平面向量 完全复习 与经典例题

合集下载

(完整版)平面向量基本定理及经典例题

(完整版)平面向量基本定理及经典例题

平面向量基本定理一.教学目标:了解平面向量基本定理,理解平面向量的坐标概念,会用坐标形式进行向量的加法、数乘的运算,掌握向量坐标形式的平行的条件;教学重点: 用向量的坐标表示向量加法、减法、数乘运算和平行. 二.课前预习1.已知a =(x,2),b =(1,x),若a //b ,则x 的值为 ( ) A 、2 B 、 2- C 、 2± D 、 22.下列各组向量,共线的是 ( ) ()A (2,3),(4,6)a b =-= ()B (2,3),(3,2)a b ==()C (1,2),(7,14)a b =-= ()D (3,2),(6,4)a b =-=-3.已知点)4,3(),1,3(),4,2(----C B A ,且CB CN CA CM ⋅=⋅=2,3,则=MN ____ 4.已知点(1,5)A -和向量a =(2,3),若AB =3a ,则点B 的坐标为 三.知识归纳1. 平面向量基本定理:如果12,e e 是同一平面内的两个___________向量,那么对于这一平面内的任意向量a ,有且只有一对实数12,λλ,使1122a e e λλ=+成立。

其中12,e e 叫做这一平面的一组____________,即对基底的要求是向量___________________;2.坐标表示法:在直角坐标系内,分别取与x 轴,y 轴方向相同的两个单位向量i ,j作基底,则对任一向量a ,有且只有一对实数x ,y ,使j y i x a +=、就把_________叫做向量a的坐标,记作____________。

3.向量的坐标计算:O (0,0)为坐标原点,点A 的坐标为(x ,y ),则向量OA 的坐标为OA=___________,点1P 、2P 的坐标分别为(1x ,1y ),2P (2x ,2y ),则向量21P P 的坐标为21P P =___________________,即平面内任一向量的坐标等于表示它的有向线段的____点坐标减去____点坐标.4.线段中点坐标公式:A (1x ,1y ),B (2x ,2y )线段中点为M ,则有:OM =________________,M 点的坐标为_____________.5.两个向量平行的充要条件是:向量形式:_____________)0(//⇔≠b b a ;坐标形式: _____________)0(//⇔≠b b a .6. a=(x,y ), 则a =___________.与a 共线的单位向量是:aa e = 四.例题分析:例1.(1)、 已知M (-2,7)、N (10,-2),点P 是线段MN 上的点,且−→−PN =-2−→−PM ,则P点的坐标为( )A (-14,16) (B )(22,-11) (C )(6,1) (D ) (2,4) (2)、已知两点A(4,1), B(7,-3), 则与向量AB 同向的单位向量是 ( )(A )⎪⎭⎫ ⎝⎛-54,53 (B)⎪⎭⎫ ⎝⎛-54,53 (C)⎪⎭⎫ ⎝⎛-53,54 (D)⎪⎭⎫ ⎝⎛-53,54(3)、若a =(2,3),b =(-4,7),则a 在b 方向上的投影为____________。

平面向量知识点总结、经典例题及解析、高考题50道及答案

平面向量知识点总结、经典例题及解析、高考题50道及答案

)))))))第五章 平面向量【考纲说明】1、理解平面向量的概念和几何表示,理解两个向量相等及共线的含义,掌握向量的加、减、数乘运算及其几何意义,会用坐标表示。

2、了解平面向量的基本定理,掌握平面向量的坐标运算。

3、掌握数量积的坐标表达式,会进行平面向量数量积的运算,会用向量方法解决简单的平面几何问题、力学问题与其他一些实际问题。

【知识梳理】一、 向量的基本概念与线性运算 1 向量的概念:(1)向量:既有大小又有方向的量,记作AB ;向量的大小即向量的模(长度),记作|AB | 向量不能比较大小,但向量的模可以比较大小.(2)零向量:长度为0的向量,记为0 ,其方向是任意的,0与任意向量平行(3)单位向量:模为1个单位长度的向量常用e 表示.(4)平行向量(共线向量):方向相同或相反的非零向量,记作a ∥b平行向量也称为共线向量(5)相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记为b a= 大小相等,方向相同),(),(2211y x y x =⎩⎨⎧==⇔2121y y x x(6)相反向量:与a 长度相等、方向相反的向量,叫做a的相反向量记作a-,零向量的相反向量仍是零向量若a 、b是互为相反向量,则a =b -,b =a -,a +b =2 向量的线性运算:(1)向量的加法:求两个向量和的运算叫做向量的加法 向量加法满足交换律与结合律;向量加法有“三角形法则”与“平行四边形法则” .(2)向量的减法 :求向量a 加上b 的相反向量的运算叫做a 与b的差.向量的减法有三角形法则,b a -可以表示为从b 的终点指向a 的终点的向量(a 、b有共同起点)(3)向量的数乘运算:求实数λ与向量a 的积的运算,记作λa.①a a⋅=λλ;②当0>λ时,λa 的方向与a 的方向相同;当0<λ时,λa 的方向与a的方向相反; 当0=λ时,0 =a λ,方向是任意的③数乘向量满足交换律、结合律与分配律3. 两个向量共线定理:向量b 与非零向量a共线⇔有且只有一个实数λ,使得b =λ向量b 与非零向量a共线⇔有两个均不是零的实数λ、μ,使得0a b λμ+=.二、平面向量的基本定理与坐标表示 1 平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a,有且只有一对实数21,λλ使:2211e e a λλ+=,其中不共线的向量21,e e叫做表示这一平面内所有向量的一组基底2. 平面向量的坐标表示:(1)在直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量,i j 作为基底 由平面向量的基本定理知,该平面内的任一向量a 可表示成a xi yj =+,由于a 与数对(x,y)是一一对应的,因此把(x,y)叫做向量a 的坐标,记作a =(x,y),其中x 叫作a 在x 轴上的坐标,y 叫做在y 轴上的坐标显然0=(0,0),(1,0)i =,(0,1)j =. (2)设OA xi y j =+.则向量OA 的坐标(x,y)就是终点A 的坐标,即若OA =(x,y),则A 点的坐标为(x,y),反之亦成立(O 是坐标原点). 3 平面向量的坐标运算:(1)若()()1122,,,a x y b x y ==,则()1212,a b x x y y ±=±±. (2)若()()2211,,,y x B y x A ,则()2121,AB x x y y =--,1(AB x =(3)若a =(x,y),则λa =(λx,λy).(4)若()()1122,,,a x y b x y ==,则1221//0a b x y x y ⇔-=. (5)若()()1122,,,a x y b x y ==,则1212a b x x y y ⋅=⋅+⋅. 三、平面向量的数量积 1 两个向量的数量积:已知两个非零向量a 与b ,它们的夹角为θ,a ·b 等于a 的长度与b 在a 方向上的投影的乘积叫做a 与b 的数量积(或内积),即a ·b =︱a ︱·︱b ︱cos θ,规定00a ⋅=2 向量的投影:︱b ︱cos θ=||a ba ⋅∈R ,称为向量b 在a 方向上的投影 投影的绝对值称为射影 3 向量的模与平方的关系:22||a a a a ⋅==4 乘法公式成立:()()2222a b a b a b a b +⋅-=-=-; ()2222a b a a b b±=±⋅+222a a b b =±⋅+.5 平面向量数量积的运算律:①交换律成立:a b b a ⋅=⋅.②对实数的结合律成立:()()()()a b a b a b R λλλλ⋅=⋅=⋅∈.③分配律成立:()a b c a c b c ±⋅=⋅±⋅()c a b =⋅±; 特别注意:①结合律不成立:()()a b c a b c ⋅⋅≠⋅⋅.②消去律不成立a b a c⋅=⋅不能得到b c =.③a b ⋅=0不能得到a =0或b =06 两个向量的数量积的坐标运算:已知两个向量1122(,),(,)a x y b x y ==,则a ·b =1212x x y y + 7 向量的夹角:已知两个非零向量a 与b ,作OA =a , OB =b ,则∠AOB=θ (001800≤≤θ)叫做向量a 与b 的夹角cos θ=cos ,a b a b a b⋅<>=⋅=当且仅当两个非零向量a 与b 同方向时,θ=00,当且仅当a 与b 反方向时θ=1800,同时0与其它任何非零向量之间不谈夹角这一问题8 垂直:如果a 与b 的夹角为900则称a 与b 垂直,记作a ⊥ba ⊥b ⇔a ·b=O ⇔2121=+y y x x【经典例题】【例1】(2010全国Ⅱ,8)△ABC 中,点D 在边AB 上,CD 平分∠ACB ,若CB a =,ECBA CA b =,1,2a b ==,则CD = ( )(A )1233a b + (B )2133a b + (C )3455a b + (D )4355a b + 【答案】B .【解析】由角平分线的性质得2AD DB =,即有22()()33AD CB CA a b =-=-.从而221()333CD CA AD b a b a b =+=+-=+.故选B .【例2】(2009北京,2)已知向量a 、b 不共线,c k =a +b (k ∈R ),d =a -b ,如果c //d , 那么 ( ) A .1k =且c 与d 同向 B .1k =且c 与d 反向 C .1k =-且c 与d 同向 D .1k =-且c 与d 反向 【答案】D .【解析】取a ()1,0=,b ()0,1=,若1k =,则c =a +b ()1,1=,d =a -b ()1,1=-, 显然,a 与b 不平行,排除A 、B .若1k =-,则c =-a +b ()1,1=-,d =-a +b ()1,1=--, 即c //d 且c 与d 反向,排除C ,故选D .【例3】(2009湖南卷文)如图,D ,E ,F 分别是∆ABC 的边AB ,BC ,CA 的中点,则( ) A .0AD BE CF ++= B .0BD CF DF -+=C .0AD CE CF +-= D .0BD BE FC --= 【答案】A . 【解析】,,AD DB AD BE DB BE DE FC =∴+=+==得0AD BE CF ++=.或0AD BE CF AD DF CF AF CF ++=++=+=.【例4】(2009宁夏海南卷文)已知()()3,2,1,0a b =-=-,向量a b λ+与2a b -垂直,则实数λ的值为( )A.17-B.17C.16-D.16【答案】A .【解析】向量a b λ+=(-3λ-1,2λ),2a b -=(-1,2),因为两个向量垂直,故有(-3λ-1,2λ)×(-1,2)=0,即3λ+1+4λ=0,解得:λ=17-,故选A . 【例5】(2009全国卷Ⅰ文)设非零向量a 、b 、c 满足c b a c b a =+==|,|||||,则>=<b a , ( )A .150° B.120° C.60° D.30° 【答案】B .【解析】由向量加法的平行四边形法则,知a 、b 可构成菱形的两条相邻边,且a 、b 为起点处的对角线长等于菱形的边长,故选择B .【例6】(2009安徽卷文)在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,或=+,其中,R ,则+= _________.【答案】43. 【解析】设BC b =、BA a =则12AF b a =- ,12AE b a =- ,AC b a =- 代入条件得2433u u λλ==∴+=. 【例7】(2009辽宁卷文)在平面直角坐标系xoy 中,四边形ABCD 的边AB ∥DC,AD ∥BC,已知点A(-2,0),B (6,8),C(8,6),则D 点的坐标为___________. 【答案】(0,-2).【解析】平行四边形ABCD 中,OB OD OA OC +=+ ∴OD OA OC OB =+-=(-2,0)+(8,6)-(6,8)=(0,-2) 即D 点坐标为(0,-2).【例8】(2012江苏)如图,在矩形ABCD 中,22AB BC ==,,点E 为 BC 的中点,点F 在边CD 上,若2AB AF =,则AE BF 的值是___.【答案】2.【解析】由2AB AF =,得cos 2ABAF FAB ∠=,由矩形的性质,得cos =AF FAB DF ∠.∵2AB =,∴22DF ⋅=,∴1DF =∴21CF =-.记AE BF 和之间的夹角为,AEB FBC θαβ∠=∠=,,则θαβ=+. 又∵2BC =,点E 为BC 的中点,∴1BE =. ∴()()=cos =cos =cos cos sin sin AE BF AEBF AEBF AE BF θαβαβαβ+-()=cos cos sin sin =122212AE BF AE BF BE BC AB CF αβαβ--=⨯--=.本题也可建立以, AB AD 为坐标轴的直角坐标系,求出各点坐标后求解.【例9】(2009湖南卷理)在ABC ∆,已知2233AB AC AB AC BC ⋅=⋅=,求角A ,B ,C 的大小. 【答案】2,,663A B C πππ===. 【解析】解:设,,BC a AC b AB c ===由23AB AC AB AC ⋅=⋅得2cos 3bc A bc =,所以3cos 2A = 又(0,),A π∈因此6A π=由233AB AC BC ⋅=得23bc a =,于是23sin sin 3sin 4C B A ⋅=-所以53sin sin()64C C π⋅-=,133sin (cos sin )224C C C ⋅+=,因此 22sin cos 23sin 3,sin 23cos 20C C C C C ⋅+=-=,既sin(2)03C π-=由A=6π知506C π<<,所以3π-,4233C ππ-<,从而20,3C π-=或2,3C ππ-=,既,6C π=或2,3C π=故2,,,636A B C πππ===或2,,663A B C πππ===. 【课堂练习】一、选择题1.(2012辽宁理)已知两个非零向量a ,b 满足|a +b |=|a -b |,则下面结论正确的是( )A .a ∥bB .a ⊥bC .{0,1,3}D .a +b =a -b2. (2009年广东卷文)已知平面向量a =,1x (),b =2,x x (-),则向量+a b ( )A. 平行于x 轴B. 平行于第一、三象限的角平分线C. 平行于y 轴D. 平行于第二、四象限的角平分线3.(2012天津文)在ABC ∆中,90A ∠=︒,1AB =,AC=2,设点,P Q 满足,(1),AP AB AQ AC R λλλ==-∈.若2BQ CP ⋅=-,则λ=( )( )A .13 B .23C .43D .2 4.(2009浙江卷理)设向量a ,b 满足:||3=a ,||4=b ,0⋅=a b .以a ,b ,-a b 的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为 ( )A .3 B.4 C .5D .65.(2012重庆理)设,x y ∈R,向量()()()4,2,,1,1,-===c y b x a ,且c b c a //,⊥,则a b += ()A B C .D .106. (2009浙江卷文)已知向量(1,2)=a ,(2,3)=-b .若向量c 满足()//+c a b ,()⊥+c a b ,则c =( )A .77(,)93B .77(,)39--C .77(,)39D .77(,)93--7.(2012浙江理)设a ,b 是两个非零向量.( )A .若|a +b |=|a |-|b |,则a ⊥bB .若a ⊥b ,则|a +b |=|a |-|b |C .若|a +b |=|a |-|b |,则存在实数λ,使得a =λbD .若存在实数λ,使得a =λb ,则|a +b |=|a |-|b |8.(2009全国卷Ⅰ理)设a 、b 、c 是单位向量,且a ·b =0,则()()a c b c -•-的最 小值为( )A.2- 2C.1-D.19.(2012天津理)已知△ABC 为等边三角形,=2AB ,设点P,Q 满足=AP AB λ,=(1)AQ AC λ-,R λ∈,若3=2BQ CP ⋅-,则=λ ( )A .12 B .12± C .12± D .32-±10.(2009全国卷Ⅱ理)已知向量()2,1,10,||a a b a b =⋅=+=||b =( )A.B. C. 5 D. 2511.(2012大纲理)ABC ∆中,AB 边上的高为CD ,若,,0,||1,||2CB a CA b a b a b ==⋅===,则AD =( )A .1133a b -B .2233a b - C .3355a b - D .4455a b - 12.(2008湖南)设D 、E 、F 分别是△ABC 的三边BC 、CA 、AB 上的点,且2,DC BD =2,CE EA =2,AF FB =则AD BE CF ++与BC( )A. 反向平行B. 同向平行C. 互相垂直D. 既不平行也不垂直13.(2008广东)在平行四边形ABCD 中,AC 与BD 交于点O E ,是线段OD 的中点,AE 的延长线与CD 交于点F .若AC =a ,BD =b ,则AF =( )A .1142+a b B .2133+a b C .1124+a bD .1233+a b 14.(2007湖北)设(43)=,a ,a 在b 上的投影为522,b 在x 轴上的投影为2,且||14≤b ,则b 为( )A .(214),B .227⎛⎫- ⎪⎝⎭,C .227⎛⎫- ⎪⎝⎭,D .(28),15.(2012安徽理)在平面直角坐标系中,(0,0),(6,8)O P ,将向量OP 按逆时针旋转34π后,得向量OQ 则点Q 的坐标是 ( ) A .(72,2)-- B .(72,2)- C .(46,2)-- D .(46,2)-二、填空题16.(2012浙江文)在△ABC 中,M 是BC 的中点,AM=3,BC=10,则AB AC ⋅=________.17.(2009安徽卷理)给定两个长度为1的平面向量OA 和OB ,它们的夹角为120o.如图所示,点C 在以O 为圆心的圆弧AB 上变动. 若,OC xOA yOB =+其中,x y R ∈,则x y + 的最大值是________.18.(2012上海文)在知形ABCD 中,边AB 、AD 的长分别为2、1. 若M 、N 分别是边BC 、CD 上的点,且满足||||||||CD CN BC BM =,则AN AM ⋅的取值范围是_________ .19.(2012课标文)已知向量a ,b 夹角为045,且|a |=1,|2-a b |=10,则|b |=_______. 20.(2012湖南文)如图4,在平行四边形ABCD 中 ,AP ⊥BD,垂足为P,3AP =且APAC = _____.A DBCP21.(2012湖北文)已知向量(1,0),(1,1)a b ==,则(Ⅰ)与2a b +同向的单位向量的坐标表示为____________; (Ⅱ)向量3b a -与向量a 夹角的余弦值为____________.22.(2012北京文)已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE CB ⋅的值为________. 23.(2012安徽文)设向量(1,2),(1,1),(2,)a m b m c m ==+=,若()a c +⊥b ,则a =_____.24.(2012江苏)如图,在矩形ABCD 中,22AB BC ==,,点E 为BC 的中点,点F 在边CD上,若2AB AF =,则AE BF 的值是___.25.(2012安徽理)若平面向量,a b 满足:23a b -≤;则a b 的最小值是_____三、解答题26. (2009年广东卷文)(已知向量)2,(sin -=θa 与)cos ,1(θ=b 互相垂直,其中)2,0(πθ∈(1)求θsin 和θcos 的值(2)若ϕϕθcos 53)cos(5=-,<<ϕ02π,求ϕcos 的值 27.(2009上海卷文)已知ΔABC 的角A 、B 、C 所对的边分别是a 、b 、c ,设向量(,)m a b =, (sin ,sin )n B A =,(2,2)p b a =-- .(1) 若m //n ,求证:ΔABC 为等腰三角形; (2) 若m ⊥p ,边长c = 2,角C =3π,求ΔABC 的面积 . 28. 已知A 、B 、C 分别为ABC △的三边a 、b 、c 所对的角,向量)sin ,(sin B A m =,)cos ,(cos A B n =,且C n m 2sin =⋅.(Ⅰ)求角C 的大小;(Ⅱ)若A sin ,C sin ,B sin 成等差数列,且18)(=-⋅AC AB CA ,求边c 的长.【课后作业】一、选择题1.(2009辽宁卷理)平面向量a 与b 的夹角为060,(2,0)a =,1b = 则2a b +=( )A.B. C. 4 D. 22.(2009宁夏海南卷理)已知O ,N ,P 在ABC ∆所在平面内,且,0OA OB OC NA NB NC ==++=,且PA PB PB PC PC PA •=•=•,则点O ,N ,P 依次是ABC ∆的( )A. 重心 外心 垂心B. 重心 外心 内心C. 外心 重心 垂心D. 外心 重心 内心3.(2008安徽)在平行四边形ABCD 中,AC 为一条对角线,若(2,4)AB =,(1,3)AC =,则BD =( )A . (-2,-4)B .(-3,-5)C .(3,5)D .(2,4)4.(2008浙江)已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足0)()(=-⋅-c b c a ,则c 的最大值是( )A. 1B. 2C.2 D.225.(2007海南、宁夏)已知平面向量(11)(11)==-,,,a b ,则向量1322-=a b( ) A .(21)--, B .(21)-,C .(10)-,D .(12),6.(2007湖南)设,a b 是非零向量,若函数()()()f x x x =+-a b a b 的图象是一条直线,则必有( )A .⊥a bB .∥a bC .||||=a bD .||||≠a b7. (2007天津)设两个向量22(2cos )λλα=+-,a 和sin 2m m α⎛⎫=+ ⎪⎝⎭,b ,其中mλα,,为实数.若2=a b ,则mλ的取值范围是 ( ) A .[-6,1]B .[48],C .(-6,1]D .[-1,6]8. 在ABC BC AB ABC ∆︒︒=︒︒=∆则已知向量中),27cos 2,63cos 2(),72cos ,18(cos ,的面积等于( ) A .22 B .42 C .23 D .29. 已知平面向量(3,1),(,3),//,a b x a b x ==-则等于 ( )A .9B .1C .-1D .-910. 已知a 、b 是不共线的AB a b λ=+AC a b μ=+(,)R λμ∈,则A 、B 、C 三点共线的充要条件是:( )A .1λμ+=B .1λμ-=C .1λμ=-D .1λμ=二、填空题11. 设向量2,3,19,AB AC AB AC CAB ==+=∠=则_________.12. 若向量,2,2,()a b a b a b a ==-⊥ 满足,则向量b a 与的夹角等于 .13. 已知平面上的向量PA 、PB 满足224PA PB +=,2AB =,设向量2PC PA PB =+,则PC 的最小值是 .14.(2008江苏)a ,b 的夹角为120︒,1a =,3b = 则5a b -= . 15. (2007安徽)在四面体O ABC -中,OA OB OC D ===,,,a b c 为BC 的中点,E 为AD 的中点,则OE = (用,,a b c 表示).16.(2007北京)已知向量2411()(),,,a =b =.若向量()λ⊥b a +b ,则实数λ的值是 .17. 已知向量(cos15,sin15)a =,(sin15,cos15)b =--,则a b |+|的值为 .18.(2007广东)若向量a 、b 满足b a b a 与,1==的夹角为120°,则b a b a ··+= .三、解答题19.(2009湖南卷文)已知向量(sin ,cos 2sin ),(1,2).a b θθθ=-=(1)若//a b ,求tan θ的值;(2)若||||,0,a b θπ=<<求θ的值。

