概率统计例题及练习题(答案)
九年级数学概率统计练习题及答案
九年级数学概率统计练习题及答案一、选择题1. 下列各项中,属于概率的是:A. 李明抽到红球的可能性是10%B. 今天下雨的可能性是80%C. 买彩票中奖的可能性是1/1000000D. 扔一次骰子掷出的点数是4的可能性是1/62. 某班级有30个学生,其中有18个男生和12个女生。
从班级中随机选取一个学生,男生和女生被选到的概率相等。
那么,被选到的学生是男生的概率是多少?A. 2/3B. 1/3C. 3/5D. 1/23. 一副扑克牌中有52张牌,其中红心牌有13张。
从扑克牌中随机抽一张牌,抽到红心牌的概率是多少?A. 1/4B. 1/2C. 1/13D. 1/52二、填空题1. 从数字1、2、3、4、5中任意抽取一个数,抽到奇数的概率是_________。
2. 一组数据:10、12、14、16、18中,大于15的数的概率是_________。
3. 一枚硬币抛掷,正面向上的概率是_________。
三、计算题1. 某班级有40个学生,其中有18个男生和22个女生。
从班级中随机选取两个学生,分别计算:a) 选出的两个学生都是男生的概率是多少?b) 选出的两个学生一个是男生一个是女生的概率是多少?2. 一副扑克牌中有52张牌,其中黑色牌有26张。
从扑克牌中随机抽取两张牌,并将它们放回,再抽取一张牌。
计算:a) 三次抽取都是黑色牌的概率是多少?b) 三次抽取中至少有一张黑色牌的概率是多少?四、解答题1. 一组数据:5、7、9、11、13,从中随机抽取一个数。
计算抽取奇数的概率。
答案解析:一、选择题1. D2. A3. A二、填空题1. 3/52. 3/53. 1/2三、计算题1.a) 18/40 × 17/39 = 9/20 × 17/39 = 153/780b) 18/40 × 22/39 + 22/40 × 18/39 = 396/780 = 2/5 2.a) 26/52 × 26/52 × 26/52 = 27/64b) 1 - (26/52 × 26/52 × 26/52) = 37/64四、解答题1. 3/5通过以上习题,希望能够帮助同学们加深对数学概率统计的理解和掌握。
初中数学概率统计练习题及参考答案
初中数学概率统计练习题及参考答案初中数学概率统计练习题及参考答案:一、选择题1、某班级三年级有男生35人,女生40人。
从这些人中任选一个人,下列说法中,正确的是()A.女生的概率是 35/75B.女生的概率是 40/75C.男生的概率是 35/75D.男生的概率是 40/752、从 1、2、3、4、5 中任取一个数字,问所得数的个位数为 3 的概率是多少?A.2/5B.1/5C.1/10D.2/103、小明每次买两个鸡蛋,有80%的概率一个鸡蛋没碎,20%的概率两个鸡蛋都碎了。
问题一:小明买8个鸡蛋,不会是全部碎了吧?问题二:小明买8个鸡蛋,不需要赔偿多少个鸡蛋?A.不会全部碎,赔偿两个B.不会全部碎,赔偿四个C.不会全部碎,赔偿六个D.会全部碎二、填空题1、小明从 1、2、3、4、5 中任取一个数,他猜测所得数小于 4 的概率是 ______。
2、小港每小时按外卖订单分别有30%、25%、20%、15%、10%的概率接到0、1、2、3、4个外卖订单。
求小港接到的订单数的期望值是 ______。
3、有 15 条石子 5 个人轮流取,每次只能取 1-3 条,最后取光石子的人失败。
第一个取石子的人应该取几颗才能保证享有取胜的策略?三、解答题1、小明做课外辅导班的概率是 3/4,小华做课外辅导班的概率是1/2。
两人都不做辅导课的概率是多少?解:小明不做辅导班的概率为 1-3/4=1/4,小华不做辅导班的概率为1-1/2=1/2。
根据“都不”的概率公式:P(A且B)=P(A)×P(B),两人都不做辅导班的概率为 1/4×1/2=1/8。
2、有 10 个球,其中有 4 个黑球。
每次抽出 1 个球,观察它的颜色后再放回去。
问需要抽多少次,才可使得抽到 1 个白球的概率大于 0.5?解:这是个典型的随机事件重复试验问题,符合二项分布的模型。
假定抽到白球的次数为 X,则 P(X=i)=(6/10)^i*(4/10)^(10-i)*C(10,i)。
概率统计例题及练习题(答案).
第八讲概率统计【考点透视】1.了解随机事件的发生存在着规律性和随机事件概率的意义.2.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率.3.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率.4.会计算事件在n 次独立重复试验中恰好发生k 次的概率.5. 掌握离散型随机变量的分布列.6.掌握离散型随机变量的期望与方差.7.掌握抽样方法与总体分布的估计.8.掌握正态分布与线性回归. 【例题解析】考点1. 求等可能性事件、互斥事件和相互独立事件的概率解此类题目常应用以下知识:(1等可能性事件(古典概型的概率:P (A =((I card A card =n m ;等可能事件概率的计算步骤:①计算一次试验的基本事件总数n ;②设所求事件A ,并计算事件A 包含的基本事件的个数m ; ③依公式(m P A n=求值;④答,即给问题一个明确的答复.(2互斥事件有一个发生的概率:P (A +B =P (A +P (B ; 特例:对立事件的概率:P (A +P (A =P (A +A =1. (3相互独立事件同时发生的概率:P (A ·B =P (A ·P (B ;特例:独立重复试验的概率:P n (k =k n kk n p p C --1(.其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P+P]n 展开的第k+1项. (4解决概率问题要注意“四个步骤,一个结合”:①求概率的步骤是:第一步,确定事件性质⎧⎪⎪⎨⎪⎪⎩等可能事件互斥事件独立事件 n 次独立重复试验即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算⎧⎨⎩和事件积事件即是至少有一个发生,还是同时发生,分别运用相加或相乘事件.第三步,运用公式(((((((((1k k n k n n m P A nP A B P A P B P A B P A P B P k C p p -⎧=⎪⎪⎪+=+⎨⎪⋅=⋅⎪=-⎪⎩等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解第四步,答,即给提出的问题有一个明确的答复.例1.在五个数字12345,,,,中,若随机取出三个数字,则剩下两个数字都是奇数的概率是 (结果用数值表示.[考查目的]本题主要考查概率的概念和等可能性事件的概率求法.[解答过程]0.3提示:1335C 33.54C 102P ===⨯例2.一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为 .[考查目的]本题主要考查用样本分析总体的简单随机抽样方式,同时考查概率的概念和等可能性事件的概率求法.用频率分布估计总体分布,同时考查数的区间497.5g~501.5的意义和概率的求法. [解答过程]1.20提示:51.10020P ==例3从自动打包机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g :492 496 494 495 498 497 501 502 504 496 497 503 506 508 507 492 496 500 501 499根据的原理,该自动包装机包装的袋装食盐质量在497.5g~501.5g 之间的概率约为__________.[考查目的]本题主要考查用频率分布估计总体分布,同时考查数的区间497.5g~501.5的意义和概率的求法.[解答过程]在497.5g~501.5内的数共有5个,而总数是20个,所以有51.204=点评:首先应理解概率的定义,在确定给定区间的个体的数字时不要出现错误.例4.接种某疫苗后,出现发热反应的概率为0.80.现有5人接种该疫苗,至少有3人出现发热反应的概率为__________.(精确到0.01[考查目的] 本题主要考查运用组合、概率的基本知识和分类计数原理解决问题的能力,以及推理和运算能力.[解答提示]至少有3人出现发热反应的概率为33244555550.800.200.800.200.800.94C C C ⋅⋅+⋅⋅+⋅=.故填0.94.例5.右图中有一个信号源和五个接收器.接收器与信号源在同一个串联线路中时,就能接收到信号,否则就不能接收到信号.若将图中左端的六个接线点随机地平均分成三组,将右端的六个接线点也随机地平均分成三组,再把所有六组中每组的两个接线点用导线连接,则这五个接收器能同时接收到信号的概率是(A 454 (B 361 (C 154 (D 158[考查目的] 本题主要考查运用组合、概率知识,以及分步计数原理解决问题的能力,以及推理和运算能力.[解答提示]由题意,左端的六个接线点随机地平均分成三组有2226423315C C C A =种分法,同理右端的六个接线点也随机地平均分成三组有2226423315C C C A =种分法;要五个接收器能同时接收到信号,则需五个接收器与信号源串联在同一个线路中,即五个接收器的一个全排列,再将排列后的第一个元素与信号源左端连接,最后一个元素与信号源右端连接,所以符合条件的连接方式共有55120A =种,所求的概率是120822515P ==,所以选D.点评:本题要求学生能够熟练运用排列组合知识解决计数问题,并进一步求得概率问题,其中隐含着平均分组问题.例6.从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A :“取出的2件产品中至多有1件是二等品”的概率(0.96P A =. (1求从该批产品中任取1件是二等品的概率p ;(2若该批产品共100件,从中任意抽取2件,求事件B :“取出的2件产品中至少有一信号件二等品”的概率(P B .