图形与坐标练习题
专项练习图形的位似变换与坐标
目 录
• 位似变换基本概念与性质 • 平面直角坐标系中位似变换 • 三角形和四边形位似变换探讨 • 函数图像在位似变换下性质研究 • 实际应用问题中位似变换思想运用 • 总结回顾与拓展延伸
01 位似变换基本概念与性质
位似变换定义及特点
位似变换定义
如果两个图形不仅是相似图形,而且每组对应点的连线交于 一点,对应边互相平行(或在一条直线上),那么这两个图 形叫做位似图形。这个点叫做位似中心,这时的相似比又称 为位似比。
02 平面直角坐标系中位似变 换
平面直角坐标系简介
平面直角坐标系定义
点的坐标
在平面内画两条互相垂直、原点重合 的数轴,组成平面直角坐标系。
平面内一点P的坐标由一对有序实数 (x,y)确定,其中x是点P到y轴的距离, y是点P到x轴的距离。
坐标轴及象限
水平数轴称为x轴或横轴,垂直数轴称 为y轴或纵轴。坐标轴将平面分为四个 象限。
然保持。
渐近线变换规律
反比例函数的渐近线在位似变换 下也会进行相应的平移和缩放,
但渐近线的斜率不会改变。
05 实际应用问题中位似变换 思想运用
几何证明题中位似变换思想运用
利用位似变换证明线段比例关系
01
通过构造位似图形,证明两条线段之间的比例关系,进而解决
几何证明问题。
利用位似变换证明角度相等关系
位似图形特点
两个位似图形中每组对应顶点所在的直线都交于一点,这个 交点叫做位似中心,图形上任意一对对应点到位似中心的距 离之比等于相似比。
相似比与位似中心关系
相似比
在位似变换中,如果两个相似图形的对应边长之比相等,那么这个比值就叫做 相似比。
位似中心与相似比关系
(04)平面直角坐标系解答题专项练习60题(有答案)ok
平面直角坐标系解答题专项练习60题(有答案)1.如图所示,四边形ABCD是梯形,四边形OBCD是边长为1个单位长度的正方形,∠OAB=45°(1)写出点A,B,C,D坐标;(2)求梯形ABCD的面积.2.已知长方形ABCD的顶点坐标为A(1,1),B(2,1),C(2,3),D(1,3).(1)在直角坐标系中画出这个长方形;(2)怎样平移才能使长方形ABCD关于x轴对称;(3)怎样变换坐标,才能使长方形变成面积为1的正方形?3.如图,每个小正方形的边长为单位长度1.(1)写出多边形ABCDEF各个顶点A、B、C、D、E、F的坐标;(2)点C与E的坐标什么关系?(3)直线CE与两坐标轴有怎样的位置关系?4.在直角坐标平面内,已知点A(0,5)和点B(﹣2,﹣4),BC=4,且BC∥x轴.(1)在图中画点C的位置,并写出点C的坐标;(2)连接AB、AC、BC,判断△ABC的形状,并求出它的面积.5.如图,四边形ABCD各顶点的坐标分别为(﹣2,8),B(﹣11,6),C(﹣14,0),D(0,0).(1)计算这个四边形的面积;(2)如果把原来ABCD各个顶点的纵坐标保持不变,横坐标增加2,画出变化后的四边形A1B1C1D1,所得的四边形A1B1C1D1面积有是多少?6.已知点A(10,0),B(10,8),C(5,0),D(0,8),E(0,0),请在下面的平面直角坐标系中,(1)分别描出A、B、C、D、E五个点,并顺次连接这五个点,观察图形像什么字母;(2)要图象“高矮”不变,“胖瘦”变为原来图形的一半,坐标值应发生怎样的变化?7.如图,长方形OABC中,O为平面直角坐标系的原点,A,C两点的坐标分别为(3,0),(0,5),点B在第一象限内.(1)写出点B的坐标;(2)若过点C的直线CD交AB于点D,且把AB分为4:1两部分,写出点D的坐标;(3)在(2)中,计算四边形OADC的面积.8.如图,在平面直角坐标系中,O为坐标原点,已知点A(0,a),B(b,b),C(c,a),其中a,b满足关系式|a﹣4|+(b﹣2)2=0,c=a+b.(1)求A、B、C三点的坐标,并在坐标系中描出各点;(2)在坐标轴上是否存在点Q,使△COQ得面积与△ABC的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由;(3)如果在第四象限内有一点P(2,m),请用含m的代数式表示四边形BCPO的面积.9.在平面直角坐标系中,O为原点.