微积分经管类第四版吴赣昌习题全解第六章定积分应用
高等数学定积分应用习题答案

第六章 定积分的应用习题 6-2 (A)1. 求下列函数与 x 轴所围部分的面积:]3,0[,86)1(2+-=x x y ]3,0[,2)2(2x x y -=2. 求下列各图中阴影部分的面积: 1.图 6-13.求由下列各曲线围成的图形的面积:;1,)1(===-x e y e y x x 与;)0(ln ,ln ,0ln )2(>>====a b b y a y x x y 与;0,2)3(2==-=y x y x x y 与;)1(,2)4(22--==x y x y;0,2)1(4)5(2=-=-=y x y x y 与;2,)6(2x y x y x y ===与;)0(2sin ,sin 2)7(π≤≤==x x y x y;8,2)8(222(两部分都要计算)=+=y x x y4.的图形的面积。
所围成与直线求由曲线e x e x y x y ====-,,0ln 15.的面积。
处的切线所围成的图形和及其在点求抛物线)0,3()3,0(342--+-=x x y6.的面积。
处的法线所围成的图形及其在点求抛物线),2(22p ppx y = 7.形的面积。
与两坐标轴所围成的图求曲线a y x =+8.所围图形的面积。
求椭圆12222=+by a x9.。
与横轴所围图形的面积(的一拱求由摆线)20)cos 1(),sin (π≤≤-=-=t t a y t t a x10.轴之间的图形的面积。
的切线的左方及下方与由该曲线过原点求位于曲线x e y x =11.求由下列各方程表示的曲线围成的图形的面积: ;)0(sin 2)1(>=a a θρ;)0()cos 2(2)2(>+=a a θρ ;2cos 2)3(2(双纽线)θρ=抛物体的体积。
轴旋转,计算所得旋转所围成的图形绕及直线把抛物线x x x x ax y )0(4.12002>==体的体积。
旋转轴旋转,计算所得两个轴及所围成的图形,分别绕由y x y x x y 0,2,.133===14.求下列已知曲线所围成的图形,按指定的轴旋转所产生的旋转体的体积: ;,0,,0)1(轴绕与x y a x x axcha y ====;,2sin )2(轴绕与x xy x y π== ;,)20(cos sin )3(轴绕与x x x y x y π≤≤==;0,2,ln )4(轴绕与y y x x y === ;0,2)5(2轴绕与y y x y x x y ==-=;,16)5()6(22轴绕y y x =+-。
第六章 定积分的应用

高等数学练习题 第六章 定积分的应用系 专业 班 姓名 学号第二节 定积分的几何应用(一)一、填空题:1、由曲线1=xy 和直线x y =、2=x 所围成的平面图形的面积的定积分表达式A= [ C ] (A )⎰⎰+10211dx x xdx (B )⎰-20)1(dx xx(C )⎰⎰-+-12121)2()12(dy y dy y (D )⎰-121)1(dy y y二、填空题:1、设D 是以抛物线2x y =与直线x y 2=所围成的图形,则其面积微元(以x 为变元)=dA 22()x x dx - (以y 为变元)=dA 2)ydy 2、设D 由t y t x 33sin ,cos ==围成在第一象限部分,则取t 为积分变元时,其面积(定积分表达式)为=A 42203sin cos t tdt π⋅⎰3、设D 是以抛物线2x y =与直线22x y -=所围成的图形,则其面积值=A 83三、计算题:1、抛物线342-+-=x x y 与其在点)3,0(-和)0,3(处的切线所围成的图形的面积。
解:如图,24y x '=-+,0432();().y y ''==- 设点)3,0(-处的切线为1l ;点)0,3(处的切线为2.l则143:l y x =-;226:.l y x =-+其交点为332(,)。
于是所求面积3322230243432643()()()()A x x x dx x x x dx =---+-+-+--+-⎰⎰=332223029694x dx x x dx +-+=⎰⎰2、求有摆线)cos 1(),sin (t a y t t a x -=-=的一拱(π20≤≤t )与x 轴所围成的图形的面积. 解:如图,222201(cos )aA ydx a t dt ππ==-⎰⎰=23a π3、在]1,0[上给定函数2x y =,问t 取何值时,图中曲边三角形OACO 与ADBA 的面积之和最小?何时最大?解:设201(,),()A t t t ≤≤,记曲边三角形OACO 与ADBA 的面积 分别为1S 和2S 。
微积分第六章习题解答

2
3、利用定积分的几何意义,说明下列等式: 利用定积分的几何意义,说明下列等式: 1 1 π 2
(1)
∫ 0 2 x dx = 1 ;
y
y = 2x
(2)∫
0
1 − x dx =
y
4
;
2
x2 + y2 = 1
o
1 x
o
(3) ∫
π
−π
sin x dx = 0 ;
( 4)
∫
π
1
x
2 π − 2
cos x dx = 2∫ 2 cos x dx .
1 1 e−x 0 1 dx + ∫ dx = − ln(1 + e − x ) + ln(1 + x ) =∫ 01+ x −1 1 + e − x 0 −1
e ⋅ y ′ + cos x = 0 ,
y′ = −
cos x e
y
.
11
4、求下列极限: 求下列极限: (2) lim
∫ 0 arctan t dt
x2
x
0 " "型 0
arctan x 1 = lim = . x →0 2x 2
x →0
sin 2 t dt ∫π
x
(3) lim π
x→ 2
2
F ′( x ) = f ( x ) + x f ′( x ) ,
∃c ∈ (ξ ,1) ⊂ (0,1) , 使 F ′( c ) = 0 ,即 f (c) + c f ′(c) = 0 ,
f (c ) 而 c > 0 , 即有 f ′(c ) = − . c
微积分第六章定积分

