考前三个月高考数学(全国甲卷通用理科)知识方法篇专题8概率与统计第38练含答案

合集下载

2022高考考前三个月数学(四川专用理科)二轮文档:专题8 概率与统计 第38练 Word版含答案

2022高考考前三个月数学(四川专用理科)二轮文档:专题8 概率与统计 第38练 Word版含答案

第38练 随机变量及其分布列[题型分析·高考展望] 随机变量及其分布列是高考的一个必考热点,主要包括离散型随机变量及其分布列,期望,二项分布及其应用.对本部分学问的考查,一是以实际生活为背景求解离散型随机变量的分布列和期望;二是独立大事概率的求解;三是考查二项分布.常考题型精析题型一 条件概率与相互独立大事的概率例1 (1)(2022·课标全国Ⅱ)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( ) A .0.8 B .0.75 C .0.6 D .0.45 答案 A解析 已知连续两天为优良的概率是0.6,那么在前一天空气质量为优良的前提下,要求随后一天的空气质量为优良的概率,可依据条件概率公式,得P =0.60.75=0.8.(2)(2022·山东)乒乓球台面被球网分隔成甲、乙两部分,如图,甲上有两个不相交的区域A ,B ,乙被划分为两个不相交的区域C ,D .某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在C 上记3分,在D 上记1分,其他状况记0分.对落点在A 上的来球,队员小明回球的落点在C 上的概率为12,在D 上的概率为13;对落点在B 上的来球,小明回球的落点在C 上的概率为15,在D 上的概率为35.假设共有两次来球且落在A ,B 上各一次,小明的两次回球互不影响.求:①小明两次回球的落点中恰有一次的落点在乙上的概率; ②两次回球结束后,小明得分之和ξ的分布列与数学期望.解 ①记A i 为大事“小明对落点在A 上的来球回球的得分为i 分”(i =0,1,3), 则P (A 3)=12,P (A 1)=13,P (A 0)=1-12-13=16.记B j 为大事“小明对落点在B 上的来球回球的得分为j 分”(j =0,1,3), 则P (B 3)=15,P (B 1)=35,P (B 0)=1-15-35=15.记D 为大事“小明两次回球的落点中恰有1次的落点在乙上”. 由题意,D =A 3B 0+A 1B 0+A 0B 1+A 0B 3,由大事的独立性和互斥性,得P (D )=P (A 3B 0+A 1B 0+A 0B 1+A 0B 3) =P (A 3B 0)+P (A 1B 0)+P (A 0B 1)+P (A 0B 3) =P (A 3)P (B 0)+P (A 1)P (B 0)+P (A 0)P (B 1)+ P (A 0)P (B 3)=12×15+13×15+16×35+16×15=310, 所以小明两次回球的落点中恰有1次的落点在乙上的概率为310.②由题意,随机变量ξ可能的取值为0,1,2,3,4,6, 由大事的独立性和互斥性,得 P (ξ=0)=P (A 0B 0)=16×15=130,P (ξ=1)=P (A 1B 0+A 0B 1)=P (A 1B 0)+P (A 0B 1) =13×15+16×35=16, P (ξ=2)=P (A 1B 1)=13×35=15,P (ξ=3)=P (A 3B 0+A 0B 3)=P (A 3B 0)+P (A 0B 3) =12×15+16×15=215, P (ξ=4)=P (A 3B 1+A 1B 3)=P (A 3B 1)+P (A 1B 3)=12×35+13×15=1130, P (ξ=6)=P (A 3B 3)=12×15=110.可得随机变量ξ的分布列为ξ 0 1 2 3 4 6 P13016152151130110所以数学期望E (ξ)=0×130+1×16+2×15+3×215+4×1130+6×110=9130.点评 (1)利用定义,分别求P (A )和P (AB ),得P (B |A )=P (AB )P (A ).这是通用的求条件概率的方法.(2)借助古典概型概率公式,先求大事A 包含的基本大事数n (A ),再在大事A 发生的条件下求大事B 包含的基本大事数,即n (AB ),得P (B |A )=n (AB )n (A ). (3)相互独立大事的概率通常和互斥大事的概率综合在一起考查,这类问题具有一个明显的特征,那就是在题目的条件中已经消灭一些概率值,解题时先要推断大事的性质(是互斥还是相互独立),再选择相应的公式计算求解.变式训练1 (1)从1,2,3,4,5中任取2个不同的数,大事A =“取到的2个数之和为偶数”,大事B =“取到的2个数均为偶数”,则P (B |A )等于( ) A.18 B.14 C.25 D.12 答案 B解析 P (A )=C 23+C 22C 25=25,P (AB )=C 22C 25=110, P (B |A )=P (AB )P (A )=14. (2)(2022·陕西)在一块耕地上种植一种作物,每季种植成本为1 000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体状况如下表:①设X 表示在这块地上种植1②若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2 000元的概率.解 ①设A 表示大事“作物产量为300 kg ”,B 表示大事“作物市场价格为6 元/kg ”,由题设知P (A )=0.5,P (B )=0.4,∵利润=产量×市场价格-成本. ∴X 全部可能的取值为500×10-1 000=4 000,500×6-1 000=2 000, 300×10-1 000=2 000,300×6-1 000=800. P (X =4 000)=P (A )P (B )=(1-0.5)×(1-0.4)=0.3,P (X =2 000)=P (A )P (B )+P (A )P (B ) =(1-0.5)×0.4+0.5×(1-0.4)=0.5, P (X =800)=P (A )P (B )=0.5×0.4=0.2, 所以X 的分布列为②设C i 表示大事“第i 季利润不少于2 000元”(i =1,2,3),由题意知C 1,C 2,C 3相互独立,由①知, P (C i )=P (X =4 000)+P (X =2 000)=0.3+0.5=0.8(i =1,2,3), 3季的利润均不少于2 000元的概率为 P (C 1C 2C 3)=P (C 1)P (C 2)P (C 3)=0.83=0.512; 3季中有2季的利润不少于2 000元的概率为 P (C 1C 2C 3)+P (C 1C 2C 3)+P (C 1C 2C 3) =3×0.82×0.2=0.384,所以,这3季中至少有2季的利润不少于2 000元的概率为0.512+0.384=0.896. 题型二 离散型随机变量的期望例2 (2021·山东)若n 是一个三位正整数,且n 的个位数字大于十位数字,十位数字大于百位数字,则称n 为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参与者需从全部的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规章如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参与者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分. (1)写出全部个位数字是5的“三位递增数” ;(2)若甲参与活动,求甲得分X 的分布列和数学期望E (X ).解 (1)个位数是5的“三位递增数”有125,135,145,235,245,345; (2)由题意知,全部“三位递增数”的个数为C 39=84, 随机变量X 的取值为:0,-1,1, 因此P (X =0)=C 38C 39=23,P (X =-1)=C 24C 39=114,P(X=1)=1-114-23=1142,所以X的分布列为X 0-1 1P 231141142则E(X)=0×23+(-1)×114+1×1142=421.点评离散型随机变量的期望的求解,一般分两步:一是定型,即先推断随机变量的分布是特殊类型,还是一般类型,如两点分布、二项分布、超几何分布等属于特殊类型;二是定性,对于特殊类型的期望可以直接代入相应公式求解,而对于一般类型的随机变量,应先求其分布列然后代入相应公式计算,留意离散型随机变量的取值与概率间的对应.变式训练2(2022·辽宁)一家面包房依据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在将来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(2)用X表示在将来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X).解(1)设A1表示大事“日销售量不低于100个”,A2表示大事“日销售量低于50个”,B表示大事“在将来连续3天里有连续2天的日销售量不低于100个且另一天销售量低于50个”.因此P(A1)=(0.006+0.004+0.002)×50=0.6,P(A2)=0.003×50=0.15,P(B)=0.6×0.6×0.15×2=0.108.(2)X可能取的值为0,1,2,3,相应的概率为P(X=0)=C03(1-0.6)3=0.064,P(X=1)=C13·0.6(1-0.6)2=0.288,P(X=2)=C23·0.62(1-0.6)=0.432,P(X=3)=C33·0.63=0.216,则X的分布列为X 012 3P 0.0640.2880.4320.216由于X~B(3,0.6),所以期望E(题型三二项分布问题例3(2022·湖北)方案在某水库建一座至多安装3台发电机的水电站.过去50年的水文资料显示,水库年入..流量X(年入流量:一年内上游来水与库区降水之和.单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的频率,并假设各年的入流量相互独立.(1)求将来4年中,至多..有1年的年入流量超过120的概率;(2)水电站期望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X限制,并有如下关系:年入流量X 40<X<8080≤X≤120X>120发电机最多可运行台数12 3800万元.欲使水电站年总利润的均值达到最大,应安装发电机多少台?解(1)依题意,得p1=P(40<X<80)=1050=0.2,p2=P(80≤X≤120)=3550=0.7,p3=P(X>120)=550=0.1.由二项分布,得在将来4年中,至多有1年的年入流量超过120的概率为p=C04(1-p3)4+C14(1-p3)3p3=(910)4+4×(910)3×(110)=0.947 7.(2)记水电站年总利润为Y(单位:万元).①安装1台发电机的情形.由于水库年入流量总大于40,故一台发电机运行的概率为1,对应的年利润Y=5 000,E(Y)=5 000×1=5 000.②安装2台发电机的情形.依题意,当40<X<80时,一台发电机运行,此时Y=5 000-800=4 200,因此P(Y=4 200)=P(40<X<80)=p1=0.2;当X ≥80时,两台发电机运行,此时Y =5 000×2=10 000,因此P (Y =10 000)=P (X ≥80)=p 2+p 3=0.8.由此得Y 的分布列如下:所以,E (Y )=4 200×0.2+10 000×0.8=③安装3台发电机的情形.依题意,当40<X <80时,一台发电机运行,此时Y =5 000-1 600=3 400,因此P (Y =3 400)=P (40<X <80)=p 1=0.2;当80≤X ≤120时,两台发电机运行,此时Y =5 000×2-800=9 200,因此P (Y =9 200)=P (80≤X ≤120)=p 2=0.7;当X >120时,三台发电机运行,此时Y =5 000×3=15 000,因此P (Y =15 000)=P (X >120)=p 3=0.1,由此得Y 的分布列如下:所以,E (Y )=3 400×0.2+9 200×=8 620.综上,欲使水电站年总利润的均值达到最大,应安装发电机2台.点评 应用公式P n (k )=C k n p k (1-p )n -k的三个条件: (1)在一次试验中某大事A 发生的概率是一个常数p ;(2)n 次试验不仅是在完全相同的状况下进行的重复试验,而且各次试验的结果是相互独立的;(3)该公式表示n 次试验中大事A 恰好发生了k 次的概率.变式训练3 甲、乙两支排球队进行竞赛,商定先胜3局者获得竞赛的成功,竞赛随即结束.除第五局甲队获胜的概率是12外,其余每局竞赛甲队获胜的概率都是23.假设各局竞赛结果相互独立.(1)分别求甲队以3∶0,3∶1,3∶2成功的概率;(2)若竞赛结果为3∶0或3∶1,则成功方得3分,对方得0分;若竞赛结果为3∶2,则成功方得2分,对方得1分.求乙队得分X 的分布列及数学期望.解 (1)设“甲队以3∶0,3∶1,3∶2成功”分别为大事A ,B ,C ,则P (A )=23×23×23=827,P (B )=C 23⎝⎛⎭⎫232×⎝⎛⎭⎫1-23×23=827, P (C )=C 24⎝⎛⎭⎫232×⎝⎛⎭⎫1-232×12=427. (2)X 的可能的取值为0,1,2,3.则P (X =0)=P (A )+P (B )=1627,P (X =1)=P (C )=427,P (X =2)=C 24×⎝⎛⎭⎫1-232×⎝⎛⎭⎫232×⎝⎛⎭⎫1-12=427, P (X =3)=⎝⎛⎭⎫133+C 23⎝⎛⎭⎫132×23×13=19. ∴X 的分布列为∴E (X )=0×1627+1×427+2×427+3×19=79.高考题型精练1.甲射击命中目标的概率是12,乙命中目标的概率是13,丙命中目标的概率是14.现在三人同时射击目标,则目标被击中的概率为( ) A.34 B.23 C.45 D.710 答案 A解析 设甲命中目标为大事A ,乙命中目标为大事B ,丙命中目标为大事C ,则目标被击中的大事可以表示为A ∪B ∪C ,即击中目标表示大事A 、B 、C 中至少有一个发生. ∴P (A ·B ·C )=P (A )·P (B )·P (C ) =[1-P (A )]·[1-P (B )]·[1-P (C )] =⎝⎛⎭⎫1-12⎝⎛⎭⎫1-13⎝⎛⎭⎫1-14=14. 故目标被击中的概率为1-P (A ·B ·C )=1-14=34.2.在4次独立重复试验中大事A 发生的概率相同,若大事A 至少发生1次的概率是6581,则大事A 在一次试验中发生的概率为( ) A.13 B.25C.56 D .以上全不对答案 A解析 设大事A 在一次试验中发生的概率为p ,∵大事A 全不发生为大事A 至少发生一次的对立大事,∴1-(1-p )4=6581,即(1-p )4=1681.故1-p =23或1-p =-23(舍去),即p =13.3.先后掷两次骰子(骰子的六个面上分别有1,2,3,4,5,6个点),落在水平桌面后,记正面朝上的点数分别为x ,y ,设大事A 为“x +y 为偶数”,大事B 为“x ,y 中有偶数且x ≠y ”,则概率P (B |A )等于( ) A.12 B.13 C.14 D.25答案 B解析 正面朝上的点数(x ,y )的不同结果共有C 16·C 16=36(种).大事A :“x +y 为偶数”包含大事A 1:“x ,y 都为偶数”与大事A 2:“x ,y 都为奇数”两个互斥大事,其中P (A 1)=C 13·C 1336=14,P (A 2)=C 13·C 1336=14,所以P (A )=P (A 1)+P (A 2)=14+14=12.大事B 为“x ,y 中有偶数且x ≠y ”,所以大事AB 为“x ,y 都为偶数且x ≠y ”,所以P (AB )=C 13·C 13-336=16.P (B |A )=P (AB )P (A )=13.4.小王参与了2021年春季聘请会,分别向A ,B 两个公司投递个人简历.假定小王得到A 公司面试的概率为13,得到B 公司面试的概率为p ,且两个公司是否让其面试是独立的.记ξ为小王得到面试的公司个数.若ξ=0时的概率P (ξ=0)=12,则随机变量ξ的数学期望E (ξ)=________.答案712解析 由题意,得P (ξ=2)=13p ,P (ξ=1)=13(1-p )+23p =1+p3,ξ的分布列为ξ 0 1 2 P121+p313p 由12+1+p 3+13p =1,得p =14. 所以E (ξ)=0×12+1×1+p 3+2×13p =712.5.某次学问竞赛规章如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率为________. 答案 0.128解析 由题设,分两类状况:①第1个正确,第2个错误,第3、4个正确,由乘法公式得P 1=0.8×0.2×0.8×0.8=0.102 4;②第1、2个错误,第3、4个正确, 此时概率P 2=0.2×0.2×0.8×0.8=0.025 6. 由互斥大事概率公式得P =P 1+P 2=0.102 4+0.025 6=0.128.6.将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在下落的过程中,将3次遇到黑色障碍物,最终落入A 袋或B 袋中.已知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是12,则小球落入A 袋中的概率为________.答案 34解析 记“小球落入A 袋中”为大事A ,“小球落入B 袋中”为大事B ,则大事A 的对立大事为B ,若小球落入B 袋中,则小球必需始终向左落下或始终向右落下, 故P (B )=⎝⎛⎭⎫123+⎝⎛⎭⎫123=14, 从而P (A )=1-P (B )=1-14=34.7.(2022·安徽)甲乙两人进行围棋竞赛,商定先连胜两局者直接赢得竞赛,若赛完5局仍未消灭连胜,则判定获胜局数多者赢得竞赛.假设每局甲获胜的概率为23,乙获胜的概率为13,各局竞赛结果相互独立.(1)求甲在4局以内(含4局)赢得竞赛的概率;(2)记X 为竞赛决出胜败时的总局数,求X 的分布列和均值(数学期望).解 用A 表示“甲在4局以内(含4局)赢得竞赛”,A k 表示“第k 局甲获胜”,B k 表示“第k 局乙获胜”.则P (A k )=23,P (B k )=13,k =1,2,3,4,5.(1)P (A )=P (A 1A 2)+P (B 1A 2A 3)+P (A 1B 2A 3A 4)=P (A 1)P (A 2)+P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)·P (A 3)P (A 4) =(23)2+13×(23)2+23×13×(23)2=5681. (2)X 的可能取值为2,3,4,5. P (X =2)=P (A 1A 2)+P (B 1B 2) =P (A 1)P (A 2)+P (B 1)P (B 2)=59,P (X =3)=P (B 1A 2A 3)+P (A 1B 2B 3)=P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)P (B 3)=29,P (X =4)=P (A 1B 2A 3A 4)+P (B 1A 2B 3B 4)=P (A 1)P (B 2)P (A 3)P (A 4)+P (B 1)P (A 2)P (B 3)·P (B 4)=1081,P (X =5)=1-P (X =2)-P (X =3)-P (X =4)=881.故X 的分布列为E (X )=2×59+3×29+4×1081+5×881=22481.8.已知甲箱中只放有x 个红球与y 个白球(x ,y ≥0,且x +y =6),乙箱中只放有2个红球、1个白球与1个黑球(球除颜色外,无其他区分).若从甲箱中任取2个球,从乙箱中任取1个球. (1)记取出的3个颜色全不相同的概率为P ,求当P 取得最大值时x ,y 的值; (2)当x =2时,求取出的3个球中红球个数ξ的期望E (ξ). 解 (1)由题意知P =C 1x ·C 1yC 26C 14=xy 60≤160⎝ ⎛⎭⎪⎫x +y 22=320,当且仅当x =y 时等号成立, 所以,当P 取得最大值时,x =y =3.(2)当x =2时,即甲箱中有2个红球与4个白球,所以ξ的全部可能取值为0,1,2,3.则P (ξ=0)=C 24C 12C 26C 14=15,P (ξ=1)=C 12C 14C 12+C 24C 12C 26C 14=715, P (ξ=2)=C 22C 12+C 12C 14C 12C 26C 14=310,P (ξ=3)=C 12C 26C 14=130, 所以,红球个数ξ的分布列为于是E (ξ)=0×15+1×715+2×310+3×130=76.9.现有甲、乙两个靶,某射手向甲靶射击一次,命中的概率为34,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为23,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击. (1)求该射手恰好命中一次的概率;(2)求该射手的总得分X 的分布列及均值E (X ).解 (1)记:“该射手恰好命中一次”为大事A ,“该射手射击甲靶命中”为大事B ,“该射手第一次射击乙靶命中”为大事C ,“该射手其次次射击乙靶命中”为大事D . 由题意知P (B )=34,P (C )=P (D )=23,由于A =B C D ∪B C D ∪B C D , 依据大事的独立性和互斥性,得 P (A )=P (B C D ∪B C D ∪B C D ) =P (B C D )+P (B C D )+P (B C D )=P (B )P (C )P (D )+P (B )P (C )P (D )+P (B )P (C )P (D ) =34×⎝⎛⎭⎫1-23×⎝⎛⎭⎫1-23+⎝⎛⎭⎫1-34×23×⎝⎛⎭⎫1-23+⎝⎛⎭⎫1-34×⎝⎛⎭⎫1-23×23 =736. (2)依据题意知,X 的全部可能取值为0,1,2,3,4,5. 依据大事的独立性和互斥性,得 P (X =0)=P (B C D )=[1-P (B )][1-P (C )][1-P (D )] =⎝⎛⎭⎫1-34×⎝⎛⎭⎫1-23×⎝⎛⎭⎫1-23 =136. P (X =1)=P (B C D )=P (B )P (C )P (D ) =34×⎝⎛⎭⎫1-23×⎝⎛⎭⎫1-23 =112, P (X =2)=P (B C D ∪B C D )=P (B C D )+P (B C D ) =⎝⎛⎭⎫1-34×23×⎝⎛⎭⎫1-23+⎝⎛⎭⎫1-34×⎝⎛⎭⎫1-23×23=19, P (X =3)=P (BC D ∪B C D )=P (BC D )+P (B C D ) =34×23×⎝⎛⎭⎫1-23+34×⎝⎛⎭⎫1-23×23 =13, P (X =4)=P (B CD )=⎝⎛⎭⎫1-34×23×23=19, P (X =5)=P (BCD )=34×23×23=13.故X 的分布列为所以E (X )=0×136+1×112+2×19+3×13+4×19+5×13=4112.10.(2021·安徽)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束. (1)求第一次检测出的是次品且其次次检测出的是正品的概率;(2)已知每检测一件产品需要费用100元,设X 表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X 的分布列和均值(数学期望).解 (1)记“第一次检测出的是次品且其次次检测出的是正品”为大事A .P (A )=A 12A 13A 25=310.(2)X 的可能取值为200,300,400. P (X =200)=A 22A 25=110,P (X =300)=A 33+C 12C 13A 22A 35=310, P (X =400)=1-P (X =200)-P (X =300) =1-110-310=610.故X 的分布列为E (X )=200×110+300×310+400×610=350.。

考前三个月高考数学(全国甲卷通用,理科)知识·方法篇 专题8 概率与统计专题8 第39练

考前三个月高考数学(全国甲卷通用,理科)知识·方法篇 专题8 概率与统计专题8 第39练

15秒才出现绿灯的概率为( )
7 A.10
√B.58
3 C.8
3 D.10
解析 至少需要等待 15 秒才出现绿灯的概率为404-015=58,故选 B.
解析
1 2 3 4 5 6 7 8 9 10 11 12
4.在区间[0,10]内随机取出两个数,则这两个数的平方和在区间[0,10]
内的概率为( )
解析答案
1 2 3 4 5 6 7 8 9 10 11 12
12.如图是一个方形迷宫,甲、乙两人分别位于迷宫的 A、B 两处,两人同
时以每一分钟一格的速度向东、西、南、北四个方向行走,已知甲向东、
西行走的概率都为14,向南、北行走的概率为13和 p,乙向东、西、南、北 四个方向行走的概率均为 q.
点评
解析答案
变式训练1 (2016·北京)从甲,乙等5名学生中随机选出2人,则甲被选 中的概率为( )
1 A.5
√B.25
8 C.25
9 D.25
解析 从甲,乙等5名学生中随机选2人共有10种情况,
甲被选中有4种情况,
则甲被选中的概率为140=25.
解析
题型二 几何概型问题
例 2 (1)设不等式组00≤ ≤xy≤ ≤22, 表示的平面区域为 D,在区域 D 内随机
1 2
x+12≤1”
发生的概率为( )
√A.34
2 B.3
1 C.3
1 D.4
解析
由-1≤log
1 2
x+12≤1,得12≤x+12≤2,
∴0≤x≤32. ∴由几何概型的概率计算公式得所求概率
P=232- -00=34.
解析
12345
3.(2015·福建)如图,矩形 ABCD 中,点 A 在 x 轴上,点 B 的坐标为(1,0),

2018版考前三个月高考数学理科总复习中档大题规范练4:概率与统计(含解析)

2018版考前三个月高考数学理科总复习中档大题规范练4:概率与统计(含解析)

喜欢游泳 40 20
不喜欢游泳 10 30
合计 50 50
合计
60
40
100
因为
K2= 100
40×30- 20×10
2
≈16.67>10.828.
60× 40× 50× 50
所以有 99.9%的把握认为喜欢游泳与性别有关 .
(2)喜欢游泳的共 60 人,按分层抽样抽取 6 人,则每个个体被抽到的概率均为
从而需抽取男生 4 人,女生 2 人 .
故 X 的所有可能取值为 0, 1, 2.
P(X=0)= CC2226= 115,
P
(X

1)

C14C2 12= C6
8 15

P(X=2)= CC2426= 165= 25,
110,
所以 X 的分布列为
X
0
1
2
P
1 15
8 15
2 5
E(X)=0×
115+
4.概率与统计
1.某学校甲、乙两个班各派 10 名同学参加英语口语比赛,并记录他们的成绩,得到如图所示
的茎叶图 .现拟定在各班中分数超过本班平均分的同学为“口语王”
.
(1)记甲班“口语王”人数为 m,乙班“口语王”人数为 n,比较 m,n 的大小;
(2)随机从“口语王”中选取 2 人,记 X 为来自甲班“口语王”的人数, 求 X 的分布列和期望 .
E(ξ)=
12×
1+ 4
18×1+ 3
24× 5 18

30×
1+36× 9
1= 36
20.
所以 “如花姐 ”最后得分的期望为 20× 3+ E(ξ)= 80.

