二次求导法解高考导数题
二次函数的求导与导数应用
二次函数的求导与导数应用二次函数是指函数的形式为f(x) = ax^2 + bx + c的函数,其中a、b 和c为常数且a ≠ 0。
在数学中,二次函数是一种重要的函数类型,它在经济学、物理学和工程学等领域中有着广泛的应用。
本文将介绍二次函数的求导方法以及导数在实际问题中的应用。
一、二次函数的求导方法二次函数的导数求解较为简单,我们可以根据导数的定义以及基本求导法则来进行求解。
假设二次函数为f(x) = ax^2 + bx + c,其中a、b 和c为常数。
首先,根据求导法则可知,常数函数的导数为0,即d(c)/dx = 0。
因此,常数项c对函数f(x)的导数没有影响。
其次,根据乘法法则可知,对任意常数k,导数满足d(kf(x))/dx = k * d(f(x))/dx。
因此,在求解二次函数的导数时,我们可以将常数项提取出来。
即f(x) = ax^2 + bx + c的导数为f'(x) = 2ax + b,其中2a为二次项的系数。
综上所述,二次函数f(x) = ax^2 + bx + c的导数为f'(x) = 2ax + b,其中a为二次项的系数。
二、导数在实际问题中的应用导数在实际问题中具有广泛的应用,下面将介绍导数在二次函数相关问题中的具体应用。
1. 极值点的判定对于二次函数f(x) = ax^2 + bx + c,其中a ≠ 0,可以通过求导并令导数为0的方法来判定函数的极值点。
具体地,当f'(x) = 2ax + b = 0时,可以求解得到x = -b / (2a)。
将该值代入函数f(x)中可以得到相应的y值,即为函数的极值点。
2. 函数的单调性二次函数的单调性可以通过导数的正负来判断。
当导数f'(x) > 0时,表示函数递增;当导数f'(x) < 0时,表示函数递减。
利用导数的正负可以确定二次函数在不同区间上的单调性。
3. 曲线的凹凸性曲线的凹凸性可以通过导数的变号来判断。
巧用二次求导解决函数单调性和极值问题
g ( x) 2(1 x) ln(1 x) x 2x
g ' ( x) 2 ln(1 x) 2 x
2x [ g ' ( x)]' 1 x
ห้องสมุดไป่ตู้型例题讲解
当 当
1 x 0时, [ g ' ( x)]' 0, g ' ( x)在( 1,0)上是增函数; x 0 时 [ g ' ( x)]' 0, g ' ( x)在( 0, )上为减函数 .
f ( x ) 的单调递增区间是 (1,0) ,递减区间是 (0,) .
典型例题讲解
例题2、设函数 f x e 1 x ax
x
2
(Ⅰ)若 a
0求 f
x 的单调区间;
(Ⅱ)若当 x
0时,f x 0。求 a的取值范围。
2 0, (2)、解:当 a< 0时,在区间 上显然 ax 0 ,综上(1) x 2 0, f x e 1 x ax 0 成立。故 a< 0满足 可得在区间 上
x
x x g x e 2x 2a g x e 2
0,ln 2
g x
——
ln 2 0
ln 2,
+
增
g x
减
极小值
典型例题讲解
g ln 2 eln 2 2ln 2 2a 2 2ln 2 2a 2 a ln 2 1
2
典型例题讲解
例题3、已知函数 f ( x) ( x 1) ln x x 1 . 2 (Ⅰ)若 xf '( x) x ax 1 ,求 a 的取值范围; (Ⅱ)证明:( x 1) f ( x) 0 解:第一问难度不算大,大多数同学一般都能做出来。采 用分离参数法解决恒成立问题就行了。 而第二问是属于运用导数工具证明不等式问题。用 f x 去 分析 f x 的单调性受阻。
破解导数问题常用到的4种方法
第2课时破解导数问题常用到的4种方法构造函数法解决抽象不等式问题以抽象函数为背景、题设条件或所求结论中具有“f(x)±g(x),f(x)g(x),f(x)g(x)”等特征式、旨在考查导数运算法则的逆向、变形应用能力的客观题,是近几年高考试卷中的一位“常客”,常以压轴题的形式出现,解答这类问题的有效策略是将前述式子的外形结构特征与导数运算法则结合起来,合理构造出相关的可导函数,然后利用该函数的性质解决问题.类型一构造y=f(x)±g(x)型可导函数[例1]设奇函数f(x)是R上的可导函数,当x>0时有f′(x)+cos x<0,则当x≤0时,有()A.f(x)+sin x≥f(0)B.f(x)+sin x≤f(0)C.f(x)-sin x≥f(0) D.f(x)-sin x≤f(0)[解析]观察条件中“f′(x)+cos x”与选项中的式子“f(x)+sin x”,发现二者之间是导函数与原函数之间的关系,于是不妨令F(x)=f(x)+sin x,因为当x>0时,f′(x)+cos x<0,即F′(x)<0,所以F(x)在(0,+∞)上单调递减,又F(-x)=f(-x)+sin(-x)=-[f(x)+sin x]=-F(x),所以F(x)是R上的奇函数,且F(x)在(-∞,0)上单调递减,F(0)=0,并且当x≤0时有F(x)≥F(0),即f(x)+sin x≥f(0)+sin 0=f(0),故选A.[答案] A[题后悟通]当题设条件中存在或通过变形出现特征式“f′(x)±g′(x)”时,不妨联想、逆用“f′(x)±g′(x)=[f(x)±g(x)]′”.构造可导函数y=f(x)±g(x),然后利用该函数的性质巧妙地解决问题.类型二构造f(x)·g(x)型可导函数[例2]设函数f(x),g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(3)=0,则不等式f(x)g(x)>0的解集是()A.(-3,0)∪(3,+∞)B.(-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞) D.(-∞,-3)∪(0,3)[解析]利用构造条件中“f′(x)g(x)+f(x)g′(x)”与待解不等式中“f(x)g(x)”两个代数式之间的关系,可构造函数F(x)=f(x)g(x),由题意可知,当x<0时,F′(x)>0,所以F(x)在(-∞,0)上单调递增.又因为f(x),g(x)分别是定义在R上的奇函数和偶函数,所以F(x)是定义在R上的奇函数,从而F(x)在(0,+∞)上单调递增,而F(3)=f(3)g(3)=0,所以F(-3)=-F(3),结合图象可知不等式f(x)g(x)>0⇔F(x)>0的解集为(-3,0)∪(3,+∞),故选A.[答案] A[题后悟通]当题设条件中存在或通过变形出现特征式“f′(x)g(x)+f(x)g′(x)”时,可联想、逆用“f′(x)g(x)+f(x)g′(x)=[f(x)g(x)]′”,构造可导函数y=f(x)g(x),然后利用该函数的性质巧妙地解决问题.类型三构造f(x)g(x)型可导函数[例3] 已知定义在R 上函数f (x ),g (x )满足:对任意x ∈R ,都有f (x )>0,g (x )>0,且f ′(x )g (x )-f (x )g ′(x )<0.若a ,b ∈R +且a ≠b ,则有( ) A .f ⎝⎛⎭⎫a +b 2g ⎝⎛⎭⎫a +b 2>f (ab )g (ab ) B .f ⎝⎛⎭⎫a +b 2g ⎝⎛⎭⎫a +b 2<f (ab )g (ab ) C .f ⎝⎛⎭⎫a +b 2g (ab )>g ⎝⎛⎭⎫a +b 2f (ab ) D .f ⎝⎛⎭⎫a +b 2g (ab )<g ⎝⎛⎭⎫a +b 2f (ab )[解析] 根据条件中“f ′(x )g (x )-f (x )g ′(x )”的特征,可以构造函数F (x )=f (x )g (x ),因为f ′(x )g (x )-f (x )g ′(x )<0,所以F ′(x )=f ′(x )g (x )-f (x )g ′(x )[g (x )]2<0,F (x )在R 上单调递减.又因为a +b 2>ab ,所以F ⎝⎛⎭⎫a +b 2<F (ab ),即f ⎝⎛⎭⎫a +b 2g⎝⎛⎭⎫a +b 2<f (ab )g (ab ),所以f ⎝⎛⎭⎫a +b 2g (ab )<g ⎝⎛⎭⎫a +b 2·f (ab ),故选D.[答案] D [题后悟通]当题设条件中存在或通过变形出现特征式“f ′(x )g (x )-f (x )g ′(x )”时,可联想、逆用“f ′(x )g (x )-f (x )g ′(x )[g (x )]2=⎣⎡⎦⎤f (x )g (x )′”,构造可导函数y =f (x )g (x ),然后利用该函数的性质巧妙地解决问题. [方法技巧]构造函数解决导数问题常用模型(1)条件:f ′(x )>a (a ≠0):构造函数:h (x )=f (x )-ax . (2)条件:f ′(x )±g ′(x )>0:构造函数:h (x )=f (x )±g (x ). (3)条件:f ′(x )+f (x )>0:构造函数:h (x )=e x f (x ). (4)条件:f ′(x )-f (x )>0:构造函数:h (x )=f (x )e x. (5)条件:xf ′(x )+f (x )>0:构造函数:h (x )=xf (x ). (6)条件:xf ′(x )-f (x )>0:构造函数:h (x )=f (x )x. [针对训练]1.已知定义域为R 的函数f (x )的图象经过点(1,1),且对于任意x ∈R ,都有f ′(x )+2>0,则不等式f (log 2|3x -1|)<3-log2|3x-1|的解集为( )A .(-∞,0)∪(0,1)B .(0,+∞)C .(-1,0)∪(0,3)D .(-∞,1)解析:选A 根据条件中“f ′(x )+2”的特征,可以构造F (x )=f (x )+2x ,则F ′(x )=f ′(x )+2>0,故F (x )在定义域内单调递增,由f (1)=1,得F (1)=f (1)+2=3,因为由f (log 2|3x -1|)<3-log2|3x-1|可化为f (log 2|3x-1|)+2log 2|3x -1|<3,令t =log 2|3x -1|,则f (t )+2t <3.即F (t )<F (1),所以t <1.即log 2|3x -1|<1,从而0<|3x -1|<2,解得x <1且x ≠0,故选A.2.设定义在R 上的函数f (x )满足f ′(x )+f (x )=3x 2e -x ,且f (0)=0,则下列结论正确的是( ) A .f (x )在R 上单调递减 B .f (x )在R 上单调递增 C .f (x )在R 上有最大值 D .f (x )在R 上有最小值解析:选C 根据条件中“f ′(x )+f (x )”的特征,可以构造F (x )=e x f (x ),则有F ′(x )=e x [f ′(x )+f (x )]=e x ·3x 2e-x=3x 2,故F (x )=x 3+c (c为常数),所以f (x )=x 3+c e x ,又f (0)=0,所以c =0,f (x )=x 3e x .因为f ′(x )=3x 2-x 3e x,易知f (x )在区间(-∞,3]上单调递增,在[3,+∞)上单调递减,f (x )max =f (3)=27e 3,无最小值,故选C.3.已知f (x )为定义在(0,+∞)上的可导函数,且f (x )>xf ′(x ),则不等式x 2f ⎝⎛⎭⎫1x -f (x )<0的解集为________. 解析:因为f (x )>xf ′(x ),所以xf ′(x )-f (x )<0,根据“xf ′(x )-f (x )”的特征,可以构造函数F (x )=f (x )x ,则F ′(x )=xf ′(x )-f (x )x 2<0,故F (x )在(0,+∞)上单调递减.又因为x >0,所以x 2f ⎝⎛⎭⎫1x -f (x )<0可化为xf ⎝⎛⎭⎫1x -f (x )x <0,即f ⎝⎛⎭⎫1x 1x -f (x )x <0,即f ⎝⎛⎭⎫1x 1x <f (x )x ,即F ⎝⎛⎭⎫1x <F (x ),所以⎩⎪⎨⎪⎧x >0,1x >x ,解得0<x <1,故不等式x 2f ⎝⎛⎭⎫1x -f (x )<0的解集为(0,1). 答案:(0,1)分类讨论法解决含参函数单调性问题函数与导数问题中往往含有变量或参数,这些变量或参数取不同值时会导致不同的结果,因而要对参数进行分类讨论.常见的有含参函数的单调性、含参函数的极值、最值等问题,解决时要分类讨论.分类讨论的原则是不重复、不遗漏,讨论的方法是逐类进行,还必须要注意综合讨论的结果,使解题步骤完整. [例1] 已知函数f (x )=x 3+ax 2+x +1. (1)讨论函数f (x )的单调区间;(2)设函数f (x )在区间⎝⎛⎭⎫-23,-13内是减函数,求a 的取值范围. [解] (1)因为f ′(x )=3x 2+2ax +1.①当Δ≤0⇒-3≤a ≤3,f ′(x )≥0,且在R 的任给一子区间上,f ′(x )不恒为0,所以f (x )在R 上递增; ②当Δ>0⇒a <-3或a > 3.由f ′(x )=0⇒x 1=-a -a 2-33,x 2=-a +a 2-33.所以f (x )1212(2)因为f (x )在⎝⎛⎭⎫-23,-13内是减函数,所以⎝⎛⎭⎫-23,-13⊆(x 1,x 2). 所以f ′(x )=3x 2+2ax +1≤0在⎝⎛⎭⎫-23,-13上恒成立. 所以2a ≥-3x -1x 在⎝⎛⎭⎫-23,-13上恒成立,所以a ≥2. [题后悟通]本题求导后,转化为一个二次型函数的含参问题,首先考虑二次三项式是否存在零点,即对判别式Δ进行Δ≤0和Δ>0两类讨论,可归纳为“有无实根判别式,两种情形需知晓”. [例2] 函数f (x )=2ax -a 2+1x 2+1,当a ≠0时,求f (x )的单调区间与极值.[解] 因为f ′(x )=-2ax 2+2(a 2-1)x +2a (x 2+1)2=-2a (x 2+1)2·(x -a )⎝⎛⎭⎫x +1a . (1)a >0时f (x )的极小值为f (-(2)当a <0时,f (x )的极小值为f (-综上,当a >0时,f (x )的递增区间是(-a -1,a ),递减区间是(-∞,-a -1),(a ,+∞),f (x )的极小值为f (-a-1)=-a 2,极大值为f (a )=1.当a <0时,f (x )的递增区间是(-∞,a ),(-a -1,+∞),递减区间是(a ,-a -1),f (x )的极小值为f (-a -1)=-a 2,极大值为f (a )=1. [题后悟通]求导后,若导函数中的二次三项式能因式分解需考虑首项系数是否含有参数.若首项系数有参数,就按首项系数为零、为正、为负进行讨论.可归纳为“首项系数含参数,先证系数零正负”. [例3] 已知函数f (x )=ln(x +1)-axx +a (a >1),讨论f (x )的单调性.[解] f ′(x )=x (x -(a 2-2a ))(x +1)(x +a )2.①当a 2-2a <0时,即1<a <2,又a 2-2a =(a -1)2-1>-1.②当a =2时,f ′(x )=x (x +1)(x +2)2≥0,f (x )在(-1,+∞)上递增.③当a 2-2a >0时,即a >2时,综上,当1<a <2时,f (x )的递增区间是(-1,a 2-2a ),(0,+∞),递减区间是(a 2-2a,0);当a >2时,f (x )的递增区间是(-1,0),(a 2-2a ,+∞),递减区间是(0,a 2-2a );当a =2时,f (x )在(-1,+∞)上递增. [题后悟通]求导后且导函数可分解且首项系数无参数可求出f ′(x )的根后比较两根大小,注意两根是否在定义域内,可归纳为“首项系数无参数,根的大小定胜负.定义域,紧跟踪,两根是否在其中”.[方法技巧]利用分类讨论解决含参函数的单调性、极值、最值问题的思维流程[口诀记忆]导数取零把根找,先定有无后大小; 有无实根判别式,两种情形需知晓. 因式分解见两根,逻辑分类有区分; 首项系数含参数,先论系数零正负. 首项系数无参数,根的大小定胜负; 定义域,紧跟踪,两根是否在其中.[针对训练]4.已知函数f (x )=e x (e x -a )-a 2x ,讨论f (x )的单调性. 解:函数f (x )的定义域为(-∞,+∞), f ′(x )=2e 2x -a e x -a 2=(2e x +a )(e x -a ).①若a =0,则f (x )=e 2x 在(-∞,+∞)上单调递增. ②若a >0,则由f ′(x )=0,得x =ln a . 当x ∈(-∞,ln a )时,f ′(x )<0; 当x ∈(ln a ,+∞)时,f ′(x )>0.故f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增. ③若a <0,则由f ′(x )=0,得x =ln ⎝⎛⎭⎫-a2. 当x ∈⎝⎛⎭⎫-∞,ln ⎝⎛⎭⎫-a 2时,f ′(x )<0; 当x ∈⎝⎛⎭⎫ln ⎝⎛⎭⎫-a 2,+∞时,f ′(x )>0.故f (x )在⎝⎛⎭⎫-∞,ln ⎝⎛⎭⎫-a 2上单调递减,在⎝⎛⎭⎫ln ⎝⎛⎭⎫-a 2,+∞上单调递增.转移法解决求解最值中计算困难问题[典例] 函数f (x )=e x -e -x -2x ,设g (x )=f (2x )-4bf (x ),当x >0时,g (x )>0,求b 的最大值.[解题观摩] 因为g (x )=e 2x -e-2x-4x -4b e x +4b e -x +8bx ,所以g ′(x )=2(e x +e -x -2)(e x +e -x -2b +2). 因为e x +e -x ≥2e x ·e -x =2.①当b ≤2时,g ′(x )≥0,所以g (x )在R 上递增. 所以当x >0时,g (x )>g (0)=0.②当b >2时,由e x +e -x -2b +2=0⇒x 1=ln(b -1+b 2-2b )>0,x 2=ln(b -1-b 2-2b )<0. 所以当0<x <ln(b -1+b 2-2b )时,g ′(x )<0. 所以g (ln(b -1+b 2-2b ))<g (0)=0,不合题意. 综上,b ≤2,∴b max =2. [题后悟通]在一些不等式证明或恒成立的问题中,通常需要判定函数极值或最值的正负.有时直接计算函数的极值涉及复杂的运算,甚至无法算出一个显性的数值.这时可以考虑不直接计算函数极值,通过计算另一个特殊点的函数值来确定函数极值或最值的正负,这个特殊点通常在解题过程中已出现过.如在本题②中要直接算出g (ln(b -1+b 2-2b ))很难,转移到计算g (0)就很简单,而且g (0)在解题过程中已出现过,这就是转移法.[口诀记忆]最值运算入逆境,位置挪移绕道行; 挪动位置到何处,解题过程曾途经.[针对训练]5.函数f (x )=1+x 1-x e -ax,对任意x ∈(0,1)恒有f (x )>1,求a 的取值范围.解:①当a ≤0时,因为x ∈(0,1), 所以1+x 1-x>1且e -ax >1,所以f (x )>1. 因为f ′(x )=a e -ax (1-x )2⎝⎛⎭⎫x 2-1+2a =0⇒x 2=1-2a . ②当0<a ≤2时,f ′(x )≥0,所以f (x )在(0,1)上递增, 所以f (x )>f (0)=1. ③当a >2时,f (x )在⎝⎛⎭⎫-1-2a , 1-2a 上递减.所以当x ∈⎣⎡⎭⎫0,1-2a 时,f (x )<f (0)=1,不合题意.综上a ≤2.