第六章 定积分定积分的有关理论是从17世纪开始出现和发展起来的,人们对几何与力学中某些问题的研究是导致定积分理论出现的主要背景.尽管其中某些问题早在公元前就被古希腊人研究过,但直到17世纪有了牛顿(Newton)和莱布尼兹(Leibnitz)的微分思想后,才使这些问题统一到一起,并且与求不定积分的问题联系起来.下面我们先从几何与力学问题出发引进定积分的定义,然后讨论它的性质、计算方法及其应用.第一节 定积分概念一、 定积分问题举例 1. 曲边梯形的面积设f (x )是定义在区间[a ,b ]上的非负连续函数,由曲线y =f (x )及直线x =a ,x =b 和y =0所围成的图形称为曲边梯形,下面我们讨论如何求这个曲边梯形的面积.图6-1为了利用已知图形(比如说矩形)的面积公式,可以先在[a ,b ]内任意插入n 个分点a =x 0<x 1<x 2<…<x n =b .这样整个曲边梯形就相应地被直线x =x i (i =1,2,…,n -1)分成n 个小曲边梯形,区间[a ,b ]分成n 个小区间[x 0,x 1],[x 1,x 2],…,[x n -1,x n ],第i 个小区间的长度为Δx i =x i -x i -1(i =1,2,…,n ).对于第i 个小曲边梯形来说,当其底边长Δx i 足够小时,其高度的变化也是非常小的,这时它的面积可以用某个小矩形的面积来近似.若任取ξi ∈[x i -1,x i ],用f (ξi )作为第i 个小矩形的高(图6-1),则第i 个小曲边梯形面积的近似值为ΔA i ≈f (ξi )Δx i .这样,整个曲边梯形面积的近似值就是11()n ni i i i i A A f x ξ===∆=∆∑∑.从几何直观上看,当分点越密时,小矩形的面积与小曲边梯形的面积就会越接近,因而和式1()niii f xξ=∆∑与整个曲边梯形的面积也会越接近,记{}1max i i nx λ≤≤=∆,当λ→0时,和式1()niii f xξ=∆∑ 的极限如果存在,则这个极限值即为曲边梯形的面积A ,即1lim ()ni i i A f x λξ→==∆∑.2. 变速直线运动的路程设某物体作直线运动,已知速度v =v (t )是时间间隔[T1,T2]上t 的连续函数,且v (t )≣0,计算在这段时间内物体所经过的路程s . 我们知道,对于匀速直线运动,有公式:路程=速度×时间.但是在我们的问题中,速度不是常量而是随时间变化着的变量,因此所求路程s 不能直接按匀速直线运动的路程公式来计算.然而,物体运动的速度函数v =v (t )是连续变化的,在很短的时间内,速度的变化很小.因此如果把时间间隔分小,在小段时间内,以等速运动近似代替变速运动,那么就可算出各部分路程的近似值,再求和得到整个路程的近似值.最后,通过对时间间隔无限细分的极限过程,求得物体在时间间隔[T1,T2]内的路程.对于这一问题的数学描述可以类似于上述求曲边梯形面积的做法进行,具体描述为:在区间[T1,T2]内任意插入n -1个分点T1=t 0<t 1<t 2<…<t n -1<t n =T 2,把区间[T1,T2]分成n 个小区间[t 0,t 1],[t 1,t 2],…,[t n -1,t n ],各小区间的长度依次为Δt 1,Δt 2,…,Δt n ,在时间段[t i -1,t i ]上的路程的近似值为v (τi )Δt i (i =1,2,…,n ),(其中τi 为[t i -1,t i ]上的任意一点.)整个时间段[T1,T2]上路程的近似值为s ≈v (τ1)Δt 1+v (τ2)Δt 2+…+v (τn )Δt n1()ni i i v t τ==∆∑ .当分点越密时,1()niii v tτ=∆∑就会与s 越接近,因此记{}1max i i nt λ≤≤=∆,当λ→0时,和式1()niii v tτ=∆∑的极限如果存在,则这个极限值即为物体在时间间隔[T1,T2]内所走过的路程.即1lim ()ni i i s v t λτ→==∆∑.二、 定积分定义从上面的两个例子可以看到,尽管所要计算的量,即曲边梯形的面积A 及变速直线运动的路程s 的实际意义不同,前者是几何量,后者是物理量,但计算这些量的方法与步骤都是相同的,它们都可归结为具有相同结构的一种特定和的极限,如面积01lim()niii A f x λξ→==∆∑,路程01lim()niii s v tλτ→==∆∑.抛开这些问题的具体意义,抓住它们在数量上共同的本质与特性加以概括,我们可以抽象出下述定积分的概念.定义 设函数f (x )在[a ,b ]上有界,在[a ,b ]中任意插入n -1个分点a =x 0<x 1<x 2<…<x n =b ,把区间[a ,b ]分成n 个小区间[x 0,x 1],[x 1,x 2],…,[x n -1,x n ],各小区间的长度依次为Δx 1=x 1-x 0,Δx 2=x 2-x 1,…,Δx n =x n -x n -1,在每个小区间[x i -1,x i ]上任取一点ξi ,作乘积f (ξi )Δx i (i =1,2,…,n ),再作和式lim ()i i S f x λξ→=∆. (6-1-1)记λ=max {Δx 1,Δx 2,…,Δx n },如果不论[a ,b ]怎样分法,也不论[x i -1,x i ]上点ξi 怎样取法,当λ→0时,和S 总趋于确定的极限I ,这时我们称这个极限I 为函数f (x )在区间[a ,b ]上的定积分(简称积分),记作()d baf x x ⎰,即()d lim ()bi i af x x f x I λξ→=∆=⎰, (6-1-2)其中f (x )叫做被积函数,f (x )d x 叫做被积表达式,x 叫做积分变量,a 叫做积分下限,b 叫做积分上限,[a ,b ]叫做积分区间.注 当和式1()niii f x ξ=∆∑的极限存在时,其极限值仅与被积函数f (x )及积分区间[a ,b ]有关,而与积分变量所用字母无关,即()d ()d ()d bb baaaf x x f t t f u u ==⎰⎰⎰.读者容易由定积分的定义或下面介绍的定积分的几何意义得到这一结论.如果f (x )在[a ,b ]上的定积分存在,我们就说f (x )在[a ,b ]上可积.由于这个定义是由黎曼(Riemann)首先给出的,所以这里的可积也称为黎曼可积,相应的积分和式1()niii f x ξ=∆∑也称为黎曼和.对于定积分,有这样一个重要问题:函数f (x )在[a ,b ]上满足怎样的条件,f (x )在[a ,b ] 上一定可积?这个问题我们不作深入讨论,而只给出以下两个充分条件.定理1 设f (x )在区间[a ,b ]上连续,则f (x )在[a ,b ]上可积.定理2 设f (x )在区间[a ,b ]上有界,且只有有限个间断点,则f (x )在[a ,b ]上可积. 利用定积分的定义,前面所讨论的实际问题可以分别表述如下: 曲线y =f (x ) (f (x )≣0)、x 轴及两条直线x =a 、x =b 所围成的曲边梯形的面积A 等于函数f (x )在区间[a ,b ]上的定积分.即()d baA f x x =⎰.物体以变速v =v (t )[v (t )≣0]作直线运动,从时刻t =T 1到时刻t =T 2,这物体经过的路程 s 等于函数v (t )在区间[T1,T2]上的定积分,即12()d T T s v t t =⎰.三、 定积分的几何意义在[a ,b ]上f (x )≣0时,我们已经知道,定积分()d baf x x ⎰在几何上表示曲线y =f (x )、两条直线x =a 、x =b 与x 轴所围成的曲边梯形的面积;在[a ,b ]上f (x )≢0时,由曲线y =f (x )、两条直线x =a 、x =b 与x 轴所围成的曲边梯形位于x 轴的下方,定积分图6-2()d baf x x ⎰在几何上表示上述曲边梯形面积的负值;在[a ,b ]上f (x )既取得正值又取得负值时,函数f (x )的图形某些部分在x 轴上方,而其他部分在x 轴的下方(图6-2).如果我们对面积赋以正负号,在x 轴上方的图形面积赋以正号,在x 轴下方的图形面积赋以负号,则在一般情形下,定积分()d baf x x ⎰的几何意义为:它是介于x 轴、函数f (x )的图形及两条直线x =a 、x =b 之间的各部分面积的代数和.图6-3例1 利用定积分的几何意义,计算x ⎰.解 显然,根据定积分的定义来求解是比较困难的,根据定积分的几何意义知,x ⎰就是图6-3所示半径为1的圆在第一象限部分的面积,所以2144x ππ=⋅=⎰.四、 定积分的性质为了以后计算及应用方便起见,我们先对定积分作以下两点补充规定:(1) 当a =b 时,()d baf x x ⎰=0;(2) 当a >b 时,()d baf x x ⎰= -()d abf x x ⎰.由上式可知,交换定积分的上下限时,绝对值不变而符号相反.下面我们讨论定积分的性质.下列各性质中积分上下限的大小,如不特别指明,均不加限制;并假定各性质中所列出的定积分都是存在的.性质1 函数的和(差)的定积分等于它们的定积分的和(差),即[()()]d ()d ()d bb baaaf xg x x f x x g x x ±=±⎰⎰⎰.证1[()()]d lim [()()]nbiiiai f x g x x f g x λξξ→=±=±∆∑⎰ 0011lim ()lim ()nni i i i i i f x g x λλξξ→→===∆±∆∑∑()d ()d bbaaf x xg x x =±⎰⎰.性质1对于任意有限个函数都是成立的.类似地,可以证明:性质2 被积函数的常数因子可以提到积分号外面,即()d ()d bbaakf x x k f x x =⎰⎰ (k 是常数).性质3 如果将积分区间分成两部分,则在整个区间上的定积分等于这两部分区间上定积分之和,即设a <C <b ,则()d ()d ()d bc baacf x x f x x f x x =+⎰⎰⎰.证 因为函数f (x )在区间[a ,b ]上可积,所以不论把[a ,b ]怎样分,积分和的极限总是不变的.因此,我们在分区间时,可以使c 永远是个分点.那末,[a ,b ]上的积分和等于[a ,c ]上的积分和加[c ,b ]上的积分和,记为[,][,][,]()()()iiiiiia b a c c b f x f x f x ξξξ∆=∆+∆∑∑∑.令λ→0,上式两端同时取极限,即得()d ()d ()d bc baacf x x f x x f x x =+⎰⎰⎰.这个性质表明定积分对于积分区间具有可加性.按定积分的补充规定,不论a ,b ,c 的相对位置如何,总有等式()d ()d ()d bc baacf x x f x x f x x =+⎰⎰⎰成立.例如,当a <b <c 时,由于()d ()d ()d c b caabf x x f x x f x x =+⎰⎰⎰,()d ()d ()d bc caa bf x x f x x f x x =-⎰⎰⎰()d ()d cbacf x x f x x =+⎰⎰.性质4 如果在区间[a ,b ]上f (x )≡1,则1d d bbaax x b a ==-⎰⎰.这个性质的证明请读者自己完成.性质5 如果在区间[a ,b ]上,f (x )≣0,则()d 0baf x x ≥⎰(a <b ).证 因为f (x )≣0,所以f (ξi )≣0(i =1,2,…,n ).又由于Δx i ≣0(i =1,2,…,n ),因此1()niii f x ξ=∆∑≣0,令λ=max {Δx 1,…,Δx n }→0,便得到要证的不等式.推论1 如果在区间[a ,b ]上,f (x )≢g (x ),则()d ()d bbaaf x xg x x ≤⎰⎰ (a <b ).证 因为g (x )-f (x )≣0,由性质5得[()()]d baf xg x x -⎰≣0.再利用性质1,便得到要证的不等式.推论2()d ()d bbaaf x x f x x ≤⎰⎰ (a <b ).证 因为-︱f (x )︱≢f (x )≢︱f (x )︱,所以由推论1及性质2可得()d ()d ()d b b baaaf x x f x x f x x -≤≤⎰⎰⎰,即()d ()d bbaaf x x f x x ≤⎰⎰.注 ︱f (x )︱在[a ,b ]上的可积性可由f (x )在[a ,b ]上的可积性推出,这里我们不作证明.性质6 设M 及m 分别是函数f (x )在区间[a ,b ]上的最大值及最小值,则m (b -a )≢()d baf x x ⎰≢M (b -a ) (a <b ).证 因为m ≢f (x )≢M ,所以由性质5推论1得d ()d d bbbaaam x f x x M x ≤≤⎰⎰⎰.再由性质2及性质4,即得到所要证的不等式.这个性质说明,由被积函数在积分区间上的最大值及最小值可以估计积分值的大致范例2 估计定积分221d +1xx x ⎰的值. 解 因f (x )=2+1xx 在[1,2]上连续,所以在[1,2]上可积,又因为 2221()0(+1)x f x x -'=≤ (1≢x ≢2),所以f (x )在[1,2]上单调减少,从而有21()52f x ≤≤, 于是由性质6有2121()d 52f x x ≤≤⎰. 性质7 (定积分中值定理)如果函数f (x )在闭区间[a ,b ]上连续,则在积分区间[a ,b ]上至少存在一点ξ,使下式成立:()d ()()baf x x f b a ξ=-⎰(a ≢ξ≢b ). 这个公式叫做积分中值公式.证 把性质6中的不等式各除以b -a 得1()d bam f x x M b a ≤≤-⎰.这表明,确定的数值1()d ba f x xb a-⎰介于函数f (x )的最小值m 及最大值M 之间.根据闭区间上连续函数的介值定理,在[a ,b ]上至少存在一点ξ,使得函数f (x )在点ξ处的值与这个确定的数值相等,即应有1()d ()baf x x f b a ξ=-⎰ (a ≢ξ≢b ).两端各乘以b -a ,即得所要证的等式.图6-4积分中值公式有如下的几何解释:在区间[a ,b ]上至少存在一点ξ,使得以区间[a ,b ]为底边、以曲线y =f (x )为曲边的曲边梯形的面积等于同一底边而高为f (ξ)的一个矩形的面积(图6-4).显然,积分中值公式()d ()()baf x x f b a ξ=-⎰(ξ在a 与b 之间)不论a <b 或a >b 都是成立的.例3求10limn n x →+∞⎰.解 由于当0≢x ≢1/2时,有n ≢x n ,所以≢120n x ⎰≢120d n x x ⎰.又由积分中值定理,有121limd lim02n nn n x x ξ→+∞→+∞==⎰(0≢ξ≢1/2), 故10lim0n n x →+∞=⎰.习题6-11. 利用定积分定义计算由抛物线y =x 2+1,直线x =a ,x =b 及x 轴所围成的图形的面积. 2. 利用定积分的几何意义求定积分: (1)102d x x ⎰;(2) 0x ⎰(a >0). 3. 根据定积分的性质,比较积分值的大小: (1)120d x x ⎰与130d x x ⎰; (2)1e d x x ⎰与1(1)d x x +⎰.4. 估计下列各积分值的范围: (1)421(1)d x x +⎰;(2) arctan d x x ;(3)2e d ax ax --⎰(a >0); (4)22e d x x x -⎰.第二节 微积分基本公式在第一节中,我们介绍了定积分的定义和性质,但并未给出一个有效的计算方法,当被积函数较复杂时,难以利用定积分直接计算.为了解决这个问题,自本节开始将介绍一些求定积分的方法. 一、 积分上限函数设函数f (t )在[a ,b ]上可积,对于x ∈[a ,b ],则函数f (t )在[a ,x ]上可积.定积分()d xaf t t⎰对每一个取定的x 值都有一个对应值,记为F (x )=()d xaf t t ⎰, a ≢x ≢b ,F (x )是积分上限x 的函数,称为积分上限函数,或称变上限函数或变上限积分.积分上限函数具有下述重要性质.定理1(原函数存在定理) 设函数f (x )在[a ,b ]上连续,则积分上限函数()()d xaF x f t t=⎰就是f (x )在[a ,b ]上的一个原函数,即d ()()d ()d xaF x f t t f x x '==⎰,a ≢x ≢b .证 我们只对x ∈(a ,b )来证明(x =a 处的右导数与x =b 处的左导数也可类似证明). 取|Δx |充分小,使x +Δx ∈(a ,b ),则ΔF =F (x +Δx )-F (x )=()d ()d x xxaaf t t f t t +∆-⎰⎰()d ()d ()d x x xxaxaf t t f t t f t t -∆=+-⎰⎰⎰()d x xxf t t -∆=⎰.因f (x )在[a ,b ]上连续,由积分中值定理,有ΔF =f (ξ)Δx ,ξ在x 与x +Δx 之间,即ΔF/Δx =f (ξ).由于Δx →0时,ξ→x ,而f (x )是连续函数,上式两边取极限有00limlim ()lim ()()x x x Ff f f x x ξξξ∆→∆→→∆===∆,即F ′(x )=f (x ).另外,若f (x )在[a ,b ]上可积,则称函数ψ(x ) ()d bxf t t =⎰, x ∈[a ,b ]为f (x )在[a ,b ]上的积分下限函数,它的有关性质及运算可直接通过关系式()d ()d bxxbf t t f t t =-⎰⎰转化为积分上限函数而获得.例1 设f (x )∈C ((-∞,+∞)),且满足方程1618120()d ()d 89xx x f t t t f t t =++⎰⎰,求f (x ).解 在方程两端对变量x 求导得21517()()22f x x f x x x =-++,即 (1+x 2)f (x )=2x 15(1+x 2), 故f (x )=2x 15.例2 计算下列导数:(1)sin 0d ()d d x f t t x ⎰; (2) 32d e d d x tx t x -⎰. 解 (1) ()sin sin 00d d dsin ()d ()d d dsin d x x xf t t f t t x x x=⎰⎰ (sin )cos f x x = .(2) 332200d de d e d e d d d x x t t tx x t t t x x ---⎛⎫=+ ⎪⎝⎭⎰⎰⎰ 2300d de d e d d d x x t tt t x x --=-+⎰⎰232e 2e 3x x x x --=-+ 2322e 3e x x x x --=-+.对于一般情形,我们有下述结论:设f (x )∈C ([a ,b ]),u (x )和v (x )为可导函数,且u (x )∈[a ,b ],v (x )∈[a ,b ],则有()()d ()d (())()(())()d u x v x f t t f u x u x f v x v x x''=-⎰. 读者可利用复合函数求导法则证明此结论. 例3 求21cos 2e d limt xx t x-→⎰.解 易知这是一个型的未定式,我们用洛必达法则来计算 ()22cos 11cos 22e d e d limlim()xt t xxx x ttxx --→→'-='⎰⎰2cos 0e sin 1lim 22ex x x x -→==. 例4 求02()()d limxx f t x t t x →-⎰,其中f (x )是(-∞,+∞)内的连续函数.解 由于()()d ()d ()d xxxf t x t t x f t t tf t t -=-⎰⎰⎰,且 00lim()d 0xx f t t →=⎰故 ()22()d ()d ()()d limlim()xxxxx x x f t t tf t tf t x t t xx →→'--='⎰⎰⎰()d ()()lim2xx f t t xf x xf x x→+-=⎰()d ()1limlim(0)222xx x f t t f x f x→→===⎰. 二、 微积分基本公式现在我们用定理1来证明一个重要定理,它给出了用原函数计算定积分的公式. 定理2设函数f (x )在[a ,b ]上连续,F (x )是f (x )在[a ,b ]上的一个原函数,则()d ()()baf x x F b F a =-⎰. (6-2-1)证 因为F (x )与()d xaf t t ⎰都是f (x )在[a ,b ]上的原函数,所以它们只能相差一个常数C ,即()d ()xaf t t F x C =-⎰.令x =a ,由于()d 0aaf t t =⎰,得C = -F (a ),因此()d ()()xaf t t F x F a =-⎰.在上式中令x =b ,得()d ()()baf t t F b F a =-⎰.为方便起见,以后把F (b )-F (a )记成()bF x a,于是(6-2-1)式又可写成 ()d ()babf x x F x a=⎰.通常称公式(6-2-1)为微积分基本公式或牛顿-莱布尼茨公式,它表明:一个连续函数在[a ,b ]上的定积分等于它的任意一个原函数在[a ,b ]上的改变量.这个公式进一步揭示了定积分与被积函数的原函数或不定积分之间的联系,给定积分提供了一个有效而简便的计算方法.下面我们举几个应用公式(6-2-1)来计算定积分的简单例子.例5 计算120d x x ⎰.解 由于313x 是x 2的一个原函数,故由公式(6-2-1)有112311d 33x x x ==⎰. 例6 计算. 解x x =20sin cos d x x x π=-⎰2204(sin cos )d (sin cos )d x x x x x x πππ=-+-⎰⎰2404(sin cos )(sin cos )x x x x πππ=++--2=.习题6-21. 求下列导数:(1)20d d x t x ⎰; (2) 53ln 2d e d d x t t t x-⎰; (3) cos 2sin cos()d x x t t '⎡⎤π⎢⎥⎣⎦⎰; (4) 22d sin d d x t t x tπ⎰ (x >0). 2. 求下列极限:(1) 02arctan d limxx t t x→⎰; (2) 2020sin 3d lime d x xx tt t t t→-⎰⎰; (3)()22220e d lime d xt xx t t t t→⎰⎰.3. 求由方程e d cos d 0yxt t t t +=⎰⎰所确定的隐函数y =y (x )的导数.4. 当x 为何值时,I (x )= 2e d xt t t -⎰有极值?5. 计算下列定积分:(1)3x ⎰; (2)221d x x x --⎰;(3)()d f x x π⎰,其中,0,2()sin ,2x x f x x x π⎧≤≤⎪⎪=⎨π⎪≤≤π;⎪⎩(4){}222max 1,d x x -⎰.6. 已知f (x )连续,且f (2)=3,求2222()d d lim(2)xt x f u u t x →⎡⎤⎢⎥⎣⎦-⎰⎰. 第三节 定积分的换元法由上节知道,计算定积分()d baf x x ⎰的简便方法是把它转化为求f (x )的原函数的增量,在第五章中,我们知道用换元法可以求出一些函数的原函数.因此,在一定条件下,可以用换元法来计算定积分.我们有下面的定理.定理 假设f (x )在[a ,b ]上连续,函数x =φ(t )满足条件: (1) 当t ∈[α,β]时,a ≢φ(t )≢b ,且φ(α)=a ,φ(β)=b , (2) φ(t )在[α,β]上具有连续导数,则有()d (())()d baf x x f t t t βαϕϕ'=⎰⎰. (6-3-1)公式(6-3-1)叫做定积分的换元公式.证 由假设知,上式两边的被积函数都是连续的,因此不仅上式两端的定积分都存在,而且由上节定理1知,被积函数的原函数也都存在.所以(6-3-1)式两边的定积分都可用牛顿莱布尼茨公式计算.现假设F (x )是f (x )的一个原函数,则()d ()()baf x x F b F a =-⎰,又由复合函数的求导法则知Φ(t )=F (φ(t ))(t ∈(α,β))是f (φ(t ))φ′(t )的一个原函数,所以(())()d (())(())()()f t t t F F F b F a βαϕϕϕβϕα'=-=-⎰,故()d (())()d baf x x f t t t βαϕϕ'=⎰⎰.这就证明了换元公式.应用换元公式时有两点值得注意:(1) 用x =φ(t )把原来变量x 代换成新变量t 时,原积分限也要换成相应于新变量t 的积分限;(2) 求出f (φ(t ))φ′(t )的一个原函数Φ(t )后,不必像计算不定积分那样把Φ(t )变换成原来变量x 的函数,而只要把新变量t 的上、下限分别 代入Φ(t )中,然后相减就行了.例1计算x ⎰(a >0). 解 设x =a sin t ,则d x =a cos t d t ,且 当x =0时,t =0;当x =a 时,t =2π. 于是222220cos d (1cos 2)d 2a x at t t t ππ==+⎰⎰⎰22201sin 2224a at t ππ⎡⎤=+=⎢⎥⎣⎦.换元公式也可反过来使用.为使用方便起见,把换元公式中左右两边对调位置,同时把t 改记为x ,而x 改记为t ,得(())()d ()d f x x x f t t ββααϕϕ'=⎰⎰.于是,我们可用t =φ(x )来引入新变量t ,而α=φ(a ),β=φ(b ).例2计算4x ⎰. 解 设t,则x =212t x -=,d x =t d t ,且当x =0时,t =1;当x =4时,t =3,于是343210111(3)d (3)223tx t t t =+=+⎰⎰127122(9)(3)2333⎡⎤=+-+=⎢⎥⎣⎦. 例3 计算520cos sin d x x x π⎰.解 设t =cos x ,则d t = -sin x d x ,且当x =0时,t =1;当x =2π时,t =0,于是1601555201001cos sin d d d 66t x x x t t t t π⎡⎤=-===⎢⎥⎣⎦⎰⎰⎰.在例3中,如果我们不明显地写出新变量t ,那末定积分的上、下限就不要变更.55220cos sin d cos d(cos )x x x x x ππ=-⎰⎰260cos 11(0)666x π⎡⎤=-=--=⎢⎥⎣⎦. 例4设f (x )∈C ([-a ,a ]),试证: (1)[]0()d ()()d aaaf x x f x f x x -=--⎰⎰;(2) 当f (x )为奇函数时,()d 0aaf x x -=⎰;(3) 当f (x )为偶函数时,0()d 2()d aa af x x f x x -=⎰⎰.证 (1) 由于()d ()d ()d aaaaf x x f x x f x x --=+⎰⎰⎰,在()d af x x -⎰中,设x = -t ,则()d ()d ()d a aaf x x f t t f x x -=--=⎰⎰⎰.故[]0()d ()d ()d ()()d aaaaaf x x f x x f x x f x f x x -=-+=-+-⎰⎰⎰⎰.(2) 当f (x )是奇函数时,f (-x )+f (x )=0,因此()d 0aaf x x -=⎰.(3)当f (x )是偶函数时,f (-x )+f (x )=2f (x ),因此()d 2()d a aaf x x f x x -=⎰⎰.利用例4的结论,常可简化在对称区间上的定积分的计算.例5 求下列定积分44d 1sin xxππ-+⎰.解 由于被积函数为非奇非偶函数,由例4(1)知402444004d 11()d 2sec d 2tan 21sin 1sin 1sin x x x x xx x xπππππ-=+===+-+⎰⎰⎰.例6 设函数f (x )在[0,1]上连续,试证(1)2200(sin )d (cos )d f x x f x x ππ=⎰⎰;特别地,220sin d cos d nn x x x x ππ=⎰⎰ (n 为非负整数);(2)00(sin )d (sin )d 2xf x x f x x πππ=⎰⎰,并由此计算20sin d 1cos x x x x π+⎰. 证 (1) 设x =2t π-,则d x = -d t ,且当x =0时,t =2π; x =2π时,t = 0,于是0202(sin )d (sin())d 2f x x f t t πππ=--⎰⎰220(cos )d (cos )d f t t f x x ππ==⎰⎰.特别地,取f (x )=x n 在[0,1]上连续,由上述证明有220sin d cos d nn x x x x ππ=⎰⎰.(2) 设x =π-t ,则d x = -d t ,且当x =0时,t =π;x =π时,t =0;于是(sin )d ()(sin())d ()(sin )d xf x x t f t t t f t t πππ=-π-π-=π-⎰⎰⎰(sin )d (sin )d (sin )d (sin )d f t t tf t t f x x xf x x ππππ=π-=π-⎰⎰⎰⎰.因此0(sin )d (sin )d 2xf x x f x x πππ=⎰⎰.利用结论(2)得222000sin sin d cos d d 1cos 21cos 21cos x x x xx x x x xπππππ==-+++⎰⎰⎰ 20arctan(cos )24x πππ=-=. 例7 设f (x )是(-∞,+∞)内的连续函数,且满足()d 1cos xtf x t t x -=-⎰,求f (x ).解 由u =x -t ,故t =x -u ,d t = -d u ,且当t = 0时,u = x ;t = x 时,u =0.于是00()d ()()d ()()d xxxtf x t t x u f u u x u f u u -=--=-⎰⎰⎰()d ()d x xx f u u uf u u =-⎰⎰,因此f (x )满足()d ()d 1cos x xx f u u uf u u x -=-⎰⎰.上式两边对x 求导,得()d sin xf u u x =⎰.两边对x 求导,得f (x )=cos x .例8 设函数f (x )= 21,101cos e ,0x x x x x -⎧-≤≤⎪+⎨⎪≥⎩,求41(2)d f x x -⎰.解 设u =x -2,则当x =1时,u =-1;当x =4时,u =2.于是4211(2)d ()d f x x f u u --=⎰⎰20210d e d 1cos u uu u u --=++⎰⎰2024101111tan e tan e 22222u u ---=-=-+. 习题 6-31. 计算下列积分: (1)3sin()d x x πππ+3⎰; (2) 32d (115)x x 1-+⎰;(3)1x -⎰; (4) 320sin cos d ϕϕϕπ⎰;(5)22cos d u u ππ6⎰; (6)2e 1⎰(7)1; (8)x ;(9)ln 3ln 2d e e x xx --⎰; (10) 322d 2xx x +-⎰;(11)1x ⎰; (12) 22x ππ-⎰.2. 利用被积函数的奇偶性计算下列积分值:(1)ln(aa x x -+⎰(a 为正常数);(2) 325425sin d 21x xx x x -++⎰; (3) 4224cos d θθππ-⎰.3. 证明下列等式: (1)23211()d ()d 2aa x f x x xf x x =⎰⎰ (a 为正整数);(2)证明:11221d d 11xx x x x x =++⎰⎰ (x >0); (3) 设f (x )是定义在(-∞,+∞)上的周期为T 的连续函数,则对任意a ∈[-∞,+∞),有()d ()d a TTaf x x f x x +=⎰⎰.4. 若f (t )是连续函数且为奇函数,证明()d xf t t ⎰是偶函数;若f (t )是连续函数且为偶函数,证明()d xf t t ⎰是奇函数.5. 设f (x )在(-∞,+∞)内连续,且F (x )= 0(2)()d xx -t f t t ⎰,试证:若f (x )单调不减,则F (x )单调不增.第四节 定积分的分部积分法利用不定积分的分部积分法及牛顿莱布尼茨公式,即可得出定积分的分部积分公式.设函数u =u (x ),v =v (x )在区间[a ,b ]上具有连续导数u ′(x ),v ′(x ),则有(uv )′=u ′v +uv ′.分别求等式两端在[a ,b ]上的定积分,并注意到()d bb a auv x uv '=⎰,便得d d b bb aaa uvu v x uv x ''=+⎰⎰,移项,就有d d bbb a aauv x uv vu x ''=-⎰⎰,或简写为 d d b bb a aau v uv v u =-⎰⎰.这就是定积分的分部积分公式.例1 计算120arcsin d x x ⎰.解1201120arcsin d arcsin x x x xx =-⎰⎰112222011(1)d(1)262x x -π=+--⎰12011212ππ==. 例2 计算2e 2eln d (1)xx x -⎰. 解2222e e e e e 2eee l n 1l n dd l n d ()(1)11(1)x x x x x x x x x x =-=-+----⎰⎰⎰ 2e e 111d e +11x x x ⎛⎫=+- ⎪-⎝⎭⎰ []2e e1ln(1)ln e +1x x =+--1ln(e +1)1e +1=+-. 例3计算x 1⎰.解 先用换元法.令t则x =t 2,d x =2t d t ,且当x =0时,t =0;当x =1时,t =1,于是02e d t x t t 11=⎰⎰.再用分部积分法计算上式右端的积分:1100e d de e e d e e 1t t t t tt t t t t 111==-=-=⎰⎰⎰.因此2e d 212t x t t 11==⨯=⎰⎰.例4 设f (x )在[a ,b ]上可导,且f (a )=f (b )=0, 2()d 1baf x x =⎰,试求()()d baxf x f x x '⎰.解[]21()()d ()d ()d ()2bbb aaa xf x f x x xf x f x x f x '⎡⎤==⎣⎦⎰⎰⎰ 2211()()d 22b b a axf x f x x =-⎰ 110122=-⨯=-.例5 证明220sin d cos d nnx x x x ππ=⎰⎰;并求20sin d n n I x x π=⎰.证 令x =2t π-,则当x =0时,t =2π;当x =2π时,t =0.故 022002sin d sin ()d cos d 2nnn x x t t x x ππππ=--=⎰⎰⎰.1220sin d sin d cos nn n I x x x x ππ-==-⎰⎰201220sincos cos (1)sin cos d n n x xx n x x x ππ--=-+-⎰2220(1)sin (1sin )d n n x x x π-=--⎰2(1)(1)n n n I n I -=---,由此得到递推公式:21n n n I I n--=. 又易求得200d 2I x ππ==⎰,210sin d 1I x x π==⎰,故当n 为偶数时13312422n n n I n n --π=- , 当n 为奇数时1342253n n n I n n --=- . 习题6-41. 利用分部积分公式证明:()()()d ()d d xxuf u x u u f x x u -=⎰⎰⎰.2. 计算下列定积分:(1)10e d xx x -⎰; (2)e1ln d x x x ⎰;(3)41x ⎰; (4) 324d sin xx xππ⎰; (5) 220e cos d xx x π⎰; (6) 221log d x x x ⎰;(7)π2(sin )d x x x ⎰; (8) e1sin(ln )d x x ⎰;(9)230e d x x ; (10)1201lnd 1xx x x+-⎰. 3. 已知f (2)= 12,f ′(2)=0, 20()d 1f x x =⎰,求220()d x f x x ''⎰.第五节 定积分的应用本节中,我们将运用前面学过的定积分理论来分析和解决一些实际问题.一、 建立定积分数学模型的微元法由定积分定义可知,若f (x )在[a ,b ]上可积,则对于[a ,b ]的任一划分a =x 0<x 1<…<x n =b 及[x i -1,x i ]中任一点ξi ,有1()d lim ()nbi i ai f x x f x λξ→==∆∑⎰, (6-5-1)这里Δx i =x i -x i -1(i =1,2,…,n ),λ={}1max i i nx ≤≤∆,此式表明定积分的本质就是某一特定和式的极限.基于此,我们可以将一些实际问题中有关量的计算问题归结为定积分的计算.例如,前面我们所介绍过的曲边梯形面积的计算问题就是归结为定积分来计算的,其归结过程概括地说就是“划分作近似,求和取极限”,也就是将整体化成局部之和,利用整体上变化的量局部上近似于不变这一辩证关系,局部上以“不变”代表“变”,这就是我们建立定积分数学模型的基本方法,也是我们利用定积分解决实际问题的基本思想.根据定积分的定义,如果某一实际问题中的所求量Q 符合下列条件:(1) 建立适当的坐标系和选择与Q 有关的变量x 后,Q 是一个与定义在某一区间[a ,b ]上的可积函数q (x )有关的量;(2) Q 对于区间[a ,b ]具有可加性,即如果把区间[a ,b ]任意分成n 个部分区间[x i -1,x i ](i =1,2,…,n ),则Q 相应地分成n 个部分量ΔQ i ,而Q =1nii Q ∆=∑.(3) 部分量ΔQ i 可近似表示为q (ξi )Δx i (ξi ∈[x i -1,x i ]),且ΔQ i -q (ξi )Δx i =o (Δx i ). 那么,我们即可获得所求量Q 的定积分数学模型:1lim ()()d nbi i ai Q q x q x x λξ∆→===∑⎰,其中λ={}1max i i nx ≤≤∆,Δx i =x i -x i -1.而在实际建模过程中,为简便起见,通常将具有代表性的第i 个小区间[x i -1,x i ]略去下标,记作[x ,x +Δx ],称其为典型小区间,然后求出相应于这个小区间的部分量ΔQ 的近似值.如果ΔQ 能近似地表示成[a ,b ]上一个可积函数在x 处的值q (x )与Δx 的积,且ΔQ =q (x )Δx +o (Δx ), (6-5-2)就把q (x )Δx 称为Q 的微元(或称元素),记作d Q =q (x )Δx . (6-5-3)事实上,对任意x ∈[a ,b ],若用Q (x )记为区间[a ,x ]所对应的部分量,则Q (a )=0,Q (b )=Q ,且[x ,x +Δx ]所对应的部分量为ΔQ =Q (x +Δx )-Q (x ). (6-5-4)由(6-5-2)式与(6-5-4)式表明(6-5-3)式右端q (x )Δx 即为Q (x )的微分,从而Q=Q(b )-Q (a ) ()()d =()d Q b bQ a aQ q x x =⎰⎰. (6-5-5)对自变量x 来说,注意到我们有d x =Δx 的规定,因此,习惯上我们将[x ,x +d x ]作为典型小区间.上述建立定积分数学模型的方法称为微元法.值得注意的是,在利用上述微元法建模的过程中,证明ΔQ-q (x )Δx =o (Δx )是十分关键的.但对于一些初等问题,这一事实往往比较明显,因此也就常常省去了这一步.下面,我们利用微元法来解决一些实际问题. 二、 定积分的几何应用1. 平面图形的面积 由定积分的几何意义我们知道:若f (x )∈C ([a ,b ])且对任意x ∈[a ,b ]有f (x )≣0,则()d baf x x⎰表示由曲线y =f (x ),直线x =a 和x =b 及x 轴所围曲边梯形的面积.一般地,由平面曲线所围平面图形的面积,在边界曲线为已知时,均可用定积分来求得.图6-5设一平面图形由连续曲线y =f (x ),y =g (x )及直线x =a 和x =b (a <b )所围(图6-5).为了求该平面图形的面积A ,我们在[a ,b ]上取典型小区间[x ,x +d x ],相应于典型小区间的面积部分量ΔA 近似地等于高为︱f (x )-g (x )︱,宽为d x 的窄矩形的面积(图6-5),从而得到面积微元d A =︱f (x )-g (x )︱d x , 所以 =()()d baA f x g x x -⎰. (6-5-6)类似地,若平面图形由连续曲线x =ψ(y ),x =φ(y )及直线y =c 和y =d (c <d )所围成(图6-6),则其面积A 为=()()d dcA y y x ψϕ-⎰. (6-5-7)图6-6我们看到(6-5-6)式的积分是以x 为积分变量,(6-5-7)式的积分是以y 为积分变量. 例1 计算由抛物线y =-x 2+1与y =x 2-x 所围图形的面积A .图6-7解 两抛物线交点由221,y x y x x⎧=-+⎨=-⎩ 解得13(,)24-及(1,0),于是图形位于直线x = 12-与x =1之间(图6-7).取x 为积分变量,由(6-5-6)式得12212(1)()d A x x x x =-+--⎰1212(21)d x x x =-++⎰3211221()32x x x -=-++=98. 例2 计算抛物线y 2=2x 与直线y =x -4所围图形的面积A . 解 两线交点由22,4y x y x ⎧=⎨=-⎩图6-8解得为(2,-2)及(8,4).这时宜取y 为积分变量,因图形(图6-8)位于直线y = -2和y =4之间,于是由(6-5-7)式得22344224d (4)18226y y y A y y y --=+-=+-=⎰.例3 求由曲线y =sin x ,y =cos x 及直线x =0, 2x π=所围图形的面积A .图6-9解 两线交点由sin ,cos y x y x =⎧⎨=⎩解得(4π,如图6-9所示. 取x 为积分变量,由(6-5-6)式有4204(cos sin )d (cos sin )d A x x x x x x πππ=-+-⎰⎰424(sin cos )(cos sin )x x x x πππ=++--=1).例4 求椭圆22221x y a b+=所围图形的面积A .图6-10解 因为椭圆关于两坐标轴对称(图6-10),所以椭圆所围图形的面积是第一象限内那部分面积的4倍,再由(6-5-6)式,即有4A x =⎰. 应用定积分换元法,令x =a cos t (0≢t ≢π2), 则 y =b sin t , d x =-a sin t d t . 当x =0时,t =2π;当x =2π时,t =0.于是 024sin (sin )d A b t a t t π=-⎰2204sin d 44abt t ab ab ππ===π⎰.2. 旋转体的体积V图6-11考虑介于过x 轴上点x =a 及x =b 且垂直于x 轴的两平行平面之间的立体(图6-11),设在x (a ≢x ≢b )处垂直于x 轴的截面面积可以用x 的连续函数A (x )来表示.为了求其体积,我们在[a ,b ]内取典型小区间[x ,x +d x ],用以底面积为A (x ),高为d x 的柱体体积近似于典型小区间[x ,x +d x ]对应的体积部分量,则得体积元素d V=A (x )d x , 从而 ()d baV A x x =⎰(6-5-8)类似地,对于介于过y 轴上点y =c 及y =d 且垂直于y 轴的两平行平面之间的立体,若在y (c ≢y ≢d )处垂直于y 轴的截面面积可以用y 的连续函数B (y )来表示,则其体积为()d dcV B y y =⎰. (6-5-9)图6-12现在考虑旋转体,所谓旋转体就是由一平面图形绕这平面内一条定直线旋转一周而成的 立体.如图6-12所示,设旋转体是由曲线y =f (x ),直线x =a ,x =b (a <b )和x 轴所围成的曲边梯形绕x 轴旋转一周而成的,则对任意x ∈[a ,b ],相应于x 处垂直于x 轴的截面是一个圆盘,其面积为πf 2(x ),从而由(6-5-8)式知其体积2()d bx aV f x x =π⎰. (6-5-10)类似地,若旋转体是由曲线x =φ(y ),直线y =c ,y =d (c <d )和y 轴所围成的曲边梯形绕y 轴旋转一周而成的,则其体积为2()d dy cV y y ϕ=π⎰. (6-5-11)例5计算由椭圆22221x y a b+=所围图形绕x 轴旋转而成的旋转体(称为旋转椭球体,见图6-13)的体积.解 这个旋转体实际上就是半个椭圆y =x 轴所围曲边梯形绕x 轴旋转而成的立体,于是由公式(6-5-10)得2223222222022204()d 2()d 2()33aa ax a b b b x V a x x a x x a x ab a a a -=π-=π-=π-=π⎰⎰ 特别地,当a =b 时就得到半径为a 的球的体积343a π.图6-13 图6-14例6 求由曲线y =2x -x 2和x 轴所围图形绕y 轴旋转一周所得旋转体的体积.解 如图6-14所示,y =2x -x 2的反函数分为两支,1x = (0≢y ≢1)和1x = (0≢y ≢1).由(6-5-11)式,所得旋转体的体积为((22111d 1d y V y y =π-π⎰⎰((221011d y ⎡⎤=π-⎢⎥⎣⎦⎰312844(1)3y y 2=π=-π-=π3⎰. 三、 定积分的经济学应用1. 由边际函数求总函数设某产品的固定成本为C 0,边际成本函数为C ′(Q),边际收益函数为R ′(Q ),其中Q 为产量,并假定该产品处于产销平衡状态,则根据经济学的有关理论及定积分的微元分析法易知:总成本函数C (Q )=00()d QC Q Q C '+⎰; 总收益函数R (Q )= 0()d QR Q Q '⎰;总利润函数L (Q )=[]0()()d QR Q C Q Q C ''--⎰.例7设某产品的边际成本为C ′(Q )=4+4Q(万元/百台),固定成本C 0=1(万元),边际收益R ′(Q )=8-Q (万元/百台),求:(1) 产量从100台增加到500台的成本增量; (2) 总成本函数C (Q )和总收益函数R (Q );(3) 产量为多少时,总利润最大?并求最大利润.解 (1) 产量从100台增加到500台的成本变化量为2555111()d (4)d 41948Q Q C Q Q Q Q ⎛⎫'=+=+= ⎪⎝⎭⎰⎰ (万元). (2) 总成本函数200()()d (4)d 14148Q QQ Q C Q C Q Q C Q Q '=+=++=++⎰⎰,总收益函数200()()d (8)d 82Q QQ R Q R Q Q C Q Q Q '=+=-=-⎰⎰.(3)总利润函数2225()()()(8)(41)41288Q Q L Q R Q C Q Q Q Q Q =-=--++=-+-,5()44L Q Q '=-+.令L ′(Q )=0,得惟一驻点Q =3.2(百台),又因L ″(3.2)= - 54<0,所以当Q =3.2(百台)时,总利润最大,最大利润为L (3.2)=5.4(万元).2. 消费者剩余和生产者剩余图6-15市场经济中,生产并销售某一商品的数量可由这一商品的供给曲线与需求曲线来描述.供给曲线描述的是生产者根据不同的价格水平所提供的商品数量,一般假定价格上涨时,供应量将会增加.因此,把供应量看成价格的函数,这是一个增函数,即供给曲线是单调递增的.需求曲线则反映了顾客的购买行为.通常假定价格上涨,购买量下降,即需求曲线随价格的上升而单调递减(图6-15).需求量与供给量都是价格的函数,但经济学家习惯用纵坐标表示价格,横坐标表示需求量或供给量.在市场经济下,价格和数量在不断调整,最后趋向于平衡价格和平衡数量,分别用P *和Q*表示,也即供给曲线与需求曲线的交点E .在图6-15中,P 0是供给曲线在价格坐标轴上的截距,也就是当价格为P 0时,供给量是零,只有价格高于P 0时,才有供给量;P 1是需求曲线的截距,当价格为P 1时,需求量是零,只有价格低于P 1时,才有需求;Q 1则表示当商品免费赠送时的最大需求量.在市场经济中,有时一些消费者愿意对某种商品付出比他们实际所付出的市场价格P *更高的价格,由此他们所得到的好处称为消费者剩余(C S ).由图6-15可以看出:C S =()d Q D Q Q P Q ***-⎰,式中,()d Q D Q Q *⎰表示消费者愿意支出的货币量.P Q **表示消费者的实际支出,两者之差为消费者省下来的钱,即消费者剩余.同理,对生产者来说,有时也有一些生产者愿意以比市场价格P *低的价格出售他们的商品,由此他们所得到的好处称为生产者剩余(PS ),如图6-15所示,有PS 0()d Q P Q S Q Q ***=-⎰.例8 设需求函数D (Q )=24-3Q ,供给函数为S (Q )=2Q +9,求消费者剩余和生产者剩余. 解 首先求出均衡价格与供需量. 由24-3Q =2Q +9,得Q *=3, P *=15.C S 32300327(243)d 153(24)4522Q Q Q Q =--⨯=--=⎰;。
关于高等数学第六章答案