2022届高考数学(理)热点题型概率与统计(含答案解析)

2022届高考数学(理)热点题型概率与统计(含答案解析)

2022届高考数学(理)热点题型概率与统计(含答案解析)概率与统计热点一常见概率模型的概率几何概型、古典概型、相互独立事件与互斥事件的概率、条件概率是高考的热点,几何概型主要以客观题考查,求解的关键在于找准测度(面积,体积或长度);相互独立事件,互斥事件常作为解答题的一问考查,也是进一步求分布列,期望与方差的基础,求解该类问题要正确理解题意,准确判定概率模型,恰当选择概率公式.【例1】现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.(1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用某,Y分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|某-Y|,求随机变量ξ的分布列.解依题意,这4个人中,每个人去参加甲游戏的概率为3,去参加乙游戏的概率2为3.设“这4个人中恰有i人去参加甲游戏”为事件Ai(i=0,1,2,3,4).则1P(Ai)=Ci43i24-i.3(1)这4个人中恰有2人去参加甲游戏的概率1P(A2)=C2432228=.273(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B,则B=A3+A4,且A3与A4互斥,313∴P(B)=P(A3+A4)=P(A3)+P(A4)=C441241某3+C43=9.3(3)依题设,ξ的所有可能取值为0,2,4.且A1与A3互斥,A0与A4互斥.8则P(ξ=0)=P(A2)=27,P(ξ=2)=P(A1+A3)=P(A1)+P(A3)11=C4332402331·3+C43某3=81,P(ξ=4)=P(A0+A4)=P(A0)+P(A4)02=C43441+C4317=81.4所以ξ的分布列是ξP08272408141781【类题通法】(1)本题4个人中参加甲游戏的人数服从二项分布,由独立重复试验,4人中恰有i人参加甲游戏的概率1P=Ci43i24-i,这是本题求解的关键.3(2)解题中常见的错误是不能分清事件间的关系,选错概率模型,特别是在第(3)问中,不能把ξ=0,2,4的事件转化为相应的互斥事件Ai 的概率和.【对点训练】甲、乙两班进行消防安全知识竞赛,每班出3人组成甲乙两支代表队,首轮比赛每人一道必答题,答对则为本队得1分,答错或不答都得0分,已3212知甲队3人每人答对的概率分别为4,3,2,乙队每人答对的概率都是3,设每人回答正确与否相互之间没有影响,用ξ表示甲队总得分.(1)求ξ=2的概率;(2)求在甲队和乙队得分之和为4的条件下,甲队比乙队得分高的概率.解(1)ξ=2,则甲队有两人答对,一人答错,132132111321-1-1-故P(ξ=2)=4某3某某某=;2+4某3某2+43224(2)设甲队和乙队得分之和为4为事件A,甲队比乙队得分高为事件B.设乙队得分2为η,则η~B3,3.。

2023全国高考数学统计与概率专题

2023全国高考数学统计与概率专题

2023全国高考数学统计与概率专题
引言
本文档旨在提供2023全国高考数学统计与概率专题的概述和重点内容。

通过对该专题的了解,学生可以更好地准备和应对高考数学考试。

一、概率计算
1. 确定事件的概率:介绍如何计算事件的概率,包括基本事件和复合事件。

2. 概率分布函数:讲解离散型随机变量和连续型随机变量的概率分布函数。

3. 期望值的计算:介绍如何计算离散型和连续型随机变量的期望值,包括线性期望值的性质。

二、统计推断
1. 抽样方法:介绍简单随机抽样、整群抽样和分层抽样等常用的抽样方法。

2. 参数估计:讨论点估计和区间估计的概念和计算方法,包括样本均值和样本方差的估计。

3. 假设检验:介绍如何进行假设检验,包括设立假设、选择显著性水平和计算检验统计量。

三、相关性和回归分析
1. 相关系数:介绍相关系数的概念和计算方法,包括皮尔逊相关系数和斯皮尔曼相关系数。

2. 线性回归分析:讲解线性回归的原理和应用,包括最小二乘法的计算和回归方程的确定。

结论
本文档简要介绍了2023全国高考数学统计与概率专题的主要内容,包括概率计算、统计推断和相关性回归分析。

学生们可以结合此文档进行针对性的复习和备考,以提高数学成绩。

祝各位同学取得优异的成绩!。

考前三个月高考数学(全国甲卷通用理科)知识 方法篇 专题8 概率与统计 第39练

考前三个月高考数学(全国甲卷通用理科)知识 方法篇 专题8 概率与统计 第39练

第39练 概率的两类模型[题型分析·高考展望] 概率是高中数学的重要内容,也是高考的必考知识点.在高考中,概率部分的命题主要有三个方面的特点:一是以古典概型的概率公式为考查对象,二是以几何概型的概率公式为考查对象,三是古典概型与其他知识相交汇,题目多以选择题或填空题的形式出现.体验高考1.(2015·课标全国Ⅰ)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )A.310B.15C.110D.120 答案 C解析 从1,2,3,4,5中任取3个不同的数共有如下10个不同的结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),其中勾股数只有(3,4,5),所以概率为110.故选C.2.(2015·山东)在区间[0,2]上随机地取一个数x ,则事件“-1≤log 21⎝⎛⎭⎫x +12≤1”发生的概率为( )A.34B.23C.13D.14 答案 A解析 由-1≤log 21⎝⎛⎭⎫x +12≤1,得12≤x +12≤2, ∴0≤x ≤32.∴由几何概型的概率计算公式得所求概率P =32-02-0=34.3.(2015·福建)如图,矩形ABCD 中,点A 在x 轴上,点B 的坐标为(1,0),且点C 与点D 在函数f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,-12x +1,x <0的图象上.若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于( )A.16B.14C.38D.12 答案 B解析 由图形知C (1,2),D (-2,2),∴S 四边形ABCD =6,S 阴=12×3×1=32.∴P =326=14.4.(2016·课标全国乙)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A.13B.12C.23D.34 答案 B解析 如图所示,画出时间轴:小明到达的时间会随机的落在图中线段AB 中,而当他的到达时间落在线段AC 或DB 时,才能保证他等车的时间不超过10分钟,根据几何概型得所求概率P =10+1040=12,故选B.5.(2016·天津)甲、乙两人下棋,两人下成和棋的概率是12,甲获胜的概率是13,则甲不输的概率为( )A.56B.25C.16D.13 答案 A解析 事件“甲不输”包含“和棋”和“甲获胜”这两个互斥事件,所以甲不输的概率为12+13=56. 高考必会题型题型一 古典概型问题例1 (1)(2016·课标全国丙)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M ,I ,N 中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是()A.815B.18C.115D.130 答案 C解析 第一位是M ,I ,N 中的一个字母,第二位是1,2,3,4,5中的一个数字,所以总的基本事件的个数为15,密码正确只有一种,概率为115,故选C.(2)某班级的某一小组有6位学生,其中4位男生,2位女生,现从中选取2位学生参加班级志愿者小组,求下列事件的概率: ①选取的2位学生都是男生;②选取的2位学生一位是男生,另一位是女生.解 ①设4位男生的编号分别为1,2,3,4,2位女生的编号分别为5,6.从6位学生中任取2位学生的所有可能结果为(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15种.从6位学生中任取2位学生,所取的2位全是男生的方法数,即从4位男生中任取2个的方法数,共有6种,即(1,2),(1,3),(1,4),(2,3),(2,4),(3,4). 所以选取的2位学生全是男生的概率为P 1=615=25.②从6位学生中任取2位,其中一位是男生,而另一位是女生,其取法包括(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),共8种. 所以选取的2位学生一位是男生,另一位是女生的概率为P 2=815.点评 求解古典概型问题的三个步骤(1)判断本次试验的结果是不是等可能的,设出所求事件A .(2)分别计算基本事件的总数n 和所求事件A 所包含的基本事件的个数m .(3)利用古典概型的概率公式P (A )=mn 求出事件A 的概率.若直接求解比较困难,则可以利用间接的方法,如逆向思维,先求其对立事件的概率,进而再求所求事件的概率.变式训练1 (2016·北京)从甲,乙等5名学生中随机选出2人,则甲被选中的概率为( ) A.15 B.25 C.825 D.925 答案 B解析 从甲,乙等5名学生中随机选2人共有10种情况,甲被选中有4种情况,则甲被选中的概率为410=25.题型二 几何概型问题例2 (1)设不等式组⎩⎪⎨⎪⎧0≤x ≤2,0≤y ≤2表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( ) A.π4 B.π-22 C.π6 D.4-π4(2)在区间[0,π]内随机取两个数分别记为a ,b ,则使得函数f (x )=x 2+2ax -b 2+π有零点的概率为( ) A.78 B.34 C.12 D.14 答案 (1)D (2)B 解析 (1)如图所示,正方形OABC 及其内部为不等式组表示的区域D ,且区域D 的面积为4,而阴影部分表示的是区域D 内到坐标原点的距离大于2的区域.易知该阴影部分的面积为4-π.因此满足条件的概率是4-π4,所以选D.(2)所求概率为几何概型,测度为面积,则Δ=4a 2+4b 2-4π≥0⇒a 2+b 2≥π得所求概率为 1-14π2π2=34.点评 (1)几何概型并不限于向平面(或直线、空间)投点的试验,如果一个随机试验有无限多个等可能的基本结果,每个基本结果可以用平面(或直线、空间)中的一点来表示,而所有基本结果对应于一个区域Ω,这时,与试验有关的问题即可利用几何概型来解决.(2)几何概型的概率求解,一般要将问题转化为长度、面积或体积等几何问题.在转化中,面积问题的求解常常用到线性规划知识,也就是用二元一次不等式(或其他简单不等式)组表示区域.几何概型的试验中事件A 的概率P (A )只与其所表示的区域的几何度量(长度、面积或体积)有关,而与区域的位置和形状无关.变式训练2 (1)已知P 是△ABC 所在平面内一点,PB →+PC →+2P A →=0,现将一粒黄豆随机撒在△ABC 内,则黄豆落在△PBC 内的概率是( ) A.14 B.13 C.23 D.12(2)如图,在边长为e(e 为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为______.答案 (1)D (2)2e2解析 (1)由PB →+PC →+2P A →=0, 可得PB →+PC →=-2P A →,由向量加法的几何意义可知点P 在△ABC 的中线AD 上,且PB →+PC →=PE →, 如图所示,由共线向量定理知PE →=2PD →=-2P A →,所以PD →=-P A →,所以P 为AD 的中点, 所以△PBC 的面积是△ABC 面积的12,根据几何概型可知黄豆落在△PBC 内的概率是P =S △PBC S △ABC =12,故选D.(2)由题意知,所给图中两阴影部分面积相等,故阴影部分面积为S =2⎠⎛01(e -e x)d x =2(e x -e x)⎪⎪⎪10 =2[e -e -(0-1)]=2.又该正方形面积为e 2, 故由几何概型的概率公式可得所求概率为2e2.高考题型精练1.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ) A.12 B.13 C.14 D.16 答案 B解析 从1,2,3,4中任取2个不同的数共有6(种)不同取法,其中取出的2个数之差的绝对值为2的有2种不同取法,故所求概率为26=13,选B.2.(2015·广东)袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( ) A.521 B.1021 C.1121 D.1 答案 B解析 从袋中任取2个球共有C 215=105(种)取法,其中恰好1个白球1个红球共有C 110C 15=50(种)取法,所以所取的球恰好1个白球1个红球的概率为50105=1021.3.(2016·课标全国甲)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( ) A.710 B.58 C.38 D.310 答案 B解析 至少需要等待15秒才出现绿灯的概率为40-1540=58,故选B.4.在区间[0,10]内随机取出两个数,则这两个数的平方和在区间[0,10]内的概率为( ) A.π40 B.1010 C.110 D.π4 答案 A解析 设这两个数为x ,y , 则0≤x ≤10,0≤y ≤10, 构成一个正方形,面积为102, 这两个数的平方和x 2+y 2∈[0,10], 在正方形中形成的阴影面积为10π4,因此所求概率为10π4102=π40,选A.5.设a ∈[1,4],b ∈[1,4],现随机地抽出一对有序实数对(a ,b )使得函数f (x )=4x 2+a 2与函数g (x )=-4bx 的图象有交点的概率为( ) A.527 B.516 C.554 D.19 答案 A解析 因为a ∈[1,4],b ∈[1,4], 所以(a ,b )所在区域面积为9,f (x )=4x 2+a 2与函数g (x )=-4bx 的图象有交点, 等价于4x 2+4bx +a 2=0有解, 即是b ≥a 2,此时(a ,b )所在区域如图阴影部分 ,其面积为3-⎠⎛12(a 2-1)d a =3-(13a 3-a )⎪⎪⎪21=53, 由几何概型概率公式得到函数f (x )=4x 2+a 2与函数g (x )=-4bx 的图象有交点的概率为539=527, 故选A.6.一只蚂蚁在三边长分别为3,4,5的三角形的内部爬行,某时间该蚂蚁距离三角形的三个顶点的距离均超过1的概率为( ) A.6-π2 B.6-π12 C.1-π12 D.2-π12答案 C解析 因为三角形的面积为12×3×4=6,离三角形的三个顶点的距离不超过1的面积为12×π×12=π2,所以某时间该蚂蚁距离三角形的三个顶点的距离均超过1的概率P =6-π26=1-π12,故选C.7.(2016·四川)从2、3、8、9任取两个不同的数字,分别记为a ,b ,则log a b 为整数的概率是________. 答案 16解析 从2、3、8、9任取两个数分别为记为(a ,b ),则有(2,3),(3,2),(2,8),(8,2),(2,9),(9,2),(3,8),(8,3),(3,9),(9,3),(8,9),(9,8),共有12种情况,其中符合log a b 为整数的有log 3 9和log 2 8两种情况,所以P =212=16.8.若袋中5个外形相同的小球,其中红球2个,白球3个,现从中任取2个球,则取出的球中有红球的概率为________. 答案710解析 5个外形相同的小球,记其中的2个红球为1,2,3个白球为a ,b ,c .从中任取2个球,共有10种可能的结果,其中没有红球有3种可能的结果.所以有红球的概率为1-310=710.9.(2016·上海)某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为________. 答案 16解析 甲同学从四种水果中选两种,选法有C 24种,乙同学的选法有C 24种.两同学相同的选法有C 24种,由古典概型概率计算公式可得,甲、乙两同学各自所选的两种水果相同的概率为C 24C 24C 24=16. 10.一个三位自然数abc 的百位,十位,个位上的数字依次为a ,b ,c ,当且仅当a >b 且c >b 时称为“凹数”.若a ,b ,c ∈{4,5,6,7,8},且a ,b ,c 互不相同,任取一个三位数abc ,则它为“凹数”的概率是________. 答案 13解析 根据题意,当且仅当a >b 且c >b 是称为“凹数”,在{4,5,6,7,8}的5个整数中任取3个不同的数组成三位数,有A 35=60(种)取法,在{4,5,6,7,8}中任取3个不同的数组成“凹数”有以下3种取法,将4放在十位上,再排2个数排在百、个位上,有A 24=12(种);将5放在十位上,再排2个数排在百、个位上,有A 23=6(种);将6放在十位上,再排2个数排在百、个位上,有A 22=2(种);根据分类加法计数原理,可得共有12+6+2=20(种),所以构成“凹数”的概率为2060=13.11.甲、乙、丙三人组成一组,参加一个闯关游戏团体赛,三人各自独立闯关,其中甲闯关成功的概率为13,甲、乙都闯关成功的概率为16,乙、丙闯关成功的概率为15,每人闯关成功得2分,三人得分之和记为小组团体总分. (1)求乙、丙各自闯关成功的概率; (2)求团体总分为4分的概率;(3)若团体总分不小于4分,则小组可参加复赛,求该小组可参加复赛的概率.解 记甲、乙、丙三人各自独立闯关成功的事件依次为A 、B 、C ,则由已知条件得P (A )=13,P (A ·B )=16,P (B ·C )=15.(1)∵P (A ·B )=P (A )·P (B ),∴P (B )=12.同理,P (C )=25.(2)∵每人闯关成功记2分,要使团体总分为4分,则需要两人闯关成功,∴两人都闯关成功的概率 P 1=23·12·25+13·12·25+13·12·35=310,即团体总分为4分的概率P 1=310.(3)团体总分不小于4分,则团体总分可能为4分,可能为6分,团体总分为6分,需要三人都闯关成功,三人闯关都成功的概率P 2=13·12·25=115.由(2)知团体总分为4分的概率P 1=310,∴团体总分不小于4分的概率P =P 1+P 2=310+115=1130.12.如图是一个方形迷宫,甲、乙两人分别位于迷宫的A 、B 两处,两人同时以每一分钟一格的速度向东、西、南、北四个方向行走,已知甲向东、西行走的概率都为14,向南、北行走的概率为13和p ,乙向东、西、南、北四个方向行走的概率均为q .(1)求p 和q 的值;(2)问最少几分钟,甲乙二人相遇?并求出最短时间内可以相遇的概率.解 (1)∵14+14+13+p =1,∴p =16,又∵4q =1,∴q =14.(2)最少需要2分钟,甲乙二人可以相遇(如图,在C 、D 、E 三处相遇).设在C 、D 、E 三处相遇的概率分别为p C 、p D 、p E , 则p C =(16×16)×(14×14)=136×16,p D =2(16×14)×2(14×14)=16×16,p E =(14×14)×(14×14)=116×16,∴p C +p D +p E =132(118+13+18)=372 304,即所求的概率为372 304.。