平面向量(附例题-习题及答案)

平面向量(附例题-习题及答案)

向量的线性运算`一.教学目标1.理解向量的概念;2.掌握向量的线性运算;3.理解向量线性运算的几何意义、向量共线的含义、平行向量基本定理;4.理解平面向量基本定理,掌握平面向量的正交分解及其坐标表示、平面向量的坐标运算;5.理解用坐标表示平面向量的共线条件。

二.知识清单1.向量基本概念(1)向量的定义:既有又有称为向量;(2)向量的大小(或称模):有向线段的表示向量的大小;^(3)零向量与单位向量:叫做零向量,叫做单位向量;(4)共线向量与相等向量:叫做共线向量(或平行向量),叫做相等向量。

2.向量的线性运算(1)向量的加法a.向量加法的三角形法则、平行四边形法则和多边形法则。

b.向量加法满足的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c).(2)向量的减法\a.定义:a-b=a+(-b),即减去一个向量相当于加上这个向量的相反向量。

一个向量等于终点位置向量减始点位置向量,即=-。

b.三角形法则:“共始点,连终点,指向被减”。

(3)数乘向量a.定义:一般地,实数λ和向量a的乘积是一个向量,记作λa.b.数乘向量满足的运算律:(λ+μ)a=λ(μa)=λ(a+b)=—3.向量共线的条件与轴上向量坐标运算(1)向量共线的条件平行向量基本定理:如果,则;反之,如果,且,则一定存在,使。

(2)轴上向量的坐标运算4. 向量的分解与向量的坐标运算(1)平面向量基本定理如果是一平面内的的向量,那么该平面内的任一向量a,存在,使。

(2)平面向量的正交分解定义:把一个向量分解为,叫做把向量正交分解。

(3)向量的坐标表示>在平面直角坐标系中,分别取与x轴、y轴方向相同的两个_______作为基底。

对于平面内的任一个向量,由平面向量基本定理可知,有且只有一对实数x,y使得____________,这样,平面内的任一向量a都可由__________唯一确定,我们把有序数对________叫做向量的坐标,记作___________此式叫做向量的坐标表示,其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标。

高中平面向量知识点详细归纳总结(附带练习)

高中平面向量知识点详细归纳总结(附带练习)

向量的概念一、高考要求:理解有向线段及向量的有关概念,掌握求向量和与差的三角形法则和平行四边形法则,掌握向量加法的交换律和结合律.二、知识要点:1. 有向线段:具有方向的线段叫做有向线段,在有向线段的终点处画上箭头表示它的方向.以A 为始点,B 为终点的有向线段记作AB ,注意:始点一定要写在前面,已知AB ,线段AB 的长度叫做有向线段AB 的长(或模),AB 的长度记作AB ||.有向线段包含三个要素:始点、方向和长度.2. 向量:具有大小和方向的量叫做向量,只有大小和方向的向量叫做自由向量.在本章中说到向量,如不特别说明,指的都是自由向量.一个向量可用有向线段来表示,有向线段的长度表示向量的大小,有向线段的方向表示向量的方向.用有向线段AB 表示向量时,我们就说向量AB .另外,在印刷时常用黑体小写字母a 、b 、c 、…等表示向量;手写时可写作带箭头的小写字母a 、b 、c 、…等.与向量有关的概念有:(1) 相等向量:同向且等长的有向线段表示同一向量或相等的向量.向量a 和b 同向且等长,即a 和b 相等,记作a =b .(2) 零向量:长度等于零的向量叫做零向量,记作0.零向量的方向不确定.(3) 位置向量:任给一定点O 和向量a ,过点O 作有向线段OA a =,则点A 相对于点O 的位置被向量a 所唯一确定,这时向量a 又常叫做点A 相对于点O 的位置向量.(4) 相反向量:与向量a 等长且方向相反的向量叫做向量a 的相反向量,记作a -.显然,()0a a +-=.(5) 单位向量:长度等于1的向量,叫做单位向量,记作e .与向量a 同方向的单位向量通常记作0a ,容易看出:0a a a =│ │. (6) 共线向量(平行向量):如果表示一些向量的有向线段所在的直线互相平行或重合,即这些向量的方向相同或相反,则称这些向量为共线向量(或平行向量).向量a 平行于向量b ,记作a ∥b .零向量与任一个向量共线(平行).三、典型例题:例:在四边形ABCD 中,如果AB DC =且AB BC =│ │ │ │ ,那么四边形ABCD 是哪种四边形? 四、归纳小结:1. 用位置向量可确定一点相对于另一点的位置,这是用向量研究几何的依据.2. 共线向量(平行向量)可能有下列情况: (1)有一个为零向量;(2)两个都为零向量;(3)方向相同,模相等(即相等向量);(4)方向相同,模不等;(5)方向相反,模相等;(6)方向相反,模不等.五、基础知识训练:(一)选择题:1. 下列命题中: (1)向量只含有大小和方向两个要素. (2)只有大小和方向而无特定的位置的向量叫自由向量. (3)同向且等长的有向线段表示同一向量或相等的向量. (4)点A 相对于点B 的位置向量是BA . 正确的个数是( )A.1个B.2个C.3个D.4个2. 设O 是正△ABC 的中心,则向量,,AO OB OC 是( )A.有相同起点的向量B.平行向量C.模相等的向量D.相等向量3. a b =的充要条件是( )A.a b =│ │ │ │ B.a b =│ │ │ │ 且a b ∥ []l C.a b ∥ D.a b =│ │ │ │ 且a 与b 同向 4. AA BB ''=是四边形ABB A ''是平行四边形的( )A.充分条件B.必要条件C.充要条件D.既非充分又非必要条件5. 依据下列条件,能判断四边形ABCD 是菱形的是( )A.AD BC =B.AD BC ∥且AB CD ∥C.AB DC =且AB AD =│ │ │ │ D.AB DC =且AD BC = 6. 下列关于零向量的说法中,错误的是( )A.零向量没有方向B.零向量的长度为0C.零向量与任一向量平行D.零向量的方向任意7. 设与已知向量a 等长且方向相反的向量为b ,则它们的和向量a b +等于( )A.0B.0C.2aD.2b(二)填空题:8. 下列说法中: (1)AB 与BA 的长度相等 (2)长度不等且方向相反的两个向量不一定共线 (3)两个有共同起点且相等的向量,终点必相同(4)长度相等的两个向量必共线。

平面向量复习课习题

平面向量复习课习题

3.两个向量数量积的重要性质:
①a2=|a|2即|a|= a2 (求线段的长度); uuur uuur
②求向量的夹角:已知两个非零向量a与b,作 OA a,OB b,
则∠AOB=θ(0°≤θ≤180°)叫做向量a与b的夹角,
cosθ=cos<a,b>= a b
x1x2 y1 y2
uuur uuur r
uur uuur uuur r
C.PB PC 0 D.PA PB PC 0
uuur uuur uuur uur B 【解析】 Q BC BP BP BA,
uuur uuur uuur uuur PC AP, PC AP 0.
uuur uur r 即PC PA 0,故选B.
重要考点回顾
一、向量的概念
1.向量:既有大小又有方向的量,向量不能比较大小,但向量的
模可以比较大小.
r
r
2.零向量:长度为0的向量,记为 0 ,其方向是任意的, 0 与任意向
量平行.
3.单位向量:模为1个单位长度的向量.
4.平行向量(共线向量):方向相同或相反的非零向量.
5.相等向量:长度相等且方向相同的向量.
8.若向量a、b满足|a|=1,|b|=2,且a与b的夹角为 ,则|a+b|=
.
3
7 【解析】 因为 | a b |2 (a b)2 | a |2 | b |2 2a b
1 4 21 2 cos 7,故 | a b | 7.
3
9.已知|a|=3,|b|=2.若a·b=-3,则a与b夹角的大小为
19.设向量a=(1,cosθ)与b=(-1,2cosθ)垂直,则cos2θ等于 ( )

