变压器的Π型等值电路知识分享
3-4变压器的等效电路

3-4 变压器的等效电路 一、T形等效电路
《电机学》 第三章 变压器
1
E E 2 1
由简化等效电路可知,短路阻抗起限制短路电流的作用, 由于短路阻抗值很小,所以变压器的短路电流值较大,一 般可达额定电流的10~20倍。
I R jX ) ' U ( U 1 1 k k 2
《电机学》 第三章 变压器
6
3-5
变压器参数测量
一、空载实验
目的:通过测量空载电流和一、二次电压及空载功率 来计算变比、空载电流百分数、铁损和励磁阻抗。
《电机学》 第三章 变压器
13
4)参数计算
Uk Uk Zk Ik Ik Pk Rk 2 Ik Xk Z R
2 k 2 k
对T型等效电路:
1 R1 R Rk 2 1 ' X1 X 2 X k 2
' 2
5)记录实验室的室温;
《电机学》 第三章 变压器
14
6)温度折算:电阻应换算到基准工作温度时的数值。
上式表明,阻抗电压就是变压器短路并且短路电流达额定 值时所一次侧所加电压与一次侧额定电压的比值,所以称 为短路电压。
短路电压电阻 (有功)分量百分值: u kR %
短路电压电 抗(无功)分量百分值:
I1N Rk 750 C U1N
100%
I1 N X k u kX % 100% U1 N
I I I 1 2 0
变压器等值电路总结

变压器总结
首先看变压器的序电抗及等值电路
1:变压器负序电抗及等值电路与正序相同
2:零序电抗及等值电路与变压器的结构以及接线方式,需要按每一种结构,每一种接线仔细分析后确定,要特别注意零序等值电路的画法
3:画变压器零序等值电路时将变压器正序等值电路中的激磁电抗Xm以零序激磁电抗Xmo代替
4:在分析经电抗接地情况时,注意接地电抗中流过的是三倍零序电流,故在等值电路中接地电抗值应以三倍表示,电阻也是三倍
电力系统各序网络的制定
对应对称分量法分析计算不对称故障时,首先必须做出电力系统的各序网络.为此,应根据电力系统的接线图,中性点接地情况等原始资料,在故障点分别施加各序电势,从故障点开始,逐步查明各序电流流通的情况。
凡是某一序电流能流通的元件,都必须包括在该网络中,并用相应的序参数和等值电路表示。
例如
在这里要看懂这个复合序网图,首先分解两卷变和三卷变的各序等值电路
1:两卷
(母线端)
Jx1 jx2
正序负序零序有四种接线方式
一:三角形连接
(母线端)
Jx0
母线端
二:星行连接jx0
三:星行接地连接
Jx0
四:星形带阻抗接地
J3Xg jx0
上面的四种零序接线图简化后,就很容易整理出两两接线图
表2。
1 双绕组变压器零序等值电路
同理:)三绕组变压器
jx1 jx2
三jx3绕组正(负)序等值电路
零序与二卷变一样,所以组合方式如下图
表2。
2 三绕组变压器零序等值电路。
三绕组变压器等值电路