(1)点A的坐标为(3,﹣4),求线段OA的长;(2)点B的坐标为(2,2),点C的坐标为(5,6),求线段BC的长.10.在直角坐标平面内,已知点C在x轴上,它到点A(2,1)和点B(3,4)的距离相等,求点C的坐标.11.如图,△AOB中,A,B两点的坐标分别为(2,4)、(6,2),求:△AOB的面积.(△AOB的面积可以看作一个长方形的面积减去一些小三角形的面积)12.如下图所示,△ABO的三个顶点的坐标分别为O(0,0),A(5,0),B(2,4).(1)求△OAB的面积;(2)若O,A两点的位置不变,P点在什么位置时,△OAP的面积是△OAB面积的2倍;(3)若B(2,4),O(0,0)不变,M点在x轴上,M点在什么位置时,△OBM的面积是△OAB面积的2倍.13.如图,在平面几何直角坐标系中,△ABC的三个顶点的坐标分别为A(﹣6,0)、B(3,0)、C(﹣7,8).(1)求线段AB的长.(2)求△ABC的面积S.14.如图,在平面直角坐标系中,点B、C在x轴上,OB>OC,点A在y轴正半轴上,AD平分∠BAC,交x轴于点D.(1)若∠B=30°,∠C=50°,求∠DAO的度数?(2)试写出∠DAO与∠C﹣∠B的关系?(不必证明)(3)若点A在y轴正半轴上运动,当点A运动至点P时,请你作出△BPC及其角平分线PQ,并直接写出∠QPO与∠PBC、∠PCB三者的关系?15.写出满足条件的A、B两点的坐标:(1)点A在x轴上,位于原点右侧,距离原点2个单位长度;(2)点B在x轴上方,y轴左侧,距离每条坐标轴都是2个单位长度.16.多多和爸爸、妈妈周末到动物园游玩,回到家后,她利用平面直角坐标系画出了动物园的景区地图,如图所示.可是她忘记了在图中标出原点和x轴、y轴.只知道马场的坐标为(﹣3,﹣3),你能帮她建立平面直角坐标系并求出其他各景点的坐标?17.已知△ABC的三边长均为整数,△ABC的周长为奇数.(1)若AC=8,BC=2,求AB的长;(2)若AC﹣BC=5,求AB的最小值;(3)若A(﹣2,1),B(6,1),在第一、三象限角平分线上是否存在点P,使△ABP的面积为16?若存在,求出P点坐标;若不存在,说明理由.18.若点P(2x﹣1,x+3)在第二、四象限的角平分线上,求点P到x轴的距离.19.五边形ABCDE的顶点坐标分别为A(0,6),B(﹣3,﹣3),C(﹣1,0),D(1,0),E(3,3),将五边形ABCDE看成经过一次平移后得A1B1C1D1E1.其中顶点A的对应点是A1(﹣3,10).(1)请写出其它对应点的坐标;(2)请指出这一平移的平移方向和平移距离.20.如图,坐标平面内有两个点A和B其中点A的坐标为(x1,y1),点B的坐标为(x2,y2),求AB的中点C的坐标.21.在直角坐标系中,△ABC满足,∠C=90°,AC=2,BC=1,点A,C分别在x轴、y轴上,当A点从原点开始在正x轴上运动时,点C随着在正y轴上运动.(1)当A在原点时,求原点O到点B的距离OB;(2)当OA=OC时,求原点O到点B的距离OB;(3)求原点O到点B的距离OB的最大值,并确定此时图形应满足什么条件?22.已知A(﹣2,0)、B(1,4),在x轴上求一点C,使S△ABC=12.23.已知实数a,b,c满足关系式|a﹣2|+(b﹣3)2=0,(c﹣4)2≤0.(1)求a,b,c的值,并在平面直角坐标系中,描出点A(0,a),B(b,0),C(b,c)三点;(2)如果在第二象限内有一点P(m,1),请用含m的式子表示三角形POA的面积;(3)在(2)的条件下,是否存在一点P,使四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标;若不存在,请说明理由.24.如图,已知网格上最小的正方形的边长为1.(1)分别写出点A、B、C的坐标;(2)求△ABC的面积.25.已知点A(﹣4,﹣1),B(2,﹣1)(1)在y轴上找一点C,使之满足S△ABC=12.求点C的坐标(写必要的步骤);(2)在直角坐标系中找一点C,能满足S△ABC=12的点C有多少个?这些点有什么特征?26.如图,在平面直角坐标系中,A(a,0),B(b,0),C(﹣2,1),且|a+2b+1|+(3a﹣4b+13)2=0.