平面向量经典例题30道

平面向量经典例题30道

平面向量经典例题30道一、选择题1.已知|→a| = 3, |→b| = 2, 向量→a 和→b 的夹角为π/3,则→a · →b= A. 3 B. √3 C. -3 D. -√32.已知|→a| = 1, |→b| = 2, →a 与→b 的夹角为π/2,若→a - →b 与→a垂直,则→a 与→b 的夹角为 A. π/6 B. π/4 C. π/3 D. π/23.已知|→a| = 1, |→b| = 2, →a 与→b 的夹角为π/4,若→a - λ→b 与→a +→b 共线,则实数λ 的值为A. -1/2 B. 1/2 C. -√2/4 D. √2/44.已知|→a| = 1, |→b| = 2, 向量→a 与→b 的夹角为π/4,若(→a +→b) · (→a - λ→b) = 0,则实数λ 的值为A. -1 B. 1 C. -√2 D. √25.已知|→a| = 1, |→b| = 2, 向量→a 与→b 的夹角为π/3,若(→a +→b) · (→a - →b) = 0,则实数λ 的值为A. -1 B. 1 C. -√2 D.√26.已知向量a = (-2, 3),b = (1, -1),若a 与b 的夹角为钝角,则a · b 等于( ) A. -4 B. -2 C. 0 D. 27.若平面向量a,b 满足|a| = 1,|b| = 2,且向量a,b 的夹角为π/4,若 a - λb 与 b 垂直,则实数λ 的值为( ) A. -1/2 B. 1/2 C. -√2/4 D.√2/48.已知F1,F2 是椭圆C:(x^2)/9 + (y^2)/4 = 1 的两个焦点,P 是C 上一点,且与F1,F2 在同一直线上,若|PF1| × |PF2| = 12,则P 到椭圆C 的两个焦点的距离之和为( ) A. 8 B. 9 C. 10 D. 129.已知a = ,b = (-1, 1),若a 与b 的夹角为锐角,则实数k 的取值范围是( ) A. (0, +∞) B. (0, 1) ∪ (1, +∞) C. (-∞, 0) ∪ (0, +∞) D. (-∞, 0) ∪(1, +∞)10.已知向量a = (-2, 4),b = (-1, 2),若向量a - λb 与b 共线,则实数λ 的值为_______.11.已知向量a = (-2, 3),b = (λ, 2),若a 与b 的夹角为锐角,则λ 的取值范围是_______.12.已知向量a = (-2, 3),b = (-4, 1),若a 与b 的夹角为锐角,则实数m的取值范围是_______.13.已知向量a = (-2, 1),b = (λ, 2),若a 与b 的夹角为锐角,则λ 的取值范围是_______.14.在△ABC中,AB = (-1, 1),AC = (2, 3),则∠BAC = _______(用反三角函数的值表示)15.在△ABC中,AB = (-4, 3),AC = (1, 2),则BC = _______16.在△ABC中,AB = (-4, 3),AC = (-1, 2),且AB⊥AC,则BC = _______17.在△ABC中,AB = (2, -1),AC = (-4, 3),则BC = _______18.在△ABC中,AB = (3, -4),AC = (-2, 3),则BC = _______19.若点P 在直线l₁:x - 2y - 3 = 0 和直线l₂:3x + y - 1 = 0 的夹角平分线上,则点P 到直线l₃:x + 2y - 5 = 0 的距离为_______.20.已知等差数列{an} 中,a₁ = -1,且a₁,a₂,a₃ 三项及格率为5/4,若an= λ(n为正整数),则实数λ 的取值集合为_______.二、填空题21.已知|→a| = 3, |→b| = 4, 向量→a 与→b 的夹角为π/4,则→a · _______ = 9√2.22.已知|→a| = 2, |→b| = 4, 向量→a 与→b 的夹角为π/6,则_______ =(√3 + 1)/4.23.已知|→a| = 1, |→b| = 2, 向量→a 与→b 的夹角为π/4,若_______ =(-√5)/5,则实数λ 的值为_______.24.若|→a| = 1, |→b| = 2, 向量→a 与→b 的夹角为π/4,则_______ =_______.25.若|→a| = 1, |→b| = 2, 向量→a 与→b 的夹角为π/4,则_______ =_______.三、解答题26.若|→a| = 3, |→b| = 5, 向量→a 与→b 的夹角为π/6,求向量→a 在向量→b 上的投影.27.若|→a| = 1, |→b| = 2, 向量→a 与→b 的夹角为π/3,求(→a +→b) · (→a - λ→b).28.若|→a| = 1, |→b| = 2, 向量→a 与→b 的夹角为π/4,求(→a +λ→b) · (→a - λ→b).29.若|→a| = 1, |→b| = 2, 向量→a 与→b 的夹角为π/6,求(→a +λ→b) · (→a - λ→b).30.已知|a| = 1, |b| = 2, a与b的夹角为π/3, 若a - λb与b垂直,求实数λ的值.31.在△ABC中,AD为BC边上的中线,G为AD上靠近D的三等分点,若(1/2AB) · (AC - GC) = 0 ( ·表示向量的数量积),求AG与BC边的夹角.32.在△ABC中,AB = AC = 2, 点D在BC上,且BD = DC, E,F分别是AB,AC上的点,且AE/EB = AF/FC = 1/2, AD与EF交于点G, 求向量EF ·向量AD 的值.33.若点A(x,y)在圆x²+y²=4上运动时,点B(x-3,y-4)也在圆上运动,求线段AB中点M的轨迹方程.34.在△ABC中,D是BC的中点,E、F分别在AB、AC上,且EF平行于BC,AD与EF交于点M,BD=CD=1,AD=3,求向量EF ·向量BC.。

平面向量总复习题及答案

平面向量总复习题及答案
解得k=6
答案:B
12.已知点A(x,5)关于点C(1,y)的对称点是B(-2,-3),则点P(x,y)到原点的距离是( )
A.4 B. C. D.
解析:由中点坐标公式可得
解得x=4,y=1,再由两点间距离公式得 .
答案:D
13.将点(a,b)按向量a=(h,k)平移后,得到点的坐标为( )
A.(a-h,b+k) B.(a-h,b-k)
∴|AC|= .
故点C分布在以点A为圆心,半径为 的圆上,故点C坐标有无数多个.
答案:D
15.将曲线f(x,y)=0按向量a=(h,k)平移后,得到的曲线的方程为( )
A.f(x-h,y+k)=0 B.f(x-h,y-k)=0
C.f(x+h,y-k)=0 D.f(x+h,y+k)=0
解析:设平A.充分不必要 B.必要不充分
C.充要 D.既不充分也不必要
答案:B
3.当|a|=|b|≠0且a、b不共线时,a+b与a-b的关系是( )
A.平行 B.垂直
C.相交但不垂直 D.相等
解析:∵(a+b)·(a-b)=a2-b2=|a|2-|b|2=0,∴(a+b)⊥(a-b).
答案:B
4.下面有五个命题:
若a≠0,且b-c≠0
由a⊥(b-c),得a·(b-c)=0
∴a·b-a·c=0,∴a·b=a·c,故B正确.
C.若|a|=0或1,则a2=|a|.
D.向量的数量积不满足结合律.
答案:B
18.函数y=4sin2x的图象可以由y=4sin(2x- )的图象经过平移变换而得到,则这个平移变换是( )
A.向左平移 个单位 B.向右平移 个单位
C.向左平移 个单位 D.向右平移 个单位

平面向量全章复习

平面向量全章复习

平面向量全章复习推论及公式:● 设a =(x ,y ),则a 2=x 2+y 2,即|a |=x 2+y 2. ● 两点A (x 1,y 1),B (x 2,y 2)间的距离公式为AB = ()()221212x x y y -+-.● a =(x 1,y 1),b = (x 2,y 2),它们的夹角为θ,则有121222221122cos x x y y x y x y θ+==+⋅+a b a b●0⊥⇔=a b a b 1212x x y y ⇔+=0.二.典型例题分析例1. 在四边形ABCD 中, 已知AD AB AC +=, 试判断四边形ABCD 是什么样的四边形?例2. 化简:(1)AB BC CD ++=______;(2)AB AD DC --=_____;(3)()()AB CD AC BD ---=_____. 例3. 若AB =3e 1,CD =-5e 1,且|AD |=|BC |,判断四边形ABCD 的形状. 例4. 若112()(3)032x a b c x b --+-+=,则x =__________.例5. 已知向量a 、b 不共线,实数x 、y 满足向量等式3x a +(10-y )b =2x b +(4y +4)a ,则x =_____________,y =_____________.例6. 向量(1,1)a =,且与b a 2+的方向相同,则b a⋅的取值范围是 ),1(+∞-. 例7. 已知OA =(-1,2),OB =(3,m ),若OA ⊥OB ,则m 的值为__________.例8. 已知||1,||2,0,OA OB OA OB ==⋅=点C 在AOB ∠内,且045AOC ∠=,设OC mOA nOB =+,其中,m n R ∈,则mn等于__________. 例9. 已知向量),2,1(),1,3(-=-=b a 则b a 23--的坐标是_____.例10. 已知平面内三点AC BA x C B A ⊥满足),7(),3,1(),2,2(,则x 的值为_______.例11. 设向量)2,1(),1,3(-==OB OA ,向量OC 垂直于向量OB ,向量BC 平行于OA ,试求OD OC OA OD ,时=+的坐标.例12. 已知b a b a k b a 3),2,3(),2,1(-+-==与垂直,求实数k 的值.例13. 已知|p |=22,|q |=3,p 、q 的夹角为45°,求以a =5p +2q ,b =p -3q 为邻边的平行四边形过a 、b 起点的对角线长.例14. 设平面上有四个互异的点A 、B 、C 、D ,已知(,0)()2=-⋅-+AC AB DA DC DB 试判断△ABC 的形状.例15. 已知|a |=3 ,|b |=4, (且a 与b 不共线), 当且仅当k 为何值时, 向量a +k b 与a -k b 互相垂直?例16. 已知向量a 、b 满足b b a b a a 求,5,53=-=+=. 例17. 若向量a ,b 满足12a b ==,且a 与b 的夹角为3π,则a b +=________. 例18. △ABC 中,3||=−→−AB ,4||=−→−AC ,5||=−→−BC ,则=⋅BC AB ______(答:-9)例19. 已知点(2,3),(5,4)A B ,(7,10)C ,若()AP AB AC R λλ=+∈,则当λ=____时,点P 在第一、三象限的角平分线上(答:12); 例20. 已知(1,1),(4,)a b x ==,2u a b =+,2v a b =+,且//u v ,则x =______(答:4);例21. 已知△ABC 中,A (2,-1),B (3,2),C (-3,-1),BC 边上的高为AD ,求点D 和向量AD 的坐标.例22. 已知a 、b 都是非零向量,且a +3b 与7a -5b 垂直,a -4b 与7a -2b 垂直,求a 与b 的夹角. 例23. 设向量a 与b 的夹角为θ,(33)a =,,2(11)b a -=-,,则cos θ=_______.(31010)例24. 设向量(3,1),(1,2O A O B ==-,向量OC 垂直于向量OB ,向量BC 平行于OA ,试求,OD OA OC OD +=时的坐标.例25. 已知13(3,1),(,),22a b =-=若存在不为零的实数k 和角α,使得()sin 3,sin c a b d ka b αα=+-=-+⋅,且c d ⊥,试求实数k 的取值范围.例26. 已知M =(1+cos2x ,1),N =(1,3sin2x +a )(x ,a ∈R ,a 是常数),且y =OM ·ON (O 是坐标原点)⑴求y 关于x 的函数关系式y =f (x );⑵若x ∈[0,2π],f (x )的最大值为4,求a 的值,并说明此时f (x )的图象可由y =2sin(x +6π)的图象经过怎样的变换而得到. 例27. 已知:a 、b 、c 是同一平面内的三个向量,其中a =(1,2)。

平面向量专题复习练习(含解析)【最新】

平面向量专题复习练习(含解析)【最新】
A. B. C.3D.5
14.已知 与 垂直,则实数 的值为()
A.1B. C.2D.
15.已知平面向量 , 满足 , ,且 ,则 ()
A.3B. C. D.5
16.已知向量 ,则向量 在向量 方向上的投影为()
A. B. C. D.
17.已知 , , =1,则向量 在 方向上的投影是()
A. B. C. D.1
2.下列命题正确的是()
A.单位向量都相等B.若 与 共线, 与 共线,则 与 共线
C.若 ,则 D.若 与 都是单位向量,则
3.在 中,点O满足 ,则 与 的面积比为()
A. B. C. D.
4.如图,在平行四边形 中,对角线 与 交于点 ,且 ,则 ()
A. B. C. D.
5.如图所示,在正方形ABCD中,E为AB的中点,F为CE的中点,则 ()
A. B. C. D.
【答案】D
6、如图, , , , ,若m= ,那么n=( )
A. B. C. D.
【解答】解:∵ ,故C为线段AB的中点,
故 = =2 ,∴ = ,
由 , ,
∴ , ,
∴ = ,
∵M,P,N三点共线,故 =1,当m= 时,n= ,故选:C
7、若向量a=(1,1),b=(-1,1),c=(4,2),则 c等于()
平面向量专题复习
一、基本概念与定理
1、定义:既有大小又有方向的量;向量的大小叫作向量的长度(或称模)
2、单位向量:长度等于1个单位的向量(与 同方向的单位向量为 )
3、零向量:长度为零的向量;其方向是任意的
4、平行、共线向量:同向或反向
5、相等向量:长度相等且方向相同的向量
6、相反向量:长度相等且方向相反的向量

平面向量经典练习题(含答案)

平面向量经典练习题(含答案)

平面向量经典练习题(含答案)1、向量a=(2,4),b=(-1,-3),则向量3a-2b的坐标是(8,22)。

2、已知向量a与b的夹角为60°,a=(3,4),|b|=1,则|a+5b|=√61.3、已知点A(1,2),B(2,1),若AP=(3,4),则BP=(-1,-1)。

4、已知A(-1,2),B(1,3),C(2,0),D(x,1),若AB与CD共线,则|BD|=2.5、向量a、b满足|a|=1,|b|=2,(a+b)⊥(2a-b),则向量a与b的夹角为30°。

6、设向量a,b满足|a+b|=10,|a-b|=6,则a·b=7.7、已知a、b是非零向量且满足(a-2b)⊥a,(b-2a)⊥b,则a与b的夹角是60°。

8、在△ABC中,D为AB边上一点,AD=2DB,CD=3CA+mCB,则m=1.9、已知非零向量a,b满足|b|=4|a|,a⊥(2a+b),则a与b的夹角是53.13°。

10、在三角形ABC中,已知A(-3,1),B(4,-2),点P(1,-1)在中线AD上,且AP=2PD,则点C的坐标是(6,-3)。

二、选择题1、设向量OA=(6,2),OB=(-2,4),向量OC垂直于向量OB,向量BC平行于OA,若OD+OA=OC,则OD坐标=(11,6)。

2、把A(3,4)按向量a(1,-2)平移到A',则点A'的坐标(4,2)。

3、已知向量a,b,若a为单位向量,且|a|=|2b|,则(2a+b)⊥(a-2b),则向量a与b的夹角是30°。

4、已知向量ab的夹角60°,|a|=2,b=(-1,√3),则|2a-3b|=13.5、在菱形ABCD中,∠DAB=60°,|2·0C+CD|=4,则|BC+CD|=2.6、略。

7、略。

8、若向量a=(3,4),向量b=(2,1),则a在b方向上的投影为2.9、略。

高中数学平面向量知识点与典型例题总结(师)

高中数学平面向量知识点与典型例题总结(师)

高中数学平面向量知识点与典型例题总结(师)《数学》必会基础题型——《平面向量》【基本概念与公式】【任何时候写向量时都要带箭头】1.向量:既有大小又有方向的量。

记作:AB 或a 。

2.向量的模:向量的大小(或长度),记作:||AB 或||a 。

3.单位向量:长度为1的向量。

若e 是单位向量,则||1e =。

4.零向量:长度为0的向量。

记作:0。

【0方向是任意的,且与任意向量平行】5.平行向量(共线向量):方向相同或相反的向量。

6.相等向量:长度和方向都相同的向量。

7.相反向量:长度相等,方向相反的向量。

AB BA =-。

8.三角形法则:AB BC AC +=;AB BC CD DE AE +++=;AB AC CB -=(指向被减数)9.平行四边形法则:以,a b 为临边的平行四边形的两条对角线分别为a b +,a b -。

10.共线定理://a b a b λ=?。

当0λ>时,a b 与同向;当0λ<时,a b 与反向。

11.基底:任意不共线的两个向量称为一组基底。

12.向量的模:若(,)a x y =,则2||a x y =+,22||a a =,2||()a ba b +=+13.数量积与夹角公式:||||cos a b a b θ?=?; cos ||||a b a b θ?=? 14.平行与垂直:1221//a b a b x y x y λ?=?=;121200a b a b x x y y ⊥??=?+=题型1.基本概念判断正误:(1)共线向量就是在同一条直线上的向量。