考前三个月高考数学(全国甲卷通用理科)知识 方法篇 专题8 概率与统计 第36练 Word版含答案

考前三个月高考数学(全国甲卷通用理科)知识 方法篇 专题8 概率与统计 第36练 Word版含答案

第36练“排列、组合”常考问题[题型分析·高考展望]该部分是高考数学中相对独特的一个知识板块,知识点并不多,但解决问题的方法十分灵活,主要内容是分类加法计数原理和分步乘法计数原理、排列与组合、二项式定理等,在高考中占有特殊的位置.高考试题主要以选择题和填空题的方式呈现,考查排列、组合的应用.体验高考1.(2015·四川)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有()A.144个B.120个C.96个D.72个答案 B解析由题意,首位数字只能是4,5,若万位是5,则有3×A34=72(个);若万位是4,则有2×A34=48(个),故比40 000大的偶数共有72+48=120(个).选B.2.(2016·课标全国甲)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24B.18C.12D.9答案 B解析从E点到F点的最短路径有6种,从F点到G点的最短路径有3种,所以从E点到G点的最短路径为6×3=18(种),故选B.3.(2016·四川)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为()A.24B.48C.60D.72答案 D解析 由题可知,五位数要为奇数,则个位数只能是1,3,5;分为两步:先从1,3,5三个数中选一个作为个位数有C 13,再将剩下的4个数字排列得到A 44,则满足条件的五位数有C 13·A 44=72(个).选D.4.(2015·广东)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了________条毕业留言(用数字作答).答案 1 560解析 依题意两两彼此给对方写一条毕业留言相当于从40人中任选两人的排列数,所以全班共写了A 240=40×39=1 560(条)毕业留言.高考必会题型题型一 排列问题例1 (1)在5×5的棋盘中,放入3颗黑子和2颗白子,它们均不在同一行且不在同一列,则不同的排列方法种数为( )A.150B.200C.600D.1 200(2)即将毕业的6名同学排成一排照相留念,个子较高的明明同学既不能站最左边,也不能站最右边,则不同的站法种数为________.答案 (1)D (2)480解析 (1)由已知,第一颗棋子有5×5=25(种)放法,由于放入3颗黑子和2颗白子,它们均不在同一行且不在同一列,所以第二颗棋子有4×4=16(种)放法,第三颗棋子有3×3=9(种)放法,第四颗棋子有2×2=4(种)放法,第五颗棋子有1种放法,又由于黑子、白子分别相同,所以不同的排列方法种数为25×16×9×4×13×2×1×2×1=1 200,选D. (2)方法一 (位置分析法)先从其他5人中安排2人分别站在最左边和最右边,再安排余下4人的位置,分为两步:第1步,从除明明外的5人中选2人分别站在最左边和最右边,有A 25种站法;第2步,余下4人(含明明)站在剩下的4个位置上,有A 44种站法.由分步乘法计数原理,知共有A 25A 44=480(种)不同的站法.方法二 (元素分析法)先安排明明的位置,再安排其他5人的位置,分为两步:第1步,将明明排在除最左边、最右边外的任意位置上,有A14种站法;第2步,余下5人站在剩下5个位置上,有A55种站法.由分步乘法计数原理,知共有A14A55=480(种)不同的站法.方法三(反面求解法)6人没有限制的排队有A66种站法,明明站在最左边或最右边时6人排队有2A55种站法,因此符合条件的不同站法共有A66-2A55=480(种).点评求解排列问题的常用方法(1)特殊元素(特殊位置)优先法;(2)相邻问题捆绑法;(3)不相邻问题插空法;(4)定序问题缩倍法;(5)多排问题一排法.变式训练1(1)6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为()A.144B.120C.72D.24(2)有甲、乙、丙、丁、戊5位同学,求:①5位同学站成一排,有________种不同的方法;②5位同学站成一排,要求甲乙必须相邻,丙丁不能相邻,有________种不同的方法.答案(1)D(2)①120②24解析(1)剩余的3个座位共有4个空隙供3人选择就座,因此任何两人不相邻的坐法种数为A34=4×3×2=24.(2)①A55=120.②5位同学站成一排,要求甲乙必须相邻,丙丁不能相邻,故有A22A22A23=24种不同的排法. 题型二组合问题例2在一次国际抗震救灾中,从7名中方搜救队队员,4名外籍搜救队队员中选5名组成一支特殊搜救队到某地执行任务,按下列要求,分别计算有多少种组队方法.(1)至少有2名外籍搜救队队员;(2)至多有3名外籍搜救队队员.解(1)方法一(直接法)由题意,知特殊搜救队中“至少有2名外籍搜救队队员”可分为3类:①有2名外籍队员,共有C37·C24种组队方法;②有3名外籍队员,共有C27·C34种组队方法;③有4名外籍队员,共有C17·C44种组队方法.根据分类加法计数原理,知至少有2名外籍搜救队队员共有C37·C24+C27·C34+C17·C44=301(种)不同的组队方法.方法二(间接法)由题意,知特殊搜救队中“至少有2名外籍搜救队队员”的对立事件为“至多有1名外籍搜救队队员”,可分为2类:①只有1名外籍搜救队队员,共有C47C14种组队方法;②没有外籍搜救队队员,共有C57C04种组队方法.所以至少有2名外籍搜救队队员共有C511-C47C14-C57C04=301(种)不同的组队方法.(2)方法一(直接法)由题意,知“至多有3名外籍搜救队队员”可分为4类:①有3名外籍搜救队队员,共有C27C34种方法;②有2名外籍搜救队队员,共有C37C24种方法;③有1名外籍搜救队队员,共有C47C14种方法;④没有外籍搜救队队员,共有C57种方法.由分类加法计数原理,知至多有3名外籍搜救队队员共有C27C34+C37C24+C47C14+C57=455(种)不同的组队方法.方法二(间接法)由题意,知“至多有3名外籍搜救队队员”的对立事件为“至少有4名外籍搜救队队员”.因为至少有4名外籍搜救队队员,共有C17C44种组队方法,所以至多有3名外籍搜救队队员共有C511-C17C44=455(种)不同组队方法.点评(1)先看是否与排列顺序有关,从而确定是否为组合问题.(2)看是否需要分类、分步,如何确定分类标准.(3)判断是否为“分组”问题,避免重复.变式训练2(1)从不同号码的三双靴子中任取4只,其中恰好有一双的取法种数为()A.12B.24C.36D.72(2)从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是________.(用数字作答)答案(1)A(2)590解析(1)恰好有一双的取法种数为C13C12C12=12.(2)分三类:①选1名骨科医生,则有C 13(C 14C 35+C 24C 25+C 34C 15)=360(种).②选2名骨科医生,则有C 23(C 14C 25+C 24C 15)=210(种).③选3名骨科医生,则有C 33C 14C 15=20(种).∴骨科、脑外科和内科医生都至少有1人的选派方法种数是360+210+20=590.题型三 排列与组合的综合应用问题例3 4个不同的球,4个不同的盒子,把球全部放入盒子内.(1)恰有1个盒子不放球,共有几种放法?(2)恰有1个盒子内有2个球,共有几种放法?(3)恰有2个盒子不放球,共有几种放法?解 (1)为保证“恰有1个盒子不放球”,先从4个盒子中任意取出一个,问题转化为“4个球,3个盒子,每个盒子都要放入球,共有几种放法?”,即把4个球分成2,1,1的三组,然后再从3个盒子中选1个放2个球,其余2个球放在另外2个盒子内,由分步乘法计数原理,共有C 14C 24C 13A 22=144(种).(2)“恰有1个盒子内有2个球”,即另外3个盒子放2个球,每个盒子至多放1个球,也即另外3个盒子中恰有一个空盒,因此,“恰有1个盒子内有2个球”与“恰有1个盒子不放球”是同一件事,所以共有144种放法.(3)确定2个空盒有C 24种方法.4个球放进2个盒子可分成(3,1)、(2,2)两类,第一类有序不均匀分组有C 34C 11A 22种方法;第二类有序均匀分组有C 24C 22A 22·A 22种方法.故共有C 24(C 34C 11A 22+C 24C 22A 22·A 22)=84(种). 点评 (1)排列、组合混合问题一般“先选后排”.(2)对于较复杂的排列、组合问题,应按元素的性质或题意要求进行分类,对事件发生的过程进行分步,做到分类标准明确,分步层次清楚,才能保证不“重”不“漏”.(3)关于“至少”“至多”等计数问题,一般需要进行分类,若分类比较复杂,可用间接法,找出其对立事件来求解.变式训练3 (1)将A 、B 、C 、D 、E 、F 六个字母排成一排,且A 、B 均在C 的同侧,则不同的排法共有________种.(用数字作答)(2)把A 、B 、C 、D 四件玩具分给三个小朋友,每位小朋友至少分到一件玩具,且A 、B 两件玩具不能分给同一个人,则不同的分法有( )A.36种B.30种C.24种D.18种答案 (1)480 (2)B解析 (1)分类讨论:A 、B 都在C 的左侧,且按C 的左侧分别有两个、三个、四个、五个字母这4类计算,再考虑右侧情况.所以共有2(A 22A 33+C 13A 33A 22+C 23A 44+A 55)=480(种).(2)由题意A 、B 两件玩具不能分给同一个人,因此分法为C 13(C 24-1)A 22=3×5×2=30(种).高考题型精练1.A 、B 、C 、D 、E 五人并排站成一排,如果B 必须站在A 的右边(A 、B 可以不相邻),那么不同的排法共有( )A.24种B.60种C.90种D.120种答案 B解析 五人并排站成一排,有A 55种情况,而其中B 站在A 的左边与B 站在A 的右边是等可能的,则B 站在A 的右边的排法共有12A 55=60(种). 2.A ,B ,C ,D ,E ,F 六人围坐在一张圆桌周围开会,A 是会议的中心发言人,必须坐在最北面的椅子上,B ,C 二人必须坐相邻的两把椅子,其余三人坐剩余的三把椅子,则不同的座次有( )A.60种B.48种C.30种D.24种答案 B解析 由题知,不同的座次有A 22A 44=48(种).3.将2名教师、4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )A.10种B.8种C.9种D.12种答案 D解析 第一步,为甲地选一名老师,有C 12=2(种)选法;第二步,为甲地选两个学生,有C 24=6(种)选法;第三步,为乙地选1名教师和2名学生,有1种选法,故不同的安排方案共有2×6×1=12(种).4.某学校食堂早餐只有花卷、包子、面条和蛋炒饭四种主食可供食用,有5名同学前去就餐,每人只选择其中一种,且每种主食都至少有一名同学选择.已知花卷数量不足,仅够一人食用,甲同学肠胃不好不会选择蛋炒饭,则这5名同学不同的主食选择方案种数为( )A.144B.132C.96D.48答案 B解析分类讨论:甲选花卷,其余4人中有2人选同一种主食,方法有C24C13=18(种),剩下2人选其余主食,方法有A22=2(种),共有方法18×2=36(种);甲不选花卷,其余4人中有1人选花卷,方法有4种,甲选包子或面条,方法有2种,其余3人若有1人选甲选的主食,剩下2人选其余主食,方法有3A22=6(种),若没有人选甲选的主食,方法有C23A22=6(种),共有4×2×(6+6)=96(种),故共有36+96=132(种),故选B.5.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为()A.232B.252C.472D.484答案 C解析分两类:第一类,含有1张红色卡片,共有不同的取法C14C212=264(种);第二类,不含有红色卡片,共有不同的取法C312-3C34=220-12=208(种).由分类加法计数原理知不同的取法有264+208=472(种).6.如图,用6种不同的颜色把图A,B,C,D,4块区域分开,若相邻区域不能涂同一种颜色,则涂色方法共有________种(用数字作答).答案480解析从A开始涂色,A有6种涂色方法,B有5种涂色方法,C有4种涂色方法,D有4种涂色方法,由分步乘法计数原理可知,共有6×5×4×4=480(种)涂色方法.7.某城市的交通道路如图,从城市的西南角A到城市东北角B,不经过十字道路维修处C,最近的走法种数是________.答案66解析从城市的西南角A到城市的东北角B,最近的走法种数共有C49=126(种)走法,从城市的西南角A经过十字道口维修处C,最近的走法有C25=10(种),从C到城市的东北角B,最近的走法有C24=6(种),所以从城市西南角A到城市的东北角B,经过十字道路维修处C最近的走法有10×6=60(种),所以从城市的西南角A到城市东北角B,不经过十字道路维修处C,最近的走法有126-60=66(种).8.如果一个三位正整数如“a1a2a3”满足a1<a2且a2>a3,则称这个三位数为凸数(如120,343,275等),那么所有凸数的个数为________.答案240解析可根据中间数进行分类,中间数依次可为2,3,4,5,6,7,8,9,然后确定百位和个位,共有1×2+2×3+3×4+4×5+5×6+6×7+7×8+8×9=240(个).9.“雾霾治理”“光盘行动”“网络反腐”“法治中国”“先看病后付费”成为社会关注的5个热点.小王想在国庆节期间调查一下社会对这些热点的关注度.若小王准备从中选取4个热点分别进行调查,则“雾霾治理”作为其中的一个调查热点,但不作为第一个调查热点的种数为________.答案72解析先从“光盘行动”“网络反腐”“法治中国”“先看病后付费”这4个热点中选出3个,有C34种不同的选法.在调查时,“雾霾治理”的安排顺序有A13种可能情况,其余3个热点的安排顺序有A33种,故不同调查顺序的种数为C34A13A33=72.10.一个质点从原点出发,每秒末必须向右、或向左、或向上、或向下跳一个单位长度,则此质点在第8秒末到达点P(4,2)的跳法共有________种.答案448解析分两类情况讨论:第一类:向右跳4次,向上跳3次,向下跳1次,有C48C34=280(种);第二类,向右跳5次,向上跳2次,向左跳1次,有C58C23=168(种);根据分类加法计数原理得,共有280+168=448(种)方法.11.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种.(用数字作答)答案60解析把8张奖券分4组有两种分法,一种是分(一等奖,无奖)、(二等奖,无奖)、(三等奖,无奖)、(无奖,无奖)四组,分给4人有A44种分法;另一种是一组两个奖,一组只有一个奖,另两组无奖,共有C23种分法,再分给4人有A24种分法,所以不同获奖情况种数为A44+C23A24=24+36=60.12.用红、黄、蓝、白、黑五种颜色涂在“田”字形的4个小方格内,每格涂一种颜色,相邻两格涂不同的颜色,如果颜色可以反复使用,共有多少种不同的涂色方法?解如图所示,将4个小方格依次编号为1,2,3,4,第1个小方格可以从5种颜色中任取一种颜色涂上,有5种不同的涂法.①当第2个、第3个小方格涂不同颜色时,有A24=12(种)不同的涂法,第4个小方格有3种不同的涂法.由分步乘法计数原理可知,有5×12×3=180(种)不同的涂法;②当第2个、第3个小方格涂相同颜色时,有4种涂法,由于相邻方格不同色,因此,第4个小方格也有4种不同的涂法,由分步乘法计数原理可知.有5×4×4=80(种)不同的涂法. 由分类加法计数原理可得,共有180+80=260(种)不同的涂法.。

考前三个月高考数学(全国甲卷通用理科)知识 方法篇 专题8 概率与统计 第37练 Word版含答案

考前三个月高考数学(全国甲卷通用理科)知识 方法篇 专题8 概率与统计 第37练 Word版含答案

第37练 二项式定理的两类重点题型——求指定项与求和[题型分析·高考展望] 二项式定理的应用,是理科高考的考点之一,考查频率较高,一般为选择题或填空题,题目难度不大,为低、中档题.主要考查两类题型,一是求展开式的指定项,二是求各项和或系数和,只要掌握两类题型的常规解法,该部分题目就能会做.体验高考1.(2015·课标全国Ⅰ)(x 2+x +y )5的展开式中,x 5y 2的系数为( ) A.10 B.20 C.30 D.60 答案 C解析 方法一 利用二项展开式的通项公式求解. (x 2+x +y )5=[(x 2+x )+y ]5,含y 2的项为T 3=C 25(x 2+x )3·y 2. 其中(x 2+x )3中含x 5的项为C 13x 4·x =C 13x 5. 所以x 5y 2的系数为C 25C 13=30.故选C.方法二 利用组合知识求解.(x 2+x +y )5为5个x 2+x +y 之积,其中有两个取y ,两个取x 2,一个取x 即可,所以x 5y 2的系数为C 25C 23C 11=30.故选C.2.(2016·四川)设i 为虚数单位,则(x +i)6的展开式中含x 4的项为( ) A.-15x 4 B.15x 4 C.-20i x 4 D.20i x 4 答案 A解析 由题可知,含x 4的项为C 26x 4i 2=-15x 4.选A.3.(2015·安徽)⎝⎛⎭⎫x 3+1x 7的展开式中x 5的系数是________(用数字填写答案). 答案 35解析 ⎝⎛⎭⎫x 3+1x 7的展开式的第k +1项为T k +1=C k 7(x 3)7-k ·⎝⎛⎭⎫1x k =C k 7·x 21-4k,令21-4k =5,得k =4,∴T 5=C 47x 5=35x 5.4.(2016·上海)在(3x -2x )n 的二次项式中,所有项的二项式系数之和为256,则常数项等于________. 答案 112解析 2n =256,n =8,通项T k +1=C k 8·83-k x ·(-2x)k =C k 8(-2)k·843-kx .取k =2,常数项为C 28(-2)2=112.高考必会题型题型一 求展开项例1 (1)(x 2+1x 2-2)3展开式中的常数项为( )A.-8B.-12C.-20D.20(2)(2016·山东)若⎝⎛⎭⎫ax 2+1x 5的展开式中x 5的系数为-80,则实数a =________. 答案 (1)C (2)-2解析 (1)二项式(x 2+1x 2-2)3可化为(x -1x )6,展开式的通项公式为T k +1=C k 6·(-1)k ·x 6-2k.令x 的幂指数6-2k =0,解得k =3, 故展开式中的常数项为-C 36=-20, 故选C.(2)∵T k +1=C k 5(ax 2)5-k⎝⎛⎭⎫1x k =a 5-k C k 55102-k x ,∴10-52k =5,解得k =2,∴a 3C 25=-80,解得a =-2. 点评 应用通项公式要注意四点(1)T k +1是展开式中的第k +1项,而不是第k 项;(2)公式中a ,b 的指数和为n ,且a ,b 不能随便颠倒位置; (3)要将通项中的系数和字母分离开,以便于解决问题; (4)对二项式(a -b )n 展开式的通项公式要特别注意符号问题.变式训练1 (1)(9x -13x )n (n ∈N *)的展开式的第3项的二项式系数为36,则其展开式中的常数项为( )A.252B.-252C.84D.-84(2)(1-12x )(1+2x )5展开式中x 2的系数为________.答案 (1)C (2)60解析 (1)第3项的二项式系数为C 2n=n ·(n -1)2=36,n =9, 其通项公式为T k +1=(-13)k C k 9(9x )9-k 12-k x =(-13)k 99-k C k 9392-k x ,当9-32k =0,k =6时,为常数项,常数项为(-13)699-6C 69=84. (2)因为(1+2x )5展开式的通项公式为T k +1=C k 5·2k·2kx ,所以(1-12x )(1+2x )5展开式中x 2的系数为1×C 45×24-12×C 25×22=60. 题型二 赋值法求系数之和例2 (1)对任意的实数x ,有(2x -3)6=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5+a 6x 6,则a 1+2a 2+3a 3+4a 4+5a 5+6a 6等于( ) A.-12 B.-6 C.6 D.12(2)若(2x -1)2 013=a 0+a 1x +a 2x 2+…+a 2 013x 2 013(x ∈R ),则12+a 222a 1+a 323a 1+…+a 2 01322 013a 1等于( ) A.-12 013 B.12 013 C.-14 026 D.14 026答案 (1)A (2)D解析 (1)由(2x -3)6=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5+a 6x 6,两侧求导,得a 1+2a 2x +3a 3x 2+4a 4x 3+5a 5x 4+6a 6x 5=12(2x -3)5, 令x =1,则a 1+2a 2+3a 3+4a 4+5a 5+6a 6 =12(2×1-3)5=-12,故选A.(2)因为(2x -1)2 013=a 0+a 1x +a 2x 2+…+a 2 013x 2 013(x ∈R ),令x =0,则a 0=-1,a 1=2C 2 0122 013(-1)2 012=2C 2 0122 013;令x =12,则a 0+a 12+a 222+…+a 2 01322 013=0,所以12+a 222a 1+a 323a 1+…+a 2 01322 013a 1=1a 1(12a 1+a 222+a 323+…+a 2 01322 013) =1a 1(a 0+12a 1+a 222+a 323+…+a 2 01322 013)-a 0a 1 =12C 2 0122 013(2×12-1)2 013+12C 2 0122 013=14 026.点评 (1)“赋值法”普遍适用于恒等式,是一种重要的方法,对形如(ax +b )n 、(ax 2+bx +c )m (a ,b ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可;对形如(ax +by )n (a ,b ∈R )的式子求其展开式各项系数之和,只需令x =y =1即可.(2)若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1),奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2,偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.变式训练2 (1)已知(1+x )+(1+x )2+(1+x )3+…+(1+x )n =a 0+a 1x +a 2x 2+…+a n x n ,且a 0+a 1+a 2+…+a n =126,那么(x -1x)n的展开式中的常数项为( ) A.-15 B.15 C.20 D.-20(2)若(1-5x )9=a 0+a 1x +a 2x 2+…+a 9x 9,那么|a 0|+|a 1|+|a 2|+…+|a 9|的值是( ) A.1 B.49 C.59 D.69 答案 (1)D (2)D解析 (1)令x =1,得a 0+a 1+a 2+…+a n =2+22+ (2)=2×2n -12-1=2n +1-2=126⇒2n +1=128⇒2n +1=27⇒n =6,又T k +1=C k 6(x )6-k(-1x)k =C k 6(-1)k x 3-k , 所以由3-k =0得k =3,则常数项为-C 36=-20.(2)(1-5x )9展开式的通项公式为T k +1=C k 9(-5x )k =(-5)k C k 9x k ,所以当x 的指数为奇数时,其系数为负,所以在(1-5x )9=a 0+a 1x +a 2x 2+…+a 9x 9中令x =-1,得|a 0|+|a 1|+|a 2|+…+|a 9| =a 0-a 1+a 2-a 3+…+a 8-a 9=69,故选D.高考题型精练1.若(2x +3)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则(a 0+a 2+a 4)2-(a 1+a 3)2的值为( ) A.1 B.-1 C.0 D.2 答案 A解析 令x =1,得(2+3)4=a 0+a 1+a 2+a 3+a 4, 又令x =-1,得(2-3)4=a 0-a 1+a 2-a 3+a 4, 所以(a 0+a 2+a 4)2-(a 1+a 3)2=(a 0+a 2+a 4+a 1+a 3)(a 0+a 2+a 4-a 1-a 3) =(2+3)4(2-3)4=14=1.2.设n ∈N *,则5C 1n +52C 2n +53C 3n +…+5n C n n 除以7的余数为( )A.0或5B.1或3C.4或6D.0或2 答案 A解析 5C 1n +52C 2n +53C 3n +…+5n C nn =C 0n +5C 1n +52C 2n +53C 3n +…+5n C n n -C 0n=(1+5)n -1=(7-1)n -1=7M +(-1)n -1,M ∈Z , 当n 为奇数时,余数为5, 当n 为偶数时,余数为0.3.设k =⎠⎛0π(sin x -cos x )d x ,若(1-kx )8=a 0+a 1x +a 2x 2+…+a 8x 8,则a 1+a 2+…+a 8等于( )A.-1B.0C.1D.256 答案 B解析 k =⎠⎛0π(sin x -cos x )d x =⎠⎛0πsin x d x -⎠⎛0πcos x d x=-cos x ⎪⎪⎪π0-sin x ⎪⎪⎪π=2, 所以(1-kx )8=(1-2x )8=a 0+a 1x +a 2x 2+…+a 8x 8, 令x =1,得a 0+a 1+a 2+…+a 8=(1-2)8=1,令x =0,得a 0=1,所以a 1+a 2+…+a 8=(a 0+a 1+a 2+…+a 8)-a 0=1-1=0,故选B. 4.设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b ,若13a =7b ,则m 等于( ) A.5 B.6 C.7 D.8 答案 B解析 (x +y )2m 展开式中二项式系数的最大值为C m 2m ,∴a =C m 2m .同理,b =C m +12m +1.∵13a =7b ,∴13·C m 2m =7·C m +12m +1,∴13·(2m )!m !m !=7·(2m +1)!(m +1)!m !,∴m =6.5.(3y +x )5展开式的第三项为10,则y 关于x 的函数图象大致为( )答案 D解析 由题意得,展开式的第三项为T 3=C 25(3y )3(x )2=10xy , 所以10xy =10,所以y =1x,且x >0,故选D.6.设a ∈Z ,且0≤a <13,若512 016+a 能被13整除,则a 的值为( ) A.0 B.1 C.11 D.12 答案 D解析 512 016+a =(52-1)2 016+a =C 02 016×522 016-C 12 016×522 015+…+C 2 0152 016×52×(-1)2 015+C 2 0162 016×(-1)2 016+a . 因为52能被13整除,所以只需C 2 0162 016×(-1)2 016+a 能被13整除, 即a +1能被13整除,因为0≤a <13,所以a =12.7.设f (x )是⎝⎛⎭⎫x 2+12x 6展开式的中间项,若f (x )≤mx 在区间⎣⎡⎦⎤22,2上恒成立,则实数m 的取值范围是( )A.(-∞,5)B.(-∞,5]C.(5,+∞)D.[5,+∞) 答案 D解析 由于T k +1=C k 6⎝⎛⎭⎫12k x 12-3k ,故展开式中间的一项为T 3+1=C 36·⎝⎛⎭⎫123·x 3=52x 3,f (x )≤mx ⇔52x 3≤mx 在⎣⎡⎦⎤22,2上恒成立,即m ≥52x 2,又52x 2≤5,故实数m 的取值范围是m ≥5. 8.(x 2-x +1)10展开式中x 3项的系数为________. 答案 -210解析 (x 2-x +1)10=[1+(x 2-x )]10的展开式的通项公式为T k +1=C k 10(x 2-x )k,对于(x 2-x )k 通项公式为T m +1=C m k x2k-2m(-x )m =(-1)m C m k x2k-m,令2k -m =3且m ≤k ≤10,m ∈N ,k ∈N ,得k =2,m =1或k =3,m =3,(x 2-x +1)10的展开式x 3系数为C 210C 12·(-1)+C 310C 33·(-1)3=-210.9.已知(2x -1)n =a 0+a 1x +a 2x 2+…+a n x n ,且n 是偶数,则a 0+12a 1+13a 2+14a 3+…+1n +1an =__________. 答案1n +1解析 由a 0+a 1x +a 2x 2+…+a n x n =(2x -1)n , 在区间[0,1]上,两边取积分可得: a 0+12a 1x 2⎪⎪⎪10+13a 2x 3⎪⎪⎪10+…+1n +1a n x n +1⎪⎪⎪10 =⎠⎛01(2x -1)nd x =12(n +1)(2x -1)n +1⎪⎪⎪10=1n +1,即a 0+12a 1+13a 2+14a 3+…+1n +1a n =1n +1.10.设a n (n =2,3,4,…)是(3-x )n的展开式中x 的一次项的系数,则32a 2+33a 3+…+318a 18=________. 答案 17 解析 令T k +1=C k n 3n -k(-x )k=C k n (-1)k ·3n -k2kx ,令k2=1,得k =2, ∴(3-x )n 的展开式中x 的一次项的系数为a n =C 2n (-1)2·3n -2=C 2n ·3n -2, 又C 2n=n (n -1)2, 则32a 2+33a 3+…+318a 18=32×(1C 22+1C 23+…+1C 218) =9×(22×1+23×2+…+218×17)=18×[(1-12)+(12-13)+…+(117-118)]=18×(1-118)=17.11.已知在(3x -123x )n 的展开式中,第6项为常数项.(1)求n ;(2)求含x 2项的系数;(3)求展开式中所有的有理项. 解 (1)根据题意,可得(3x -123x)n的展开式的通项为T k +1=C k n (x 31)n -k(-12x 31-)k=(-12)k C kn23-n k x ,又由第6项为常数项,则当k =5时,n -2k3=0,即n -103=0,解可得n =10.(2)由(1)可得,T k +1=(-12)k C k101023-k x ,令10-2k 3=2,可得k =2,所以含x 2项的系数为(-12)2C 210=454. (3)由(1)可得,T k +1=(-12)k C k101023-k x ,若T k +1为有理项,则有10-2k3∈Z ,且0≤k ≤10,分析可得当k =2,5,8时,10-2k3为整数, 则展开式中的有理项分别为454x 2,-638,45256x -2. 12.已知⎝⎛⎭⎫12+2x n . (1)若展开式中第5项、第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大的项的系数;(2)若展开式前三项的二项式系数和等于79,求展开式中系数最大的项.解 (1)因为C 4n +C 6n =2C 5n ,所以n 2-21n +98=0,解得n =7或n =14.当n =7时,展开式中二项式系数最大的项是T 4和T 5. 所以T 4的系数为C 37⎝⎛⎭⎫12423=352, T 5的系数为C 47⎝⎛⎭⎫12324=70. 当n =14时,展开式中二项式系数最大的项是T 8.所以T 8的系数为C 714⎝⎛⎭⎫12727=3 432. (2)因为C 0n +C 1n +C 2n =79,所以n =12或n =-13(舍去). 设T k +1项的系数最大.因为⎝⎛⎭⎫12+2x 12=⎝⎛⎭⎫1212(1+4x )12, 所以⎩⎪⎨⎪⎧C k 124k ≥C k -1124k -1,C k 124k ≥C k +1124k +1,所以9.4≤k ≤10.4. 又因为0≤k ≤12且k ∈N ,所以k =10. 所以展开式中系数最大的项为T 11. T 11=⎝⎛⎭⎫1212C 1012410x 10=16 896x 10.。

