第十六章-表观遗传学(答)

合集下载

分子生物学之表观遗传学

分子生物学之表观遗传学

分子生物学:表观遗传学表观遗传学( epigenetics):指非基因序列变化导致的基因表达的可遗传的改变。

细胞中生物信息的表达受两种因素的调控:遗传调控提供了“生产’维持生命活动所必需的蛋白质的“蓝本”,而表观遗传调控则指导细胞怎样、何时和何地表达这些遗传信息。

表观遗传学研究的主要内容:DNA的甲基化,染色质的物理重塑和化学修饰,非编码RNA基因调节。

依赖ATP的染色质的重塑由ATP水解释放的能量可以使DNA和组蛋白的构象发生改变;包括DNA的甲基化和组蛋白N端尾巴上特殊位点的化学基团修饰,同样可以直按或间接地影响染色质的结构和功能。

二者之间相互渗透,相互作用,共同影响着染色质的结构和基因的表达。

此外,近些年发现转录组(transcriptome)中组有多种非编码RNA广泛参与基因表达调控,非编码RNA的基因调节也可属于表观遗传学的研究的范畴。

DNA甲基化的概况DNA的甲基化既可以发生在腺嘌呤的第6位氮原子上,也可以发生在胞嘧啶的第5位碳原子上。

*在真核生物中,DNA甲基化只发生在胞嘧啶第5位碳原子上。

真核DNA甲基化由DNA甲基转移酶(Dnmt, DNA methyltransferase)催化,S-腺苷甲硫氨酸(SAM, S-adenosyl methionine)作为甲基供体,将甲基转移到胞嘧啶上,生成5一甲基胞嘧啶(5-mC)。

在哺乳动物中,DNA甲基化主要发生在CpG双核苷酸序列,全部CG二核苷酸中约70%~80%的C是甲基化(mCpG), 所以CpG称为甲基化位点。

CG抑制:DNA中CG的排列出现的概率小于期望值1/16(A42+4=16),如人的基因组中CG排列小于1%,而非随机期望的约6%(1/16).基因组中的CpG位点并非均一分布。

在某些区域中(大约有300~3 000 bp),CpG位点出现的密度高(50%或更高),这些区域即所谓的CpG岛。

大部分CpG岛(>200bp, C+G含量=/>50%. CpG观测值/期望值=/>0.6) 位于基因的5’端,包括基因的启动子区域和第一外显子区,而且60%的人类(哺乳动物40%)基因组的启动子区都含有CpG岛(几乎所有管家基因都存在CpG岛),它们在基因表达调控中可能发挥着重要的作用。

表观遗传学——精选推荐

表观遗传学——精选推荐

表观遗传学概概述述? 表观遗传学表观遗传学是与遗传学(genetic)相对应的概念。

遗传学是指基于基因序列改变所致基因表达水平变化,如基因突变、基因杂合丢失和微卫星不稳定等;而表观遗传学则是指基于非基因序列改变所致基因表达水平变化,如DNADNA甲基化和染色质构象变化等;甲基化和染色质构象变化等;甲基化和染色质构象变化等;甲基化和染色质构象变化等;? ? 定义定义定义定义:研究基因的核苷酸序列不发生改变的情况下,基因表达了可遗传:研究基因的核苷酸序列不发生改变的情况下,基因表达了可遗传:研究基因的核苷酸序列不发生改变的情况下,基因表达了可遗传:研究基因的核苷酸序列不发生改变的情况下,基因表达了可遗传的变化的一门遗传学分支学科的变化的一门遗传学分支学科。

的变化的一门遗传学分支学科的变化的一门遗传学分支学科。

的变化的一门遗传学分支学科的变化的一门遗传学分支学科。

的变化的一门遗传学分支学科的变化的一门遗传学分支学科。

2015年2015年年9月年9月月2日月2日日日1 11 1? 决定细胞类型的不是基因本身,而是基因表达模式,通过细胞分裂来传递和稳定地维持具有组织和细胞特异性的基因表达模式对于整个机体的结构和功能协调是至关重要的。

结构和功能协调是至关重要的。

决定细胞类型的不是基因本身,而是基因表达模式,通过细胞分裂来传递和稳定地维持具有组织和细胞特异性的基因表达模式对于整个机体的? 基因表达模式在细胞世代之间的可遗传性并不依赖细胞内基因表达模式在细胞世代之间的可遗传性并不依赖细胞内DNA的序列信息。

息。

的序列信? 基因表达模式有表观遗传修饰决定。

基因表达模式有表观遗传修饰决定。

概概述述?表观遗传学的特点表观遗传学的特点:?可遗传的,即这类改变通过有丝分裂或减数分裂,能在细胞或个体世代间遗传;分裂,能在细胞或个体世代间遗传;可遗传的,即这类改变通过有丝分裂或减数?可逆性的基因表达调节,也有较少的学者描可逆性的基因表达调节,也有较少的学者描述为基因活性或功能的改变;述为基因活性或功能的改变;2015年2015年年9月年9月月2日月2日日日2 22 22 2?没有DNA序列的改变或不能用DNA序列变化来解释。

表观遗传学

表观遗传学
In my mind, these studies stress the importance of keeping a close track of dietary intake while pregnant. As you probably know, obesity rates are on the rise and are associated with HUGE health care costs because of the slew of other health problems associated with obesity (diabetes, hypertension, etc.). Additionally, environmental toxins are unfortunately becoming somewhat ubiquitous and can apparently have the ability to exacerbate the obesity problem.
表观遗传学
❖ 经典遗传学以研究基因序列影响生物学功能为核心相比, ❖ 表观遗传学主要研究这些“表观遗传现象”的建立和维持
的机制。
多少年来,基因一直被认为是生物有机体一代代相传的一个 并且仅有的一个遗传载体。越来越多的生物学家发现了一 个被称为表观遗传的现象------生物有机体后天获得的非遗 传变异有时可以被遗传下去。有详细记录的100个关于代 间表观遗传的例子,提示非基因遗传要比科学家们以前想 象的多得多。
其他例子 Rats whose agouti gene is unmethylated (i.e., expressed) have a yellow-ish coat color and are