三绕组变压器等值电路简介三绕组变压器是一种常见的电力设备,用于将电网的电压转换为适合使用的电压。
在电力系统中,变压器扮演着重要的角色。
了解三绕组变压器的等值电路对于分析和设计电力系统至关重要。
三绕组变压器等值电路是将三绕组变压器简化为等效电路的过程。
通过等值电路,可以更好地理解和分析变压器的行为和性能。
本文将详细介绍三绕组变压器等值电路的原理、计算方法和实际应用。
原理三绕组变压器包含三个绕组,分别称为高压侧(H)、中压侧(M)和低压侧(L)。
当电流通过变压器的一个绕组时,将在其他绕组中感应出电动势。
根据法拉第定律和楞次定律,可以得出以下关系:V H N H =V MN M=V LN L=k其中,V H、V M和V L分别代表高压侧、中压侧和低压侧的电压,N H、N M和N L分别代表高压侧、中压侧和低压侧的匝数,k代表变压器的变比。
等值电路为了更好地分析和计算变压器的性能,可以将三绕组变压器等效为一个简化的等效电路。
常见的等效电路包括PI型等效电路和T型等效电路。
PI型等效电路PI型等效电路使用一个并联的电感元件(L1)、一个串联的电感元件(L2)和一个串联的电阻元件(R),如下图所示:其中,L1和R1代表高压侧的电感和电阻,L2和R2代表低压侧的电感和电阻。
等效电路中的参数可以通过实际测量或计算获得。
T型等效电路T型等效电路使用一个串联的电感元件(Lt)和一个并联的电阻元件(Rt),如下图所示:其中,Lt代表总的电感,Rt代表总的电阻。
T型等效电路的参数也可以通过实际测量或计算获得。
计算方法三绕组变压器的等效电路可以通过实际测量或计算获得。
以下是一种常用的计算方法:1.测量高压侧短路阻抗(Z H)和短路电压(U H);2.测量低压侧短路阻抗(Z L)和短路电压(U L);3.按比例关系计算中压侧短路阻抗(Z M)和短路电压(U M):Z M=Z L k2U M=U L k4.根据测量结果或计算结果,选择合适的等效电路(PI型或T型);5.根据等效电路的特性,计算出等效电路中的电感和电阻。
电力线路变压器的参数与等值电路

0.0157
0.1014 0.0157 0.41 / km
(2)三相导线等边三角形布置时
Dm D 6m
x1
0.1445lg
Dm r
0.0157
6 0.1445lg 12.6 103
0.0157
0.387 0.0157 0.403 / km
4.2.1 输电线路的参数及等值电路
4.2.2 变压器参数及等值电路
(2)试验参数
4)励磁电纳
BT
I0 %SN
U
2 N
10 5
(4-2-15)
式中 BT ——变压器的电纳,S;
I0 % ——变压器额定空载电流的百分
值;
SN ——变压器的额定容量,kVA; U N ——变压器的额定电压,kV。
4.2.2 变压器参数及等值电路
2.三绕组变压器 (1)等值电路
4.2.2 变压器参数及等值电路
(2)试验参数
1)电阻
变压器三个绕组容量比为短路试验可以得到任两
个绕组的短路损耗Pk12、Pk 23 、Pk31。由此算出每
个绕组的短路损耗 Pk1、Pk2 、Pk3 。
Pk1
Pk12
Pk 31 2
Pk 23
RT 1
Pk1U
线与大地间的分布电容所确定的。每相导线的
等值电容
C1
0.0241 106 F/km
lg Dm
(4-2-10)
r
当频率为50Hz时,单位长度的电纳为
b1
2fC1
7.58 lg Dm
106
S/km(4-2-11)
r
4.2.1 输电线路的参数及等值电路
5. 线路每相总电阻、总电抗、总电导和总电 纳
2.2 变压器的参数和等值电路

双绕组变压器的参数和等值电路 三绕组变压器的参数和等值电路 自耦变压器的参数和等值电路
一.双绕组变压器的参数和数学模型
. . U1N Ig . Io
GT
RT .-jBT Ib
jXT
铭牌参数:SN、
UIN/UⅡN、
Pk、Uk%、 P0、I0%
短路实验
Pk RT
Uk % XT
2 Pk1U N 3
86.4 1102
3
4)计算各绕组的电抗:短路电压
1 1 U % ( U % U % U %) ( 10.5 18 6.5) 11 k1 2 k13 k 2 3 k1 2 2 1 1 U % ( U % U % U %) ( 10.5 6.5 18 ) 0.5 k2 k1 2 k 2 3 k 31 2 2 1 1 U % ( U % U % U %) ( 18 6.5 10.5) 7 k 2 3 k 31 k1 2 k3 2 2
若SN2=SN1/2=SN/2,则RT2=RT(50)=2RT(100)
RT (50) 2RT (100)
P U 10 S
N
2
k . m ax N 3 2
()
电抗XT1、 XT2、XT3
U k (12) % U k1 % U k 2 % 由 U k (23) % U k 2 % U k 3 % U k (31) % U k 3 % U k1 %
Pk . max
2 SN 2 2 RT (100) UN
RT (100)
2 UN Pk .max ( ) 2 2S N
上式中—Pk.max(W) 即 Pk.max(kW)
变压器的零序参数和等值电路备课讲稿