二次求导法解决判断f ′(x )符号困难问题[例1] 若函数f (x )=sin xx,0<x 1<x 2<π.设a =f (x 1),b =f (x 2),试比较a ,b 的大小. [解题观摩] 由f (x )=sin xx ,得f ′(x )=x cos x -sin x x 2,设g (x )=x cos x -sin x ,则g ′(x )=-x sin x +cos x -cos x =-x sin x .∵0<x <π,∴g ′(x )<0,即函数g (x )在(0,π)上是减函数. ∴g (x )<g (0)=0,因此f ′(x )<0,故函数f (x )在(0,π)是减函数, ∴当0<x 1<x 2<π,有f (x 1)>f (x 2),即a >b . [题后悟通]从本题解答来看,为了得到f (x )的单调性,须判断f ′(x )的符号,而f ′(x )=x cos x -sin xx 2的分母为正,只需判断分子x cos x -sin x 的符号,但很难直接判断,故可通过二次求导,判断出一次导函数的符号,并最终解决问题.[例2] 已知函数f (x )=e x -x ln x ,g (x )=e x -tx 2+x ,t ∈R ,其中e 为自然对数的底数. (1)求函数f (x )的图象在点(1,f (1))处的切线方程;(2)若g (x )≥f (x )对任意的x ∈(0,+∞)恒成立,求t 的取值范围. [解题观摩] (1)由f (x )=e x -x ln x ,知f ′(x )=e -ln x -1, 则f ′(1)=e -1,而f (1)=e ,则所求切线方程为y -e =(e -1)(x -1), 即y =(e -1)x +1.(2)∵f (x )=e x -x ln x ,g (x )=e x -tx 2+x ,t ∈R ,∴g (x )≥f (x )对任意的x ∈(0,+∞)恒成立等价于e x -tx 2+x -e x +x ln x ≥0对任意的x ∈(0,+∞)恒成立, 即t ≤e x +x -e x +x ln x x 2对任意的x ∈(0,+∞)恒成立.令F (x )=e x +x -e x +x ln xx 2,则F ′(x )=x e x +e x -2e x -x ln x x 3=1x 2⎝⎛⎭⎫e x +e -2e xx -ln x , 令G (x )=e x+e -2e xx -ln x ,则G ′(x )=e x-2(x e x -e x )x 2-1x =e x (x -1)2+e x -xx 2>0,对任意的x ∈(0,+∞)恒成立.∴G (x )=e x+e -2e xx -ln x 在(0,+∞)上单调递增,且G (1)=0,∴当x ∈(0,1)时,G (x )<0,当x ∈(1,+∞)时,G (x )>0,即当x ∈(0,1)时,F ′(x )<0,当x ∈(1,+∞)时,F ′(x )>0, ∴F (x )在(0,1)上单调递减,在(1,+∞)上单调递增, ∴F (x )≥F (1)=1,∴t ≤1,即t 的取值范围是(-∞,1].[题后悟通]本题从题目形式来看,是极其常规的一道导数考题,第(2)问要求参数t 的范围问题,实际上是求F (x )=e x +x -e x +x ln x x 2极值问题,问题是F ′(x )=1x 2( e x+e -2e x x -ln x )这个方程求解不易,这时我们可以尝试对G (x )=x 2·F ′(x )再一次求导并解决问题.所以当导数值等于0这个方程求解有困难,考虑用二次求导尝试不失为一种妙法.[方法技巧]判定函数的单调性和求函数极值,都需要判定导函数的正负.有些导函数形式很复杂,它的正负很难直接判定,常常需要建立新函数再次求导,通过探求新函数的最值,以此确定导函数的正负.[针对训练]6.讨论函数f (x )=(x +1)ln x -x +1的单调性.解:由f (x )=(x +1)ln x -x +1,可知函数f (x )的定义域为(0,+∞).易得f ′(x )=ln x +x +1x -1=ln x +1x ,用f ′(x )去分析f (x )的单调性受阻.因此再对f ′(x )=ln x +1x 求导,得f ″(x )=1x -1x 2=x -1x 2.令f ″(x )=x -1x 2=0,得x =1.当0<x ≤1时,f ″(x )≤0,即f ′(x )=ln x +1x 在区间(0,1)上为减函数;当x >1时,f ″(x )>0,即f ′(x )=ln x +1x 在区间(1,+∞)上为增函数.因此f ′(x )min =f ′(1)=1>0,所以函数f (x )在(0,+∞)上单调递增.[课时跟踪检测]1.设定义在R 上的函数f (x )满足f (0)=-1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论一定错误的是( ) A .f ⎝⎛⎭⎫1k <1k B .f ⎝⎛⎭⎫1k >1k -1 C .f ⎝⎛⎭⎫1k -1<1k -1D .f ⎝⎛⎭⎫1k -1>1k -1解析:选C 根据条件式f ′(x )>k 得f ′(x )-k >0,可以构造F (x )=f (x )-kx ,因为F ′(x )=f ′(x )-k >0,所以F (x )在R 上单调递增.又因为k >1,所以1k -1>0,从而F ⎝⎛⎭⎫1k -1>F (0),即f ⎝⎛⎭⎫1k -1-k k -1>-1,移项、整理得f ⎝⎛⎭⎫1k -1>1k -1,因此选项C 是错误的,故选C.2.已知f (x )是定义在R 上的增函数,其导函数为f ′(x ),且满足f (x )f ′(x )+x <1,则下列结论正确的是( )A .对于任意x ∈R ,f (x )<0B .对于任意x ∈R ,f (x )>0C .当且仅当x ∈(-∞,1)时,f (x )<0D .当且仅当x ∈(1,+∞)时,f (x )>0解析:选A 因为函数f (x )在R 上单调递增,所以f ′(x )≥0,又因为f (x )f ′(x )+x <1,则f ′(x )≠0,综合可知f ′(x )>0.又因为f (x )f ′(x )+x <1,则f (x )+xf ′(x )<f ′(x ),即f (x )+(x -1)f ′(x )<0,根据“f (x )+(x -1)f ′(x )”的特征,构造函数F (x )=(x -1)f (x ),则F ′(x )<0,故函数F (x )在R 上单调递减,又F (1)=(1-1)f (1)=0,所以当x >1时,x -1>0,F (x )<0,故f (x )<0.又因为f (x )是定义在R 上的增函数,所以当x ≤1时,f (x )<0,因此对于任意x ∈R ,f (x )<0,故选A.3.设y =f (x )是(0,+∞)上的可导函数,f (1)=2,(x -1)[2f (x )+xf ′(x )]>0(x ≠1)恒成立.若曲线f (x )在点(1,2)处的切线为y =g (x ),且g (a )=2 018,则a 等于( ) A .-501 B .-502 C .-503D .-504解析:选C 由“2f (x )+xf ′(x )”联想到“2xf (x )+x 2f ′(x )”,可构造F (x )=x 2f (x )(x >0).由(x -1)[2f (x )+xf ′(x )]>0(x ≠1)可知,当x >1时,2f (x )+xf ′(x )>0,则F ′(x )=2xf (x )+x 2f ′(x )>0,故F (x )在(1,+∞)上单调递增;当0<x <1时,2f (x )+xf ′(x )<0,则F ′(x )=2xf (x )+x 2f ′(x )<0,故F (x )在(0,1)上单调递减,所以x =1为极值点,则F ′(1)=2×1×f (1)+12f ′(1)=2f (1)+f ′(1)=0.由f (1)=2可得f ′(1)=-4,曲线f (x )在点(1,2)处的切线为y -2=-4(x -1),即y =6-4x ,故g (x )=6-4x ,g (a )=6-4a =2 018,解得a =-503,故选C. 4.设f ′(x )是函数f (x )(x ∈R)的导函数,且满足xf ′(x )-2f (x )>0,若在△ABC 中,角C 为钝角,则( ) A .f (sin A )·sin 2B >f (sin B )·sin 2A B .f (sin A )·sin 2B <f (sin B )·sin 2A C .f (cos A )·sin 2B >f (sin B )·cos 2A D .f (cos A )·sin 2B <f (sin B )·cos 2A解析:选C 根据“xf ′(x )-2f (x )”的特征,可以构造函数F (x )=f (x )x 2,则有F ′(x )=x 2f ′(x )-2xf (x )x 4=x [xf ′(x )-2f (x )]x 4,所以当x >0时,F ′(x )>0,F (x )在(0,+∞)上单调递增.因为π2<C <π,所以0<A +B <π2,0<A <π2-B ,则有1>cos A >cos ⎝⎛⎭⎫π2-B =sin B >0,所以F (cos A )>F (sin B ),即f (cos A )cos 2A >f (sin B )sin 2B ,f (cos A )·sin 2B >f (sin B )·cos 2A ,故选C.5.定义在R 上的函数f (x )满足:f ′(x )>f (x )恒成立,若x 1<x 2,则e x 1f (x 2)与e x 2f (x 1)的大小关系为( ) A .e x 1f (x 2)>e x 2f (x 1) B .e x 1f (x 2)<e x 2f (x 1) C .e x 1f (x 2)=e x 2f (x 1)D .e x 1f (x 2)与e x 2f (x 1)的大小关系不确定解析:选A 设g (x )=f (x )e x ,则g ′(x )=f ′(x )e x -f (x )e x (e x )2=f ′(x )-f (x )e x ,由题意知g ′(x )>0,所以g (x )单调递增,当x 1<x 2时,g (x 1)<g (x 2),即f (x 1)e x 1<f (x 2)ex 2,所以e x 1f (x 2)>e x 2f (x 1). 6.设定义在R 上的函数f (x )满足f (1)=2,f ′(x )<1,则不等式f (x 2)>x 2+1的解集为________.解析:由条件式f ′(x )<1得f ′(x )-1<0,待解不等式f (x 2)>x 2+1可化为f (x 2)-x 2-1>0,可以构造F (x )=f (x )-x -1,由于F ′(x )=f ′(x )-1<0,所以F (x )在R 上单调递减.又因为F (x 2)=f (x 2)-x 2-1>0=2-12-1=f (12)-12-1=F (12),所以x 2<12,解得-1<x <1,故不等式f (x 2)>x 2+1的解集为{x |-1<x <1}. 答案:{x |-1<x <1}7.若定义在R 上的函数f (x )满足f ′(x )+f (x )>2,f (0)=5,则不等式f (x )<3e x +2的解集为________.解析:因为f ′(x )+f (x )>2,所以f ′(x )+f (x )-2>0,不妨构造函数F (x )=e x f (x )-2e x .因为F ′(x )=e x [f ′(x )+f (x )-2]>0,所以F (x )在R 上单调递增.因为f (x )<3e x +2,所以e xf (x )-2e x <3,即F (x )<3,又因为F (0)=e 0f (0)-2e 0=3,所以F (x )<F (0),则x <0,故不等式f (x )<3e x +2的解集为(-∞,0).答案:(-∞,0)8.已知函数f (x )=x -2x +1-a ln x ,a >0,讨论f (x )的单调性.解:由题意知,f (x )的定义域是(0,+∞),导函数f ′(x )=1+2x 2-a x =x 2-ax +2x 2.设g (x )=x 2-ax +2,二次方程g (x )=0的判别式Δ=a 2-8. ①当Δ≤0,即0<a ≤22时,对一切x >0都有f ′(x )≥0. 此时f (x )是(0,+∞)上的单调递增函数.②当Δ>0,即a >22时,方程g (x )=0有两个不同的实根x 1=a -a 2-82,x 2=a +a 2-82,0<x 1<x 2.由f ′(x )>0,得0<x <x 1或x >x 2. 由f ′(x )<0,得x 1<x <x 2.所以f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-82上单调递增,在⎝ ⎛⎭⎪⎫a -a 2-82,a +a 2-82上单调递减, 在⎝ ⎛⎭⎪⎫a +a 2-82,+∞上单调递增.9.设a ≥0,求证:当x >1时,恒有x >ln 2x -2a ln x +1. 证明:令g (x )=x -ln 2x +2a ln x -1(x >1), 所以g ′(x )=x -2ln x +2ax. 令u (x )=x -2ln x +2a ,所以u ′(x )=1-2x =x -2x .所以u (x )≥u (2)=2(1-ln 2+a 因为x >1,所以g (x )>g (1)=0,所以原不等式成立. 10.已知函数f (x )=ln(ax +1)+1-x1+x,x ≥0,其中a >0.若f (x )的最小值为1,求a 的取值范围. 解:因为f ′(x )=ax 2+a -2(ax +1)(x +1)2.①当a ≥2时,f ′(x )≥0,所以f (x )在[0,+∞)递增, 所以f (x )min =f (0)=1,满足题设条件. ②当0<a <2时,f (x )在⎣⎢⎡⎭⎪⎫0,2-a a 上递减,在( 2-aa ,+∞ )递增.所以f(x)min=f( 2-a a )<f(0)=1,不满足题设条件.综上,a≥2.。
二次求导问题
二次求导问题导数既是高中数学的一个重要内容,又是高考的一个必考内容.近几年高考中,出现了一种新的“导数”,它是对导函数进行二次求导而产生的新函数,尤其是近几年作为高考的压轴题时常出现. [典例] 若函数f (x )=sin x x,0<x 1<x 2<π. 设a =f (x 1),b =f (x 2),试比较a ,b 的大小. [思路点拨]此题可联想到研究函数f (x )=sin x x在(0,π)的单调性.函数图象虽然可以直观地反映出两个变量之间的变化规律,但大多数复合的函数作图困难较大.导数的建立拓展了应用图象解题的空间.导数这个强有力的工具对函数单调性的研究提供了简单、程序化的方法,具有很强的可操作性.当f ′(x )>0时,函数f (x )单调递增;当f ′(x )<0时,函数f (x )单调递减.[方法演示]解:由f (x )=sin x x ,得f ′(x )=x cos x -sin x x 2, 设g (x )=x cos x -sin x ,则g ′(x )=-x sin x +cos x -cos x =-x sin x .∵0<x <π,∴g ′(x )<0,即函数g (x )在(0,π)上是减函数.∴g (x )<g (0)=0,因此f ′(x )<0,故函数f (x )在(0,π)是减函数,∴当0<x 1<x 2<π,有f (x 1)>f (x 2),即a >b .[解题师说]从本题解答来看,为了得到f (x )的单调性,须判断f ′(x )的符号,而f ′(x )=x cos x -sin x x 2的分母为正,只需判断分子x cos x -sin x 的符号,但很难直接判断,故可通过二次求导,判断出一次导函数的符号,并最终解决问题.[应用体验]1.已知函数f (x )满足f (x )=f ′(1)e x -1-f (0)x +12x 2,求f (x )的解析式及单调区间. 解:因为f (x )=f ′(1)e x -1-f (0)x +12x 2,所以f ′(x )=f ′(1)e x -1-f (0)+x . 令x =1,得f (0)=1. 所以f (x )=f ′(1)e x -1-x +12x 2,所以f (0)=f ′(1)e -1=1,解得f ′(1)=e. 所以f (x )=e x -x +12x 2.设g (x )=f ′(x )=e -1+x ,则g ′(x )=e +1>0,所以y =g (x )在R 上单调递增.因为f ′(0)=0,所以f ′(x )>0=f ′(0)⇔x >0,f ′(x )<0=f ′(0)⇔x <0.所以f (x )的解析式为f (x )=e x -x +12x 2,且单调递增区间为(0,+∞),单调递减区间为(-∞,0).[典例] (1)若x =23为y =f (x )的极值点,求实数a 的值; (2)若y =f (x )在[1,+∞)上为增函数,求实数a 的取值范围;(3)若a =-1时,方程f (1-x )-(1-x )3=b x有实根,求实数b 的取值范围. [方法演示]解:(1)f ′(x )=a ax +1+3x 2-2x -a . 由题意,知f ′⎝⎛⎭⎫23=0,所以a 23a +1+43-43-a =0,解得a =0. 当a =0时,f ′(x )=x (3x -2),从而x =23为y =f (x )的极值点. (2)因为f (x )在[1,+∞)上为增函数,所以f ′(x )=a ax +1+3x 2-2x -a =x [3ax 2+(3-2a )x -(a 2+2)]ax +1≥0在[1,+∞)上恒成立. 当a =0时,f ′(x )=x (3x -2),此时f (x )在[1,+∞)上为增函数恒成立,故a =0符合题意; 当a ≠0时,由ax +1>0对x >1恒成立,知a >0.所以3ax 2+(3-2a )x -(a 2+2)≥0对x ∈[1,+∞)恒成立.令g (x )=3ax 2+(3-2a )x -(a 2+2),其对称轴为x =13-12a ,因为a >0,所以13-12a <13,所以g (x )在[1,+∞)上为增函数,所以只需g (1)≥0即可,即-a 2+a +1≥0,解得0<a ≤1+52. 综上,实数a 的取值范围为⎣⎢⎡⎦⎥⎤0,1+52. (3)由已知得,x >0,∴b =x (ln x +x -x 2)=x ln x +x 2-x 3.令g (x )=x ln x +x 2-x 3,则g ′(x )=ln x +1+2x -3x 2.令h (x )=g ′(x ),则h ′(x )=1x +2-6x =-6x 2-2x -1x. 当0<x <1+76时,h ′(x )>0,∴函数h (x )=g ′(x )在⎝⎛⎭⎪⎫0,1+76上递增;又g ′(1)=0,∴存在x 0∈⎝⎛⎭⎪⎫0,1+76,使得g ′(x 0)=0. 当0<x <x 0时,g ′(x )<0,∴函数g (x )在(0,x 0)上递减;当x 0<x <1时,g ′(x )>0,∴函数g (x )在(x 0,1)上递增;当x >1时,g ′(x )<0,∴函数g (x )在(1,+∞)上递减.又当x →+∞时,g (x )→-∞.又g (x )=x ln x +x 2-x 3=x (ln x +x -x 2)≤x ⎝⎛⎭⎫ln x +14, 当x →0时,ln x +14<0,则g (x )<0,且g (1)=0, ∴b 的取值范围为(-∞,0].