表观遗传学

表观遗传学
,体细胞中两条X染色体中的一条随机失活,这就是X染色体失活。
细胞中两条X染色体中的一条随机失活,这就是X染色 母猫身上有可能会是花花的,既有棕色又有黄色,而公猫只有一种颜色,棕色或者黄色。
表观遗传学是与遗传学相对应的概念。
体失活。而且,一旦这个细胞启动了对某一条X染色体 遗传学是指基于基因序列改变所致基因表达水平变化,如基因突变和基因杂合丢失等;
性染色体,但是为了保证X染色体上的基因表达剂量在 在雌性哺乳动物的体细胞中,两条X染色体中的一条总是被异染色质化而失活,这个现象称为X染色体失活。
三色猫背后的生物学机制
对于只有一条X染色体的公猫,它的毛色要么是黄白要么是棕白。
一个合适的范围内,在胚胎发育到原肠胚的时期,体 在雌性体细胞内,虽然有两条X性染色体,但是为了保证X染色体上的基因表达剂量在一个合适的范围内,在胚胎发育到原肠胚的时期
对于只有一条X染色体的公猫,它的毛色要么是黄白 要么是棕白。对于虽然有两条X染色体,但是毛色基 因一致的雌猫,毛色也是黄白或者棕白。只有杂合体 的雌猫,拥有两条X染色体,但是一条上面带的是黄 色毛基因,另一条上面则是棕色毛基因。在胚胎发育 的早期,已经形成了多细胞的阶段,两条X染色体要 失活一条,失活的X染色体浓缩成染色较深的染色质 体。有些细胞保留黄色毛基因所在的X染色体的活性, 而有些细胞保留棕色毛基因所在的X染色体的活性。 而且,这些细胞再分裂出来的子代细胞,都保持一样 的失活程序。最后出生的小猫,身上的花斑就是这里 一块是黄色那里一块是棕色,这是因为同一色的斑块 实际上都来自于同一个前体细胞,并保留相同的X染 色体失活的选择(图1)。
有些细胞保留黄色毛基因所在的X染色体的活性,而有些细胞保留棕色毛基因所在的X染色体的活性。
条有活性的X染色体。在雌性体细胞内,虽然有两条X 在雌性哺乳动物的体细胞中,两条X染色体中的一条总是被异染色质化而失活,这个现象称为X染色体失活。

表观遗传学

表观遗传学

表观遗传学Epigenetics1.达尔文“自然选择”:过度繁殖、生存竞争、遗传和变异、适者生存2.表观遗传学:没有DNA序列的变化,可发生生物体表现型的可遗传的改变。

表观遗传学是在以孟德尔式遗传为理论基石的经典遗传学和分子遗传学母体中孕育的、专门研究基因功能实现的一种特殊机制的遗传学分支学科。

表观遗传研究进一步促进了遗传学和基因组学的研究。

3.染色质DNA或蛋白质的各种修饰(染色质水平的基因表达调控)DNA修饰;组蛋白修饰;RNA干扰;基因组印迹;X染色体失活。

4.DNA甲基化(DNA methylation)甲基化位点:CpG中胞嘧啶第5位碳原子。

DNA甲基转移酶。

甲基来源:一碳单位;S-腺苷蛋氨酸;环境和饮食因素:叶酸、B121)基因组DNA CpG:70%~80%甲基化状态,CpG甲基化与基因组稳定性相关。

2)CpG岛:CpG双核苷酸局部聚集,形成GC含量较高、CpG双核苷酸相对集中的区域。

CpG岛CpG多为非甲基化状态;CpG岛CpG甲基化与基因表达抑制相关。

3)CpG岛分类:转录起始点附近的CpG岛(TSS–CGIs),正常组织是非甲基化的,肿瘤组织发生甲基化,与转录抑制相关。

转录起始点外的CpG岛(non-TSS CpG),正常组织:通常呈高度的甲基化。

肿瘤组织:甲基化程度降低,程度与患病程度相关。

4)CpG岛的分析:长度大于200 bp、GC含量大于50%、CpG含量与期望含量之比大于0.6的区域。

5)DNA甲基化转移酶DNMT:DNMT1:催化子链DNA半甲基化位点甲基化,维持复制过程中甲基化位点的遗传稳定性.DNMT3a和DNMT3b:催化从头甲基化,以非甲基化的DNA为模板,催化新的甲基化位点形成.6)甲基来源:S-腺苷蛋氨酸(胞嘧啶甲基化供体、蛋氨酸是必需氨基酸),一碳单位叶酸:参与一碳单位代谢,间接提供甲基。