第六章 定积分的应用第二节 定积分在几何上的应用 1? 求图中各阴影部分的面积? (1) 16. (2) 1(3)323? (4)323?2. 求由下列各曲线所围成的图形的面积?(1) 463π-? (2)3ln 22-? (3)12e e+-?(4)b a -3? 94?4? (1)?1213(2)?45? (1) ?a 2?(2) 238a π? (3)218a π?6? (1)423π⎛ ⎝(2)54π(3)2cos 2ρθρθ==及162π+ 7.求下列已知曲线所围成的图形? 按指定的轴旋转所产生的旋转体的体积: (1)2x x y y x =和轴、向所围图形,绕轴及轴。
(2)22y x y 8x,x y ==和绕及轴。
(3)()22x y 516,x +-=绕轴。
(4)xy=1和y=4x 、x=2、y=0,绕。
(5)摆线()()x=a t-sint ,1cos ,y 0x y a t =-=的一拱,绕轴。
8.由y ?x 3? x ?2? y ?0所围成的图形? 分别绕x 轴及y 轴旋转? 计算所得两个旋转体的体积?1287x V π=? 9.把星形线3/23/23/2a y x =+所围成的图形? 绕x 轴旋转? 计算所得旋转体的体积?332105a π 10.(1)证明 由平面图形0?a ?x ?b ? 0?y ?f (x )绕y 轴旋转所成的旋转体的体积为 ⎰=badx x xf V )(2π? 证明略。
(2)利用题(1)结论? 计算曲线y ?sin x (0?x ??)和x 轴所围成的图形绕y 轴旋转所得旋转体的体积? 22π11.计算底面是半径为R 的圆? 而垂直于底面上一条固定3R ? 直径的所有截面都是等边三角形的立体体积?12.计算曲线3223y x =上相应于38x ≤≤的一段弧的弧长。
212313.计算曲线2ln(1)y x =-上相应于102x ≤≤的一段弧的弧长。
第六章 定积分及其应用

