单泵压头的两倍,据此作出串联泵合 成特性曲线
串联泵的流量大于一台单泵的流量,小于两台单泵的流量
V单 V并 V双
H HL
H串V
H2
H V 1
H1
HL V 2
II I
0
V1
V2
V
第24页/共97页
并串联的选择
高阻管路:串联泵 低阻管路:并联泵
u12
2g
H
f 12
工作流量下泵有效功率为
H
z2
z1
p2 p1
g
0.5
0.28 0.025106
1000 9.81
31.6mH2O
泵轴功率为
Ne 2.15 64.2%
N 3.35
第18页/共97页
离心泵的工作点
当泵安装在一定 管路系统中的离心泵 工作时,泵输出的流 量即为管路流量、泵 提供的压头即为管路 所要求的压头。泵的 特性曲线与管路特性 曲线有一交点a点, 该交点称为离心泵的 工作点。
症状:
噪声大、泵体振动,流量、压头、效率都明显下降。
后果:
高频冲击加之高温腐蚀同时作用使叶片表面产生一个个凹穴,严重时成海 绵状而迅速破坏。
防止措施:
把离心泵安装在恰当的高度位置上,确保泵内压强最低点处的静压超过工作温度
第27页/共97页
离心泵的类型与选用
离心泵的类型 清水泵
清水泵物理化学性质类似于水的介质。清水泵有若干系列。最简单的 为单级单吸式,系列代号为“IS”,结构简图如图,若需要的扬程较高, 则可选D系列多级离心泵。若需要流量很大,则可选用双吸式离心泵,其系 列代号为“Sh” 。

流体力学泵与风机——叶片式泵与风机的理论

流体力学泵与风机——叶片式泵与风机的理论
改变转速时各参数的变化 比例定律
改变几何尺寸时 各参数的变化
改变密度时 各参数的变化
第四节 比 转 数
➢ 比转数:在相似定律的基础上推导的一个包括转速、流量、 扬程 在内的综合相似特征数,用符号ns表示。
泵的比转数
风机的比转数
比转数公式的说明
比转数应用
比转数对性能曲线的影响
比转数公式的说明
➢ (1)同一台泵或风机,在不同工况下有不同的比转数,一般是用 最高效率点的比转数作为相似准则的比转数。
a:陡降的曲线: 这种曲线有25%~30
%的斜度,当流量变动很小时,
H
扬程变化很大,适用于扬程变化
大而流量变化小的情况,如电厂
循环水泵;
b:平坦的曲线,这种曲线具有8%一 12%的斜度;当流量变化很大时,
K
扬程变化很小,适用于流量变化
b
大而要求扬程变化小的情况,如
电厂的汽包锅炉给水泵 C:有驼峰的曲线,其扬程随流量的
➢ 图中a所表示的qv—H曲线的变 化情况可见,在低比转数时, 扬程随流量的增加,下降较为 缓和。当比转数增大时,扬程 曲线逐渐变陡,因此轴流泵的 扬程随流量减小而变得最陡。
翼型及叶栅的空气动力特性
(1)骨架线 通过翼型内切圆圆心的连线,是构成翼型的基础,其形状决定了 翼型的空气动力特性。
(2)前缘点、后缘点: 骨架线与型线的交点, (3)弦长b : 前缘点与后缘点连接的直线称弦长或翼弦 (4)翼展l: 垂直于纸面方向叶片的长度(机翼的长度)称翼展 (5)展弦比:σ翼展l与弦长b之比称展弦比 (6)挠度f : 弦长到骨架线的距离, (7)厚度c: 翼型上下表面之间的距离,称翼型厚度 8)冲角口 : 翼型前来流速度的方向与弦长的夹角称冲角,冲角在翼弦以下