补充S-腺苷蛋氨酸。

叶酸摄入不足时可导致DNA低甲基化。

7)DNA甲基化抑制基因转录的机制①直接抑制基因表达:启动子区CpG序列甲基化,影响转录激活因子与启动子识别结合。

表观遗传学

表观遗传学
生长起着重要的调控作用;
哈工大-遗传学 第十六章 表观遗传学
一、印记的发现
迄今为止,除人类和哺乳动物外,报道印
记的物种还有有袋类动物和种子植物。而在鸟 类、鱼类、爬行类和两栖动物中普遍认为不存
在印记。
哈工大-遗传学
第十六章 表观遗传学
二、印记基因的特 点
(1) 印记基因成簇存在
印记控制中心(imprinting control elements,ICE) 交互印记
X X
×
第十六章 表观遗传学
哈工大-遗传学
一、印记的发现
• McGrath和Solter的小鼠核移植实验(1984): 种质细胞在受精发育过程中 雄原核替代雌原核 雌原核替代雄原核 胚胎组织 胎盘组织 胚胎死亡
可见,父系和母系基因组在发育过程中 担负的任务是不同的,且两者同时存在 是正常发育所必需的
小鼠
68
46 39 33
7
103
2010年12月 /home.html i/printing/implinkhtml
哈工大-遗传学 第十六章 表观遗传学
三、基因组印记的分子机制
1、印记基因表达调控的经典实例
重新甲基化酶可对未甲基化的CpG进行甲基化修饰 。 DNA的从头甲基化主要发生在胚胎发育的早期,所以该类 酶主要在早期表达。
哈工大-遗传学 表观遗传学
目前在真核生物中发现的DNA甲基化转移酶:
DNMT1/MET1:最初从小鼠分离,后来在拟南芥中也分离到
同源序列(MET1)在生殖细胞中广泛表达,目前认为,该酶
因活化相关;
哈工大-遗传学 表观遗传学
二、与DNA甲基化有关的酶类
DNA甲基化有两种方式,维持甲基化和重新甲基化, 所以相应的甲基化酶也分为两类:维持DNA甲基化转移酶 和重新甲基化转移酶。

高中生物学中的表观遗传学

高中生物学中的表观遗传学

高中生物学中的表观遗传学1900 年,孟德尔规律的再发现诞生了经典遗传学,其影响之广泛、传播之迅速不亚于进化学说的提出。

此后10年,大量遗传学数据相继发表,孟德尔的拥趸者与反对者各执其词。

结束上述争论的是摩尔根及其同事的果蝇杂交实验,随后,染色体遗传学说的提出标志着经典遗传学的兴起。

20世纪60年代,随着对基因本质的阐明和中心法则的扩充和完善,“基因如何控制性状”这一核心问题仿佛已然被解决。

然而,近年来越来越多的证据表明,除去基因(碱基排序)之外,还存在一系列复杂和精细的调控机制,共同决定着性状的形成。

科学家将后者称为表观遗传学(Epigenetics),区别于以基因为核心的经典遗传学。

21世纪的表观遗传学崭新且富有活力,已经成为遗传学领域中不可或缺的组成。

为了紧跟科学前沿,2019年版人教版《必修2·遗传与进化》中增加了表观遗传概念,旨在帮助学生更深入地理解基因表达与性状的关系。

那么,在高中生物教学过程中,教师如何在学生所熟悉的(经典遗传)概念体系中引入新的表观遗传概念呢?对于前者而言,后者是挑战还是完善呢?在讨论上述问题之前,先来看教科书中提供的两个“令人困惑”的遗传现象。

1 小鼠毛色杂交实验教材案例1:纯合黄色小鼠(AvyAvy)与纯合黑色小鼠(aa)杂交,F1代没有表现出黄色,反而呈现出介于黄、黑色的一系列过渡类型。

不难想象,上述现象曾给遗传学家们带来过怎样的困扰。

自然界中类似的现象比比皆是,就连摩尔根都曾因为小鼠体色的遗传问题对孟德尔规律产生过怀疑。

遗传学家们将这种F1代“融合”了双亲性状的现象统称为“不完全显性”。

在表观遗传概念建立之前,人们无法解释上述现象的内在机制。

1999年,Emma Whitelaw等通过对上述案例的分析,终于揭开了表观遗传机制的冰山一角。

此前,科学家们已经知道小鼠毛色的深浅主要由Avy基因所决定。

当Avy基因正常表达时,小鼠毛色呈现黄色,反之则为黑色。

什么是表观遗传学什么是表观遗传学,简述其研究进展

什么是表观遗传学什么是表观遗传学,简述其研究进展

什么是表观遗传学什么是表观遗传学,简述其研究进展表观遗传学(epige***ics)——主要研究任务是通过对生活习惯、饮食习惯等因素的研究,寻找在没有改变dna序列的前体下,环境如何影响我们的基因的答案。

比如说,空气中的污染物如何改变一个人的dna的表达,从而导致像肺气肿或肺癌之类的疾病。

在基因组中除了dna和rna序列以外,还有许多调控基因的资讯,它们虽然本身不改变基因的序列,但是可以通过基因修饰,蛋白质与蛋白质、dna和其它分子的相互作用,而影响和调节遗传的基因的功能和特性,并且通过细胞**和增殖周期影响遗传。

因此表观遗传学又称为实验遗传学、化学遗传学、特异性遗传学、后遗传学、表遗传学和基因外调节系统,它是生命科学中一个普遍而又十分重要的新的研究领域。

它不仅对基因表达、调控、遗传有重要作用,而且在肿瘤、免疫等许多疾病的发生和防治中亦具有十分重要的意义。

表观遗传学(epige***ics)研究转录前基因在染色质水平的结构修饰对基因功能的影响,这种修饰可通过细胞**和增值周期进行传递。

表观遗传学已成为生命科学中普遍关注的前沿,在功能基因组时代尤其如此。

免疫系统被认为是一个解析表观遗传学调控机制的良好模型,而且免疫细胞伯分化及功能表达和表观遗传学的联络甚密,无疑使这一交叉领域的发展一开始就置身于一片沃土之中。

为此,本文对表观遗传学的免疫学意义作一简介,侧面重于t细胞分化特别是th1、th2及相关细胞因子基因表达中的表观遗传学调控。

研究基因的核苷酸序列不发生改变的情况下,基因表达了可遗传的变化什么是表观遗传学,简述其研究进展表观遗传学,研究基因的核苷酸序列不发生改变的情况下,基因表达的可遗传的变化的一门遗传学分支学科。