考前三个月高考数学(全国甲卷通用理科)知识 方法篇 专题8 概率与统计 第40练 Word版含答案

考前三个月高考数学(全国甲卷通用理科)知识 方法篇 专题8 概率与统计 第40练 Word版含答案

第40练 随机变量及其分布列[题型分析·高考展望] 随机变量及其分布列是高考的一个必考热点,主要包括离散型随机变量及其分布列,均值与方差,二项分布及其应用和正态分布.对本部分知识的考查,一是以实际生活为背景求解离散型随机变量的分布列和均值;二是独立事件概率的求解;三是考查二项分布.体验高考1.(2015·四川)某市A ,B 两所中学的学生组队参加辩论赛,A 中学推荐了3名男生、2名女生,B 中学推荐了3名男生、4名女生,两校所推荐的学生一起参加集训.由于集训后队员水平相当,从参加集训的男生中随机抽取3人.女生中随机抽取3人组成代表队. (1)求A 中学至少有1名学生入选代表队的概率.(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,设X 表示参赛的男生人数,求X 的分布列和均值.解 (1)由题意,参加集训的男、女生各有6名,参赛学生全从B 中学抽取(等价于A 中学没有学生入选代表队)的概率为C 33C 34C 36C 36=1100,因此,A 中学至少有1名学生入选代表队的概率为 1-1100=99100. (2)根据题意,X 的可能取值为1,2,3,P (X =1)=C 13C 33C 46=15,P (X =2)=C 23C 23C 46=35,P (X =3)=C 33C 13C 46=15,所以X 的分布列为因此,X 的均值为E (X )=1×P (X =1)+2×P (X =2)+3×P (X =3)=1×15+2×35+3×15=2.2.(2016·天津)某小组共10人,利用假期参加义工活动.已知参加义工活动次数为1,2,3的人数分别为3,3,4.现从这10人中随机选出2人作为该组代表参加座谈会. (1)设A 为事件“选出的2人参加义工活动次数之和为4”,求事件A 发生的概率;(2)设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布列和均值.解 (1)由已知,有P (A )=C 13C 14+C 23C 210=13. 所以事件A 发生的概率为13.(2)随机变量X 的所有可能取值为0,1,2.P (X =0)=C 23+C 23+C 24C 210=415, P (X =1)=C 13C 13+C 13C 14C 210=715, P (X =2)=C 13C 14C 210=415.所以随机变量X 的分布列为随机变量X 的均值E (X )=0×415+1×715+2×415=1.3.(2015·福建)某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定.小王到该银行取钱时,发现自己忘记了银行卡的密码,但可以确认该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定. (1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码的次数为X ,求X 的分布列和均值. 解 (1)设“当天小王的该银行卡被锁定”的事件为A , 则P (A )=56×45×34=12.(2)依题意得,X 所有可能的取值是1,2,3. 又P (X =1)=16,P (X =2)=56×15=16,P (X =3)=56×45×1=23.所以X 的分布列为所以X 的均值E (X )=1×16+2×16+3×23=52.高考必会题型题型一 条件概率与相互独立事件的概率例1 (1)先后掷两次骰子(骰子的六个面上分别有1,2,3,4,5,6个点),落在水平桌面后,记正面朝上的点数分别为x ,y ,设事件A 为“x +y 为偶数”,事件B 为“x ,y 中有偶数且x ≠y ”,则概率P (B |A )等于( ) A.12 B.13 C.14 D.25(2)甲射击命中目标的概率是12,乙命中目标的概率是13,丙命中目标的概率是14.现在三人同时射击目标,则目标被击中的概率为( ) A.34 B.23 C.45 D.710 答案 (1)B (2)A解析 (1)正面朝上的点数(x ,y )的不同结果共有C 16·C 16=36(种).事件A :“x +y 为偶数”包含事件A 1:“x ,y 都为偶数”与事件A 2:“x ,y 都为奇数”两个互斥事件,其中P (A 1)=C 13·C 1336=14,P (A 2)=C 13·C 1336=14,所以P (A )=P (A 1)+P (A 2)=14+14=12.事件B 为“x ,y 中有偶数且x ≠y ”, 所以事件AB 为“x ,y 都为偶数且x ≠y ”, 所以P (AB )=C 13·C 13-336=16.P (B |A )=P (AB )P (A )=13. (2)设“甲命中目标”为事件A ,“乙命中目标”为事件B ,“丙命中目标”为事件C ,则目标被击中的事件可以表示为A ∪B ∪C ,即击中目标表示事件A 、B 、C 中至少有一个发生. ∴P (A ·B ·C )=P (A )·P (B )·P (C ) =[1-P (A )]·[1-P (B )]·[1-P (C )] =⎝⎛⎭⎫1-12⎝⎛⎭⎫1-13⎝⎛⎭⎫1-14=14. 故目标被击中的概率为1-P (A ·B ·C )=1-14=34.点评 (1)利用定义,分别求P (A )和P (AB ),得P (B |A )=P (AB )P (A ).这是通用的求条件概率的方法. (2)借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再在事件A 发生的条件下求事件B 包含的基本事件数,即n (AB ),得P (B |A )=n (AB )n (A ). (3)相互独立事件的概率通常和互斥事件的概率综合在一起考查,这类问题具有一个明显的特征,那就是在题目的条件中已经出现一些概率值,解题时先要判断事件的性质(是互斥还是相互独立),再选择相应的公式计算求解.变式训练1 (1)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A.0.8B.0.75C.0.6D.0.45(2)某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率为________. 答案 (1)A (2)0.128解析 (1)已知连续两天为优良的概率是0.6,那么在前一天空气质量为优良的前提下,要求随后一天的空气质量为优良的概率,可根据条件概率公式,得P =0.60.75=0.8.(2)由题设,分两类情况:①第1个正确,第2个错误,第3、4个正确,得P 1=0.8×0.2×0.8×0.8=0.102 4;②第1、2个错误,第3、4个正确, 此时概率P 2=0.2×0.2×0.8×0.8=0.025 6. 由互斥事件概率公式得P =P 1+P 2=0.102 4+0.025 6=0.128. 题型二 离散型随机变量的均值和方差例2 (2015·山东)若n 是一个三位正整数,且n 的个位数字大于十位数字,十位数字大于百位数字,则称n 为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分. (1)写出所有个位数字是5的“三位递增数” ; (2)若甲参加活动,求甲得分X 的分布列和均值E (X ).解 (1)个位数是5的“三位递增数”有125,135,145,235,245,345; (2)由题意知,全部“三位递增数”的个数为C 39=84, 随机变量X 的取值为:0,-1,1, 因此P (X =0)=C 38C 39=23,P (X =-1)=C 24C 39=114,P (X =1)=1-114-23=1142,所以X 的分布列为则E (X )=0×23+(-1)×114+1×1142=421.点评 离散型随机变量的均值和方差的求解,一般分两步:一是定型,即先判断随机变量的分布是特殊类型,还是一般类型,如两点分布、二项分布、超几何分布等属于特殊类型;二是定性,对于特殊类型的均值和方差可以直接代入相应公式求解,而对于一般类型的随机变量,应先求其分布列然后代入相应公式计算,注意离散型随机变量的取值与概率间的对应. 变式训练2 (1)(2016·四川)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X 的均值是________. 答案 32解析 由题可知,在一次试验中,试验成功(即至少有一枚硬币正面向上)的概率为P =1-12×12=34, ∵2次独立试验成功次数X 满足二项分布X ~B ⎝⎛⎭⎫2,34, 则E (X )=2×34=32.(2)(2016·山东)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求:①“星队”至少猜对3个成语的概率;②“星队”两轮得分之和X 的分布列和均值E (X ).解 ①记事件A :“甲第一轮猜对”,记事件B :“乙第一轮猜对”, 记事件C :“甲第二轮猜对”,记事件D :“乙第二轮猜对”, 记事件E :“‘星队’至少猜对3个成语”.由题意,E =ABCD +A BCD +A B CD +AB C D +ABC D . 由事件的独立性与互斥性,P (E )=P (ABCD )+P (A BCD )+P (A B CD )+P (AB C D )+P (ABC D )=P (A )P (B )P (C )P (D )+P (A )P (B )·P (C )P (D )+P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )=34×23×34×23+2×⎝⎛⎭⎫14×23×34×23+34×13×34×23=23. 所以“星队”至少猜对3个成语的概率为23.②由题意,随机变量X 可能的取值为0,1,2,3,4,6.由事件的独立性与互斥性,得 P (X =0)=14×13×14×13=1144,P (X =1)=2×⎝⎛⎭⎫34×13×14×13+14×23×14×13=10144=572,P (X =2)=34×13×34×13+34×13×14×23+14×23×34×13+14×23×14×23=25144,P (X =3)=34×23×14×13+14×13×34×23=12144=112,P (X =4)=2×⎝⎛⎭⎫34×23×34×13+34×23×14×23=60144=512. P (X =6)=34×23×34×23=36144=14.可得随机变量X 的分布列为所以均值E (X )=0×1144+1×572+2×25144+3×112+4×512+6×14=236.题型三 二项分布例3 某市为丰富市民的业余文化生活,联合市国际象棋协会举办国际象棋大赛,在小组赛中,小王要与其他四名业余棋手进行比赛,已知小王与其他选手比赛获得胜利的概率都为23,并且他与其他选手比赛获胜的事件是相互独立的. (1)求小王首次获胜前已经负了两场的概率;(2)求小王在四场比赛中获胜的场数X 的分布列、均值和方差.解 (1)小王首次获胜前已经负了两场,即前两场输第三场赢,其概率为P =(1-23)2×23=227.(2)因为小王每场比赛获胜的概率均为23,所以小王在四场比赛中获胜的场数X 服从二项分布B (4,23),故P (X =i )=C i 4(23)i (1-23)4-i (其中i =0,1,2,3,4).所以P (X =0)=C 04(23)0(1-23)4=181, P (X =1)=C 14(23)1(1-23)3=881, P (X =2)=C 24(23)2(1-23)2=827, P (X =3)=C 34(23)3(1-23)1=3281, P (X =4)=C 44(23)4(1-23)0=1681. 故 X 的分布列为故X 的均值为E (X )=4×23=83,方差为D (X )=4×23×(1-23)=89.点评 应用公式P n (k )=C k n p k (1-p )n -k的三个条件: (1)在一次试验中某事件A 发生的概率是一个常数p ;(2)n 次试验不仅是在完全相同的情况下进行的重复试验,而且各次试验的结果是相互独立的; (3)该公式表示n 次试验中事件A 恰好发生了k 次的概率.变式训练3 (2015·湖南)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖. (1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X ,求X 的分布列和均值.解 (1)记事件A 1={从甲箱中摸出的1个球是红球},A 2={从乙箱中摸出的1个球是红球},B 1={顾客抽奖1次获一等奖},B 2={顾客抽奖1次获二等奖},C ={顾客抽奖1次能获奖}. 由题意,A 1与A 2相互独立,A 1A 2与A 1A 2互斥,B 1与B 2互斥,且B 1=A 1A 2,B 2=A 1A 2∪A1A 2,C =B 1∪B 2.因为P (A 1)=410=25,P (A 2)=510=12,所以P (B 1)=P (A 1A 2)=P (A 1)P (A 2)=25×12=15,P (B 2)=P (A 1A 2∪A 1A 2) =P (A 1A 2)+P (A 1A 2) =P (A 1)P (A 2)+P (A 1)P (A 2) =P (A 1)[1-P (A 2)]+[1-P (A 1)]P (A 2) =25×⎝⎛⎭⎫1-12+⎝⎛⎭⎫1-25×12=12. 故所求概率为P (C )=P (B 1∪B 2)=P (B 1)+P (B 2)=15+12=710.(2)顾客抽奖3次可视为3次独立重复试验,由(1)知,顾客抽奖1次获一等奖的概率为15,所以X ~B ⎝⎛⎭⎫3,15. 于是P (X =0)=C 03⎝⎛⎭⎫150⎝⎛⎭⎫453=64125, P (X =1)=C 13⎝⎛⎭⎫151⎝⎛⎭⎫452=48125, P (X =2)=C 23⎝⎛⎭⎫152⎝⎛⎭⎫451=12125, P (X =3)=C 33⎝⎛⎭⎫153⎝⎛⎭⎫450=1125. 故X 的分布列为则E (X )=3×15=35.高考题型精练1.抛掷一枚质地均匀的骰子两次,记A ={两次点数均为奇数},B ={两次点数之和为6},则P (B |A )等于( ) A.59 B.13 C.536 D.23 答案 B解析 n (A )=3×3=9,n (AB )=3,所以P (B |A )=n (AB )n (A )=39=13.故选B.2.如图所示,在边长为1的正方形OABC 内任取一点P ,用A 表示事件“点P 恰好在由曲线y =x 与直线x =1及x 轴所围成的曲边梯形内”,B 表示事件“点P 恰好取自阴影部分内”,则P (B |A )等于( )A.14B.15C.16D.17 答案 A解析 根据题意,正方形OABC 的面积为1×1=1, 而y =x 与直线x =1及x 轴所围成的曲边梯形的面积为⎠⎛01x d x =23x 32⎪⎪⎪10=23,∴P (A )=231=23,而阴影部分的面积为⎠⎛01(x -x )d x =(23x 32-12x 2)⎪⎪⎪10=16,∴正方形OABC 中任取一点P ,点P 取自阴影部分的概率为P (B )=161=16,∴P (B |A )=P (B )P (A )=1623=14,故选A.3.某人射击一次击中目标的概率为0.6,经过3次射击,设X 表示击中目标的次数,则P (X ≥2)等于( )A.81125B.54125C.36125D.27125 答案A解析 至少有两次击中目标的对立事件是最多击中一次, 有两类情况:一次都没击中、击中一次. 一次都没击中:概率为(1-0.6)3=0.064;击中一次:概率为C 13×0.6×(1-0.6)2=0.288.所以最多击中一次的概率为0.064+0.288=0.352, 所以至少有两次击中目标的概率为1-0.352=0.648 =81125. 4.已知某一随机变量X 的概率分布列如下表,E (X )=6.3,则a 的值为( )A.5B.6C.7D.8 答案 C解析 b =1-0.5-0.1=0.4,∴4×0.5+a ×0.1+9×0.4=6.3, ∴a =7,故选C.5.设随机变量X ~B (n ,p ),且E (X )=1.6,D (X )=1.28,则( ) A.n =5,p =0.32 B.n =4,p =0.4 C.n =8,p =0.2 D.n =7,p =0.45答案 C解析 因为随机变量X ~B (n ,p ),且E (X )=1.6,D (X )=1.28,所以⎩⎪⎨⎪⎧E (X )=np =1.6,D (X )=np (1-p )=1.28⇒p =0.2,n =8.6.在4次独立重复试验中事件A 发生的概率相同,若事件A 至少发生1次的概率是6581,则事件A 在一次试验中发生的概率为( ) A.13 B.25 C.56 D.以上全不对 答案 A解析 设事件A 在一次试验中发生的概率为p ,∵事件A 全不发生为事件A 至少发生一次的对立事件,∴1-(1-p )4=6581,即(1-p )4=1681.故1-p =23或1-p =-23(舍去),即p =13.7.小王参加了2015年春季招聘会,分别向A ,B 两个公司投递个人简历.假定小王得到A 公司面试的概率为13,得到B 公司面试的概率为p ,且两个公司是否让其面试是独立的.记ξ为小王得到面试的公司个数.若ξ=0时的概率P (ξ=0)=12,则随机变量ξ的均值E (ξ)=______.答案712解析 由题意,得P (ξ=2)=13p ,P (ξ=1)=13(1-p )+23p =1+p3,ξ的分布列为由12+1+p 3+13p =1,得p =14. 所以E (ξ)=0×12+1×1+p 3+2×13p =712.8.随机变量ξ的取值为0,1,2.若P (ξ=0)=15,E (ξ)=1,则D (ξ)=________.答案 25解析 设P (ξ=1)=a ,P (ξ=2)=b , 则⎩⎪⎨⎪⎧15+a +b =1,a +2b =1,解得⎩⎨⎧a =35,b =15,所以D (ξ)=15+35×0+15×1=25.9.从装有除颜色外完全相同的3个白球和m 个黑球的布袋中随机摸取一球,有放回的摸取5次,设摸得白球数为X ,已知E (X )=3,则D (X )=________. 答案 65解析 根据题目条件, 每次摸到白球的概率都是p =33+m, 满足二项分布,则有E (X )=np =5×33+m =3,解得m =2,那么D (X )=np (1-p )=5×35×(1-35)=65.10.某商场在儿童节举行回馈顾客活动,凡在商场消费满100元者即可参加射击赢玩具活动,具体规则如下:每人最多可射击3次,一旦击中,则可获奖且不再继续射击,否则一直射击到3次为止.设甲每次击中的概率为p (p ≠0),射击次数为η,若η的均值E (η)>74,则p 的取值范围是________. 答案 (0,12)解析 由已知得P (η=1)=p , P (η=2)=(1-p )p ,P (η=3)=(1-p )2,则E (η)=p +2(1-p )p +3(1-p )2=p 2-3p +3>74,解得p >52或p <12,又p ∈(0,1),所以p ∈(0,12).11.(2015·陕西)设某校新、老校区之间开车单程所需时间为T ,T 只与道路畅通状况有关,对其容量为100的样本进行统计,结果如下:(1)求T 的分布列与均值E (T );(2)刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率. 解 (1)由统计结果可得T 的频率分布为以频率估计概率得T 的分布列为从而E (T )=25×0.2+30×0.3+35×0.4+40×0.1=32.(2)设T 1,T 2分别表示往、返所需时间,T 1,T 2的取值相互独立,且与T 的分布列相同, 设事件A 表示“刘教授共用时间不超过120分钟”,由于讲座时间为50分钟,所以事件A 对应于“刘教授在路途中的时间不超过70分钟”. 方法一 P (A )=P (T 1+T 2≤70)=P (T 1=25,T 2≤45)+P (T 1=30,T 2≤40)+P (T 1=35,T 2≤35)+P (T 1=40,T 2≤30) =0.2×1+0.3×1+0.4×0.9+0.1×0.5=0.91.方法二P(A)=P(T1+T2>70)=P(T1=35,T2=40)+P(T1=40,T2=35)+P(T1=40,T2=40)=0.4×0.1+0.1×0.4+0.1×0.1=0.09,故P(A)=1-P(A)=0.91.12.(2016·课标全国甲)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度出险次数的关联如下:设该险种一续保人一年内出险次数与相应概率如下:(1)求一续保人本年度的保费高于基本保费的概率;(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(3)求续保人本年度的平均保费与基本保费的比值.解(1)设A表示事件:“续保人本年度的保费高于基本保费”,则事件A发生当且仅当一年内出险次数大于1,故P(A)=0.2+0.2+0.1+0.05=0.55.(2)设B表示事件:“续保人本年度的保费比基本保费高出60%”,则事件B发生当且仅当一年内出险次数大于3,故P(B)=0.1+0.05=0.15.又P(AB)=P(B),故P(B|A)=P(AB)P(A)=P(B)P(A)=0.150.55=311.因此所求概率为311.(3)记续保人本年度的保费为X,则X的分布列为E(X)=0.85a×0.30+a×0.15+1.25a×0.20+1.5a×0.20+1.75a×0.10+2a×0.05=1.23a. 因此续保人本年度的平均保费与基本保费的比值为1.23.。