(1)求a,b的值;(2)在y轴上存在一点D,使得△COD的面积是△ABC面积的两倍,求出点D的坐标.(3)在x轴上是否存在这样的点,存在请直接写出点D的坐标,不存在请说明理由.27.若点A(﹣2,1)、B(4,﹣1)都在平面内,则可画出几个以A、B为两个顶点的正方形,分别写出这几个正方形的另外两个顶点的坐标.28.如图,这是一个在平面直角坐标系中描述出来的某地的地图.(1)请根据要求找出相应的点.A村的坐标是(﹣5,4),B村的坐标与A村的坐标关于y轴对称,C村的坐标与点B的坐标关于原点对称,D村在x轴上,并且BD∥y轴,请在图上标明这四点和它们的坐标;(2)四个村庄之间都有笔直的公路相连,构成了一个四边形,计划沿B、C、D三个村庄构成的三角形中BD边上的高修建一条小路,请你画出这条小路,不要求写作法,并写出C点到x轴的距离为_________ ;(3)请你用两种方法求△BCD的面积.29.如图,已知长方形ABC0中,边AB=8,BC=4.以点0为原点,0A、OC所在的直线为y轴和x轴建立直角坐标系.(1)点A的坐标为(0,4),写出B、C两点的坐标;(2)若点P从C点出发,以2单位/秒的速度向C0方向移动(不超过点O),点Q从原点0出发,以1单位/秒的速度向0A方向移动(不超过点A),设P、Q两点同时出发,在它们移动过程中,四边形OPBQ的面积是否发生变化?若不变,求其值;若变化,求变化范围.30.在坐标平面内描出点A(2,0),B(4,0),C(﹣1,0),D(﹣3,0).(1)分别求出线段AB中点,线段AC中点及线段CD中点的坐标,则线段AB中点的坐标与点A,B的坐标之间有什么关系?对线段AC中点和点A,C及线段CD中点和点C,D成立吗?(2)已知点M(a,0),N(b,0),请写出线段MN的中点P的坐标.31.已知如图,四边形ABCD的四个顶点的坐标分别为A(0,0)、B(9,0)、C(7,5)、D(2,7).(1)试计算四边形ABCD的面积.(2)若将该四边形各顶点的横坐标都加2,纵坐标都加3,其面积怎么变化?为什么?32.如图,在平面直角坐标系中,A(﹣3,4),B(﹣1,2),O为坐标原点,求△AOB的面积?33.在直角坐标系中,A(﹣4,0),B(2,0),点C在y轴正半轴上,且S△ABC=18.(1)求点C的坐标;(2)是否存在位于坐标轴上的点P,S△APC=S△PBC?若存在,请求出P点坐标;若不存在,说明理由.34.在平面直角坐标系中,已知O是原点,四边形ABCD是长方形,A、B、C的坐标分别是A(﹣3,1),B(﹣3,3),C (2,3).(1)求点D的坐标;(2)将长方形ABCD以每秒1个单位长度的速度水平向右平移,2秒钟后所得的四边形A1B1C1D1四个顶点的坐标各是多少?(3)平移(2)中长方形A1B1C1D1,几秒钟后△OB1D1的面积等于长方形ABCD的面积?35.如图,是小明家O和学校A所在地的简单地图,已知OA=2cm,OB=2.5cm,OP=4cm,C为OP的中点,回答下列问题:(1)图中距小明家距离相同的是哪些地方?(2)商场B、学校A、公园C、停车场P分别在小明家的什么方向?(3)若学校距离小明家400m,那么商场和停车场分别距离小明家多少米?36.如图所示,游艇A和B在湖中作直线运动,已知游艇B的速度是游艇A的1.5倍,出发时,游艇A的位置为(50,20),当B追上A时,此时的位置为(110,20),求出发时游艇B的位置.(游艇的大小忽略不计)37.如图,是某战役缴获敌人防御工事坐标地图的碎片,依稀可见:一号暗堡A的坐标为(4,3),五号暗堡B的坐标为(﹣2,3).另有情报得知敌军指挥部的坐标为(﹣3,﹣2).请问你能找到敌军的指挥部吗?38.一艘船上午8时从A港出发向东航行,10时到达B港,再折向南航行,11时30分到达C港.已知A,B两港相距40千米,B,C相距30千米,请选取适当的比例,建立直角坐标系,在直角坐标系中画出航线示意图,并求这艘船航行的平均速度.39.如图,一个机器人从O点出发,向正东方向走3米到达A1点,再向正北方向走6米到达A2点,再向正西走9米到达A3点,再向正南方向走12米到达A4点,再向正东方向走15米到达A5点,按如此规律走下去,当机器人走到A6时,(1)A6距x轴是米;(2)若机器人从A6走到A7,A6A7长为多少?