称为定积分的换元公式. 称为定积分的换元公式
定理2.4 设u(x),v(x)在区间 在区间[a,b]上有连续导数,则 上有连续导数, 定理 在区间 上有连续导数
∫ u( x) v′( x) dx = u( x)v( x)
a
b
b a
− ∫ u ′( x ) v ( x ) dx.
a
b
称为定积分的分部积分公式. 称为定积分的分部积分公式 例2 计算下列定积分
注: (1)定积分仅与被积函数及积分区间有关 , 而与积分变量 定积分仅与被积函数及积分区间有关 用什么字母表示无关.即 用什么字母表示无关 即
∫
b
a
f ( x ) d x = ∫ f (t ) d t = ∫ f (u ) d u.
a a
b
b
(2)定积分的几何意义 定积分的几何意义: 定积分的几何意义
A=∫
b
1
1 1 dx = − 2 x x
1
1 = 1− . b
b
性质2 被积函数中的常数因子可以提到积分号的前面,即 性质 被积函数中的常数因子可以提到积分号的前面,
∫
b
a
k f ( x ) dx = k ∫ f ( x ) dx
a
b
性质3 如果积分区间[a,b]被分点 分成区间 被分点c分成区间 性质 如果积分区间 被分点 分成区间[a,c]和[c,b],则 和 则
s ≈ ∑ v(ξ i ) ∆ t , (λ = max ∆ t i ).
i =1 1≤ i ≤ n n
(2)近似求和: )近似求和: (3)取极限: )取极限:
s = lim ∑ v (ξ i ) ∆ t i
第五节定积分在物理上的应用

2. 液体压力的计算
例 将半径为 R 的薄圆片垂直插入
O
x 入水中一半,问圆片一侧所受压力. x d x
y
解 dF PdA gx 2 ydx
R
x
2gx R2 x2dx
F
R
dF
R 2gx
ቤተ መጻሕፍቲ ባይዱ
R2 x2dx 2 gR3
0
0
3
主要内容
11 变力沿直线做功的计算 12 液体压力的计算 13 引力的计算
第六章 定积分的应用
6.3 定积分在物理上的应用
数学与统计学院 武忠祥
主要内容
11 变力沿直线做功的计算 12 液体压力的计算 13 引力的计算
主要内容
11 变力沿直线做功的计算 12 液体压力的计算 13 引力的计算
1. 变力沿直线做功的计算
例1 在 x 轴的坐标原点处有一电量为 q 的正电荷, 求在
3. 引力的计算
例 有一长为 l 的均匀带电直导线,
电荷线密度为 , 在其中垂线上且
与导线距离为 a 处放置一个电量
q 的点电荷,求它们之间的作用力.
解
dF
kqdx
a2 x2
dFy
dF cos
kqadx
(a2 x2 )32
Fy
l 2
kqadx
l 2
(a2
x
2
3
该电场力作用下将一单位正电荷从 x a 处沿 x 轴移 动到 x b 处所作的功 (0 a b) .
解
dW
F ( x)dx
k
q x2
dx
微积分中的积分与定积分的物理应用

微积分中的积分与定积分的物理应用微积分是数学的一个分支,是研究函数的极限、微分和积分的学科。
在物理学中,微积分的应用非常广泛,特别是积分和定积分,可以帮助我们解决多种物理问题。
本文将介绍微积分中的积分和定积分在物理学中的一些具体应用。
一、面积和体积计算微积分中的定积分可以用来计算平面图形的面积和立体图形的体积。
对于平面上的曲线,我们可以利用定积分来计算其所围成的面积。
例如,当我们需要计算一个函数曲线下方的面积时,可以通过对该函数进行定积分来求解。
同样地,微积分中的定积分也可以用于计算立体图形的体积。
例如,当我们需要计算一个旋转曲线围成的旋转体的体积时,可以通过定积分来解决。
这种利用定积分计算面积和体积的方法在物理学中非常常见,可以应用于各种物体的计算。
二、质心和重心计算在物理学中,质心和重心是重要的概念,它们可以通过利用定积分进行计算。
质心是一个物体在各个方向上质量平衡位置的坐标,而重心则是一个物体所受合力的平衡位置的坐标。
通过利用定积分计算物体各个部分的质量和位置,我们可以求解出物体的质心和重心。
这对于研究物体的平衡和运动状态非常重要,是解决力学问题的一种常见方法。
三、动力学问题的解决微积分中的积分和定积分可以应用于解决动力学问题,例如运动学、力学等。
例如,当我们需要计算一个物体的速度、加速度或者位移时,可以通过对相应的函数进行微分和积分来求解。
通过利用微积分的工具,我们可以分析物体的运动状态,研究其速度、加速度和位移随时间的变化规律。
这对于物理学中的动力学问题的研究非常重要,也为我们解决实际问题提供了一个有力的工具。
四、能量和功的计算能量和功是物理学中的基本概念,也可以通过利用定积分进行计算。
能量是物体所具有的做工能力,而功是力在物体上所做的功。
通过应用微积分的定积分概念,我们可以计算物体所具有的能量和力所做的功。
这对于研究能量转化和能量守恒等问题非常重要。
通过能量和功的计算,我们可以更加深入地了解物体的物理特性,解决能量相关的实际问题。
§定积分的应用习题与答案

第六章 定积分的应用(A )1、求由下列各曲线所围成的图形的面积 1)221x y =与822=+y x (两部分都要计算)2)xy 1=与直线x y =及2=x3)x e y =,x e y -=与直线1=x4)θρcos 2a =5)t a x 3cos =,t a y 3sin =1、求由摆线()t t a x sin -=,()t a y cos 1-=的一拱()π20≤≤t 与横轴所围成的图形的面积2、求对数螺线θρae=()πθπ≤≤-及射线πθ=所围成的图形的面积3、求由曲线x y sin =和它在2π=x 处的切线以及直线π=x 所围成的图形的面积和它绕x 轴旋转而成的旋转体的体积4、由3x y =,2=x ,0=y 所围成的图形,分别绕x 轴及y 轴旋转,计算所得两旋转体的体积5、计算底面是半径为R 的圆,而垂直于底面上一条固定直径的所有截面都是等边三角形的立体体积6、计算曲线()x y -=333上对应于31≤≤x 的一段弧的长度7、计算星形线t a x 3cos =,t a y 3sin =的全长8、由实验知道,弹簧在拉伸过程中,需要的力→F (单位:N )与伸长量S (单位:cm )成正比,即:kS =→F (k 是比例常数),如果把弹簧内原长拉伸6cm , 计算所作的功9、一物体按规律3ct x =作直线运动,介质的阻力与速度的平方成正比,计算物体由0=x 移到a x =时,克服介质阻力所作的功10、 设一锥形储水池,深15m ,口径20m ,盛满水,将水吸尽,问要作多少功?11、 有一等腰梯形闸门,它的两条底边各长10cm 和6cm ,高为20cm ,较长的底边与水面相齐,计算闸门的一侧所受的水压力12、 设有一长度为 ,线密度为u 的均匀的直棒,在与棒的一端垂直距离为a 单位处有一质量为m 的质点M ,试求这细棒对质点M 的引力(B)1、设由抛物线()022>=p px y 与直线p y x 23=+ 所围成的平面图形为D 1) 求D 的面积S ;2)将D 绕y 轴旋转一周所得旋转体的体积2、求由抛物线2x y =及x y =2所围成图形的面积,并求该图形绕x 轴旋转所成旋转体的体积3、求由x y sin =,x y cos =,0=x ,2π=x 所围成的图形的面积,并求该图形绕x 轴旋转所成旋转体的体积4、求抛物线px y 22=及其在点⎪⎭⎫⎝⎛p p ,2处的法线所围成的图形的面积5、求曲线422+-=x x y 在点()4,0M 处的切线MT 与曲线()122-=x y 所围成图形的面积6、求由抛物线ax y 42=与过焦点的弦所围成的图形面积的最小值7、求由下列曲线所围成图形的公共部分的面积 1)θρcos 3=,θρcos 1+=2)θρsin a =,()θθρsin cos +=a ,0>a8、由曲线()16522=-+y x 所围成图形绕x 轴旋转所成旋转体的体积9、求圆心在()b ,0半径为a ,()0>>a b 的圆,绕x 轴旋转而成的环状体的体积10、计算半立方抛物线()32132-=x y 被抛物线32x y =截得的一段弧的长度(C)1、用积分方法证明半径为R 的球的高为H 的球缺的的体积为⎪⎭⎫ ⎝⎛-=32H R H V π2、分别讨论函数x y sin =⎪⎭⎫⎝⎛≤≤20πx 在取何值时,阴影部分的面积1S ,2S 的和21S S S +=取最大值和最小值3、求曲线x y =()40≤≤x 上的一条切线,使此切线与直线0=x , 4=x 以及曲线x y =所围成的平面图形的面积最小4、半径为r 的球沉入水中,球的上部与水面相切,球的密度与水相同,现将球从水中取出,需作多少功?第六章 定积分应用 习 题 答 案(A )1、1)342+π,346-π 2)2ln 23- 3)21-+ee 4)2a π 5)283a π2、23a π 3、()ππ2224--e e a 4、12-π,42π 5、7128π,564π6、3334R 7、3432- 8、a 6 9、kJ 18.0 10、3732727a kc (其中k 为比例常数)11、()kJ 5.57697 12、()kN 14373 13、取y 轴经过细直棒⎪⎪⎭⎫⎝⎛+-=2211t a aGm u F y 22t a a Gmu F x +-= (B)1、1)⎰-=⎪⎪⎭⎫ ⎝⎛--=pp p dy p y y p S 322316223 或()⎰⎰=⎪⎭⎫⎝⎛+-++=20229231622322pp p p dx px x p dx px px S2)⎰⎰--=⎪⎪⎭⎫⎝⎛-⎪⎭⎫⎝⎛-=pp p p p dy p y dy y p V 33322215272223πππ 2、()⎰=-=10231dx x x A ()()ππ⎰=⎪⎭⎫⎝⎛-=10222103dx x x V3、()()⎰⎰-=-+-=244222cos sin sin cos πππdx x x dx x x A()()()()()()⎰⎰=-+-=24224022c o s s i n s i n c o s πππππdx x x dx x x V4、抛物线在点⎪⎭⎫⎝⎛p p ,2处的法线方程为: p y x 23=+,以下解法同第一题2316p A =5、MT :x y 24-=,切线MT 与曲线()122-=x y 的交点坐标为⎪⎭⎫ ⎝⎛1,23,()2,3-⎰-=⎪⎪⎭⎫ ⎝⎛---=122491224dy y y A 6、提示:设过焦点()0,a 的弦的倾角为α则弦所在直线的方程为()a x y -=αtan由()a x y -=αtan ,ax y 42=得两交点纵坐标为()()21csc 2csc 2y ctg a ctg a y =+<-=αααα所以()()dy a y yctg a A y y ⎰⎥⎦⎤⎢⎣⎡-+=2142αα ()()32222csc 34csc 4csc 4ααααa ctg a a -+=()()3232csc 34csc 4ααa a -=()32csc 38αa =因为πα<<0 当2πα=时 ()3csc α取得最小值为1所以 当2πα=时 过焦点的弦与抛物线ax y 42=所围成的图形面积()32csc 382απa A =⎪⎭⎫ ⎝⎛最小7、1)()()πθθθθπππ45cos 321cos 1212232302=⎥⎦⎤⎢⎣⎡++=⎰⎰d d A2)()()[]⎰⎰-=++=ππππθθθθθ22220241cos sin 21sin 21a d a d a A 8、()()⎰⎰------+=44442222165165dx x dx xV ππ()()⎰-=⎭⎬⎫⎩⎨⎧----+=4422222160165165ππdx x x9、解法同题810、提示:()32132-=x y ,32x y = 联立得交点⎪⎪⎭⎫ ⎝⎛36,2,⎪⎪⎭⎫⎝⎛-36,2 所求弧长()⎰+=212'12dx y s由()32132-=x y 得()yx y 2'1-=于是()()()()()123131134222'-=--=⎪⎪⎭⎫ ⎝⎛-=x x x y x y于是得()⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡-+=⎰12598123122321221dx x S(C)1、证明:此处球缺可看作由如图阴影(图222R y x =+的一部分)绕y 轴旋转而成所以()⎰⎰---==RHR RHR dy y R dy x V 222ππR HR R HR y yR ---=332ππ()[]()[]3323H R R H R R R -----=ππ⎪⎭⎫ ⎝⎛-=32H R H π2、解:()⎰-=tdx x t S 11sin sin ()⎰-=22s i n s i n πtdx t x S()()⎰-=tdx x t t S 1sin sin +()⎰-2sin sin πtdx t x=⎪⎭⎫ ⎝⎛≤≤-⎪⎭⎫⎝⎛-+201sin 22cos 2ππt t t t ()0cos 22'=⎪⎭⎫⎝⎛-=t t t S π,得驻点2421ππ==t t易知()()002''1''<>t S t S122max -=⎪⎭⎫ ⎝⎛=∴ππS S ,124min -=⎪⎭⎫⎝⎛=πS S3、解:设()00,y x 为曲线x y =()40≤≤x 上任一点,易得曲线于该点处的切线方程为:()00021x x x y y -=- 即0022x x y y +=得其与0=x , 4=x 的交点分别为⎪⎭⎫ ⎝⎛2,00y ,⎪⎪⎭⎫⎝⎛+0022,4y y 于是由此切线与直线0=x , 4=x 以及曲线x y =所围的平面图形面积为:3164222004000-+=⎪⎪⎭⎫ ⎝⎛-+=⎰x y dx x x x y S 3164200-+=x x 问题即求31642-+=x x S ()40≤≤x 的最小值 令022321=+=--x xS 得唯一驻点2=x 且为唯一极小值所以 当2=x 时,S 最小即所求切线即为:2222+=x y 4、如图:以水中的球心为原点,上提方向作为坐标轴建立坐标系易知任意[]dx x x +,段薄片在提升过程中在水中行程为r -x ,而在水上的行程为2r -(r -x )=r +x因为求的密度与水相同,所以在水中提升过程中浮力与重力的合力为零,不做功,而在水面上提升时,做功微元为()()dx x r x r g dW +-=22π()()g r dx x r x r g dW W r r r r 42234ππ⎰⎰--=+-==。
(整理)微积分第六章定积分的应用