路中具有对称性,因此这三点的
电位相等。所以在ea0、eb0、ec0三 个电动势的作用下只能在三角形
绕组中引起零序环流,而不能流
到绕组外面的线路上去。这与变
压器Ⅱ侧三相短路完全一样,其
等值电路如图7-9b所示。
图7-10 三角形绕组中的零序 电动势和电流
∴
X0XX X X X m 0 m 0XX X1 (Xm0X )
➢自耦变压器的特点:它的某两个绕组之间不仅有磁的联 系,而且还有电的联系。在中性点绝缘的情况下,它的 绕组中可能还会有零序电流流过。 ➢为了避免当高压侧发生单相接地短路时,自耦变压器中 性点电位升高而引起中压侧或低压侧过电压,通常将其 中性点直接接地或经电抗接地,且均认为Xm0=∞。
1. 自耦变压器中性点直接接地
X;
U jIN 0j3X n(jII0 0 I0 )3X n(1k)
∴
X X 3 X n(1 k)2
由图7-19(b) ,可得其零序电抗为:
X 0 X X X 3 X n ( 1 k ) 2 X
三绕组YN,yn,d接线自耦变压器(图7-20)
图7-20 中性点经电抗接地时YN,yn,d接线自耦变压器的零序电流回路及其等值电路
在图(a)中,当零序电压加于变压器YN侧时, 零序电流由Ⅰ侧绕组中性点入地形成回路。
图7-9 YN,d接线变压器的零序电流回路及其等值电路
(a)零序电流回路 (b)零序等值电路
由于Ⅰ侧与Ⅱ侧绕组间有耦合关系,将会在Ⅱ侧的 三个绕组中感应出三个大小相等、相位相同的电动势, 如图所示。
由图可见,a、b、c三点在电
当变压器YN侧中性点经电抗Xn接地时(图7-11a), 将有3I0电流流过Xn ,其零序等值电路如图7-11b所示。
电力变压器的等值电路及参数计算

100(高)/ 50(中)/100(低)
三绕组变压器的额定容量:三个绕组中容量最
大的一个绕组的容量 。
13
➢ 电阻和电抗的计算
依次测得:
PS 1 2
PS 13
PS 23
U S 1 2 %
U Sห้องสมุดไป่ตู้13 %
U S 2 3 %
三绕组变压器的短路试验
BT
2 10 3 (S)
100 U N
三绕组变压器的空载试验
20
例3-2所得等值电路
❖负值都出现在中间位置的绕组上,实际计算中通
常做零处理。
21
3、自耦变压器
➢ 自耦变压器的连接方式和容量关系
三绕组自耦变压器
U1-高压,U2-中压,U3低压
22
➢ 自耦变压器的电磁关系
❖ 高压与低压的关系与普通变压器一样
百分数的折算公式为:
SN
U S13 % U 'S13 %
SN3
SN
U S 23 % U 'S 23 %
SN3
25
➢自耦变压器的运行特点
❖ 当自耦变压器电压变比不大时(<3:1),其经济
性才较显著。
❖ 为了防止高压侧单相接地故障引起低压侧过电压,
中性点必须牢靠接地。
❖ 短路电流较大,需考虑限流措施。
5
Ps U
RT
()
1000S
2
N
2
N
Us % U2N
XT
()
100 SN
Ps : kW
注意:公式中各参数的单位。 S N : MV A
U N : kV
电力线路的参数与等值电路以及潮流计算的简单介绍