写出A7的坐标.40.如图,是小明家和学校所在地的简单地图,已知OA=2cm,OB=2.5cm,OP=4cm,点C为OP的中点,回答下列问题:(1)图中距小明家距离相同的是哪些地方?(2)学校、商场、公园、停车场分别在小明家的什么方位?哪两个地方的方位是相同的?(3)若学校距离小明家400m,那么商场和停车场分别距离小明家多少米?41.七年级(6)班有35名学生参加广播操比赛,队伍共7排5列,如果把第一排从左到右第4个同学的位置用(1,4)表示,那么站在队伍最中间的小明的位置应该怎么表示?(6,5)表示什么位置?42.如图,三个圆的半径分别为10km,20km,30km,OA在北偏东30°方向处,OB与正北方向夹角为35°,C在正南处,A,B,C分别是位于三环,二环,一环上的三所学校,请用方向角和距离表示这三所学校位置.43.已知:在平面直角坐标系中,△ABC的边AB在x轴上,且AB=3,A点坐标为(﹣2,0),C点的坐标为(2,4).①画出符合条件的三角形ABC,写出B点坐标;②求三角形ABC的面积.44.如图,四边形OABC是长方形,顶点坐标为A(6,0),B(6,4),C(0,4),O(0,0),线段AB,BC中点分别为M,N.(1)请求M,N的坐标,从中你发现M的横坐标与A,B横坐标有什么关系,纵坐标呢?(2)求AC的中点坐标.45.如图,在平面直角坐标系中,三角形三个顶点坐标为A(﹣5,4),B(﹣1,5),C(﹣2,1).(1)在坐标系中描出A,B,C三点,指出三角形ABC在第几象限内;(2)求三角形ABC面积.46.已知点P的坐标为(﹣2m,m﹣6),根据下列条件分别确定字母m的值或取值范围.(1)点P在y轴上;(2)点P在一、三象限的角平分线上;(3)点P在第三象限.47.如图,已知边长为1的正方形OABC在平面直角坐标系中,B,C两点在第二象限内,OA与x轴的夹角为60°,那么C点坐标为多少?B点坐标为多少?48.已知平面直角坐标系内点M(4a﹣8,a+3),分别根据下列条件求出点M的坐标:(1)点M到y轴的距离为2;(2)点N的坐标为(3,﹣6),并且直线MN∥x轴.49.如图,在长方形ABCD中,边AB=8,BC=4,以点O为原点,OA,OC所在的直线为y轴和x轴,建立直角坐标系.(1)点A的坐标为(0,4),则B点坐标为_________ ,C点坐标为_________ ;(2)当点P从C出发,以2单位/秒速度向CO方向移动(不过O点),Q从原点O出发以1单位/秒速度向OA方向移动(不过A点),P,Q同时出发,在移动过程中,四边形OPBQ的面积是否变化?若不变,求其值;若变化,求其变化范围.50.如图,△ABC中,任意一点P(a,b)经平移后对应点P1(a﹣2,b+3),将△ABC作同样的平移得到△A1B1C1.(1)求A1,B1,C1的坐标;(2)指出这一平移的平移方向和平移距离.51.把自然数按下图的次序排在直角坐标系中,每个自然数就对应着一个坐标.例如1的对应点是原点(0,0),3的对应点是(1,1),16的对应点是(﹣1,2).那么,2004的对应点的坐标是什么?52.如图,一粒子在区域{(x,y)|x≥0,y≥0}内运动,在第1秒内它从原点运动到点B1(0,1),接着由点B1→C1→A1,然后按图中箭头所示方向在x轴,y轴及其平行线上运动,且每秒移动1个单位长度,求该粒子从原点运动到点P(16,44)时所需要的时间.53.已知点M(2a﹣5,a﹣1),分别根据下列条件求出点M的坐标.(1)点N的坐标是(1,6),并且直线MN∥y轴;(2)点M在第二象限,横坐标和纵坐标互为相反数.54.九年级某班有54名学生,所在教室有6行9列座位,用(m,n)表示第m行第n列的座位,新学期准备调整座位,设某个学生原来的座位为(m,n),如果调整后的座位为(i,j),则称该生作了平移(a,b)=(m﹣i,n﹣j),并称a+b 为该生的位置数.若某生的位置数为10,则当m+n取最小值,求m•n的最大值.55.如图:一个粒子在第一象限内及x轴,y轴上运动,在第一分钟内,它从原点运动到(1,0),第二分钟从(1,0)运动到(1,1),而后它接着按图中箭头所示在与x轴,y轴平行的方向来回运动,且每分钟移动1个长度单位.