(2)若两个向量不相等,则它们的终点不可能是同一点。

(3)与已知向量共线的单位向量是唯一的。

(4)四边形ABCD 是平行四边形的条件是AB CD =。

(5)若AB CD =,则A 、B 、C 、D 四点构成平行四边形。

(6)因为向量就是有向线段,所以数轴是向量。

(7)若a 与b 共线, b 与c 共线,则a 与c 共线。

平面向量的线性运算及练习试题

平面向量的线性运算及练习试题

平面向量的线性运算学习过程知识点一:向量的加法1定义已知非零向量,a b ,在平面内任取一点A,作AB =a ,BC =b ,则向量AC 叫做a 与b 的和,记作a b +,即a b +=AB +BC =AC . 求两个向量和的运算,叫做叫向量的加法.这种求向量和的方法,称为向量加法的三角形法则. 说明:①运用向量加法的三角形法则时,要特别注意“首尾相接”,即第二个向量要以第一个向量的终点为起点,则由第一个向量的起点指向第二个向量终点 的向量即为和向量.②两个向量的和仍然是一个向量,其大小、方向可以由三角形法则确定. ③位移的合成可以看作向量加法三角形法则的物理模型.2向量加法的平行四边形法则以点O 为起点作向量a OA = ,OB b =,以OA,OB 为邻边作OACB ,则以O 为起点的对角线所在向量OC 就是,a b 的和,记作a b +=OC ;说明:①三角形法则适合于首尾相接的两向量求和,而平行四边形法则适合于同起点的两向量求和,但两共线向量求和时,则三角形法则较为合适.②力的合成可以看作向量加法平行四边形法则的物理模型.③对于零向量与任一向量00a a a a +=+=,3特殊位置关系的两向量的和①当向量a 与b 不共线时,a +b 的方向不同向,且|a +b |<|a |+|b |;②当a 与b 同向时,则a +b 、a 、b 同向,且|a +b |=|a |+|b |,③当a 与b 反向时,若|a |>|b |,则a +b 的方向与a 相同,且|a +b |=|a |-|b |;若|a |<|b |,则a +b 的方向与b 相同,且|a +b|=|b |-|a |.4向量加法的运算律①向量加法的交换律:a +b =b +a②向量加法的结合律:a +b +c =a + b +c知识点二:向量的减法1相反向量:与a 长度相同、方向相反的向量.记作 -a ;2①向量a 和-a 互为相反向量,即 –-a .②零向量的相反向量仍是零向量.③任一向量与其相反向量的和是零向量,即 a +-a =-a +a =0.④如果向量,a b 互为相反向量,那么a =-b ,b =-a ,a +b =0.3向量减法的定义:向量 a 加上的 b 相反向量,叫做 a 与b 的差.即: a - b = a + - b 求两个向量差的运算叫做向量的减法.4向量减法的几何作法在平面内任取一点O,作,OA a OB b ==,则BA a b =-.即a b -可以表示为从向量b 的终点指向向量a 的终点的向量,这就是向量减法的几何意义. 说明:①AB 表示a b -.强调:差向量“箭头”指向被减数②用“相反向量”定义法作差向量,a - b = a + - b , 显然,此法作图较繁,但最后作图可统一.知识点三:向量数乘的定义1定义:一般地,我们规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,它的长度与方向规定如下:⑴|λa |=|λ||a |⑵当0λ>时,λa 的方向与a 的方向相同;当0λ<时,λa 的方向与a 的方向相反. 当0λ=时,λa =02 向量数乘的运算律根据实数与向量的积的定义,我们可以验证下面的运算律:设λ、μ为实数,λμa ;λ+μa =λa a ;λa +b =λa +λb .知识点四:向量共线的条件向量a a ≠0与b 共线,当且仅当有唯一一个实数λ,使b =λa .学习结论1两个向量的和仍然是向量,它的大小和方向可以由三角形法则和平行四边形法则确定,这两种法则本质上是一致的.共线向量加法的几何意义,为共线向量首尾相连接,第一个向量的起点与第二个向量的终点连接所得到的有向线段所表示的向量.2a b -可以表示为从向量b 的终点指向向量a 的终点的向量3实数与向量不能相加减,但实数与向量可以相乘.向量数乘的几何意义就是几个相等向量相加.4向量a a ≠0与b 共线,当且仅当有唯一一个实数λ,使b =λa ;练习例1.已知任意两个非零向量,a b ,作,2,3OA a b OB a b OC a b =+=+=+,试判断A 、B 、C 三点之间的位置关系. 解:∵ AB =OB -OA =a+2b -a+b =b, 且 AC =OC -OA =a+3b -a+b =2 b,∴ AC =2AB .所以,A 、B 、C 三点共线.例2.如图,平行四边形ABCD 的两条对角线相交于点M ,且AB =a ,AD =b ,试用a ,b 表示向量,,,MA MB MC MD .解析:AM MC ==1()2a b +,所以1()2MA a b =-+,DM MB =MA AB =+1()2a b =-所以1()2MD b a =- 例3.一艘船从长江南岸A 点出发以5 km/h 的速度向垂直于对岸的方向行驶,同时江水的流速为向东2 km/h .⑴试用向量表示江水速度、船速以及船实际航行的速度保留两个有效数字;⑵求船实际航行速度的大小与方向用与江水速度间的夹角表示,精确到度.分析:速度是一个既有大小又有方向的量,所以可以用向量表示,速度的合成也就是向量的加法.解析:⑴如图,设AD 表示船向垂直于对岸行驶的速度,AB 表示水流的速度,以AD 、AB 作邻边作平行四边形ABCD,则AC 就是船实际航行的速度.⑵在Rt △ABC 中,|AB |=2,|BC |=5,∴ |AC |=22222529 5.4AB BC +=+=≈ ∵ tan ∠CAB =52,∴ 68CAB ∠≈︒答:船实际航行速度的大小约为 km/h,方向与水的流速间的夹角为约为68°.1.2006上海理如图,在平行四边形ABCD 中,下列结论中错误的是A →--AB =→--DC ; B →--AD +→--AB =→--AC ;C →--AB -→--AD =→--BD ; D →--AD +→--CB =→0. 2.2007湖南文若O 、E 、F 是不共线的任意三点,则以下各式中成立的是A .EF OF OE =+ B. EF OF OE =-C. EF OF OE =-+D. EF OF OE =--3.2003辽宁已知四边形ABCD 是菱形,点P 在对角线AC 上不包括端点A 、C,则=AP A .)1,0(),(∈+λλAD AB B .)22,0(),(∈+λλBC AB C .)1,0(),(∈-λλAD AB D .)22,0(),(∈-λλBC AB 4.2008辽宁理已知O ,A ,B 是平面上的三个点,直线AB 上有一点C ,满足20AC CB +=,则OC =A .2OA OB - B .2OA OB -+C .2133OA OB -D .1233OA OB -+ 5.2003江苏;天津文、理O 是平面上一定点,A B C 、、是平面上不共线的三个点,动点P满足[)(),0,,AB AC OP OA P AB AC λλ=++∈+∞则的轨迹一定通过ABC 的 A 外心 B 内心 C 重心 D 垂心6.2005全国卷Ⅱ理、文已知点(3,1)A ,(0,0)B ,(3,0)C .设BAC ∠的平分线AE 与BC相交于E ,那么有BC CE λ=,其中λ等于A 2B 12C -3D -137.设b a ,是两个不共线的非零向量,若向量b a k 2+与b k a +8的方向相反,则k=__________.8.2007江西理.如图,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB 、AC 于不同的两点M 、N,若AB = m AM ,AC =n AN ,则m +n 的值为 .9.2005全国卷Ⅰ理ABC ∆的外接圆的圆心为O,两条边上的高的交点为H,)(OC OB OA m OH ++=,则实数m =10.2007陕西文、理如图,平面内有三个向量OA 、OB 、OC ,其中OA 与OB 的夹角为120°,OA 与OC 的夹角为30°,且OA =OB =1,OC =22.若OC =μλμλμλ+∈+则R),,(OB OA 的值为 .例1. B . 例2.A. 例3.B.三基础训练:1. C ; 2.B. 3.A . 4. A . 5.B 6.C ; 7._—4__;8. 2 .9. 1 ;10. 62.AB C D四拓展与探究:11、D .; 12. (,0)-∞,13(,)22.平面向量的线性运算复习课复习目标:• 1、掌握向量加、减法的运算,并理解其几何意义.• 2、掌握向量数乘运算,并理解其几何意义,以及两个向量共线的含义.• 3、了解向量的线性运算性质及其几何意义.重点:向量加、减、数乘运算及其几何意义.难点:应用向量线性运算的定义、性质灵活解决相应的问题.一、学案导学 自主建构复习1:向量的加法 复习2:向量的减法已知向量a 和向量b ,作向量a +b . 已知向量a 和向量b ,作向量a -b .复习3:向量的数乘 复习4:平面向量共线定理 已知向量 a ,作向量3a 和-3a .二、合作共享 交流提升1、填空: ------ ----- --------(4)___ABCD AB AD AB AD BAD +=-∠=在平行四边形中,若则2、判断题:1相反向量就是方向相反的向量 (1)AD CA +=(2)AB CB DC --=(3)AB AC BD CD -+-=2 3AB OA OB =-4 在△ABC 中,必有0AB BC CA ++=5若0AB BC CA ++=,则A 、B 、C 三点必是一个三角形的三个顶点;32,,,OA OB OC A B C =-若则三3、点是否共线三、案例剖析 总结规律例1:根据条件判断下列四边形的形状(1)AD BC = 1(2)3AD BC = (3),AD BC AB AD ==且 (4);(OA OC OB OD O +=+是四边形所在平面内一点) (5)AC AB AD =+(6),ABCD AC BD O AO OC DO OB ==四边形的对角线与相交于点,并且例2、如图,在 OAB ∆ 中,延长BA 到C,使AC=BA,在OB 上取点D,使BD=与OA 交于E,设OA a OB b ==,,请用 a b OC DC ,表示向量, .例3、设▱ABCD 一边AB 的四等分点中最靠近B 的一点为E,对角线BD 的五等分点中靠近B 的一点为F,求证:E 、F 、C 三点在一条直线上.AB BA +=四、反馈矫正 形成能力跟踪训练:1、有一边长为1的正方形ABCD,设,BC b AC c ==求:()1a b c ++ ()2a b c +- ()3a b c -+2、已知A 、B 、C 是不共线的三点,O 是△ABC 内的一点,若OA OB OC ++ = 0,则O 是△ABC 的——————填内心、重心、垂心、外心等.。

高中的数学平面向量专题复习(含例题练习)

高中的数学平面向量专题复习(含例题练习)

标准实用平面向量专题复习一.向量有关概念:1. 向量的概念:既有大小又有方向的量,注意向量和数量的区别。

向量常用有向线段来表示,注意 不能说向量就是有向线段,为什么?(向量可以平移) 。

如:2•零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向是任意的;3 .单位向量:长度为一个单位长度的向量叫做单位向量(与AB 共线的单位向量是-AB ); 一|AB|4 •相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性; 5.平行向量(也叫共线向量):方向相同或相反的非零向量 a 、b 叫做平行向量,记作: a // b ,规定零向量和任何向量平行。

提醒:① 相等向量一定是共线向量,但共线向量不一定相等;② 两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线 平行不包含两条直线重合; *③ 平行向量无传递性!(因为有0)$ ④ 三点A B C 共线 AB AC 共线;a 的相反向量是一a 。

女口 =b ,则a =b 。

(2)两个向量相等的充要条件是它们的起点相同,终点相同。

(4)若ABCD 是平行四边形,则 AB = DC 。

( 5)若a = b,b= c ,则、向量的表示1•几何表示法:用带箭头的有向线段表示,如 AB ,注意起点在前,终点在后;2 •符号表示法:用一个小写的英文字母来表示,如 a , b , c 等;坐标表示。

如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同。

三. 平面向量的基本定理:如果 e 1和e 2是同一平面内的两个不共线向量,那么对该平面内的任一向量a ,有且只有一对实数 ■ 1、 ’2,使a= \ 8+ '2e 2。

女口卄片 片 ■+4例 2 (1)若 a =(1,1)b =(1,-1),c=(—1,2),则 c= _________(2) 下列向量组中,能作为平面内所有向量基底的是A. 2 =(0,0),e 2 =(1,-2)B. e =(-1,2)© =(5,7)13 C. e = (3,5)6 =(6,10) D. e =(2,-3)© =(—,-—)24(3) 已知AD,BE 分别是 ABC 的边BC,AC 上的中线,且AD =a,BE =b ,则BC 可用向量a,b 表示为 _____但两条直线6 .相反向量:长度相等方向相反的向量叫做相反向量。

(完整版)平面向量典型例题

(完整版)平面向量典型例题

平面向量经典例题:1.已知向量a=(1,2),b=(2,0),若向量λa+b与向量c=(1,-2)共线,则实数λ等于()A.-2B.-13C.-1 D.-23[答案] C[解析]λa+b=(λ,2λ)+(2,0)=(2+λ,2λ),∵λa+b与c共线,∴-2(2+λ)-2λ=0,∴λ=-1.2.(文)已知向量a=(3,1),b=(0,1),c=(k,3),若a+2b与c垂直,则k=()A.-1 B.- 3C.-3 D.1[答案] C[解析]a+2b=(3,1)+(0,2)=(3,3),∵a+2b与c垂直,∴(a+2b)·c=3k+33=0,∴k=-3.(理)已知a=(1,2),b=(3,-1),且a+b与a-λb互相垂直,则实数λ的值为()A.-611B.-116C.611 D.116[答案] C[解析]a+b=(4,1),a-λb=(1-3λ,2+λ),∵a+b与a-λb垂直,∴(a+b)·(a-λb)=4(1-3λ)+1×(2+λ)=6-11λ=0,∴λ=6 11.3.设非零向量a、b、c满足|a|=|b|=|c|,a+b=c,则向量a、b间的夹角为()A.150°B.120°C.60°D.30°[答案] B[解析]如图,在▱ABCD中,∵|a|=|b|=|c|,c=a+b,∴△ABD为正三角形,∴∠BAD=60°,∴〈a,b〉=120°,故选B.(理)向量a,b满足|a|=1,|a-b|=32,a与b的夹角为60°,则|b|=()A.12 B.13C.14 D.15[答案] A[解析]∵|a-b|=32,∴|a|2+|b|2-2a·b=34,∵|a|=1,〈a,b〉=60°,设|b|=x,则1+x2-x=34,∵x>0,∴x=12.4.若AB →·BC →+AB →2=0,则△ABC 必定是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰直角三角形[答案] B[解析] AB →·BC →+AB →2=AB →·(BC →+AB →)=AB →·AC →=0,∴AB →⊥AC →, ∴AB ⊥AC ,∴△ABC 为直角三角形.5. 若向量a =(1,1),b =(1,-1),c =(-2,4),则用a ,b 表示c 为( ) A .-a +3b B .a -3b C .3a -b D .-3a +b[答案] B[解析] 设c =λa +μb ,则(-2,4)=(λ+μ,λ-μ), ∴⎩⎨⎧ λ+μ=-2λ-μ=4,∴⎩⎨⎧λ=1μ=-3,∴c =a -3b ,故选B. 在平行四边形ABCD 中,AC 与BD 交于O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F ,若AC→=a ,BD →=b ,则AF →等于( )A.14a +12bB.23a +13b C.12a +14b D.13a +23b [答案] B[解析] ∵E 为OD 的中点,∴BE →=3ED →, ∵DF ∥AB ,∴|AB ||DF |=|EB ||DE |,∴|DF |=13|AB |,∴|CF |=23|AB |=23|CD |,∴AF →=AC →+CF →=AC →+23CD →=a +23(OD →-OC →)=a +23(12b -12a )=23a +13b .6.若△ABC 的三边长分别为AB =7,BC =5,CA =6,则AB →·BC →的值为( ) A .19 B .14 C .-18 D .-19 [答案] D[解析] 据已知得cos B =72+52-622×7×5=1935,故AB →·BC →=|AB →|×|BC →|×(-cos B )=7×5×()-1935=-19.7.若向量a =(x -1,2),b =(4,y )相互垂直,则9x +3y 的最小值为( ) A .12 B .2 3 C .3 2 D .6 [答案] D[解析] a ·b =4(x -1)+2y =0,∴2x +y =2,∴9x +3y =32x +3y ≥232x +y =6,等号在x =12,y =1时成立.8.若A ,B ,C 是直线l 上不同的三个点,若O 不在l 上,存在实数x 使得x 2OA →+xOB →+BC →=0,实数x 为( ) A .-1 B .0 C.-1+52D.1+52[答案] A[解析] x 2OA →+xOB →+OC →-OB →=0,∴x 2OA →+(x -1)OB →+OC →=0,由向量共线的充要条件及A 、B 、C 共线知,1-x -x 2=1,∴x =0或-1,当x =0时,BC →=0,与条件矛盾,∴x =-1. 9.(文)已知P 是边长为2的正△ABC 边BC 上的动点,则AP →·(AB →+AC →)( ) A .最大值为8 B .最小值为2 C .是定值6 D .与P 的位置有关[答案] C[解析] 以BC 的中点O 为原点,直线BC 为x 轴建立如图坐标系,则B (-1,0),C (1,0),A (0,3),AB →+AC →=(-1,-3)+(1,-3)=(0,-23),设P (x,0),-1≤x ≤1,则AP →=(x ,-3),∴AP →·(AB →+AC →)=(x ,-3)·(0,-23)=6,故选C.(理)在△ABC 中,D 为BC 边中点,若∠A =120°,AB →·AC →=-1,则|AD →|的最小值是( )A.12B.32C. 2D.22[答案] D[解析] ∵∠A =120°,AB →·AC →=-1,∴|AB →|·|AC →|·cos120°=-1, ∴|AB →|·|AC →|=2,∴|AB →|2+|AC →|2≥2|AB →|·|AC →|=4,∵D 为BC 边的中点,∴AD →=12(AB →+AC →),∴|AD →|2=14(|AB →|2+|AC →|2+2AB →·AC →)=14(|AB →|2+|AC →|2-2)≥14(4-2)=12,∴|AD →|≥22.10. 如图,一直线EF 与平行四边形ABCD 的两边AB ,AD 分别交于E 、F 两点,且交其对角线于K ,其中AE →=13AB →,AF→=12AD →,AK →=λAC →,则λ的值为( )A.15B.14C.13D.12[答案] A[解析] 如图,取CD 的三等分点M 、N ,BC 的中点Q ,则EF∥DG ∥BM ∥NQ ,易知AK →=15AC →,∴λ=15.11. 已知向量a =(2,3),b =(-1,2),若m a +4b 与a -2b 共线,则m 的值为( )A.12 B .2 C .-2 D .-12[答案] C[解析] m a +4b =(2m -4,3m +8),a -2b =(4,-1), 由条件知(2m -4)·(-1)-(3m +8)×4=0,∴m =-2,故选C.12. 在△ABC 中,C =90°,且CA =CB =3,点M 满足BM →=2MA →,则CM →·CB →等于( )A .2B .3C .4D .6 [答案] B[解析] CM →·CB →=(CA →+AM →)·CB →=(CA →+13AB →)·CB →=CA →·CB →+13AB →·CB →=13|AB →|·|CB →|·cos45°=13×32×3×22=3. 13. 在正三角形ABC 中,D 是BC 上的点,AB =3,BD =1,则AB →·AD →=________. [答案]152[解析] 由条件知,|AB →|=|AC →|=|BC →|=3,〈AB →,AC →〉=60°, 〈AB →,CB →〉=60°,CD →=23CB →,∴AB →·AD →=AB →·(AC →+CD →)=AB →·AC →+AB →·23CB →=3×3×cos60°+23×3×3×cos60°=152.14. 已知向量a =(3,4),b =(-2,1),则a 在b 方向上的投影等于________.[答案] -255。