[考查目的]本小题主要考查相互独立事件、互斥事件等的概率计算,运用数学知识解决问题的能力,以及推理与运算能力.[解答过程](1记0A 表示事件“取出的2件产品中无二等品”, 1A 表示事件“取出的2件产品中恰有1件二等品”. 则01A A ,互斥,且01A A A =+,故01((P A P A A =+212012(((1C (11.P A P A p p p p =+=-+-=- 于是20.961p =-.解得120.20.2p p ==-,(舍去.(2记0B 表示事件“取出的2件产品中无二等品”,则0B B =.若该批产品共100件,由(1知其中二等品有1000.220⨯=件,故28002100C 316(C 495P B ==.00316179((1(1.495495P B P B P B ==-=-=例7.两部不同的长篇小说各由第一、二、三、四卷组成,每卷1本,共8本.将它们任意地排成一排,左边4本恰好都属于同一部小说的概率是 (结果用分数表示.[考查目的] 本题主要考查运用排列和概率知识,以及分步计数原理解决问题的能力,以及推理和运算能力.[解答提示]从两部不同的长篇小说8本书的排列方法有88A 种,左边4本恰好都属于同一部小说的的排列方法有442442A A A 种.所以, 将符合条件的长篇小说任意地排成一排,左边4本恰好都属于同一部小说的概率是 44244288135A A A P A ==种.所以,填135.例8.甲、乙两袋装有大小相同的红球和白球,甲袋装有2个红球,2个白球;乙袋装有2个红球,n 个白球.由甲,乙两袋中各任取2个球.(Ⅰ若n=3,求取到的4个球全是红球的概率;(Ⅱ若取到的4个球中至少有2个红球的概率为43,求n.[考查目的]本题主要考查排列组合、概率等基本知识,同时考察逻辑思维能力和数学应用能力.[标准解答](错误!未找到引用源。
概率统计参考答案(习题一)
概率统计参考答案(习题一)1、 写出下列随机试验的样本空间及各个事件的样本点:(1) 同时郑三枚骰子,记录三枚骰子的点数之和。
解:设三枚骰子点数之和为k ,k=3,,4,5,…,18;则样本空间为{k |k 3,4,...,18}Ω==,且事件A={k |k 11,12,...,18}=,事件B={k |k 3,4,...,14}=。
(2) 解:设从盒子中抽取的3只电子元件为(i,j,k),(i,j,k)为数列1,2,3,4,5的任意三个元素构成的组合。
则Ω={(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)} A={(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}。
2、 下列式子什么时候成立?解:AUB=A :成立的条件是B ⊂A ;(2)AB=A :成立的条件为A ⊂B 。
3、 设A 、B 、C 表示三事件,试将下列事件用A 、B 、C 表示出来。
解:(1) 仅A 发生:ABC ;(2) A 、B 、C 都发生:ABC ;(3) A 、B 、C 都不发生:ABC ;(4) A 、B 、C 不都发生:ABC ;(5) A 不发生,且B 与C 中至少发生一事件:(A B C);(6) A 、B 、C 中至少有一事件发生:AUBUC ;(7) A 、B 、C 中恰好有一事件发生:ABC+ABC+ABC ;(8) A 、B 、C 中至少二事件发生: BC ABC ABC ABC A +++=(AB )U (AC )U (BC );(9) A 、B 、C 中最多一事件发生:BC ABC ABC ABC A +++=(AB)U(AC)U(BC)------------------。
4、设P(A)=0.5,P(B)=0.6,问:(1)什么条件下,P(AB)取得最大值,最大值是多少?解:由P(AUB)=P(A)+P(B)-P(AB)得到P(AB)=P(A)+P(B)-P(AUB)<=0.5+0.6-0.6=0.5,此时,P(AUB)=0.6。
高中概率统计试题及答案
高中概率统计试题及答案一、选择题(每题3分,共30分)1. 如果一个袋子里有5个红球和3个蓝球,随机抽取一个球,抽到红球的概率是多少?A. 1/3B. 1/2C. 3/5D. 2/5答案:C2. 一枚均匀的硬币连续抛掷两次,出现至少一次正面的概率是多少?A. 1/2B. 3/4C. 1/4D. 1/8答案:B3. 一个班级有30个学生,其中15个男生和15个女生。
随机抽取3名学生,抽到至少1名男生的概率是多少?A. 2/3B. 3/4C. 1/2D. 5/6答案:D4. 一个骰子投掷一次,得到偶数点数的概率是多少?A. 1/2B. 1/3C. 1/6D. 2/3答案:A5. 一个袋子里有3个白球和2个黑球,不放回地连续抽取两次,抽到一白一黑的概率是多少?A. 1/5B. 3/5C. 2/5D. 4/5答案:B6. 一个袋子里有2个红球,3个蓝球和5个绿球,随机抽取一个球,抽到蓝球的概率是多少?A. 1/5B. 3/10C. 1/2D. 1/4答案:B7. 一个班级有50名学生,其中20名是优秀学生。
随机抽取5名学生,抽到至少2名优秀学生的概率是多少?A. 0.7B. 0.3C. 0.5D. 0.9答案:A8. 一个袋子里有5个红球和5个蓝球,随机抽取3个球,抽到至少2个红球的概率是多少?A. 1/2B. 2/3C. 1/3D. 1/4答案:B9. 一个骰子投掷两次,两次都是6点的概率是多少?A. 1/6B. 1/36C. 1/12D. 1/24答案:B10. 一个班级有40名学生,其中10名是优秀学生。
随机抽取4名学生,抽到至少1名优秀学生的概率是多少?A. 1B. 3/4C. 2/5D. 1/4答案:A二、填空题(每题4分,共20分)1. 一个袋子里有10个球,其中4个是红球,6个是蓝球。
随机抽取一个球,抽到红球的概率是________。
答案:2/52. 一个班级有50名学生,其中25名是女生。
高中数学概率统计专题练习题及答案
高中数学概率统计专题练习题及答案一、选择题1. 掷一枚骰子,结果为奇数的概率是多少?A. 1/2B. 1/6C. 2/3D. 1/32. 从1至20这20个数字中随机选出一个数,选出的数是素数的概率是多少?A. 1/5B. 1/4C. 1/2D. 2/53. 一只盒子中有5张红牌和3张蓝牌,从中随机抽取2张牌,同时放回,再随机抽取2张牌,求两次抽取都是红牌的概率是多少?A. 1/16B. 3/8C. 1/4D. 1/8二、计算题1. 一次考试中,甲乙丙三位同学都有70%的概率通过考试。
求三位同学中至少有一位通过考试的概率。
答案:1 - (1 - 0.7)^3 = 0.9732. 从1至100这100个数字中随机选出一个数,选出的数是2的倍数且小于等于50的概率是多少?答案:50/100 = 0.53. 有A、B两个车站,A车站开往B车站的列车间隔是15分钟,B车站开往A车站的列车间隔是10分钟。
现在一个人随机到达A车站,请问他至少要等待几分钟才能搭乘到开往B车站的列车?答案:最小公倍数(15, 10) = 30分钟三、应用题1. 每个学生参加一次足球比赛的概率是0.4,问一个班级20个同学中至少有10个学生参加比赛的概率是多少?答案:利用二项分布公式,计算P(X≥10),其中n=20,p=0.4,k≥10。
答案约为0.599。
2. 一批产品有10%的次品率,现从中随机抽取20个产品,求其中恰好有3个次品的概率。
答案:利用二项分布公式,计算P(X=3),其中n=20,p=0.1,k=3。
答案约为0.201。
3. 一支篮球队最近10场比赛中获胜的概率是0.8,在下一场比赛中,求该队至少获胜8次的概率。
答案:利用二项分布公式,计算P(X≥8),其中n=10,p=0.8,k≥8。
答案约为0.967。
以上为高中数学概率统计专题练习题及答案。
希望对您的学习有所帮助!。
《概率统计》练习题及参考答案
习题一 (A )1.写出下列随机试验的样本空间: (1)一枚硬币连抛三次;(2)两枚骰子的点数和;(3)100粒种子的出苗数;(4)一只灯泡的寿命。
2. 记三事件为C B A ,,。
试表示下列事件:(1)C B A ,,都发生或都不发生;(2)C B A ,,中不多于一个发生;(3)C B A ,,中只有一个发生;(4)C B A ,,中至少有一个发生; (5)C B A ,,中不多于两个发生;(6)C B A ,,中恰有两个发生;(7)C B A ,,中至少有两个发生。
3.指出下列事件A 与B 之间的关系:(1)检查两件产品,事件A =“至少有一件合格品”,B =“两件都是合格品”; (2)设T 表示某电子管的寿命,事件A ={T >2000h },B ={T >2500h }。
4.请叙述下列事件的互逆事件:(1)A =“抛掷一枚骰子两次,点数之和大于7”; (2)B =“数学考试中全班至少有3名同学没通过”; (3)C =“射击三次,至少中一次”;(4)D =“加工四个零件,至少有两个合格品”。
5.从一批由47件正品,3件次品组成的产品中,任取一件产品,求取得正品的概率。
6.电话号码由7个数字组成,每个数字可以是9,,1,0 中的任一个,求:(1)电话号码由完全不相同的数字组成的概率;(2)电话号码中不含数字0和2的概率;(3)电话号码中4至少出现两次的概率。
7.从0,1,2,3这四个数字中任取三个进行排列,求“取得的三个数字排成的数是三位数且是偶数”的概率。
8.从一箱装有40个合格品,10个次品的苹果中任意抽取10个,试求:(1)所抽取的10个苹果中恰有2个次品的概率;(2)所抽取的10个苹果中没有次品的概率。
9.设A ,B 为任意二事件,且知4.0)()(==B p A p ,28.0)(=B A p ,求)(B A p ⋃;)(A B p 。