(1)当粒子所在位置分别是(1,1),(2,2),(3,3),(4,4)时,所经过的时间分别是多少?(2)在第2004分钟后,这个粒子所在的位置的坐标是多少?56.在平面直角坐标系中,A(1,2),B(3,1),点P在x轴负半轴,S△PAB=3,求P点坐标.57.在平面直角坐标系中,P(1,4),点A在坐标轴上,S△PAO=4,求P点坐标.58.如图,已知B(0,0),C(2,0),画直角坐标系.写出每个正方形的顶点坐标,在如图中分别求出三个正方形面积.59.将正整数按如图所示的规律排列下去,若用有序实数对(n,m)表示n排,从左到右第m个数,如(4,3)表示实数9,则(7,2)表示的实数是_________ .60.如图:小聪第一次向东走1米记作(1,0),第二次向北走2米记作(1,2),第三次向西走3米记作(﹣2,2),第四次向南走4米记作(﹣2,﹣2),第五次向东走5米记作(3,﹣2),第六次向北走6米记作(3,4),第七次向西走7米记作(﹣4,4),第八次向南走8米记作(﹣4,﹣4)第九次向东走9米记作(5,﹣4)…如此下去,第2009次走后记作什么?参考答案:1.解:(1)∵四边形OBCD是边长为1个单位长度的正方形,∴OB=OD=1,∵∠OAB=45°,∴OA=OB=1,∴点A(﹣1,0),B(0,1),C(1,1),D(1,0);(2)S梯形ABCD =(BC+AD)•CD=(1+2)×1=2.解:(1)长方形ABCD如图所示;(2)由图可知,向下平移2个单位长度;(3)横坐标不变,纵坐标变成原来的一半3.解:(1)多边形ABCDEF各个顶点A、B、C、D、E、F的坐标分别是A(﹣4,0)、B(﹣2,3)、C(2,3)、D(3,0)、E(2,﹣3)、F(0,﹣3);(2)点C(2,3)、点E(2,﹣3)的横坐标相同,纵坐标互为相反数;(3)观察图形可知,直线CE垂直于x轴,平行于y轴4.解:(1)如图所示:在直角坐标系中描出两点;C1(﹣6,﹣4),C2(2,﹣4);(2)①根据图象∠ABC1>90°,得出△ABC1是钝角三角形,=BC1•9=×4×9=18.∵AC1==,AC2==,∴△ABC2是等腰三角形,=×4×9=18.5.解:(1)将四边形ABCD进行割补法分解成三个直角三角形和一个长方形求解:S四边形ABCD =×2×8+×2×9+×3×6+9×6=80;(2)如图所示:平移后A1B1C1D1的面积80不变.6.解:(1)如图所示,即为所要求作的图形,像字母M;((3分)(2)横坐标变为原来的一半,纵坐标不变7.解:(1)∵A,C两点的坐标分别为(3,0),(0,5),∴点B的横坐标为3,纵坐标为5,∴点B的坐标为(3,5);(2)若AD为4份,则AD=5×=4,此时点D的坐标为(3,4),若AD为1份,则AD=5×=1,此时点D的坐标为(3,1),综上所述,点D的坐标为(3,4)或(3,1);(3)AD=4时,四边形OADC的面积=(4+5)×3=,AD=1时,四边形OADC的面积=(1+5)×3=9,综上所述,四边形OADC 的面积为或98.解:(1)根据题意得,a﹣4=0,b﹣2=0,解得a=4,b=2,∴c=4+2=6,∴点A(0,4),B(2,2),C(6,4);(2)S△ABC =×6×2=6,点Q在x轴上时,S△COQ =OQ•4=6,解得OQ=3,∴点Q的坐标为(﹣3,0)或(3,0),点Q在y轴时,S△COQ =OQ•6=6,解得OQ=2,∴点Q的坐标为(0,﹣2)或(0,2),综上所述,点Q的坐标为(﹣3,0)或(3,0)或(0,﹣2)或(0,2);(3)S四边形BCPO=S△BOP+S△CBP,=×(2﹣m)×2+×(2﹣m)×(6﹣2),=2﹣m+4﹣2m,=6﹣3m (2)如图,CM=|6﹣2|=4,BM=|5﹣2|=3,则由勾股定理,得.…(6分)10.解:设点C坐标为(x,0).(1分)利用两点间的距离公式,得,.(1分)根据题意,得AC=BC,∴AC2=BC2.即(x﹣2)2+1=(x﹣3)2+16.(2分)解得x=10.(1分)所以,点C的坐标是(10,0)11.