考前三个月高考数学(全国甲卷通用理科)考前抢分必做中档大题规范练4概率与统计含答案

考前三个月高考数学(全国甲卷通用理科)考前抢分必做中档大题规范练4概率与统计含答案

中档大题规范练4 概率与统计1.(2016·北京)A ,B ,C 三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如下表(单位:小时):A 班 6 6.5 7 7.5 8B 班 6 7 8 9 10 11 12C 班34.567.5910.51213.5(1)试估计C 班的学生人数;(2)从A 班和C 班抽出的学生中,各随机选取1人,A 班选出的人记为甲,C 班选出的人记为乙.假设所有学生的锻炼时间相互独立,求该周甲的锻炼时间比乙的锻炼时间长的概率; (3)再从A ,B ,C 三个班中各随机抽取一名学生,他们该周的锻炼时间分别是7,9,8.25(单位:小时).这3个新数据与表格中的数据构成的新样本的平均数记为μ1,表格中数据的平均数记为μ0,试判断μ0和μ1的大小(结论不要求证明). 解 (1)C 班学生人数约为100×85+7+8=100×820=40.(2)设事件A i 为“甲是现有样本中A 班的第i 个人”,i =1,2,…,5, 事件C j 为“乙是现有样本中C 班的第j 个人”,j =1,2,…,8. 由题意可知P (A i )=15,i =1,2,…,5;P (C j )=18,j =1,2, (8)P (A i C j )=P (A i )P (C j )=15×18=140,i =1,2,...,5,j =1,2, (8)设事件E 为“该周甲的锻炼时间比乙的锻炼时间长”,由题意知,E =A 1C 1∪A 1C 2∪A 2C 1∪A 2C 2∪A 2C 3∪A 3C 1∪A 3C 2∪A 3C 3∪A 4C 1∪A 4C 2∪A 4C 3∪A 5C 1∪A 5C 2 ∪A 5C 3∪A 5C 4.因此P (E )=P (A 1C 1)+P (A 1C 2)+P (A 2C 1)+P (A 2C 2)+P (A 2C 3)+P (A 3C 1)+P (A 3C 2)+P (A 3C 3)+P (A 4C 1)+P (A 4C 2)+P (A 4C 3)+P (A 5C 1)+P (A 5C 2)+P (A 5C 3)+P (A 5C 4)=15×140=38.(3)μ1<μ0.2.某学校为准备参加市运动会,对本校甲、乙两个田径队中30名跳高运动员进行了测试,并用茎叶图表示出本次测试30人的跳高成绩(单位:cm).跳高成绩在175 cm 以上(包括175 cm)定义为“合格”,成绩在175 cm 以下定义为“不合格”.鉴于乙队组队晚,跳高成绩相对较弱,为激励乙队队员,学校决定只有乙队中“合格”者才能参加市运动会开幕式旗林队.(1)求甲队队员跳高成绩的中位数;(2)如果将所有的运动员按“合格”与“不合格”分成两个层次,用分层抽样抽取“合格”与“不合格”的人数共5人,则各层应抽取多少人?(3)若从所有“合格”运动员中选取2名,用X 表示所选运动员中甲队能参加市运动会开幕式旗林队的人数,试写出X 的分布列,并求X 的均值.解 (1)由茎叶图知,甲田径队12名队员的跳高成绩从小到大排列后中间的两个成绩为176、178,故中位数为12(176+178)=177.(2)由茎叶图可知,甲、乙两队合格人数为12,不合格人数为18,所以抽取五人,合格人数为530×12=2,不合格人数为530×18=3. (3)X =0,1,2,P (X =0)=C 24C 212=111,P (X =1)=C 18C 14C 212=1633,P (X =2)=C 28C 212=1433.故X 的分布列为X 0 1 2 P11116331433E (X )=0×111+1×1633+2×1433=43.3.安排5个大学生到A ,B ,C 三所学校支教,设每个大学生去任何一所学校是等可能的. (1)求5个大学生中恰有2个人去A 校支教的概率; (2)设有大学生去支教的学校的个数为ξ,求ξ的分布列.解 (1)5个大学生到三所学校支教的所有可能为35=243(种),设“恰有2个人去A 校支教”为事件M ,则有C 25·23=80(种),∴P (M )=80243. 即5个大学生中恰有2个人去A 校支教的概率为80243.(2)由题意得:ξ=1,2,3, ξ=1⇒5人去同一所学校,有C 13=3(种),∴P (ξ=1)=3243=181,ξ=2⇒5人去两所学校,即分为4,1或3,2有C 23·(C 45+C 35)·A 22=90(种),∴P (ξ=2)=90243=3081=1027,ξ=3⇒5人去三所学校,即分为3,1,1或2,2,1有(C 35·C 12·12!+C 25·C 23·12!)·A 33=150(种),∴P (ξ=3)=150243=5081.∴ξ 的分布列为4.甲、乙两人进行定点投篮比赛,在距篮筐3米线内设一点A ,在点A 处投中一球得2分,不中得0分;在距篮筐3米线外设一点B ,在点B 处投中一球得3分,不中得0分,已知甲、乙两人在A 点投中的概率都是12,在B 点投中的概率都是13,且在A ,B 两点处投中与否相互独立,设定甲、乙两人先在A 处各投篮一次,然后在B 处各投篮一次,总得分高者获胜. (1)求甲投篮总得分ξ的分布列和均值; (2)求甲获胜的概率.解 (1)设“甲在A 点投中”为事件A ,“甲在B 点投中”为事件B ,根据题意,ξ的可能取值为0,2,3,5,则P (ξ=0)=P (A B )=(1-12)×(1-13)=13,P (ξ=2)=P (A B )=12×(1-13)=13,P (ξ=3)=P (A B )=(1-12)×13=16,P (ξ=5)=P (AB )=12×13=16.所以ξ的分布列为E (ξ)=0×13+2×13+3×16+5×16=2.(2)同理,乙的总得分η的分布列为P13 13 16 16甲获胜包括:甲得2分、3分、5分三种情形,这三种情形之间彼此互斥.因此,所求事件的概率为P =P (ξ=2)×P (η=0)+P (ξ=3)×P (η<3)+P (ξ=5)×P (η<5)=13×13+16×(13+13)+16×(1-16)=1336. 5.某学校高一年级学生某次身体素质体能测试的原始成绩采用百分制, 已知所有这些学生的原始成绩均分布在[50,100]内,发布成绩使用等级制各等级划分标准见下表, 规定:A 、B 、C 三级为合格等级,D 为不合格等级.百分制 85分及以上70分到84分60分到69分60分以下等级ABCD为了解该校高一年级学生身体素质情况, 从中抽取了n 名学生的原始成绩作为样本进行统计, 按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图如图1所示, 样本中分数在80分及以上的所有数据的茎叶图如图2所示.(1)求n 和频率分布直方图中x ,y 的值;(2)根据样本估计总体的思想,以事件发生的频率作为相应事件发生的概率,若在该校高一学生中任选3人, 求至少有1人成绩是合格等级的概率;(3)在选取的样本中, 从A 、C 两个等级的学生中随机抽取了3名学生进行调研, 记ξ表示所抽取的3名学生中为C 等级的学生人数, 求随机变量ξ的分布列及均值. 解 (1)n =60.012×10=50,x =250×10=0.004,y =1-0.04-0.1-0.12-0.5610=0.018.(2)成绩是合格等级人数为(1-0.1)×50=45, 抽取的50人中成绩是合格等级的频率为910,故从该校学生中任选1人, 成绩是合格等级的概率为910,设在该校高一学生中任选3人, 至少有1人成绩是合格等级的事件为A , 则P (A )=1-C 03×(1-910)3=9991 000. (3) 由题意可知C 等级的学生人数为0.18×50=9,A 等级的学生人数为3, 故ξ的取值为0,1,2,3,则P (ξ=0)=C 33C 312=1220,P (ξ=1)=C 19C 23C 312=27220,P (ξ=2)=C 29C 13C 312=108220=2755,P (ξ=3)=C 39C 312=84220=2155,所以ξ的分布列为E (ξ)=0×1220+1×27220+2×2755+3×2155=94.合理分配高考数学答题时间找准目标,惜时高效——合理分配高考数学答题时间经过漫长的第一、第二轮复习,对于各知识点的演练同学们已经烂熟于心,我们把这称为战术上的纯熟。

高考数学考前冲刺方法与技巧

高考数学考前冲刺方法与技巧

高考数学考前冲刺方法与技巧高考到了最后的冲刺阶段了,对于很多高三的学生来说这个时间段的考前备考复习是十分重要的,那么关于高考数学考前冲刺方法主要有哪些呢?下面是小编给大家整理的高考数学考前冲刺_高考数学考前冲刺方法与技巧,欢迎大家借鉴与参考,希望对大家有所帮助。

高考数学考前冲刺指导(一)了解课程标准,熟读考试大纲,紧扣考试说明高考(课程)命题注重考查考生的数学基础知识、基本技能和数学思想方法,考查考生对数学本质的理解水平,体现课程标准对知识与技能、过程与方法、情感态度与价值观等目标要求。

(二)关注近年新课标高考试题,为高三复习指明方向重视新增内容考查,新课标高考对新增内容的考查比例远远超出它们在教材中占有的比例。

例如:三视图、茎叶图、定积分、正态分布、统计案例等。

立足基础,强调通性通法,增大覆盖面。

从历年高考试题看,高考数学命题都把重点放在高中数学课程中最基础、最核心的内容上,即关注学生在学习数学和应用数学解决问题的过程中最为重要的、必须掌握的核心观念、思想方法、基本概念和常用技能,紧紧地围绕“双基”对数学的核心内容与基本能力进行重点考查。

突出新课程理念,关注应用,倡导“学以致用”。

新课程倡导积极主动、勇于探索的学习方式,注重提高学生的数学思维能力,发展学生的数学应用意识。

加强应用意识的培养与考查是教育改革的需要,也是作为工具学科的数学学科特点的体现。

有意训练每年高考试题中都出现的高频考点。

(三)给高考考生的建议1.再次回归课本。

题在书外,但理都在书中。

对高考试卷进行分析就不难发现,许多题目都能在课本上找到“影子”,不少高考题就是将课本题目进行引申、拓宽和变化。

通过看课本系统梳理高中数学知识,巩固高中数学基本概念。

看课本,有三个建议,一是打乱顺序按模块阅读,二是要注意里面的小字和旁白以及后面的“阅读与思考”,三是对于基础较弱的学生,可把书后典型习题再做一遍。

2.利用好错题本(或者积累本)。

要把自己常犯的错或易忽略的内容在高考之前彻底解决,给自己积极的心理暗示。

2017版考前三个月高考数学全国甲卷通用理科知识课件 方法篇 专题8 概率与统计 第38练 精品

2017版考前三个月高考数学全国甲卷通用理科知识课件 方法篇 专题8 概率与统计 第38练 精品
解析
的有六月,七月,八月,故选D.
1
2
3
4
5
4.(2016· 山东)某高校调查了200名学生每周的自习时间(单位:小时),制 成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样 本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30]. 根据频率分布直方图知,这200 名学生中每周的自习时间不少于 22.5小时的人数是( A.56 B.60 C.120 ) D.140 √
解析答案
返回
高考必会题型
题型一
频率分布直方图的应用
例1
(2015· 广东)某城市100户居民的月平均用电量(单位: 度), 以[160, 180),
[180,200),[200,220),
[220,240),[240,260),
[260,280),[280,300]分
组的频率分布直方图如图.
(1)求直方图中x的值;
解析答案
(2)求月平均用电量的众数和中位数;

220+240 月平均用电量的众数是 = 230. 2
因为(0.002+0.009 5+0.011)×20=0.45<0.5,
所以月平均用电量的中位数在[220,240)内,
设中位数为a,由(0.002+0.009 5+0.011)×20+0.012 5×(a-220)=0.5,
解析
1
2
3
4
5
2.(2015· 课标全国 Ⅱ)根据下面给出的 2004年至2013年我国二氧化硫年排
放量(单位:万吨)柱形图,以下结论中不正确的是( )
A.逐年比较,2008年减少二氧化硫排放量的效果最显著 B.2007年我国治理二氧化硫排放显现成效 C.2006年以来我国二氧化硫年排放量呈减少趋势 D.2006年以来我国二氧化硫年排放量与年份正相关 √