发展一直以来人们都认为基因组dna决定着生物体的全部表型,但逐渐发现有些现象无法用经典遗传学理论解释,比如基因完全相同的同卵双生双胞胎在同样的环境中长大后,他们在性格、健康等方面会有较大的差异。

表观遗传学课件(带目录)

表观遗传学课件(带目录)

表观遗传学课件一、引言表观遗传学是研究基因表达调控机制的一门学科,它涉及到基因序列不发生变化,但基因表达却发生了可遗传的改变。

这种调控机制对于生物体的生长发育、细胞分化、疾病发生等过程具有重要作用。

本文将对表观遗传学的基本概念、调控机制及其在疾病中的应用进行详细阐述。

二、表观遗传学的基本概念1.基因表达调控:基因表达调控是指生物体通过一系列机制,控制基因在特定时间和空间的表达水平。

基因表达调控是生物体生长发育、细胞分化、环境适应等生命现象的基础。

2.表观遗传修饰:表观遗传修饰是指在基因的DNA序列不发生改变的情况下,通过DNA甲基化、组蛋白修饰、染色质重塑等机制调控基因表达的过程。

3.表观遗传学的研究内容:表观遗传学主要研究基因表达调控的分子机制,包括DNA甲基化、组蛋白修饰、染色质重塑、非编码RNA调控等。

三、表观遗传学的调控机制1.DNA甲基化:DNA甲基化是指在DNA甲基转移酶的催化下,将甲基基团转移至DNA分子的过程。

DNA甲基化通常发生在基因的启动子区域,抑制基因表达。

2.组蛋白修饰:组蛋白修饰是指在组蛋白分子上发生的一系列化学修饰,如乙酰化、磷酸化、甲基化等。

这些修饰可以改变组蛋白与DNA的结合状态,从而调控基因表达。

3.染色质重塑:染色质重塑是指染色质结构发生变化,使基因的表达状态发生改变的过程。

染色质重塑可以通过改变核小体结构、DNA甲基化、组蛋白修饰等方式实现。

4.非编码RNA调控:非编码RNA是指不具有编码蛋白质功能的RNA分子,包括miRNA、lncRNA、circRNA等。

这些RNA分子可以通过与mRNA结合、调控转录因子活性等方式调控基因表达。

四、表观遗传学在疾病中的应用1.癌症:表观遗传学在癌症研究中的应用主要涉及肿瘤发生、发展和治疗。

研究发现,癌细胞的表观遗传修饰模式发生改变,导致肿瘤相关基因的表达异常。

通过研究这些表观遗传修饰,可以为癌症的早期诊断、预后评估和治疗提供新靶点。

表观遗传学

表观遗传学

表观遗传学是与遗传学(genetic)相对应的概念。

遗传学是指基于基因序列改变所致基因表达水平变化,如基因突变、基因杂合丢失和微卫星不稳定等;而表观遗传学则是指基于非基因序列改变所致基因表达水平变化,如DNA甲基化和染色质构象变化等;表观基因组学(epigenomics)则是在基因组水平上对表观遗传学改变的研究。

所谓DNA甲基化是指在DNA甲基化转移酶的作用下,在基因组CpG二核苷酸的胞嘧啶5'碳位共价键结合一个甲基基团。

正常情况下,人类基因组“垃圾”序列的CpG二核苷酸相对稀少,并且总是处于甲基化状态,与之相反,人类基因组中大小为100—1000 bp左右且富含CpG二核苷酸的CpG岛则总是处于未甲基化状态,并且与56%的人类基因组编码基因相关。

人类基因组序列草图分析结果表明,人类基因组CpG岛约为28890个,大部分染色体每1 Mb就有5—15个CpG 岛,平均值为每Mb含10.5个CpG岛,CpG岛的数目与基因密度有良好的对应关系[9]。

由于DNA甲基化与人类发育和肿瘤疾病的密切关系,特别是CpG岛甲基化所致抑癌基因转录失活问题,DNA甲基化已经成为表观遗传学和表观基因组学的重要研究内容。

染色质重塑表观遗传学重塑依赖的染色质重塑与人类疾病染色质重塑复合物依靠水解A TP提供能量来完成染色质结构的改变,根据水解ATP的亚基不同,可将复合物分为SWI/SNF复合物、ISW复合物以及其它类型的复合物。

这些复合物及相关的蛋白均与转录的激活和抑制、DNA的甲基化、DNA修复以及细胞周期相关。

ATRX、ERCC6、SMARCAL1均编码与SWI/SNF复合物相关的ATP酶。

ATRX突变引起DNA甲基化异常导致数种遗传性的智力迟钝疾病如:X连锁α-地中海贫血综合征、Juberg-Marsidi综合征、Carpenter-Waziri综合征、Sutherland-Haan综合征和Smith-Fineman-Myers综合征,这些疾病与核小体重新定位的异常引起的基因表达抑制有关。

表观遗传学名词解释

表观遗传学名词解释

表观遗传学名词解释表观遗传学是研究在没有发生DNA序列变化的前提下,个体表现差异的遗传学领域。

在细胞核中,基因组的DNA序列是相对稳定的,但不同基因的表达水平却可能会随着环境因素以及个体发育过程中的触发事件而发生变化。

这些表达水平的变化可能会传递给后代,导致后代在某些性状上表现出差异。

因此,表观遗传学主要关注的是这些可遗传的表达水平变化和遗传性状差异。

表观遗传学中的一些重要名词如下:1. DNA甲基化(DNA methylation):DNA甲基化是一种常见的表观遗传标记,指的是DNA分子上的甲基基团(CH3)的添加。

甲基化通常会导致基因的沉默,即抑制基因的转录和表达。

甲基化通常通过靶向DNA上的特定序列中的胸腺嘧啶(Cytosine)核苷酸进行,在一定程度上可以对基因的表达进行调控。

2. 组蛋白修饰(Histone modification):组蛋白是DNA序列紧密缠绕的蛋白质,组蛋白修饰是指通过改变组蛋白的特定化学修饰(如乙酰化、甲基化、磷酸化等)来调节染色质的结构和功能。