(精选试题附答案)高中数学第六章平面向量及其应用经典大题例题

(精选试题附答案)高中数学第六章平面向量及其应用经典大题例题

(名师选题)(精选试题附答案)高中数学第六章平面向量及其应用经典大题例题单选题1、魏晋时刘徽撰写的《海岛算经》是有关测量的数学著作,其中第一题是测海岛的高.如图,点E,H,G在水平线AC上,DE和FG是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG称为“表距”,GC和EH都称为“表目距”,GC与EH的差称为“表目距的差”则海岛的高AB=()A.表高×表距表目距的差+表高B.表高×表距表目距的差−表高C.表高×表距表目距的差+表距D.表高×表距表目距的差−表距答案:A分析:利用平面相似的有关知识以及合分比性质即可解出.如图所示:由平面相似可知,DEAB =EHAH,FGAB=CGAC,而DE=FG,所以DE AB =EHAH=CGAC=CG−EHAC−AH=CG−EHCH,而CH=CE−EH=CG−EH+EG,即AB =CG−EH+EG CG−EH ×DE =EG×DE CG−EH +DE = 表高×表距表目距的差+表高.故选:A.小提示:本题解题关键是通过相似建立比例式,围绕所求目标进行转化即可解出.2、已知单位向量a ⃗,b⃗⃗,则下列说法正确的是( ) A .a ⃗=b ⃗⃗B .a ⃗+b ⃗⃗=0⃗⃗C .|a ⃗|=|b ⃗⃗|D .a ⃗//b⃗⃗ 答案:C分析:利用向量的有关概念及单位向量的定义依次判断即得.对于A ,向量a ⃗,b ⃗⃗为单位向量,向量a ⃗,b⃗⃗的方向不一定相同,A 错误; 对于B ,向量a ⃗,b ⃗⃗为单位向量,但向量a ⃗, b⃗⃗不一定为相反向量,B 错误; 对于C ,向量a ⃗,b ⃗⃗为单位向量,则|a ⃗|=|b⃗⃗|=1,C 正确; 对于D ,向量a ⃗,b ⃗⃗为单位向量,向量a ⃗,b ⃗⃗的方向不一定相同或相反,即a ⃗与b⃗⃗不一定平行,D 错误. 故选:C.3、已知向量a ⃑=(−1,m ),b ⃗⃑=(2,4),若a ⃑与b⃗⃑共线,则m =( ) A .−1B .1C .−2D .2答案:C分析:根据平面向量共线坐标表示可得答案.由题意得2m =−4,即m =−2.故选:C4、某人先向东走3km ,位移记为a →,接着再向北走3km ,位移记为b →,则a →+b →表示( )A .向东南走3√2kmB .向东北走3√2kmC .向东南走3√3kmD .向东北走3√3km答案:B分析:由向量的加法进行求解.由题意和向量的加法,得a →+b →表示先向东走3km ,再向北走3km ,即向东北走3√2km .故选:B.5、已知向量a ⃑,b ⃗⃑满足|a ⃑|=2,|b ⃗⃑|=1,a ⃑⋅(a ⃑−2b ⃗⃑)=2,则a ⃑与b⃗⃑的夹角为( ) A .30°B .60°C .120°D .150°答案:B分析:由题意,先求出a ⃑⋅b⃗⃑,然后根据向量的夹角公式即可求解. 解:因为a ⃑⋅(a ⃑−2b ⃗⃑)=a ⃑2−2a ⃑⋅b ⃗⃑=|a ⃑|2−2a ⃑⋅b ⃗⃑=4−2a ⃑⋅b ⃗⃑=2,所以a ⃑⋅b⃗⃑=1, 设a ⃑与b ⃗⃑的夹角为θ,则cosθ=a ⃗⃑⋅b ⃗⃑|a ⃗⃑||b ⃗⃑|=12, 因为θ∈[0°,180°],所以θ=60°,故选:B.6、已知非零平面向量a ⃗,b ⃗⃗,c ⃗,下列结论中正确的是( )(1)若a ⃗⋅c ⃗=b ⃗⃗⋅c ⃗,则a ⃗=b ⃗⃗;(2)若|a ⃗+b ⃗⃗|=|a ⃗|+|b ⃗⃗|,则a ⃗//b⃗⃗ (3)若|a ⃗+b ⃗⃗|=|a ⃗−b ⃗⃗|,则a ⃗⊥b ⃗⃗(4)若(a ⃗+b ⃗⃗)⋅(a ⃗−b ⃗⃗)=0,则a ⃗=b ⃗⃗或a ⃗=−b⃗⃗ A .(1)(2)B .(2)(3)C .(3)(4)D .(2)(3)(4)答案:B解析:根据向量的数量积运算,以及向量模的计算公式,逐项判断,即可得出结果.已知非零平面向量a ⃗,b ⃗⃗,c ⃗,(1)若a ⃗⋅c ⃗=b ⃗⃗⋅c ⃗,则(a ⃗−b ⃗⃗)⋅c ⃗=0,所以a ⃗=b ⃗⃗或(a ⃗−b ⃗⃗)⊥c ⃗,即(1)错;(2)若|a ⃗+b ⃗⃗|=|a ⃗|+|b ⃗⃗|,则a ⃗与b ⃗⃗同向,所以a ⃗//b⃗⃗,即(2)正确;(3)若|a ⃗+b ⃗⃗|=|a ⃗−b ⃗⃗|,则|a ⃗|2+|b ⃗⃗|2+2a ⃗⋅b ⃗⃗=|a ⃗|2+|b ⃗⃗|2−2a ⃗⋅b ⃗⃗,所以2a ⃗⋅b ⃗⃗=0,则a ⃗⊥b⃗⃗;即(3)正确; (4)若(a ⃗+b ⃗⃗)⋅(a ⃗−b ⃗⃗)=0,则|a ⃗|2−|b ⃗⃗|2=0,所以|a ⃗|=|b⃗⃗|,不能得出向量共线,故(4)错; 故选:B.小提示:本题主要考查向量数量积的运算,考查向量有关的判定,属于基础题型.7、△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,C =30∘,c =10.如果△ABC 有两解,则a 的取值范围是( )A .[10,20]B .[10,10√3]C .(10,10√3)D .(10,20)答案:D分析:作出图形,根据题意可得出关于a 的不等式,由此可解得a 的取值范围.如下图所示:因为△ABC 有两解,所以asinC =12a <c =10<a ,解得10<a <20.故选:D.8、如图,四边形ABCD 是平行四边形,则12AC ⃗⃗⃗⃗⃗⃑+12BD ⃗⃗⃗⃗⃗⃗⃑=( )A .AB ⃗⃗⃗⃗⃗⃑B .CD ⃗⃗⃗⃗⃗⃑C .CB ⃗⃗⃗⃗⃗⃑D .AD ⃗⃗⃗⃗⃗⃑答案:D分析:由平面向量的加减法法则进行计算.由题意得AC ⃗⃗⃗⃗⃗⃑=AB ⃗⃗⃗⃗⃗⃑+AD ⃗⃗⃗⃗⃗⃑,BD ⃗⃗⃗⃗⃗⃗⃑=AD ⃗⃗⃗⃗⃗⃑−AB⃗⃗⃗⃗⃗⃑,所以12AC ⃗⃗⃗⃗⃗⃑+12BD ⃗⃗⃗⃗⃗⃗⃑=12(AB ⃗⃗⃗⃗⃗⃑+AD ⃗⃗⃗⃗⃗⃑+AD ⃗⃗⃗⃗⃗⃑−AB ⃗⃗⃗⃗⃗⃑)=AD ⃗⃗⃗⃗⃗⃑. 故选:D.9、向量a ⃗,b ⃗⃗满足a ⃗=(1,√3),|b ⃗⃗|=1,|a ⃗+b ⃗⃗|=√3,则b ⃗⃗在a ⃗方向上的投影为( )A .-1B .−12C .12D .1 答案:B解析:根据题条件,先求出a ⃗⋅b⃗⃗,再由向量数量积的几何意义,即可求出结果. 因为向量a ⃗,b ⃗⃗满足a ⃗=(1,√3),|b ⃗⃗|=1,|a ⃗+b⃗⃗|=√3, 所以|a ⃗|2+2a ⃗⋅b ⃗⃗+|b ⃗⃗|2=3,即4+2a ⃗⋅b ⃗⃗+1=3,则a ⃗⋅b⃗⃗=−1, 所以b ⃗⃗在a ⃗方向上的投影为|b →|cos <a →,b →>=a →⋅b→|a →|=−12. 故选:B.10、如图,正六边形ABCDEF 的边长为2,动点M 从顶点B 出发,沿正六边形的边逆时针运动到顶点F ,若FD ⃗⃗⃗⃗⃗⃑⋅AM ⃗⃗⃗⃗⃗⃗⃑的最大值和最小值分别是m ,n ,则m +n =( )A .9B .10C .11D .12答案:D分析:连接AC ,根据正六边形的特征可得FD ⃗⃗⃗⃗⃗⃑=AC ⃗⃗⃗⃗⃗⃑,从而可得FD ⃗⃗⃗⃗⃗⃑⋅AM ⃗⃗⃗⃗⃗⃗⃑=AC ⃗⃗⃗⃗⃗⃑⋅AM ⃗⃗⃗⃗⃗⃗⃑=|AC ⃗⃗⃗⃗⃗⃑||AM ⃗⃗⃗⃗⃗⃗⃑|cos⟨AC ⃗⃗⃗⃗⃗⃑,AM ⃗⃗⃗⃗⃗⃗⃑⟩,再根据当M 在BC 上运动时,|AM ⃗⃗⃗⃗⃗⃗⃑|与cos⟨AC ⃗⃗⃗⃗⃗⃑,AM ⃗⃗⃗⃗⃗⃗⃑⟩均逐渐增大,当M 从D 移动到F 时,|AM ⃗⃗⃗⃗⃗⃗⃑|与cos⟨AC ⃗⃗⃗⃗⃗⃑,AM ⃗⃗⃗⃗⃗⃗⃑⟩均逐渐减小,即可求得m ,n ,从而得出答案.解:连接AC ,在正六边形ABCDEF 中,FD ⃗⃗⃗⃗⃗⃑=AC⃗⃗⃗⃗⃗⃑,∴FD ⃗⃗⃗⃗⃗⃑⋅AM ⃗⃗⃗⃗⃗⃗⃑=AC ⃗⃗⃗⃗⃗⃑⋅AM ⃗⃗⃗⃗⃗⃗⃑=|AC ⃗⃗⃗⃗⃗⃑||AM ⃗⃗⃗⃗⃗⃗⃑|cos⟨AC ⃗⃗⃗⃗⃗⃑,AM ⃗⃗⃗⃗⃗⃗⃑⟩,∵正六边形ABCDEF 的边长为2,∴|AC⃗⃗⃗⃗⃗⃑|=2√3, 因为当M 在BC 上运动时,|AM ⃗⃗⃗⃗⃗⃗⃑|与cos⟨AC ⃗⃗⃗⃗⃗⃑,AM ⃗⃗⃗⃗⃗⃗⃑⟩均逐渐增大,当M 从D 移动到F 时,|AM ⃗⃗⃗⃗⃗⃗⃑|与cos⟨AC ⃗⃗⃗⃗⃗⃑,AM ⃗⃗⃗⃗⃗⃗⃑⟩均逐渐减小,所以当M 在CD 上运动时,|AM ⃗⃗⃗⃗⃗⃗⃑|cos⟨AC ⃗⃗⃗⃗⃗⃑,AM ⃗⃗⃗⃗⃗⃗⃑⟩取得最大值,为2√3,当M 移动到点F 时,|AM ⃗⃗⃗⃗⃗⃗⃑|cos⟨AC ⃗⃗⃗⃗⃗⃑,AM ⃗⃗⃗⃗⃗⃗⃑⟩取得最小值,为0.∴m =2√3×2√3=12,n =2√3×0=0,∴m +n =12.故选:D.小提示:填空题11、已知△ABC 中,AB =2,AC =1,AB ⃗⃗⃗⃗⃗⃑⋅AC ⃗⃗⃗⃗⃗⃑=1,O 为△ABC 所在平面内一点,且OA ⃗⃗⃗⃗⃗⃑+2OB ⃗⃗⃗⃗⃗⃑+3OC ⃗⃗⃗⃗⃗⃑=0⃗⃑,则AO⃗⃗⃗⃗⃗⃑⋅BC ⃗⃗⃗⃗⃗⃑的值为___________ 答案:−1分析:在OA ⃗⃗⃗⃗⃗⃑+2OB ⃗⃗⃗⃗⃗⃑+3OC ⃗⃗⃗⃗⃗⃑=0⃗⃑中,将OB ⃗⃗⃗⃗⃗⃑=OA ⃗⃗⃗⃗⃗⃑+AB ⃗⃗⃗⃗⃗⃑,OC ⃗⃗⃗⃗⃗⃑=OA ⃗⃗⃗⃗⃗⃑+AC ⃗⃗⃗⃗⃗⃑代入,用AB ⃗⃗⃗⃗⃗⃑与AC ⃗⃗⃗⃗⃗⃑表示AO ⃗⃗⃗⃗⃗⃑,可得AO⃗⃗⃗⃗⃗⃑=13AB ⃗⃗⃗⃗⃗⃑+12AC ⃗⃗⃗⃗⃗⃑,故AO ⃗⃗⃗⃗⃗⃑⋅BC ⃗⃗⃗⃗⃗⃑=(13AB ⃗⃗⃗⃗⃗⃑+12AC ⃗⃗⃗⃗⃗⃑)⋅(AC ⃗⃗⃗⃗⃗⃑−AB ⃗⃗⃗⃗⃗⃑),展开根据已知条件代入数据计算即可. ∵OA ⃗⃗⃗⃗⃗⃑+2OB ⃗⃗⃗⃗⃗⃑+3OC ⃗⃗⃗⃗⃗⃑=0⃗⃑,∴OA ⃗⃗⃗⃗⃗⃑+2(OA ⃗⃗⃗⃗⃗⃑+AB ⃗⃗⃗⃗⃗⃑)+3(OA ⃗⃗⃗⃗⃗⃑+AC ⃗⃗⃗⃗⃗⃑)=0⃗⃑,∴AO ⃗⃗⃗⃗⃗⃑=13AB ⃗⃗⃗⃗⃗⃑+12AC ⃗⃗⃗⃗⃗⃑, ∴AO ⃗⃗⃗⃗⃗⃑⋅BC ⃗⃗⃗⃗⃗⃑=(13AB ⃗⃗⃗⃗⃗⃑+12AC ⃗⃗⃗⃗⃗⃑)⋅(AC ⃗⃗⃗⃗⃗⃑−AB ⃗⃗⃗⃗⃗⃑)=12AC ⃗⃗⃗⃗⃗⃑2−13AB ⃗⃗⃗⃗⃗⃑2−16AB ⃗⃗⃗⃗⃗⃑⋅AC ⃗⃗⃗⃗⃗⃑=−1.所以答案是:−1.小提示:关键点点睛:解答本题的关键点在于将AO ⃗⃗⃗⃗⃗⃑用AB⃗⃗⃗⃗⃗⃑与AC ⃗⃗⃗⃗⃗⃑线性表示,将AO ⃗⃗⃗⃗⃗⃑⋅BC ⃗⃗⃗⃗⃗⃑转化为AB ⃗⃗⃗⃗⃗⃑与AC ⃗⃗⃗⃗⃗⃑之间的数量积运算问题来求解.12、若OA →=a →,OB →=b →,则∠AOB 平分线上的向量OM →可以表示为________.答案:λ(a →|a →|+b →|b →|),λ∈R分析:根据题意,以OA →|OA →|,OB →|OB →|为邻边作平行四边形OACB 则四边形为菱形,根据平面向量加法的平行四边形法则得OC →=OA→|OA →|+OB →|OB →|=a →|a →|+b →|b →|,由OM →,OC →共线,最后根据向量共线定理得OM →=λOC →,从而得出答案.解:∵ OA →=a →,OB →=b →,∴ OA→|OA →|=a→|a →|,OB →|OB →|=b →|b →|,∴以OA →|OA →|,OB →|OB →|为邻边作平行四边形OACB 则为菱形,∴OC 平分∠AOB ,∴根据向量加法的平行四边形法则可得:OC →=OA→|OA →|+OB→|OB →|=a →|a →|+b→|b →|,∵ OM →,OC →共线,∴由共线定理可得存在唯一的实数λ使得:OM →=λOC →=λ(a →|a →|+b →|b →|).所以答案是:λ(a →|a →|+b →|b →|),λ∈R .小提示:本题考查平面向量加法的平行四边形法则和向量共线定理,解题的关键是利用菱形的对角线平分对角这一重要性质.13、点A (−1,0),B(5,−4),AP⃗⃗⃗⃗⃗⃑=PB ⃗⃗⃗⃗⃗⃑,点P 的坐标为______. 答案:(2,−2)分析:设P(x,y),由已知条件,利用向量的坐标运算求解即可.由已知得,设P (x,y ),由已知得(x,y )−(−1,0)=(5,−4)−(x,y ),∴(x,y )=(2,−2),所以答案是:(2,−2).小提示:本题考查平面向量的坐标运算,属基础题.关键掌握向量的坐标等于终点的坐标减去起点的坐标.14、已知向量a ⃑、b ⃗⃗、c ⃑,且|a ⃑|=3,|b ⃗⃗|=5,|c ⃑|=1,a ⃑⋅b ⃗⃗=0,则|a ⃑+b ⃗⃗−c ⃑|的最小值为______.答案:√34−1##−1+√34分析:根据题意,建立直角坐标系,写出a ⃗、b ⃗⃗、a ⃗+b ⃗⃗坐标,求出c ⃑终点轨迹,数形结合即可求解.不妨设a ⃗=(3,0),b ⃗⃗=(0,5),a ⃗+b⃗⃗=(3,5), |c ⃑|=1,则c ⃑起点在原点,终点轨迹为单位圆x 2+y 2=1,∴当a ⃗+b ⃗⃗与c ⃑同向时,|a ⃑+b ⃗⃗−c ⃑|最小,为√32+52−1= √34−1.所以答案是:√34−1.15、已知a ⃑、b ⃗⃑是平面内两个互相垂直的单位向量,若c ⃑满足(a ⃑−c ⃑)⋅(b ⃗⃑−c ⃑)=0,则|c ⃑|的最大值为___________.答案:√2分析:首先根据数量积公式展开,再化简|c⃑|=√2cosα,利用三角函数的有界性求最值.(a⃗−c⃗)⋅(b⃗⃗−c⃗)=0⇔a⃑⋅b⃗⃑−(a⃑+b⃗⃑)⋅c⃑+c⃑2=0,∴|c⃗|2=(a⃗+b⃗⃗)⋅c⃗=|a⃗+b⃗⃗||c⃗|cosα=√2|c⃑|cosα,即|c⃑|=√2cosα,|c⃑|max=√2.所以答案是:√2解答题16、已知四边形ABCD是由△ABC与△ACD拼接而成的,且在△ABC中,2AB−BC=AC2+AB2−BC2AB.(1)求角B的大小;(2)若∠BAD=π3,∠ADC=5π6,AD=1,BC=2.求AB的长.答案:(1)B=π3 (2)AB=3分析:(1)由余弦定理结合2AB−BC=AC 2+AB2−BC2AB,即可求出角B的大小.(2)设AC=x,∠CAB=α,在△ABC中,由正弦定理可得√3=x sinα①,在△ADC中,由正弦定理可得x= 12sin(α−π6)②,联立①②,可得tanα=√32,在△ABC中,由正弦定理可求出AC,再由余弦定理即可求出AB的长.(1)∵2AB−BC=AC 2+AB2−BC2AB,∴整理可得,BC2+AB2﹣AC2=BC•AB,∴在△ABC中,由余弦定理可得cos B=BC2+AB2−AC22AB⋅BC =12,0<B<π,∴B=π3.(2)∵B=π3,∠BAD=π3,∠ADC=5π6,AD=1,BC=2,∴设AC=x,∠CAB=α,则在△ABC中,由正弦定理BCsin∠CAB =ACsinB,可得2sinα=xsinπ3,可得√3=x sinα,①在△ADC中,由正弦定理ACsinD =ADsin(π−∠D−∠DAC),可得xsin5π6=1sin[π6−(π3−α)],可得x=12sin(α−π6),②,∴联立①②,可得sinα=2√3sin(α−π6),可得tanα=√32,可得cosα=√11+tan2α=2√77,sinα=√217,∴在△ABC中,由正弦定理BCsinα=ACsinB,可得AC=2×sinπ3√217=√7,∵由余弦定理AC2=BC2+AB2﹣2AB•BC•cos B,可得7=4+AB2﹣2×2×AB×12,可得AB2﹣2AB﹣3=0,∴解得AB=3,(负值舍去).17、在锐角△ABC中,已知m⃗⃗⃑=(2sin(A+C),√3),n⃗⃑=(cos2B,2cos2B2−1),且m⃗⃗⃑//n⃗⃑.(1)求角B的大小;(2)若AC=1,求△ABC面积的最大值.答案:(1)π6(2)2+√34分析:(1)根据向量平行,结合二倍角正弦公式、降幂公式,化简整理,结合角B的范围,可求得答案;(2)根据(1)得角B,代入余弦定理,结合基本不等式,可得ac最大值,代入面积公式,即可得答案. (1)因为m⃗⃗⃑//n⃗⃑,所以2sin(A+C)(2cos2B2−1)=√3cos2B,因为A+B+C=π,所以sin(A+C)=sin(π−B)=sinB,所以2sinBcosB=sin2B=√3cos2B,所以tan2B=sin2Bcos2B=√3,因为锐角三角形,B∈(0,π2),所以2B∈(0,π),所以2B=π3,B=π6.(2)设角A、B、C所对的边为a,b,c,则AC=b=1,由余弦定理得cosB=a 2+c2−b22ac=√32,所以a2+c2−1=√3ac,即a2+c2=√3ac+1,又a2+c2≥2ac,所以√3ac+1≥2ac,解得ac≤2+√3,当且仅当a=c时等号成立,所以△ABC面积的最大值S max=12acsinB=12×(2+√3)×12=2+√34.18、已知向量a⃑=(1,1),b⃗⃑=(0,−2),在下列条件下分别求k的值:(1)a⃑+b⃗⃑与ka⃑−b⃗⃑平行;(2)a⃑+b⃗⃑与ka⃑−b⃗⃑的夹角为2π3.答案:(1)−1(2)−1±√3分析:(1)首先求出a⃑+b⃗⃑与ka⃑−b⃗⃑,再根据向量平行的坐标表示得到方程,解得即可;(2)首先利用向量数量积的坐标运算求出(a⃗+b⃗⃗)⋅(ka⃗−b⃗⃗),再根据平面向量数量积的定义得到方程,解得即可;(1)解:因为a⃑=(1,1),b⃗⃑=(0,−2),所以a⃗+b⃗⃗=(1,−1),ka⃗−b⃗⃗=(k,k+2),又a⃗+b⃗⃗与ka⃗−b⃗⃗平行,所以−k=k+2,解得k=−1;(2)解:因为a⃗+b⃗⃗=(1,−1),ka⃗−b⃗⃗=(k,k+2),所以(a⃗+b⃗⃗)⋅(ka⃗−b⃗⃗)=1×k+(−1)×(k+2)=−2,因为a⃗+b⃗⃗与ka⃗−b⃗⃗夹角为2π3,所以(a⃗+b⃗⃗)⋅(ka⃗−b⃗⃗)=|a⃗+b⃗⃗||a⃗−b⃗⃗|cos2π3,即−2=−√2×√k2+(k+2)2×12,解得k=−1±√3.19、在△ABC中,a,b,c分别是角A,B,C的对边,B=π3,a=3.(1)若A=π4,求b.(2)若______,求c的值及△ABC的面积.请从①b=√13,②sinC=2sinA,这两个条件中任选一个,将问题(2)补充完整,并作答.答案:(1)3√62;(2)选①c=4,S△ABC=3√3;选②c=6,S△ABC=9√32分析:(1)根据正弦定理计算即可得出结果;(2)利用余弦定理或正弦定理求出c的值,再结合三角形的面积公式计算即可.(1)B=π3,a=3,A=π4,由正弦定理,得bsinB=asinA,所以b=asinA ×sinB=√22√32=3√62;(2)选①:由余弦定理,得b2=a2+c2−2accosB,即13=c2+9−2×3c×12,整理,得c2−3c−4=0,由c>0,得c=4,所以S△ABC=12acsinB=12×3×4×√32=3√3;选②:因为sinC=2sinA,由正弦定理,得c=2a,所以c=6,所以S△ABC=12acsinB=12×6×3×√32=9√32.。