第六章 定积分的应用本章将应用第五章学过的定积分理论来分析和解决一些几何、物理中的问题,其目的不仅在于建立这些几何、物理的公式,而且更重要的还在于介绍运用元素法将一个量表达为定积分的分析方法。
一、教学目标与基本要求:使学生掌握定积分计算基本技巧;使学生用所学的定积分的微元法(元素法)去解决各种领域中的一些实际问题;掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、变力作功、引力、压力及函数的平均值等)二、本章教学内容的重点难点:找出未知量的元素(微元)的方法。
用元素法建立这些几何、物理的公式解决实际问题。
运用元素法将一个量表达为定积分的分析方法§6.1定积分的微小元素法一、内容要点1、复习曲边梯形的面积计算方法,定积分的定义面积A ⎰∑=∆==→bani i i dx x f x f )()(lim 1ξλ面积元素dA =dx x f )(2、计算面积的元素法步骤: (1)画出图形;(2)将这个图形分割成n 个部分,这n 个部分的近似于矩形或者扇形;(3)计算出面积元素;(4)在面积元素前面添加积分号,确定上、下限。
二、教学要求与注意点掌握用元素法解决一个实际问题所需要的条件。
用元素法解决一个实际问题的步骤。
§6.2 定积分在几何中的应用一、内容要点1、在直角坐标系下计算平面图形的面积方法一面积元素dA =dx x x )]()([12ϕϕ-,面积A =x x x bad )]()([12ϕϕ-⎰第一步:在D 边界方程中解出y 的两个表达式)(1x y ϕ=,)(2x y ϕ=. 第二步:在剩下的边界方程中找出x 的两个常数值a x =,b x =;不够时由)(1x ϕ)(2x ϕ=解出,b x a ≤≤,)()(21x y x ϕϕ≤≤,面积S =x x x bad )]()([12ϕϕ-⎰方法二面积元素dA =dy y y )]()([12ϕϕ-,面积A =y y y dcd )]()([12ϕϕ-⎰第一步:在D 边界方程中解出x 的两个表达式)(1y x ϕ=,)(2y x ϕ=.第二步:在剩下的边界方程中找出y 的两个常数值c y =,d y =;不够时由)(1y ϕ)(2y ϕ=解出,d y c ≤≤,)()(21y x y ϕϕ≤≤,面积S =y y y d cd )]()([12ϕϕ-⎰例1 求22-=x y ,12+=x y 围成的面积解⎪⎩⎪⎨⎧+=-=1222x y x y ,1222+=-x x ,1-=x ,3=x 。
微积分第六章习题答案

证明: ,而 ,恰好
5.不用求出函数 的导数,说明方程 有几个实根,并指出它们所在的区间。
解: ,分别在区间 上应用罗尔定理得 在 上都有根,而 为三次多项式,所以恰有三个实根。
6.证明恒等式
证明:在 上, ,所以 为常数,令 得此常数为 。又显然 ,所以结论成立。
4.求下列函数的极值点与极值:
(1)
解: , 上 上 所以 为极大值点,极大值为 。 上 上 所以 为极小值点,极小值为 。
(2)
解: , 上 上 所以 为极大值点,极大值为 。
(3)
解: , 上 上 上 所以 为极小值点,极小值为 。 为极大值点,极大值为
5.确定下列函数的单调区间:
(1)
解: 。在 上 , 上 , 上 ,所以 , 为单增区间, 为单减区间。
7.讨论方程 有几个实根。
解:设 , ,在 上 , 单增,在 上 , 单减。所以 为最大值。又有 所以当 时没有实根,当 时有一个实根,当 时有两个实根。
8.判定下列曲线的凹凸性:
(1)
解: 所以函数是凸的。
(2)
解: 所以 上函数是凸的, 上函数是凹的。
(3)
解: 所以函数是凹的。
(4)
解: 所以函数是凹的。
16.设函数 ,求证:当 时, 当 时,有
。
证明:当 时, 所以
即 ,在其中取 即得
6.4函数的单调性与曲线的凹凸性
习题6.4
1.判定函数 的单调性。
解: 只在 处为零,所以函数单调下降。
2.判定函数 的单调性。
解: ,只在 处为零,所以函数单调上升。
3.求下列函数的单调性区间与极值点:
高等数学第六章 定积分应用试题及答案

第六章 一元函数定积分的应用一、微元法(元素法)实际问题中可化为定积分来计算的待求量A ,一般总可按“分割、近似求和、取极限”这三个步骤导出它的积分表达式。
但为了简捷实用起见,常常采用微元法(又称元素法)。
微元法的关键就在于寻找待求量A 的微小增量(部分量)能近似表达为x ∆的线性形式,()x x f A ∆≈∆而且当0→∆x 时,()()x x x f A ∆=∆-∆0,亦即()dx x f dA =,其中()x f 为[]b a ,上的某一个连续函数。
量dA 称为待求量的微元素。
然后把()dx x f 在[]b a ,上积分,即待求量⎰=badx x f A )(。
这就是微元法。
在采用微元法时,必须注意如下几点:(1)选好坐标系,这关系到计算简繁问题。
(2)待求量A 具有以区间的可加性,即A =∑∆A ;(3)取好微元x x f d )(,经常应用“以匀代变”“以直代曲”的思想决定A ∆的线性主部,这关系到结果正确与否的问题。
定积分的几何应用一、平面图形的面积 1.直角坐标的情形求)(1x y ϕ=与)(2x y ϕ=与所围图形的面积方法(1)以x 为积分变量由)(1x ϕ)(2x ϕ=解出两个常数值a x =,b x =,面积元素dA =dx x x )]()([12ϕϕ-,面积A =x x x bad )]()([12ϕϕ-⎰,(b x a ≤≤)。
方法(2) 以y 为积分变量由)(1x y ϕ=、)(2x y ϕ=解出x 的两个表达式)(1y x ϕ=,)(2y x ϕ=,再根据)(1y ϕ)(2y ϕ=解出y 的两个常数值c y =,d y =,面积元素dA =dy y y )]()([12ϕϕ-,面积A =y y y dc d )]()([12ϕϕ-⎰,(d y c ≤≤)。
以x 还是y 为积分变量,要视具体情况分析,总之要让计算最简单。
(1)X — 型平面图形的面积 (2) Y — 型平面图形⎰-=badx x g x f S )()( ⎰-=dcdy y g y f S )()(2.参数方程情形求)(x f y =、a x =、b x =以及x 轴所围图形的面积(b a x f <≥,0)(),如果曲边)(x f y =的方程为参数方程为⎩⎨⎧==)()(t y t x φϕ,则其面积dx y A ba ⎰==dt t t )(')(ϕφβα⎰,其中)(),(βϕαϕ==b a3.极坐标情形设平面图形是由曲线 )(θϕ=r 及射线αθ=,βθ=围成的曲边扇形。
概率论与数理统计 理工类 第四版 吴赣昌主编课后习题答案完整版 cropped