这些修饰可以影响基因的转录活性,从而调控基因表达的水平。

3. 非编码RNA(Non-coding RNA):非编码RNA是指不具有编码蛋白质序列的RNA分子。

非编码RNA可以通过多种机制调控基因的表达,包括转录后调控、转录抑制以及染色质修饰等。

这些RNA分子在表观遗传调控中发挥着重要的作用。

4. 转座子(Transposable elements):转座子是一类能够在基因组中进行自身复制和移动的DNA片段。

转座子的插入和移动可能会导致基因的表达差异,从而引发表观遗传的变化。

转座子在进化过程中发挥着重要的作用,也是表观遗传学中的研究热点。

5. 父母遗传效应(Parental imprinting):父母遗传效应指的是某些基因副本只有来自父亲或母亲的副本可以表达,而另一个父母的副本则被抑制。

这种影响是通过上述DNA甲基化和组蛋白修饰等机制实现的。

表观遗传学

表观遗传学

表观遗传概述
表观遗传学的特点: 可遗传的,即这类改变通过有丝分裂或减数分裂,能 在细胞或个体世代间遗传;
可逆性的基因表达调节,也有较少的学者描述为基因 活性或功能的改变;
没有DNA序列的改变或不能用DNA序列变化来解释。
表观遗传学研究内容
1
2 3
基因组印记
RNA编辑
与人类疾病的关系
根据其特性,RNA编辑分为两种:
第一种是核苷酸的插入或删除 即碱基掺入到转录物或从转录物中移走,这种编辑 由指导RNA(guide RNA,gRNA)介导。 第二种是核苷酸的替代修饰 即通过化学修饰将一种碱基转变为另一种,这种转 化需要识别核苷酸序列特定位点的酶来参与,如腺 苷脱氨酶将A转为I,胞苷脱氨酶将C转为U。
X X
×
在蕈蚊的X染色体中,只有母系等位基因有活性, 而父系等位基因则处于沉默状态。
一、基因组印记
印记的发现:
McGrath和Solter的小鼠核移植实验(1984): 孤雄生殖 孤雌生殖 胚胎良好,胚盘不全 胚盘良好,胚胎不全
胚胎死亡
可见,父系和母系基因组在发育过程中担负的 任务是不同的,且两者同时存在是正常发育所 必需的
二、RNA编辑
RNA编辑可以是单个碱基的替换,也可以是更多 碱基的变化。
最典型的例子是锥虫动质体的线粒体基因mRNA的编 辑,涉及上百个U的缺失和添加。 哺乳动物中,mRNA有时会发生单碱基替换,如哺乳 动物肠道和肝的载脂蛋白B。 RNA编辑最终导致蛋白质结构和功能的改变。
二、RNA编辑
一、基因组印记
印记的发现:
DeChiara小鼠Igf2基因敲除实验(1991): 父系敲除,则发育成的动物个体小 母系敲除,则动物的个体没有变化 在正常的野生型胚胎中,只有父本基因表达,而 母本的基因则表现为沉默。 首次证实了印 记基因的存在 小鼠Igf2基因为第一个 被鉴定的印记基因

第十六章表观遗传学(答)

第十六章表观遗传学(答)

第十六章表观遗传学(答)第十一章表观遗传学一、名词解释epigenetics;human epigenome project,HEP;histone code一、A 型题1、脆性X综合征是何基因发生重新甲基化而沉默导致?(D)A.H19基因 B.MeCP2基因 C.IGF2基因 D. FMR1基因2.对表观遗传的生物学意义的表述错误的是(D)A、补充了“中心法则”,阐明核酸并不是存储遗传信息的唯一载体。

B、“表观遗传修饰”可以影响基因的转录和翻译。

C、表观遗传学修饰的可遗传性在基因和环境的共同作用中起重要作用。

D、“表观遗传修饰”不能在个体世代间遗传。

3、Prader-Willi(PWS)综合征是由于印记基因缺失引起。

(A)A、父源15q11-q13 缺失B、母源15q11-q13 缺失C、父源和母源15q11-q13 缺失D、父源11P15.5缺失4、Amgelman(AS)综合征是由于印记基因缺失引起。

(B)A、父源15q11-q13 缺失B、母源15q11-q13 缺失C、父源和母源15q11-q13 缺失D、父源11P15.5缺失5、表观遗传学三个层面的含义不包括:(D)A、可遗传性,可在细胞或个体世代间遗传;B、基因表达的可变性;C、无DNA序列的变化。

D、可遗传性,可在细胞世代间遗传但不可在个体世代间遗传;6、siRNA相关沉默修饰的作用机制是:( A )A.与靶基因互补而降解靶基因 B.抑制靶mRNA 翻译C.去除靶mRNA的多聚腺苷酸尾巴,使其被3‘核酸外切酶水解D.互补而降解靶基因和抑制靶mRNA 翻译E.去除靶mRNA的多聚腺苷酸尾巴,使其被3‘核酸内切酶水解二、多选题1、表观遗传学信息主要包括等。

(A、B、C、D)A.DNA甲基化 B. 组蛋白修饰 C. RNA相关沉默 D. 遗传印记 E 以上都不是2、表观遗传的生物学意义包括。

(A、B、C、E)A.补充了“中心法则” B.表观遗传修饰可以影响基因的正常转录和翻译C.表观遗传修饰可以影响个体发育,而且可以遗传D. 表观遗传修饰可以影响个体发育,但不可以遗传E.表观遗传学修饰在基因和环境的相互作用中起重要作用3、肿瘤异常的DNA甲基化主要特点(A、B)A、肿瘤局部相关基因的高甲基化B、肿瘤中整体的低甲基化C、肿瘤局部相关基因的低甲基化D、肿瘤中整体的高甲基化E、肿瘤局部相关基因和肿瘤中整体基因均低甲基化4、表观遗传学三个层面的含义包括:(B、C、E)A、可遗传性,可在细胞世代间遗传但不可在个体世代间遗传。