[解题师说]本题从题目形式来看,是极其常规的一道导数考题,第(3)问要求参数b 的范围问题,实际上是求g (x )=x (ln x +x -x 2)极值问题,问题是g ′(x )=ln x +1+2x -3x 2=0这个方程求解不易,这时我们可以尝试对h (x )=g ′(x )再一次求导并解决问题.所以当导数值等于0这个方程求解有困难,考虑用二次求导尝试不失为一种妙法.(文)已知函数f (x )=e x -x ln x ,g (x )=e x -tx 2+x ,t ∈R ,其中e 为自然对数的底数.(1)求函数f (x )的图象在点(1,f (1))处的切线方程;(2)若g (x )≥f (x )对任意的x ∈(0,+∞)恒成立,求t 的取值范围.[方法演示]解:(1)由f (x )=e x -x ln x ,知f ′(x )=e -ln x -1,则f ′(1)=e -1,而f (1)=e ,则所求切线方程为y -e =(e -1)(x -1),即y =(e -1)x +1.(2)∵f (x )=e x -x ln x ,g (x )=e x -tx 2+x ,t ∈R ,∴g (x )≥f (x )对任意的x ∈(0,+∞)恒成立等价于e x -tx 2+x -e x +x ln x ≥0对任意的x ∈(0,+∞)恒成立,即t ≤e x +x -e x +x ln x x 2对任意的x ∈(0,+∞)恒成立. 令F (x )=e x +x -e x +x ln x x 2,则F ′(x )=x e x +e x -2e x -x ln x x 3=1x2⎝⎛⎭⎫e x +e -2e xx -ln x , 令G (x )=e x+e -2e x x -ln x ,则G ′(x )=e x -2(x e x -e x )x 2-1x =e x (x -1)2+e x -x x 2>0对任意的x ∈(0,+∞)恒成立.∴G (x )=e x+e -2e xx -ln x 在(0,+∞)上单调递增,且G (1)=0,∴当x ∈(0,1)时,G (x )<0,当x ∈(1,+∞)时,G (x )>0,即当x ∈(0,1)时,F ′(x )<0,当x ∈(1,+∞)时,F ′(x )>0,∴F (x )在(0,1)上单调递减,在(1,+∞)上单调递增,∴F (x )≥F (1)=1,∴t ≤1,即t 的取值范围是(-∞,1].[解题师说]本题从题目形式来看,是极其常规的一道导数考题,第(2)问要求参数t 的范围问题,实际上是求F (x )=e x +x -e x +x ln x x 2极值问题,问题是F ′(x )=1x 2e x +e -2e x x-ln x 这个方程求解不易,这时我们可以尝试对G (x )=F ′(x )再一次求导并解决问题.所以当导数值等于0这个方程求解有困难,考虑用二次求导尝试不失为一种妙法.[应用体验]2.设k ∈R ,函数f (x )=e x -(1+x +kx 2)(x >0).(1)若k =1,求函数f (x )的导函数f ′(x )的极小值;(2)若对任意的t >0,存在s >0,使得当x ∈(0,s )时,都有f (x )<tx 2,求实数k 的取值范围. 解:(1)当k =1时,函数f (x )=e x -(1+x +x 2),则f (x )的导数f ′(x )=e x -(1+2x ),令g (x )=f ′(x ),则g ′(x )=e x -2,当0<x <ln 2时,g ′(x )<0;当x >ln 2时,g ′(x )>0,从而f ′(x )在(0,ln 2)上递减,在(ln 2,+∞)上递增.故导数f ′(x )的极小值为f ′(ln 2)=1-2ln 2.(2)对任意的t >0,记函数F (x )=f (x )-tx 2=e x -[1+x +(k +t )x 2],x >0,根据题意,存在s >0,使得当x ∈(0,s )时,F (x )<0. 易得F (x )的导数F ′(x )=e x -[1+2(k +t )x ], 令h (x )=F ′(x ),则h ′(x )=e x -2(k +t ).①若h ′(x )≥0,注意到h ′(x )在(0,s )上递增,故当x ∈(0,s )时,h ′(x )>h ′(0)≥0,于是F ′(x )在(0,s )上递增,则当x ∈(0,s )时,F ′(x )>F ′(0)=0,从而F (x )在(0,s )上递增.故当x ∈(0,s )时,F (x )>F (0)=0,与已知矛盾;②若h ′(x )<0,因为h ′(x )在(0,s )上连续且递增,故存在s >0,使得当x ∈(0,s ),h ′(x )<0,从而F ′(x )在(0,s )上递减,于是当x ∈(0,s )时,F ′(x )<F ′(0)=0,因此F (x )在(0,s )上递减.故当x ∈(0,s )时,F (x )<F (0)=0,满足已知条件.综上所述,对任意的t >0,都有h ′(x )<0,所以1-2(k +t )<0,即k >12-t , 故实数k 的取值范围为⎝⎛⎭⎫12-t ,+∞.[典例] 证明当x >0时,sin x >x -x 6. [方法演示]证明:令f (x )=sin x -x +x 36,则f ′(x )=cos x -1+x 22,所以f ″(x )=-sin x +x . 易知当x >0时,sin x <x ,所以在(0,+∞)上f ″(x )>0,所以f ′(x )在(0,+∞)上单调递增. 又f ′(0)=0,所以在(0,+∞)有f ′(x )>f ′(0)=0,所以f (x )在(0,+∞)上单调递增.故当x >0时,f (x )=sin x -x +x 36>f (0)=0. 所以sin x >x -x 36(x >0).[解题师说]本题是应用导数证明不等式.证明的关键在于构造适当的函数,然后在相应区间上用二次求导的方法判定导数的符号,得到导函数的单调性,再利用单调性证明不等式.[应用体验]3.(2018·西安八校联考)已知函数f (x )=m e x -ln x -1.(1)当m =0时,求曲线y =f (x )在点(1,f (1))处的切线方程;(2)当m ≥1时,证明:f (x )>1.解:(1)当m =0时,f (x )=-ln x -1,则f ′(x )=-1x,所以f (1)=-1,f ′(1)=-1. 所以曲线y =f (x )在点(1,f (1))处的切线方程为y -(-1)=-(x -1),即x +y =0.(2)证明:当m ≥1时,f (x )=m e x -ln x -1≥e x -ln x -1.要证f (x )>1,只需证e x -ln x -2>0. 设g (x )=e x -ln x -2,则g ′(x )=e x -1x. 设h (x )=e x -1x ,则h ′(x )=e x +1x 2>0. 所以函数h (x )=g ′(x )=e x -1x在(0,+∞)上单调递增. 因为g ′⎝⎛⎭⎫12=e 12-2<0,g ′(1)=e -1>0,所以函数g ′(x )=e x -1x在(0,+∞)上有唯一零点x 0,且x 0∈⎝⎛⎭⎫12,1. 因为g ′(x 0)=0,所以e x 0=1x 0,即ln x 0=-x 0. 当x ∈(0,x 0)时,g ′(x )<0;当x ∈(x 0,+∞)时,g ′(x )>0,所以当x =x 0时,g (x )取得极小值也是最小值g (x 0).故g (x )≥g (x 0)=e x 0-ln x 0-2=1x 0+x 0-2>0. 综上可知,当m ≥1时,f (x )>1.证明:设f (x )=1+x ln(x +1+x 2)-1+x 2,∵f ′(x )=ln(x +1+x 2)+x ⎝⎛⎭⎪⎫1+x 1+x 2x +1+x 2-x 1+x 2=ln(x +1+x 2), 设h (x )=f ′(x ),则h ′(x )=1+x1+x 2x +1+x 2=1+x 2+x 1+x 2(x +1+x 2)=11+x2>0, 所以f ′(x )在(-∞,+∞)上是增函数.由f ′(x )=0,即ln(x +1+x 2)=0,得x =0.所以当x <0时,f ′(x )<0,则f (x )在(-∞,0)上为减函数;当x >0时,f ′(x )>0,则f (x )在(0,+∞)上为增函数.故f (x )在x =0处有极小值,所以f (x )≥f (0)=0,即1+x ln(x +1+x 2)≥1+x 2.(文)已知函数f (x )=(x +1)ln x -ax ,当x 0∈(1,+∞)时,函数f (x )的图象在点(x 0,f (x 0))处的切线方程为y =1ex -e. (1)求a 的值;(2)求证:函数f (x )在定义域内单调递增.解:(1)由题意,得f ′(x )=ln x +1x+1-a , 所以函数f (x )的图象在点(x 0,f (x 0))处的切线方程为y -f (x 0)=f ′(x 0)(x -x 0),即y -(x 0+1)ln x 0+ax 0=⎝⎛⎭⎫ln x 0+1x 0+1-a (x -x 0),即y =⎝⎛⎭⎫ln x 0+1x 0+1-a x +ln x 0-x 0-1, 所以⎩⎪⎨⎪⎧ ln x 0+1x 0+1-a =1e ,x 0-ln x 0+1=e.令g (x )=x -ln x +1,则g ′(x )=1-1x =x -1x , 当x ∈(1,+∞)时,g ′(x )>0,故当x ∈(1,+∞)时,g (x )单调递增.又因为g (e)=e ,所以x 0=e ,将x 0=e 代入ln x 0+1x 0+1-a =1e,得a =2. (2)证明:由a =2,得f ′(x )=ln x +1x -1(x >0).令h (x )=ln x +1x ,则h ′(x )=1x -1x 2=x -1x2. 当x ∈(0,1)时,h ′(x )<0;当x ∈(1,+∞)时,h ′(x )>0,故当x ∈(0,1)时,h (x )单调递减;当x ∈(1,+∞)时,h (x )单调递增,故h (x )≥h (1)=1.因此当x ∈(0,+∞)时,f ′(x )=h (x )-1≥0,当且仅当x =1时,f ′(x )=0.所以f (x )在定义域内单调递增.2.已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.718 28……为自然对数的底数.设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值.解:由f (x )=e x -ax 2-bx -1,得g (x )=f ′(x )=e x -2ax -b .所以g ′(x )=e x -2a .因此,当x ∈[0,1]时,g ′(x )∈[1-2a ,e -2a ].当a ≤12时,g ′(x )≥0,所以g (x )在[0,1]上单调递增,因此g (x )在[0,1]上的最小值是g (0)=1-b ; 当a ≥e 2时,g ′(x )≤0,所以g (x )在[0,1]上单调递减,因此g (x )在[0,1]上的最小值是g (1)=e -2a -b ;当12<a <e 2时,令g ′(x )=0,得x =ln 2a ∈(0,1). 当g ′(x )<0时,0≤x <ln 2a ;当g ′(x )>0时,ln 2a <x ≤1,所以函数g (x )在区间[0,ln 2a )上单调递减,在区间(ln 2a,1]上单调递增,于是g (x )在[0,1]上的最小值是g (ln 2a )=2a -2a ln 2a -b .综上所述,当a ≤12时,g (x )在[0,1]上的最小值是g (0)=1-b ;当12<a <e 2时,g (x )在[0,1]上的最小值是g (ln 2a )=2a -2a ln 2a -b ;当a ≥e 2时,g (x )在[0,1]上的最小值是g (1)=e -2a -b . 3.已知函数F (x )=e x +sin x -ax ,当x ≥0时,函数y =F (x )的图象恒在y =F (-x )的图象上方,求实数a 的取值范围.解:设φ(x )=F (x )-F (-x )=e x -e -x +2sin x -2ax . 则φ′(x )=e x +e -x +2cos x -2a . 设S (x )=φ″(x )=e x -e -x -2sin x . ∵S ′(x )=e x +e -x -2cos x ≥0在x ≥0时恒成立,∴函数S (x )在[0,+∞)上单调递增,∴S (x )≥S (0)=0在x ∈[0,+∞)时恒成立,因此函数φ′(x )在[0,+∞)上单调递增,∴φ′(x )≥φ′(0)=4-2a 在x ∈[0,+∞)时恒成立.当a ≤2时,φ′(x )≥0,∴φ(x )在[0,+∞)单调递增,即φ(x )≥φ(0)=0. 故a ≤2时F (x )≥F (-x )恒成立.当a >2时,φ′(x )<0,又∵φ′(x )在[0,+∞)单调递增,∴存在x 0∈(0,+∞),使得在区间[0,x 0)上φ′(x )<0. 则φ(x )在[0,x 0)上递减,而φ(0)=0,∴当x ∈(0,x 0)时,φ(x )<0,这与F (x )-F (-x )≥0对x ∈[0,+∞)恒成立不符,∴a >2不合题意.综上,实数a 的取值范围是(-∞,2].4.(2018·长沙模拟)已知函数f (x )=e x ,g (x )=a x,a 为实常数. (1)设F (x )=f (x )-g (x ),当a >0时,求函数F (x )的单调区间;(2)当a =-e 时,直线x =m ,x =n (m >0,n >0)与函数f (x ),g (x )的图象共有四个不同的交点,且以此四点为顶点的四边形恰为平行四边形.求证:(m -1)(n -1)<0.解:(1)F (x )=e x -a x ,其定义域为(-∞,0)∪(0,+∞).而F ′(x )=e x +a x 2,当a >0时,F ′(x )>0,故F (x )的单调递增区间为(-∞,0)∪(0,+∞),无单调递减区间.(2)证明:因为直线x =m 与x =n 平行,故该四边形为平行四边形等价于f (m )-g (m )=f (n )-g (n )且m >0,n >0,m ≠n .当a =-e 时,F (x )=f (x )-g (x )=e x +e x, 则F ′(x )=e x -e x 2. 设h (x )=F ′(x )=e x -e x 2(x >0),则h ′(x )=e x +2e x 3>0, 故F ′(x )=e x -e x 2在(0,+∞)上单调递增.又F ′(1)=e -e =0, 故当x ∈(0,1)时,F ′(x )<0,F (x )单调递减;当x ∈(1,+∞)时,F ′(x )>0,F (x )单调递增,而F (m )=F (n ),故0<m <1<n 或0<n <1<m ,所以(m -1)(n -1)<0.。
高中数学二次求导经典例题
二次求导是高中数学中的一个重要概念,它对于解决一些函数问题具有非常重要的作用。
下面我将通过一些经典例题来介绍二次求导的应用和解题技巧。
例1:求函数f(x) = x^3 - 3x^2 + 1在区间[0, 2]上的最大值。
解:首先,我们需要对函数f(x)进行二次求导,得到f’(x) = 3x^2 - 6x。
当x在区间[0, 2]上时,f’(x)的符号由负变正,说明函数f(x)在区间[0, 2]上先减后增,所以最大值为f(2) = 8。
例2:求函数f(x) = x^4 - 4x^3 + 2x^2 - 1在区间[0, 2]上的极值点。
解:首先,我们需要对函数f(x)进行二次求导,得到f’(x) = 4x^3 - 12x^2 + 4x。
令f’(x) = 0,得到x = 0或x = 1或x = 3/2。
当x在区间[0, 2]上时,只有x = 1是极值点,且为极大值点。
例3:求函数f(x) = x^3 - x^2 - x + 5在区间[-1, 1]上的单调区间。
解:首先,我们需要对函数f(x)进行二次求导,得到f’(x) = 3x^2 - 2x - 1。
当f’(x) > 0时,得到x > 1或x < -1/3;当f’(x) < 0时,得到-1 < x < 1。
所以函数f(x)在区间[-1, -1/3]和[1, 1]上单调递减,在区间[-1/3, 1]上单调递增。
总结:二次求导是解决一些函数问题的重要工具,通过它可以判断函数的单调性、极值点等性质。
在进行二次求导时,需要注意导函数的符号变化,以及极值点和单调区间的判断方法。
同时,解题时还需要结合函数的定义域和性质进行分析,才能得到正确的答案。
除了以上三个例题外,二次求导还可以应用于解决一些其他类型的函数问题,如最值问题、零点问题、方程根的问题等。
只要掌握了二次求导的基本方法和技巧,就可以轻松应对各种数学问题。
第10讲 拓展三:通过求二阶导函数解决导数问题 (精讲+精练)(学生版)