U 2 Z
P Q j 2
2
U* 2
两边同乘 e3 j30 U U
U 1 U 2 U U 2 Z
e P Q 3 ( j30 2 j
)
2
U* 2
U 2 Z
3(P2 jQ2)
3e
j30
U* 2
U 2
Z
P2 jQ2 U* 2
**
U
U 1 U 2 Z
P2 jQ2 电压降落 U2
基本概念
二、电压降落、电压损耗、电压偏移
目的:对于一条线路(变压器)有负荷流过时,首末端电压不等,造
成电压 损耗,可以推导已知端的S和U时求另一端的S和U
u 1
I
u 2
R jX
S 2 P2 jQ2
1、已知U2及S2求U1
I
S 2 U 2
*
P Q j 2
2
U* 2
U 1 U 2 U U 2 Z I
电力线路的参数与等值电路
一.单位长度电力线路的参数
1、电阻 r1=ρ/ s
ρ电阻率
单位:Ω•mm2/km 铜:18.8 铝: 31.3
与温度有关
S 截面积 mm2
一般是查表 rt=r20(1+α(t-20))
钢线电阻:导磁集肤、磁滞效应交流电阻> 直流电阻,和电流有关查手册
电力线路的参数与等值电路
以U2为参考电压
U
(R
jX ) P2 jQ2 U2
I2
U 1 U U' U 2 U'
P2 R Q2 X j P2 X Q2 R U' j U'
U2
U2
纵分量 横分量
2、已知U1及S1求U2
变压器的Π型等值电路教案资料

k(k 1)
V&2
• 变压器的π型等值电路中三个阻抗(导纳)都与变比 k有关;π型的两个并联支路的阻抗(导纳)的符号 总是相反的。
• 三个支路阻抗之和恒等于零,构成谐振三角形。三 角形内产生谐振环流。
• 谐振环流在原、副方间的阻抗上(π型的串联支路) 产生的电压降,实现了原、副方的变压,而谐振电 流本身又完成了原、副方的电流变换,从而使等值 电路起到变压器的作用。
1
V&1
I&1
V&12 Z12I&12 j10( j5.715) 57.15kV
I&12 Z 12
I&2 2
V&2
V&2 V&1V&12 63.557.156.3511/ 3kV
I&10
Z10
Z 20
I&20
I&20 V&2 / Z20 6.35/ j1.11 j5.715kA
I&2 I&12 I&20 0
Z20=ZT /[k(k―1)]=j100/[10(10―1)]=j1.111Ω
当I&1 0 时,副方电压和电流的计算
1
ZT
K:1 2
I&10 V&1 / Z10
110 63.5/ j11.11 j5.715kA 3( j11.11)
I&12 I&1 I&10 0 j5.715 j5.715kA
V&2 V&1/k I&2 kI&1
当 I&1 50A 0.05kA 时,副方电压和电流的计算
I&10 V&1/ Z10 63.5/ j11.11 j5.715kA I&12 I&1 I&10 0.05 j5.715kA
变压器的Π型等值电路

Z10=ZT /(1―k)=j100 /(1-10 )=-j11.111Ω
Z20=ZT /[k(k―1)]=j100/[10(10―1)]=j1.111Ω 当 I1 0 时,副方电压和电流的计算 110 V /Z I 63.5/ j11.11 j5.715kA 10 1 10 3( j11.11) I I 0 j5.715 j5.715kA I 12 1 10
例 额定电压110/11kV三相变压器折算到高压侧电抗为100Ω , 绕组电阻和励磁电流均略。原方相电压 110/ 3kV,试就 I1 50 和 I1 0 A两种情况,用π型等值电路计算副方的电压和电流。
解:变压器的一相等值电路如图所示,其参数为: K=110/11=10, Z12=ZT /k=j100/10=j10Ω
ZT
12 I
K:1
Z 12
2 I
2 2
1 V 10 I
Z 10
Z 20
2 V
20 I
I I 0 I 2 12 20
V /k V 2 1
kI I 2 1
50A 0.05kA 当 I 1
时,副方电压和电流的计算
V / Z 63.5/ j11.11 j5.715kA I 10 1 10 I I 0.05 j5.715kA I
k ( k 1)
YT
2 V
1 I
Z T /k
ZT
2 I
1 V
1 k
k (k 1)
ZT
2 V
• 变压器的π型等值电路中三个阻抗(导纳)都与变 比k有关;π型的两个并联支路的阻抗(导纳)的符 号总是相反的。 • 三个支路阻抗之和恒等于零,构成谐振三角形。三 角形内产生谐振环流。 • 谐振环流在原、副方间的阻抗上(π型的串联支路) 产生的电压降,实现了原、副方的变压,而谐振电 流本身又完成了原、副方的电流变换,从而使等值 电路起到变压器的作用。
3-1 变压器等值电路及参数计算(2018)