概率论与数理统计(理工类第四版)吴赣昌主编课后习题答案鹤鹤答案工作室随机事件及其概率1.1 随机事件习题1试说明随机试验应具有的三个特点.习题2将一枚均匀的硬币抛两次,事件A,B,C分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”,试写出样本空间及事件A,B,C中的样本点.1.2 随机事件的概率1.3 古典概型与几何概型1.4 条件概率1.5 事件的独立性复习总结与总习题解答习题3. 证明下列等式:习题6.习题7习题9习题10习题12习题13习题14习题15习题16习题18习题20习题21习题23习题24习题26第二章随机变量及其分布2.1 随机变量习题1随机变量的特征是什么?解答:①随机变量是定义在样本空间上的一个实值函数.②随机变量的取值是随机的,事先或试验前不知道取哪个值.③随机变量取特定值的概率大小是确定的.习题2试述随机变量的分类.解答:①若随机变量X的所有可能取值能够一一列举出来,则称X为离散型随机变量;否则称为非离散型随机变量.②若X的可能值不能一一列出,但可在一段连续区间上取值,则称X为连续型随机变量.习题3盒中装有大小相同的球10个,编号为0,1,2,⋯,9, 从中任取1个,观察号码是“小于5”,“等于5”,“大于5”的情况,试定义一个随机变量来表达上述随机试验结果,并写出该随机变量取每一个特定值的概率.解答:分别用ω1,ω2,ω3表示试验的三个结果“小于5”,“等于5”,“大于5”,则样本空间S={ω1,ω2,ω3},定义随机变量X如下:X=X(ω)={0,ω=ω11,ω=ω2,2,ω=ω3则X取每个值的概率为P{X=0}=P{取出球的号码小于5}=5/10,P{X=1}=P{取出球的号码等于5}=1/10,P{X=2}=P{取出球的号码大于5}=4/10.2.2 离散型随机变量及其概率分布习题1设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2}, 求λ.解答:由P{X=1}=P{X=2}, 得λe-λ=λ^2/2e^-λ,解得λ=2.习题2设随机变量X的分布律为P{X=k}=k15,k=1,2,3,4,5,试求(1)P{12<X<52; (2)P{1≤X≤3};(3)P{X>3}.解答:(1)P{12<X<52=P{X=1}+P{X=2}=115+215=15;(2)P{≤X≤3}=P{X=1}+P{X=2}+P{X=3}=115+215+315=25;(3)P{X>3}=P{X=4}+P{X=5}=415+515=35.习题3已知随机变量X只能取-1,0,1,2四个值,相应概率依次为12c,34c,58c,716c, 试确定常数c, 并计算P{X<1∣X≠0}.解答:依题意知,12c+34c+58c+716c=1, 即3716c=1,解得c=3716=2.3125.由条件概率知P{X<1∣X≠0}=P{X<1,X≠0}P{X≠0}=P{X=-1}P{X≠0}=12c1-34c=24c-3=26.25=0.32.习题4一袋中装有5只球,编号为1,2,3,4,5. 在袋中同时取3只,以X表示取出的3只球中的最大号码,写出随机变量X的分布律.解答:随机变量X的可能取值为3,4,5.P{X=3}=C22⋅1C53=110, P{X=4}=C32⋅1C53=310, P{X=5}=C42⋅1C53=35,所以X的分布律为设X表示取出3件产品的次品数,则X的所有可能取值为0,1,2,3. 对应概率分布为P{X=0}=C73C103=35120, P{X=1}=C73C31C103=36120,P{X=2}=C71C32C103=21120, P{X=3}=C33C103=1120.X的分布律为X 0123P 3512036120211201120习题9一批产品共10件,其中有7件正品,3件次品,每次从这批产品中任取一件,取出的产品仍放回去,求直至取到正品为止所需次数X的概率分布.解答:由于每次取出的产品仍放回去,各次抽取相互独立,下次抽取时情况与前一次抽取时完全相同,所以X的可能取值是所有正整数1,2,⋯,k,⋯.设第k次才取到正品(前k-1次都取到次品), 则随机变量X的分布律为P{X=k}=310×310×⋯×310×710=(310)k-1×710,k=1,2,⋯.习题10设随机变量X∼b(2,p),Y∼b(3,p), 若P{X≥1}=59,求P{Y≥1}.解答:因为X∼b(2,p),P{X=0}=(1-p)2=1-P{X≥1}=1-5/9=4/9,所以p=1/3.因为Y∼b(3,p), 所以P{Y≥1}=1-P{Y=0}=1-(2/3)3=19/27.习题11纺织厂女工照顾800个纺绽,每一纺锭在某一段时间τ内断头的概率为0.005, 在τ这段时间内断头次数不大于2的概率.解答:以X记纺锭断头数, n=800,p=0.005,np=4,应用泊松定理,所求概率为:P{0≤X≤2}=P{⋃0≤xi≤2{X=xi}=∑k=02b(k;800,0.005)≈∑k=02P(k;4)=e-4(1+41!+422!)≈0.2381.习题12设书籍上每页的印刷错误的个数X服从泊松分布,经统计发现在某本书上,有一个印刷错误与有两个印刷错误的页数相同,求任意检验4页,每页上都没有印刷错误的概率.解答:\becauseP{X=1}=P{X=2}, 即λ11!e-λ=λ22!e-λ⇒λ=2,∴P{X=0}=e-2,∴p=(e-2)4=e-8.2.3 随机变量的分布函数习题1F(X)={0,x<-20.4,-2≤x<01,x≥0,是随机变量X的分布函数,则X是___________型的随机变量.解答:离散.由于F(x)是一个阶梯函数,故知X是一个离散型随机变量.习题2设F(x)={0x<0x20≤1,1x≥1问F(x)是否为某随机变量的分布函数.解答:首先,因为0≤F(x)≤1,∀x∈(-∞,+∞).其次,F(x)单调不减且右连续,即F(0+0)=F(0)=0, F(1+0)=F(1)=1,且F(-∞)=0,F(+∞)=1,由正态分布的概率密度知μ=-3,σ=2由Y=X-μσ∼N(0,1), 所以Y=3+X2∼N(0,1).习题2已知X∼f(x)={2x,0<x<10,其它, 求P{X≤0.5};P{X=0.5};F(x).解答:P{X≤0.5}=∫-∞0.5f(x)dx=∫-∞00dx+∫00.52xdx=x2∣00.5=0.25,P{X=0.5}=P{X≤0.5}-P{X<0.5}=∫-∞0.5f(x)dx-∫-∞0.5f(x)dx=0.当X≤0时,F(x)=0;当0<x<1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt=t2∣0x=x2;当X≥1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt+∫1x0dt=t2∣01=1,故F(x)={0,x≤0x2,0<x<1.1,x≥1习题3设连续型随机变量X的分布函数为F(x)={A+Be-2x,x>00,x≤0,试求:(1)A,B的值;(2)P{-1<X<1}; (3)概率密度函数F(x).解答:(1)\becauseF(+∞)=limx→+∞(A+Be-2x)=1, ∴A=1;又\becauselimx→0+(A+Be-2x)=F(0)=0, ∴B=-1.(2) P{-1<X<1}=F(1)-F(-1)=1-e-2.(3)f(x)=F′(x)={2e-x,x>00,x≤0.习题4服从拉普拉斯分布的随机变量X的概率密度f(x)=Ae-∣x∣, 求系数A及分布函数F(x).解答:由概率密度函数的性质知,∫-∞+∞f(x)dx=1,即∫-∞+∞Ae-∣x∣dx=1,而∫-∞+∞Ae-∣x∣dx=∫-∞0Aexdx+∫0+∞Ae-xdx=Aex∣-∞0+(-Ae-x∣0+∞)=A+A=2A或∫-∞+∞Ae-xdx=2∫0+∞Ae-xdx=-2Ae-x∣0+∞=2A,所以2A=1, 即A=1/2.从而f(x)=12e-∣x∣,-∞<x<+∞,又因为F(x)=∫-∞xf(t)dt,所以当x<0时,F(x)=∫-∞x12e-∣t∣dt=12∫-∞xetdt=12et∣-∞x=12ex;当x≥0时,F(x)=∫-∞x12e-∣x∣dt=∫-∞012etdt+∫0x12e-tdt=12et∣-∞0-12e-t∣0x=12-12e-x+12=1-12e-x,从而F(x)={12ex,x<01-12e-x,x≥0.习题5某型号电子管,其寿命(以小时计)为一随机变量,概率密度f(x)={100x2,x≥1000,其它,某一电子管的使用寿命为X, 则三个电子管使用150小时都不需要更换的概率.解答:设电子管的使用寿命为X, 则电子管使用150小时以上的概率为P{X>150}=∫150+∞f(x)dx=∫150+∞100x2dx=-100x∣150+∞=100150=23,从而三个电子管在使用150小时以上不需要更换的概率为p=(2/3)3=8/27.习题6设一个汽车站上,某路公共汽车每5分钟有一辆车到达,设乘客在5分钟内任一时间到达是等可能的,试计算在车站候车的10位乘客中只有1位等待时间超过4分钟的概率.解答:设X为每位乘客的候车时间,则X服从[0,5]上的均匀分布. 设Y表示车站上10位乘客中等待时间超过4分钟的人数. 由于每人到达时间是相互独立的.这是10重伯努力概型. Y服从二项分布,其参数n=10,p=P{X≥4}=15=0.2,所以P{Y=1}=C101×0.2×0.89≈0.268.习题7设X∼N(3,22).(1)确定C, 使得P{X>c}=P{X≤c};(2)设d满足P{X>d}≥0.9,问d至多为多少?解答:因为X∼N(3,22), 所以X-32=Z∼N(0,1).(1)欲使P{X>c}=P{X≤c},必有1-P{X≤c}=P{X≤c},即P{X≤c}=1/2,亦即Φ(c-32)=12, 所以 c-32=0, 故c=3.(2)由P{X>d}≥0.9可得1-P{X≤d}≥0.9,即P{X≤d}≤0.1.于是Φ(d-32)≤0.1,Φ(3-d2)≥0.9.查表得3-d2≥1.282,所以d≤0.436.习题8设测量误差X∼N(0,102), 先进行100次独立测量,求误差的绝对值超过19.6的次数不小于3的概率. 解答:先求任意误差的绝对值超过19.6的概率p,p=P{∣X∣>19.6}=1-P{∣X∣≤19.6}=1-P{∣X10∣≤1.96=1-[Φ(1.96)-Φ(-1.96)]=1-[2Φ(1.96)-1]=1-[2×0.975-1]=1-0.95=0.05.设Y为100次测量中误差绝对值超过19.6的次数,则Y∼b(100,0.05).因为n很大,p很小,可用泊松分布近似,np=5=λ,所以P{Y≥3}≈1-50e-50!-51e-51!-52e-52!=1-3722-5≈0.87.习题9某玩具厂装配车间准备实行计件超产奖,为此需对生产定额作出规定. 根据以往记录,各工人每月装配产品数服从正态分布N(4000,3600).假定车间主任希望10%的工人获得超产奖,求:工人每月需完成多少件产品才能获奖?解答:用X表示工人每月需装配的产品数,则X∼N(4000,3600).设工人每月需完成x件产品才能获奖,依题意得P{X≥x}=0.1,即1-P{X<x}=0.1,所以1-F(x)=0.1, 即1-Φ(x-400060)=0.1, 所以Φ(x-400060)=0.9.查标准正态人分布表得Φ(1.28)=0.8997,因此x-400060≈1.28,即x=4077件,就是说,想获超产奖的工人,每月必须装配4077件以上.习题10某地区18岁女青年的血压(收缩压,以mm-HG计)服从N(110,122). 在该地区任选一18岁女青年,测量她的血压X.(1)求P{X≤105},P{100<X≤120};(2)确定最小的x, 使P{X>x}≤0.005.解答:已知血压X∼N(110,122).(1)P{X≤105}=P{X-11012≤-512≈1-Φ(0.42)=0.3372,P{100<X≤120}=Φ(120-11012)-Φ(100-11012)=Φ(0.833)-Φ(-0.833)=2Φ(0.833)-1≈0.595.(2)使P{X>x}≤0.05,求x, 即1-P{X≤x}≤0.05,亦即Φ(x-11012)≥0.95,查表得x-10012≥1.645,从而x≥129.74.习题11设某城市男子身高X∼N(170,36), 问应如何选择公共汽车车门的高度使男子与车门碰头的机会小于0.01.解答:X∼N(170,36), 则X-1706∼N(0,1).设公共汽车门的高度为xcm,由题意P{X>x}<0.01, 而P{X>x}=1-P{X≤x}=1-Φ(x-1706)<0.01,即Φ(x-1706)>0.99, 查标准正态表得x-1706>2.33, 故x>183.98cm.因此,车门的高度超过183.98cm时,男子与车门碰头的机会小于0.01.习题12某人去火车站乘车,有两条路可以走. 第一条路程较短,但交通拥挤,所需时间(单位:分钟)服从正态分布N(40,102); 第二条路程较长,但意外阻塞较少,所需时间服从正态分布N(50,42), 求:(1)若动身时离开车时间只有60分钟,应走哪一条路线?(2)若动身时离开车时间只有45分钟,应走哪一条路线?解答:设X,Y分别为该人走第一、二条路到达火车站所用时间,则X∼N(40,102),Y∼N(50,42).哪一条路线在开车之前到达火车站的可能性大就走哪一条路线.(1)因为P{X<60}=Φ(60-4010)=Φ(2)=0.97725,P{Y<60}=Φ(60-504)=Φ(2.5)=0.99379,所以有60分钟时应走第二条路.(2)因为P{X<45}=Φ(45-4010)=Φ(0.5)=0.6915,P{X<45}=Φ(45-504)=Φ(-1.25)=1-Φ(1.25)=1-0.8925=0.1075所以只有45分钟应走第一条路.当c>0时,fY(y)={1c(b-a),ca+d≤y≤cb+d0,其它,当c<0时,fY(y)={-1c(b-a),cb+d≤y≤ca+d0,其它.习题4设随机变量X服从[0,1]上的均匀分布,求随机变量函数Y=eX的概率密度fY(y).解答:f(x)={1,0≤x≤10,其它,f=ex,x∈(0,1)是单调可导函数,y∈(1,e), 其反函数为x=lny, 可得f(x)={fX(lny)∣ln′y,1<y<e0,其它={1y,1<y<e0,其它.习题5设X∼N(0,1),求Y=2X2+1的概率密度.解答:因y=2x2+1是非单调函数,故用分布函数法先求FY(y).FY(y)=P{Y≤y}=P{2X2+1≤y}(当y>1时)=P{-y-12≤X≤y-12=∫-y-12y-1212πe-x2dx,所以fY(y)=F′Y(y)=22πe-12⋅y-12⋅122y-1,y>1, 于是fY(y)={12π(y-1)e-y-14,y>10,y≤1.习题6设连续型随机变量X的概率密度为f(x), 分布函数为F(x), 求下列随机变量Y的概率密度:(1)Y=1X; (2)Y=∣X∣.解答:(1)FY(y)=P{Y≤y}=P{1/X≤y}.①当y>0时,FY(y)=P{1/X≤0}+P{0<1/X≤y}=P{X≤0}+P{X≥1/y}=F(0)+1-F(1/y),故这时fY(y)=[-F(1y)]′=1y2f(1y);;②当y<0时,FY(y)=P{1/y≤X<0}=F(0)-F(1/y),故这时fY(y)=1y2f(1y);③当y=0时,FY(y)=P{1/X≤0}=P{X<0}=F(0),故这时取fY(0)=0, 综上所述fY(y)={1y2⋅f(1y),y≠00,y=0.(2)FY(y)=P{Y≤y}=P{∣X∣≤y}.①当y>0时,FY(y)=P{-y≤X≤y}=F(y)-F(-y)这时fY(y)=f(y)+f(-y);②当y<0时,FY(y)=P{∅}=0, 这时fY(y)=0;③当y=0时,FY(y)=P{Y≤0}=P{∣X∣≤0}=P{X=0}=0,故这时取FY(y)=0, 综上所述fY(y)={f(y)+f(-y),y>00,y≤0.习题7某物体的温度T(∘F)是一个随机变量, 且有T∼N(98.6,2), 已知θ=5(T-32)/9, 试求θ(∘F)的概率密度.解答:已知T∼N(98.6,2). θ=59(T-32), 反函数为T=59θ+32,是单调函数,所以fθ(y)=fT(95y+32)⋅95=12π⋅2e-(95y+32-98.6)24⋅95=910πe-81100(y-37)2.习题8设随机变量X在任一区间[a,b]上的概率均大于0, 其分布函数为FY(x), 又Y在[0,1]上服从均匀分布,证明:Z=FX-1(Y)的分布函数与X的分布函数相同.解答:因X在任一有限区间[a,b]上的概率均大于0, 故FX(x)是单调增加函数,其反函数FX-1(y)存在,又Y在[0,1]上服从均匀分布,故Y的分布函数为FY(y)=P{Y≤y}={0,y<0y,0≤y≤11,y>0,于是,Z的分布函数为FZ(z)=P{Z≤z}=P{FX-1(Y)≤z}=P{Y≤FX(z)}={0,FX(z)<0FX(z),0≤FX(z)≤1,1,FX(z)>1由于FX(z)为X的分布函数,故0≤FX(z)≤1.FX(z)<0和FX(z)>1均匀不可能,故上式仅有FZ(z)=FX(z), 因此,Z与X的分布函数相同.总习题解答习题1从1∼20的整数中取一个数,若取到整数k的概率与k成正比,求取到偶数的概率.解答:设Ak为取到整数k, P(Ak)=ck, k=1,2,⋯,20.因为P(⋃K=120Ak)=∑k=120P(Ak)=c∑k=120k=1,所以c=1210,P{取到偶数}=P{A2∪A4∪⋯∪A20} =1210(2+4+⋯+20)=1121.习题2若每次射击中靶的概率为0.7, 求射击10炮,(1)命中3炮的概率;(2)至少命中3炮的概率;(3)最可能命中几炮.解答:若随机变量X表示射击10炮中中靶的次数. 由于各炮是否中靶相互独立,所以是一个10重伯努利概型,X服从二项分布,其参数为n=10,p=0.7, 故(1)P{X=3}=C103(0.7)3(0.3)7≈0.009;(2)P{X≥3}=1-P{X<3}=1-[C100(0.7)0(0.3)10+C101(0.7)1(0.3)9+C102(0.7)2(0.3)8]≈0.998;(3)因X∼b(10,0.7), 而k0=[(n+1)p]=[(10+1)]×0.7=[7.7]=7,故最可能命中7炮.习题3在保险公司里有2500名同一年龄和同社会阶层的人参加了人寿保险,在1年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交120元保险费,而在死亡时家属可从保险公司里领20000元赔偿金,求:(1)保险公司亏本的概率;(2)保险公司获利分别不少于100000元, 200000元的概率.解答:1)以“年”为单位来考虑,在1年的1月1日,保险公司总收入为2500×120元=30000元.设1年中死亡人数为X, 则X∼b(2500,0.002), 则保险公司在这一年中应付出200000X(元),要使保险公司亏本,则必须200000X>300000即X>15(人).因此,P{保险公司亏本}=P{X>15}=∑k=162500C2500k(0.002)k×(0.998)2500-k≈1-∑k=015e-55kk!≈0.000069,由此可见,在1年里保险公司亏本的概率是很小的.(2)P{保险公司获利不少于100000元}=P{300000-200000X≥100000}=P{X≤10}=∑k=010C2500k(0.002)×(0.998)2500-k≈∑k=010e-55kk!≈0.986305,即保险公司获利不少于100000元的概率在98%以上.因F(x)在x=π6处连续,故P{X=π6=12,于是有P{∣X∣<π6=P{-π6<X<π6=P{-π6<X≤π6=F(π6)-F(-π6)=12..习题8使用了x小时的电子管,在以后的Δx小时内损坏的概率等于λΔx+o(Δx),其中λ>0是常数,求电子管在损坏前已使用时数X的分布函数F(x),并求电子管在T小时内损坏的概率.解答:因X的可能取值充满区间(0,+∞),故应分段求F(x)=P{X≤x}.当x≤0时,F(x)=P{X≤x}=P(∅)=0;当x>0时,由题设知P{x<X≤x+Δx/X}=λΔx+o(Δx),而P{x<X≤x+Δx/X}=P{x<X≤x+Δx,X>x}P{X>x}=P{x<X≤x+Δx}1-P{X≤x}=F(x+Δx)-F(x)1-F(x),故F(X+Δx)-F(x)1-F(x)=λΔx+o(Δx),即F(x+Δx)-F(x)Δx=[1-F(x)][λ+o(Δx)Δx],令o(Δx)→0,得F′(x)=λ[1-F(x)].这是关于F(x)的变量可分离微分方程,分离变量dF(x)1-F(x)=λdx,积分之得通解为C[1-F(x)]=e-λx(C为任意常数).注意到初始条件F(0)=0, 故C=1.于是F(x)=1-e-λx,x>0,λ>0,故X的分布函数为F(x)={0,x≤01-e-λx,x>0(λ>0),从而电子管在T小时内损坏的概率为P{X≤T}=F(T)=1-e-λT.习题9设连续型随机变量X的分布密度为f(x)={x,0<x≤12-x,1<x≤20,其它,求其分布函数F(x).解答:当x≤0时,F(x)=∫-∞x0dt=0;当0<x≤1时,F(x)=∫-∞xf(t)dt=∫-∞00tdt+∫0xtdt=12x2;当1<x≤2时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫01tdt+∫1x(2-t)dt=0+12+(2t-12t2)∣1x=-1+2x-x22;当x>2时,F(x)=∫-∞00dt+∫01tdt+∫12(2-t)dt+∫2x0dt=1,故F(x)={0,x≤212x2,0<x≤1-1+2x-x22,1<x≤21,x>2.习题10某城市饮用水的日消费量X(单位:百万升)是随机变量,其密度函数为:f(x)={19xe-x3,x>00,其它,试求:(1)该城市的水日消费量不低于600万升的概率;(2)水日消费量介于600万升到900万升的概率. 解答:先求X的分布函数F(x). 显然,当x<0时,F(x)=0, 当x≥0时有F(x)=∫0x19te-t3dt=1-(1+x3)e-x3故F(x)={1-(1+x3)e-x3,x≥00,x<0,所以P{X≥6}=1-P{X<6}=1-P(X≤6}=1-F(6)=1-[1-(1+x3)e-x3]x=6=3e-2,P{6<X≤9}=F(9)-F(6)=(1-4e-3)-(1-3e-2)=3e-2-4e-3.习题11已知X∼f(x)={cλe-λx,x>a0,其它(λ>0),求常数c及P{a-1<X≤a+1}.解答:由概率密度函数的性质知∫-∞+∞f(x)dx=1,而∫-∞+∞f(x)dx=∫-∞a0dx+∫a+∞cλe-λxdx=c∫a+∞e-λxd(λx)=-ce-λx\vlinea+∞=ce-λa,所以ce-λa=1,从而c=eλa.于是P{a-1<X≤a+1}=∫a-1a+1f(x)dx=∫a-1a0dx+∫aa+1λeλae-λxdx=-eλae-λx\vlineaa+1=-eλa(e-λ(a+1)-e-λa)=1 -e-λ.注意,a-1<a, 而当x<a时,f(x)=0.习题12已知X∼f(x)={12x2-12x+3,0<x<10,其它, 计算P{X≤0.2∣0.1<X≤0.5}.解答:根据条件概率;有P{X≤0.2∣0.1<X≤0.5}=P{X≤0.2,0.1<X≤0.5}P{0.1<X≤0.5}=P{0.1<X≤0.2}P{0.1<X≤0.5}=∫0.10.2(12x2-12x+2) dx∫0.10.5(12x2-12x+3)dx=(4x3-6x2+3x)∣0.10.2(4x3-6x2+3x)∣0.10.5=0.1480.256=0.578125.习题13若F1(x),F2(x)为分布函数,(1)判断F1(x)+F2(x)是不是分布函数,为什么?(2)若a1,a2是正常数,且a1+a2=1. 证明:a1F1(x)+a2F2(x)是分布函数.解答:(1)F(+∞)=limx→+∞F(x)=limx→+∞F1(x)+limx→+∞F2(x)=1+1=2≠1故F(x)不是分布函数.(2)由F1(x),F2(x)单调非减,右连续,且F1(-∞)=F2(-∞)=0,F1(+∞)=F2(+∞)=1,可知a1F1(x)+a2F2(x)单调非减,右连续,且a1F1(-∞)+a2F2(-∞)=0,a1F1(+∞)+a2F2(+∞)=1.从而a1F1(x)+a2F2(x)是分布函数.习题14设随机变量X的概率密度ϕ(x)为偶函数,试证对任意的a>0, 分布函数F(x)满足:(1)F(-a)=1-F(a); (2)P{∣X∣>a}=2[1-F(a)].解答:(1)F(-a)=∫-∞-aϕ(x)dx=∫a+∞ϕ(-t)dt=∫a+∞ϕ(x)dx=1-∫-∞aϕ(x)dx=1-F(a).(2)P{∣X∣>a}=P{X<-a}+P{X>a}=F(-a)+P{X≥a}F(-a)+1-F(a)=2[1-F(a)].习题15设K在(0,5)上服从均匀分布,求x的方程4x2+4Kx+K+2=0有实根的概率.解答:因为K∼U(0,5), 所以fK(k)={1/5,0<k<50,其它,方程4x2+4Kx+K+2=0有实根的充要条件为(4K)2-4⋅4(K+2)≥0,即K2-K-2≥0,亦即(k-2)(K+1)≥0,解得K≥2(K≤-1舍去), 所以P{方程有实根}=P{K≥2}=∫2515dx=35.习题16某单位招聘155人,按考试成绩录用,共有526人报名,假设报名者考试成绩X∼N(μ,σ2), 已知90分以上12人,60分以下83人,若从高分到低分依次录取,某人成绩为78分,问此人是否能被录取?解答:要解决此问题首先确定μ,σ2, 因为考试人数很多,可用频率近似概率.根据已知条件P{X>90}=12/526≈0.0228,P{X≤90}=1-P{X>90}≈1-0.0228}=0.9772;又因为P{X≤90}=P{X-μσ≤90-μσ, 所以有Φ(90-μσ)=0.9772, 反查标准正态表得90-μσ=2 ①同理:P{X≤60}=83/526≈0.1578; 又因为P{X≤60}=P{X-μσ≤60-μσ,故Φ(60-μσ)≈0.1578.因为0.1578<0.5,所以60-μσ<0, 故Φ(μ-60σ)≈1-0.1578=0.8422, 反查标准正态表得μ-60σ≈1.0 ②联立①,②解得σ=10,μ=70, 所以,X∼N(70,100).某人是否能被录取,关键看录取率. 已知录取率为155526≈0.2947, 看某人是否能被录取,解法有两种:方法1:P{X>78}=1-P{X≤78}=1-P{x-7010≤78-7010=1-Φ(0.8)≈1-0.7881=0.2119,因为0.2119<0.2947(录取率), 所以此人能被录取.方法2:看录取分数线. 设录取者最低分为x0, 则P{X≥x0}=0.2947(录取率),P{X≤x0}=1-P{X≥x0}=1-0.2947=0.7053,P{X≤x0}=P{x-7010≤x0-7010=Φ{x0-7010=0.7053,反查标准正态表得x0-7010≈0.54, 解得x0≈75. 此人成绩78分高于最低分,所以可以录取.习题17假设某地在任何长为t(年)的时间间隔内发生地震的次数N(t)服从参数为λ=0.1t的泊松分布,X表示连续两次地震之间间隔的时间(单位:年).(1)证明X服从指数分布并求出X的分布函数;(2)求今后3年内再次发生地震的概率;(3)求今后3年到5年内再次发生地震的概率.解答:(1)当t≥0时,P{X>t}=P{N(t)=0}=e-0.1t,∴F(t)=P{X≤t}=1-P{X>t}=1-e-0.1t;当t<0时,F(t)=0,∴F(x)={1-e-0.1t,x≥00,x<0,X服从指数分布(λ=0.1);(2)F(3)=1-e-0.1×3≈0.26;(3)F(5)-F(3)≈0.13.习题18100件产品中,90个一等品,10个二等品,随机取2个安装在一台设备上,若一台设备中有i个(i=0,1,2)二等品,则此设备的使用寿命服从参数为λ=i+1的指数分布.(1)试求设备寿命超过1的概率;(2)已知设备寿命超过1,求安装在设备上的两个零件都是一等品的概率 .解答:(1)设X表示设备寿命. A表示“设备寿命超过1”,Bi表示“取出i个二等品”(i=0,1,2),则X的密度函数为fX(x)={λe-λx,x>00,x≤0 (λ=i+1,i=0,1,2),P(B0)=C902C1002, P(B1)=C901C102C1002, P(B2)=C102C1002, P(A∣B0)=∫1+∞e-xdx=e-1, P(A∣B1)=∫1+∞2e-2xdx=e-2,P(A∣B2)=∫1+∞3e-3xdx=e-3,由全概率公式:P(A)=∑i=02P(Bi)P(A∣Bi)≈0.32.(2)由贝叶斯公式:P(B0∣A)=P(B0)P(A∣B0)P(A)≈0.93.fX(x)={e-x,x>00,其它,求Y=eX的概率密度.解答:因为α=min{y(0),y(+∞)}=min{1,+∞}=1,β=max{y(0),y(+∞)}=max{1,+∞}=+∞.类似上题可得fY(y)={fX[h(y)]∣h′(y)∣,1<y<+∞0,其它={1/y2,1<y<+∞0,其它.习题22设随便机变量X的密度函数为fX(x)={1-∣x∣,-1<x<10,其它,求随机变量Y=X2+1的分布函数与密度函数.解答:X的取值范围为(-1,1), 则Y的取值范围为[1,2). 当1≤y<2时,FY(y)=P{Y≤y}=P{X2+1≤y}=P{-Y-1≤x≤y-1}=∫-y-1y-1(1-∣x∣)dx=2∫0y-1(1-x)dx=1-(1-y-1)2,从而Y的分布函数为FY(y)={0,y<11-(1-y-1)2,1≤y<2,1,其它Y的概率密度为fY(y)={1y-1-1,1<y<20,其它.第三章多维随机变量及其分布Y 01/31pk 7/121/121/3习题6设随机向量(X,Y)服从二维正态分布N(0,0,102,102,0), 其概率密度为f(x,y)=1200πex2+y2200,求P{X≤Y}.解答:由于P{X≤Y}+P{X>Y}=1,且由正态分布图形的对称性,知P{X≤Y}=P{X>Y},故P{X≤Y}=12.习题7设随机变量(X,Y)的概率密度为f(x,y)={k(6-x-y),0<x<2,2<y<40,其它,(1)确定常数k; (2)求P{X<1,Y<3}; (3)求P{X<1.5}; (4)求P{X+Y≤4}.解答:如图所示(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1,确定常数k.∫02∫24k(6-x-y)dydx=k∫02(6-2x)dx=8k=1,所以k=18.(2)P{X<1,Y<3}=∫01dx∫2318(6-x-y)dy=38.(3)P{X<1.5}=∫01.5dx∫2418(6-x-y)dy=2732.(4)P{X+Y≤4}=∫02dx∫24-x18(6-x-y)dy=23.习题8已知X和Y的联合密度为f(x,y)={cxy,0≤x≤1,0≤y≤10,其它,试求:(1)常数c; (2)X和Y的联合分布函数F(x,y).解答:(1)由于1=∫-∞+∞∫-∞+∞f(x,y)dxdy=c∫01∫01xydxdy=c4,c=4.(2)当x≤0或y≤0时,显然F(x,y)=0;当x≥1,y≥1时,显然F(x,y)=1;设0≤x≤1,0≤y≤1,有F(x,y)=∫-∞x∫-∞yf(u,v)dudv=4∫0xudu∫0yvdv=x2y2.设0≤x≤1,y>1,有F(x,y)=P{X≤1,Y≤y}=4∫0xudu∫01ydy=x2.最后,设x>1,0≤y≤1,有F(x,y)=P{X≤1,Y≤y}=4∫01xdx∫0yvdv=y2.函数F(x,y)在平面各区域的表达式F(x,y)={0,x≤0或y≤0x2,0≤x≤1,y>1x2y2,0≤x≤1,0≤y≤1.y2,x>习题9设二维随机变量(X,Y)的概率密度为 f(x,y)={4.8y(2-x),0≤x≤1,x≤y≤10,其它,求边缘概率密度fY(y).解答:fX(x)=∫-∞+∞f(x,y)dy={∫0x4.8y(2-x)dy,0≤x≤10,其它={2.4x2(2-x),0≤x≤10,其它.fY(y)=∫-∞+∞f(x,y)dx={∫0y4.8y(2-x)dx,0≤y≤10,其它={2.4y(4y-y2),0≤y≤10,其它.习题10设(X,Y)在曲线y=x2,y=x所围成的区域G里服从均匀分布,求联合分布密度和边缘分布密度.解答:区域G的面积A=∫01(x-x2)dx=16, 由题设知(X,Y)的联合分布密度为f(x,y)={6,0≤x≤1,x2≤y≤x0,其它,从而fX(x)=∫-∞+∞f(x,y)dy=6∫x2xdy=6(x-x2),0≤x≤1,即fX(x)={6(x-x2),0≤x≤10,其它fY(y)=∫-∞+∞f(x,y)dx=6∫yydx=6(y-y),0≤y≤1,即fY(y)={6(y-y),0≤y≤10,其它.3.2 条件分布与随机变量的独立性习题1二维随机变量(X,Y)的分布律为故(1)在Y=1条件下,X的条件分布律为fXY(x,y)={2(5-y)125,0≤y≤5,0≤x≤50,其它,故此人能及时上火车的概率为P{Y>X}=∫05∫x52(5-y)125dydx=13.习题7设随机变量X与Y都服从N(0,1)分布,且X与Y相互独立,求(X,Y)的联合概率密度函数.解答:由题意知,随机变量X,Y的概率密度函数分别是fX(x)=12πe-x22,fY(y)=12πe-y22因为X与Y相互独立,所以(X,Y)的联合概率密度函数是f(x,y)=12πe-12(x+y)2.习题8设随机变量X的概率密度f(x)=12e-∣x∣(-∞<x<+∞),问:X与∣X∣是否相互独立?解答:若X与∣X∣相互独立,则∀a>0, 各有P{X≤a,∣X∣≤a}=P{X≤a}⋅P{∣X∣≤a},而事件{∣X∣≤a}⊂{X≤a},故由上式有 P{∣X∣≤a}==P{X≤a}⋅P{∣X∣≤a},⇒P{∣X∣≤a}(1-P{X≤a})=0⇒P{∣X≤a∣}=0或1=P{X≤a}⋅(∀a>0)但当a>0时,两者均不成立,出现矛盾,故X与∣X∣不独立.习题9设X和Y是两个相互独立的随机变量,X在(0,1)上服从均匀分布,Y的概率密度为fY(y)={12e-y2,y>00,y≤0,(1)求X与Y的联合概率密度;(2)设有a的二次方程a2+2Xa+Y=0, 求它有实根的概率.解答:(1)由题设易知fX(x)={1,0<x<10,其它,又X,Y相互独立,故X与Y的联合概率密度为f(x,y)=fX(x)⋅fY(y)={12e-y2,0<x<1,y>00,其它;(2)因{a有实根}={判别式Δ2=4X2-4Y≥0}={X2≥Y},故如图所示得到: P{a有实根}=P{X2≥Y}=∫∫x2>yf(x,y)dxdy=∫01dx∫0x212e-y2dy=-∫01e-x22dx=1-[∫-∞1e-x22dx-∫-∞0e-x22dx] =1-2π[12π∫-∞1e-x22dx-12π∫-∞0e-x22dx]=1-2π[Φ(1)-Φ(0),又Φ(1)=0.8413,Φ(0)=0.5,于是Φ(1)-Φ(0)=0.3413,所以 P{a有实根}=1-2π[Φ(1)-Φ(0)]≈1-2.51×0.3413=0.1433.3.3 二维随机变量函数的分布习题1设随机变量X和Y相互独立,且都等可能地取1,2,3为值,求随机变量U=max{X,Y}和V=min{X,Y}的联合分布.解答:由于U≥V,可见P{U=i,V=j}=0(i<j).此外,有 P{U=V=i}=P{X=Y=i}=1/9(i=1,2,3),P{U=i,V=j}=P{X=i,Y=j}+P{X=j,Y=i}=2/9(i>j),于是,随机变量U和V的联合概率分布为与一维离散型随机变量函数的分布律的计算类型,本质上是利用事件及其概率的运算法则.注意,Z的相同值的概率要合并.。
微积分(经管类第四版)习题1-5答案