§7.平面向量复习专题

§7.平面向量复习专题

§7.平面向量1.向量有关概念:向量的概念,零向量,单位向量,相等向量,共线向量,相反向量.例1:下列命题:(1)若a b =,则a b =。

(2)两个向量相等的充要条件是它们的起点相同,终点相同。

(3)若A B D C=,则ABCD 是平行四边形。

(4)若A B C D 是平行四边形,则AB DC =。

(5)若,a bb c ==,则a c =。

(6)若/,/a bb c ,则//a c 。

其中正确的是______2.向量的表示方法:几何表示法(AB ),符号表示法(a ),坐标表示法(a =(1,2)).3.平面向量的基本定理:如果e 1和e 2是同一平面内的两个不共线向量,那么对该平面内的任一向量a ,有且只有一对数12,λλ,使a =1λe 1+2λe 2.结论:若1λe 1+2λe 2=3λe 1+4λe 2 ,则1λ=3λ且2λ=4λ. 特别的,若1λe 1+2λe 2=0,则1λ=2λ=0.例2:(1)若(1,1),a b ==(1,1),(1,2)c -=-,则c =______ (2)下列向量组中,能作为平面内所有向量基底的是 ( )A. 12(0,0),(1,2)e e ==-B. 12(1,2),(5,7)e e =-=C. 12(3,5),(6,10)e e ==D.1213(2,3),(,)24e e =-=-(3)已知ABC ∆中,点D 在BC 边上,且−→−−→−=DB CD 2,−→−−→−−→−+=AC s AB r CD ,则s r +的值是___4.平面向量的数量积:(1).两个向量的夹角:()0θπ≤≤(2).平面向量的数量积:a∙b =cos a b θ.注意数量积是一个实数,不再是一个向量。

例3:(1)△ABC 中,3||=−→−AB ,4||=−→−AC ,5||=−→−BC ,则=⋅BC AB _________(2)已知11(1,),(0,),,22a b c a kb d a b ==-=+=-,c 与d 的夹角为4π,则k 等于____(3)已知2,5,3a b a b ===-,则a b +等于____(4)已知,a b 是两个非零向量,且a b a b ==-,则与a a b +的夹角为____ (3).b 在a 上的投影为||cos b θ,它是一个实数,但不一定大于0。

高中数学第六章平面向量及其应用经典大题例题(带答案)

高中数学第六章平面向量及其应用经典大题例题(带答案)