第10讲拓展三:通过求二阶导函数解决导数问题 (精讲+精练)目录第一部分:知识点精准记忆第二部分:课前自我评估测试第三部分:典型例题剖析高频考点一:利用二阶导数求函数的极值高频考点二:利用二阶导数求函数的单调性高频考点三:利用二阶导数求参数的范围高频考点四:利用二阶导数证明不等式第四部分:高考真题感悟第五部分:第10讲拓展三:通过求二阶导函数解决导数问题(精练)1、函数极值的第二判定定理:若()f x 在0x x =附近有连续的导函数()f x '',且0()0f x '=,0()0f x ''≠ (1)若0()0,f x ''<则()f x 在点0x 处取极大值; (2)若0()0,f x ''>则()f x 在点0x 处取极小值2、二次求导使用背景(1)求函数的导数)('x f ,无法判断导函数正负;(2)对函数()f x 一次求导得到()f x '之后,解不等式()0()0f x f x ''><和难度较大甚至根本解不出. (3)一阶导函数中往往含有x e 或ln x3、解题步骤:设()()g x f x '=,再求()g x ',求出()0()0g x g x ''><和的解,即得到函数()g x 的单调性,得到函数()g x 的最值,即可得到()f x '的正负情况,即可得到函数()f x 的单调性.1.(2022·全国·高二专题练习)已知函数()()312cos 12f x x x a x =-++,对于任意的1x ,20,2x π⎛⎫∈ ⎪⎝⎭,且12x x <都有()()21120x f x x f x ->成立,则实数a 的取值范围是( )A .(],3-∞-B .(),3-∞C .(),1-∞-D .(],1-∞-2.(2022·四川·乐山市教育科学研究所二模(文))设150a =,()ln 1sin0.02b =+,5121n 50c =,则a ,b ,c 的大小关系正确的是( ) A .a b c <<B .a c b <<C .b c a <<D .b a c <<3.(2022·河南·民权县第一高级中学高三阶段练习(文))设函数f (x )在区间I 上有定义,若对12,x x I ∀∈和()0,1λ∀∈,都有()()()()()121211f x x f x f x λλλλ+-≤+-,那么称f (x )为I 上的凹函数,若不等号严格成立,即“<”号成立,则称f (x )在I 上为严格的凹函数.对于上述不等式的证明,19世纪丹麦数学家琴生给出了如下的判断方法:设定义在(a ,b )上的函数f (x ),其一阶导数为()f x ',其二阶导数为()f x ''(即对函数()f x '再求导,记为()f x ''),若()0f x ''>,那么函数f (x )是严格的凹函数(()f x ',()f x ''均可导).试根据以上信息解决如下问题:函数()21ln f x m x x x=++在定义域内为严格的凹函数,则实数m 的取值范围为___________. 4.(2022·河南·民权县第一高级中学高三阶段练习(理))设函数()f x 在区间I 上有定义,若对I 上的任意两个数1x ,2x 和任意的()0,1λ∈,都有()()()()()121211f x x f x f x λλλλ+-≤+-,那么称()f x 为I 上的凹函数,若等号不成立,即“<”号成立,则称()f x 在I 上为严格的凹函数,对于上述不等式的证明,19世纪丹麦数学家琴生给出了如下的判断方法:设定义在(),a b 上的函数()f x ,其一阶导数为()f x ',其二阶导数为()f x ''(即对函数()f x '再求导,记为()f x ''),若(),x a b ∀∈,()0f x ''>,那么函数()f x 是严格的凹函数(()f x ',()f x ''均可导),试根据以上信息解决如下问题:若函数()21ln f x m x x x=++在定义域内为严格的凹函数,则实数m 的取值范围为___________.高频考点一:利用二阶导数求函数的极值1.(多选)(2022·全国·模拟预测)已知函数()()e 1xf x x =+,()()1lng x x x =+,则( )A .函数()f x 在R 上无极值点B .函数()g x 在()0,∞+上存在唯一极值点C .若对任意0x >,不等式()()2ln f ax f x >恒成立,则实数a 的最大值为2eD .若()()()120f x g x t t ==>,则()12ln 1tx x +的最大值为1e2.(2022·全国·高二单元测试)已知函数()1ln x f x x+=. (1)若函数()f x 在区间2,3a a ⎛⎫+ ⎪⎝⎭(其中0a >)上存在极值,求实数a 的取值范围;(2)如果当1≥x 时,不等式()1mf x x ≥+恒成立,求实数m 的取值范围. 3.(2022·江苏省昆山中学高三阶段练习)已知函数321()e () 1.2xf xg x ax x x ==+++,(1)若0a =,证明:当0x >时,)()f x g x >,当0x <时,()()f x g x <; (2)记函数()()()h x f x g x =-,若0x =是()h x 的极小值点,求实数a 的值.4.(2022·新疆·模拟预测(理))设函数()1e ln 1xa f x a x -=--,其中0a > (1)当1a =时,讨论()f x 单调性;(2)证明:()f x 有唯一极值点0x ,且()00f x ≥.5.(2022·湖南·长沙一中高三阶段练习)已知函数()3ln a a x f x x x x=--,且()0f x ≤. (1)求实数a 的值;(2)求证:()f x 存在唯一的极小值点0x ,且()120e e f x ---<<-;(3)设()()2a F x xf x a x =+-,()21sin 2G x x x b x =++.对[)0,x π∀∈,()()1F x G x +≤恒成立,求实数b 的取值范围.(参考结论:0x →,()21ln 122sin x x x x---+→-)6.(2022·江苏南通·模拟预测)已知函数()e cos x f x x x =-- (1)讨论函数()f x 在(π-,2π)上极值点的个数; (2)当[]0,x π∈时,()()23sin ln 1f x x m x ≥-+'.其中()'f x 为()f x 的导函数,求实数m 的取值范围.7.(2022·重庆八中模拟预测)已知函数()()()212xaf x x x x a =-+-∈R e . (1)若1x =-为()f x 的取值范围;(2)若()f x 有唯一的极值11e--,证明:1x ∀≥-,()1sin f x x +≥.高频考点二:利用二阶导数求函数的单调性1.(多选)(2022·辽宁丹东·一模)设()0,1,0,1,a a b b f x >≠>'≠为函数()x xf x a b =+的导函数,已知()f x 为偶函数,则( ) A .()1f 的最小值为2 B .()f x '为奇函数C .()f x '在R 内为增函数D .()f x 在()0,∞+内为增函数2.(2022·江苏·金陵中学高二期末)函数()cos e x f x x =.(1)求()f x 在(),ππ-上的单调区间;(2)当0x ≥时,不等式()()22e e 2'-≤x xf x ax 恒成立,求实数a 的取值范围.3.(2022·全国·哈师大附中模拟预测(理))已知函数()()2e 1=-+xf x ax x (a ∈R ,e 为自然对数的底数). (1)若()f x 在x=0处的切线与直线y=ax 垂直,求a 的值; (2)讨论函数()f x 的单调性; (3)当21ea ≥时,求证:()2ln 2x x f x x ---≥.4.(2022·安徽·高三阶段练习(理))已知函数()ln f x x x =-,322()436ln 1g x x x x x =---. (1)若()1x f ax ≥+恒成立,求实数a 的取值范围; (2)若121322x x <<<,且()()120g x g x +=,试比较()1f x 与()2f x 的大小,并说明理由.5.(2022·北京朝阳·一模)已知()e x f x x a =-,a R ∈.(1)若曲线()y f x =在点()()1,1f 处的切线与x 轴重合,求a 的值; (2)若函数()f x 在区间()1,+∞上存在极值,求a 的取值范围;(3)设()()2g x f x =-,在(2)的条件下,试判断函数()g x 在区间()1,+∞上的单调性,并说明理由.6.(2022·全国·模拟预测(文))已知()()24e 34,x f x x cx x R c R =---∈∈.(1)当3c =时,求()f x 在()()0,0f 处的切线方程;(2)设()32e 6xf x x x x ≤+-在[)0,+∞上恒成立,求实数c 的取值范围.高频考点三:利用二阶导数求参数的范围1.(2022·全国·高三专题练习)已知函数()3sin 3m f x x x x =-+,若对任意的[)()00x f x ∈+∞≥,,恒成立,求实数m 的取值范围.2.(2022·江苏·已知函数 ()ln f x ax x x =+ 的图象在点 e x = ( e 为自然对数的底数) 处的切线斜率为 3. (1)求实数 a 的值;(2)若 k Z ∈, 且存在 1x > 使 ()()1k x f x -> 成立, 求 k 的最小值.3.(2022·天津市宁河区芦台第一中学高二阶段练习)已知函数2()ln ,()f x x x g x x ax =-=-. (1)求函数()f x 的极值;(2)令112212()()(),(,()),(,())()h x g x f x A x h x B x h x x x =-≠是函数()h x 图像上任意两点,且满足1212()()1h x h x x x ->-,求实数a 的取值范围;(3)若(0,1]x ∃∈,使()()a g x f x x-≥成立,求实数a 的最大值.4.(2022·海南·嘉积中学模拟预测)已知函数()ln 2f x x x =--. (1)判断函数的单调性;(2)若对于任意的()1,x ∈+∞,都有()ln 1x x x k x +>-,求整数k 的最大值.高频考点四:利用二阶导数证明不等式1.(2022·重庆市育才中学高二阶段练习)已知函数2()cos sin e f x x x x -=--,[]0,x π∈. (1)求()f x 的最大值;(2)证明:2e sin e e cos 1x x x x x x x -+>+-;(3)若320()2e f x ax -++≥恒成立,求实数a 的取值范围.2.(2022·山东·聊城民慧实验高级中学高二阶段练习)已知函数()2e 2x xf x a a x =---(1)若x ≥0时,()f x ≥0,求实数a 的取值范围. (2)当02x π<<时,求证:()4e cos 14xx x x ->-.3.(2022·安徽·合肥一中高三阶段练习(文))已知函数()()2l 11n (2)1f x a x x ax a =+--+∈R .(1)讨论()f x 的单调性;(2)当0a =时,求证:21()(e 1).2≤--x f x x x4.(2022·江西上饶·一模(理))已知函数()()ln 1f x x x a =+-,()e cos 1xg x x =+-,其中e 2.718=…为自然对数的底数.(1)当1a =时,若过点(),m m 与函数()f x 相切的直线有两条,求m 的取值范围;(2)若()0,x ∞∈+,01a ≤≤,证明:()()f x g x <.5.(2022·全国·高三专题练习)已知函数()2ln ln x f x ae x a -=-+.(1)若曲线()y f x =在点()()22f ,处的切线方程为312y x =-,求a 的值; (2)若a e ≥,证明:()2f x ≥.1.(2021·全国·高考真题)已知函数()()1ln f x x x =-. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112e a b<+<.2.(2020·全国·高考真题(文))已知函数f (x )=2ln x +1. (1)若f (x )≤2x +c ,求c 的取值范围; (2)设a >0时,讨论函数g (x )=()()f x f a x a--的单调性.一、填空题1.(2022·江苏·海门中学高二期末)已知函数()222ln f x ax x x =--,a R ∈有且只有一个零点,则实数a 的取值范围是_______.2.(2022·全国·模拟预测)已知函数()1ln g x x x k x=+-有两个不同的零点,则实数k 的取值范围为___________. 3.(2022·福建厦门·高三阶段练习)若函数()ln f x x =和()()2R g x x ax a =+∈的图象有且仅有一个公共点P ,则g (x )在P 处的切线方程是_________.4.(2022·重庆市育才中学高二阶段练习)已知关于x 的方程233()ln 3ln x t x t t +=有三个实数根,则t 的取值范围是______5.(2022·湖北·安陆第一高中高二期中)已知函数()ln f x x x =+.()f x '为函数()f x 的导函数,若()()ln 11kf x x '>++对任意0x >恒成立,则整数k 的最大值为________. 二、解答题6.(2022·四川省通江中学高二阶段练习(理))已知函数()ln xf x x=, ()()1g x k x =-. (1)证明: R k ∀∈,直线yg x 都不是曲线()y f x =的切线;(2)若2e,e x ⎡⎤∀∈⎣⎦,使()()f x g x ≤恒成立,求实数k 的取值范围.7.(2022·安徽省桐城中学高三阶段练习(理))已知函数2()e x f x -=,函数ln ()(,)a x bg x a b x+=∈R 在e x =处取得最大值.(1)求a 的取值范围;(2)当02a <≤时,求证:()()f x g x >.8.(2022·陕西·模拟预测(理))已知函数2()e 1x f x ax x =---. (1)当1a =-时,讨论()f x 的单调性; (2)当0x ≥时,321()22f x x ax ≥-恒成立,求实数a 的取值范围.9.(2022·四川达州·二模(理))已知:()e x f x mx =+.(1)当1m =时,求曲线()y f x =的斜率为2的切线方程; (2)当0x ≥时,()2213222m f x x ≥+-成立,求实数m 的范围10.(2022·河南焦作·二模(理))已知函数()()e 2axf x x =-.(1)若1a =,()f x 的一个零点为()000x x ≠,求曲线()y f x =在0x x =处的切线方程; (2)若当0x >时,不等式()132ln f x a x x x x ⎡⎤⎛⎫+≥+⋅ ⎪⎢⎥⎣⎦⎝⎭恒成立,求实数a 的取值范围.。
高中数学导数多次求导难题及解法
高中数学导数多次求导难题及解法下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!高中数学:多次求导的难题及解法引言在高中数学的学习过程中,导数是一个基础而重要的概念。
(完整版)导数中的二次求导问题
2019高考数学热点难点突破技巧第03讲:导数中的二次求导问题【知识要点】1、高中数学课程标准对导数的应用提出了明确的要求,导数在研究函数中的应用,既是高考考查的重点,也是难点和必考点. 利用导数求解函数的单调性、极值和最值等问题是高考考查导数问题的主要内容和形式,并多以压轴题的形式出现. 常常考查运算求解能力、概括抽象能力、推理论证能力和函数与方程、化归与转化思想、分类与整合思想、特殊与一般思想的渗透和综合运用,难度较大.2、在解决有关导数应用的试题时,有些题目利用“一次求导”就可以解决,但是有些问题“一次求导”,不能求出原函数的单调性,还不能解决问题,需要利用“二次求导”才能找到导数的正负,找到原函数的单调性,才能解决问题. “再构造,再求导”是破解函数综合问题的有效工具,为高中数学教学提供了数学建模的新思路和“用数学”的新意识和新途径.【方法讲评】【例1】(理·2010全国卷Ⅰ第20题)已知函数. (Ⅰ)若,求的取值范围;(Ⅱ)证明:化简得,所以两边同乘可得,所以有,在对求导有,即当<<时,>0,在区间上为增函数;当时,;当<时,<0,在区间上为减函数.所以在时有最大值,即.又因为,所以.当时,同理,当时,>,即在区间上为增函数,则,此时,为增函数,所以,易得也成立.综上,得证.方法二:(Ⅰ),则题设等价于. 令,则.当<<时,>;当时,,是的最大值点,所以.综上,的取值范围是.(Ⅱ)由(Ⅰ)知,,即.当<<时,因为<0,所以此时.当时,. 所以【点评】(1)比较上述两种解法,可以发现用二次求导的方法解题过程简便易懂,思路来得自然流畅,难度降低,否则,另外一种解法在解第二问时用到第一问的结论,而且运用了一些代数变形的技巧,解法显得偏而怪,同学们不易想出.(2)大家一定要理解二次求导的使用情景,是一次求导得到之后,解答难度较大甚至解不出来. (3)二次求导之后,设,再求,求出的解,即得到函数的单调性,得到函数的最值,即可得到的正负情况,即可得到函数的单调性.【例2】设函数(Ⅰ)若在点处的切线为,求的值;(Ⅱ)求的单调区间;(Ⅲ)若,求证:在时,>.【解析】(Ⅰ)∵∴,∵在点处的切线为,即在点的切线的斜率为,∴,∴,∴切点为,将切点代入切线方程,得,所以,;(Ⅲ)∵,,∴要证:当时,>,即证:,令,则只需证:,由于,(由于不等式是超越不等式,所以此处解不等式解答不出,所以要构造函数二次求导.)设所以函数在单调递增,又因为.所以在内存在唯一的零点,即在内存在唯一的零点,设这个零点为.【点评】(1)由于不等式是超越不等式,所以不等式解答不出,所以要构造函数二次求导.这是要二次求导的起因. (2)仅得到函数在单调递增是不够的,因为此时,所以,所以。
专题07 导数之二阶导数的应用(解析版)
专题07 导数之二阶导数的应用一、重点题型目录【题型】一、利用二阶导数求函数的极值(极大值或极小值) 【题型】二、利用二阶导数求函数的单调性 【题型】三、利用二阶导数求参数的范围 【题型】四、利用二阶导数证明不等式 【题型】五、利用二阶导数与函数的对称性求值 【题型】六、利用二阶导数与函数的凹凸性求值 二、题型讲解总结【题型】一、利用二阶导数求函数的极值(极大值或极小值)例1.(2022·广西北海·一模(理))已知()12,,x x m ∈+∞()0m >,若12x x <,121112x x x x -->恒成立,则正数m 的最小值是( ) A .1eB .1C .11e+D .e【答案】B 【分析】不等式121112x x x x -->化简可得()()11221ln 1ln x x x x ->-,利用导数研究函数()()1ln f x x x =-的单调性,结合已知条件和函数的单调性可求m 的最小值.【详解】由121112x x x x -->,化简可得121112ln ln x x x x -->,即()()11221ln 1ln x x x x ->-.令()()1ln f x x x =-,则原不等式可化为()()12f x f x >, 由已知()f x 在(),m +∞上为单调递减函数,又()11ln ln 1x f x x x x x -=-+=-+-',令()1ln 1u x x x =-+-,则()2110u x x x-'=-≤在()0,∞+上恒成立,所以()u x 在()0,∞+上单调递减,又()10u =,所以当()0,1x ∈时,()0u x >,当()1,x ∈+∞时,()0u x <.故当()0,1x ∈时,0fx,当()1,x ∈+∞时,()0f x '<.即()f x 在()0,1上单调递增,在()1,+∞上单调递减.所以m 1≥.所以正数m 的最小值是1, 故选:B .例2.(2022·湖南·高二期中)已知二次函数()2f x ax bx c =++的图象过点()0,1-,且当0x >时,()ln f x x ≥,则ba的最小值为( )A .2-B .12-C .e -D .1e-【答案】D【分析】将元不等式变形为ln 1()x ax b g x x++≥=,利用导数研究()g x 的单调性可得当直线y ax b =+与()g x 相切时ba取得最小值,根据导数的几何意义和直线的点斜式方程求出切线方程,进而得出(2ln 1)()b x x h x a x+-==,利用二次求导研究()h x 的单调性,求出max ()h x 即可.【详解】由()1f x =-知1c =-,∴()21f x ax bx =+-,∴()ln 1ln x f x x ax b x +≥⇔+≥,令ln 1()(0)x g x x x +=>,则1()0eg =, 2ln ()xg x x-'=,令()01g x x '>⇒<,令()01g x x '<⇒>, 所以函数()g x 在(0,1)上单调递增,在(1,)+∞上单调递减, 如图,若y ax b =+图象在()g x 图象上方,则01x <<,要使y ax b =+图象在()g x 图象上方,则ba表示x 轴截距的相反数,ba的最小值即为截距的最大值,而当截距最大时,直线y ax b =+与()g x 相切, 记切点为00(,)x y ,则0020ln ()x g x a x -'==,又00ln 1()x g x x +=, 所以00000220000ln ln 1ln 2ln 1()x x x x y x x x x x x x -+-+=-+=+, 有()0002ln 1ln x x b a x +-=,设()()2ln 1(01)ln x x h x x x+=<<,则()()2222ln 1ln 12(ln )ln 1()(ln )(ln )x x x x h x x x -++-'==,故当1(0,)ex ∈时,函数()0h x '>,当1(,1)e x ∈时,()0h x '<,故当(0,1)x ∈时,函数()h x 在1(0,)e上单调递增,在1(,1)e 上单调递减,此时max 11()()e eh x h ==,综上,b a的最小值为1e -.