高考题型预测08 概率与统计(真题回顾+押题预测)(解析版)2023

高考题型预测08 概率与统计(真题回顾+押题预测)(解析版)2023

预测08 概率与统计解析版1、排列组合问题往往以实际问题为背景,考查排列数、组合数、分类分步计数原理,往往是排列组合小综合题.2、二项展开式定理的问题是高考命题热点之一.关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式1r n r rr nT C a b -+=;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项式定理的应用.3、古典概率、离散型随机变量的分布列、均值与方差是高考的热点题型,去年竟有解答题作为压轴题,常与排列、组合、概率等知识综合命题.以实际问题为背景考查离散型随机变量的均值与方差在实际问题中的应用,注重与数列、不等式、函数、导数等知识的综合考查,是高考的主要命题方向.一、排列组合: 1. 排列与排列数(1)排列数的定义:从n 个不同元素中取出m(m≤n)个元素的所有不同排列的个数叫做从n 个不同元素中取出m 个元素的排列数,用符号__A m n __表示.(2)排列数公式:A m n =n(n -1)(n -2)…(n -m +1)=n !(n -m )!(n ,m ∈N *,并且m ≤n )A nn =n ·(n -1)·(n -2)·…·3·2·1=n !,规定0!=1.2. 组合与组合数(1)组合数的定义:从n 个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用符号__C m n __表示.(2)组合数公式:Cmn=A m nA m m=n (n -1)(n -2)…(n -m +1)m !=n !m !(n -m )!(n ,m ∈N *,并且m ≤n ).(3)组合数的性质:性质1:C m n=C n-mn.性质2:C m n+1=C m-1n+C m n.性质3:m C m n=n·C m-1n-1.二、二项式定理1、二项式定理的展开式公式:(a+b)n=C0n a n+C1n a n-1b+…+C k n a n-k b k+…+C n n b n(n∈N*)这个公式表示的定理叫做二项式定理.在上式中右边的多项式叫做(a+b)n 的二项展开式,其中的系数C k n(k=0,1,…,n)叫做二项式系数,式中的C k n a n-k b k叫做二项展开式的通项,用T k+1表示,即T k+1=C k n a n-k b k.2、二项展开式形式上的特点(1)项数为n+1.(2)各项的次数都等于二项式的幂指数n,即a与b的指数的和为n.(3)字母a按降幂排列,从第一项开始,次数由n逐项减1直到零;字母b 按升幂_排列,从第一项起,次数由零逐项增1直到n.(4)二项式系数从C0n,C1n,一直到C n-1n,C n n.三、离散型随机变量的概率分布及其性质1、超几何分布:在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则事件“X=r”发生的概率为P(X=r)=C r M C n-r N-MC n N,r=0,1,2,…,m,称分布列为超几何分布.2n(1(1)E(aX+b)=aE(X)+b.(2)D(aX+b)=a2D(X)(a,b为常数).(2)两点分布、二项分布、超几何分布的期望、方差(1)若X服从两点分布,则E(X)=p,D(X)=p(1-p).(2)若X服从二项分布,即X~B(n,p),则E(X)=np,D(X)=np(1-p).(3)若X服从超几何分布,即X~H(n,M,N)时,E(X)=nM N.3、正态分布(1)正态分布的定义及表示如果对于任何实数a,b(a<b),随机变量X满足P(a<X≤b)μ,σ(x)d x,则称随机变量X服从正态分布,记作X~N(μ,σ2).(2)正态曲线的特点①曲线位于x轴上方与x轴不相交;②曲线是单峰的,它关于直线x=μ对称;③曲线在x=μ处达到峰值1σ2π;④曲线与x轴之间的面积为1;⑤当σ一定时,曲线随着μ的变化而沿x轴平移;⑥当μ一定时,曲线的形状由σ确定.σ越小,曲线越“高瘦”,表示总体的分布越集中;,σ越大,曲线越“矮胖”,表示总体的分布越分散.(3)正态分布的三个常用数据①P(μ-σ<X≤μ+σ)=0.6826;②P(μ-2σ<X≤μ+2σ)=0.9544;③P(μ-3σ<X≤μ+3σ)=0.9974.四、统计案例1. 两个变量的线性相关(1)从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有线性相关关系,这条直线叫做回归直线.(2)回归方程为y^=b^x+a^_,其中其中a^,b^是待定参数,(y i-bx i-a)2的最小值而得到回归直线的方法,即使得样本数据的点到回归直线的距离的平方和最小,这一方法叫做最小二乘法.(4)相关系数:当r>0时,表明两个变量正相关;当r<0时,表明两个变量负相关.r的绝对值越接近于1,表明两个变量的线性相关性越强.r的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系.通常|r|大于0.75时,认为两个变量有很强的线性相关性.2. 独立性检验(1)2×2列联表设X,Y为两个变量,它们的取值分别为{x1,x2}和{y1,y2},其样本频数列联表(2×2列联表)如下:(2)独立性检验利用随机变量K2(也可表示为χ2)的观测值k=n(ad-bc)2(其中n=a+b+(a+b)(c+d)(a+c)(b+d)c+d为样本容量)来判断“两个变量有关系”的方法称为独立性检验.常用结论(1)求解回归方程的关键是确定回归系数a^,b^,应充分利用回归直线过样本中心点(x-,y-).(2)根据K2的值可以判断两个分类变量有关的可信程度,若K2越大,则两分类变量有关的把握越大.(3)根据回归方程计算的b^值,仅是一个预报值,不是真实发生的值.一.选择题(共5小题)1.(2021•甲卷)为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是()A.该地农户家庭年收入低于4.5万元的农户比率估计为6%B.该地农户家庭年收入不低于10.5万元的农户比率估计为10%C.估计该地农户家庭年收入的平均值不超过6.5万元D.估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间【解答】解:对于A,该地农户家庭年收入低于4.5万元的农户比率为(0.02+0.04)×1=0.06=6%,故选项A正确;对于B,该地农户家庭年收入不低于10.5万元的农户比率为(0.04+0.02×3)×1=0.1=10%,故选项B正确;对于C,估计该地农户家庭年收入的平均值为3×0.02+4×0.04+5×0.1+6×0.14+7×0.2+8×0.2+9×0.1+10×0.1+11×0.04+12×0.02+1 3×0.02+14×0.02=7.68>6.5万元,故选项C错误;对于D,家庭年收入介于4.5万元至8.5万元之间的频率为(0.1+0.14+0.2+0.2)×1=0.64>0.5,故估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间,故选项D正确.故选:C.2.(2021•乙卷)将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有()A.60种B.120种C.240种D.480种【解答】解:5名志愿者选2个1组,有C52种方法,然后4组进行全排列,有A44种,共有C52A44=240种,故选:C.3.(2021•甲卷)将4个1和2个0随机排成一行,则2个0不相邻的概率为( ) A .13B .25C .23D .45【解答】解:总的排放方法有C 62=15种,利用插空法,4个1有5个位置可以放0,故排放方法有C 52=10种,所以所求概率为1015=23. 故选:C .4.(2021•新高考Ⅰ)有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( ) A .甲与丙相互独立 B .甲与丁相互独立 C .乙与丙相互独立D .丙与丁相互独立【解答】解:由题意可知,两点数和为8的所有可能为:(2,6),(3,5),(4,4),(5,3),(6,2),两点数和为7的所有可能为(1,6),(2,5),(3,4),(4,3),(5,2),(6,1),P (甲)=16,P (乙)=16,P (丙)=56×6=536,P (丁)=66×6=16, A :P (甲丙)=0≠P (甲)P (丙), B :P (甲丁)=136=P (甲)P (丁), C :P (乙丙)=136≠P (乙)P (丙), D :P (丙丁)=0≠P (丙)P (丁), 故选:B .5.(2021•新高考Ⅰ)某物理量的测量结果服从正态分布N (10,σ2),则下列结论中不正确的是( )A .σ越小,该物理量在一次测量中落在(9.9,10.1)内的概率越大B .该物理量在一次测量中大于10的概率为0.5C .该物理量在一次测量中小于为9.99与大于10.01的概率相等D .该物理量在一次测量中结果落在(9.9,10.2)与落在(10,10.3)的概率相等【解答】解:因为某物理量的测量结果服从正态分布N(10,σ2),所以测量的结果的概率分布关于10对称,且方差σ2越小,则分布越集中,对于A,σ越小,概率越集中在10左右,则该物理量一次测量结果落在(9.9,10.1)内的概率越大,故选项A正确;对于B,测量结果大于10的概率为0.5,故选项B正确;对于C,由于概率分布关于10对称,所以测量结果大于10.01的概率等于小于9.99的概率,故选项C正确;对于D,由于概率分布是集中在10附近的,(9.9,10.2)分布在10附近的区域大于(10,10.3)分布在10附近的区域,故测量结果落在(9.9,10.2)内的概率大于落在(10,10.3)内的概率,故选项D错误.故选:D.二.多选题(共2小题)(多选)6.(2021•新高考Ⅰ)下列统计量中,能度量样本x1,x2,…,x n的离散程度的有()A.样本x1,x2,…,x n的标准差B.样本x1,x2,…,x n的中位数C.样本x1,x2,…,x n的极差D.样本x1,x2,…,x n的平均数【解答】解:中位数是反应数据的变化,方差是反应数据与均值之间的偏离程度,极差是用来表示统计资料中的变异量数,反映的是最大值与最小值之间的差距,平均数是反应数据的平均水平,故能反应一组数据离散程度的是标准差,极差.故选:AC.(多选)7.(2021•新高考Ⅰ)有一组样本数据x1,x2,…,x n,由这组数据得到新样本数据y1,y2,…,y n,其中y i=x i+c(i=1,2,…,n),c为非零常数,则()A.两组样本数据的样本平均数相同B.两组样本数据的样本中位数相同C.两组样本数据的样本标准差相同D.两组样本数据的样本极差相同【解答】解:对于A,两组数据的平均数的差为c,故A错误;对于B,两组样本数据的样本中位数的差是c,故B错误;对于C,∵标准差D(y i)=D(x i+c)=D(x i),∴两组样本数据的样本标准差相同,故C正确;对于D,∵y i=x i+c(i=1,2,…,n),c为非零常数,x的极差为x max﹣x min,y的极差为(x max+c)﹣(x min+c)=x max﹣x min,∴两组样本数据的样本极差相同,故D正确.故选:CD.三.解答题(共4小题)8.(2021•甲卷)甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:一级品二级品合计甲机床15050200乙机床12080200合计270130400(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d).P(K2≥k)0.0500.0100.001 k 3.841 6.63510.828【解答】解:(1)由题意可得,甲机床、乙机床生产总数均为200件,因为甲的一级品的频数为150,所以甲的一级品的频率为150200=34;因为乙的一级品的频数为120,所以乙的一级品的频率为120200=35;(2)根据2×2列联表,可得K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)=400(150×80−50×120)2≈10.256>6.635.270×130×200×200所以有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异.9.(2021•新高考Ⅰ)某学校组织“一带一路”知识竞赛,有A,B两类问题.每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A类问题中的每个问题回答正确得20分,否则得0分;B类问题中的每个问题回答正确得80分,否则得0分.已知小明能正确回答A类问题的概率为0.8,能正确回答B类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.(1)若小明先回答A类问题,记X为小明的累计得分,求X的分布列;(2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.【解答】解:(1)由已知可得,X的所有可能取值为0,20,100,则P(X=0)=1﹣0.8=0.2,P(X=20)=0.8×(1﹣0.6)=0.32P(X=100)=0.8×0.6=0.48,所以X的分布列为:X020100P0.20.320.48(2)由(1)可知小明先回答A类问题累计得分的期望为E(X)=0×0.2+20×0.32+100×0.48=54.4,若小明先回答B类问题,记Y为小明的累计得分,则Y的所有可能取值为0,80,100,P(Y=0)=1﹣0.6=0.4,P(Y=80)=0.6×(1﹣0.8)=0.12,P(Y=100)=0.6×0.8=0.48,则Y的期望为E(Y)=0×0.4+80×0.12+100×0.48=57.6,因为E(Y)>E(X),所以为使累计得分的期望最大,小明应选择先回答B类问题.10.(2021•新高考Ⅰ)一种微生物群体可以经过自身繁殖不断生存下来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代,……,该微生物每代繁殖的个数是相互独立的且有相同的分布列,设X 表示1个微生物个体繁殖下一代的个数,P(X=i)=p i(i=0,1,2,3).(Ⅰ)已知p0=0.4,p1=0.3,p2=0.2,p3=0.1,求E(X);(Ⅰ)设p表示该种微生物经过多代繁殖后临近灭绝的概率,p是关于x的方程:p0+p1x+p2x2+p3x3=x的一个最小正实根,求证:当E(X)≤1时,p=1,当E(X)>1时,p<1;(Ⅰ)根据你的理解说明(2)问结论的实际含义.【解答】(Ⅰ)解:由题意,p0=0.4,p1=0.3,p2=0.2,p3=0.1,故E(X)=0×0.4+1×0.3+2×0.2+3×0.1=1;(Ⅰ)证明:由题意可知,p0+p1+p2+p3=1,则E(X)=p1+2p2+3p3,所以p0+p1x+p2x2+p3x3=x,变形为p0﹣(1﹣p1)x+p2x2+p3x3=0,所以p0+p2x2+p3x3﹣(p0+p2+p3)x=0,即p0(1﹣x)+p2x(x﹣1)+p3x(x﹣1)(x+1)=0,即(x﹣1)[p3x2+(p2+p3)x﹣p0]=0,令f(x)=p3x2+(p2+p3)x﹣p0,<0,若p3≠0时,则f(x)的对称轴为x=−p2+p32p3注意到f(0)=﹣p0≤0,f'(1)=2p3+p2﹣p0=p1+2p2+3p3﹣1=E(X)﹣1,若p3=0时,f(1)=E(X)﹣1,当E(X)≤1时,f(1)≤0,f(x)=0的正实根x0≥1,原方程的最小正实根p =1,当E(X)>1时,f'(1)=p1+2p2+3p3﹣1>0,f(x)=0的正实根x0<1,原方程的最小正实根p<1,(Ⅰ)解:当1个微生物个体繁殖下一代的期望小于等于1时,这种微生物经过多代繁殖后临近灭绝;当1个微生物个体繁殖下一代的期望大于1时,这种微生物经过多代繁殖后还有继续繁殖的可能.一.选择题(共8小题)1.如图是调查某学校高三年级男女学生是否喜欢篮球运动的等高条形图,阴影部分的高表示喜欢该项运动的频率.已知该年级男生女生各500名(假设所有学生都参加了调查),现从所有喜欢篮球运动的同学中按分层抽样的方式抽取32人,则抽取的男生人数为()A.8B.12C.16D.24【解答】解:由等高条形图的女生喜欢篮球运动的频率为0.2,男生喜欢篮球运动的频率为0.6,从所有喜欢篮球运动的同学中按分层抽样的方式抽取32人,=24.则抽取的男生人数为:32×0.60.2+0.6故选:D.2.郑州地铁1号线的开通运营,极大方便了市民的出行.某时刻从二七广场站驶往博学路站的过程中,10个车站上车的人数统计如下:70,60,60,60,50,40,40,30,30,10.这组数据的平均数,众数,90%分位数的和为()A.125B.135C.165D.170×【解答】解:计算该组数据的平均数为x=110(70+60+60+60+50+40+40+30+30+10)=45,众数是60,×(60+70)=65,因为10×90%=9,所以数据的90%分位数是12所以平均数、众数和90%分位数的和为45+60+65=170.故选:D.3.中华文化综罗百代,广博精微,国学经典中蕴藏着中华五千年历史的智慧精髓.某校学生会举办“传承中华文化,诵读国学经典”活动,供选择的诵读经典著作为:《春秋》、《史记》、《左传》、《孙子兵法》.经过层层遴选,有三位选手进入决赛,这三位选手可以从如上著作中,任选一篇文章诵读.那么这三位选手中,恰有两人诵读的篇目取自于同一部著作的概率为()A .164B .2932C .916D .716【解答】解:供选择的诵读经典著作为:《春秋》、《史记》、《左传》、《孙子兵法》.三位选手进入决赛,这三位选手可以从如上著作中,任选一篇文章诵读. 基本事件总数n =43=64,这三位选手中,恰有两人诵读的篇目取自于同一部著作包含的基本事件m =C 32⋅C 41⋅C 31=36,那么这三位选手中,恰有两人诵读的篇目取自于同一部著作的概率为: P =m n=3664=916.故选:C .4.现有A ,B ,C ,D ,E 五名志愿者分配到甲,乙,丙三个不同社区参加志愿者活动,每个社区至少安排一人,则A 和B 分配到同一社区的概率为( ) A .320B .625C .325D .635【解答】解:由题意可得:分配方案为1,1,3型,或1,2,2.共有分配方法C 53•A 33+C 52C 32C 11A 22•A 33=150,A 和B 分配到同一社区的方法共有C 22C 31•A 33+C 22⋅C 32•A 33=36,∴A 和B 分配到同一社区的概率=36150=625, 故选:B .5.夏季里,每天甲、乙两地下雨的概率分别为13和14,且两地同时下雨的概率为16,则夏季的一天里,在乙地下雨的条件下,甲地也下雨的概率为( ) A .112B .12C .23D .34【解答】解:记事件A 为甲地下雨,事件B 为乙下雨, ∴P (A )=13,P (B )=14,P (AB )=16, ∴在乙地下雨的条件下,甲地也下雨的概率为: P (A |B )=P(AB)P(B)=1614=23.故选:C .6.为充分感受冬奥的运动激情,领略奥运的拼搏精神,甲、乙、丙三人进行短道速滑训练.已知每一场比赛甲、乙、丙获胜的概率分别为16,13,12,则3场训练赛过后,甲、乙获胜场数相同的概率为( ) A .1172B .524C .724D .13【解答】解:3场训练赛过后,甲、乙获胜场数相同的情况有两种: ①甲、乙两人均获胜0场,概率为P 1=(12)3=18;②甲、乙两人均获胜1场,概率为P 2=C 31×12×C 21×13×16=16,∴3场训练赛过后,甲、乙获胜场数相同的概率为: P =P 1+P 2=18+16=724. 故选:C .7.“总把新桃换旧符”(王安石)、“灯前小草写桃符“(陆游),春节是中华民族的传统节日,在宋代人们用写“桃符”的方式来祈福避祸,而现代人们通过贴“福”字、贴春联、挂灯笼等方式来表达对新年的美好祝愿,某商家在春节前开展商品促销活动,顾客凡购物金额满50元,则可以从“福”字、春联和灯笼这三类礼品中任意免费领取一件,若有3名顾客都领取一件礼品,则他们三人领取的礼品种类都不相同的概率是( ) A .29B .127C .19D .13【解答】解:顾客凡购物金额满50元,则可以从“福”字、春联和灯笼这三类礼品中任意免费领取一件, 有3名顾客都领取一件礼品, 基本事件总数n =33=27,他们三人领取的礼品种类都不相同包含的基本事件个数m =A 33=6, 则他们三人领取的礼品种类都不相同的概率是: P =m n=627=29.故选:A .8.江西某中学为测试高三学生的数学水平,组织学生参加了联考,共有1000名学生参加,已知该校上次测试中,成绩X (满分150分)服从正态分布N (100,σ2),已知120分及以上的人数为160人,假设这次考试成绩和上次分布相同,那么通过以上信息推测这次数学成绩优异的人数为(成绩140分以上者为优异)()P(μ﹣σ<X<μ+σ)≈0.68,P(μ﹣2σ<X<μ+2σ)≈0.95,P(μ﹣3σ<X<μ+3σ)≈0.99.A.20B.25C.30D.40【解答】解:∵成绩X(满分150分)服从正态分布N(100,σ2),又∵120分及以上的人数为160人,∴80分及以下的人数也为160人,=0.68,由此可知,σ=20,即X~N(100,∴P(80<X<120)=1000−160−1601000202),∴P(60<X<140)=0.95,=25.故140分及以上的人数为1000−1000×0.952故选:B.二.多选题(共4小题)(多选)9.如图是国家统计局发布的2020年12月至2021年12月的全国居民×100%,环比=消费价格涨跌幅,其中同比=本期数−去年同期数去年同期数本期数−上期数×100%.上期数则下列说法正确的是()A.2020年12月至2021年12月全国居民消费价格环比的极差为1.5%B.2020年12月至2021年12月全国居民消费价格同比的中位数为0.9% C.这13个月中,2021年6月全国居民消费价格最低D.2021年比2020年全国居民消费平均价格增长大于1.0%【解答】解:对于A,2020年12月至2021年12月,全国居民消费价格环比的最大值为1.0%,最小值为﹣0.5%,∴2020年12月至2021年12月全国居民消费价格环比的极差为1.5%,故A 正确;对于B ,2020年12月至2021年12月,全国居民消费价格同比(单位:%)从小到大依次为:﹣0.3,﹣0.2,0.2,0.4,0.7,0.8,0.9,1.0,1.1,1.3,1.5,1.5,2.3, 中位数是0.9%,故B 正确;对于C ,从环比看,从2021年3至6月,环比涨幅均为负值, ∴全国居民消费价格一直在下降,∴这13个月中,2021年6月全国居民消费价格最低,故C 正确; 对于D ,2021年比2020年全国居民消费平均价格增长:112(﹣0.3﹣0.2+0.4+0.9+1.3+1.1+1.0+0.8+0.7+1.5+2.3+1.5)=1112<1.0%,故D 错误. 故选:ABC .(多选)10.下列命题中,正确的命题是( )A .已知随机变量X 服从二项分布B (n ,p ),若E (X )=30,D (X )=20,则p =23B .若回归直线的斜率估计值为0.25,样本点中心为(2,3),则回归直线的方程为y =0.25x +2.5C .设ξ服从正态分布N (0,1),若P (ξ>1)=p ,则P(−1<ξ<0)=12−pD .某人在10次射击中,击中目标的次数为X ,X ~B (10,0.8),则当X =8时概率最大【解答】解:∵随机变量X 服从二项分布B (n ,p ),E (X )=30,D (X )=20,∴E (X )=np =30,D (X )=np (1﹣p )=20, 解得,p =13,故选项A 错误;∵回归直线的斜率估计值为0.25,样本点中心为(2,3), ∴b =0.25,a =3﹣2×0.25=2.5,故回归直线的方程为y =0.25x +2.5,故选项B 正确;∵ξ服从正态分布N(0,1),P(ξ>1)=p,∴P(ξ<﹣1)=p,故P(−1<ξ<0)=12−p,故选项C正确;∵X~B(10,0.8),∴P(X=k)=∁10k•0.8k•0.210﹣k=∁10k•4k510,∴P(X=k+1)P(X=k)=∁10k+14k+1510∁10k⋅4k510=4(10−k)k+1,故当k≤7时,4(10−k)k+1>1,k≥8时,4(10−k)k+1<1,故当X=8时概率最大;故选项D正确;故选:BCD.(多选)11.甲,乙,丙,丁,戊五人并排站成一排照相,下列说法正确的是()A.如果甲,乙必须相邻,那么不同的排法有24种B.甲不站在排头,乙不站在正中间,则不同的排法共有78种C.甲乙不相邻且乙在甲的右边,则不同的排法共有36种D.若五人已站好,后来情况有变,需加上2人,但不能改变原来五人的相对顺序,则不同的排法共有42种【解答】解:根据题意,依次分析选项:对于A,将甲乙看成一个整体,与丙,丁,戊全排列,有A22A44=48种不同的排法,A错误;对于B,若甲站在正中间,乙有4种站法,剩下3人全排列,有4×A33=24种排法,若甲不站在正中间,甲有3种站法,乙有3种站法,剩下3人全排列,有3×3×A33=54种排法,则有24+54=78种不同的站法,B正确;对于C,将丙,丁,戊三人排成一排,再将甲乙安排在三人的空位中,有A33A42=72种排法,其余乙在甲的右边和乙在甲的左边的情况数目相同,则有12×72=36种不同的排法,C正确;对于D,若五人已站好,后来情况有变,需加上2人,第一个人有6种插法,第二个人有7种插法,则有6×7=42种不同的安排方法,D 正确; 故选:BCD .(多选)12.若x 5=a 0+a 1(1+x )+a 2(1+x )2+⋅⋅⋅+a 5(1+x )5,其中a 0,a 1,a 2,⋅⋅⋅,a 5为实数,则( ) A .a 0=0B .a 3=10C .a 1+a 2+⋅⋅⋅+a 5=1D .a 1+a 3+a 5=﹣16【解答】解:x 5=[﹣1+(1+x )]5=a 0+a 1(1+x )+a 2(1+x )2+a 3(1+x )3+a 4(1+x )4+a 5(1+x )5,可得a 0=﹣1,a 1=5,a 2=﹣10,a 3=10.a 4=﹣5,a 5=1, 故选:BC .三.填空题(共4小题)13.在高三下学期初,某校开展教师对学生的家庭学习问卷调查活动,已知现有3名教师对4名学生进行家庭问卷调查,若这3名教师每位至少到一名学生家中问卷调查,又这4名学生的家庭都能且只能得到一名教师的问卷调查,那么不同的问卷调查方案的种数为 36 .【解答】解:根据题意,有一名教师需要对两名学生进行家庭问卷调查,需要先安排1位教师问两个学生作调查,有C 31C 42=18种安排方法,剩下2名教师为其他两个学生作调查,有A 22=2种安排方法, 则有18×2=36种调查方案; 故答案为:36.14.某高校开展安全教育活动,安排6名老师到4个班进行讲解,要求1班和2班各安排一名老师,其余两个班各安排两名老师,其中刘老师和王老师不在一起,则不同的安排方案有 156 种. 【解答】解:根据题意,分2步进行分析:①,将6人分成1、1、2、2的四组,要求刘老师和王老师不在一起, 有C 62C 42C 21C 11A 22A 22−C 42C 21C 11A 22=45﹣6=39种分组方法;②,将两个只有1人组分配给1班和2班,将两个2人组分配给3班和4班,有A 22×A 22=4种情况,则有39×4=156种不同安排方法;故答案为:156.15.(x +1x )(2x ﹣1)7的展开式中x 的系数为 ﹣85 .【解答】解:∵(x +1x )(2x −1)7=(x +1x )[(2x )7﹣7(2x )6+C 72•(2x )5−C 73•(2x )4+C 74•(2x )3−C 75•(2x )2+C 76•(2x )﹣1]=﹣1−C 75•4=﹣85,故答案为:﹣85.16.在(√x 3−2x )n 的二项展开式中,只有第5项的二项式系数最大,则二项展开式常数项等于 112 .【解答】解:(√x 3−2x)n 的二项展开式的中,只有第5项的二项式系数最大,∴n =8, 通项公式为T r +1=C n r•(﹣2)r •x n−4r3=(﹣2)r•C 8r•x 8−4r3,令8−4r 3=0,求得r=2,可得二项展开式常数项等于4×C 82=112,故答案为:112. 四.解答题(共6小题)17.某公司招聘员工,应聘者需进行笔试和面试.笔试分为三个环节,每个环节都必须参与.应聘者甲笔试部分每个环节通过的概率均为23,笔试三个环节至少通过两个才能够参加面试,否则直接淘汰;应聘者甲面试通过的概率为34.若笔试,面试都通过,则可以成为该公司的正式员工,各个环节相互独立. (1)求应聘者甲未能参与面试的概率;(2)记应聘者甲本次应聘通过的环节数为X ,求X 的分布列以及数学期望; 【解答】解:(1)设应聘者甲末能参与面试为事件A ,则甲通过了0个或1个笔试环节,P(A)=C 30(1−23)3(23)0+C 31(1−23)2(23)1=727,(2)X 的可能取值为0,1,2,3,4.P(X =0)=C 30⋅(13)3=127, P(X =1)=C 31⋅(13)2×23=29,P(X =2)=C 32⋅(23)2×13×(1−34)=19,P(X =3)=C 33⋅(23)3×(1−34)+C 32⋅(23)2×13×34=1127,P(X =4)=C 33⋅(23)3×34=29,则X 的分布列为: X 0 1 2 3 4 P1272919112729故E (X)=0×127+1×29+2×19+3×1127+4×29=239.18.从某校高三年中随机抽取100名学生,对其眼视力情况进行统计(两眼视力不同,取较低者统计),得到如图所示的频率分布直方图,已知从这100人中随机抽取1人,其视力在[4.1,4.3)的概率为110.(1)求a ,b 的值;(2)若高校A 专业的报考资格为:任何一眼裸眼视力不低于4.9,高校B 专业的报考资格为:任何一眼裸眼视力不低于5.0,已知在[4.9,5.1)中有13的学生裸眼视力不低于5.0.现用分层抽样的方法从[4.9,5.1)和[5.1,5.3)中抽取4名同学,4人中有资格(仅考虑视力)考B 专业的人数为随机变量ξ,求ξ的分布列及数学期望.【解答】解:(1)由频率分布直方图的性质得:{b ×0.2=110(b +0.75+1.75+a +0.75+0.25)×0.2=1,解得b =0.5,a =1.(2)在[4.9,5.1)中,共有15人,其中5人不低于5.0,在这15人中,抽取3人,在[5.1,5.3]中共有5人,抽取1人, 随机变量ξ的可能取值为1,2,3,4, P (ξ=1)=C 103C 50C 153=2491,P (ξ=2)=C 102C 51C 153=4591,P (ξ=3)=C 104C 52C 153=2091, P (ξ=4)=C 100C 53C 153=291,∴ξ的分布列为:ξ 1 2 3 4 P 2491 4591 2091 291E (ξ)=1×2491+2×4591+3×2091+4×291=2.19.“一带一路”近年来成为了百姓耳熟能详的热门词汇,对于旅游业来说,“一带一路”战略的提出,让“丝路之旅”超越了旅游产品、旅游线路的简单范畴,赋予了旅游促进跨区域融合的新理念.而其带来的设施互通、经济合作、人员往来、文化交融更是将为相关区域旅游发展带来巨大的发展机遇.为此,旅游企业们积极拓展相关线路;各地旅游主管部门也在大力打造丝路特色旅游品牌和服务.某市旅游局为了解游客的情况,以便制定相应的策略.在某月中随机抽取甲、乙两个景点10天的游客数,统计得到茎叶图如下: (1)若将图中景点甲中的数据作为该景点较长一段时期内的样本数据,以每天游客人数频率作为概率.今从这段时期内任取4天,记其中游客数超过130人的天数为ξ,求概率P (ξ≤2);(2)现从上图20天的数据中任取2天的数据(甲、乙两景点中各取1天),记其中游客数不低于125且不高于135人的天数为η,求η的分布列和数学期望.【解答】解:(1)由题意知,景点甲的每一天的游客数超过130人的概率为410=25. 任取4天,即是进行了4次独立重复试验,其中有ξ次发生, 则随机变量ξ服从二项分布ξ~B(4,25),∴P (ξ≤2)=P (ξ=0)+P (ξ=1)+P (ξ=2)=C 40(25)0(35)4+C 41(25)(35)3+C 42(25)2(35)2=513625.(2)从图中看出,景点甲的数据中符合条件的只有1天,景点乙的数据中符合条件的有4天,所以在景点甲中被选出的概率为110,在景点乙中被选出的概率为25.由题意知η的所有可能的取值为0、1、2,则P(η=0)=910×35=2750;P(η=1)=110×35+910×25=2150;P(η=2)=110×25=125. ∴η的分布列为η 012P2750 2150125∴E(η)=0×2750+1×2150+2×125=12.20.2022年北京冬奥会的申办成功与“3亿人上冰雪”口号的提出,将冰雪这个冷项目迅速炒“热”.北京某综合大学计划在一年级开设冰球课程,为了解学生对冰球运动的兴趣,随机从该校一年级学生中抽取了100人进行调查,其中女生中对冰球运动有兴趣的占23,而男生有10人表示对冰球运动没有兴趣额. (1)完成2×2列联表,并回答能否有90%的把握认为“对冰球是否有兴趣与性别有关”?有兴趣 没兴趣 合计 男 55 女 合计(2)若将频率视为概率,现再从该校一年级全体学生中,采用随机抽样的方法每次抽取1名学生,抽取5次,记被抽取的5名学生中对冰球有兴趣的人数为X ,若每次抽取的结果是相互独立的,求X 的分布列,期望和方差. 附表: P (K 2≥k 0)0.150 0.100 0.050 0.025 0.010 k 02.0722.7063.8415.0246.635。