33
五、变压器的π型等值电路
已知折算到高压侧的阻抗值,怎么构造π型等值电路?
I1
RT
jXT
k:1
I0
I2
I2
U1 GT
jBT
U 2
U 2
带理想变压器的等值电路
理想变压器:无损耗、无漏磁、无励磁电流
34
IS IP
U1 I1ZT U 2 kU 2
放大系数
实测值
相同电压下,额定电流与额定容量成正比。 有功功率损耗与电流平方成正比。
23
电阻的计算( 容量比不为100/100/100 )
2
P S ( ab)
S N
min{S Na
,
S
Nb
}
P S ( ab)
以容量比为100/100/50为例:
PS13
SN
P ( S13 SN3
)2
PS12
PS23 PS2 PS3
各绕组对应等值短路损耗的 计算公式:
PS1
1 2
(PS12
PS13
PS23
)
PS2
1 2
(PS12
PS23
PS13 )
PS3
1 2
(PS13
PS23
PS12
)
21
电阻的计算( 容量比不为100/100/100 )
公式中的ΔPs是指绕组流过与变压器额定容量SN 对应的额定电流IN时所产生的有功损耗。
第2篇 电力设备的理论及模型
第三章 电力系统主设备 (Main Equipments in Power System )
发电机 变压器 输电线 高压电器(高压开关电器、高压互感器) 电动机
变压器参数和等值电路

变压器参数和等值电路变压器是一种通过电磁感应原理来将电压从一个电路传递到另一个电路的装置。
它通常由一个主线圈和一个副线圈组成,主线圈和副线圈通过一个磁芯相互连接。
主线圈和副线圈之间的变比为N,也可以表示为主电压和副电压之比。
变压器参数包括额定功率、额定电压、频率、变比和效率等。
额定功率表示变压器所能传递的最大功率,单位为千瓦。
额定电压表示变压器的额定输入电压和输出电压,通常以V1、V2表示。
频率表示电压的变化频率,通常为50Hz或60Hz。
变比表示主线圈电压和副线圈电压之间的比值,通常以N1:N2表示。
效率表示变压器的能量利用率,能量损失主要包括铜损、铁损和额外损耗。
变压器可以通过等值电路进行建模,等值电路包括电阻、电感和电容等元件。
电阻一般表示主线圈和副线圈的电阻,用来模拟铜损。
电感一般表示主线圈和副线圈的电感,用来模拟铁损。
电容一般表示主线圈和副线圈之间的电容,用来模拟诱导电压。
在等值电路中,变比可以用变压器的主副线圈电压比值表示,即V1/V2=N1/N2、主线圈的电阻和电感可以用R1和L1表示,副线圈的电阻和电感可以用R2和L2表示。
主线圈和副线圈之间的电容可以用C12表示。
等值电路的参数可以通过实际测量或计算来确定。
变压器的等值电路可以用于分析变压器的性能和行为,例如计算变压器的额定电流、功率损耗等。
对于大型电力系统中的变压器,等值电路分析也可以用于短路分析、稳态分析和动态分析等。
总之,变压器是一种将电压从一个电路传递到另一个电路的装置,可以通过等值电路来建模和分析。
变压器参数包括额定功率、额定电压、频率、变比和效率等,等值电路包括电阻、电感和电容等元件。
通过等值电路分析,可以更好地理解和应用变压器。
变压器等值电路及参数分析