故选:D.例3.(2021·江苏·高二专题练习)设函数()()(1)(3,4)x x kf x e e x k -=--=,则( )A .3k =时,()f x 在0x =处取得极大值B .3k =时,()f x 在1x =处取得极小值C .4k =时,()f x 在0x =处取得极大值D .4k =时,()f x 在1x =处取得极小值 【答案】D【分析】先对()f x 求导并整理,当3k =时,令2()(2)4x g x x e x =++-,对()g x 二次求导判断其单调性,得()g x 在R 上单调递增,由函数零点存在定理确定零点所在区间,从而得()f x 的单调性即可判断;当4k =时,令2()(3)5x h x x e x =++-,同理求导,判断单调性即可判断.【详解】解:由()()(1)x x k f x e e x -=--,得 1()()(1)()(1)xxkxxk f x e e x k e e x ---'=+-+--12(1)(1)1k x x x x k e x k e--⎡⎤=-++--⎣⎦, 当3k =时,22(1)()(2)4xx x f x x e x e-'⎡⎤=++-⎣⎦, 令2()(2)4x g x x e x =++-,222()2(2)1(25)1x x x g x e x e x e '=+++=++, 222()22(25)(412)x x x g x e x e x e ''=++=+,所以当3x <-时,()0g x ''<,()g x '在(),3-∞-上单调递减; 当3x >-时,()0g x ''>,()g x '在()3,-+∞上单调递增, 所以6()(3)10g x g e -''≥-=->,所以()g x 在R 上单调递增,又2(0)240,(1)330g g e =-<=->,则()g x 在区间()0,1上存在唯一零点0x , 当0x x <时,()0g x <,即()0f x '<,()f x 在()0,x -∞单调递减;当0x x >时,()0g x >,即()0f x '>,()f x 在()0,x +∞单调递增; 所以()f x 在0x x =处取得唯一极值,故选项A 、B 错误; 当4k =时32(1)()(3)5x x x f x x e x e-'⎡⎤=++-⎣⎦, 令2()(3)5x h x x e x =++-,则222()2(3)1(27)1x x x h x e x e x e '=+++=++, 222()22(27)(416)x x x h x e x e x e ''=++=+,所以当<4x -时,()0h x ''<,()h x '在(),4-∞-上单调递减; 当4x >-时,()0h x ''>, ()h x '在()4,-+∞上单调递增; 所以8()(4)10h x h e -''≥-=->,则()h x 在R 上单调递增, 又(0)0,(1)0h h <>,则()h x 在区间()0,1上存在唯一零点t , 则令()0f x '=,得1x =或(0,1)x t =∈, 当x t <或1x >时,()0f x '>,()f x 单调递增, 当1t x <<时,()0f x '<,()f x 单调递减,所以()f x 在x t =处取得极大值,在1x =处取得极小值,选项C 错误,选项D 正确. 故选:D.【点睛】关键点点睛:解答本题的关键是,利用二次求导判断导函数的单调性,然后再利用函数零点存在定理确定零点所在区间,从而得原函数的单调性.例4.(2022·重庆市育才中学模拟预测)已知函数()()32012xa f x ae x ax a =--->,若函数()y f x =与()()y f f x =有相同的最小值,则a 的最大值为( ).A .1B .2C .3D .4【答案】B【分析】首先利用导数求解函数的单调性,再根据函数值域与定义域的关系即可得出结论.【详解】根据题意,求导可得,()()204x a f x ae x a a '=-->, ∴()1022xx a f x ae x a e x ⎛⎫''=-=-> ⎪⎝⎭( x e x >), ∴f x 在R 上单调递增,又∴当0x =时,()00f '= ∴当0x <时,0f x ,即函数()f x 在,0上单调递减,当0x >时,0fx,即函数()f x 在0,上单调递增,故有()()min 02f x f a ==-,即得()[)2,f x a ∈-+∞,所以根据题意,若使()()min 2f f x a =-,需使()f x 的值域中包含[)0,+∞, 即得202a a -≤⇒≤, 故a 的最大值为2. 故选:B.【点睛】求函数最值和值域的常用方法:(1)单调性法:先确定函数的单调性,再由单调性求最值;(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值;(3)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值;(4)导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值; (5)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值. 例5.(2022·全国·高三专题练习)已知函数()ln 2f x x x x =+,若k Z ∃∈,使得()21f x kk x+>+在()2,x ∈+∞恒成立,则k 的最大值为( ) A .2 B .3 C .4 D .5【答案】C【分析】首先参变分离得ln 2x x x k x +<-,再设函数()ln 2x x x h x x +=-,求导数()()242ln 2x x h x x --'=-,再设()42ln g x x x =--,再求导数,通过函数()g x '恒正,判断函数()g x 的单调性,并判断()h x 的极值点所在的区间,求得函数的最小值,同时求得k 的最大值. 【详解】依题意,ln 2x x x k x +<-,令()ln 2x x xh x x +=-,则()()242ln 2x x h x x --'=-.令()42ln g x x x =--,()21g x x'=-,∴2x >时,()0g x '>,即()g x 单调递增,∴()4242ln8l n 8n l 80g e =-=-<,()52952ln9ln ln90g e =-=->,设42ln 0x x --=并记其零点为0x ,故089x <<.且004ln 2x x -=,所以当02x x <<时,()0g x <,即()0h x '<,()h x 单调递减;当0x x >时,()0g x >即()0h x '>,()h x 单调递增,所以()()0000000min 0004ln 2222x x x x x x x h x h x x x -⎛⎫+ ⎪+⎝⎭====--,因此02x k <,由于Z k ∈且089x <<,即09422x <<,所以max 4k =,【点睛】关键点点睛:本题考查利用导数研究函数的性质,考查考生逻辑推理、数学运算的核心素养,本题的关键是构造函数,并求两次导数,通过导数,逐级判断函数的单调性和最值.【题型】二、利用二阶导数求函数的单调性例5.(2022·湖北·竹溪县第二高级中学高三阶段练习)若19ln sin a ⎛⎫= ⎪⎝⎭,ln9b =-,ln(ln 0.9)c =-, 则( )A .c<a<bB .c b a <<C .a b c <<D .a c b <<【答案】A【分析】先由对数的运算法则把,,a b c 转化成同底的对数,再构造函数,利用导数判断单调性,进而,,a b c 的真数的大小关系,最后利用ln y x =的单调性判断,,a b c 的大小. 【详解】由对数的运算法则得1ln 9ln 9b =-=,10ln(ln 0.9)ln ln 9c ⎛⎫=-= ⎪⎝⎭.令函数()sin f x x x =-,则()cos 10f x x '=-≤,即函数()f x 在R 是单调递减. 11sin 99∴<令函数()()sin ln 1,0,6g x x x x π⎛⎫=-+∈ ⎪⎝⎭,则()1cos 1g x x x '=-+,令函数()1cos ,0,16h x x x x π⎛⎫=-∈ ⎪+⎝⎭,则()()21sin 1h x x x '=-++, ()h x '在0,6π⎛⎫ ⎪⎝⎭上单调递减,且()211010,06216h h ππ⎛⎫''=>=-+< ⎪⎝⎭⎛⎫+ ⎪⎝⎭, ()000,,06x h x π⎛⎫'∴∃∈= ⎪⎝⎭, 所以()h x 在()00,x 上单调递增,在0,6x π⎛⎫⎪⎝⎭单调递减.又()1600,06616h h πππ⎛⎫===-> ⎪+⎝⎭+ ()0h x ∴>在0,6π⎛⎫ ⎪⎝⎭恒成立 ()0g x '∴>,即()g x 在0,6π⎛⎫⎪⎝⎭上单调递增 ()()0=0g x g ∴>,则()sin ln 1x x >+ 当19x =时,1110sin ln 1ln 999⎛⎫>+= ⎪⎝⎭. 又ln y x =在()0,∞+上单调递增10ln19∴> 1011ln ln ln sin ln 999⎛⎫⎛⎫∴<< ⎪ ⎪⎝⎭⎝⎭ c a b ∴<<【点睛】利用导数判断函数值大小应注意的问题: 在构造函数时需要视具体情况而定在判断导函数的正负时,尽量不要求二阶导数,而是把原导函数令为一个新函数,再求导判断正负来得到原导函数的单调性.例6.(2022·河南·模拟预测(理))己知22e 2e e e a a b b a b -=-,则( ) A .0a b +≥ B .0a b +≤ C .0ab ≥ D .0ab ≤【答案】C【分析】变形()()22e e 2e e 2e b a a b b b a b =---,构造函数()2e 2e x xf x x =-,通过二次求导可知函数单调性,然后利用单调性可得a 、b 符号.【详解】()()22e e 2e e 2e b a a b b b a b =---,设()2e 2e x xf x x =-,则()()()22e 21e 2e e 1x x x xf x x x =-+=--',设()e 1xg x x =--,则()e 1x g x '=-,当0x <时,()0g x '<,()g x 单调递减,当0x >时,()0g x '>,()g x 单调递增,所以()()00g x g ≥=,所以()()2e 0xf xg x '=≥,()f x 单调递增.当a b ≥时,()()e 0bb f a f b =-≥,故此时0a b ≥≥;当a b ≤时,()()e 0bb f a f b =-≤,故此时0a b ≤≤,所以0ab ≥.故选:C .例7.(2022·黑龙江·嫩江市第一中学校高三期末(理))若22sin 4sin cos 41-=-+a a b b b b a ,则( ) A .2a b > B .2a b < C .|||2|>a b D .|||2|<a b【答案】C【分析】构造函数2()sin f x x x x =+,利用导数判断单调性,结合奇偶性单调性来比较大小. 【详解】令2()sin f x x x x =+,∴22()sin()()sin ()-=--+-=+=f x x x x x x x f x ,∴()f x 是偶函数, ∴()sin cos 2(cos 1)(sin )=++=+++'f x x x x x x x x x ,令()sin g x x x =+,则()cos 10='+≥g x x ,∴()g x 在(0,)+∞上单调递增,当0x ≥时,()(0)0g x g ≥=,此时()0f x '>,∴()f x 在(0,)+∞上单调递增.由22sin 4sin cos 41-=-+a a b b b b a 可得22sin 2sin 2(2)1+=++a a a b b b ,即()(2)1=+f a f b ,∴()(2)>f a f b ,∴()f x 是偶函数,则(||)(|2|)>f a f b ,∴|||2|>a b . 故选:C.【点睛】本题求解的关键是把等量关系转化为不等关系,通过构造函数,研究函数的性质来求解,一次导数解决不了问题时,考虑二次导数.例8.(2022·浙江省春晖中学模拟预测)在关于x 的不等式()2222e e 4e e 4e 0x x x a x a -+++>(其中e=2.71828为自然对数的底数)的解集中,有且仅有两个大于2的整数,则实数a 的取值范围为( ) A .4161,5e 2e ⎛⎤ ⎥⎝⎦B .391,4e 2e ⎡⎫⎪⎢⎣⎭C .42164,5e 3e ⎛⎤ ⎥⎝⎦D .3294,4e 3e ⎡⎫⎪⎢⎣⎭【答案】D【分析】将不等式转化为()()22e 21e x x a x ->-,分别研究两个函数的性质,确定a 的取值范围,构造函数,利用放缩法进一步缩小a 的取值范围,列出不等式组,求出结果.【详解】由()2222e e 4e e 4e 0x x x a x a -+++>,化简得:()()22e 21e x x a x ->-,设()()22e 2f x x =-,()()1e xg x a x =-,则原不等式即为()()f x g x >.若0a ≤,则当2x >时,()0f x >,()0g x <, ∴原不等式的解集中有无数个大于2的整数,∴0a >.∴()20f =,()22e 0g a =>,∴()()22f g <.当()()33f g ≤,即12ea ≥时,设()()()()4h x f x g x x =-≥, 则()()()22e 2e 2e 2e 22exxx h x x ax x '=--≤--. 设()()()2e 2e 242e x x x x x ϕ=--≥,则()()21e 2e 2ex x x ϕ+'=-在[)3,+∞单调递减,所以()()()21e 2e302ex x x ϕϕ+''=-≤=,所以()()2e 2e 22ex x x x ϕ=--在[)4,+∞单调递减,∴()()()242e 2e 0x ϕϕ≤=-<,∴当4x ≥时,()0h x '<,∴()h x 在[]4,+∞上为减函数, 即()()2423e 44e 3e e 402h x h a ⎛⎫≤=-≤-< ⎪⎝⎭,∴当4x ≥时,不等式()()f x g x <恒成立, ∴原不等式的解集中没有大于2的整数.∴要使原不等式的解集中有且仅有两个大于2的整数,则()()()()()()334455f g f g f g ⎧>⎪>⎨⎪≤⎩,即232425e 2e 4e 3e 9e 4e a a a ⎧>⎪>⎨⎪≤⎩, 解得32944e 3e a ≤<. 则实数a 的取值范围为3294,4e 3e ⎡⎫⎪⎢⎣⎭.故选:D【点睛】已知整数零点个数,求参数的取值范围,要从特殊点,特殊值缩小参数的取值范围,再利用导函数及放缩法进行求解,最终得到关于参数的不等关系,进行求解. 【题型】三、利用二阶导数求参数的范围例9.(2022·辽宁·东北育才双语学校模拟预测)设函数()2ln f x x x=+,()0,6x ∈,()f x 的图像上的两点()11,A x y ,()22,B x y 处的切线分别为1l ,2l ,且12x x <,1l ,2l 在y 轴上的截距分别为1b ,2b ,若12l l ∥,则12b b -的取值范围是( ) A .2ln 2,23⎛⎫- ⎪⎝⎭B .2ln 2,1ln 23⎛⎫-+ ⎪⎝⎭C .2ln 2,03⎛⎫- ⎪⎝⎭D .()1ln 2,2+【答案】C【分析】利用导数求切线方程,结合两条切线平行,得到12x x , 的取值区间;再利用一阶导数求出相应点的切线方程,再求y 轴上的截距,然后确定12b b - 的单调性,然后就可以确定它的取值范围. 【详解】因为()2ln f x x x =+而()121206x x x x ∈<,,,,所以()22212x f x x x x-'=-+=, 在点1112ln A x x x ⎛⎫+ ⎪⎝⎭, 处的切线方程为:()112111221ln y x x x x x x ⎛⎫⎛⎫-+=-+- ⎪ ⎪⎝⎭⎝⎭;在点2222ln B x x x ⎛⎫+ ⎪⎝⎭, 处的切线方程为:()222222221ln y x x x x x x ⎛⎫⎛⎫-+=-+- ⎪ ⎪⎝⎭⎝⎭; 所以()1111211112124ln ln 1b x x x x x x x ⎛⎫⎛⎫=-+-++=+- ⎪ ⎪⎝⎭⎝⎭;2224ln 1b x x =+-; 令()4ln 1b x x x =+- ,则()22414x b x x x x-'=-+= 11212121224444ln 1ln 1ln xb b x x x x x x x ⎛⎫⎛⎫⎛⎫-=+--+-=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭又因为12l l ∥ ,所以2211222121x x x x -+=-+,且124x x << 所以211112x x +=, 112102x x x =-> ,12x > ,12246x x <<<<所以112122224482ln 2ln 2x b b x x x x x ⎛⎫-=-+=-+ ⎪-⎝⎭,令()12822ln2g x b b x x =-=-+- ,()46x ∈, 则()()()222481022x g x x x x x -'=-=-<-- 所以()12822ln 2g x b b x x =-=-+-在()46,单调递减. 所以()122ln 203b b ⎛⎫-∈- ⎪⎝⎭,. 故选:C例10.(2022·河南·南阳中学高三阶段练习(文))若关于x 的不等式32ln 42x x x x ax +≤++恒成立,则实数a 的取值范围为( ) A .[)1,-+∞ B .[)1,+∞C .1,e ⎡⎫+∞⎪⎢⎣⎭D .[),e +∞【答案】B 【分析】等价于2ln 42x a x x x x≥-+-,设函数()2ln 42x f x x x x x =-+-,利用导数求出函数()f x 的最大值即得解. 【详解】解:依题意,2ln 42x a x x x x≥-+-, 设函数()2ln 42x f x x x x x =-+-,则()224ln 3x x x f x x---+=', 令()24ln 3h x x x x =---+,故()21420h x x x x'=---<, 所以函数()h x 在()0,∞+上单调递减,而()10h =, 故当()0,1x ∈时,()0f x '>,当()1,x ∈+∞时,()0f x '<, 故函数()f x 在()0,1上单调递增,在()1,+∞上单调递减, 故()max ()11==f x f ,则1a ≥. 故选:B .例11.(2022·全国·高二课时练习)已知函数()22e 1ln x f x x kx x ⎛⎫=-+ ⎪⎝⎭,若函数()f x 有唯一极值点,则实数k 的取值范围为( )A .()(]{}2,00,4e 2e ∞-⋃⋃B .(),4e ∞-C .()4e,∞+D .[)4e,∞+【答案】A【分析】求出原函数的导函数并化简得到()2212e 1x x f x x kx ⎛⎫-'=-⎪⎝⎭,1x =为导函数的零点,进而设()()22e 10xg x x kx=->,然后再通过导数方法判断出函数()g x 的零点,进一步得到函数()f x 的单调区间,最终确定出极值点个数求出答案.