表观遗传学

表观遗传学

表观遗传学表观遗传学是与遗传学相对应的概念。

遗传学是指基于基因序列改变所致基因表达水平的变化;而表观遗传学则是指基于非基因序列改变所致基因表达水平的变化,表观遗传的现象很多,已知的有DNA甲基化、染色质重塑、基因组印记、X染色体失活、非编码RNA等。

一、DNA甲基化DNA甲基化是指在DNA甲基化转移酶的作用下,在基因组CpG二核苷酸的胞嘧啶5'碳位共价键结合一个甲基基团。

DNA甲基化能关闭某些基因的活性,去甲基化则诱导了基因的重新活化和表达。

DNA甲基化能引起染色质结构、DNA构象、DNA稳定性及DNA与蛋白质相互作用方式的改变,从而控制基因表达。

由于DNA甲基化与人类发育和肿瘤疾病的密切关系,特别是CpG岛甲基化所致抑癌基因转录失活问题,DNA甲基化已经成为表观遗传学的重要研究内容。

例题1.(17分)表观遗传是指DNA序列不改变,而基因的表达发生可遗传的改变。

DNA甲基化是表观遗传中最常见的现象之一。

某些基因在启动子上存在富含双核苷酸“CG”的区域,称为“CG 岛”。

其中的胞嘧啶在发生甲基化后转变成5-甲基胞嘧啶但仍能与鸟嘌呤互补配对。

细胞中存在两种DNA甲基化酶(如图1所示),从头甲基化酶只作用于非甲基化的DNA,使其半甲基化;维持甲基化酶只作用于DNA的半甲基化位点,使其全甲基化。

(1)由上述材料可知,DNA甲基化(选填“会”或“不会”)改变基因转录产物的碱基序列。

(2)由于图2中过程①的方式是,所以其产物都是甲基化的,因此过程②必须经过的催化才能获得与亲代分子相同的甲基化状态。

(3)研究发现,启动子中“CG岛”的甲基化会影响相关蛋白质与启动子的结合,从而抑制_________。

(4)小鼠的A基因编码胰岛素生长因子-2(IGF-2),a基因无此功能(A、a位于常染色体上)。

IGF-2是小鼠正常发育必需的一种蛋白质,缺乏时小鼠个体矮小。

在小鼠胚胎中,来自父本的A及其等位基因能够表达,来自母本的则不能表达。

表观遗传学 Epigenetics

表观遗传学 Epigenetics

miRNA
? 结构:21-25nt长的单链小分子RNA ,5′端有一个磷 酸基团,3′端为羟基,由具有发夹结构的约70-90个 碱基大小的单链RNA前体经过Dicer酶加工后生成。
? 特点:具有高度的保守性、时序性和组织特异性 。
? 功能:
siRNA 介导的RNAi
相同点/联系点
siRNA
miRNA
? 核小体核心DNA并不是随机的,其具备一定 的定向特性。
? 核小体定位机制:
? 内在定位机制:每个核小体被定位于特定的DNA片断。 ? 外在定位机制:内在定位结束后,核小体以确定的长
度特性重复出现。
? 核小体定位的意义:
? 核小体定位是DNA正确包装的条件。 ? 核小体定位影响染色质功能。
? 重塑因子调节基因表达机制的假设有两种:
? siRNA功能:是RNAi 作用的重要组分,是 RNAi发生的中介分子。内源性siRNA是细 胞能够抵御转座子、转基因和病毒的侵略 。
siRNA 介导的RNAi
? siRNAi 的特点:
? 高效性和浓度依赖性 ? 特异性 ? 位置效应 ? 时间效应 ? 细胞间RNAi 的可传播性 ? 多基因参与及 ATP 依赖性
(2)转录抑制复合物干扰基因转录。甲基化DNA结合蛋 白与启动子区内的甲基化CpG岛结合,再与其他一些 蛋白共同形成转录抑制复合物(TRC),阻止转录因 子与启动子区靶序列的结合,从而影响基因的转录。
(3)通过改变染色质结构而抑制基因表达。染色质构型 变化伴随着组氨酸的乙酰化和去乙酰化,许多乙酰化 和去乙酰化本身就分别是转录增强子和转录阻遏物蛋 白。
胞嘧啶甲基化反应
? 哺乳动物基因组中5mC占胞嘧啶总量的2%-7%,约70% 的5mC存在于CpG二连核苷。