变压器等值电路及参数分析摘要:变压器是构成电力网的两种元件之一。
能够准确、快速、简便地计算出变压器等值电路参数是广大电力科技人员应掌握的一项基本技能,也是对电力系统作进一步分析计算的基础前提之一。
本文从变压器的类型、原理、主要构成等方面阐述了变压器的基本概念,通过对变压器等值电路及参数的分析,得到了计算准确的效率,通过对其比较使其具有了较强的一般适用性。
关键词:变压器,变压器简介,参数计算,等值电路Transformer equivalent circuit and parameter analysisAbstractthe transformer is constitutes one of the two elements of the grid. Can accurate, rapid and convenient to calculate the transformer equivalent circuit parameters are vast power technology personnel should grasp the basic skills, but also in power system for further analysis and calculation of the basic prerequisite. This paper introduces the types, from transformer principles, main composition, this article discusses the basic concept, through transformer of transformer equivalent circuit and parameter analysis, obtained the calculating accurate efficiency, through the comparison make it has a strong general applicability.Keywords: transformer ,Transformer introduction, parameter calculation, Equivalent circuit目录目录 (I)1 引言 (1)2 变压器简介 (1)2.1结构简介 (1)2.2变压器的原理 (1)2.3变压器的分类 (2)2.4变压器的用途 (2)3 双绕组变压器等值电路及参数分析 (3)3.1等值电路的建立 (3)3.2试验参数 (3)3.2.1 短路试验 (3)3.2.2 空载试验 (4)3.3计算出变压器的RT、XT、GT、BT (4)4 三绕组变压器等值电路及参数分析 (6)4.1等值电路 (6)4.2试验参数 (6)4.3三绕组的特点和容量 (7)5 自耦变压器等值电路及参数分析 (8)5.1自耦变压器简介 (8)5.2自耦变压器等值电路及参数分析 (8)6.1双绕组和三绕组的区分 (9)6.2自耦变压器与普通的双绕组变压器比较的优点。
变压器参数和等值电路

32
作业
2-6(不计算标么值)、2-8、2-9
33
US% US 100 UN
3INXT UN
SNXT
2
X T U S%U N 2 10 欧 SN
IN RT jXT
1
2’
GT
-jBT
7
二、开路试验求励磁导纳
GT:由 P0(kW)确定:
P0 P cu P Fe P cu 0
UN 1
GT
RT jXT 2’
-jBT
P 0 UN2 GT
GT P0 103 西门
电力 变压器
变压器 绕组
运用折合的概念得出等值 电路(《电机学》)
稳态不考虑变压器原副边 电量的相位关系,仅考虑 数量关系,等值Y/Y
R1 jX1 R’2 jX’2
RT jXT
RT jXT
1
Rm
jX m
2’ 1 Rm jX m
2’ 1
GT
2’ -jBT
双绕组变压器等值电路
3
§2 变压器等值参数
GT
-jB T
3
开路试验:1侧加UN,另两侧开路,得: P 0(kW),I0%
GT、BT的求法与双绕组相同
短路试验:一侧加IN,一侧短路、一侧开路:
PS(12)、PS(23)、PS(31) US(12)%、US(23)%、US(31)%
求参数?
13
二、求电阻R1、R2、R3(绕组容量100/100/100)
S3 2
15
求电阻R1、R2、R3(绕组容量100/100/100)
PUN 双饶组: RT
SN 2
103
变压器π型等值电路推导过程

变压器π型等值电路推导过程嘿,朋友们,今天咱们聊聊变压器的π型等值电路。
这可不是枯燥的课本知识,而是电气工程中的一块宝藏,听着可有意思了。
变压器啊,顾名思义,就是用来“变”电压的,像变魔术一样。
想想,家里的电器如果没有变压器,简直就是一场灾难,电压一高,电器们可受不了。
就像人喝酒,酒一多,后果那真是不堪设想。
好了,言归正传,先说说这个π型等值电路。
想象一下,一个个电阻、电感、电容就像小伙伴们一起聚会,个个都有各自的角色,真是热闹非凡。
我们得明白,变压器的工作原理就像是一个聪明的小助手,能够把高电压的电流变成低电压,反之亦然。
这就好比你在餐馆里点了份大份,服务员给你分成小份,方便你慢慢享用。
而这个π型等值电路,就是把变压器的内部结构简单化,变得易于理解。
这里的“π”可不是π值,而是图形的样子,像个字母“π”一样,包含了输入端、输出端还有个中间的部分。
听起来挺简单,对吧?咱们聊聊怎么推导这个等值电路。
你想啊,推导过程就像在做一道美味的菜肴,先得把食材准备齐全。
这里的“食材”就是变压器的参数,比如说原边电阻、原边电感、漏电感这些。
看着就觉得复杂,但每样东西都有它的位置,就像朋友们聚会,少了谁都不行。
然后,我们把这些参数通过一些公式,整合成一个π型电路,这个过程就像搭积木,简单又有趣。
别忘了,这些参数不是孤零零的,他们之间有着千丝万缕的联系。
说到这里,你可能会问,这个等值电路有什么用呢?哦,别急,这里就像打开了一扇窗,让我们看到更广阔的天空。
用这个等值电路,我们可以很方便地进行分析。
就像有了GPS,找路不再迷糊。
通过计算,我们可以知道电压、电流的变化情况,设计出更加安全有效的电气系统。
想象一下,电器不再因为电压过高而“罢工”,家里的小家电们都能安安稳稳地工作,真是件美好的事情。
不过,推导这个过程有时会让人觉得头疼,就像数学题一样复杂。
不过,没关系,很多公式都可以通过图示化的方式来理解。
你瞧,这π型电路就像一个图画,帮助我们把抽象的东西变得形象。
知识资料电力线路及变压器参数和等值电路(一)(新版)