习题1-51、不是。
11)()(11)()(1)()(,存在极限始终等于则,,则,假设x g x f n n x g x f n x g n x f =⨯=⨯== 2、,即欲使001.04<-y0.00020002.05001.02001.025224422,001.04422==<-∴<-<+-=-→+∴→<-=-ε,即即,x x x x x x x x y3、1112+=--=x x x y 0.55.012-12=∴<-=+=-ε,x x y 4、(1),,要使,所以,对任意给定的εε<-+>=-+323320132332x x x x x 32332lim 3233210=+<-+<<=+∞→x x x x x x 故时,就有,则当只要取εδεδ(2),,要使,所以,对任意给定的εε<->≤-0sin 010sin x xx x x0sin lim 0sin 10=<-<<=+∞→x xx x x x 故时,就有,则当只要取εδεδ(3),,要使,所以,对任意给定的εε<-->--=--1110111111x x x111lim 1111110=-<--<--<=+∞→x x x x 故时,就有,则当只要取εδεδ (4),,要使,所以,对任意给定的εε<--->-=---21011212222xx x x x x x21lim 211102222=--<---<-<=+∞→x x x xx x x x 故时,就有,则当只要取εδεδ 5、极限不存在不存在二者不相等,故,而且,且,则,取’’’’’xx x x x x x x x x x x n n n n n n n n n n 0x n n n n n n lim -1.n1-n 1-lim lim 1n 1n 1lim lim 00lim 00lim }n1{-}{}n 1{}{→∞→∞→∞→∞→∞→∞→====≠=≠=== 6、a x f x x =→)(lim 0假设 有界,即有时,,属于,当任意则有:存在,,再取,,的某个领域属于即为而即,时,有,使当存在,的正数根据定义,对任意给定)()()(0}max{)(.)()(000000x f M x f x U x a a M x U x x x x a x f a a x f x x <>+-=<-+<<-<-<->δδεεδδεεεδδε。
(完整版)高等数学定积分应用习题答案