泵与风机的理论基础共86页PPT

泵与风机的理论基础共86页PPT

泵与风机的理论基础
46、法律有权打破平静。——马·格林 47、在一千磅法律里,没有一盎司仁 爱。— —英国
48、法律一多,公正就少。——托·富 勒 49、犯罪总是以惩罚相补偿;只有处 罚才能 使犯罪 得到偿 还。— —达雷 尔
50、弱者比强者更能得到法律的保护 。—— 威·厄尔
ห้องสมุดไป่ตู้
31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克

泵与风机完整通用课件

泵与风机完整通用课件

03
风机的分类与性能参数
风机的分类
离心式风机
利用叶轮旋转产生的离心力进行气体压缩, 适用于大流量、低压力场合。
轴流式风机
利用叶轮旋转产生的推力进行气体压缩, 适用于低流量、高压力场合。
混流式风机
结合离心式和轴流式风机的特点,适用于 中流量、中压力场合。
罗茨风机
利用两个叶轮间空隙大小的变化进行气体 压缩,适用于高压力场合。
• 总结词:通过定期监测和维护泵与风机, 确保其正常运行,提高设备的使用寿命和 可靠性。
泵与风机的运行监测与维护
运行监测
监测泵与风机的振动、声音和温度等参数, 及时发现异常情况。 检查泵的出口压力、流量和电机电流等参 数,确保设备在正常范围内运行。
泵与风机的运行监测与维护
• 定期记录和分析监测数据,评估设备的性能和可靠性。
详细描述
泵的性能参数是衡量泵性能的重要指标,包括流量、扬程、功率、效率等。流量 表示单位时间内通过泵的流体体积或质量;扬程表示流体通过泵后所获得的总能 量;功率表示泵所消耗的机械功率;效率表示泵的能量转换效率。
泵的效率与损失
总结词
分析泵的效率与损失的来源,以及提高泵效率的方法。
详细描述
泵在工作过程中会存在各种形式的损失,如机械损失、水力损失等,这些损失 会导致泵的效率降低。为了提高泵的效率,需要分析各种损失的来源,并采取 相应的措施进行优化和改进。
风机的选型与设计
要点一
总结词
根据风量、风压、介质特性等参数选择合适的风机型号。
要点二
详细描述
风机的选型需要依据所需风量、风压以及介质特性进行选 择。不同类型和规格的风机具有不同的性能参数和使用范 围,因此需要根据实际情况进行选择。同时,还需要考虑 风机的效率和可靠性,以确保其长期稳定运行。

泵与风机的工作原理ppt课件

泵与风机的工作原理ppt课件

教学策略选择与设计
➢ 主要采用的教学与活动策略 ◆课前调查活动——教师引导学生做好学习准备; ◆课中对设备的结构进行交流分享、问题探究等活动,激 发学习兴趣,引导认知职业的多样性。
◆课后延伸活动——小组活动,不同设备的小对话,拓 展认识。
➢ 关键问题: ◆课前的备课设计要简单明确,适合学生能力;
◆课堂学习互动活动教师要注意引导,借助多媒体促进学 生思考;
特点:损失少,经济性能好。压力高而均匀,流量均匀,转速 高,能与原动机直联。
电厂应用:输送电厂中的润滑油,输送燃油等粘稠液体。ຫໍສະໝຸດ ➢ 水环式真空泵的工作原理
工作原理:是靠泵腔容积的变化来实现吸气、压缩和排气的,因此它 属于变容式真空泵。
优点:结构紧凑,泵的转数较高,一般可与电动机直联,无须减速装 置。故用小的结构尺寸,获得大的排气量,占地面积也小。
电厂应用:真空过滤、真空引水、真空送料、真空蒸发、真空浓缩、 真空回潮和真空脱气 。
➢ 罗茨鼓风机
工作原理:气缸体的吸入口和排风口的连通角度约为240°,吸入侧和排风侧 之间形成以转子和气缸体所围成的封闭空间。
优点:具有结构合理、体积小、效率高、重量轻、流量大、噪音低、高效节能, 运转平稳、使用寿命长维修方便等特点。
电厂应用:电厂污水处理、煤粉气力输送、和电力系统中。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
(五)其他型式泵与风机的工作原理
➢ 大气喷射泵
工作原理:动力流体体积扩大,压强降低,并且由于流速快,形成 局部真空。
• 返回
(四)回转式泵与风机的工作原理