10.已知41)(=A p ,31)(=AB p ,21)(=B A p ,求)(B A p ⋃。
初三数学概率与统计练习题及答案
初三数学概率与统计练习题及答案1. 问题描述:已知一筒有12只红球、8只蓝球,从中任意取出一球,求取出红球的概率。
解析:首先计算出总共的球数,即12只红球加上8只蓝球等于20只球。
然后计算红球的数量,即12只红球。
最后,将红球的数量除以总球数,即12/20=0.6。
答案:取出红球的概率为0.6。
2. 问题描述:一只袋子中有5个红球、3个黄球和2个绿球,从中连续取出2个球,不放回,求取出红球后再取出黄球的概率。
解析:根据题意,第一次取出红球的概率为5/10,然后从剩下的球中取出黄球的概率为3/9。
因为两次抽取是连续进行的,所以需要将两次的概率相乘,即(5/10) * (3/9) = 1/6。
答案:取出红球后再取出黄球的概率为1/6。
3. 问题描述:一张桌子上有6本数学书和4本英语书,从中任意取出3本书,求其中至少有2本是数学书的概率。
解析:首先计算出总共的书的数量,即6本数学书加上4本英语书等于10本书。
然后计算出选出2本数学书和1本非数学书的情况数,即C(6, 2) * C(4, 1)。
接着计算出选出3本数学书的情况数,即C(6, 3)。
最后,将两种情况的情况数相加,并除以总的情况数,即[C(6, 2) * C(4, 1) + C(6, 3)] / C(10, 3)。
答案:取出至少有2本是数学书的概率为([C(6, 2) * C(4, 1) + C(6, 3)] / C(10, 3)。
4. 问题描述:一桶中有10个红球和10个蓝球,从中连续取出3个球,不放回,求取出的3个球颜色相同的概率。
解析:计算取出红球的情况数,即C(10, 3)。
然后计算取出蓝球的情况数,即C(10, 3)。
最后,将两种情况的情况数相加,并除以总的情况数,即[C(10, 3) + C(10, 3)] / C(20, 3)。
答案:取出3个球颜色相同的概率为([C(10, 3) + C(10, 3)] / C(20, 3)。
5. 问题描述:甲、乙、丙三人赛跑,根据过去的表现,甲获得第一的概率为0.4,乙获得第一的概率为0.3,丙获得第一的概率为0.3。
概率统计习题带答案
概率论与数理统计习题及题解沈志军 盛子宁第一章 概率论的基本概念1.设事件B A ,及B A 的概率分别为q p ,及r ,试求)(),(),(B A P B A P AB P 及)(AB P2.若C B A ,,相互独立,试证明:C B A ,,亦必相互独立。
3.试验E 为掷2颗骰子观察出现的点数。
每种结果以),(21x x 记之,其中21,x x 分别表示第一颗、第二颗骰子的点数。
设事件}10|),{(2121=+=x x x x A , 事件}|),{(2121x x x x B >=。
试求)|(A B P 和)|(B A P4.某人有5把钥匙,但忘了开房门的是哪一把,只得逐把试开。
问:(1)恰好第三次打开房门锁的概率?(2)三次内打开的概率?(3)如果5把里有2把房门钥匙,则在三次内打开的概率又是多少?5.设有甲、乙两袋,甲袋中装有n 个白球、m 个红球,乙袋中装有N 个白球、M 个红球。
今从甲袋中任意取一个放入乙袋中,再从乙袋中任意取一个,问取到白球的概率是多少?6.在时间间隔5分钟内的任何时刻,两信号等可能地进入同一收音机,如果两信号进入收音机的间隔小于30秒,则收音机受到干扰。
试求收音机不受干扰的概率?7.甲、乙两船欲停靠同一码头,它们在一昼夜内独立地到达码头的时间是等可能的,各自在码头上停留的时间依次是1小时和2小时。
试求一船要等待空出码头的概率?8.某仓库同时装有甲、乙两种警报系统,每个系统单独使用的有效率分别为0.92,0.93,在甲系统失灵的条件下乙系统也失灵的概率为0.15。
试求下列事件的概率:(1)仓库发生意外时能及时发出警报;(2)乙系统失灵的条件下甲系统亦失灵?9.设B A ,为两随机变量,试求解下列问题:(1) 已知6/1)|(,3/1)()(===B A P B P A P 。
求:)|(B A P ; (2) 已知2/1)|(,3/1)|(,4/1)(===B A P A B P A P 。
《概率论与数理统计》练习题(含答案)
《概率论与数理统计》练习题(含答案)一、单项选择题1.设,,A B C 为三个事件,且,A B 相互独立,则以下结论中不正确的是( ) (A )若()1P C =,则AC 与BC 也独立. (B )若()1P C =,则A C 与B 也独立. (C )若()0P C =,则A C 与B 也独立. (D )若C B ⊂,则A 与C 也独立.答案:(D ).解答:因为概率为1的事件和概率为0的事件与任何事件独立,所以(A ),(B ),(C )都是正确的,只能选(D ).事实上由图 可见A 与C 不独立.2.设随机变量~(0,1),X N X 的分布函数为()x Φ,则(||2)P X >的值为( ) (A )2[1(2)]-Φ. (B )2(2)1Φ-. (C )2(2)-Φ. (D )12(2)-Φ.答案:(A )解答: ~(0,1)X N 所以(||2)1(||2)1(22)P X P X P X >=-≤=--<≤ 1(2)(2)1[2(2)1]2[1(2)]=-Φ+Φ-=-Φ-=-Φ 应选(A ).3.设随机变量X 和Y 不相关,则下列结论中正确的是( ) (A )X 与Y 独立. (B )()D X Y DX DY -=+. (C )()D X Y DX DY -=-. (D )()D XY DXDY =.SABC答案:(B )解答:由不相关的等价条件知,0y x cov 0xy =⇒=),(ρ ()+2cov x y D X Y DX DY -=+(,) 应选(B ).4.设离散型随机变量X 和Y 的联合概率分布为(,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)111169183X Y P αβ若,X Y 独立,则,αβ的值为( )(A )21,99αβ==. (A )12,99αβ==.(C ) 11,66αβ== (D )51,1818αβ==.答案:(A )解答: 若,X Y 独立则有(2,2)(2)(2)P X Y P X P Y α======1121()()()3939αβαα=+++=+∴29α=, 19β=故应选(A ).5.设总体X 的数学期望为12,,,,n X X X μ为来自X 的样本,则下列结论中正确的是( )(A )1X 是μ的无偏估计量. (B )1X 是μ的极大似然估计量. (C )1X 是μ的相合(一致)估计量. (D )1X 不是μ的估计量. 答案:(A ) 解答:1EX μ=,所以1X 是μ的无偏估计,应选(A ).6. 设A 、B 、C 为三个事件,()0P AB >且(|)1P C AB =,则有( )Y X(A )()()() 1.P C P A P B ≤+- (B )()().P C P A B ≤ (C )()()() 1.P C P A P B ≥+- (D )()().P C P A B ≥答案:C 解答:由(|)1P C AB =知()()P ABC P AB =,故()()P C P AB ≥ ()()()()()()()1P C P AB P A P B P A B P A P B ≥=+-≥+- 应选C.7. 设随机变量X 的概率密度为2(2)4(),x f x x +-=-∞<<∞, 且~(0,1)Y aX b N =+,则在下列各组数中应取( ) (A )1/2, 1.a b == (B)2,a b ==(C )1/2,1a b ==-. (D)2,a b == 答案:B 解答:22(2)4()x f x +-==即~(2,)X N - 故当a b ===时 ~(0,1)Y aX b N =+ 应选B.8. 设随机变量X 与Y 相互独立,其概率分布分别为010.40.6X P010.40.6Y P则有( )(A )()0.P X Y == (B )()0.5.P X Y ==(C )()0.52.P X Y == (D )() 1.P X Y == 答案:C解答:()(0,0)(1,1)P X Y P X Y P X Y ====+== 0.40.40.60.60.52=⨯+⨯= 应选C.9. 对任意随机变量X ,若EX 存在,则[()]E E EX 等于( )(A )0. (B ).X (C ).EX (D )3().EX 答案:C 解答:[()]E E EX EX = 应选C.10. 设12,,,n x x x 为正态总体(,4)N μ的一个样本,x 表示样本均值,则μ的置信度为1α-的置信区间为( ) (A )/2/2(x u x u αα-+ (B )1/2/2(x u x u αα--+ (C )(x u x uαα-+ (D )/2/2(x u x u αα-+ 答案:D 解答:因为方差已知,所以μ的置信区间为/2/2(X u X u αα-+应选D. 11、设为总体的一个样本,为样本均值,则下),,,(21n X X X )2,1(2N X列结论中正确的是( D )。
概率统计习题集(含答案)