第 1 页/共 2 页7第31章 电力线路及变压器参数和等值电路31.1 架空输电线路参数及等值电路31.1.1 三相交流架空输电线路参数31.1.1.1输电线路的电阻(1)导线的直流电阻式中 ——导线直流电阻,Ω;——导线材料的电阻率,Ω·m。
与温度有关, 温度为20℃时,铜导线铝导线——导线的长度,m ;——导线的截面积,m2。
(2)不同温度下的导体电阻式中 ——温度为θ℃时导体电阻,Ω;——0℃时导线材料的电阻率,Ω·m;——是ρ的温度系数,1/℃; ——导体的温度,℃;——导线的长度,m ;——导线的截面积,m2。
输电线路有效电阻:20/I P r ∆=修正后 31.1.1.2 输电线路的电抗(1)单相导线线路电抗S l R ρ=R ρρm •Ω⨯=-81088.1ρm •Ω⨯=-81015.3ρl S ]201[)(-+=θαθR R Sl R )(αθρθ+=10θR 0ραθl S 4110)5.0lg 6.4(2-⨯+=μπr D f x m 0157.0lg 1445.01+=rD x m ]201[)(-+=θαθR R ]201[20)(-+=θαθr r2 式中——导线单位长度的电抗,Ω/km ;——导线外半径,mm ;——交流电的频率,Hz ;——导线材料的相对导磁系数; 铜和铝 钢——三根导线间的几何平均距离,简称几何均距,mm 。
(2)分裂导线线路电抗 式中——每一相分裂导线的根数。
——分裂导线的等值半径 ,mm ; 式中—— 每根导线的实际半径,mm ;—— 一根分裂导线间的几何均距,mm 。
31.1.1.3 输电线路的电纳电力线路的电纳(容纳)是由导线间以及导线与大地间的分布电容所决定的。
每相导线的等值电容F /km 当频率为50Hz 时,单位长度的电纳为 S /km 31.1.1.4 输电线路的电导当线路实际电压高于电晕临电压时,与电晕相对应的电导为S /km式中——导线单位长度的电导,S /km ;——实测三相电晕损耗的总功率, kW / km ;——线路电压,kV 。
电力系统问答题