解:过点A、B分别作x轴、y轴的垂线CE、CF交点为C,垂足分别为E、F∵A(2,4)、B(6,2)∴OE=AC=4,EA=CB=BF=2,OF=6,∴S ECFO=6×4=24 …(2分)S△AOE =×4×2=4 …(4分)S△ACB =×4×2=4 …(6分)S△BOF =×6×2=6 …(8分)∴S△AOB=S ECFO﹣S△AOE﹣S△ACB﹣S△BOF=24﹣4﹣4﹣6=10 …(10分)∴△AOB的面积是10∴S△OAB =×5×4=10;(2)若△OAP的面积是△OAB面积的2倍,O,A两点的位置不变,则△OAP的高应是△OAB高的2倍,即△OAP的面积=△OAB面积×2=×5×(4×2),∴P点的纵坐标为8或﹣8,横坐标为任意实数;(3)若△OBM的面积是△OAB面积的2倍,且B(2,4),O(0,0)不变,则△OBM的底长是△OAB底长的2倍,即△OBM的面积=△OAB的面积×2=×(5×2)×4,∴M点的坐标是(10,0)或(﹣10,0)13.解:(1)AB的长为:3﹣(﹣6)=9;(2)∵C(﹣7,8),∴△ABC的AB边上的高为8,∴S△ABC =AB•8=×9×8=3614.解:(1)∵∠B=30°,∠C=50°,∴∠BAC=100°.又AD是∠BAC的角平分线,∴∠BAD=∠BAC=50°,∴∠ADB=50°+50°=100°,又∵AD是BC边上的高,∴∠AOD=90°,∵∠AOD+∠DAO=∠ADB=100°,∴∠EAD=10°,(2)由图知,∠DAO=∠BAD﹣∠CAO=∠BAC﹣∠CAO=(180°﹣∠B﹣∠C)﹣(90°﹣∠C)=90°﹣∠B ﹣∠C﹣90°+∠C=(∠C﹣∠B),(3)如图所示:由图知:∠QPO=∠BPQ﹣∠CPO=∠BPC﹣∠CPO=(180°﹣∠PBC﹣∠PCB)﹣(90°﹣∠PCB)=(∠PCB﹣∠PBC)15.解:(1)∵点A在x轴上,位于原点右侧,距离原点2个单位长度∴横坐标为2,纵坐标为0,∴A(2,0);(3分)(2)∵点B在x轴上方,y轴左侧,∴点B在第二象限,∵点B距离每条坐标轴都是2个单位长度,∴B(﹣2,2)16.解:建立坐标系如图:∴南门(0,0),狮子(﹣4,5),飞禽(3,4)两栖动物(4,1)17.解:(1)由三角形的三边关系知,AC﹣BC<AB<AC+BC,即:8﹣2<AB<8+2,∴6<AB<10,又∵△ABC的周长为奇数,而AC、BC为偶数,∴AB为奇数,故AB=7或9;(2)∵AC﹣BC=5,∴AC、BC中一个奇数、一个偶数,又∵△ABC的周长为奇数,故AB为偶数,AB>AC﹣BC=5,得AB的最小值为6;(3)存在.由A(﹣2,1),B(6,1)两点坐标可知:AB ∥x轴,且AB=6﹣(﹣2)=8,而△ABP的面积为16,由三角形计算面积公式可知,点P 到AB的距离为4,即P点纵坐标为5或﹣3,又P点在第一、三象限角平分线上,故P点坐标为(5,5)或(﹣3,﹣3)18.解:因为点P (2x﹣1,x+3)在第二、四象限的角平分线上,所以2x﹣1+x+3=0,所以,.所以,点P到x 轴的距离为19.解:(1)根据A(0,6),A1(﹣3,10)可得横坐标减3,纵坐标加4,∵B(﹣3,﹣3),C(﹣1,0),D(1,0),E(3,3),∴B1(﹣6,1),C1(﹣4,4),D1(﹣2,4),E1(0,7);(2)平移方向是由A到A1的方向,AA1==5,平移距离是5个单位长度20.解:过点C作CM⊥x轴于点M,过点A作AN⊥x轴于点N,过点B作BP⊥x轴于点P,则点P的坐标为(x2,0),点N的坐标为(x1,0)由探究的结论可知,MN=MP,∴点M 的坐标为(,0),∴点C 的横坐标为同理可求点C 的纵坐标为∴点C 的坐标为(,).故答案为:(,).21.解:(1)当A点在坐标原点时,如图,AC在y轴上,BC⊥y轴,所以.目的是从特殊情况理解题意,考察勾股定理的基本应用与计算.(2)当OA=OC时,如图,△OAC是等腰直角三角形,AC=2.所以∠1=∠2=45°,.过点B作BE⊥OA于E,过点C作CD⊥OC,且CD与BE交于点D,则∠3=90°﹣∠ACD=90°﹣(90°﹣45°)=45°.又BC=1,所以,,因此.(3)解法一:如图所示,设∠ACO=θ,过C作CD⊥OC,由于∠BCA=90°,所以∠BCD=θ.由AC=2,BC=1,可以得B点的坐标为B(cosθ,sinθ+2cosθ).