表观遗传学

表观遗传学

饮食、遗传基因多态性和环境中的化学物
质的作用,均可导致DNA的甲基化状态改 变 。 饮 食 中 的 蛋 氨 酸 和 叶 酸 是 DNA 甲 基 化
甲基基团的供体。如果饮食中缺乏叶酸,蛋 氨酸或硒元素,就会改变基因的甲基化状态, 导致神经管畸形、癌症和动脉硬化。
这种改变是可以遗传的。
5hmc 可能与特定肿瘤的发生密切相关, 有可能成为肿瘤早期诊断的生物标志物。
基因组印迹是指来自父方和母方的等位基因 在通过精子和卵子传递给子代时发生了修饰, 使带有亲代印迹的等位基因具有不同的表达特 性,这种修饰常为DNA甲基化修饰,也包括组 蛋白乙酰化、甲基化等修饰。在生殖细胞形成 早期,来自父方和母方的印迹(一般)将全部被 消除,父方等位基因在精母细胞形成精子时产 生新的甲基化模式,在受精时这种甲基化模式 还将发生改变;母方等位基因甲基化模式在卵 子发生时形成,因此在受精前来自父方和母方 的等位基因具有不同的甲基化模式。
随后,他们又进行了实验,他们将蛔虫饿了 6天之后,检查其细胞中的分子变化。在饥饿蛔 虫中发现产生一组特定的小RNA(小RNA参与 基因表达的各个方面,但不编码蛋白质)。尽管 蛔虫后被喂食正常饮食,但这种小RNA至少持 续了三代。
推测:饥饿诱导的小RNA找到了可以进入蛔 虫生殖细胞的途径。当蛔虫在复制时,小 RNA 独立于 DNA,并可能在生殖细胞的胞体中从一 代传递到下一代。
研究与实践表明:环境对疾病有着巨大的影 响。对结肠癌、中风、冠心病和II型糖尿病等多 种复杂性疾病的统计学分析发现,至少70%的患 者表现出各种不良的“环境因素”,如偏食、超 重、不运动和抽烟。如果对不良生活习惯加以改 变,就可以大大地降低这些疾病的发生。例如, 不抽烟,少喝酒,良好的饮食以及适量的运动, 可以让冠心病和中风的患病率降低70%。越是复 杂的性状或行为,环境发挥的作用就相对越强、 越重要。

表观遗传学

表观遗传学
• 等位基因表达不平衡现象
– 随机单等位基因表达 – 遗传印记 – X染色体失活
ncRNA
Epigenetics: DNA Methylation
什么是DNA甲基化 ? 动态变化/可逆性
- Cytosine methylation in 5’CpG-3’(5mC)
- 动态变化: - DNMTs:甲基化过程 - TETs:去甲基化过程 - 5mC, 5hmC, 5fC, 5caC
何时、何地、以何种方式去应用遗传信息:基因表达的时空性
DNA甲基化的检测
• BS-转换法
– Sanger测序法 – 克隆方法 – 焦磷酸测序法
• 非BS法
– 甲基化敏感限制性内切酶法 – MeDIP 或MBD富集结合芯片或深度测序法
DNA甲基化的检测:BS-转化法
目标片段甲基化检测
全基因组甲基化检测
为什么基因组需要甲基化 ?
• DNMTs-KO, ICF patients -> chromosomal aberrations (fusion, breakage, aneuploid) -> 准确的染色体分离 -> 基因组的稳定性(抑制转座子)
DNA甲基化的进化被认为是防御机制的主宰者
表观遗传与发育
基因型相同,表型不同
n 克隆动物未老先衰
n 同卵双生的双胞胎虽然具 有相同的DNA序列,却存 在表型的差异和疾病易感 性的差异
n 复杂疾病的发生
Calico cat
P基WS因-AS组:15qD11N-q1A3外,还有基因组之外的大量遗 传学信息调控着基因的表达。
表观遗传学(epigenetics)应运而生:解释 基因型相同而表型不同的现象。
• 表型=基因型+环境

表观遗传学简介

表观遗传学简介
疾病和进化等方面。
表观遗传学的重要性
表观遗传学在生物医学领域具有重要意义,因为它可以通过影响基因的 表达来影响生物体的表型,进而影响生物体的发育、疾病和进化等方面。
表观遗传学在生物医学领域的应用包括疾病诊断、药物研发和个性化医 疗等方面。例如,通过研究癌症的表观遗传学特征,可以开发出针对特 定癌症的个性化治疗方案。
去甲基化的意义
去甲基化在表观遗传学中具有重要意义,可以逆转甲基化引起的基因沉默,恢复基因的正 常表达。
组蛋白乙酰化与去乙酰化
组蛋白乙酰化
指组蛋白上的某些赖氨酸残基被乙酰 基修饰的过程。
组蛋白乙酰化的作用
组蛋白乙酰化可以调控基因的表达, 影响细胞的功能和发育。
组蛋白去乙酰化
指将乙酰基从组蛋白上移除的过程。
2
甲基化测序技术包括亚硫酸氢盐测序、酶解法、 质谱分析等,可对全基因组范围内的甲基化水平 进行高精度检测。
3
甲基化测序在研究肿瘤、发育生物学、神经科学 等领域具有重要应用价值,有助于深入了解表观 遗传学机制。
染色质免疫沉淀技术(ChIP)
ChIP是一种用于研究蛋白质与DNA相互作用的 实验技术。
通过ChIP实验,可以检测特定蛋白质与基因组 特定区域的结合情况,了解基因表达调控的机 制。
作用,共同调控基因的表达。
miRNA在表观遗传学中的作用
03
miRNA可以通过影响DNA甲基化和组蛋白修饰等表观遗传学过
程,调控基因的表达,影响细胞的功能和发育。
03
表观遗传学在生物体发育中的作用
胚胎发育过程中的表观遗传调控
基因表达的时空特异性
表观遗传学机制如DNA甲基化和组蛋 白修饰等,在胚胎发育过程中调控基 因的时空特异性表达,确保细胞分化 的正确进行。