电力系统概念汇总CHAPTER11、什么是电力系统?什么是电力网?他们都由那些设备组成?电力系统:由发电、变电、输电、配电、用电等设备和相应辅助设备、按规定的技术和经济要求组成的,将一次能源转换成电能并输送和分配到用户的一个统一系统。
组成:电力系统是由发电机、变压器、线路、负荷等4类设备组成的有机整体。
其组成按照功能分3个层次:电力网络:升压变压器+输电线路+降压变压器+配电线路电力系统:发电机+电力网络+用电设备(用电负荷)动力系统:电力系统+发电厂动力部分(一次能源转换设备)2、电力网的额定电压是怎样规定的?电力系统各类元件的额定电压与电力网的额定电压有什么关系?I)电力线路的额定电压和系统的额定电压相等;II)发电机的额定电压与系统的额定电压为同一级别时,其额定电压规定比系统的额定电压高5%;III)变压器接受功率一侧的绕组为一次绕组(相当于受电设备),输出功率一侧的绕组为二次绕组(相当于供电设备);IV)变压器一次绕组的额定电压与系统的额定电压相等,但直接与发电机联接时,其额定电压则与发电机的额定电压相等。
V)变压器二次绕组的额定电压规定比系统的额定电压高10%,如果变压器的短路电压小于7%、或直接(包括通过短距离线路)与用户联接时,则规定比系统的额定电压高5%。
3、升压变压器和降压变压器的分接头是怎样规定的?变压器的额定变比和实际变比有什么区别?变压器分接头:①为满足电力系统的调压要求,电力变压器的绕组设有若干个分接抽头--—分接头,相应绕组的中心抽头称之为主抽头。
②变压器绕组额定电压,指主轴头对应的绕组额定电压。
③分接头位置用“%”示出,表示抽头偏离主抽头的额定电压%④分接头的设置:双绕组变压器——分接头设在高压侧三绕组变压器—-分接头分别设在高压侧和中压侧⑤分接头调节方式与个数:个数为奇数(含主抽头)变压器变比A) 额定变比:kN=高压侧额定电压 / 低压侧额定电压B) 运行变比:k =高压侧分接头电压/ 低压侧额定电压C) 标么变比:k*= k / kN (or :k*= k / kB——见2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
I1
Z T R TjX T
K:1 I 2
I2
V1
V 2
V2
I1
Z T/k
I2
V1
ZT
1 k
ZT
k (k 1)
V2
图 电气连接形式
I1
kY T
I2
(1k)YT
V1
Y k(k 1) T
V2
I1
Z T/k
I2
V1
ZT
ZT
1 k
k (k 1)
V2
• 变压器的π型等值电路中三个阻抗(导纳)都与变比 k有关;π型的两个并联支路的阻抗(导纳)的符号 总是相反的。
A两种情况,用π型等值电路计算副方的电压和电流。
解:变压器的一相等值电路如图所示,其参数为:
K=110/11=10, Z12=ZT /k=j100/10=j10Ω Z10=ZT /(1―k)=j100 /(1-10 )=-j11.111Ω
Z20=ZT /[k(k―1)]=j100/[10(10―1)]=j1.111Ω
• 三个支路阻抗之和恒等于零,构成谐振三角形。三 角形内产生谐振环流。
• 谐振环流在原、副方间的阻抗上(π型的串联支路) 产生的电压降,实现了原、副方的变压,而谐振电 流本身又完成了原、副方的电流变换,从而使等值 电路起到变压器的作用。
例 额定电压110/11kV三相变压器折算到高压侧电抗为100Ω, 绕组电阻和励磁电流均略。原方相电压 110 / 3kV,试就 I1的计算
1
ZT
K:1 2
I 1 0 V 1 /Z 1 0 3 ( 1 1 j1 0 1 .1 1 ) 6 3 .5 / j1 1 .1 1 j5 .7 1 5 k A
I 1 2 I 1 I 1 0 0 j5 .7 1 5 j5 .7 1 5 k A
1
V1
I2I12I200
V2 V1 / k I 2 k I1
当 I150A0.05kA 时,副方电压和电流的计算
I 1 0 V 1 /Z 1 0 6 3 .5 / j 1 1 .1 1 j5 .7 1 5 k A I1 2 I1 I1 0 0 .0 5 j5 .7 1 5 k A
V 1 2 Z 1 2 I 1 2 j 1 0 ( 0 . 0 5 j 5 . 7 1 5 k A ) j 0 . 5 5 7 . 1 5 k V V 2 V 1 V 1 2 6 3 . 5 ( j 0 . 5 5 7 . 1 5 ) 6 . 3 5 j 0 . 5 k V I 2 0 V 2 / Z 2 0 ( 6 . 3 5 j 0 . 5 ) / j 1 . 1 1 1 j 5 . 7 1 5 0 . 4 5 k A
I1
I 12 Z 12
I2 2
V2
V 1 2 Z 1 2 I 1 2 j 1 0 ( j 5 .7 1 5 ) 5 7 .1 5 k V
V 2 V 1 V 1 2 6 3 . 5 5 7 . 1 5 6 . 3 5 1 1 /3 k V
I 10
Z 10
Z 20
I 20
I 2 0 V 2 /Z 2 0 6 .3 5 /j 1 .1 1 j5 .7 1 5 k A
在负载情况下,直接由 V2(V1ZTI1)/k和 I 2 kI1 算出副方的 电压和电流。
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