第一章 随机事件及其概率一、选择题:1.设A 、B 、C 是三个事件,与事件A 互斥的事件是: ( )A .AB AC + B .()A B C + C .ABCD .A B C ++2.设B A ⊂ 则 ( )A .()P AB =1-P (A ) B .()()()P B A P B A -=-C . P(B|A) = P(B)D .(|)()P AB P A =3.设A 、B 是两个事件,P (A )> 0,P (B )> 0,当下面的条件( )成立时,A 与B 一定独立A .()()()P AB P A P B = B .P (A|B )=0C .P (A|B )= P (B )D .P (A|B )= ()P A4.设P (A )= a ,P (B )= b, P (A+B )= c, 则 ()P AB 为: ( )A .a-bB .c-bC .a(1-b)D .b-a5.设事件A 与B 的概率大于零,且A 与B 为对立事件,则不成立的是 ( )A .A 与B 互不相容 B .A 与B 相互独立C .A 与B 互不独立D .A 与B 互不相容6.设A 与B 为两个事件,P (A )≠P (B )> 0,且A B ⊃,则一定成立的关系式是( )A .P (A|B )=1 B .P(B|A)=1C .(|A)1p B =D .(A|)1p B =7.设A 、B 为任意两个事件,则下列关系式成立的是 ( )A .()AB B A -= B .()A B B A -⊃C .()A B B A -⊂D .()A B B A -=8.设事件A 与B 互不相容,则有 ( )A .P (AB )=p (A )P (B ) B .P (AB )=0C .A 与B 互不相容D .A+B 是必然事件9.设事件A 与B 独立,则有 ( )A .P (AB )=p (A )P (B ) B .P (A+B )=P (A )+P (B )C .P (AB )=0D .P (A+B )=110.对任意两事件A 与B ,一定成立的等式是 ( )A .P (AB )=p (A )P (B ) B .P (A+B )=P (A )+P (B )C .P (A|B )=P (A )D .P (AB )=P (A )P (B|A )11.若A 、B 是两个任意事件,且P (AB )=0,则 ( )A .A 与B 互斥 B .AB 是不可能事件C .P (A )=0或P (B )=0D .AB 未必是不可能事件12.若事件A 、B 满足A B ⊂,则 ( )A .A 与B 同时发生 B .A 发生时则B 必发生C .B 发生时则A 必发生D .A 不发生则B 总不发生13.设A 、B 为任意两个事件,则P (A-B )等于 ( )A . ()()PB P AB - B .()()()P A P B P AB -+C .()()P A P AB -D .()()()P A P B P AB --14.设A 、B 、C 为三事件,则AB BC AC 表示 ( )A .A 、B 、C 至少发生一个 B .A 、B 、C 至少发生两个C .A 、B 、C 至多发生两个D .A 、B 、C 至多发生一个15.设0 < P (A) < 1. 0 < P (B) < 1. P(|B)+P(A B A )=1. 则下列各式正确的是( )A .A 与B 互不相容 B .A 与B 相互独立C .A 与B 相互对立D .A 与B 互不独立16.设随机实际A 、B 、C 两两互斥,且P (A )=0.2,P (B )=0.3,P (C )=0.4,则PA B C -= ()( ). A .0.5 B .0.1 C .0.44 D .0.317掷两枚均匀硬币,出现一正一反的概率为 ( )A .1/2B .1/3C .1/4D .3/418.一种零件的加工由两道工序组成,第一道工序的废品率为 1p ,第二道工序的废品率为2p ,则该零件加工的成品率为 ( )A .121p p --B .121p p -C .12121p p p p --+D .122p p --19.每次试验的成功率为)10(<<p p ,则在3次重复试验中至少失败一次概率为( )。
初中数学统计与概率专题训练50题(含答案)
初中数学统计与概率专题训练50题含答案一、单选题1.下表是小明星期一至星期五每天下午练习投篮的命中率统计表,下列说法正确的一项是()A.可以看出每天投中的次数B.五天的命中率越来越高C.可以用扇形统计图统计表中的数据D.可以用折线统计图分析小明的投篮命中率2.小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为()A.B.C.D.3.下列采用的调查方式中,不合适的是()A.了解一批灯泡的使用寿命,采用普查B.了解黄河的水质,采用抽样调查C.了解河北省中学生睡眠时间,采用抽样调查D.了解某班同学的数学成绩,采用普查4.下列问题中,不适合用全面调查的是()A.了解全省七年级学生的平均身高B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试D.了解全班同学每周体育锻炼的时间5.某公司招聘职员,公司对应聘者进行了面试和笔试(满分均为100分)规定笔试成绩占40%,面试成绩占60%,应聘者蕾蕾的笔试成绩和面试成绩分别是90分和85分,她最终得分是()A.87.5分B.87分C.88分D.88.5分6.在一个不透明的盒子中有25个除颜色外均相同的小球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球试验后,发现摸到白球的频率稳定于0.4,由此可估计盒子中白球的个数约为()A.6B.8C.10D.127.某班级有20个女同学,22个男同学,班上每个同学的名字都写在一张小纸条上放入一个盒子搅匀如果老师随机地从盒子中取出1张纸条,则下列命题中正确的是()A.抽到男同学名字的可能性是50%B.抽到女同学名字的可能性是50% C.抽到男同学名字的可能性小于抽到女同学名字的可能性D.抽到男同学名字的可能性大于抽到女同学名字的可能性8.某市从不同学校随机抽取100名初中生,对“学校统一使用数学教辅用书的册数”进行调查,统计结果如右表所示:关于这组数据,下列说法正确的是()A.众数是2B.中位数是2C.极差是2D.方差是2 9.学校组织才艺表演比赛,前6名获奖.有13位同学参加比赛且他们所得的分数互不相同.某同学知道自己的比赛分数后,要判断自己能否获奖,在这13名同学成绩的统计量中只需知道一个量,它是()A.众数B.中位数C.平均数D.都可以10.布袋里有50个形状完全相同的小球,小红随机摸出一个球,记下颜色后放回摇匀,重复以上操作300次,发现摸到白色的球有61次,则布袋中白球的个数最有可能是()A.5个B.10个C.15个D.20个11.学生甲手中有4,6,8三张扑克牌,学生乙手中有3,5,10三张扑克牌,现每人从各自手中随机取出一张牌进行比较,数字大者胜,在该游戏中()A.甲获胜的概率大B.乙获胜的概率大C.两人获胜概率一样大D.不能确定12.某校男子篮球队20名队员的身高如表所示:则此男子排球队20名队员身高的中位数是()身高(cm)170176178182198人数(个)46532A .176cmB .177cmC .178cmD .180cm13.为了解本校学生周末玩手机所花时间的情况,七、八、九年级中各抽取50名学生(男女各25名)进行调查,此次调查所抽取的样本容量是( ) A .150B .75C .50D .2514.数据2,3,1,1,3的方差是:( ) A .1B .3C .2D .0.815.袋中有形状、大小、质地完全一样的3个红球和2个白球,下列说法正确的是( )A .从中随机抽出一个球,一定是红球B .从袋中抽出一个球后,再从袋中抽出一个球,出现红球或白球的概率一样大C .从袋中随机抽出2个球,出现都是红球的概率为35D .从袋中抽出2个球,出现颜色不同的球的概率是3516.已知一组数据2,l ,x ,7,3,5,3,2的众数是2,则这组数据的中位数是( ). A .2B .2.5C .3D .517.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都是9.3环,方差分别为2S 甲=0.56,2S 乙=0.60,2S 丙=0.50,2S 丁=0.45,则成绩最稳定的是( ).A .甲B .乙C .丙D .丁18.如果a 、b 、c 的中位数与众数都是5,平均数是4,那么a 可能是( ) A .2B .3C .4D .619.响应国家体育总局提出的“全民战疫居家健身”,学校组织了趣味横生的线上活动.某校组织了“一分钟跳绳”活动,根据10名学生上报的跳绳成绩,将数据整理制成如下统计表:则关于这组数据的结论正确的是( )A .平均数是144 B .众数是141C .中位数是144.5D .方差是5.4二、填空题20.一组数据3,4,5,4,6的中位数是________.21.一只布袋中有三种小球(除颜色外没有任何区别),分别是2个红球,3个黄球和5个蓝球,每一次只摸出一只小球,观察后放回搅匀,在连续9次摸出的都是蓝球的情况下,第10次摸出黄球的概率是_________________.22.甲、乙人进行射击,每人10次射击成绩的平均数都是8.8环,方差分别为2s 甲=0.65, 2s 乙=0.52,则成绩比较稳定的是__.(填“甲”或“乙”) .23.某车间6名工人日加工零件数分别为6,10,8,10,5,8,则这组数据的中位数是_____________.24.若一组数据12345x x x x x ,,,,的平均数是a ,另一组数据1234523521x x x x x ++--+,,,,的平均数是b ,则a ______b (填写“>”、“<”或“=”).25.数据0,-1,3,2,4的极差是__________________.26.已知一组数据3、a 、4、6的平均数为4,则这组数据的中位数是______. 27.某学校300名学生参加植树活动,要求每人植树2~5棵,活动结束后随机抽查了20名学生,调查他们每人的植树情况,并绘制成如图所示的折线统计图,则这20名学生每人平均植树________棵.28.某组数据分五组,第一、二组的频率之和为0.25,第三组的频率为0.35,第四、五组的频率相等,则第五组的频率是_______.29.数据1,2,x ,-1,-2的平均数是0,则这组数据的方差是____.30.为了帮助残疾人,某地举办“即开型"福利彩票销售活动,规定每10万张为一组,其中有10名一等奖,100名二等奖.1 000名三等奖,5 000名爱心奖,小明买了10张彩票,则他中奖的概率为__.31.