第十一章 叶片式泵与风机 ()

第十一章 叶片式泵与风机 ()

前盘
叶片 轮毂
轴 后盘
板式叶片 空心叶片
一、离心式叶轮的投影图
叶片出口宽度
叶片出口直径
轴面投影图
平面投影图
叶轮投影图
二、叶轮内流体的运动及其速度三角形
1.叶轮内流体的运动及其速度三角形
由于速度是矢量,所以绝对速度等于牵连速度和相对速度 的矢量和:
即:
叶轮进出口速度速度图
速度三角形是研究 流体在叶轮内能量转化 及其参数变化的基础。
后向式(2a<90) 径向式(2a=90) 前向式(2a>90)
2a对HT的影响
为提高理论扬程HT,设计上使a1≈90。则在转速 n、流量qV、叶轮叶片一定的情况下,有:
结论:
①. 2a<90o→HT < ; ② . 2a=90o→HT = ; ③ . 2a>90o→HT > ;
第十一章 叶片式泵与风机 ().ppt
第一节 离心式泵与风机的叶轮理论
讨论泵与风机的原理和性能,就是要研究流体在 泵与风机内的流动规律,从而找出流体流动与各过流 部件几何形状之间的关系,确定适宜的流道形状,以 便获得符合要求的水力(气动)性能。流体流经泵与 风机内各过流部风机内各过流部件的对比情况
向或轴向流入。 增大叶轮外径和提高叶轮转速。因为
u2=2D2n/60,故D2和n HT。
绝对速度的沿圆周方向的分量2u。提高2u也可 提高理论能头,而2u与叶轮的型式即出口安装角 2a有关,这一点将在后面专门讨论。 能量方程式的第二形式:
由叶轮叶片进、出口速度三角形可知:
陡降型

缓降型
缓降型曲线的泵或风机可用 于流量变化大而要求压头变化 不大的情况。
具有驼峰型性能曲线的泵或风 机,可能出现不稳定工况。这种 不稳定工况是应避免的。

流体力学泵与风机——叶片式泵与风机的理论

流体力学泵与风机——叶片式泵与风机的理论

离心式泵与风机的工作原理
工作原理图释
工作原理图释
➢ 先在叶轮内充满流体,并在叶轮不同方向 上取A、B、C、D几块流体,当叶轮旋转 时,各块流体也被叶轮带动一起旋转起来。 这时每块流体必然受到离心力的作用,从 而使流体的压能提高,这时流体从叶轮中 心被甩向叶轮外缘,,于是叶轮中心O处 就形成真空。外界流体在大气压力作用下, 源源不断地沿着吸人管向中心O处补充, 而已从叶轮获得能量的流体则流人蜗壳内, 并将一部分动能转变为压能,然后沿压出 管道排出。由于叶轮连续转动,就形成了 泵与风机的连续工作过程。
泵与风机性能曲线 离心式泵与风机性能曲线分析 轴流式泵与风机的性能曲线分析
主页
功率
➢ 功率是指单位时间内所做的功。 1.有效功率Pe。 ➢ 有效功率是单位时间内通过泵或风机流体实际所得到功率。
➢ 2.轴功率P ➢ 轴功率是原动机传给泵或风机轴上的功率。
3.原动机功率PM: ➢ 原动机功率系指原动机输出功率。
➢ 出口速度三角形变化
出口速度三角形变化
➢ 由于流体分布不均匀,则在叶轮 出口处,相对速度的方向不再是 叶片出口的切线方向,而是向叶 轮旋转的反方向转动了个角度, 使流动角β2叶片安装角β2a,出口 速度三角形由△abc变为△abd
➢ 由轴向涡流引起速度偏移,使β2 <β2a导致v2u<v2u∞,使有限叶片 叶轮的理论能头下降。则有限叶 片叶轮的理论能头为HT,一般用 滑移系数K来修正无限多叶片叶 轮的理论能头,即
叶片式泵与风机的理论
泵与风机的叶轮理论
离心式泵与风机的叶轮理论 轴流式泵与风机的叶轮理论
泵与风机的性能曲线 相似理论
离心式泵与风机的叶轮理论
离心式泵与风机的工作原理 流体在叶轮内的运动及速度三角形 能量方程式(欧拉方程式)及其分析 离心式叶轮叶片型式的分析 有限叶片叶轮中流体的运动
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