【详解】由题意,()22e 10,ln x x f x x kx x ⎛⎫>=-+ ⎪⎝⎭,则()()223222e 1112e 1x x x x x f x kx x x kx -⎛⎫--'=-=- ⎪⎝⎭, 设()()22e 10xg x x kx=->,()22221e x x g x k x -'=⋅⋅. 当0k >时,10,2x ⎛⎫∈ ⎪⎝⎭时,()()0,g x g x '<单调递减,1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()()0,g x g x '>单调递增,()min 14e12g x g k⎛⎫==- ⎪⎝⎭ (1)若04e k <≤,则()()min 0g x g x ≥≥,则()0,1x ∈时,()()0,f x f x '<单调递减,()1,x ∈+∞时,()()0,f x f x '>单调递增,所以()f x 有唯一极值点1x =. (2)若24e<2e k <,则()min102g x g ⎛⎫=< ⎪⎝⎭,()22e 110g k=->,22211212e e e 22212e2e 112e 10112e 2e 2e g k k ⋅⎛⎫=-=->-> ⎪⎝⎭⋅⋅,结合函数()g x 的单调性可知,函数()g x 分别在110,,,122⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭上存在唯一一个零点12,x x ,于是()10,x x ∈时,()0f x '<,()f x 单调递减,()12,x x x ∈时,0f x ,()f x 单调递增,()2,1x x ∈时,()0f x '<,()f x 单调递减, ()1,x ∈+∞时,0fx,()f x 单调递增,所以()f x 有12,,1x x 三个极值点;(3)若22e k =,则()min102g x g ⎛⎫=< ⎪⎝⎭,()22e 110g k=-=,221212e e 2212e 12e 1012e 2e g k ⋅⎛⎫=-=-> ⎪⎝⎭⋅,结合函数()g x 的单调性可知,函数()g x 在10,2⎛⎫ ⎪⎝⎭上存在唯一一个零点3x ,于是()30,x x ∈时,()0f x '<,()f x 单调递减,()3,1x x ∈时,0f x ,()f x 单调递增,()1,x ∈+∞时,0fx ,()f x 单调递增,所以()f x 有3x x =唯一一个极值点;(4)若22e k >,则()22e 110g k=-<,又102x <<时,()22e 211x g x kx kx =->-,所以102x <<且2x k<时,()0g x >. 设()()e 1xh x x x =->,()e 1e 10x h x '=->->,所以函数()h x 在()1,+∞上单调递增,故()()221e 10e e x x h x h x x >=->⇒>⇒>,于是1x >时,()22211x xg x kx k>-=-,所以1x >且2kx >时,()0g x >. 结合函数()g x 的单调性可知,函数()g x 分别在()10,,1,+2⎛⎫∞ ⎪⎝⎭上存在唯一一个零点45,x x ,于是()40,x x ∈时,()0f x '<,()f x 单调递减,()4,1x x ∈时,0fx,()f x 单调递增,()51,x x ∈时,()0f x '<,()f x 单调递减, ()5,x x ∈+∞时,0f x,()f x 单调递增,所以()f x 有45,1,x x 三个极值点.当0k <时,10,2x ⎛⎫∈ ⎪⎝⎭时,()()0,g x g x '>单调递增,1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()()0,g x g x '<单调递减,()max 14e102g x g k⎛⎫==-< ⎪⎝⎭,即()0g x <恒成立,于是()0,1x ∈时,()()0,f x f x '>单调递增,()1,x ∈+∞时,()()0,f x f x '<单调递减,所以()f x 有唯一极值点1x =. 综上所述:k 的取值范围为(){}2,0(0,4e]2e -∞⋃⋃.故选:A.【点睛】本题非常复杂,注意以下两个方面:∴对函数求完导之后一定要因式分解,()2212e 1x x f x x kx ⎛⎫-'=- ⎪⎝⎭,现在只需要考虑()()22e 10xg x x kx =->的零点即可;∴因为导函数()f x '有一个零点1,所以在讨论函数()()22e10xg x x kx=->的零点时一定要注意它的零点是否为1,方法是将x =1代入得到()222e 1102e g k k=-=⇒=,以此作为讨论的一个分界点. 例12.(2021·江苏·高二单元测试)若关于x 的不等式2112ln 022x m x --≥在[]2,4上有解,则实数m 的取值范围是( )A .15,4ln 2⎡⎫+∞⎪⎢⎣⎭ B .15,8ln 2⎡⎫+∞⎪⎢⎣⎭ C .15,4ln 2⎛⎤-∞ ⎥⎝⎦D .15,8ln 2⎛⎤-∞ ⎥⎝⎦【答案】D【分析】把给定不等式转化为214ln x m x -≤在[]2,4上有解,构造函数()214ln x g x x-=,[]2,4x ∈,探讨该函数最大值即可得解.【详解】由[]2,4x ∈,得ln 0x >,又关于x 的不等式2112ln 022x m x --≥在[]2,4上有解,所以214ln x m x -≤在[]2,4上有解,即2max 14ln x m x ⎛⎫-≤ ⎪⎝⎭,令()214ln x g x x-=,[]2,4x ∈,则()()()()2224124ln 12ln 4ln 4ln x x x x x x x x g x x x ⋅--⋅-+'==,设()12ln h x x x x x=-+,[]2,4x ∈,则()22112ln 212ln 10h x x x x x '=+--=+->,即()h x 在[]2,4上单调递增,则()()13324ln 224ln 220222h x h ≥=-+=->->, 于是有()0g x '>,从而得()g x 在[]2,4上单调递增, 因此,()()max 161151544ln 44ln 48ln 2g x g -====,则158ln 2m ≤, 所以m 的取值范围是15,8ln 2⎛⎤-∞ ⎥⎝⎦. 故选:D【点睛】思路点睛:涉及不等式在给定区间上有解求参数范围问题,常常采用分离参数,构造函数,再求函数最值的思路来解决问题. 【题型】四、利用二阶导数证明不等式例13.(2022·辽宁朝阳·高二期末)已知函数()f x 为偶函数,且当0x ≥时,2()e cos x f x x x =+-,则不等式(3)(21)0f x f x ---<的解集为( ) A .42,3⎛⎫- ⎪⎝⎭B .(,2)-∞-C .(2,)-+∞D .4(,2),3⎛⎫-∞-⋃+∞ ⎪⎝⎭【答案】D【分析】结合导数以及函数的奇偶性判断出()f x 的单调性,由此化简不等式(3)(21)0f x f x ---<来求得不等式的解集.【详解】当0x ≥时,()()()'''2sin s 2cos 0,2,in x x x e x f x f x e x x e x x =++>=++++单调递增,()'01f =,所以()()'0,f x f x >单调递增.因为()f x 是偶函数,所以当0x <时,()f x 单调递减.(3)(21)0,(3)(21)f x f x f x f x ---<-<-,()()22321,321x x x x -<--<-,22269441,3280x x x x x x -+<-++->,()()23402x x x +->⇒<-或43x >.即不等式(3)(21)0f x f x ---<的解集为4(,2),3⎛⎫-∞-⋃+∞ ⎪⎝⎭.故选:D例14.(2022·全国·高二专题练习)已知123a =,()11e b e =+,134c =,则a ,b ,c 的大小关系为( ). A .b a c >> B .c b a >> C .c a b >> D .a b c >>【答案】D【分析】根据题中a ,b ,c 的形式构造函数()()()1ln 1,0f x x x x=⋅+>,利用二次求导的方法判断函数()f x 的单调性,根据单调性即可比较大小. 【详解】因为()1212a =+,()11e b e =+,()1313c =+,所以令()()()1ln 1,0f x x x x=⋅+>,则()()2ln 11xx x f x x -++'=, 令()()()ln 1,01x g x x x x =-+>+,则()()201x g x x -'=<+, ∴()g x 在()0,∞+上单调递减,()()00g x g <=, ∴()0f x '<恒成立,∴()f x 在()0,∞+上单调递减. ∴23e <<,∴()()()23f f e f >>,即()()()111ln 12ln 1ln 1323e e +>+>+,所以()()()11123ln 12ln 1ln 13e e +>+>+, 所以()11132314e e >+>,即a b c >>, 故选:D .例15.(2022·全国·高三专题练习)已知函数()ln 2f x x x x =+,若k Z ∃∈,使得()21f x kk x+>+在()2,x ∈+∞恒成立,则k 的最大值为( ) A .2 B .3 C .4 D .5【答案】C【分析】首先参变分离得ln 2x x x k x +<-,再设函数()ln 2x x xh x x +=-,求导数()()242ln 2x x h x x --'=-,再设()42ln g x x x =--,再求导数,通过函数()g x '恒正,判断函数()g x 的单调性,并判断()h x 的极值点所在的区间,求得函数的最小值,同时求得k 的最大值. 【详解】依题意,ln 2x x x k x +<-,令()ln 2x x x h x x +=-,则()()242ln 2x x h x x --'=-.令()42ln g x x x =--,()21g x x'=-,∴2x >时,()0g x '>,即()g x 单调递增,∴()4242ln8l n 8n l 80g e =-=-<,()52952ln9ln ln90g e =-=->,设42ln 0x x --=并记其零点为0x ,故089x <<.且004ln 2x x -=,所以当02x x <<时,()0g x <,即()0h x '<,()h x 单调递减;当0x x >时,()0g x >即()0h x '>,()h x 单调递增,所以()()0000000min 0004ln 2222x x x x x x x h x h x x x -⎛⎫+ ⎪+⎝⎭====--,因此02x k <,由于Z k ∈且089x <<,即09422x <<,所以max 4k =, 故选:C【点睛】关键点点睛:本题考查利用导数研究函数的性质,考查考生逻辑推理、数学运算的核心素养,本题的关键是构造函数,并求两次导数,通过导数,逐级判断函数的单调性和最值.例16.(2023·全国·高三专题练习)已知()f x 是R 上的偶函数,当[)0,x ∈+∞时,()2cos 12x f x x =-+,且()()21f x a f x +<+对x ∀∈R 恒成立,则实数a 的取值范围是___________. 【答案】33,44⎛⎫- ⎪⎝⎭【分析】利用二次求导法,结合偶函数的性质进行求解即可.【详解】()()()()2cos 1sin 1cos 02x f x x g x f x x x g x x ''=-+⇒==-+⇒=-≥,故()g x 为增函数,当0x ≥时,()()00g x g ≥=,可得()f x 为增函数. 又()f x 为偶函数,故()()f x a f x a +=+,()()22221111f x a f x x a x x x a x x +<+⇔+<+⇔---<<-+恒成立. 因为221331()244x x x -+=-+≥,221331()244x x x -+-=---≤-,所以有3344a -<<,故答案为:33,44⎛⎫- ⎪⎝⎭【题型】五、利用二阶导数与函数的对称性求值例17.(2022·四川·成都七中模拟预测(理))对于三次函数()32f x ax bx cx d =+++(0a ≠),给出定义:设()f x '是函数()y f x =的导数,()f x ''是()f x '的导数,若方程()0f x ''=有实数解0x ,则称点()()00,x f x 为函数()y f x =的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数()3211533212g x x x x =-+-,则122014201520152015g g g ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭( )A .2014B .2013C .20155D .1007【答案】A【分析】根据对称中心的定义,由二阶求导可求出对称中心,进而根据对称中心的特征求解. 【详解】()3211533212g x x x x =-+-,所以()()23,21g x x x g x x '''=-+=-,令12102x x -=⇒=,112f ⎛⎫= ⎪⎝⎭,所以()3211533212g x x x x =-+-的对称中心为1,12⎛⎫⎪⎝⎭ ,()()1220141201412,20152015201520152015g x g x g g g g g ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴+-=∴++⋅⋅⋅+=++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭22013100710081007220142015201520152015g g g g ⎛⎫⎛⎫⎛⎫⎛⎫++++=⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭故选:A例18.(2022·广东广州·高二期末)对于三次函数()()320ax bx d a f x cx =+++≠,现给出定义:设()f x '是函数()f x 的导数,()f x ''是()f x '的导数,若方程()0f x ''=有实数解0x ,则称点()()00,x f x 为函数()()320ax bx d a f x cx =+++≠的“拐点”.经过探究发现:任何一个三次函数都有“拐点”,任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数()3232g x x x =-+,则1231910101010g g g g ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( ) A .0 B .1C .32-D .32【答案】A【分析】对函数()3232g x x x =-+求导,再求导()g x '',然后令()0g x ''=,求得对称点即可.【详解】依题意得,()236g x x x '=-,()66g x x ''=-,令()0g x ''=,解得x =1,∴()10g =,∴函数()g x 的对称中心为()1,0, 则()()20g x g x -+=, ∴11921831791121010101010101010+=+=+==+=∴12319010101010g g g g ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 故选:A.例19.(2022·全国·高三专题练习)设函数()y f x ''=是()y f x '=的导数,经过探究发现,任意一个三次函数()()320ax bx d a f x cx =+++≠的图象都有对称中心()()00,x f x ,其中0x 满足()00f x ''=,已知函数()3272392f x x x x =-+-,则12320212022202220222022f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( ) A .2021 B .20212C .2022D .40212【答案】B【分析】通过条件,先确定函数()f x 图象的对称中心点,进而根据对称性求出函数值的和. 【详解】由()3272392f x x x x =-+-,可得()2669f x x x '=-+,()126f x x ''=-,令()1260f x x ''=-=,得12x =,又32111171239222222f ⎛⎫⎛⎫⎛⎫=⨯-⨯+⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以对称中心为11,22⎛⎫⎪⎝⎭,所以12021220201,12022202220222022f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,…,11010102022202122f f ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,1201011222f ⎛⎫= ⎪⎝⎭. 所以12320211202110101202220222022202222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+=⨯+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 故选:B.例20.(2016·湖南衡阳·高三阶段练习(文))设函数()y f x ''=是()y f x '=的导数.某同学经过探究发现,任意一个三次函数()()320ax bx d a f x cx =+++≠都有对称中心()()00,x f x ,其中0x 满足()00f x ''=.已知函数()3211533212f x x x x =-+-,则1232016...2017201720172017f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( ) A .2013 B .2014 C .2015 D .2016【答案】D【分析】先求出()f x '',结合题意求得函数()f x 的对称中心,进而得到()()12f x f x +-=,进而求出1232016...2017201720172017f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭即可.