某食堂午餐供应8元/盒、10元/盒、12元/盒三种价格的盒饭,如图为食堂某月销售午餐盒饭的统计图,由统计图可计算出该月食堂午餐盒饭的平均价格是__________元/盒.32.淮北到上海的431N次列车,沿途停靠宿州、滁州、南京、镇江、常州、无锡、苏州,需要准备_____________ 种不同的车票33.用扇形统计图反映地球上陆地与海洋所占的比例时,“陆地”部分对应的圆心角是108°.宇宙中一块陨石落在地球上,落在陆地的概率是___34.数据80,82,85,89,100的标准差为__________(小数点后保留一位).35.有许多事情我们事先无法肯定它会不会发生,这些事情称为__,也称为__,一般地,不确定事件发生的可能性是有大有小的.36.如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.在抛物线y=ax2+bx+c 中,系数a、b、c为绝对值不大于1的整数,则该抛物线的“抛物线三角形”是等腰直角三角形的概率为_____.37.我国是世界上严重缺水的国家之一.为了倡导“节约用水从我做起”,小刚在他所在班的50名同学中,随机调查了10名同学家庭中一年的月均用水量(单位:t),并将调查结果绘成了如下的条形统计图,则这10个样本数据的平均数是___,众数是___,中位数是___.38.数据1,2,3,5,5的众数是___________.39.从小到大排列的一组数据:-2,0,4,4,x,6,6,9的中位数是5,那么这组数据的众数是_______.三、解答题40.为进一步加强学生对“垃圾分类知识”的重视程度,某中学初一、初二年级组织了“垃圾分类知识”比赛,现从初一、初二年级各抽取10名同学的成绩进行统计分析(成绩得分用x 表示,共分成四组:A :6070x ≤<,B :7080x ≤<,C :8090x ≤<,D :90100x ≤≤),绘制了如下的图表,请根据图中的信息解答下列问题.初一年级10名学生的成绩是:69,78,96,77,68,95,86,100,85,86 初二年级10名学生的成绩在C 组中的数据是:86,87,87初一、初二年级抽取学生比赛成绩统计表(1)b c +的值为______.(2)根据以上数据,你认为该校初一、初二年级中哪个年级学生掌握垃圾分类知识较好?请说明理由(写出一条理由即可)(3)若两个年级共有400人参加了此次比赛,估计参加此次比赛成绩优秀()90100x ≤≤的学生共有多少人?41.为了有效控制新型冠状病毒的传播,目前,国家正全面推进新冠疫苗的免费接种工作.某社区为了解其辖区内居民的接种情况,随机抽查了部分民进行问卷调查,把调查结果分为A (准备接种)、B (不接种)、C (已经接种)、D (观望中)四种类别.并绘制了两幅不完整的统计图,请根据图中提供的信息解答下列问题:(1)此次抽查的居民人数为______人;(2)请补全条形统计图,同时求出C 类别所在扇形的圆心角度数;(3)若该社区共有居民14000人,请你估计该社区已接种新冠疫苗的居民约有多少人? 42.为了让全校学生牢固树立爱国爱党的崇高信念,某校举行了一次党史知识竞赛(百分制).现从初一、初二两个年级各随机抽取了15名学生的测试成绩,得分用x 表示,共分成4组:A :6070x ≤<,B :7080x ≤<,C :8090x ≤<,D :90100x ≤≤,对成绩进行整理分析,得到了下面部分信息: 初一的测试成绩在C 组中的数据为:81,85,88.初二的测试成绩为:76,83,71,100,81,100,82,88,95,90,100,86,89,93,86.(1)a = ,b = ; (2)请补全条形统计图;(3)若初一有400名学生,请估计此次测试成绩初一达到90分及以上的学生有多少人?43.为了了解某小区今年6月份家庭用水量的情况,从该小区随机抽取部分家庭进行调查,以下是根据调查数据绘制的统计表和统计图:根据以上信息,解答下列问题:(1)本次抽样调查的样本容量是,m的值为,n的值为;(2)若该小区共有500户家庭,请估计该月有多少户家庭用水量不超过...9.0吨?44.我们约定:如果身高在选定标准的±2%范围之内都称为“普通身高”.为了解某校九年级男生中具有“普通身高”的人数,我们从该校九年级男生中随机选出10名男生,分别测量出他们的身高(单位:cm)收集并整理如下统计表:根据以上表格信息,解答如下问题:(1)计算这组数据的三个统计量:平均数、中位数和众数;(2)请你选择一个统计量作为选定标准,找出这10名具有“普通身高”的是哪几位男生?并说明理由;(3)若该年级共有280名男生,按(2)中选定标准,请你估算出该年级男生中“普通身高”的人数约有多少名?45.某校九年级共有400名学生,男女生人数大致相同,调查小组为调查学生的体质健康水平,开展了一次调查研究,将下面的过程补全.收集数据:调查小组选取40名学生的体质健康测试成绩作为样本,数据如下:77838064869075928381858688626586979682738684898692735777878291818671537290766878整理、描述数据:2018年九年级部分学生学生的体质健康测试成绩统计表分析数据:(1)写出表中的a、b的值;(2)分析上面的统计图、表,你认为学生的体重健康测试成绩是2017年还是2018年的好?说明你的理由.(至少写出两条).(3)体育老师根据2018年的统计数据,安排80分以下的学生进行体育锻炼,那么全年级大约有多少人参加?46.党的教育方针“培养德智体美劳全面发展的社会主义建设者和接班人”把劳动教育列入教育目标之一,学校更要重视开展劳动教育,某校为了解九年级学生一学期参加课外劳动时间(单位:h)的情况,从该校九年级随机抽查了部分学生进行问卷调查,并将调查结果绘制成如下不完整的频数分布表和频数分布直方图.010t < 1020t < 2030t < 3040t <4050t <解答下列问题:(1)求频数分布表中a ,m 的值,并将频数分布直方图补充完整;(2)若九年级共有学生300人,试估计该校九年级学生一学期课外劳动时间不少于20h 的人数;(3)已知课外劳动时间在30h 40h t ≤<的男生人数为2人,其余为女生,现从该组中任选2人代表学校参加“全市中学生劳动体验”演讲比赛,请用树状图或列表法求所选学生为1男1女的概率.47.为选拔参加八年级数学建模竞赛的活动人选,数学王老师对本班甲、乙两名学生的10次模拟成绩进行了整理、分析,成绩达到6分及以上为合格,达到9分及以上为优秀.在这次竞赛中,甲、乙学生成绩分布的折线统计图和成绩统计分析表如图所示:如要推选1名学生参加活动,你推荐谁?请说明你推荐的理由.48.给你1枚骰子,如何检测这枚骰子质地是否均匀?(骰子均匀的标准是:出现1、2、3、4、5、6向上的概率相同,概率越接近骰子质地越均匀)请你设计一个表格,用统计的方法检测1枚骰子的质量.49.盒中有6只灯泡,其中2只次品,4只正品,有放回地从中任取两次,每次取一只,试求下列事件的概率:(1)取到的2只都是次品;(2)取到的2只中正品、次品各一只;(3)取到的2只中至少有一只正品.参考答案:1.D【分析】根据表格中给出的信息进行解答即可.【详解】解:根据折线统计图表示的是事物的变化情况,故小明星期一至星期五每天下午练习投篮的命中率可以用折线统计图分析小明的投篮命中率.故选:D.【点睛】本题主要考查了数据的整理和应用,解题的关键是理解题意,熟练掌握扇形统计图、折线统计图和条形统计图的特点.2.A【详解】试题分析:一共有4种等可能的结果:小明打扫社区卫生,小华打扫社区卫生;小明打扫社区卫生,小华参加社会调查;小明参加社会调查,小华打扫社区卫生;小明参加社会调查,小华参加社会调查.其中两人同时选择参加社会调查只有1种.所以两人同时选择参加社会调查的概率.故此题选A.考点:概率.3.A【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A.了解一批灯泡的使用寿命,数量较多,应采用抽样调查,故此选项符合题意;B.了解黄河的水质,量较大,适宜用抽样调查,故此选项不合题意;C.了解河北省中学生睡眠时间,人数较多,适宜用抽样调查,故此选项不合题意;D.了解某班同学的数学成绩,适宜用全面调查,故此选项不合题意.故选:A.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.A【分析】由普查得到的结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,根据以上逐项分析即可.【详解】A 、了解全省七年级学生的平均身高,调查范围广,费时费力,适合抽样调查,不适合用全面调查,故该项符合题意;B 、旅客上飞机前的安检,涉及到安全问题,需要一一检查,适合全面调查,故该项不符合题意;C 、学校招聘教师,对应聘人员面试,需要依次进行面试,适合全面调查,故该项不符合题意;D 、了解全班同学每周体育锻炼的时间,好调查,适合全面调查,故该项不符合题意; 故选:A .【点睛】本题考查了全面调查与抽样调查,在调查实际生活中的相关问题时,要灵活处理,既要考虑问题本身的需要,又要考虑实现的可能性和所付出代价的大小,理解全面调查与抽样调查的适用范围是解题的关键. 5.B【分析】根据加权平均数公式计算即可. 【详解】解:应聘者蕾蕾的最终得分是9040%8560%8740%60%⨯+⨯=+分,故选:B .【点睛】此题考查了加权平均数的计算,正确掌握加权平均数的计算公式是解题的关键. 6.C【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解. 【详解】解:设盒子中有白球x 个, 由题意可得:0.425x=, 解得:10x =, 故选C .【点睛】本题考查了利用频率估计概率.解题的关键在于明确大量试验得到的频率可以估计事件的概率. 7.D【分析】运用概率公式对各项进行逐一判断即可.