表观遗传学

表观遗传学
利用甲基化敏感的限制性内切酶切割DNA,通过比较切割前后DNA片段的差异来检测甲基化。
组蛋白修饰检测技术
染色质免疫沉淀技术
利用特异性抗体与组蛋白修饰结合,通过沉淀和洗脱步骤 富集特定修饰的组蛋白及其结合的DNA片段。
质谱分析技术
通过质谱仪对组蛋白修饰进行定性和定量分析,具有高灵 敏度和高分辨率的优点。
表观遗传学
目录
• 表观遗传学概述 • 表观遗传机制 • 表观遗传与基因表达调控 • 表观遗传在生物发育中作用 • 表观遗传在疾病发生发展中作用 • 表观遗传学技术应用与前景展望
01 表观遗传学概述
定义与发展历程
表观遗传学定义
研究基因表达或细胞表现型的变化, 这些变化在不改变基因序列的情况下, 可通过细胞分裂和增殖进行遗传。
03 表观遗传与基因 表达调控
基因转录水平调控
转录因子
通过与DNA特定序列结合,激活 或抑制基因转录。
染色质重塑
改变染色质结构,影响转录因子与 DNA的结合。
组蛋白修饰
通过乙酰化、甲基化等修饰,影响 基因转录活性。
mRNA稳定性及翻译水平调控
mRNA降解
通过特定酶降解mRNA,调节基因表达。
microRNA
利用特异性抗体或亲和层析等方法,分离和鉴定与非编码RNA结 合的蛋白质,揭示其调控机制。
未来发展趋势预测
多组学整合分析
将表观遗传学数据与基因组学、转录组学、蛋白质组学等多组学数据 进行整合分析,更全面地揭示生物过程的调控机制。
单细胞表观遗传学研究
利用单细胞测序等技术,研究单个细胞水平上的表观遗传学变异和动 态变化过程。
非编码RNA在发育、细胞分化、 代谢等过程中发挥重要作用,同 时也与疾病的发生和发展有关。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十一章表观遗传学
一、名词解释
epigenetics;
human epigenome project,HEP;
histone code
一、A 型题
1、脆性X综合征是何基因发生重新甲基化而沉默导致?(D)
A.H19基因 B.MeCP2基因 C.IGF2基因 D. FMR1基因
2.对表观遗传的生物学意义的表述错误的是(D)
A、补充了“中心法则”,阐明核酸并不是存储遗传信息的唯一载体。

B、“表观遗传修饰”可以影响基因的转录和翻译。

C、表观遗传学修饰的可遗传性在基因和环境的共同作用中起重要作用。

D、“表观遗传修饰”不能在个体世代间遗传。

3、Prader-Willi(PWS)综合征是由于印记基因缺失引起。

(A)
A、父源15q11-q13 缺失
B、母源15q11-q13 缺失
C、父源和母源15q11-q13 缺失
D、父源11P15.5缺失
4、Amgelman(AS)综合征是由于印记基因缺失引起。

(B)
A、父源15q11-q13 缺失
B、母源15q11-q13 缺失
C、父源和母源15q11-q13 缺失
D、父源11P15.5缺失
5、表观遗传学三个层面的含义不包括:(D)
A、可遗传性,可在细胞或个体世代间遗传;
B、基因表达的可变性;
C、无DNA序列的变化。

D、可遗传性,可在细胞世代间遗传但不可在个体世代间遗传;
6、siRNA相关沉默修饰的作用机制是:( A )
A.与靶基因互补而降解靶基因 B.抑制靶mRNA 翻译
C.去除靶mRNA的多聚腺苷酸尾巴,使其被3‘核酸外切酶水解
D.互补而降解靶基因和抑制靶mRNA 翻译
E.去除靶mRNA的多聚腺苷酸尾巴,使其被3‘核酸内切酶水解
二、多选题
1、表观遗传学信息主要包括等。

(A、B、C、D)
A.DNA甲基化 B. 组蛋白修饰 C. RNA相关沉默 D. 遗传印记 E 以上都不是2、表观遗传的生物学意义包括。

(A、B、C、E)
A.补充了“中心法则” B.表观遗传修饰可以影响基因的正常转录和翻译
C.表观遗传修饰可以影响个体发育,而且可以遗传
D. 表观遗传修饰可以影响个体发育,但不可以遗传
E.表观遗传学修饰在基因和环境的相互作用中起重要作用
3、肿瘤异常的DNA甲基化主要特点(A、B)
A、肿瘤局部相关基因的高甲基化
B、肿瘤中整体的低甲基化
C、肿瘤局部相关基因的低甲基化
D、肿瘤中整体的高甲基化
E、肿瘤局部相关基因和肿瘤中整体基因均低甲基化
4、表观遗传学三个层面的含义包括:(B、C、E)
A、可遗传性,可在细胞世代间遗传但不可在个体世代间遗传。

B、基因表达的可变性。

C、无DNA序列的变化。

D、可遗传性,可在个体世代间遗传但不可在细胞世代间遗传。

E、可遗传性,可在细胞或个体世代间遗传。

5、DNA甲基化的生物学意义有(A、C)
A、DNA甲基化可抑制基因的活化状态
B、抑癌基因启动子区的高甲基化造成基因活化;
C、抑癌基因启动子区的高甲基化造成基因沉默;
D、DNA甲基化可激活基因
E、抑癌基因启动子区的去甲基化造成基因沉默;
6、miRNA沉默修饰的作用机制是:(A;B;C )
A.互补而降解靶基因 B.抑制靶mRNA 翻译
C.去除靶mRNA的多聚腺苷酸尾巴,使其被3‘核酸外切酶水解
D.互补而降解靶基因和抑制靶mRNA 翻译
E.去除靶mRNA的多聚腺苷酸尾巴,使其被3‘核酸内切酶水解
三、填空题
1、1、表观遗传学信息主要包括、、和等。

(DNA甲基化、组蛋白修饰、 RNA相关沉默、遗传印记)
2、表观遗传学信息可为蛋白质制造者提供、、以及行使
遗传信息的指令。

(何时;何地;何种方式)
3、组蛋白在翻译后的修饰中会发生改变,发生组蛋白、和,由此构成多种多样的组蛋白密码。

(乙酰化、甲基化和磷酸化)
四、问答题
1、简述肿瘤异常的DNA甲基化主要特点。

2、表观遗传学的信息的内容?
3、短链非编码RNA作用机制?
4、表观遗传的生物学意义?
5、表观遗传学信息的意义?。

相关文档
最新文档