考前三个月高考数学(全国甲卷通用理科)考前抢分必做 考前回扣 回扣9

考前三个月高考数学(全国甲卷通用理科)考前抢分必做 考前回扣 回扣9

回扣9 概率与统计1.牢记概念与公式 (1)概率的计算公式 ①古典概型的概率计算公式 P (A )=事件A 包含的基本事件数m 基本事件总数n ;②互斥事件的概率计算公式 P (A ∪B )=P (A )+P (B ); ③对立事件的概率计算公式 P (A )=1-P (A ); ④几何概型的概率计算公式 P (A )=构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).(2)抽样方法简单随机抽样、分层抽样、系统抽样.①从容量为N 的总体中抽取容量为n 的样本,则每个个体被抽到的概率都为nN;②分层抽样实际上就是按比例抽样,即按各层个体数占总体的比确定各层应抽取的样本容量. (3)统计中四个数据特征①众数:在样本数据中,出现次数最多的那个数据.②中位数:在样本数据中,将数据按大小排列,位于最中间的数据.如果数据的个数为偶数,就取中间两个数据的平均数作为中位数. ③平均数:样本数据的算术平均数, 即x =1n (x 1+x 2+…x n ).④方差与标准差方差:s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2].标准差: s =1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]. (4)八组公式①离散型随机变量的分布列的两个性质Ⅰ.p i ≥0(i =1,2,…,n );Ⅱ.p 1+p 2+…+p n =1. ②均值公式E (X )=x 1p 1+x 2p 2+…+x n p n . ③均值的性质Ⅰ.E (aX +b )=aE (X )+b ; Ⅱ.若X ~B (n ,p ),则E (X )=np ; Ⅲ.若X 服从两点分布,则E (X )=p . ④方差公式D (X )=[x 1-E (X )]2·p 1+[x 2-E (X )]2·p 2+…+[x n -E (X )]2·p n ,标准差D X . ⑤方差的性质Ⅰ.D (aX +b )=a 2D (X );Ⅱ.若X ~B (n ,p ),则D (X )=np (1-p ); Ⅲ.若X 服从两点分布,则D (X )=p (1-p ). ⑥独立事件同时发生的概率计算公式 P (AB )=P (A )P (B ).⑦独立重复试验的概率计算公式P n (k )=C k n p k (1-p )n -k . ⑧条件概率公式 P (B |A )=P (AB )P (A ). 2.活用定理与结论 (1)直方图的三个结论 ①小长方形的面积=组距×频率组距=频率. ②各小长方形的面积之和等于1.③小长方形的高=频率组距,所有小长方形高的和为1组距.(2)线性回归方程y ^=b ^x +a ^一定过样本点的中心(x ,y ). (3)利用随机变量K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )来判断“两个分类变量有关系”的方法称为独立性检验.如果K 2的观测值k 越大,说明“两个分类变量有关系”的可能性越大.(4)如果随机变量X 服从正态分布,则记为X ~N (μ,σ2).满足正态分布的三个基本概率的值是:①P (μ-σ<X ≤μ+σ)=0.682 6;②P (μ-2σ<X ≤μ+2σ2)=0.954 4;③P (μ-3σ<X ≤μ+3σ)=0.997 4.1.应用互斥事件的概率加法公式,一定要注意首先确定各事件是否彼此互斥,然后求出各事件分别发生的概率,再求和.2.正确区别互斥事件与对立事件的关系:对立事件是互斥事件,是互斥中的特殊情况,但互斥事件不一定是对立事件,“互斥”是“对立”的必要不充分条件.3.混淆频率分布条形图和频率分布直方图,误把频率分布直方图纵轴的几何意义当成频率,导致样本数据的频率求错.4.要注意概率P (A |B )与P (AB )的区别(1)在P (A |B )中,事件A ,B 发生有时间上的差异,B 先A 后;在P (AB )中,事件A ,B 同时发生.(2)样本空间不同,在P (A |B )中,事件B 成为样本空间;在P (AB )中,样本空间仍为Ω,因而有P (A |B )≥P (AB ).5.易忘判定随机变量是否服从二项分布,盲目使用二项分布的均值和方差公式计算致误.1.某学校有男学生400名,女学生600名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取男学生40名,女学生60名进行调查,则这种抽样方法是( )A.抽签法B.随机数法C.系统抽样法D.分层抽样法 答案 D解析 总体由男生和女生组成,比例为400∶600=2∶3,所抽取的比例也是2∶3,故拟从全体学生中抽取100名学生进行调查,采用的抽样方法是分层抽样法,故选D.2.投掷两颗骰子,得到其向上的点数分别为m 和n ,则复数(m +n i)(n -m i)为实数的概率是( ) A.13 B.14 C.16 D.112 答案 C解析 投掷两颗骰子,得到其向上的点数分别为m 和n ,记作(m ,n ),共有6×6=36(种)结果.(m +n i)(n -m i)=2mn +(n 2-m 2)i 为实数,应满足m =n ,有6种情况,所以所求概率为636=16,故选C.3.一个袋子中有5个大小相同的球,其中3个白球2个黑球,现从袋中任意取出一个球,取出后不放回,然后再从袋中任意取出一个球,则第一次为白球、第二次为黑球的概率为( ) A.35 B.310 C.12 D.625 答案 B解析 设3个白球分别为a 1,a 2,a 3,2个黑球分别为b 1,b 2,则先后从中取出2个球的所有可能结果为(a 1,a 2),(a 1,a 3),(a 1,b 1),(a 1,b 2),(a 2,a 3),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2),(a 2,a 1),(a 3,a 1),(b 1,a 1),(b 2,a 1),(a 3,a 2),(b 1,a 2),(b 2,a 2),(b 1,a 3),(b 2,a 3),(b 2,b 1),共20种.其中满足第一次为白球、第二次为黑球的有(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),共6种,故所求概率为620=310.4.为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得线性回归方程y ^=b ^x +a ^,其中b ^=0.76,a ^=y -b ^x .据此估计,该社区一户年收入为15万元家庭的年支出为( )A.11.4万元B.11.8万元C.12.0万元D.12.2万元 答案 B解析 由题意知,x =8.2+8.6+10.0+11.3+11.95=10,y =6.2+7.5+8.0+8.5+9.85=8,∴a ^=8-0.76×10=0.4, ∴当x =15时,y ^=0.76×15+0.4=11.8(万元).5.设X ~N (1,σ2),其正态分布密度曲线如图所示,且P (X ≥3)=0.022 8,那么向正方形OABC 中随机投掷10 000个点,则落入阴影部分的点的个数的估计值为( )附:(随机变量ξ服从正态分布N (1,σ2),则P (μ-σ<ξ≤μ+σ)=68.26%,P (μ-2σ<ξ≤μ+2σ)=95.44%)( )A.6 038B.6 587C.7 028D.7 539 答案 B解析 由题意知,P (0<X ≤1)=1-12×0.682 6=0.658 7,则落入阴影部分的点的个数的估计值为10 000×0.658 7=6 587.故选B.6.从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a ,b ,共可得到lg a -lg b 的不同值的个数是( ) A.9 B.10 C.18 D.20 答案 C解析 由于lg a -lg b =lg a b (a >0,b >0),从1,3,5,7,9中任取两个作为a b 有A 25=20种,又13与39相同,31与93相同,∴lg a -lg b 的不同值的个数有A 25-2=20-2=18,选C. 7.甲、乙两同学用茎叶图记录高三前5次数学测试的成绩,如图所示,他们在分析对比成绩变化时,发现乙同学成绩的一个数字看不清楚了,若已知乙的平均成绩低于甲的平均成绩,则看不清楚的数字为( )A.0B.3C.6D.9 答案 A解析 设看不清的数字为x ,甲的平均成绩为99+100+101+102+1035=101,所以93+94+97+110+(110+x )5<101,x <1,所以x =0.故选A.8.在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =-13x +2上,则这组样本数据的样本的相关系数为( )A.-1B.0C.-13 D.1答案 A解析 数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,样本点(x i ,y i )(i =1,2,…,n )都在直线y =-13x +2上,说明这组数据点完全负相关,其相关系数为-1,故选A.9.在区间[1,5]和[2,4]内分别取一个数,记为a ,b ,则方程x 2a 2+y 2b 2=1表示焦点在x 轴上且离心率小于32的椭圆的概率为________. 答案1532解析 当方程x 2a 2+y 2b 2=1表示焦点在x 轴上且离心率小于32的椭圆时,有⎩⎪⎨⎪⎧a 2>b 2,e =c a =a 2-b 2a <32,即⎩⎪⎨⎪⎧ a 2>b 2,a 2<4b 2, 化简得⎩⎪⎨⎪⎧a >b ,a <2b . 又a ∈[1,5],b ∈[2,4],画出满足不等式的平面区域,如图阴影部分所示 ,求得阴影部分的面积为154,故P =S 阴影2×4=1532.10.将某班参加社会实践编号为1,2,3,…,48的48名学生,采用系统抽样的方法抽取一个容量为6的样本,已知5号,21号,29号,37号,45号学生在样本中,则样本中还有一名学生的编号是________. 答案 13解析 系统抽样法取出的样本编号成等差数列,因此还有一个编号为5+8=21-8=13. 11.某班有学生60人,现将所有学生按1,2,3,…,60随机编号,若采用系统抽样的方法抽取一个容量为5的样本(等距抽样),已知编号为4,a ,28,b ,52号学生在样本中,则a +b =________. 答案 56解析 ∵样本容量为5,∴样本间隔为60÷5=12, ∵编号为4,a ,28,b ,52号学生在样本中, ∴a =16,b =40, ∴a +b =56.12.给出如下四对事件:①某人射击1次,“射中7环”与“射中8环”;②甲、乙两人各射击1次,“至少有1人射中目标”与“甲射中,但乙未射中目标”; ③从装有2个红球和2个黑球的口袋内任取2个球,“至少一个黑球”与“都是红球”; ④从装有2个红球和2个黑球的口袋内任取2个球,“没有黑球”与“恰有一个红球”. 其中属于互斥事件的是________.(把你认为正确的事件的序号都填上). 答案 ①③④解析 ①某人射击1次,“射中7环”与“射中8环”两个事件不会同时发生,故为互斥事件;②甲、乙两人各射击1次,“至少有1人射中目标”与“甲射中,但乙未射中目标”,前者包含后者,故②不是互斥事件;③“至少有一个黑球”与“都是红球”不能同时发生,但一定会有一个发生,所以这两个事件是对立事件,故是互斥事件;④“没有黑球”与“恰有一个红球”,不可能同时发生,故他们属于互斥事件.13.国内某知名大学有男生14 000人,女生10 000人.该校体育学院想了解本校学生的运动状况,根据性别采取分层抽样的方法从全校学生中抽取120人,统计他们平均每天运动的时间,如下表:(平均每天运动的时间单位:小时,该校学生平均每天运动的时间范围是[0,3])男生平均每天运动的时间分布情况:女生平均每天运动的时间分布情况:(1)请根据样本估算该校男生平均每天运动的时间(结果精确到0.1);(2)若规定平均每天运动的时间不少于2小时的学生为“运动达人”,低于2小时的学生为“非运动达人”.①根据样本估算该校“运动达人”的数量;②请根据上述表格中的统计数据填写下面2×2列联表,并通过计算判断能否在犯错误的概率不超过0.05的前提下认为“是否为‘运动达人’与性别有关?”参考公式:K2=n(ad-bc)2(a+b)(a+d)(a+c)(b+d),其中n=a+b+c+d参考数据:解(1)由分层抽样得:男生抽取的人数为120×14 00014 000+10 000=70,女生抽取的人数为120-70=50,故x=5,y=2,则该校男生平均每天运动的时间为0.25×2+0.75×12+1.25×23+1.75×18+2.25×10+2.75×570≈1.5.故该校男生平均每天运动的时间约为1.5小时.(2)①样本中“运动达人”所占比例是20120=16,故估计该校“运动达人”有16×(14 000+10 000)=4 000(人). ②由表格可知:故K 2的观测值k =120×(15×45-5×55)220×100×50×70=9635≈2.743<3.841,故在犯错误的概率不超过0.05的前提下不能认为“是否为‘运动达人’与性别有关”. 14.某公司通过初试和复试两轮考试确定最终合格人选,当第一轮初试合格后方可进入第二轮复试,两次考核过程相互独立.根据甲、乙、丙三人现有的水平,第一轮考核甲、乙、丙三人合格的概率分别为0.4、0.6、0.5.第二轮考核,甲、乙、丙三人合格的概率分别为0.5、0.5、0.4.(1)求第一轮考核后甲、乙两人中只有乙合格的概率;(2)设甲、乙、丙三人经过前后两轮考核后合格入选的人数为X ,求X 的分布列和均值. 解 (1)设甲、乙经第一次考核后合格为事件A 1、B 1, 设事件E 表示第一轮考核后甲不合格、乙合格, 则P (E )=P (A 1·B 1)=0.6×0.6=0.36.即第一轮考核后甲、乙两人中只有乙合格的概率为0.36.(2)分别设甲、乙、丙三人经过前后两次考核后合格入选为事件A 、B 、C , 则P (A )=0.4×0.5=0.2, P (B )=0.6×0.5=0.3, P (C )=0.4×0.5=0.2,经过前后两轮考核后合格入选的人数为X ,则X 可能取0,1,2,3. P (X =0)=0.8×0.7×0.8=0.448,P (X =1)=0.2×0.7×0.8+0.8×0.3×0.8+0.8×0.7×0.2=0.416, P (X =3)=0.2×0.3×0.2=0.012, P (X =2)=1-0.448-0.416-0.012=0.124. X 的分布列为均值为E(X)=0×0.448+1×0.416+2×0.124+3×0.012=0.7.。

2023年高考数学全国甲卷概率解答

2023年高考数学全国甲卷概率解答

2023年高考数学全国甲卷概率解答一、选择题部分1. 已知事件 A 和事件 B 是两个独立事件,且 P(A)=0.3,P(B)=0.4,则 P(AB) 是多少?答案:P(AB)=P(A)×P(B)=0.3×0.4=0.122. 设随机变量 X 的概率密度函数为 f(x)=2x,0<x<1,求P(X>0.5)的值。

答案:P(X>0.5)=∫(0.5,1)2xdx=[x^2]_(0.5)^(1)=1-0.25=0.753. 一枚硬币抛掷 4 次,求出现正面朝上次数为 2 的概率。

答案:设事件 A 表示正面朝上,事件 A 在 4 次抛掷中出现 2 次的排列组合数为 C(4,2)=6,所以概率为 P(A)=6/2^4=3/8二、填空题部分1. 一个圆柱体,底面积为16π 平方厘米,高为 8 厘米,以底面直径为边 as(其中 as 为整数),如果:圆柱体在底面上的投影在所在的平面正方形上,则 as 的值是多少?答案:圆柱体的底面积为16π=πd²/4,解得 d=8,所以 as=82. 设 E 是事件 A 和事件 B 的对立事件,且 P(A)=0.3,则 P(E) 的值为____。

答案:P(E)=1-P(A)=1-0.3=0.7三、解答题部分1. 随机事件 A 和事件 B 满足 P(A)=0.6,P(B)=0.5,P(AB)=0.3,求事件 A 和事件 B 的互斥事件的概率。

答案:互斥事件指的是两个事件不可能同时发生,即 P(AB)=0。

因此互斥事件的概率为 P(A~B)=P(A)+P(B)-P(AB)=0.6+0.5-0.3=0.82. 设 X 和 Y 为两个独立的随机变量,且 X 的概率密度函数为f(x)=1/2,-1<x<1,Y 的概率密度函数为 g(y)=e^(-y),y>0,求随机变量 Z=X/Y 的分布函数。

答案:首先在计算分布函数的时候,需要知道随机变量的联合概率密度函数。

高考数学概率统计专题复习(专题训练)完整版.doc

高考数学概率统计专题复习(专题训练)完整版.doc

高考数学《概率统计》复习知识结构1.注意:互斥事件不一定是对立事件,但对立事件一定是互斥事件。

2.(1)试验的所有可能结果为有限个,每次试验只出现其中的一个结果;(2)每一个试验结果出现的可能性相等。

(3)古典概型的概率公式:P(A)=事件A包含的可能结果数试验的所有可能结果数=mn.3.几何概型:如果每个事件发生的概率只与构成该事件区域的长度(或面积或体积)成比例,则称这样的概率模型为几何概型。

几何概型的概率公式:设某一事件(也是S中的某一区域),S包含A,它的量度大小(长度、面积或体积)为()Aμ,考虑到均匀分布性,事件A发生的概率() ()()A P ASμμ=.4.统计学中的几个基本概念:(1)样本平均数:样本中所有个体的平均数叫做样本平均数。

(2)平均数计算公式:一般地,如果有n 个数n x x x ,,,21⋅⋅⋅,则n21n x x x x +⋅⋅⋅++=. (3)加权平均数:如果n 个数中,出现次,出现次,…,出现次(这里n f f f k =+⋅⋅⋅++21),那么,根据平均数的定义,这n 个数的平均数可以表示为n2211n n f x f x f x x +⋅⋅⋅++=,这样求得的平均数叫做加权平均数,其中k f f f ,,,21⋅⋅⋅叫做权。

(4)众数:在一组数据中,出现次数最多的数据叫做这组数据的众数。

(5)中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。

(6)方差:在一组数据n x x x ,,,21⋅⋅⋅中,各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差,通常用“s 2”表示。

方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定。

(7)方差计算公式:])()()[(1222212x x x x x x ns n -+⋅⋅⋅+-+-=. 简化计算公式,有:])[(122222212x n x x x ns n -+⋅⋅⋅++= 也可写成22222212])[(1x x x x n s n -+⋅⋅⋅++=. 此公式的记忆方法是:方差等于原数据平方的平均数减去平均数的平方。

2022高考数学真题分类汇编08--概率与统计(学生版)

2022高考数学真题分类汇编08--概率与统计(学生版)