高中数学第六章平面向量及其应用经典大题例题单选题1、在△ABC 中,点D 在边AB 上,BD =2DA .记CA ⃗⃗⃗⃗⃗ =m →,CD⃗⃗⃗⃗⃗ =n →,则CB ⃗⃗⃗⃗⃗ =( ) A .3m →−2n →B .−2m →+3n →C .3m →+2n →D .2m →+3n →答案:B分析:根据几何条件以及平面向量的线性运算即可解出.因为点D 在边AB 上,BD =2DA ,所以BD ⃗⃗⃗⃗⃗⃗ =2DA ⃗⃗⃗⃗⃗ ,即CD ⃗⃗⃗⃗⃗ −CB ⃗⃗⃗⃗⃗ =2(CA ⃗⃗⃗⃗⃗ −CD⃗⃗⃗⃗⃗ ), 所以CB ⃗⃗⃗⃗⃗ =3CD ⃗⃗⃗⃗⃗ −2CA ⃗⃗⃗⃗⃗ =3n ⃗ −2m ⃗⃗ =−2m →+3n →.故选:B .2、已知单位向量a →,b →,则下列说法正确的是( )A .a →=b →B .a →+b →=0→C .|a →|=|b →|D .a →//b →答案:C分析:利用向量的有关概念及单位向量的定义依次判断即得.对于A ,向量a →,b →为单位向量,向量a →,b →的方向不一定相同,A 错误;对于B ,向量a →,b →为单位向量,但向量a →, b →不一定为相反向量,B 错误;对于C ,向量a →,b →为单位向量,则|a →|=|b →|=1,C 正确;对于D ,向量a →,b →为单位向量,向量a →,b →的方向不一定相同或相反,即a →与b →不一定平行,D 错误. 故选:C.3、向量PA ⃗⃗⃗⃗⃗ =(k,12),PB ⃗⃗⃗⃗⃗ =(4,5),PC⃗⃗⃗⃗⃗ =(10,k).若A,B,C 三点共线,则k 的值为( ) A .−2B .1C .−2或11D .2或−11答案:C分析:求得BA ⃗⃗⃗⃗⃗ ,,利用向量共线的充要条件,可得关于k 的方程,求解即可. 解:由题可得:BA⃗⃗⃗⃗⃗ =PA ⃗⃗⃗⃗⃗ −PB ⃗⃗⃗⃗⃗ =(k,12)−(4,5)=(k −4,7), CA u u u rCA⃗⃗⃗⃗⃗ =PA ⃗⃗⃗⃗⃗ −PC ⃗⃗⃗⃗⃗ =(k,12)−(10,k )=(k −10,12−k ). 因为A,B,C 三点共线,所以BA⃗⃗⃗⃗⃗ ∥CA ⃗⃗⃗⃗⃗ ,所以(k −4)(12−k )−7(k −10)=0,整理得k 2−9k −22=0,解得k =−2或k =11.故选:C.4、如图,在梯形ABCD 中,AB ∥DC 且AB =2DC ,点E 为线段BC 的靠近点C 的一个四等分点,点F 为线段AD的中点,与BF 交于点O ,且AO ⃗⃗⃗⃗⃗ =xAB⃗⃗⃗⃗⃗ +yBC ⃗⃗⃗⃗⃗ ,则x +y 的值为( )A .1B .57C .1417D .56答案:C分析:由向量的线性运算法则化简得到AO ⃗⃗⃗⃗⃗ ==(x −y 2)AB ⃗⃗⃗⃗⃗ +2yAF ⃗⃗⃗⃗⃗ 和BO ⃗⃗⃗⃗⃗ =(1−x)BA ⃗⃗⃗⃗⃗ +4y 3BE ⃗⃗⃗⃗⃗ ,结合B,O,F 三点共线和A,O,E 三点共线,得出2x +3y −2=0和3x −4y =0,联立方程组,即可求解.根据向量的线性运算法则,可得AO⃗⃗⃗⃗⃗ =xAB ⃗⃗⃗⃗⃗ +yBC ⃗⃗⃗⃗⃗ =xAB ⃗⃗⃗⃗⃗ +y(BA ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ) =xAB ⃗⃗⃗⃗⃗ −yAB ⃗⃗⃗⃗⃗ +yAC ⃗⃗⃗⃗⃗ =(x −y)AB ⃗⃗⃗⃗⃗ +y ⋅(AD ⃗⃗⃗⃗⃗ +DC⃗⃗⃗⃗⃗ ) =(x −y)AB ⃗⃗⃗⃗⃗ +y ⋅(2AF ⃗⃗⃗⃗⃗ +12AB ⃗⃗⃗⃗⃗ )=(x −y)AB ⃗⃗⃗⃗⃗ +2yAF ⃗⃗⃗⃗⃗ +12yAB ⃗⃗⃗⃗⃗ =(x −y 2)AB ⃗⃗⃗⃗⃗ +2yAF ⃗⃗⃗⃗⃗ , 因为B,O,F 三点共线,可得x −y 2+2y =1,即2x +3y −2=0;又由BO ⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ +AO ⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ +xAB ⃗⃗⃗⃗⃗ +yBC ⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ −xBA ⃗⃗⃗⃗⃗ +y ⋅43BE ⃗⃗⃗⃗⃗ =(1−x)BA ⃗⃗⃗⃗⃗ +4y 3BE ⃗⃗⃗⃗⃗ , 因为A,O,E 三点共线,可得1−x +4y 3=1,即3x −4y =0,联立方程组{2x +3y −2=03x −4y =0,解得x =817,y =617,所以x +y =1417. 故选:C.5、若|AB⃗⃗⃗⃗⃗ |=5,|AC ⃗⃗⃗⃗⃗ |=8,则|BC ⃗⃗⃗⃗⃗ |的取值范围是( ) A .[3,8]B .(3,8)C .[3,13]D .(3,13) AE答案:C分析:利用向量模的三角不等式可求得|BC⃗⃗⃗⃗⃗ |的取值范围. 因为|BC⃗⃗⃗⃗⃗ |=|AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ |,所以,||AC ⃗⃗⃗⃗⃗ |−|AB ⃗⃗⃗⃗⃗ ||≤|BC ⃗⃗⃗⃗⃗ |≤|AC ⃗⃗⃗⃗⃗ |+|AB ⃗⃗⃗⃗⃗ |,即3≤|BC ⃗⃗⃗⃗⃗ |≤13. 故选:C.6、已知正三角形ABC 的边长为4,点P 在边BC 上,则AP⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ 的最小值为( ) A .2B .1C .−2D .−1答案:D分析:选基底,用基向量表示出所求,由二次函数知识可得.记|BP⃗⃗⃗⃗⃗ |=x ,x ∈[0,4] 因为AP⃗⃗⃗⃗⃗ =BP ⃗⃗⃗⃗⃗ −BA ⃗⃗⃗⃗⃗ , 所以AP⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ =BP ⃗⃗⃗⃗⃗ 2−BA ⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ =|BP ⃗⃗⃗⃗⃗ |2−2|BP ⃗⃗⃗⃗⃗ |=x 2−2x =(x −1)2−1≥−1. 故选:D7、若点M 是△ABC 所在平面内的一点,且满足3AM ⃗⃗⃗⃗⃗⃗ -AB⃗⃗⃗⃗⃗ -AC ⃗⃗⃗⃗⃗ =0→,则△ABM 与△ABC 的面积之比为( ) A .1∶2B .1∶3C .1∶4D .2∶5答案:B分析:由平面向量的加法结合已知可得M 为AD 的三等分点,然后由等高的三角形面积之比等于底边之比可得. 如图,D 为BC 边的中点,则AD ⃗⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ) 因为3AM⃗⃗⃗⃗⃗⃗ -AB ⃗⃗⃗⃗⃗ -AC ⃗⃗⃗⃗⃗ =0→ 所以3AM⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ =2AD ⃗⃗⃗⃗⃗ , 所以AM ⃗⃗⃗⃗⃗⃗ =23AD⃗⃗⃗⃗⃗ 所以S △ABM =23S △ABD =13S △ABC .故选:B8、如图,等腰梯形ABCD 中,AB =BC =CD =3AD ,点E 为线段CD 上靠近D 的三等分点,点F 为线段BC 的中点,则FE ⃗⃗⃗⃗⃗ =( )A .−1318AB ⃗⃗⃗⃗⃗ +518AC ⃗⃗⃗⃗⃗ B .−1318AB ⃗⃗⃗⃗⃗ +118AC ⃗⃗⃗⃗⃗ C .−1118AB ⃗⃗⃗⃗⃗ +49AC ⃗⃗⃗⃗⃗ D .−1118AB ⃗⃗⃗⃗⃗ +119AC⃗⃗⃗⃗⃗ 答案:B 分析:以AB⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ 为基底,利用平面向量线性运算的相关运算化简即可. FE⃗⃗⃗⃗⃗ =FC ⃗⃗⃗⃗⃗ +CE ⃗⃗⃗⃗⃗ =12BC ⃗⃗⃗⃗⃗ +23CD ⃗⃗⃗⃗⃗ =12(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )+23(BA ⃗⃗⃗⃗⃗ +23CB ⃗⃗⃗⃗⃗ ) =12AC ⃗⃗⃗⃗⃗ −12AB ⃗⃗⃗⃗⃗ −29AB ⃗⃗⃗⃗⃗ −49AC ⃗⃗⃗⃗⃗ =−1318AB ⃗⃗⃗⃗⃗ +118AC⃗⃗⃗⃗⃗ 故选:B多选题9、在△ABC 中,若(a 2+c 2−b 2)tanB =√3ac ,则角B 的值可以为( )A .π6B .π3C .2π3D .5π6答案:BC分析:利用余弦定理边化角可整理得到sinB ,结合B ∈(0,π)可得结果.∵(a 2+c 2−b 2)tanB =√3ac ,∴a 2+c 2−b 22ac ⋅tanB =cosB ⋅sinB cosB =sinB =√32, 又B ∈(0,π),∴B =π3或2π3.故选:BC.10、下列说法中正确的是( )A .平面向量的一个基底{e 1⃗⃗⃗ ,e 2⃗⃗⃗ }中,e 1⃗⃗⃗ ,e 2⃗⃗⃗ 一定都是非零向量.B .在平面向量基本定理中,若a =0⃗ ,则λ1=λ2=0.C .若单位向量e 1⃗⃗⃗ 、e 2⃗⃗⃗ 的夹角为2π3,则e 1⃗⃗⃗ 在e 2⃗⃗⃗ 方向上的投影向量是−12e 2⃗⃗⃗ .D .表示同一平面内所有向量的基底是唯一的.答案:ABC分析:由平面向量基本定理,依次判定即可选项A :作为基底的两个向量一定不共线,零向量与任意向量共线,因此e 1⃗⃗⃗ ,e 2⃗⃗⃗ 一定都是非零向量,故A 正确; 选项B :a =0⃗ =0⋅e 1⃗⃗⃗ +0⋅e 2⃗⃗⃗ ,由在同一基底下向量分解的唯一性,有λ1=λ2=0,故B 正确;选项C :e 1⃗⃗⃗ 在e 2⃗⃗⃗ 方向上的投影向量为:e 1⃗⃗⃗⃗ ⋅e 2⃗⃗⃗⃗ |e 2⃗⃗⃗⃗ |e 2⃗⃗⃗ =−12e 2⃗⃗⃗ ,故C 正确; 选项D :平面内任何两个不共线的向量都可作为基底,因此基底不是唯一的,故D 错误故选:ABC11、如图,B 是AC 的中点,BE⃗⃗⃗⃗⃗ =2OB ⃗⃗⃗⃗⃗ ,P 是平行四边形BCDE 内(含边界)的一点,且OP ⃗⃗⃗⃗⃗ =xOA ⃗⃗⃗⃗⃗ +yOB⃗⃗⃗⃗⃗ (x,y ∈R ),则下列结论正确的为( )A .当x =0时,y ∈[2,3]B .当P 是线段CE 的中点时,x =−12,y =52C .若x +y 为定值1,则在平面直角坐标系中,点P 的轨迹是一条线段D .x −y 的最大值为−1答案:BCD解析:利用向量共线的充要条件判断出A 错,C 对;利用向量的运算法则求出OP⃗⃗⃗⃗⃗ ,求出x ,y 判断出B 对,过P 作PM//AO ,交OE 于M ,作PN//OE ,交AO 的延长线于N ,则OP⃗⃗⃗⃗⃗ =ON ⃗⃗⃗⃗⃗⃗ +OM ⃗⃗⃗⃗⃗⃗ ,然后可判断出D 正确. 当x =0时,OP⃗⃗⃗⃗⃗ =yOB ⃗⃗⃗⃗⃗ ,则P 在线段BE 上,故1≤y ≤3,故A 错 当P 是线段CE 的中点时,OP ⃗⃗⃗⃗⃗ =OE ⃗⃗⃗⃗⃗ +EP ⃗⃗⃗⃗⃗ =3OB ⃗⃗⃗⃗⃗ +12(EB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ ) =3OB ⃗⃗⃗⃗⃗ +12(−2OB ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ )=−12OA ⃗⃗⃗⃗⃗ +52OB ⃗⃗⃗⃗⃗ ,故B 对 x +y 为定值1时,A ,B ,P 三点共线,又P 是平行四边形BCDE 内(含边界)的一点,故P 的轨迹是线段,故C 对如图,过P 作PM//AO ,交OE 于M ,作PN//OE ,交AO 的延长线于N ,则:OP⃗⃗⃗⃗⃗ =ON ⃗⃗⃗⃗⃗⃗ +OM ⃗⃗⃗⃗⃗⃗ ;又OP⃗⃗⃗⃗⃗ =xOA ⃗⃗⃗⃗⃗ +yOB ⃗⃗⃗⃗⃗ ;∴x ⩽0,y ⩾1; 由图形看出,当P 与B 重合时:OP ⃗⃗⃗⃗⃗ =0⋅OA ⃗⃗⃗⃗⃗ +1⋅OB⃗⃗⃗⃗⃗ ; 此时x 取最大值0,y 取最小值1;所以x −y 取最大值−1,故D 正确故选:BCD小提示:名师点评若OC⃗⃗⃗⃗⃗ =xOA ⃗⃗⃗⃗⃗ +yOB ⃗⃗⃗⃗⃗ ,则A,B,C 三点共线⇔x +y =1. 12、下列说法正确的有( )A .若|a →+b →|=|b →|且b →≠0,则a →=0→B .设a →,b →是非零向量,若|a →+b →|=|a →−b →|,则a →⊥b →C .若a →b →=a →c →且a →≠0,则b →=c →D .设a →,b →是非零向量,若|a →+b →|=|a →|−|b →|,则存在实数λ,使得a →=λb → 答案:BD分析:A. 举反例说明该命题错误;B.若|a →+b →|=|a →−b →|,所以a →⋅b →=0,则a →⊥b →,所以该命题正确;C. 若a →b →=a →c →=0且a →≠0,则a →⊥b →,a →⊥c →,所以b →,c →不一定相等,所以该命题错误;D. 分析得a →与b →反向,因此存在实数λ,使得b →=λa →,所以该命题正确.A. 若a →=−2b →≠0→也满足已知,但是a →≠0→,所以该命题错误;B.若|a →+b →|=|a →−b →|,所以a →2+b →2+2a →⋅b →=a →2+b →2−2a →⋅b →,∴a →⋅b →=0,则a →⊥b →,所以该命题正确;C. 若a →b →=a →c →=0且a →≠0,则a →⊥b →,a →⊥c →,所以b →,c →不一定相等,所以该命题错误;D. 若|a →+b →|=|a →|−|b →|,则|a →|2+|b →|2+2a →b →=|a →|2+|b →|2−2|a →||b →|,得a →b →=−|a →||b →|,则a →,b →的夹角的余弦cosθ=−1,则a →与b →反向,因此存在实数λ,使得b →=λa →,所以该命题正确.故选:BD13、已知a ,b ,c 分别为△ABC 的三个内角A ,B ,C 的对边,∠C =45°,c =√2,a =x ,若满足条件的三角形有两个,则x 的值可能为( )A .1B .1.5C .1.8D .2答案:BC分析:利用正弦定理求得sinA =12x ,再根据三角形有两解的条件可得A ∈(45∘,135∘),且A ≠90∘,由此求出x 的范围即可得解.在△ABC 中,由正弦定理得,sinA =asinC c =∘√2=12x , 因满足条件的三角形有两个,则必有A ∈(45∘,135∘),且A ≠90∘,即√22<sinA <1, 于是得√22<12x <1,解得√2<x <2,显然x 可取1.5,1.8. 故选:BC填空题14、给出下列命题:①零向量没有确定的方向;②在正方体ABCD -A 1B 1C 1D 1中,AC ⃗⃗⃗⃗⃗ =A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ;③若向量a 与向量b ⃗ 的模相等,则a ,b⃗ 的方向相同或相反; ④在四边形ABCD 中,必有AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ =AC⃗⃗⃗⃗⃗ . 其中正确命题的序号是________.答案:①②分析:根据零向量、相等向量、向量和及向量模等概念逐一判断.①正确;②正确,因为AC ⃗⃗⃗⃗⃗ 与A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ 的大小和方向均相同;③|a|=|b ⃗ |,不能确定其方向,所以a 与b ⃗ 的方向不能确定;④只有当四边形ABCD 是平行四边形时,才有AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ =AC⃗⃗⃗⃗⃗ .综上可知,正确命题为①②. 故答案为:①②15、如图所示,在矩形ABCD 中,AB =√2,BC =2,点E 在边CD 上,且DE ⃗⃗⃗⃗⃗ =2EC ⃗⃗⃗⃗⃗ ,则AE ⃗⃗⃗⃗⃗ BE⃗⃗⃗⃗⃗ 的值是________. 答案:329 sin sin a c A C分析:由于向量的数量积可以进行坐标运算,所以将几何问题转化为代数问题,建立以A 为原点, AB 所在直线为x 轴的平面直角坐标系,分别写出A 、B 、E 的坐标,再通过向量的坐标运算即可求出向量的数量积.解析 以A 为原点,AB 所在直线为x 轴、AD 所在直线为y 轴建立如图所示平面直角坐标系.∵AB =√2,BC =2,∴A (0,0),B (√2,0),C (√2,2),D (0,2),∵点E 在边CD 上,且DE⃗⃗⃗⃗⃗ =2EC ⃗⃗⃗⃗⃗ , ∴E (2√23,2).∴AE ⃗⃗⃗⃗⃗ =(2√23,2),BE ⃗⃗⃗⃗⃗ =(−√23,2), ∴AE ⃗⃗⃗⃗⃗ BE ⃗⃗⃗⃗⃗ =−49+4=329. 16、设a →,b →为单位向量,且|a →+b →|=1,则|a →−b →|=______________.答案:√3分析:整理已知可得:|a +b ⃗ |=√(a +b ⃗ )2,再利用a ,b ⃗ 为单位向量即可求得2a ⋅b ⃗ =−1,对|a −b⃗ |变形可得:|a −b ⃗ |=√|a |2−2a ⋅b⃗ +|b ⃗ |2,问题得解. 因为a ,b ⃗ 为单位向量,所以|a |=|b⃗ |=1 所以|a +b ⃗ |=√(a +b ⃗ )2=√|a |2+2a ⋅b ⃗ +|b ⃗ |2=√2+2a ⋅b⃗ =1 解得:2a ⋅b⃗ =−1 所以|a −b ⃗ |=√(a −b ⃗ )2=√|a |2−2a ⋅b⃗ +|b ⃗ |2=√3 所以答案是:√3小提示:本题主要考查了向量模的计算公式及转化能力,属于中档题.解答题17、康平滕龙阁,位于康平县中央公园中心,建在有“敖包朝霞”之称的敖包山旧址上,是老百姓心中的祥瑞之地.如图,小明同学为测量滕龙阁的高度,在滕龙阁的正东方向找到一座建筑物AB,高为8米,在地面上的点M(B,M,D三点共线)测得楼顶A,滕龙阁顶部C的仰角分别为15°和60°,在楼顶A处测得阁顶部C的仰角为30°,试替小明求滕龙阁的高度?(精确到0.01米)答案:37.86米分析:在△ACM中,利用正弦定理求得CM,然后在Rt△CDM中,由CD=CMsin60°求解.解:由题意得,在Rt△ABM中,AM=ABsin15°,在△ACM中,∠CAM=30°+15°=45°,∠AMC=180°−15°−60°=105°,所以∠ACM=30°,由正弦定理AMsin∠ACM =CMsin∠CAM,得CM=sin∠CAMsin∠ACM ⋅AM=√2ABsin15°,又sin15°=sin(45°−30°)=√22×√32−√22×12=√6−√24,在Rt△CDM中,CD=CMsin60°=√6AB2sin15°=√62×√6−√24=24+8√3≈37.86.答:滕龙阁的高度约为37.86米.18、如图,在直角梯形OABC中,OA//CB,OA⊥OC,OA=2BC=2OC,M为AB上靠近B的三等分点,OM交AC于D,P为线段BC上的一个动点.(1)用OA ⃗⃗⃗⃗⃗ 和OC⃗⃗⃗⃗⃗ 表示OM ⃗⃗⃗⃗⃗⃗ ; (2)求OD DM ;(3)设OB⃗⃗⃗⃗⃗ =λCA ⃗⃗⃗⃗⃗ +μOP ⃗⃗⃗⃗⃗ ,求λ⋅μ的取值范围. 答案:(1)OM ⃗⃗⃗⃗⃗⃗ =23OA ⃗⃗⃗⃗⃗ +23OC ⃗⃗⃗⃗⃗ ;(2)3;(3)[0,34]. 分析:(1)根据给定条件及几何图形,利用平面向量的线性运算求解而得;(2)选定一组基向量,OD⃗⃗⃗⃗⃗⃗ 将由这一组基向量的唯一表示出而得解; (3)由动点P 设出CP ⃗⃗⃗⃗⃗ =xOA ⃗⃗⃗⃗⃗ (0≤x ≤12),结合平面向量基本定理,λ⋅μ建立为x 的函数求解. (1)依题意CB ⃗⃗⃗⃗⃗ =12OA ⃗⃗⃗⃗⃗ ,AM ⃗⃗⃗⃗⃗⃗ =23AB ⃗⃗⃗⃗⃗ , ∴AM ⃗⃗⃗⃗⃗⃗ =23(OB ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ )=23(OC ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ )−23OA ⃗⃗⃗⃗⃗ =23OC ⃗⃗⃗⃗⃗ +13OA ⃗⃗⃗⃗⃗ −23OA ⃗⃗⃗⃗⃗ =23OC ⃗⃗⃗⃗⃗ −13OA ⃗⃗⃗⃗⃗ , ∴OM ⃗⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +AM ⃗⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +(23OC ⃗⃗⃗⃗⃗ −13OA ⃗⃗⃗⃗⃗ )=23OA ⃗⃗⃗⃗⃗ +23OC ⃗⃗⃗⃗⃗ ; (2)因OM 交AC 于D ,由(1)知OD ⃗⃗⃗⃗⃗⃗ =tOM ⃗⃗⃗⃗⃗⃗ =t(23OA ⃗⃗⃗⃗⃗ +23OC ⃗⃗⃗⃗⃗ )=OD ⃗⃗⃗⃗⃗⃗ =2t 3OA ⃗⃗⃗⃗⃗ +2t 3OC ⃗⃗⃗⃗⃗ , 由共起点的三向量终点共线的充要条件知,2t 3+2t 3=1,则t =34,OD ⃗⃗⃗⃗⃗⃗ =3DM ⃗⃗⃗⃗⃗⃗ ,|OD ⃗⃗⃗⃗⃗⃗||DM ⃗⃗⃗⃗⃗⃗⃗ |=3; (3)由已知OB ⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ +12OA ⃗⃗⃗⃗⃗ , 因P 是线段BC 上动点,则令CP ⃗⃗⃗⃗⃗ =xOA ⃗⃗⃗⃗⃗ (0≤x ≤12), OB⃗⃗⃗⃗⃗ =λCA ⃗⃗⃗⃗⃗ +μOP ⃗⃗⃗⃗⃗ =λ(OA ⃗⃗⃗⃗⃗ −OC ⃗⃗⃗⃗⃗ )+μ(OC ⃗⃗⃗⃗⃗ +CP ⃗⃗⃗⃗⃗ )=(λ+μx)OA ⃗⃗⃗⃗⃗ +(μ−λ)OC ⃗⃗⃗⃗⃗ , 又OC ⃗⃗⃗⃗⃗ ,OA ⃗⃗⃗⃗⃗ 不共线,则有{μ−λ=1λ+μx =12⇒{λ=μ−1μ=32+2x, 0≤x ≤12⇒1≤x +1≤32⇒1≤μ≤32, λ⋅μ=μ(μ−1)=(μ−12)2−14在μ∈[1,32]上递增,所以μ=1,(λ⋅μ)min =0,μ=32,(λ⋅μ)max =34,故λ⋅μ的取值范围是[0,34].小提示:由不共线的两个向量为一组基底,用该基底把相关条件和结论表示成向量的形式,再通过向量的运算来解决.。