则l2=OB2=cos2θ+(sinθ+2cosθ)2=cos2θ+sin2θ+4sinθcosθ+4cos2θ=1+2sin2θ+4cos2θ=3+2sin2θ+2(2cos2θ﹣1)=3+2sin2θ+2cos2θ==当时,,所以.解法二:如图,取AC的中点E,连接OE,BE.在Rt△AOC中,OE是斜边AC 上的中线,所以.在△ACB中,BC=1,,所以.若点O,E,B 不在一条直线上,则,若点O,E,B在一条直线上,则,所以当点O,E,B在一条直线上时,OB取到最大值,最大值是.当O,E,B在一条直线上时,OB取到最大值时,从下图可见,OE=1,.∠CEB=45°,但CE=OE=1,22.解:如图,过点B作BD⊥x轴于点D.∵B(1,4),∴BD=4.∴S△ABC =AC•BD=12,∴AC=6.∵A(﹣2,0),∴C(4,0)或(﹣6,0)23.解:(1)∵|a﹣2|+(b﹣3)2=0,(c﹣4)2≤0,∴a﹣2=0,b﹣3=0,c﹣4=0,∴a=2,b=3,c=4,∴点A、B、C在平面直角坐标系中的位置如1图所示.(2)如图2,过点P作PD⊥y轴,则PD=﹣m,故三角形POA的面积=OA•PD=×2×(﹣m)=﹣m,即三角形POA的面积是﹣m;(3)存在.理由如下:如图2,过点A做AE⊥BC于点E.则AE=3.故△ABC的面积是6.∵S四边形ABOP=S△AOB+S△AOP=3﹣m,∴设存在点P使四边形ABOP的面积与△ABC的面积相等,即3﹣m=6,解得m=﹣3,∴P(﹣3,1)24.解:(1)A(﹣2,5);B(﹣5,2);C(﹣1,0);(2)△ABC的面积=4×5﹣×3×3﹣×1×5﹣×2×4=925.解:(1)如图,∵A(﹣4,﹣1),B(2,﹣1),∴AB=2﹣(﹣4)=6,S△ABC =AB•CD=×6•CD=12,解得CD=4,当点C在y轴的正半轴时,点C的坐标为(0,3),当点C在y轴的负半轴时,点C的坐标为(0,﹣5);(2)∵到x轴距离等于4的点有无数个,∴在平面内使△ABC的面积为12的点有无数个,这些点到直线AB的距离等于4.26.解:(1)∵|a+2b+1|+(3a﹣4b+13)2=0,∴,解得:;(2)∵A(a,0),B(b,0),C(﹣2,1),∴AB=4,∴S△ABC =×4×1=2,∵△COD的面积是△ABC面积的两倍,∴S△COD=4,∴•OD×2=4,∴OD=4,∴点D的坐标为:(0,4),(0,﹣4);(3)∵S△COD=4,且点D在x轴上,∴•OD×1=4,∴OD=8,∴点D的坐标为:(8,0),(﹣8,0)27.解:以A、B为两个顶点的正方形可画出三个,如图所示:□AQBP、□ABFE、□ABDC;①以AB为一条对角线时,另两个顶点分别为P(2,3),Q (0,﹣3),②以AB为一条边时,若另两顶点在直线AB的上方,则其坐标分别为E(0,7),F(6,5);若另两顶点在直线AB的下方,则其坐标分别为C(﹣4,﹣5),D(2,﹣7)28.解:(1)如图,各点的坐标为:A(﹣5,4),B(5,4),C(﹣5,﹣4),D(5,0);(2)连接BC、CD、DB,得△BCD,作出BD边上的高CE,如图所示.C点到x轴的距离为4;(3)方法1:S△BCD ==;方法2:S△BCD=S△COD+S△BOD==29.解:(1)∵长方形ABCO中,OC=AB=8,AB=8,BC=4,∴B的坐标是(8,4),C的坐标是(8,0);(2)设OQ=t,CP=2t,则AQ=4﹣t;S△ABQ =AB•AQ=×8(4﹣t)=16﹣4t,S△BCP =PC•BC=×2t×4=4t,则S四边形OPBQ=S长方形ABCO﹣S△ABQ﹣S△BCP=32﹣(16﹣4t)﹣4t=16.故四边形OPBQ的面积不随t的增大而变化30.解:(1)线段AB中点坐标为(3,0),线段AC中点坐标为(0.5,0),线段CD中点的坐标为(﹣2,0),线段AB中点的坐标是点A,B的坐标的和的一半,对线段AC中点和点A,C及线段CD中点和点C,D成立;(2)线段MN的中点P 的坐标为(,0)31.解:(1)四边形ABCD的面积=S△ADE+S梯形CDEF+S△CFB=7+×[(5+7)×5]+5=42;(2)∵四边形各顶点的横坐标都加2,纵坐标都加3,相当于把四边形向右平移2个单位长度,再向上平移三个单位长度,∴四边形的面积不变32.