【详解】由题意得,()()23,21f x x x f x x '''=-+=-,令()0f x ''=,解得12x =,又3211111153123222212f ⎛⎫⎛⎫⎛⎫=⨯-⨯+⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以函数()f x 的对称中心为1,12M ⎛⎫⎪⎝⎭,则()()12f x f x +-=,1232016...2017201720172017f f f f ⎛⎫⎛⎫⎛⎫⎛⎫∴++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1120162201520161...2201720172017201720172017f f f f f f ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++++⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦()12201620162=⨯⨯=. 故选:D .【题型】六、利用二阶导数与函数的凹凸性求值例21.(2022·陕西渭南·高二期末(理))给出定义:若函数()f x 在D 上可导,即()f x '存在,且导函数()f x '在D 上也可导,则称()f x 在D 上存在二阶导函数.记()()()f x f x ''''=,若()0f x ''<在D 上恒成立,则称()f x 在D 上为凸函数.以下四个函数在π0,2⎛⎫⎪⎝⎭上是凸函数的有( )∴()sin cos f x x x =+,∴()e x f x x -=-,∴()ln 2f x x x =-,∴3()21f x x x =-+-. A .4个 B .3个 C .2个 D .1个【答案】B【分析】根据题意,分别验证各个选项中的函数的二阶导数在π0,2⎛⎫⎪⎝⎭上是否是负数即可.【详解】∴()sin cos f x x x =+,则()sin cos f x x x ''=--,当π0,2x ⎛⎫∈ ⎪⎝⎭时,sin 0,cos 0x x >>,则()sin cos 0f x x x ''=--<,选项∴满足;∴()e x f x x -=-,则()(2)x f x x e -''=-,当π0,2x ⎛⎫∈ ⎪⎝⎭时,20x ->,即()0f x ''>,∴不符题意; ∴()ln 2f x x x =-,则21()0f x x ''=-<,选项∴满足; ∴3()21f x x x =-+-,当π0,2x ⎛⎫∈ ⎪⎝⎭时,()60f x x ''=-<,选项∴满足.综上有3个函数符合题意. 故选:B例22.(2023·全国·高三专题练习)设函数f (x )在区间I 上有定义,若对12,x x I ∀∈和()0,1λ∀∈,都有()()()()()121211f x x f x f x λλλλ+-≤+-,那么称f (x )为I 上的凹函数,若不等号严格成立,即“<”号成立,则称f (x )在I 上为严格的凹函数.对于上述不等式的证明,19世纪丹麦数学家琴生给出了如下的判断方法:设定义在(a ,b )上的函数f (x ),其一阶导数为()f x ',其二阶导数为()f x ''(即对函数()f x '再求导,记为()f x ''),若()0f x ''>,那么函数f (x )是严格的凹函数(()f x ',()f x ''均可导).试根据以上信息解决如下问题:函数()21ln f x m x x x=++在定义域内为严格的凹函数,则实数m 的取值范围为___________.【答案】(-∞【分析】对函数()f x 求导,并对其导函数再次求导,将问题转化为函数最值问题,利用导数求最值即可.【详解】由()21ln f x m x x x=++,得()212m f x x x x '=-+,令()212m h x xx x =-+,则()2322m h x x x'=-++, 令23220m x x-++>恒成立,即222m x x <+恒成立, 令()()2220g x x x x =+>,则()()32214224x g x x x x-'=-+=,当x ⎛∈ ⎝时,()0g x '<,g (x )单调递减;当x ⎫∈+∞⎪⎭时,()0g x '>,g (x )单调递增,所以()2221g x g ≥=+=所以m <故答案为:(-∞.例23.(2021·江苏扬州·高三阶段练习)函数()y g x =在区间[a ,]b 上连续,对[a ,]b 上任意二点1x 与2x ,有1212()()()22x x g x g x g ++<时,我们称函数()g x 在[a ,]b 上严格上凹,若用导数的知识可以简单地解释为原函数的导函数的导函数(二阶导函数)在给定区间内恒为正,即()0g x ''>.下列所列函数在所给定义域中“严格上凹”的有( ) A .2()log (0)f x x x => B .()2x f x e x -=+C .3()2(0)f x x x x =-+<D .2()sin (0)f x x x x π=-<<【答案】BC【分析】根据题目中定义,逐个判断各函数是否满足条件二阶导函数大于零,即可解出. 【详解】由题意可知,若函数在所给定义域中“严格上凹”,则满足()0f x ''>在定义域内恒成立.对于A ,2()log (0)f x x x =>,则2111()()0ln 2ln 2f x x x '''==-⋅<在0x >时恒成立, 不符合题意,故选项A 错误;对于B ,()2x f x e x -=+,则()(21)20x x f x e e --'''=-+=>恒成立, 符合题意,故选项B 正确;对于C ,3()2(0)f x x x x =-+<,则2()(32)60f x x x '''=-+=->在0x <时恒成立, 符合题意,故选项C 正确;对于D ,2()sin (0)f x x x x π=-<<,则()(cos 2)sin 20f x x x x ''=-'=--<在0πx <<时恒成立,不符合题意,故选项D 错误. 故选:BC.。
二次求导问题【范本模板】
二次求导问题导数既是高中数学的一个重要内容,又是高考的一个必考内容.近几年高考中,出现了一种新的“导数”,它是对导函数进行二次求导而产生的新函数,尤其是近几年作为高考的压轴题时常出现.利用二次求导求函数的单调性[典例] 1212[思路点拨]此题可联想到研究函数f (x )=错误!在(0,π)的单调性.函数图象虽然可以直观地反映出两个变量之间的变化规律,但大多数复合的函数作图困难较大.导数的建立拓展了应用图象解题的空间.导数这个强有力的工具对函数单调性的研究提供了简单、程序化的方法,具有很强的可操作性.当f ′(x )〉0时,函数f (x )单调递增;当f ′(x )<0时,函数f (x )单调递减.[方法演示]解:由f (x )=错误!,得f ′(x )=错误!,设g (x )=x cos x -sin x ,则g ′(x )=-x sin x +cos x -cos x =-x sin x .∵0〈x <π,∴g ′(x )<0,即函数g (x )在(0,π)上是减函数.∴g (x )<g (0)=0,因此f ′(x )<0,故函数f (x )在(0,π)是减函数,∴当0〈x 1<x 2〈π,有f (x 1)>f (x 2),即a >b 。
[解题师说]从本题解答来看,为了得到f (x )的单调性,须判断f ′(x )的符号,而f ′(x )=错误!的分母为正,只需判断分子x cos x -sin x 的符号,但很难直接判断,故可通过二次求导,判断出一次导函数的符号,并最终解决问题.[应用体验]1.已知函数f (x )满足f (x )=f ′(1)e x -1-f (0)x +12x 2,求f (x )的解析式及单调区间. 解:因为f (x )=f ′(1)e x -1-f (0)x +错误!x 2,所以f ′(x )=f ′(1)e x -1-f (0)+x 。
2020届高三数学之函数与导数(文理通用)二次求导函数处理(二阶导数)(解析版)
专题03 二次求导函数处理(二阶导数)一、考情分析1、在历年全国高考数学试题中,函数与导数部分是高考重点考查的内容,并且在六道解答题中必有一题是导数题。
利用导数求解函数的单调性、极值和最值等问题是高考考查导数问题的主要内容和形式,并多以压轴题的形式出现. 常常考查运算求解能力、概括抽象能力、推理论证能力和函数与方程、化归与转化思想、分类与整合思想、特殊与一般思想的渗透和综合运用,难度较大.2、而在有些函数问题中,如含有指数式、对数式的函数问题,求导之后往往不易或不能直接判断出原函数的单调性,从而不能进一步判断函数的单调性及极值、最值情况,此时解题受阻。
需要利用“二次求导”才能找到导数的正负,找到原函数的单调性,才能解决问题. 若遇这类问题,必须“再构造,再求导”。
本文试以全国高考试题为例,说明函数的二阶导数在解高考函数题中的应用。
3、解决这类题的常规解题步骤为: ①求函数的定义域;②求函数的导数)('x f ,无法判断导函数正负; ③构造求)(')(x f x g =,求'(x)g ; ④列出)(),(',x g x g x 的变化关系表; ⑤根据列表解答问题。
二、经验分享方法 二次求导使用情景对函数()f x 一次求导得到()f x '之后,解不等式()0()0f x f x ''><和难度较大甚至根本解不出.解题步骤设()()g x f x '=,再求()g x ',求出()0()0g x g x ''><和的解,即得到函数()g x 的单调性,得到函数()g x 的最值,即可得到()f x '的正负情况,即可得到函数()f x 的单调性.三、题型分析(一) 利用二次求导求函数的极值或参数的范围例1.【2020届西南名校联盟高考适应月考卷一,12】(最小整数问题-导数的单调性和恒成立的转化) 已知关于x 的不等式()22ln 212x m x mx +-+≤在()0,∞上恒成立,则整数m 的最小值为( ) A.1 B.2 C.3 D.4 【答案】B .【解析】【第一种解法(排除法)(秒杀)】:令1=x 时,m m ≤+⨯-+21)1(21ln 2化简:34≥m ; 令2=x 时,m m 422)1(22ln 2≤+⨯-+,化简42ln 22+≥m 你还可以在算出3,4,选择题排除法。
高考专题:导数中的二次求导问题
导数中的二次求导问题一.考情分析:高中数学课程标准对导数的应用提出了明确的要求,导数在研究函数中的应用,既是高考考查的重点,也是难点和必考点. 利用导数求解函数的单调性、极值和最值等问题是高考考查导数问题的主要内容和形式,并多以压轴题的形式出现. 常常考查运算求解能力、概括抽象能力、推理论证能力和函数与方程、化归与转化思想、分类与整合思想、特殊与一般思想的渗透和综合运用,难度较大. 二.知识要点(为什么二次求导:)在解决有关导数应用的试题时,有些题目利用“一次求导”就可以解决,而在有些函数问题中,如含有指数式、对数式的函数问题,求导之后往往不易或不能直接判断出原函数的单调性,从而不能进一步判断函数的单调性及极值、最值情况,此时解题受阻。
需要利用“二次求导”才能找到导数的正负,找到原函数的单调性,才能解决问题. 若遇这类问题, “再构造,再求导”是破解函数综合问题的有效工具,为高中数学教学提供了数学建模的新思路和“用数学”的新意识和新途径。
三、解这类题的步骤为: ①求函数的定义域;②求函数的导函数f ´(x),无法判断导函数正负; ③构造求g(x)= f ´(x),求g ´(x);④求g ´(x)>0和g ´(x)<0的解,即得函数()g x 的单调性,得函数()g x 的最值,; ⑤根据列表解答问题。
四、典型例题:例1.求函数()cos f x x x ax a =-+,π[0,]2x ∈(1a ≥)的单调区间;解:依题意 ()cos sin f x x x x a '=--.令()cos sin g x x x x a =--,π[0,]2x ∈, 则()2sin cos 0g x x x x '=--≤.所以()g x 在区间π[0,]2上单调递减.因为 (0)10g a =-≤,所以 ()0g x ≤,即 ()0f x '≤, 所以()f x 的单调递减区间是π[0,]2,没有单调递增区间.例2.求证:函数2()ln(1)f x x x ax =+-(0a <)存在极小值;解: 因为()ln(1)+21xf x x ax x '=+-+ 设()()ln(1)21xg x f x x a x x '==++-+ 211()+21(1)g x a x x '=-++ 因为1x >-且0a <,所以101x >+,210(1)x >+,20a -> 从而得到()0g x '>在(1,)-+∞上恒成立 所以()0f x '>在(1,)-+∞上单调递增且(0)0f '=,所以x ,'()f x ,()f x 在区间(1,)-+∞ 的变化情况如下表:所以0x =时,()f x 取得极小值,问题得证例3.求函数f(x)=sinxlnx 在区间(1,)π内的极大值的个数.解:因为()sin ln f x x x =,所以sin ()cos ln xf x x x x'=+, (1)当(1,)2x π∈时,()0f x '>,()f x 单调递增,此时()f x 无极大值.(2) 当(,)2x π∈π时,设sin ()()cos ln '==+x g x f x x x x ,则22cos sin ()sin ln 0x x g x x x x x '=-+-<,所以()f x '在(,)2ππ内单调递减. 又因为2()02f π'=>π, ()ln 0f 'π=-π<,所以在(,)2ππ内存在唯一的0(,)2x π∈π,使得0()0f x '=.当x 变化时,()f x ',()f x 的变化如下表所以()f x 在0(1,)x 内单调递增,在0(,)x π内单调递减,此时()f x 有唯一极大值. 综上所述,()f x 在(1,)π内的极大值的个数为1. ………10分检测:1.已知函数()()ln 1f x x a x x =+-+在区间(1)+∞,上存在极值点,求实数a 的取值范围.解:ln +'()ln a x x a f x x xx=+=.若0a ≥,则当(1)x ∈∞,+时,'()0f x >,()f x 在区间(1)∞,+上单调递增,此时无极值.若0a <,令()'()g x f x =, 则21'()=a g x xx -.因为当(1)x ∈∞,+时,'()0g x >,所以()g x 在(1)∞,+上单调递增. 因为(1)0g a =<,而(e )e (e 1)0a a ag a a a -=-+=->,所以存在0(1e )a x -∈,,使得0()0g x =.'()f x 和()f x 的情况如下:因此,当0x x =时,()f x 有极小值0()f x .综上,a 的取值范围是0()-∞,. …………15分2、已知函数()()ln f x x a x =+(0a >)有极小值,求实数a 的取值范围.解: ()f x 有极小值⇔函数()f x '有左负右正的变号零点.()1()ln ln 1af x x x a x x x'=++=++令()()g x f x '=,则221()a x a g x x x x-'=-= 令()0g x '=,解得x a =. ,(),()x g x g x '的变化情况如下表:①若ln 20a +≥,即2a e -≥,则()0g x ≥,所以()f x '不存在变号零点,不合题意.②若ln 20a +<,即2a e -<时,()ln 20g a a =+<,(1)10g a =+>.所以0(,1)x a ∃∈,使得0()0g x =;且当0(,)x a x ∈时,()0g x <,当0(,1)x x ∈时,()0g x >. 所以当(,1)x a ∈时,,(),()x f x f x '的变化情况如下表:所以20a e -<<.3.已知函数2()()x f x e ax a =-∈R 在[0,1]上的最大值不小于2,求a 的取值范围;解:∵ ()e 2xf x ax '=-,当0a ≤时,因为[0,1],x ∈e 0,x>20ax -≥,故()0f x '>,即()f x 单调递增, 因此max ()(1)e f x f a ==-.依题意,当0a ≤时,max ()e e 2f x a =-≥>,所以0a ≤符合题意.当0a >时,()e 2xf x a ''=-,令()0f x ''=,有ln 2x a =,变化如下:-+故.当时,即时,,单调递增,因此. 依题意,令,有.当时,即时,,,故存在唯一使. 此时有,即,,变化如下:若,则在上的最大值小于2,所以a 的取值范围为.。
巧用导数 高效解题——以“二次求导”在函数问题中的应用为例
巧用导数㊀高效解题以 二次求导 在函数问题中的应用为例陈雯娜(福建省宁德市高级中学ꎬ福建宁德352100)摘㊀要:本文针对二次求导在函数解题中的应用展开了讨论ꎬ简述了二阶导数的数学意义ꎬ详细介绍了二阶导数在求函数单调性㊁极值㊁参数取值范围中的具体应用方法.关键词:导数ꎻ解题ꎻ函数问题中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2024)09-0052-03收稿日期:2023-12-25作者简介:陈雯娜(1995.10 )ꎬ女ꎬ福建省宁德人ꎬ本科ꎬ中学二级教师ꎬ从事高中数学教学研究.㊀㊀从高考形势来看ꎬ二次求导被频繁应用在综合题型的解决中ꎬ对学生考试成绩的影响非常大.所以ꎬ教师要重视二次求导知识点的教学.1二阶导数二次求导是指通过观察一阶导数的变化率ꎬ确定图像的凹凸性.在部分指数式㊁对数式的函数问题中ꎬ求导之后无法判断原函数单调性时才会进行二次求导ꎬ找到导数正负ꎬ确定函数单调性.如果函数f(x)在区间aꎬb[]上连续ꎬ且二次可导ꎬ若在该区间上函数二阶导数大于零ꎬ则函数f(x)在区间aꎬb[]上的图形是凹的ꎻ若在该区间上函数二阶导数小于零ꎬ则函数f(x)在区间aꎬb[]上的图形是凸的[1].另外ꎬ部分函数问题需要先构造函数后才能二次求导.整体来说ꎬ二次求导虽能降低解题难度㊁提高解题效率ꎬ但是对学生思维的灵活性要求比较高.因此ꎬ教师要多锻炼㊁启发学生思维ꎬ保证学生能熟练掌握二次求导的方法ꎬ拥有更加灵活的思维.2二次求导在函数问题中的应用2.1在函数单调性问题中的应用如果要判断原函数的单调性ꎬ则要先观察二次导数在定义域内的取值.当其值恒大于零或恒小于零时ꎬ则可推出一阶导函数在定义域内的单调性ꎬ同时ꎬ考虑一阶导数的最大值或最小值ꎬ两者结合判断原函数的单调性.若一阶导函数是单调递增的ꎬ且最小值大于零ꎬ则证明原函数单调递增ꎻ若一阶导函数是单调递减的ꎬ且最大值小于零ꎬ则证明原函数单调递减.这一结论在其他函数综合题型中也有着极其重要的应用ꎬ如极值㊁含参问题.所以教师应当要求学生打好基础ꎬ熟练掌握通过二次求导判断函数单调性的方法ꎬ以便后续解决问题时能随时调用[2].2.1.1直接讨论函数单调性相对来说ꎬ讨论不含参数的函数单调性问题时ꎬ直接进行求导㊁化简㊁在定义域内讨论导数符号进而判断单调性即可ꎬ其解题难度一般.例1㊀讨论函数fx()=ln2(1+x)-x21+x的单调性.分析㊀针对这道题目来说ꎬ可以先确定该函数的定义域为-1ꎬ+ɕ().对该函数求导可得:fᶄx()=2ln(1+x)x+1-x2+2x1+x()2ꎬ通分得到fᶄx()=2(1+x)ln(1+x)-x2-2x1+x()2.仔细观察该函数不难发25现ꎬ分母大于零ꎬ但是分子符号不确定ꎬ所以要进一步讨论.此时ꎬ假设gx()=2(1+x)ln(1+x)-x2-2xꎬ若想确定该函数的正负ꎬ则要对其求导ꎬ判断其单调性或最值ꎬ以此确定一阶导数符号ꎬ反推原函数单调区间.对gx()求导可得到gᶄx()=2ln(1+x)-2xꎬ再二次求导可得gᶄx()[]ᶄ=-2x1+xꎬ这时就可以分情况讨论.