平面向量 高三 一轮复习(完整版)

平面向量 高三 一轮复习(完整版)

题记:向量由于具有几何形式与代数形式的“双重身份”,使它成为高中数学知识的一个交汇点,成为多项内容的媒介.一、平面向量的概念及其线性运算 【例1】判断下列命题的真假:1、有向线段就是向量,向量就是有向线段;2、非零向量a 与非零向量b 平行,则a 与b 的方向相同或相反;3、向量AB →与向量CD →共线,则A 、B 、C 、D 四点共线; 4、若向量a 与b 同向,且|a |>|b |,则a >b ;5、若向量|a |=|b |,则a 与b 的长度相等且方向相同或相反;6、对于任意向量|a |=|b |,且a 与b 的方向相同,则a =b ;7、由于零向量0方向不确定,故0不能与任意向量平行;8、起点不同,但方向相同且模相等的几个向量是相等向量;9、向量与的长度相等;10、两个相等向量若起点相同,则终点必相同; 11、只有零向量的模等于0; 12、共线的单位向量都相等; 13、向量与是两平行向量;14、与任一向量都平行的向量为向量; 15、若AB =DC ,则A 、B 、C 、D 四点构成平行四边形;16、设O 是正三角形ABC 的中心,则向量AB 的长度是OA 长度的3倍;17、在坐标平面上,以坐标原点O 为起点的单位向量的终点P 的轨迹是单位圆; 18、凡模相等且平行的两向量均相等;19、与共线的等价条件可以是存在一个实数λ,使=λ或=λ;20、设,,是任意的非零平面向量且互不共线,则a b a b +>+21、下列命题中:其中正确的是_____________① →→→→→→→⋅-⋅=-⋅c a b a c b a )(;② →→→→→→⋅⋅=⋅⋅c b a c b a )()(;③ 2()a b →→-2||a →=22||||||a b b →→→-⋅+; ④ 若0=⋅→→b a ,则0=→a 或0=→b ;⑤若,a b c b ⋅=⋅ 则a c =⑥22a a = ;⑦2a b ba a⋅=; ⑧222()a b a b ⋅=⋅ ; ⑨222()2a b a a b b -=-⋅+二、平面向量平行定理(共线定理)(1)若//(0)a b b ≠⇒(2)若a b λ=共线定理作用(1) (2)【例2】设两个非零向量a 与b不共线,(1)若,28,3().AB a b BC a b CD a b =+=+=-求证:A..B.D 三点共线;(2) 试确定实数k,使ka b + 和a kb +共线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精锐教育学科教师辅导讲义
向量共线或平行:通过有向线段如果向量的基线互相平行或重合,则称这些向量共线或平行.向量说明:共线向量的方向相同或相反,同方向且长度等于1的向量,
a a =a
.用向量表示点的位置:任给一定点,过点O 作有向线段OA a =,则点的和(或和向量),即a b AB BC AC +=+=① 已知两个不共线的向量,作AB a =,AD b =,则A ,B , 向量的运算性质:a =
个向量,依次把这n 个向量首尾相连,
如果把两个向量的始点放在一起,则这两个向量的差是以减向量的终点为始
)一个向量减去另一个向量等于加上这个向量的相反向量 a a λ=
,存在唯一的一对实数1a ,2a ,使)基底:我们把不共线向量叫做表示这一平面内所有向量的一组基底,记作
a 关于基底{1e 注:①定理中1e ,2e 是两个不共线向量;
是平面内的任一向量,且实数对A ,B ,P
一定在l 上.OA AP OA tOB tOA =+=+-设点P 满足等式(1)OP t OA tOB =-+,则AP t AB =,即l 可推广到OAB ∆)OA OB +存在.
的坐标;反之,点A 的坐标也是点A 向量OA 的坐标.122(,)a b a a b +=+;②
若向量b 不平行于坐标轴,即三、平面向量的数量积和应用
并规定0π<≤≤,在这个规定下,两个向量的夹角被唯一确定了,并且有>.
当π
,2
a b <>=
时,我们说向量向量的数量积(内积)定义cos a b cos a b =向量内积的性质
cos a =a ⊥b a ⇒,且0a b ⋅=⇒a ⊥b ; 2
a a a ⋅=,即a a a =⋅; cos ,a
b a b a b
⋅<>=

b a b ≤. 向量数量积的运算律
()a b c a c b c +=⋅+⋅ 向量数量积的坐标运算与度量公式
{②用向量的坐标表示两个向量垂直的条件:a ⊥1120b a b a ⇔+=
③向量的长度公式:
已知12(,)a a a =,则2212a a a =+,即向量的长度等于它的坐标平方和的算术平方根. ④两点间的距离公式:
如果11(,)A x y ,22(,)B x y ,则222121()()AB x x y y =-+-. ⑤两个向量夹角余弦的坐标表达式:112222
22
1
2
1
2
cos a b a b a b a a b b +<⋅>=
++
【典例解析】
1. 向量及与向量相关的基本概念
【例1】 判断下列命题是否正确,并说明理由:
(1)共线向量一定在同一条直线上. ( ) (2)所有的单位向量都相等.
( ) (3)向量a b →

与共线,b c →

与共线,则a c →

与共线. ( ) (4)向量a b →

与共线,则//a b →

( ) (5)向量//AB CD →

,则//AB CD .

) (6)平行四边形两对边所在的向量一定是相等向量. (

【例2】 设0a 为单位向量,①若a 为平面内的某个向量,则0a a a =⋅;②若a 与0a 平行,则0a a a =⋅;
③若a 与0a 平行且1a =,则0a a =.上述命题中,假命题个数是( ) A .0
B .1
C .2
D .3
【例3】 判断下列命题是否正确,若不正确,请简述理由.
①向量AB 与CD 是共线向量,则A 、B 、C 、D 四点必在一直线上; ②单位向量都相等;
③任一向量与它的相反向量不相等;
④四边形ABCD 是平行四边形的充要条件是AB DC = ⑤模为0是一个向量方向不确定的充要条件; ⑥共线的向量,若起点不同,则终点一定不同.
【例4】 平面向量a ,b 共线的充要条件是( )
A .a ,b 方向相同
B .a ,b 两向量中至少有一个为零向量
C .λ∃∈R ,b a λ=
D .存在不全为零的实数1λ,2λ,120a b λλ+=
2. 向量的加、减法
【例5】 若32m n a +=,3m n b -=,其中a ,b 是已知向量,求m ,n .
【例6】 设P 是ABC △所在平面内的一点,2BC BA BP +=,则( )
A .0PA P
B += B .0P
C PA += C .0PB PC +=
D .0PA PB PC ++=
【例7】 已知O A B ,,是平面上的三个点,直线AB 上有一点C ,满足20AC CB +=,则OC =( )
A .2OA O
B -
B .2OA OB -+
C .21
33OA OB -
D .12
33
OA OB -+
【例8】 设D ,E ,F ,分别是ABC ∆的三边BC 、CA 、AB 上的点,且
2,DC BD =2,CE EA =2,AF FB =则AD BE CF ++与BC ( )
A .反向平行
B .同向平行
C .互相垂直
D .既不平行也不垂直
3. 向量数乘运算及其几何意义
线,则b a c
++=
点中共线的三点是___________
、、三点共线,求
B D
,B,C三点共线B.A,B,D三点共线
平面向量的基本定理
与2e - B .中,,.若点满足,则( )
B .33
c b -
3c
D .33
b c +
A
b ,不共线,m 时,有m n += 2)y +,若a =()3,2-, ()5,1N --且 MP =
MN , 求P
1且c与d同向B.k=且c与d反向B.0 C.1
B .-
C .
D .3
a =
b =a b ==()m a b ma mb +=+
()()a b c b c a ⋅⋅=⋅
a b a b
-<
)()
b c a c a b
⋅-⋅不与c22
94
a b 真命题是()
.①②B.②③.③④D.②④
a b
==
B.3
2
3
2
D
向量求模
a=b=
求a b
,的值;⑵求a b
+的值.
AB=BC=AC.
a=
==b等于(
a b
2,
2 B.23D.12
CB=
a=b=
A.30︒B.60︒C.120D =,则
b a b
以上命题中,正确的命题序号是
Q=(
}1)B
=
(2cos

OC=
7
⊥,求的值.
AC BC
=
3|
)试用k表示a b⋅,并求出a b的最大值及此时a与b的夹角
取得最大值时,求实数λ,使的值最小,并对这一结果作出几何解及a b
+;
+的最大值,并求使函数取得最大值时
a b
OB,
关于x的函数解析式
⋅=-,求
1
AC BC。

相关文档
最新文档