第六章 定积分的应用习题 6-2 (A)1. 求下列函数与 x 轴所围部分的面积:]3,0[,86)1(2+-=x x y ]3,0[,2)2(2x x y -=2. 求下列各图中阴影部分的面积: 1.图 6-13.求由下列各曲线围成的图形的面积:;1,)1(===-x e y e y x x 与;)0(ln ,ln ,0ln )2(>>====a b b y a y x x y 与;0,2)3(2==-=y x y x x y 与;)1(,2)4(22--==x y x y;0,2)1(4)5(2=-=-=y x y x y 与;2,)6(2x y x y x y ===与;)0(2sin ,sin 2)7(π≤≤==x x y x y;8,2)8(222(两部分都要计算)=+=y x x y4.的图形的面积。
所围成与直线求由曲线e x e x y x y ====-,,0ln 15.的面积。
处的切线所围成的图形和及其在点求抛物线)0,3()3,0(342--+-=x x y6.的面积。
处的法线所围成的图形及其在点求抛物线),2(22p ppx y = 7.形的面积。
与两坐标轴所围成的图求曲线a y x =+8.所围图形的面积。
求椭圆12222=+by a x9.。
与横轴所围图形的面积(的一拱求由摆线)20)cos 1(),sin (π≤≤-=-=t t a y t t a x10.轴之间的图形的面积。
的切线的左方及下方与由该曲线过原点求位于曲线x e y x =11.求由下列各方程表示的曲线围成的图形的面积: ;)0(sin 2)1(>=a a θρ;)0()cos 2(2)2(>+=a a θρ ;2cos 2)3(2(双纽线)θρ=抛物体的体积。
轴旋转,计算所得旋转所围成的图形绕及直线把抛物线x x x x ax y )0(4.12002>==体的体积。
旋转轴旋转,计算所得两个轴及所围成的图形,分别绕由y x y x x y 0,2,.133===14.求下列已知曲线所围成的图形,按指定的轴旋转所产生的旋转体的体积: ;,0,,0)1(轴绕与x y a x x axcha y ====;,2sin )2(轴绕与x xy x y π== ;,)20(cos sin )3(轴绕与x x x y x y π≤≤==;0,2,ln )4(轴绕与y y x x y === ;0,2)5(2轴绕与y y x y x x y ==-=;,16)5()6(22轴绕y y x =+-。
微积分 第六章 第四节 定积分的应用

4ab
1
ab .
0
22
2 0
sinn
xdx
n
n
n
n
1 1
n n n n
3 2 3 2
3 4 4 5
1 2 2 3
, n为正偶数
2
, n为大于1的奇数
19
例4 计算由曲线 y2 2x 和直线 y x 4所围成
的图形的面积. 解 两曲线的交点
y
y2 2x
(8, 4)
2
Vy 2
1 x 2x2dx .
0
o 1x
35
例12 求由曲线 y ( x 1)( x 2) 和 x 轴所围平面图
形绕 y 轴旋转一周而成的旋转体体积.
解
Vy 2
2
x( x 1)( x 2)dx
.
1
2
y
y
a
b
12
o
xo
x
y f (x)
“套筒法”推广:
由平面图形 0 a x b, f ( x) y 0 绕 y 轴
t (t 2 x2 )dx
1
(
x2
t
2
)
dx
0
t
y
1
y = x2
[t 2 x
x3 3
]
t 0
x3 [
3
t
2
x]
1 t
4t 3 t 2 1 , 0 t 1
3
3
t2
S2
S1
o
t1 x
S 4t 2 2t
令
2t(2t 1)
0 ,得驻点:
t
0, t
1,
2
经比较,当t 1 时两面积和最小.
吴赣昌编 概率论与数理统计 第6章(new)

点估计:由总体的样本(X1,X2,…,Xn)对每一个未知参数 θi(i=1,2,…,k)构造统计量 ˆ ˆ ( X , X , , X )作为参数θi
i i 1 2 n
ln L 0 1 ln L 0 2 ln L 0 m
从中解出 ˆ1 , ˆ2 , , ˆm
在例6.4中,
xi n xi n i 1 i 1 x i ln n ln L ( ) ln (1 ) i 1
L ( x1 , x 2 ,..., x n ; ˆ ( x1 , x 2 ,..., x n )) max L ( x1 , x 2 ,..., x n ; )
Θ
称统计量 ˆ ( X 1 , X 2 ,..., 记为 ˆL
X n)
为参数θ的极大似然估计量。
3、求极大似然估计的步骤 设总体X的分布中,有m个未知参数θ1,θ2,…,θm,它们 的取值范围。 (1)写出似然函数L的表达式 如果X是离散型随机变量,分布律为P(X=k),则
例6.4 设总体X服从0—1分布,即分布律为
P(X x )
x
(1 )
1 x
f (x )
x=0,1,其中0<θ<1未知
(X1,X2,…,Xn)为X的一个样本,设其观察值为(x1,x2,…,xn), 则事件(X1=x1,X2=x2,…,Xn=xn)发生的概率为
P ( X 1 x1 , X 2 x 2 , , X n x n )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章定积分的应用内容概要课后习题全解习题6-2★ 1.求由曲线xy =与直线x y =所围图形的面积。
知识点:平面图形的面积思路:由于所围图形无论表达为X-型还是Y-型,解法都较简单,所以选其一做即可 解: 见图6-2-1∵所围区域D 表达为X-型:⎩⎨⎧<<<<x y x x 10, (或D 表达为Y-型:⎩⎨⎧<<<<yx y y 210)∴⎰-=10)(dx x x S D 61)2132(1223=-=x x(⎰=-=1261)(dy y y S D) ★ 2.求在区间[0,π/2]上,曲线x y sin =与直线0=x 、1=y 所围图形的面积知识点:平面图形面积思路:由于所围图形无论表达为X-型还是Y-型,解法都较简单,所以选其一做即可 解:见图6-2-2∵所围区域D 表达为X-型:⎪⎩⎪⎨⎧<<<<1sin 20y x x π, (或D 表达为Y-型:⎩⎨⎧<<<<y x y arcsin 010) ∴12)cos ()sin 1(202-=+=-=⎰πππx x dx x S D(12arcsin 1-==⎰πydy S D )★★3.求由曲线x y =2与42+-=x y 所围图形的面积知识点:平面图形面积思路:由于所围图形表达为Y-型时解法较简单,所以用Y-型做 解:见图6-2-3∵两条曲线的交点:⎩⎨⎧±==⇒⎩⎨⎧+-==22422y x x y x y ,∴所围区域D 表达为Y-型:⎩⎨⎧-<<<<-22422yx y y ,∴2316)324()4(2232222=-=--=--⎰y y dy y y S D(由于图形关于X 轴对称,所以也可以解为:2316)324(2)4(223222=-=--=⎰y y dy y y S D )★★4.求由曲线2x y =、24x y =、及直线1=y 所围图形的面积知识点:平面图形面积思路:所围图形关于Y 轴对称,而且在第一象限内的图形表达为Y-型时,解法较简单 解:见图6-2-4∵第一象限所围区域1D 表达为Y-型:⎩⎨⎧<<<<yx y y 210,∴34322)2(22102311=⨯=-==⎰y dy y y S S D D(若用X-型做,则第一象限内所围区域=1D b a D D Y ,其中a D :⎪⎩⎪⎨⎧<<<<22410x y x x ,b D :⎪⎩⎪⎨⎧<<<<14212y x x ;∴12212201422[()(1]443D D x x S S x dx dx ==-+-=⎰⎰) ★★5.求由曲线xy 1=与直线x y =及2=x 所围图形的面积知识点:平面图形面积思路:由于所围图形表达为X-型,解法较简单,所以用X-型做 解:见图6-2-5∵两条曲线xy =和x y =的交点为(1,1)、(-1,-1),又这两条线和2=x 分别交于)21,2(、2) ,2(∴所围区域D 表达为X-型:⎪⎩⎪⎨⎧<<<<x y xx 121,∴22211113((ln )ln 222DS x dx x x x =-=-=-⎰★★★6.抛物线x y 22=分圆822=+y x 的面积为两部分,求这两部分的面积知识点:平面图形面积思路:所围图形关于X 轴对称,而且在第一象限内的图形表达为Y-型时,解法较简单 解:见图6-2-6,设阴影部分的面积为1D S ,剩余面积为2D S∵两条曲线x y 22=、822=+y x 的交于(2,2)±(舍去4-=x 的解),∴所围区域1D 表达为Y-型:⎪⎩⎪⎨⎧-<<<<-228222y x y y ;又图形关于x 轴对称,∴342)342(2)68(2)28(220320220221+=-+=--=--=⎰⎰ππy y dy y y S D(其中222cos 18cos 22cos 22844sin 2222+=+=⨯=-⎰⎰⎰=πππdt ttdt t dyy ty ) ∴34634282-=--=πππDS ★★★7.求由曲线x e y =、x e y -=与直线1=x 所围图形的面积知识点:平面图形面积思路:由于所围图形表达为X-型时,解法较简单,所以用X-型做解:见图6-2-7∵两条曲线x e y =和x e y -=的交点为(0,1),又这两条线和1=x 分别交于) ,1(e 和) ,1(1-e∴所围区域D 表达为X-型:⎩⎨⎧<<<<-x x ey e x 10,∴2)()(1101-+=+=-=---⎰e e e e dx e e S x x x x D★★★8.求由曲线x y ln =与直线a y ln =及b y ln =所围图形的面积)0(>>a b知识点:平面图形面积思路:由于所围图形表达为Y-型时,解法较简单,所以用Y-型做 解:见图6-2-8∵在x ln 的定义域范围内所围区域D :⎩⎨⎧<<<<ye x by a 0ln ln , ∴a b edy e S b ay bay D-===⎰ln ln ln ln★★★★9.求通过(0,0),(1,2)的抛物线,要求它具有以下性质:(1)它的对称轴平行于y轴,且向下弯;(2)它与x 轴所围图形面积最小知识点:平面图形面积和求最值思路:首先根据给出的条件建立含参变量的抛物线方程,再求最值时的参变量解:由于抛物线的对称轴平行于y 轴,又过(0,0),所以可设抛物线方程为bx ax y +=2,(由于下弯,所以0<a ),将(1,2)代入bx ax y +=2,得到2=+b a ,因此x a ax y )2(2-+=该抛物线和X 轴的交点为0=x 和aa x 2-=, ∴所围区域D :2200(2)a x ay ax a x-⎧<<⎪⎨⎪<<+-⎩ ∴23223226)2()223(])2([a a x a x a dx x a ax S aa a a D-=-+=-+=--⎰)4()2(61)]2()2()2(3[61)(233322+-=-⨯-+-⨯='---a a a a a a a a S D得到唯一极值点:4-=a ,∴所求抛物线为:x x y 642+-=★★★★10.求位于曲线x e y =下方,该曲线过原点的切线的左方以及x 轴上方之间的图形的面积知识点:切线方程和平面图形面积思路:先求切线方程,再作出所求区域图形,然后根据图形特点,选择积分区域表达类型 解:xe y =⇒xe y =',∴在任一点0x x =处的切线方程为)(000x x e ey x x -=-而过(0,0)的切线方程就为:)1(-=-x e e y ,即ex y =所求图形区域为21D D D Y =,见图6-2-10X-型下的1D :⎩⎨⎧<<<<∞-x e y x 00,2D :⎩⎨⎧<<<<xey ex x 1∴222)(12110e e e x e edx ex e dx e S x x x D=-=-=-+=∞-∞-⎰⎰ ★★★11.求由曲线θcos 2a r =所围图形的面积知识点:平面图形面积思路:作图可知该曲线是半径为a 、圆心(0 ,a )的圆在极坐标系下的表达式,可直接求得面积为2a π,也可选择极坐标求面积的方法做。
解:∵作图6-1-11知所求图形区域D :⎪⎩⎪⎨⎧<<<<-θπθπcos 2022a r∴2222222)2sin 2121(2)cos 2(21a a d a S Dπθθθθππππ=+==--⎰ ★★★12.求三叶玫瑰线θ3sin a r =的面积S知识点:平面图形面积思路: 三叶玫瑰由三瓣面积相等的叶片组成图6-2-12中所画是三叶玫瑰中的一叶, 而一叶图形又关于6πθ=对称,因此选择其中一叶的一半区域1D 求其面积解:∵1D :⎪⎩⎪⎨⎧<<<<θπθ3cos 060a r∴26026241)6sin 6121(3)3cos (21661a a d a S S D Dπθθθθππ=+===⎰★★★13.求由曲线)cos 2(2θ+=a r 所围图形的面积知识点:平面图形面积思路:作图可知该曲线围成的图形关于极轴对称,因此选择其中一半区域1D 求其面积解:∵1D :⎩⎨⎧+<<<<)cos 2(200θπθa r∴12220141122[2(2cos3)]4[4(sin 3sin 6)1823212D D S S a d a a ππθθπθθθπ==+=+++=⎰★★★14.求对数螺线θρae =)(πθπ≤≤-及射线πθ=所围图形的面积知识点:平面图形面积思路:作图可知该曲线围成的图形是由θρae =,θ从π-到π一段曲线及射线πθ=所围,由此可确定θ、ρ的范围解:∵所围区域D :⎩⎨⎧<<<<-θρπθπae∴)(4212)(21222222ππππθππθθ----=⨯==⎰e e a e a d ae S D★★★★15.求由曲线θcos 3=r 及θcos 1+=r 所围图形的面积知识点:平面图形面积思路:作图可知两条闭围线围成的图形由三部分组成,其中一部分为两图形重叠部分D ,而D 又关于极轴对称,设θ在(0,2π)内的曲线和极轴围成的半个D 为1D 区域解:两条曲线θcos 3=r 、θcos 1+=r 交于3πθ±=处,因此分割区域b a D D D +=1,其中a D :⎪⎩⎪⎨⎧+<<<<θπθcos 1030r ,b D :⎪⎩⎪⎨⎧<<<<θπθπcos 3023r122320332031122[(1cos )(3cos )]223191152[(2sin sin 2)(sin 2)]23422644D D S S d d ππππππθθθθππθθθπ==++=⨯+++⨯+=⎰⎰★★★16.求由曲线θsin 2=r 及θ2cos 2=r 所围图形的面积知识点:平面图形面积思路:作图可知两条闭围线围成的图形由三部分组成,其中一部分为两图形重叠部分D ,而D 又关于射线2πθ=对称,设两条曲线在(0,2π)围成的半个D 为1D 区域解:两条曲线θsin 2=r 、θ2cos 2=r 交于6πθ=及65πθ=因此分割区域b a D D D +=1,其中a D :⎪⎩⎪⎨⎧<<<<θπθsin 2060r ,b D :⎪⎩⎪⎨⎧<<<<θπθπ2cos 026r236)2sin 412sin 41621(2]2cos 21)sin 2(21[22266026621-=+-⨯=+==⎰⎰πθθπθθθθππππππd d S S D D(和书后答案不同)★★★17.求由摆线)sin (t t a x -=,)cos 1(t a y -=)20(π≤≤t 及x 轴所围图形的面积知识点:平面图形面积思路:在直角坐标系下作图可知所围图形的x 、y 变化范围,先求出直角坐标系下积分表达式,再将积分变量代换成t解:∵所围区域D :⎩⎨⎧<<<<)(020x y y ax π,()(x y y =为摆线)∴20()aDS y x dx π=⎰,作代换)sin (t t a x -=,则222022203223)cos 1(])sin ([)cos 1(a a dt t a t t a d t a S Dππππ=⨯=-=--=⎰⎰ 习题6-31. 求下列平面图形分别绕x 轴、y 轴旋转产生的立体体积:★(1).曲线x y =与直线1=x 、4=x 、0=y 所围成的图形;知识点:旋转体体积思路:作出平面图形(或求出该平面区域的x 、y 范围),代入相应的公式。