返回
2020/8/5
下篇 泵和风机
上一内容 下一内容 回主目录
返回
2020/8/5
下篇 泵和风机
上一内容 下一内容 回主目录
返回
2020/8/5
下篇 泵和风机
上一内容 下一内容 回主目录
返回
2020/8/5
下篇 泵和风机
上一内容 下一内容 回主目录
返回
2020/8/5
下篇 泵和风机
上一内容 下一内容 回主目录
• 流体被甩出后,叶轮中心部分的压 强降低。外界流体就能从吸入口通 过叶轮前盘中央的孔口吸入,源源 不断地输送气体。
泵演示
风机演示
上一内容 下一内容 回主目录
返回
2020/8/5
No 一、工作原理与基本结构
2.离心泵和风机的基本结构
ImImaNagogee
离心泵的基本结构
上一内容 下一内容 回主目录
• 风机的压头(全压)p:指单位体积气体通过风机所获得 的能量增量。单位为Pa,由于1Pa=1N/m2;故风机的p 表示压强又称全压。
• 风机的静压pj:指风机全压减去风机出口动压,即假设 Z2=Z1时有:
pj p2 p12v22
上一内容 下一内容 回主目录
返回
2020/8/5
二、泵和风机的性能参数
返回
2020/8/5
二、速度三角形
上一内容 下一内容 回主目录
返回
2020/8/5
三、叶轮的欧拉方程式
• 理想叶轮的欧拉方程式
– 理想化条件下单位重量流体的能量增量与流体在 叶轮中运动的关系,即欧拉方程:
H T g 1u2Tvu2Tu1Tvu1T
• 实际叶轮的欧拉方程式
– 实际叶轮工作时,流体从外加能量所获得的理论 扬程值。这个公式也叫做理论扬程方程式。
返回
2020/8/5
第十一章 叶片式泵与风机得理论基础
第一节 基本结构和性能参数 第二节 基本方程式——欧拉方程式 第三节 离心泵与风机的实际性能曲线 第四节 相似律在泵与风机的实际应用 第五节 泵与风机的工作点及流量调节 第六节 泵与风机的选择
上一内容 下一内容 回主目录
返回
2020/8/5
第一节 基本结构和性能参数
• 当2>90°时,ctg2<0,这时
HT>u22/2g,叶片出口和叶轮旋转方 向相同,这种叶型叫做前向叶型。
上一内容 下一内容 回主目录
返回
2020/8/5
四、叶轮及其对性能的影响
根据以上分析,似乎可得出如下结论: • 具有前向叶型的叶轮所获得的扬程最
大,其次为径向叶型,而后向叶型的 叶轮所获得的扬程最小。 • 因此似乎具有前向叶型的泵或风机的 效果最好。
2.流量Q
• 单位时间内泵或风机所输送的流体量称为流量。 • 常用体积流量表示,单位为“m3/s”或“m3/h”。 • 严格讲,风机的容积流量特指风机进口处的容积流量。
3.功率
• 泵的有效功率:在单位时间内通过泵的流体所获得的总 能量叫有效功率,以符号Ne表示
Ne=QH/1000 kW
• 风机的有效功率:在单位时间内通过风机的流体所获得 的总能量,也以符号Ne表示 Ne=Qp/1000 kW
返回
2020/8/5
一、工作原理与基本结构
上一内容 下一内容 回主目录
返回
2020/8/5
一、工作原理与基本结构
上一内容 下一内容 回主目录