【详解】解:A 、错误,抽到男同学名字的可能性是22÷(22+20)≈52%; B 、错误,抽到女同学名字的可能性是48%;C、错误,由于抽到男同学的概率大,所以抽到男同学名字的可能性大于抽到女同学名字的可能性;D、正确,由AB可知抽到男同学名字的可能性大于抽到女同学名字的可能性.故选:D.【点睛】本题考查概率的有关知识,需注意可能性的求法.8.B【分析】根据极差、方差、众数、中位数及平均数的算法,依次计算各选项即可作出判断.【详解】解:A、众数是1册,结论错误,故A不符合题意;B、中位数是2册,结论正确,故B符合题意;C、极差=3-0=3册,结论错误,故C不符合题意;D、平均数是(0×13+1×35+2×29+3×23)÷100=1.62册,结论错误,S2≠2,故D不符合题意.故选:B.【点睛】考查平均数、中位数、众数的意义和求法,掌握计算方法是解决问题的关键.9.B【详解】因为6位获奖者的分数肯定是13名参赛选手中最高的,而且13个不同的分数按从小到大排序后,中位数及中位数之后的共有6个数,故只要知道自己的分数和中位数就可以知道是否获奖了.故选B.10.B【分析】由共摸了300次球,发现有61次摸到白球,知摸到白球的概率为61300,设布袋中白球有x个,可得x6150300=,,解之即可.【详解】由共摸了300次球,发现有61次摸到白球,①摸到白球的概率为61 300,设布袋中白球有x个,可得x61 50300=,解得:x=1016,①布袋中白球的个数最有可能是10个故选B.【点睛】:此题考查利用频率估计概率.大量反复试验下频率稳定值即概率.同时也考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.11.A【分析】列举出甲获胜的所有可能,求出甲获胜的概率,然后求出乙获胜的概率,比较大小即可得到结果.【详解】解:由题意知,甲取出4时,乙有3,5,10共三种可能,其中甲获胜有1种可能;甲取出6时,乙有3,5,10共三种可能,其中甲获胜有2种可能;甲取出8时,乙有3,5,10共三种可能,其中甲获胜有2种可能;①甲获胜的概率为122599++=,则乙获胜的概率为54199-=①54 99 >①甲获胜的概率大故选A.【点睛】本题考查了列举法求概率.解题的关键在于正确列举事件.12.B【分析】根据中位数的定义即可求解.【详解】表格中第10,11位队员的身高分别为176cm、178cm,故中位数为1761781772+=cm,故选B.【点睛】此题主要考查中位数的求解,解题的关键是熟知中位数的定义. 13.A【分析】根据样本容量的定义解答即可.【详解】①从七、八、九年级中各抽取50名学生进行调查,①一共抽了150名学生,①样本容量是150.故选A.【点睛】本题考查了总体、个体、样本、样本容量的定义,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位. 14.D【详解】X =(2+3+1+1+3)÷5=2,S 2="1/5" [(2-2)2+(3-2)2+(1-2)2+(1-2)2+(3-2)2]=0.8 故选D . 15.D【分析】先求出随机事件所有情况数,再求出对应的事件发生的情况数,根据概率=所求情况数与总情况数之比进行依次解答.【详解】解:A .从中随机抽出一个球,不一定是红球,故此选项不合题意;B .从袋中抽出一个球后,再从袋中抽出一个球,出现红球或白球的概率不相同,故此选项不合题意;C .从袋中随机抽出2个球,出现都是红球的概率为310,故此选项不合题意; D .从袋中抽出2个球,出现颜色不同的球的概率是35,故此选项符合题意;故选:D .【点睛】本题主要考查概率的定义,熟练掌握概念的定义和概率计算公式是解决本题的关键. 16.B【详解】数据2,1,x ,7,3,5,3,2的众数是2,说明2出现的次数最多,所以当x =2时,2出现3次,次数最多,是众数;再把这组数据从小到大排列:1,2,2,2,3,3,5,7,处于中间位置的数是2和3,所以中位数是:(2+3)÷2=2.5. 故选B. 17.D【详解】试题分析:直接利用方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,进而分析即可.①2S 甲=0.56,2S 乙=0.60,2S 丙=0.50,2S 丁=0.45,①2S 丁<2S 丙<2S 甲<2S 乙,①成绩最稳定的是丁.故选D .考点:方差;算术平均数. 18.A【分析】该数据的中位数与众数都是5,可以根据中位数、众数、平均数的定义,设出未知数列方程解答.【详解】①a 、b 、c 的中位数与众数都是5, ①a 、b 、c 三个数中有两个数是5, 设不是5的那个数为x , ①a 、b 、c 的平均数是4, ①5543x ++=⨯, 解得,2x =,即a 可能是2,也可能是5. 故选:A .【点睛】用方程解答数据问题是一种重要的思想方法.平均数是数据之和再除以总个数;中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个. 19.B【分析】根据平均数、众数、中位数、方差的定义分别计算出结果,然后判断即可. 【详解】根据题目给出的数据,可得: 平均数为:14151442145114621435212x ⨯+⨯+⨯+⨯+++==,故A 选项错误;众数是:141,故B 选项正确;中位数是:141144142.52+=,故C 选项错误; 方差是:()()()()2222211411435144143214514311461432 4.40[]1s -⨯+-⨯+-⨯+-⨯==,故D 选项错误; 故选:B .【点睛】本题考查的是平均数,众数,中位数,方差的定义和计算,熟悉相关定义是解题的关键. 20.4【分析】根据中位数的定义求解可得.【详解】解:把这些数从小大排列为3,4,4,5,6,则中位数是4.故答案为:4.【点睛】本题主要考查了中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.21.3 10【分析】由题可知,第10次摸出的球的颜色与前9次的结果是无关的,求出球的总数和黄球的个数,利用概率的公式进行计算即可.【详解】①共有23510++=个小球,3个黄球,①第10次摸出黄球的概率是3 10.故答案为3 10.【点睛】本题是一道关于概率的题目,解答本题的关键是熟练掌握概率的计算公式.22.乙【分析】根据方差的性质可知,方差越小,数据波动越小,数据情况越趋于稳定,据此进行分析即可.【详解】解:由题干可得甲、乙的方差分别为2s甲=0.65,2s乙=0.52,有2s甲=0.65>2s乙=0.52,故乙的成绩比较稳定.【点睛】本题考查方差所反映的数据稳定情况,掌握方差越小,数据波动越小,数据情况越趋于稳定即可.23.8.【分析】根据这组数据是从大到小排列的,求出最中间的两个数的平均数即可.【详解】解:将数据从小到大重新排列为:5、6、8、8、10、10,所以这组数据的中位数为882+=8.故答案为8.【点睛】本题考查中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)即可.24.>【分析】根据12345x x x x x ,,,,的平均数是a ,可得123455x x x x x a ++++=,再根据1234523521x x x x x ++--+,,,,的平均数是b ,可得15a b -=进而即可得到解答. 【详解】解:①12345x x x x x ,,,,的平均数是a , ①123455x x x x x a ++++=,①12345235215x x x x x ++++-+-++12345155x x x x x ++++=-15a =-b =,①a b >, 故答案为:>.【点睛】本题考查了算术平均数的的定义(是指在一组数据中所有数据之和再除以数据的个数),灵活运用所学知识求解是解决本题的关键. 25.5【详解】试题解析:极差=4-(-1)=5. 考点:极差. 26.3.5【分析】先根据平均数的计算公式求出x 的值,再根据中位数的定义即可得出答案. 【详解】①数据3、a 、4、6的平均数是4, ①(3+a+4+6)÷4=4, ①x=3,把这组数据从小到大排列为:3、3、4、6最中间的数是3.5, 则中位数是3.5; 故答案为3.5.【点睛】此题考查中位数,算术平均数,解题关键在于利用平均数求出a 的值. 27.3.3【分析】根据折线统计图中的数据和算术平均数的求法,可以解答本题. 【详解】解:243846523.320⨯+⨯+⨯+⨯=(棵),故答案为:3.3.【点睛】本题考查折线统计图,平均数,熟练掌握平均数计算公式是解题的关键. 28.0.2.【详解】分析:根据各组的频率的和是1即可求解. 详解:第五组的频率是:12×(1﹣0.35﹣0.25)=0.2.故答案为0.2.点睛:本题考查了频率的意义,利用各组的频率的和为1分析是解题的关键. 29.2【分析】先根据平均数的公式求出x 的值,再根据方差公式即可得. 【详解】解:由题意得:()()121205x +++-+-=,解得0x =,则方差为()()()()()222221102000102025⎡⎤⨯-+-+-+--+--=⎣⎦, 故答案为:2.【点睛】本题考查了平均数和方差,熟记平均数和方差的计算公式是解题关键. 30.0.611【详解】买一张中奖的概率为:P =1010010005000100000+++=0.0611,则买10张中奖的概率为0.0611×10=0.611. 故答案为0.611.点睛:本题关键在于先算出买一张获奖的概率,再计算买10张获奖的概率. 31.10.2【分析】根据加权平均数公式计算即可. 【详解】解:815%1225%1060%10.215%25%60%⨯+⨯+⨯=++(元/盒),故答案为:10.2.【点睛】此题考查了求加权平均数,正确理解题意及加权平均数的计算公式是解题的关键. 32.36【分析】根据概率公式求解所有种类出现的情况即可. 【详解】共有9个车站,且属于单向车程。