2022高考数学真题分类汇编八、概率统计一、单选题1.(2022·全国甲(文T2)(理T2))某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:则()A.讲座前问卷答题的正确率的中位数小于70%B.讲座后问卷答题的正确率的平均数大于85%C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差2.(2022·全国甲(文)T6)从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为()A.15B.13 C.25D.233.(2022·全国乙(文)T )4.分别统计了甲、乙两位同学16周的各周课外体育运动时长(单位:h ),得如下茎叶图:则下列结论中错误的是()A.甲同学周课外体育运动时长的样本中位数为7.4B.乙同学周课外体育运动时长的样本平均数大于8C.甲同学周课外体育运动时长大于8的概率的估计值大于0.4D.乙同学周课外体育运动时长大于8的概率的估计值大于0.64.(2022·全国乙(理)T10)某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为123,,p p p ,且3210p p p >>>.记该棋手连胜两盘的概率为p ,则()A.p 与该棋手和甲、乙、丙的比赛次序无关B.该棋手在第二盘与甲比赛,p 最大C.该棋手在第二盘与乙比赛,p 最大D.该棋手在第二盘与丙比赛,p 最大5.(2022·新高考Ⅰ卷T5)从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为()A.16B.13C.12D.236.(2022·新高考Ⅱ卷T5)有甲乙丙丁戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻的不同排列方式有多少种()A.12种B.24种C.36种D.48种7.(2022·北京卷T )8.若443243210(21)x a x a x a x a x a -=++++,则024a a a ++=()A.40B.41C.40- D.41-二、填空题1.(2022·全国甲(理)T15)从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为________.2.(2022·全国乙(文T14)(理T13))从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为____________.3.(2022·新高考Ⅱ卷T13)已知随机变量X 服从正态分布()22,N σ,且(2 2.5)0.36P X <≤=,则( 2.5)P X >=____________.4.(2022·浙江卷T12)已知多项式42345012345(2)(1)x x a a x a x a x a x a x +-=+++++,则2a =__________,12345a a a a a ++++=___________.5.(2022·新高考Ⅰ卷T13)81()y x y x ⎛⎫-+ ⎪⎝⎭的展开式中26x y 的系数为________________(用数字作答).6.(2022·浙江卷T15)现有7张卡片,分别写上数字1,2,2,3,4,5,6.从这7张卡片中随机抽取3张,记所抽取卡片上数字的最小值为ξ,则(2)P ξ==__________,()E ξ=_________.三、解答题1.(2022·全国甲(文)T )(2022·全国甲(文)T17)甲、乙两城之间的长途客车均由A 和B 两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:准点班次数未准点班次数A 24020B21030(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;(2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,()2P K k 0.1000.0500.010k2.7063.8416.6352.(2022·全国甲(理)T19)甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立.(1)求甲学校获得冠军的概率;(2)用X 表示乙学校的总得分,求X 的分布列与期望.3.(2022·全国乙(文T19)(理T19)某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:2m )和材积量(单位:3m ),得到如下数据:样本号i12345678910总和根部横截面积ix 0.040.060.040.080.080.050.050.070.070.060.6材积量iy 0.250.400.220.540.510.340.360.460.420.403.9并计算得10101022iii i i=1i=1i=10.038, 1.6158,0.2474xy x y ===∑∑∑.(1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;(2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为2186m .已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值.附:相关系数( 1.377)(nx x y y r --=≈.4.(2022·新高考Ⅰ卷T20)一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:不够良好良好病例组4060对照组1090(1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?(2)从该地的人群中任选一人,A 表示事件“选到的人卫生习惯不够良好”,B 表示事件“选到的人患有该疾病”.(|) (|)P B AP B A与(|)(|)P B AP B A的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R.(ⅰ)证明:(|)(|)(|)(|)P A B P A BRP A B P A B=⋅;(ⅱ)利用该调查数据,给出(|),(|)P A B P A B的估计值,并利用(ⅰ)的结果给出R的估计值.附22()()()()()n ad bcKa b c d a c b d-=++++,()2P K k≥0.0500.0100.001k 3.841 6.63510.8285.(2022·新高考Ⅱ卷T19)在某地区进行流行病调查,随机调查了100名某种疾病患者的年龄,得到如下的样本数据频率分布直方图.(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值作代表);(2)估计该地区一人患这种疾病年龄在区间[20,70)的概率;(3)已知该地区这种疾病的患病率为0.1%,该地区年龄位于区间[40,50)的人口占该地区总人口的16%,从该地区任选一人,若此人年龄位于区间[40,50),求此人患该种疾病的概率.(样本数据中的患者年龄位于各区间的频率作为患者年龄位于该区间的概率,精确到0.0001)6.(2022·北京卷T18)在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到950m.以上(含950m.)的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:m):甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,935,9.30,9.25;乙:9.78,9.56,9.51,9.36,9.32,9.23;丙:9.85,9.65,9.20,9.16.假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立.(1)估计甲在校运动会铅球比赛中获得优秀奖的概率;(2)设X 是甲、乙、丙在校运动会铅球比赛中获得优秀奖的总人数,估计X 的数学期望E (X );(3)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大?(结论不要求证明)参考答案一、单选题1.【答案】B 【解析】【分析】由图表信息,结合中位数、平均数、标准差、极差的概念,逐项判断即可得解.【详解】讲座前中位数为70%75%70%2+>,所以A 错;讲座后问卷答题的正确率只有一个是80%,4个85%,剩下全部大于等于90%,所以讲座后问卷答题的正确率的平均数大于85%,所以B 对;讲座前问卷答题的正确率更加分散,所以讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,所以C 错;80%20%-=,讲座前问卷答题的正确率的极差为95%60%35%20%-=>,所以D 错.故选:B.2.【答案】C 【解析】【分析】先列举出所有情况,再从中挑出数字之积是4的倍数的情况,由古典概型求概率即可.【详解】从6张卡片中无放回抽取2张,共有()()()()()()()()()()()()()()()1,2,1,3,1,4,1,5,1,6,2,3,2,4,2,5,2,6,3,4,3,5,3,6,4,5,4,6,5,615种情况,其中数字之积为4的倍数的有()()()()()()1,4,2,4,2,6,3,4,4,5,4,66种情况,故概率为62155=.故选:C.3.【答案】C 【解析】【分析】结合茎叶图、中位数、平均数、古典概型等知识确定正确答案.【详解】对于A 选项,甲同学周课外体育运动时长的样本中位数为7.37.57.42+=,A 选项结论正确.对于B 选项,乙同学课外体育运动时长的样本平均数为:6.37.47.68.18.28.28.58.68.68.68.69.09.29.39.810.18.50625816+++++++++++++++=>,B 选项结论正确.对于C 选项,甲同学周课外体育运动时长大于8的概率的估计值60.3750.416=<,C 选项结论错误.对于D 选项,乙同学周课外体育运动时长大于8的概率的估计值130.81250.616=>,D 选项结论正确.故选:C4.【答案】D 【解析】【分析】该棋手连胜两盘,则第二盘为必胜盘.分别求得该棋手在第二盘与甲比赛且连胜两盘的概率p 甲;该棋手在第二盘与乙比赛且连胜两盘的概率p 乙;该棋手在第二盘与丙比赛且连胜两盘的概率p 丙.并对三者进行比较即可解决【详解】该棋手连胜两盘,则第二盘为必胜盘,记该棋手在第二盘与甲比赛,且连胜两盘的概率为p 甲则2132131231232(1)2(1)2()4p p p p p p p p p p p p p =-+-=+-甲记该棋手在第二盘与乙比赛,且连胜两盘的概率为p 乙则1231232131232(1)2(1)2()4p p p p p p p p p p p p p =-+-=+-乙记该棋手在第二盘与丙比赛,且连胜两盘的概率为p 丙则1321323121232(1)2(1)2()4p p p p p p p p p p p p p =-+-=+-丙则[]()1231232131231232()42()420p p p p p p p p p p p p p p p p p -=+--+-=-<甲乙[]()2131233121232312()42()420p p p p p p p p p p p p p p p p p -=+--+-=-<乙丙即p p <甲乙,p p <乙丙,则该棋手在第二盘与丙比赛,p 最大.选项D 判断正确;选项BC 判断错误;p 与该棋手与甲、乙、丙的比赛次序有关.选项A 判断错误.故选:D5.【答案】D 【解析】【分析】由古典概型概率公式结合组合、列举法即可得解.【详解】从2至8的7个整数中随机取2个不同的数,共有27C 21=种不同的取法,若两数不互质,不同的取法有:()()()()()()()2,4,2,6,2,8,3,6,4,6,4,8,6,8,共7种,故所求概率2172213P -==.故选:D.6.【答案】B 【解析】【分析】利用捆绑法处理丙丁,用插空法安排甲,利用排列组合与计数原理即可得解【详解】因为丙丁要在一起,先把丙丁捆绑,看做一个元素,连同乙,戊看成三个元素排列,有3!种排列方式;为使甲不在两端,必须且只需甲在此三个元素的中间两个位置任选一个位置插入,有2种插空方式;注意到丙丁两人的顺序可交换,有2种排列方式,故安排这5名同学共有:3!2224⨯⨯=种不同的排列方式,故选:B 7.【答案】B 【解析】【分析】利用赋值法可求024a a a ++的值.【详解】令1x =,则432101a a a a a ++++=,令1x =-,则()443210381a a a a a -+-+=-=,故420181412a a a +++==,故选:B.二、填空题1.【答案】635.【解析】【分析】根据古典概型的概率公式即可求出.【详解】从正方体的8个顶点中任取4个,有48C 70n ==个结果,这4个点在同一个平面的有6612m =+=个,故所求概率1267035m P n ===.故答案为:635.2.【答案】310或0.3【解析】【分析】根据古典概型计算即可【详解】从5名同学中随机选3名的方法数为35C 10=甲、乙都入选的方法数为13C 3=,所以甲、乙都入选的概率310P =故答案为:3103.【答案】0.14##750.【解析】【分析】根据正态分布曲线的性质即可解出.【详解】因为()22,X N σ,所以()()220.5P X P X <=>=,因此()()()2.522 2.50.50.360.14P X P X P X >=>-<≤=-=.故答案为:0.14.4.【答案】①.8②.2-【解析】【分析】第一空利用二项式定理直接求解即可,第二空赋值去求,令0x =求出0a ,再令1x =即可得出答案.【详解】含2x 的项为:()()3232222244C 12C 14128x x x x x x ⋅⋅⋅-+⋅⋅⋅-=-+=,故28a =;令0x =,即02a =,令1x =,即0123450a a a a a a =+++++,∴123452a a a a a ++++=-,故答案为:8;2-.5.【答案】-28【解析】【分析】()81y x y x ⎛⎫-+ ⎪⎝⎭可化为()()88y x y x y x +-+,结合二项式展开式的通项公式求解.【详解】因为()()()8881=y y x y x y x y x x⎛⎫-++-+ ⎪⎝⎭,所以()81y x y x ⎛⎫-+ ⎪⎝⎭的展开式中含26x y 的项为6265352688C 28y x y C x y x y x-=-,()81y x y x ⎛⎫-+ ⎪⎝⎭的展开式中26x y 的系数为-28故答案为:-286.【答案】①.1635,②.127##517【解析】【分析】利用古典概型概率公式求(2)P ξ=,由条件求ξ分布列,再由期望公式求其期望.【详解】从写有数字1,2,2,3,4,5,6的7张卡片中任取3张共有37C 种取法,其中所抽取的卡片上的数字的最小值为2的取法有112424C C C +种,所以11242437C C C 16(2)C 35P ξ+===,由已知可得ξ的取值有1,2,3,4,2637C 15(1)C 35P ξ===,16(2)35P ξ==,,()()233377C 31134C 35C 35P P ξξ======,所以15163112()1234353535357E ξ=⨯+⨯+⨯+⨯=,故答案为:1635,127.三、解答题1.【答案】(1)A ,B 两家公司长途客车准点的概率分别为1213,78(2)有【解析】【分析】(1)根据表格中数据以及古典概型的概率公式可求得结果;(2)根据表格中数据及公式计算2K ,再利用临界值表比较即可得结论.【小问1详解】根据表中数据,A 共有班次260次,准点班次有240次,设A 家公司长途客车准点事件为M ,则24012()26013==P M ;B 共有班次240次,准点班次有210次,设B 家公司长途客车准点事件为N ,则210()27840==P N .A 家公司长途客车准点的概率为1213;B 家公司长途客车准点的概率为78.【小问2详解】列联表准点班次数未准点班次数合计A24020260B21030240合计4505050022()()()()()n ad bc K a b c d a c b d -=++++=2500(2403021020) 3.205 2.70626024045050⨯⨯-⨯≈>⨯⨯⨯,根据临界值表可知,有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关.2.【答案】(1)0.6;(2)分布列见解析,()13E X =.【解析】【分析】(1)设甲在三个项目中获胜的事件依次记为,,A B C ,再根据甲获得冠军则至少获胜两个项目,利用互斥事件的概率加法公式以及相互独立事件的乘法公式即可求出;(2)依题可知,X 的可能取值为0,10,20,30,再分别计算出对应的概率,列出分布列,即可求出期望.【小问1详解】设甲在三个项目中获胜的事件依次记为,,A B C ,所以甲学校获得冠军的概率为()()()()P P ABC P ABC P ABC P ABC =+++0.50.40.80.50.40.80.50.60.80.50.40.2=⨯⨯+⨯⨯+⨯⨯+⨯⨯0.160.160.240.040.6=+++=.【小问2详解】依题可知,X 的可能取值为0,10,20,30,所以,()00.50.40.80.16P X ==⨯⨯=,()100.50.40.80.50.60.80.50.40.20.44P X ==⨯⨯+⨯⨯+⨯⨯=,()200.50.60.80.50.40.20.50.60.20.34P X ==⨯⨯+⨯⨯+⨯⨯=,()300.50.60.20.06P X ==⨯⨯=.即X 的分布列为X0102030P 0.160.440.340.06期望()00.16100.44200.34300.0613E X =⨯+⨯+⨯+⨯=.3.【答案】(1)20.06m ;30.39m (2)0.97(3)31209m 【解析】【分析】(1)计算出样本的一棵根部横截面积的平均值及一棵材积量平均值,即可估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;(2)代入题给相关系数公式去计算即可求得样本的相关系数值;(3)依据树木的材积量与其根部横截面积近似成正比,列方程即可求得该林区这种树木的总材积量的估计值.【小问1详解】样本中10棵这种树木的根部横截面积的平均值0.60.0610x ==样本中10棵这种树木的材积量的平均值 3.90.3910y ==据此可估计该林区这种树木平均一棵的根部横截面积为20.06m ,平均一棵的材积量为30.39m 【小问2详解】()()1010i i i i 10x x y y x y xy r ---=∑∑0.01340.970.01377==≈≈则0.97r ≈【小问3详解】设该林区这种树木的总材积量的估计值为3m Y ,又已知树木的材积量与其根部横截面积近似成正比,可得0.06186=0.39Y,解之得3=1209m Y .则该林区这种树木的总材积量估计为31209m 4.【答案】(1)答案见解析(2)(i )证明见解析;(ii)6R =;【解析】【分析】(1)由所给数据结合公式求出2K 的值,将其与临界值比较大小,由此确定是否有99%的把握认为患该疾病群体与未黄该疾病群体的卫生习惯有差异;(2)(i)根据定义结合条件概率公式即可完成证明;(ii)根据(i )结合已知数据求R .【小问1详解】由已知222()200(40906010)=24()()()()50150100100n ad bc K a b c d a c b d -⨯-⨯==++++⨯⨯⨯,又2( 6.635)=0.01P K ≥,24 6.635>,所以有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异.【小问2详解】(i)因为(|)(|)()()()()=(|)(|)()()()()P B A P B A P AB P A P AB P A R P B A P B A P A P AB P A P AB =⋅⋅⋅⋅,所以()()()()()()()()P AB P B P AB P B R P B P AB P B P AB =⋅⋅⋅所以(|)(|)(|)(|)P A B P A B R P A B P A B =⋅,(ii)由已知40(|)100P A B =,10(|)100P A B =,又60(|)100P A B =,90(|)100P A B =,所以(|)(|=6(|)(|)P A B P A B R P A B P A B =⋅5.【答案】(1)44.65岁;(2)0.89;(3)0.0014.【解析】【分析】(1)根据平均值等于各矩形的面积乘以对应区间的中点值的和即可求出;(2)设A ={一人患这种疾病的年龄在区间[20,70)},根据对立事件的概率公式()1()P A P A =-即可解出;(3【小问1详解】平均年龄(50.001150.002250.012350.017450.023x =⨯+⨯+⨯+⨯+⨯550.020650.012750.006850.002)1044.65+⨯+⨯+⨯+⨯⨯=(岁).【小问2详解】设A ={一人患这种疾病的年龄在区间[20,70)},所以()1()1(0.0010.0020.0060.002)1010.110.89P A P A =-=-+++⨯=-=.【小问3详解】设{B =任选一人年龄位于区间}[40,50),{C =任选一人患这种疾病},则由条件概率公式可得()0.1%0.023100.0010.23(|)0.00143750.0014()16%0.16P BC P C B P B ⨯⨯⨯====≈.6.【答案】(1)0.4(2)75(3)丙【解析】【分析】(1)由频率估计概率即可(2)求解得X 的分布列,即可计算出X 的数学期望.(3)计算出各自获得最高成绩的概率,再根据其各自的最高成绩可判断丙夺冠的概率估计值最大.【小问1详解】由频率估计概率可得甲获得优秀的概率为0.4,乙获得优秀的概率为0.5,丙获得优秀的概率为0.5,故答案为0.4【小问2详解】设甲获得优秀为事件A 1,乙获得优秀为事件A 2,丙获得优秀为事件A 31233(0)(0.60.50.520P X P A A A ===⨯⨯=,123123123(1)((()P X P A A A P A A P A A A ==+80.40.50.50.60.50.50.60.50.520=⨯⨯+⨯⨯+⨯⨯=,123123123(2)()()()P X P A A A P A A A P A A ==++70.40.50.50.40.50.50.60.50.520=⨯⨯+⨯⨯+⨯⨯=,1232(3)()0.40.50.520P X P A A A ===⨯⨯=.∴X 的分布列为X0123P 320820720220∴38727()0123202020205E X =⨯+⨯+⨯+⨯=【小问3详解】丙夺冠概率估计值最大.因为铅球比赛无论比赛几次就取最高成绩.比赛一次,丙获得9.85的概率为14,甲获得9.80的概率为110,乙获得9.78的概率为16.并且丙的最高成绩是所有成绩中最高的,比赛次数越多,对丙越有利.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第38练用样本估计总体[题型分析·高考展望]用样本估计总体在高考中也是热点部分,考查形式主要是选择题、填空题或是与概率结合的综合性解答题,重点是频率分布直方图以及数字特征,属于比较简单的题目.体验高考1.(2015·湖南)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示:13003456688891411122233445556678 15012233 3若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是()A.3B.4C.5D.6答案 B解析由题意知,将1~35号分成7组,每组5名运动员,成绩落在区间[139,151]的运动员共有4组,故由系统抽样法知,共抽取4名.选B.2.(2015·课标全国Ⅱ)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关答案 D解析从2006年起,将每年的二氧化硫排放量与前一年作差比较,得到2008年二氧化硫排放量与2007年排放量的差最大,A选项正确;2007年二氧化硫排放量较2006年降低了很多,B选项正确;虽然2011年二氧化硫排放量较2010年多一些,但自2006年以来,整体呈递减趋势,即C 选项正确;自2006年以来我国二氧化硫年排放量与年份负相关,D选项错误.故选D.3.(2016·课标全国丙)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15 ℃,B点表示四月的平均最低气温约为5 ℃.下面叙述不正确的是()A.各月的平均最低气温都在0 ℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20 ℃的月份有5个答案 D解析由题意知,平均最高气温高于20 ℃的有六月,七月,八月,故选D.4.(2016·山东)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据频率分布直方图知,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56B.60C.120D.140答案 D解析由题图知,组距为2.5,故每周的自习时间不少于22.5小时的频率为(0.16+0.08+0.04)×2.5=0.7,∴这200名学生中每周的自习时间不少于22.5小时的人数是200×0.7=140,故选D.5.(2015·湖北)某电子商务公司对10 000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.(1)直方图中的a=________;(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为________.答案 (1)3 (2)6 000解析 (1)由频率分布直方图及频率和等于1可得0.2×0.1+0.8×0.1+1.5×0.1+2×0.1+2.5×0.1+a ×0.1=1,解得a =3.(2)消费金额在区间[0.5,0.9]内频率为0.2×0.1+0.8×0.1+2×0.1+3×0.1=0.6,所以消费金额在区间[0.5,0.9]内的购物者的人数为0.6×10 000=6 000.高考必会题型题型一 频率分布直方图的应用例1 (2015·广东)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户? 解 (1)由(0.002+0.009 5+0.011+0.012 5+x +0.005+0.002 5)×20=1,得x =0.007 5, 所以直方图中x 的值是0.007 5.(2)月平均用电量的众数是220+2402=230.因为(0.002+0.009 5+0.011)×20=0.45<0.5,所以月平均用电量的中位数在[220,240)内,设中位数为a ,由(0.002+0.009 5+0.011)×20+0.012 5×(a -220)=0.5,得a =224,所以月平均用电量的中位数是224.(3)月平均用电量为[220,240)的用户有0.012 5×20×100=25(户),月平均用电量为[240,260)的用户有0.007 5×20×100=15(户),月平均用电量为[260,280)的用户有0.005×20×100=10(户),月平均用电量为[280,300]的用户有0.002 5×20×100=5(户),抽取比例=1125+15+10+5=15,所以月平均用电量在[220,240)的用户中应抽取25×15=5(户).点评 利用频率分布直方图估计样本的数字特征(1)中位数:在频率分布直方图中,中位数左边和右边的直方图的面积相等,由此可以估计中位数的值.(2)平均数:平均数是频率分布直方图的“重心”,等于图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.(3)众数:在频率分布直方图中,众数是最高的矩形底边的中点的横坐标.变式训练1 (2016·课标全国乙)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图.记x 表示1台机器在三年使用期内需更换的易损零件数,y 表示1台机器在购买易损零件上所需的费用(单位:元),n 表示购机的同时购买的易损零件数. (1)若n =19,求y 与x 的函数解析式;(2)若要求“需更换的易损零件数不大于n ”的频率不小于0.5,求n 的最小值;(3)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件? 解 (1)当x ≤19时,y =3 800;当x >19时,y =3 800+500(x -19)=500x -5 700. 所以y 与x 的函数解析式为y =⎩⎪⎨⎪⎧3 800,x ≤19,500x -5 700,x >19(x ∈N ). (2)由柱状图知,需更换的零件数不大于18的频率为0.46,不大于19的频率为0.7,故n 的最小值为19.(3)若每台机器在购机的同时都购买19个易损零件,则这100台机器中有70台在购买易损零件上的费用为3 800,20台的费用为4 300,10台的费用为4 800,因此这100台机器在购买易损零件上所需费用的平均数为1100(3 800×70+4 300×20+4 800×10)=4 000, 若每台机器在购机同时都购买20个易损零件,则这100台机器中有90台在购买易损零件上的费用为4 000,10台的费用为4 500,因此这100台机器在购买易损零件上所需费用的平均数为1100(4 000×90+4 500×10)=4 050. 比较两个平均数可知,购买1台机器的同时应购买19个易损零件. 题型二 茎叶图的应用例2 (1)为了检查某高三毕业班学生的体重状况,从该班随机抽取了10位学生进行称重,如图为10位学生体重的茎叶图,其中图中左边是体重的十位数字,右边是个位数字,则这10位学生体重的平均数与中位数之差为( )A.0.1B.0.2C.0.3D.0.4(2)在“某市中学生歌手大赛”比赛现场上七位评委为某选手打出的分数的茎叶图如图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A.5和1.6B.85和1.6C.85和0.4D.5和0.4 答案 (1)C (2)B解析 (1)平均数为x =54.8,中位数为12(53+56)=54.5,∴这10位学生体重的平均数与中位数之差为: 54.8-54.5=0.3.故选C.(2)x =15(4+4+4+6+7)+80=85,所以s 2=15[3(84-85)2+(86-85)2+(87-85)2]=1.6,故选B.点评 由于茎叶图完全反映了所有的原始数据,解决由茎叶图给出的统计图表试题时,就要充分使用这个图表提供的数据进行相关的计算或者是对某些问题作出判断,这类试题往往伴随着对数据组的平均值或者是方差的计算等.变式训练2 (1)某公司将职员每月的工作业绩用1~30的自然数表示,甲、乙两职员在2010年1~8月份的工作业绩的茎叶图如图,则下列说法正确的是( )A.两职员的平均业绩相同,甲职员的业绩比乙职员的业绩稳定B.两职员的平均业绩不同,甲职员的业绩比乙职员的业绩稳定C.两职员的平均业绩相同,乙职员的业绩比甲职员的业绩稳定D.两职员的平均业绩不同,乙职员的业绩比甲职员的业绩稳定(2)如图为甲、乙两名篮球运动员每场比赛得分情况的茎叶图,则甲和乙得分的中位数的和是( )A.56B.57C.58D.59 答案 (1)C (2)B解析 (1)由茎叶图可得:x 甲=18(12+15+18+20+20+22+25+28)=20,x 乙=18(14+15+17+19+21+23+25+26)=20,s 2甲=18(82+52+22+0+0+22+52+82)=934, s 2甲=18(62+52+32+1+1+32+52+62)=714, 由平均数和方差可知,两职员的平均业绩相同, 乙职员的业绩比甲职员的业绩稳定.(2)由茎叶图知,甲共13个数据,中间的一个是32,乙共11个数据,中间的一个是25,所以甲和乙得分的中位数的和为57,故选B. 题型三 用样本的数字特征估计总体的数字特征例3 (1)一组数据的平均数是2.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是( ) A.57.2,3.6 B.57.2,56.4 C.62.8,63.6 D.62.8,3.6(2)某篮球队甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个,命中个数的茎叶图如图,则下列结论中错误的是________.(填序号)①甲的极差是29;②乙的众数是21;③甲罚球命中率比乙高;④甲的中位数是24. 答案 (1)D (2)④解析 (1)设这组数据分别为x 1,x 2,…,x n , 则x =1n(x 1+x 2+…+x n ),方差为s 2=1n[(x 1-x )2+…+(x n -x )2],每一组数据都加60后,x ′=1n (x 1+x 2+…+x n +60n )=x +60=62.8,方差s ′2=1n[(x 1+60-62.8)2+…+(x n +60-62.8)2]=s 2=3.6.(2)由茎叶图知,甲的最大值为37,最小值为8,所以甲的极差为29,故①对;乙的数据中出现次数最多的是21,所以②对;甲的命中个数集中在20,而乙的命中个数集中在10和20,所以甲罚球命中率大,故③对;甲中间的两个数为22,24,所以甲的中位数为22+242=23,故④不对. 故答案应填④.点评 平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述其集中趋势,方差和标准差描述其波动大小.变式训练3 甲、乙二人参加某体育项目训练,近期的五次测试成绩得分情况如图.(1)分别求出两人得分的平均数与方差;(2)根据图和上面算得的结果,对两人的训练成绩作出评价. 解 (1)由题图象可得甲、乙两人五次测试的成绩分别为 甲:10分,13分,12分,14分,16分; 乙:13分,14分,12分,12分,14分. x 甲=10+13+12+14+165=13,x 乙=13+14+12+12+145=13,s 2甲=15[(10-13)2+(13-13)2+(12-13)2+(14-13)2+(16-13)2]=4, s 2乙=15[(13-13)2+(14-13)2+(12-13)2+(12-13)2+(14-13)2]=0.8. (2)由s 2甲>s 2乙可知乙的成绩较稳定.从折线图看,甲的成绩基本呈上升状态,而乙的成绩上下波动,可知甲的成绩在不断提高,而乙的成绩则无明显提高.高考题型精练1.某学校组织学生参加数学测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100],若低于60分的人数是15人,则该班的学生人数是( )A.45B.50C.55D.60 答案 B解析 低于60分的人数的频率为0.015×20=0.3, 所以该班人数15÷0.3=50(人).2.某赛季,甲,乙两名篮球运动员都参加了11场比赛,他们每场比赛得分的情况用茎叶图表示,如图,则甲,乙两名运动员得分的中位数分别为( )A.20,18B.13,19C.19,13D.18,20 答案 C解析 中位数为一组数据由小到大排列后位于中间的一个数或两个数的平均数,所以中位数为19,13.3.如图是某社区工会对当地企业工人月收入情况进行一次抽样调查后画出的频率分布直方图,其中月收入在[1.5,2)千元的频数为300,则此次抽样的样本容量为( )A.1 000B.2 000C.3 000D.4 000 答案 A解析 由频率分布直方图,得月收入在[1.5,2)千元的频率为P =0.6×0.5=0.3, 所以此次抽样的样本容量为3000.3=1 000,故选A. 4.甲、乙两同学用茎叶图记录高三前5次数学测试的成绩,如图所示,他们在分析对比成绩变化时,发现乙同学成绩的一个数字看不清楚了,若已知乙的平均成绩低于甲的平均成绩,则看不清楚的数字为( )A.0B.3C.6D.9 答案 A解析 设看不清的数字为x ,甲的平均成绩为99+100+101+102+1035=101,所以93+94+97+110+(110+x )5<101,x <1,所以x =0,故选A.5.如图是一容量为100的样本的重量的频率分布直方图,则由图可估计样本重量的中位数为( )A.11B.11.5C.12D.12.5 答案 C解析 由频率分布直方图,可估计样本重量的中位数在第二组,设中位数比10大x ,由题意可得,0.06×5+x ×0.1=0.5,得x =2, 所以中位数为12,故选C.6.已知两组样本数据{x 1,x 2,…,x n }的平均数为h ,{y 1,y 2,…,y m }的平均数为k ,则把两组数据合并成一组以后,这组样本的平均数为( ) A.h +k 2 B.nh +mk m +n C.mh +nk m +n D.h +k m +n答案 B解析 因为样本数据{x 1,x 2,…,x n }的平均数为h , {y 1,y 2,…,y m }的平均数为k ,所以第一组数据和为nh ,第二组数据和为mk , 因此把两组数据合并成一组以后, 这组样本的平均数为nh +mk m +n,故选B.7.从向阳小区抽取100户居民进行月用电量调查,为制定阶梯电价提供数据,发现其用电量都在50到350度之间,制作频率分布直方图的工作人员粗心大意,位置t 处未标明数据,你认为t 等于( )A.0.004 1B.0.004 2C.0.004 3D.0.004 4 答案 D解析 由题意得,50×(0.006+t +0.003 6+0.002 4×2+0.001 2)=1, t =0.004 4.8.10名工人某天生产同一零件,生产的件数分别为15,17,14,10,15,17,17,16,14,12,设其平均数为a ,中位数为b ,众数为c ,则有( ) A.a >b >c B.b >c >a C.c >a >b D.c >b >a 答案 D解析 易得a =14.7,b =15,c =17,故选D.9.如图是某青年歌手大奖赛上七位评委为甲,乙两名选手打出的分数的茎叶图(其中m 为数字0~9中的一个),去掉一个最高分和一个最低分后,甲,乙两名选手得分的平均数分别为a 1,a 2,则a 1,a 2的大小关系是________.(填a 1>a 2,a 2>a 1,a 1=a 2).答案 a 2>a 1解析 由题意可知,a 1=81+85×3+845=84,a 2=84×3+86+875=85, 所以a 2>a 1.10.已知一组正数x 1,x 2,x 3,x 4的方差s 2=14(x 21+x 22+x 23+x 24-16),则数据x 1+2,x 2+2,x 3+2,x 4+2的平均数为________.答案 4解析 由题意4x 2=16,x =2,所以(x 1+2)+(x 2+2)+(x 3+2)+(x 4+2)4=x 1+x 2+x 3+x 44+2=4. 11.(2016·四川)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a 的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由;(3)估计居民月均用水量的中位数.解 (1)由频率分布直方图可知:月均用水量在[0,0.5)的频率为0.08×0.5=0.04.同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5]等组的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1-(0.04+0.08+0.21+0.25+0.06+0.04+0.02)=0.5×a +0.5×a ,解得a =0.30.(2)由(1)知,100位居民月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300 000×0.12=36 000.(3)设中位数为x 吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5.而前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5.所以2≤x<2.5.由0.50×(x-2)=0.5-0.48,解得x=2.04.故可估计居民月均用水量的中位数为2.04.12.(2016·北京)某市民用水拟实行阶梯水价,每人月用水量中不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费,从该市随机调查了10 000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:(1)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?(2)假设同组中的每个数据用该组区间的右端点值代替,当w=3时,估计该市居民该月的人均水费.解(1)如题图所示,用水量在[0.5,2)的频率的和为(0.2+0.3+0.4)×0.5=0.45<0.8,用水量在[0.5,3)的频率的和为(0.2+0.3+0.4+0.5+0.3)×0.5=0.85.∴用水量小于等于3立方米的频率为0.85,又w为整数,∴为使80%以上的居民在该月的用水价格为4元/立方米,w至少定为3.(2)当w=3时,该市居民该月的人均水费估计为(0.1×1+0.15×1.5+0.2×2+0.25×2.5+0.15×3)×4+0.15×3×4+[0.05×(3.5-3)+0.05×(4-3)+0.05×(4.5-3)]×10=7.2+1.8+1.5=10.5(元).即该市居民该月的人均水费估计为10.5元.合理分配高考数学答题时间找准目标,惜时高效——合理分配高考数学答题时间经过漫长的第一、第二轮复习,对于各知识点的演练同学们已经烂熟于心,我们把这称为战术上的纯熟。

相关文档
最新文档