离心风机的基本结构
返回
2020/8/5
二、泵和风机的性能参数
1.泵的扬程H与风机的全压ቤተ መጻሕፍቲ ባይዱ和静压pj (1)泵的扬程H
• 定义:泵所输送的单位重量流量的流体从进口至出口的 能量增值。也就是单位重量流量的流体通过泵所获得的 有效能量,以p表示,单位是m。
• 输送机械向流体传递的能量,主要用来克服管路系 统的能量损失,提高流体位能,满足工艺对压力的 要求
• 泵与风机是利用外加能量输送流体的流体机械。它 们大量地应用于燃气及供热与通风专业。
• 主要学习内容:
– 常用的泵与风机的基本结构、工作原理、性能参 数、运行、调节和选用方法等知识。
上一内容 下一内容 回主目录
• 工作原理与基本结构 • 泵和风机的性能参数
上一内容 下一内容 回主目录
返回
2020/8/5
一、工作原理与基本结构
1.离心泵和风机的工作原理
• 当叶轮随轴旋转时,叶片间的流体 也随叶轮旋转而获得离心力,并使 流体从叶片之间的出口处甩出。
• 被甩出的流体挤入机壳,于是机壳 内的流体压强增高,最后被导向出 口排出。
流体力学泵与风机
上一内容 下一内容 回主目录
返回
2020/8/5
整体概述
概况一
点击此处输入相关文本内容 点击此处输入相关文本内容
概况二
点击此处输入相关文本内容 点击此处输入相关文本内容
概况三
点击此处输入相关文本内容 点击此处输入相关文本内容
上一内容 下一内容 回主目录
返回
下篇 泵和风机
• 为了把一定流量的流体沿管路系统从一处送到另一 处,常采用流体输送机械来实现。
• 单位重量流量的流体所获得的能量增量可用能量方程来 计算。如分别取泵或风机的入口与出口为计算断面,列 出它们的表达式可得:
HZ2p 22 v2 g 2Z1p 12 v1 g 2
上一内容 下一内容 回主目录
返回
2020/8/5
二、泵和风机的性能参数
1.泵的扬程H与风机的全压p和静压pj (2)风机的全压
5.转速:指泵或风机叶轮每分钟的转数,即“r/min”
上一内容 下一内容 回主目录
返回
2020/8/5
第二节 基本方程—欧拉方程
• 叶轮几何形状及参数 • 速度三角形 • 叶轮的欧拉方程式 • 叶轮及其对性能的影响
上一内容 下一内容 回主目录
返回
2020/8/5
一、叶轮几何形状及参数
上一内容 下一内容 回主目录
上一内容 下一内容 回主目录
返回
2020/8/5
二、泵和风机的性能参数
4.效率
• 泵或风机的有效功率与输入的轴功率的比,称为泵或风
机的全压效率(简称效率)
=Ne/N
• 泵或风机的轴功率:
NNeQH pQ 10001000

风机的静压效率j : j
pj p
• 通常泵或风机的效率,是由实验确定的。
HT1g u2vu2u1vu1
上一内容 下一内容 回主目录
返回
2020/8/5
四、叶轮及其对性能的影响
• 当2=90°时,ctg2=0,这时HT=
u22/2g,叶片出口按径向装设,这 种叶型叫做径向叶型。
• 当2<90°时,ctg2>0,这时
HT<u22/2g,叶片出口和叶轮旋转方 向相反,这种叶型叫做后向叶型。
相关文档
最新文档