(完整版)《概率与数理统计》练习册及答案
第一章 概率论的基本概念一、选择题1.将一枚硬币连抛两次,则此随机试验的样本空间为( ) A .{(正,正),(反,反),(一正一反)}B 。
{(反,正),(正,反),(正,正),(反,反)}C .{一次正面,两次正面,没有正面} D.{先得正面,先得反面}2。
设A,B 为任意两个事件,则事件(AUB)(Ω-AB)表示( ) A .必然事件 B .A 与B 恰有一个发生 C .不可能事件 D .A 与B 不同时发生3.设A ,B 为随机事件,则下列各式中正确的是( ). A 。
P (AB )=P (A)P (B) B 。
P(A —B)=P (A )-P (B) C.)()(B A P B A P -= D.P(A+B)=P(A )+P(B )4。
设A ,B 为随机事件,则下列各式中不能恒成立的是( )。
A 。
P(A -B)=P(A)-P (AB ) B 。
P (AB )=P(B )P (A|B ),其中P (B)〉0C 。
P(A+B)=P(A)+P (B) D.P(A )+P(A )=1 5。
若φ≠AB ,则下列各式中错误的是( ).A .0)(≥AB P B 。
1)(≤AB PC 。
P(A+B)=P(A)+P (B )D 。
P (A-B)≤P(A) 6.若φ≠AB ,则( ).A. A ,B 为对立事件B.B A =C.φ=B A D 。
P(A-B )≤P (A ) 7。
若,B A ⊂则下面答案错误的是( )。
A. ()B P A P ≤)( B 。
()0A -B P ≥C.B 未发生A 可能发生 D 。
B 发生A 可能不发生 8。
下列关于概率的不等式,不正确的是( ). A. )}(),(min{)(B P A P AB P ≤ B 。
.1)(,<Ω≠A P A 则若 C 。
1212(){}n n P A A A P A A A ≤+++ D.∑==≤ni i ni i A P A P 11)(}{9.(1,2,,)i A i n =为一列随机事件,且12()0n P A A A >,则下列叙述中错误的是( )。
《概率论与数理统计》考试练习题及参考答案
《概率论与数理统计》考试练习题及参考答案一、单选题1. 设X~N(2,9),Y~N(2,1),E(XY)=6,则D(X-Y)之值为A 、14B 、6C 、12D 、4答案:B2. 设X,Y的方差存在,且不等于0,则D(X+Y)=DX+DY是X,YA 、不相关的充分条件,但不是必要条件B 、独立的必要条件,但不是充分条件C 、不相关的必要条件,但不是充分条件D 、独立的充分必要条件答案:B3. 已知P(A)=0.3 ,P(B)=0.5 ,P(A∪B)=0.6,则P(AB)=A 、0.2B 、0.1C 、0.3D 、0.4答案:A4. 已知随机变量X服从二项分布,且EX=2.4,DX=1.44,则二项分布中的参数n,p的值分别为A 、n=4 ,p=0.6B 、n=6 ,p=0.4C 、n=8 ,p=0.3D 、n=24 ,p=0.1答案:B5. 若随机变量X与Y的方差D(X), D(Y)都大于零,且E(XY)=E(X)E(Y),则有A 、X与Y一定相互独立B 、X与Y一定不相关C 、D(XY)=D(X)D(Y)D 、D(X-Y)=D(X)-D(Y)答案:B6. 同时抛掷3枚硬币,则至多有1枚硬币正面向上的概率是A 、1/8B 、1/6C 、1/4D 、1/2答案:D7. 将长度为1的木棒随机地截成两段,则两段长度的相关系数为A 、1B 、1/2C 、2D 、-1答案:D8. 假设一批产品中一、二、三等品各占60% 、30% 、10%,今从中随机取一件产品,结果不是三等品,则它是二等品的概率为A 、1/3B 、1/2C 、2/3D 、1/4答案:A9. 袋中有50个乒乓球,其中20个黄球,30个白球,甲、乙两人依次各取一球,取后不放回,甲先取,则乙取得黄球的概率为A 、2/5B 、3/5C 、1/5D 、4/5答案:A10. 设随机变量X服从正态分布N(1 ,4) ,Y服从[0 ,4]上的均匀分布,则E(2X+Y )=A 、1B 、2C 、3D 、4答案:D11. 某电路由元件A 、B 、C串联而成,三个元件相互独立,已知各元件不正常的概率分别为:P(A)=0.1 ,P(B)=0.2 ,P(C)=0.3,求电路不正常的概率A 、0.496B 、0.7C 、0.25D 、0.8答案:A12. 一套五卷选集随机地放到书架上,则从左到右或从右到左卷号恰为1 ,2 ,3 ,4 ,5顺序的概率为A 、1/120B 、1/60C 、1/5D 、1/2答案:B13. 设随机变量X与Y独立同分布,记随机变量U=X+Y ,V=X-Y,且协方差Cov(U.V)存在,则U和V必然A 、不相关B 、相互独立C 、不独立D 、无法判断答案:A14. 设P(A)>0,P(B)>0,则下列各式中正确的是A 、P(A-B)=P(A)-P(B)B 、P(AB)=P(A)P(B)C 、P(A+B)=P(A)+P(B)D 、P(A+B)=P(A)+P(B)-P(AB)答案:D15. 随机变量X的所有可能取值为0和x ,且P{X=0}=0.3,E(X)=1,则x=A 、10/7B 、4/5C 、1D 、0答案:A16. 已知人的血型为O 、A 、B 、AB的概率分别是0.4;0.3;0.2;0.1。
统计和概率经典例题(含答案解析和解析)
统计与概率经典例题(含答案及解析)1.(本题8分)为了解学区九年级学生对数学知识的掌握情况,在一次数学检测中,从学区2000名九年级考生中随机抽取部分学生的数学成绩进行调查,并将调查结果绘制成如下图表:⑴表中a和b所表示的数分别为:a= .,b= .;⑵请在图中补全频数分布直方图;⑶如果把成绩在70分以上(含70分)定为合格,那么该学区2000名九年级考生数学成绩为合格的学生约有多少名?2.为鼓励创业,市政府制定了小型企业的优惠政策,许多小型企业应运而生,某镇统计了该镇1﹣5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图:(1)某镇今年1﹣5月新注册小型企业一共有家.请将折线统计图补充完整;(2)该镇今年3月新注册的小型企业中,只有2家是餐饮企业,现从3月新注册的小型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的2家企业恰好都是餐饮企业的概率.3.(12分)一个不透明的口袋装有若干个红、黄、蓝、绿四种颜色的小球,小球除颜色外完全相同,为估计该口袋中四种颜色的小球数量,每次从口袋中随机摸出一球记下颜色并放回,重复多次试验,汇总实验结果绘制如图不完整的条形统计图和扇形统计图.根据以上信息解答下列问题:(1)求实验总次数,并补全条形统计图;(2)扇形统计图中,摸到黄色小球次数所在扇形的圆心角度数为多少度?(3)已知该口袋中有10个红球,请你根据实验结果估计口袋中绿球的数量.4.(本题10分)某校为了解2014年八年级学生课外书籍借阅情况,从中随机抽取了40名学生课外书籍借阅情况,将统计结果列出如下的表格,并绘制成如图所示的扇形统计图,其中科普类册数占这40名学生借阅总册数的40%.类别科普类教辅类文艺类其他册数(本)128 80 m 48(1)求表格中字母m的值及扇形统计图中“教辅类”所对应的圆心角a的度数;(2)该校2014年八年级有500名学生,请你估计该年级学生共借阅教辅类书籍约多少本?5.(10分)将如图所示的版面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上(“A”看做是“1”)。
概率论与数理统计试题及答案
概率论与数理统计试题及答案一、选择题(每题2分,共10分)1. 设随机变量X服从参数为λ的泊松分布,那么P(X=2)等于:A. λ^2B. e^(-λ)λ^2C. λ^2/2D. e^(-λ)λ^2/2答案:D2. 某工厂生产的零件长度服从正态分布N(50, 25),那么长度在45到55之间的零件所占的百分比是:A. 68.27%B. 95.45%C. 99.74%D. 50%答案:B3. 一袋中有10个红球和5个蓝球,随机抽取3个球,那么抽到至少2个红球的概率是:A. 0.4375B. 0.5625C. 0.8125D. 0.9375答案:C4. 设随机变量Y服从二项分布B(n, p),那么E(Y)等于:A. npB. n/2C. p/nD. n^2p答案:A5. 以下哪个事件是不可能事件:A. 抛硬币正面朝上B. 抛骰子得到1点C. 一天有25小时D. 随机变量X取负无穷答案:C二、填空题(每题3分,共15分)6. 设随机变量X服从均匀分布U(0, 4),那么P(X>2)等于______。
答案:1/27. 随机变量Z服从标准正态分布,那么P(Z ≤ -1.5)等于______(结果保留两位小数)。
答案:0.06688. 设随机变量W服从指数分布Exp(μ),那么W的期望E(W)等于______。
答案:1/μ9. 从一副不含大小王的扑克牌中随机抽取一张,抽到黑桃A的概率是______。
答案:1/5210. 设随机变量V服从二项分布B(15, 0.4),那么P(V=5)等于______(结果保留三位小数)。
答案:0.120三、解答题(共75分)11. (15分)设随机变量ξ服从二项分布B(n, p),已知P(ξ=1) = 0.4,P(ξ=2) = 0.3,求n和p的值。
答案:根据二项分布的性质,我们有:P(ξ=1) = C(n, 1)p^1(1-p)^(n-1) = 0.4P(ξ=2) = C(n, 2)p^2(1-p)^(n-2) = 0.3通过解这两个方程,我们可以得到n=5,p=0.4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用频率分布估计总体分布,同时考查数的区间497.5g~501.5的意义和概率的求法.