第一种情况:当-1<x<0时ꎬgᶄx()[]ᶄ=-2x1+x>0ꎬ那么gᶄx()=2ln(1+x)-2x在该区间上是增函数ꎻ第二种情况:当x>0时ꎬgᶄx()[]ᶄ=-2x1+x<0ꎬ那么gᶄx()=2ln(1+x)-2x在该区间上是单调减函数ꎬ综合考虑这两种情况ꎬgᶄx()=2ln(1+x)-2x在x=0时有最大值ꎬ又因为gᶄ0()=0ꎬ所以ꎬgᶄx()ɤ0.反推可知函数gx()在-1ꎬ+ɕ()上是单调减函数ꎬ在-1<x<0时ꎬgx()>g0()=0ꎬ则fᶄx()>0ꎬ函数fx()是单调递增的ꎻ当x>0时ꎬgx()<g0()=0ꎬ则fᶄx()<0ꎬ函数fx()是单调递减的.综上ꎬ可知函数fx()的单调递增区间为-1ꎬ0()ꎬ单调递减区间为0ꎬ+ɕ().从这道题目的解析中能够看出ꎬ应用二阶导数判断函数单调区间的关键是要合理化简函数表达式ꎬ合理分类讨论自变量的范围.2.1.2带有参数函数单调性的讨论通常ꎬ在含有参数的函数单调性问题中ꎬ应用二阶导数的解题思路与直接讨论函数单调性的解题思路相反ꎬ需要根据题干结论反推ꎬ分类讨论参数的取值范围.结合历年高考试题来看ꎬ真题中多是出现与对数㊁指数有关的函数ꎬ总体上来说ꎬ含参数函数单调性的主要解题思路为对带有对数㊁指数的函数进行化简ꎬ尽可能地使其表达式简洁㊁规整ꎬ之后再根据函数定义域ꎬ进行分类讨论.例2㊀已知函数f(x)=1-e-xꎬ当xȡ0时ꎬf(x)ɤxax+1ꎬ求a的取值范围.这道题目的解决可以采用放缩代换法ꎬ这一方法对学生的思维能力㊁解题能力的要求比较高ꎬ部分学生是无法达到要求的[3].所以ꎬ可以尝试利用二阶导数ꎬ降低解题难度ꎬ提高解题准确率.那么针对问题②来说ꎬ可按照以下步骤进行解题:根据题意xȡ0ꎬf(x)ɤxax+1ꎬ显然a的取值范围不确定ꎬ所以要分成两种情况进行讨论.当a<0时ꎬ若x>-1aꎬ则xax+1<0ꎬ那么f(x)ɤxax+1不成立ꎻ当aȡ0时ꎬax+1>0ꎬ由f(x)ɤxax+1移项可得ax+1()1-e-x()-xɤ0.此时ꎬ令gx()=ax+1()1-e-x()-xꎬ则gᶄx()=e-xax+1-a()+a-1ꎬgᶄx()[]ᶄ=e-x2a-1-ax().根据题干xȡ0ꎬ当aɪ0ꎬ12[]时可判断出gᶄx()[]ᶄ=e-x2a-1-ax()ɤ0ꎬ此时gᶄx()在定义域内是递减的ꎬgᶄx()ɤgᶄ0()=0ꎬ则gx()单调递减ꎬgx()ɤg0()=0ꎬ可知原不等式成立.进一步分类讨论a的取值范围ꎬ若aɪ12ꎬ+ɕæèçöø÷ꎬ2a-1>0ꎬ令gᶄx()[]ᶄ=e-x2a-1-ax()=0ꎬ计算可得x=2a-1aꎬ当0<x<2a-1aꎬgᶄx()[]ᶄ=e-x2a-1-ax()>0ꎬ此时gᶄx()在该区间上单调递增ꎬgᶄx()>gᶄ0()=0ꎬ则gx()在0ꎬ2a-1aæèçöø÷上单调递增ꎬgx()>g(0)=0ꎬ不符合题意ꎬ所以f(x)ɤxax+1不恒成立.所以aɪ0ꎬ12[].从这道题目的解析中能够看出ꎬ利用二次求导的方法判断函数单调性更高效ꎬ尤其在含有对数或指数的导函数中ꎬ二次求导更有利于判断导数符号ꎬ进而判断原函数的增减情况.2.2在函数极值问题中的应用一般地ꎬ函数极值问题可以按照确定函数定义域㊁求导㊁计算驻点㊁分析单调性㊁确定极值的步骤进行求解.如果需要利用二阶导数解题ꎬ当一阶导数为零ꎬ而二阶导数大于零时ꎬ所求的点为极小值点ꎻ当一阶导数为零ꎬ二阶导数小于零时ꎬ则所求的点为极大值点ꎻ当一阶㊁二阶导数均为零时ꎬ则所求得的点为驻点.概括地说ꎬ函数f(x)在点x处具有二阶导数ꎬ且fᶄ(x)=0ꎬfᵡx()ʂ0ꎬ那么当fᵡ(x)>0时ꎬ函数35在点x处取得极小值ꎻ当fᵡ(x)<0时ꎬ函数在点x处取得极大值.例3㊀已知函数fx()=12x2-ex+2x-1ꎬ求函数fx()极值点的个数.分析㊀针对这道题目来说ꎬ若想求解函数极值点的个数ꎬ需要先判断函数的单调性.具体来说ꎬ其解题步骤为:fx()的定义域为Rꎬfᶄx()=x-ex+2ꎬ此时一阶导数的驻点及符号不好判断ꎬ因此构造函数gx()=x-ex+2ꎬ求导可得gᶄx()=1-ex.当x<0时ꎬgᶄx()>0ꎬ当x>0时ꎬgᶄx()<0ꎬ所以gx()在-ɕꎬ0()上单调递增ꎬ在0ꎬ+ɕ()上单调递减ꎬ即fᶄx()在-ɕꎬ0()上单调递增ꎬ在0ꎬ+ɕ()上单调递减ꎬ所以fᶄ(x)max=fᶄ0()=1>0.又fᶄ-2()=-e-2<0ꎬfᶄ2()=4-e2<0ꎬ则fᶄ-2() fᶄ0()<0ꎬfᶄ0() fᶄ2()<0ꎬ由零点存在定理可知存在唯一的x1ɪ-2ꎬ0()ꎬx2ɪ0ꎬ2()ꎬ使fᶄx1()=fᶄx2()=0ꎬ且当xɪ-ɕꎬx1()和xɪx2ꎬ+ɕ()时ꎬfᶄx()<0ꎬ函数单调递减ꎻ当xɪx1ꎬx2()时ꎬfᶄx()>0ꎬ函数单调递增ꎬ故fx()在x1处取得极小值ꎬ在x2处取得极大值ꎬ即函数fx()的极值点的个数为2.从这道题目的解析中能够看出ꎬ通过二次求导可以更好地判断原函数的单调性ꎬ进而得到函数的极值点情况ꎬ大大简化了解题的过程.2.3在函数的参数范围中的应用应用二次求导求解函数参数范围的关键是要根据函数满足的条件倒推ꎬ得到函数的单调性ꎬ并依据性质倒推参数范围.如果有必要ꎬ还应构造函数ꎬ进行推导㊁计算.例4㊀已知关于x的不等式2lnx+2(1-m)x+2ɤmx2在0ꎬ+ɕ()上恒成立ꎬ则整数m的最小值为(㊀㊀).分析㊀针对这道题目来说ꎬ因为2lnx+2(1-m)x+2ɤmx2ꎬ进行移项㊁化简可得到mȡ2lnx+x+1()x2+2x.此时ꎬ构造函数fx()=2lnx+x+1()x2+2xꎬ求导可得fᶄx()=-2x+1()x+2lnx()x2+2x()2ꎬ令fᶄx()=0ꎬ则可得到x+2lnx=0.继续构造函数ꎬ令gx()=x+2lnxꎬ对其求导可得到gᶄx()=1+2xꎬ当xɪ0ꎬ+ɕ()ꎬgᶄx()=1+2x>0ꎬ则g(x)在xɪ0ꎬ+ɕ()是单调递增函数.又g12æèçöø÷<0ꎬg1()>0ꎬ所以存在一个点tɪ12ꎬ1æèçöø÷ꎬ满足t+2lnt=0ꎬ当0<x<t时ꎬg(x)<0ꎬfᶄx()>0ꎬ则fx()在0ꎬt()上单调递增ꎻ当x>t时ꎬg(x)>0ꎬfᶄx()<0ꎬ则fx()在tꎬ+ɕ()上单调递减ꎬf(x)max=2(lnt+t+1)t2+2t=1t 1ꎬ2().因为mȡ2lnx+x+1()x2+2x在0ꎬ+ɕ()上恒成立ꎬ所以mȡ2lnx+x+1()x2+2x][maxꎬ故mȡ2ꎬ则整数m的最小值为2[4].从这道题目的解析中能够看出ꎬ通过二次求导判断参数的取值范围仍然需要分析导数与零之间的关系ꎬ不同的是要根据函数的最大值倒推参数.3结束语二次求导在函数问题的解决中有着极其重要的应用ꎬ教师应当加大专题教学的力度ꎬ力求学生能深入理解㊁掌握二次求导的方法ꎬ而且能够熟练应用二次求导解决各种函数难题.参考文献:[1]许国庆.二次求导在解题中的妙用[J].高中数理化ꎬ2022(15):50-51.[2]白亚军.利用 二次求导 突破函数综合问题[J].中学生理科应试ꎬ2020(07):15-16.[3]毛芹.利用二次求导简化函数综合问题的策略[J].语数外学习(高中版中旬)ꎬ2019(04):39.[4]石家屹.小构造再求导大智慧:浅谈函数问题中 二次求导 的应用[J].中学生数理化(学习研究)ꎬ2018(09):36.[责任编辑:李㊀璟]45。
2020届高三数学之函数与导数(文理通用)二次求导函数处理(二阶..
韩哥智慧之窗-精品文档精品文档韩哥智慧之窗-精品文档精品文档 1专题03 二次求导函数处理(二阶导数)一、考情分析1、在历年全国高考数学试题中,函数与导数部分是高考重点考查的内容,并且在六道解答题中必有一题是导数题。
利用导数求解函数的单调性、极值和最值等问题是高考考查导数问题的主要内容和形式,并多以压轴题的形式出现. 常常考查运算求解能力、概括抽象能力、推理论证能力和函数与方程、化归与转化思想、分类与整合思想、特殊与一般思想的渗透和综合运用,难度较大.2、而在有些函数问题中,如含有指数式、对数式的函数问题,求导之后往往不易或不能直接判断出原函数的单调性,函数的单调性,从而不能进一步判断函数的单调性及极值、最值情况,从而不能进一步判断函数的单调性及极值、最值情况,从而不能进一步判断函数的单调性及极值、最值情况,此时解题受阻。
此时解题受阻。
此时解题受阻。
需要利用需要利用“二次求导”才能找到导数的正负,找到原函数的单调性,才能解决问题. 若遇这类问题,必须“再构造,再求导”。
本文试以全国高考试题为例,说明函数的二阶导数在解高考函数题中的应用。
文试以全国高考试题为例,说明函数的二阶导数在解高考函数题中的应用。
3、解决这类题的常规解题步骤为:、解决这类题的常规解题步骤为: ①求函数的定义域;①求函数的定义域;②求函数的导数)('x f ,无法判断导函数正负;,无法判断导函数正负; ③构造求)(')(x f x g =,求'(x)g ; ④列出)(),(',x g x g x 的变化关系表;的变化关系表; ⑤根据列表解答问题。
⑤根据列表解答问题。
二、经验分享方法方法 二次求导二次求导使用情景使用情景对函数()f x 一次求导得到()f x '之后,解不等式()0()0f x f x ''><和难度较大甚至根本解不出.解题步骤解题步骤设()()g x f x '=,再求()g x ',求出()0()0g x g x ''><和的解,即得到函数()g x 的单调性,得到函数()g x 的最值,即可得到()f x '的正负情况,即可得到函数()f x 的单调性.三、题型分析(一) 利用二次求导求函数的极值或参数的范围例1.【2020届西南名校联盟高考适应月考卷一,12】(最小整数问题-导数的单调性和恒成立的转化) 已知关于x 的不等式()22ln 212x m x mx +-+≤在()0,∞上恒成立,则整数m 的最小值为(的最小值为( ) A.1 B.2 C.3 D.4 【答案】B .【解析】【第一种解法(排除法)(秒杀)】:令1=x 时,m m ≤+⨯-+21)1(21ln 2化简:34≥m ;令2=x 时,m m 422)1(22ln 2≤+⨯-+,化简42ln 22+≥m你还可以在算出3,4,选择题排除法。
高中数学二次求导经典例题
高中数学二次求导经典例题全文共四篇示例,供读者参考第一篇示例:高中数学中,求导是一个非常重要的概念,而二次求导则是求导的一个更深入的概念。
二次求导的经典例题是一种常见的练习题目,通过这些例题,可以帮助学生更好地理解和掌握这一概念。
本文将为大家整理一些关于高中数学二次求导的经典例题,希望对大家的学习有所帮助。
1. 求函数y=x^3-2x^2+5x-7 的二次导数。
y'=3x^2-4x+5接下来,我们继续对一次导数进行求导,即求二次导数。
根据求导法则,我们有:y''=6x-4我们求得函数y=2x^4-3x^3+4x^2-5x+6 的一次导数。
根据求导法则,我们有:通过上面两个例题,我们可以看到,在求二次导数的过程中,我们需要先求得一次导数,然后再对一次导数进行求导,这样才能得到函数的二次导数。
求导是高中数学中的一个重要知识点,通过不断练习和理解,我们可以更好地掌握这一知识,从而在数学学习中取得更好的成绩。
希望以上例题对大家有所帮助,希望大家能够在数学学习中取得更好的成绩!第二篇示例:高中数学中的二次求导是一个重要的概念,在求解函数的极值、凹凸区间等问题时起着至关重要的作用。
在这篇文章中,我们将主要介绍高中数学中二次求导的经典例题,帮助同学们更好地理解和掌握这一概念。
一、求函数f(x)=2x^3-3x^2+4x-5的二次导数。
我们需要求出函数f(x)的一次导数。
根据求导公式,我们可以得到:f'(x)=6x^2-6x+4y'=3x^2+4x+3然后,我们再对一阶导数进行求导,即可得到函数y的二阶导数。
按照求导公式,我们可以计算得到:y''=6x+4接下来,将x=-1代入y''=6x+4中,即可求得函数y=x^3+2x^2+3x-1在x=-1处的二阶导数值为y''(x=-1)=6*(-1)+4=-2。
通过以上两个例题,我们可以看到,在进行二次求导的过程中,我们需要先求得一次导数,然后再对一次导数进行求导。
巧用二次求导解决函数单调性和极值问题
2(1x)ln1(x)x22x (1x)2
设 g (x ) 2 (1 x )l1 n x ( ) x 2 2 x
则 g '(x)2 ln 1 x () 2 x
[g'(x)]' 2x 1x
典型例题讲解
当 1x0时[g, '(x)]'0,g'(x)在 ( 1,0 )上是增函
当 x 0时 [g'(x)]'0,g'(x)在0( , )上为.减函数
巧用二次求导解决函数单调性和极值问题
导言
在历年高考试题中,导数部分是是以导数作为压轴题来考 查。这类题主要考察函数的单调性、求函数的极值与最值 以及利用导数的有关知识解决恒成立、不等式证明等问题。 解决这类题的常规解题步骤为:①求函数的定义域;②求 函数的导数;③求 的零点;④列出 的变化关系表;⑤根据 列表解答问题。
凸性作为函数的一种重要性质,其准确刻画需要涉及到高等数学中 的二阶导数等知识, 因此, 它不属于高中数学的研究范畴, 但是, 近 年来的高考试题中有许多与二阶导数的凸性有关的高考题。
凹凸性是函数图像的主要形状之一。结合 f(x),f(x),f(x的)关 系可以方便地判断一个函数与其导函数图像的关系。
0,即 f x 在区间 1, 上 为增函数,则 fxf1,1此时, f为 x增 函数,所以 fxf1,易0得 (x1)f(x也)成0 立。
综上,(x1)f(x)0得证。
典型例题讲解
例题4、设a 为实数,函数 fxex2x2a,x 。R
(Ⅰ)求 f x 的单调区间与极值;
恒有 f(x1x2)f(x1)f(x2,) 那么称 在 I 上的图形是凹的; 如果恒有2f(x1 2x2)2f(x1) 2f(x2),那么称 在 I 上的图形是凸的;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次求导法解高考导数题
胡贵平(甘肃省白银市第一中学 ,甘肃 白银 730900)
导数是研究函数性质的一种重要工具,用导函数判断原函数的单调性,如果导函数大于零,则原函数为增,导函数小于零,则原函数为减.而当导数与0的大小确定不了时,对导函数或导函数中的一部分再构造,继续求导,也就是二次求导,不失为一种妙法,下面我们结合高考题来看看二次求导数题中的应用.
1 (2017年高考课标Ⅱ卷(文)(21))设函数2()(1)e x f x x =-.
(I )讨论()f x 的单调性;
(II)当0x ≥时,()1f x ax ≤+,求a 的取值范围.
解:(I )略.
(II)当0x ≥时,()1f x ax ≤+等价于2(1)1x ax x e ≥--.
若=0x ,显然成立,a R ∈.
若0x >时,2(1)1x x e a x --≥,设2(1)1()x x e g x x
--=, 2232222(1)(1)1(1)1()x x x x xe x e x x e x x x e g x x x ⎡⎤⎡⎤-+------+-+⎣⎦⎣⎦'== ,
令32()(1)1x h x x x x e =--+-+,32()(4)0x h x e x x x '=-++<,所以()h x 在(0,)x ∈+∞内是减函数,易知(0)=0h ,所以当(0,)x ∈+∞时,()0h x <,即()0g x '<,所以()g x 在(0,)x ∈+∞上单调递减,所以
22022000
(1)1(101(1)1lim lim (1)1x x x x x x x e e x e x e x x →→=⎡⎤-------'⎣⎦⎡⎤==--⎣⎦)20(21)=1x x x x e =⎡⎤=--+⎣⎦,所以1a ≥,
综上所述,a 的取值范围是[)1
+∞,. 2 (2016年高考课标Ⅱ卷(文)(20)) 已知函数()(1)ln (1)f x x x a x =+--.
(I )当4a =时,求曲线()y f x =在()1,(1)f 处的切线方程;
(II)若当()1,x ∈+∞时,()0f x >,求a 的取值范围.
解:(I )略.
(II)当(1,)∈+∞x 时,()0>f x 等价于(1)ln 1x x a x +<
-,设(1)ln ()1x x g x x +=-, 2221(ln )(1)(1)ln 2ln 1()(1)(1)x x x x x x x x x g x x x x ++
--+--'==-- ,
令2()2ln 1h x x x x =--,()22ln 22(ln 1)0h x x x x x '=--=-->,所以()h x 在()1,x ∈+∞内是增函数,易知(1)=0h ,所以当()1,x ∈+∞时,()0h x >,即()0g x '>,所以()g x 在()1,x ∈+∞上单调递增,所以
[]111
1(1)ln (1)ln (11)ln1(1)lim lim (1)ln ln 211x x x x x x x x x x x x x x x →→==++-++⎡⎤'==+=+=⎢⎥--⎣⎦,所以2≤a ,即a 的取值范围是(],2-∞.
3 (2010年高考安徽卷(理)(17))设a 为实数,函数()22,x f x e x a x R =-+∈.
(Ⅰ)求()f x 的单调区间与极值;
(Ⅱ)求证:当a >ln21-且x >0时,x e >221x ax -+. 解:(I )略.
(Ⅱ)设()221x g x e x ax =-+-, 则()22x g x e x a '=-+, 继续对()g x '求导得()2x g x e ''=- ,当x 变化时()g x '',()g x '变化如下表
由上表可知()()ln 2g x g ''≥,
而()()ln2ln 22ln 2222ln 222ln 21g e a a a '=-+=-+=-+,由a >ln21-知 ()ln 20g '>,所以()0g x '>,即()g x 在区间()0,+∞上为增函数. 于是有()(0)g x g >,而()02002010g e a =-+⨯-=, 故()0g x >,即当a >ln21-且x >0时,x e >221x ax -+.
4(2008年高考湖南卷(理)(21))已知函数2
2()ln (1)1x f x x x =+-+.
(I) 求函数()f x 的单调区间; (Ⅱ)若不等式1(1)n a e n
++≤对任意的N*n ∈都成立(其中e 是自然对数的底数).求a 的最大值. 解:(I )函数()f x 的定义域是(1,)-+∞,
2222
2ln(1)22(1)ln(1)2()1(1)(1)x x x x x x x f x x x x ++++--'=-=+++. 设2()2(1)ln(1)2g x x x x x =++--,则()2ln(1)2g x x x '=+-. 令()2ln(1)2h x x x =+-,则22()211x h x x x -'=-=++. 当10x -<<时, ()0h x '>,从而()h x 在(1,0)-上为增函数, 当0x >时,()0h x '<,从而()h x 在(0,)+∞上为减函数. 所以h(x)在0x =处取得极大值,而(0)0h =,所以()0(0)g x x '<≠,函数()g x 在(1,)-+∞上为减函数.
于是当10x -<<时,()(0)0g x g >=,当0x >时,()(0)0g x g <=. 所以当10x -<<时,()0,f x '>()f x 在(1,0)-上为增函数. 当0x >时,()0,f x '<()f x 在(0,)+∞上为减函数. 故函数()f x 的单调递增区间为(1,0)-,单调递减区间为(0,)+∞. (Ⅱ)略.。