[解答过程] 提示:
例3从自动打包机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g):
492 496 494 495 498 497 501 502 504 496
(Ⅰ)求该选手进入第四轮才被淘汰的概率;
(Ⅱ)求该选手至多进入第三轮考核的概率.(注:本小题结果可用分数表示)
[考查目的]本小题主要考查相互独立事件、独立重复试验的概率计算,运用数学知识解决问题的能力,以及推理与运算能力.
[解答过程](Ⅰ)记“该选手能正确回答第 轮的问题”的事件为 ,则 , , , ,
方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.
假设某应聘者对三门指定课程考试及格的概率分别是 ,且三门课程考试是否及格相互之间没有影响.
(Ⅰ)分别求该应聘者用方案一和方案二时考试通过的概率;
(Ⅱ)试比较该应聘者在上述两种方案下考试通过的概率的大小.(说明理由)
[考查目的]本题主要考查互斥事件有一个发生的概率和对立事件的概率,以及不等式等基本知识,同时考查逻辑思维能力和数学应用能力.
点评:首先应理解概率的定义,在确定给定区间的个体的数字时不要出现错误.
例4.接种某疫苗后,出现发热反应的概率为0.80.现有5人接种该疫苗,至少有3人出现发热反应的概率为__________.(精确到0.01)
[考查目的]本题主要考查运用组合、概率的基本知识和分类计数原理解决问题的能力,以及推理和运算能力.
应聘者用方案二考试通过的概率
p2= P(A·B)+ P(B·C)+ P(A·C)= ×(a×b+b×c+c×a)= (ab+bc+ca)
(Ⅱ)p1-p2= ab+bc+ca-2abc- (ab+bc+ca)= (ab+bc+ca-3abc)
≥ = .
∴p1≥p2
例11.
某项选拔共有四轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三、四轮的问题的概率分别为 、 、 、 ,且各轮问题能否正确回答互不影响.
1计算一次试验的基本事件总数 ;
2设所求事件A,并计算事件A包含的基本事件的个数 ;
3依公式 求值;
4答,即给问题一个明确的答复.
(2)互斥事件有一个发生的概率:P(A+B)=P(A)+P(B);
特例:对立事件的概率:P(A)+P( )=P(A+ )=1.
(3)相互独立事件同时发生的概率:P(A·B)=P(A)·P(B);
第三步,运用公式 求解
第四步,答,即给提出的问题有一个明确的答复.
例1.在五个数字 中,若随机取出三个数字,则剩下两个数字都是奇数的概率是(结果用数值表示).
[考查目的]本题主要考查概率的概念和等可能性事件的概率求法.
[解答过程]0.3提示:
例2.一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为.
若该批产品共100件,由(1)知其中二等品有 件,故 .
例7.两部不同的长篇小说各由第一、二、三、四卷组成,每卷1本,共8本.将它们任意地排成一排,左边4本恰好都属于同一部小说的概率
是(结果用分数表示).
[考查目的]本题主力,以及推理和运算能力.
5.掌握离散型随机变量的分布列.
6.掌握离散型随机变量的期望与方差.
7.掌握抽样方法与总体分布的估计.
8.掌握正态分布与线性回归.
【例题解析】
考点1.求等可能性事件、互斥事件和相互独立事件的概率
解此类题目常应用以下知识:
(1)等可能性事件(古典概型)的概率:P(A)= = ;
等可能事件概率的计算步骤:
[解答提示]至少有3人出现发热反应的概率为
.
故填0.94.
例5.右图中有一个信号源和五个接收器.接收器与信号源在同一个串联线路中时,就能接收到信号,否则就不能接收到信号.若将图中左端的六个接线点随机地平均分成三组,将右端的六个接线点也随机地平均分成三组,再把所有六组中每组的两个接线点用导线连接,则这五个接收器能同时接收到信号的概率是
(注:本小题结果可用分数表示)
[考查目的]本题考查相互独立事件、互斥事件等的概率计算,考察随机事件的分布列,数学期望等,考察运用所学知识与方法解决实际问题的能力.
第八讲概率统计
【考点透视】
1.了解随机事件的发生存在着规律性和随机事件概率的意义.
2.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率.
3.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率.
4.会计算事件在n次独立重复试验中恰好发生k次的概率.
(A) (B) (C) (D)
[考查目的]本题主要考查运用组合、概率知识,以及分步计数原理解决问题的能力,以及推理和运算能力.
[解答提示]由题意,左端的六个接线点随机地平均分成三组有 种分法,同理右端的六个接线点也随机地平均分成三组有 种分法;要五个接收器能同时接收到信号,则需五个接收器与信号源串联在同一个线路中,即五个接收器的一个全排列,再将排列后的第一个元素与信号源左端连接,最后一个元素与信号源右端连接,所以符合条件的连接方式共有 种,所求的概率是 ,所以选D.
[考查目的]本小题主要考查相互独立事件、互斥事件等的概率计算,运用数学知识解决问题的能力,以及推理与运算能力.
[解答过程](1)记 表示事件“取出的2件产品中无二等品”,
表示事件“取出的2件产品中恰有1件二等品”.
则 互斥,且 ,故
于是 .
解得 (舍去).
(2)记 表示事件“取出的2件产品中无二等品”,则 .
.
所以商家拒收这批产品的概率为 .
例13.
某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三轮的问题的概率分别为 、 、 ,且各轮问题能否正确回答互不影响.
(Ⅰ)求该选手被淘汰的概率;
(Ⅱ)该选手在选拔中回答问题的个数记为 ,求随机变量 的分布列与数学期望.
该选手进入第四轮才被淘汰的概率 .
(Ⅱ)该选手至多进入第三轮考核的概率
.
考点2离散型随机变量的分布列
1.随机变量及相关概念
①随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,常用希腊字母ξ、η等表示.
②随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.
③随机变量可以取某区间内的一切值,这样的随机变量叫做连续型随机变量.
497 503 506 508 507 492 496 500 501 499
根据的原理,该自动包装机包装的袋装食盐质量在497.5g~501.5g之间的概率约为__________.
[考查目的]本题主要考查用频率分布估计总体分布,同时考查数的区间497.5g~501.5的意义和概率的求法.
[解答过程]在497.5g~501.5内的数共有5个,而总数是20个,所以有
[标准解答]记该应聘者对三门指定课程考试及格的事件分别为A,B,C,
则P(A)=a,P(B)=b,P(C)=c.
(Ⅰ)应聘者用方案一考试通过的概率
p1=P(A·B· )+P( ·B·C)+P(A· ·C)+P(A·B·C)
=a×b×(1-c)+(1-a)×b×c+a×(1-b)×c+a×b×c=ab+bc+ca-2abc.
(Ⅱ)求3位顾客每人购买1件该商品,商场获得利润不超过650元的概率.
[考查目的]本小题主要考查相互独立事件、独立重复试验等的概率计算,运用数学知识解决问题的能力,以及推理与运算能力.
[解答过程](Ⅰ)记 表示事件:“ 位顾客中至少 位采用一次性付款”,则 表示事件:“ 位顾客中无人采用一次性付款”.
(1) , 1,2,…;(2) …=1.
②常见的离散型随机变量的分布列:
(1)二项分布
次独立重复试验中,事件A发生的次数 是一个随机变量,其所有可能的取值为0,1,2,…n,并且 ,其中 , ,随机变量 的分布列如下:
0
1
…
…
P
…
称这样随机变量 服从二项分布,记作 ,其中 、 为参数,并记: .
(2)几何分布
, .
(Ⅱ)记 表示事件:“ 位顾客每人购买 件该商品,商场获得利润不超过 元”.
表示事件:“购买该商品的 位顾客中无人采用分期付款”.
表示事件:“购买该商品的 位顾客中恰有 位采用分期付款”.
则 .
, .
.
例10.某公司招聘员工,指定三门考试课程,有两种考试方案.
方案一:考试三门课程,至少有两门及格为考试通过;
2.离散型随机变量的分布列
①离散型随机变量的分布列的概念和性质
一般地,设离散型随机变量 可能取的值为 , ,……, ,……, 取每一个值 ( 1,2,……)的概率P( )= ,则称下表.
…
…
P
P1
P2
…
…
为随机变量 的概率分布,简称 的分布列.
由概率的性质可知,任一离散型随机变量的分布列都具有下述两个性质:
由题意,得
所以, ,
化简,得 解得 ,或 (舍去),
故 .
例9.某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6,经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元.