解:过点A、B分别作x轴的垂线交x轴于点C、D.∵A(﹣3,4),B(﹣1,2),∴OC=3,AC=4,OD=1,BD=2;∴S△AOC =×OC•AC=×3×4=6,S=OD•BD=×1×2=1,S梯形ACDB ==×2=6,∴S△AOB=S△BOD+S梯形ACDB﹣S△AOC=1+6﹣6=133.解:(1)设C点坐标为(0,t)(t>0),∵S△ABC =×6×t=18,解得t=6,∴点C的坐标为(0,6);(2)存在.设P点坐标为(a,0),根据题意得|a+4|×6=×|a﹣2|×6,解得a1=﹣6,a2=,∴P点坐标为(﹣6,0)或(,0)34.解:(1)点D的坐标(2,1);(2)长方形ABCD以每秒1个单位长度的速度水平向右平移,2秒钟后所得的四边形A1B1C1D1四个顶点的坐标A1(﹣3+2,1),B1(﹣3+2,3),C1(2+2,3),D1(2+2,1)即A1(﹣1,1),B1(﹣1,3),C1(4,3),D1(4,1);(3)设x秒后△OBD面积等于长方形ABCD的面积∴长方形ABCD向右平移各点纵坐标不变,横坐标加x即可∴平移后ABCD四个顶点的坐标分别是:A(﹣3+x,1),B(﹣3+x,3),C(2+x,3),D(2+x,1)连接OA,作AE⊥x轴,AF⊥y轴∴AD=|(﹣3+x)﹣(2+x)|=5,AB=|3﹣1|=2,∴AF=|﹣3+x|,AE=1则①当x≤3时,S△OBD=S△OAD+S△ABD﹣S△OBA=AD•AE ﹣AB•AF+AB•AD=×5×1﹣×2×|﹣3+x|+×2×5=﹣|﹣3+x|S□ABCD=AD×AB=2×5=10∵S△OBD=S□ABCD∴15/2﹣|﹣3+x|=10∴|﹣3+x|=﹣,方程无解②当x>3时,S△OBD=S△OAD+S△OBA+S△ABD=AD•AE+AB•AF+AB•AD=×5×1+×2×|﹣3+x|+×2×5=+|﹣3+x|S□ABCD=AD×AB=2×5=10∵S△OBD=S□ABCD∴15/2+|﹣3+x|=10∴|﹣3+x|=∴﹣3+x=±解得:x1=(舍去),x2=∴当秒后三角形OBD的面积等于长方形ABCD的面积35.解:以小明家为坐标原点,东西方向为x轴,南北方向为y轴,建立坐标系.(1)图中距小明家距离相同的是A与C;(2)商场B在小明家的北偏西30°方向;学校A在小明家的东北方向;公园C、停车场P在小明家的南偏东60°方向.(3)学校距离小明家400m,而OA=2cm,即比例尺为1:20000.故商场距离小明家2.5×20000÷100=500(m);停车场距离小明家4×20000÷100=800(m)36.解:设出发时B的位置为(x,20),由题意得,110﹣x=1.5×(110﹣50),解得x=20,所以,出发时游艇B的位置为(20,20)37.解:敌军指挥部如图所示.38.解:比例尺1:100000作图这艘船航行的平均速度(40+30)÷(2+1.5)=20(千米/时)39.解:(1)当机器人走到A6点时,A5A6=18米,点A6的坐标是(6+3=9,18﹣6=12),即(9,12),所以A6距x轴是12米;(2)若机器人从A6走到A7,是向西走21米,A6A7=3×7=21米,点A7的坐标是(9﹣21=﹣12,18﹣6=12),即(﹣12,12)40.解:(1)∵点C为OP的中点,∴OC=OP=×4=2cm,∵OA=2cm,∴距小明家距离相同的是学校和公园;(2)学校北偏东45°,商场北偏西30°,公园南偏东60°,停车场南偏东60°;公园和停车场的方位相同;(3)图上1cm表示:400÷2=200m,商场距离小明家:2.5×200=500m,停车场距离小明家:4×200=800m41.解:∵第一排从左到右第4个同学的位置用(1,4)表示,∴队伍最中间小明在第4排第3列,∴小明的位置为(4,3);(6,5)表示第6排第5列42.解:A在北偏东30°方向,到点O的距离为30km;B在北偏西35°方向,到点O的距离为20km;C在南面,到点O的距离为10km43.解:①△ABC如图所示,点B在点A的左边时,﹣2﹣3=﹣5,所以,点B的坐标为(﹣5,0),点B在点A的右边时,﹣2+3=1,所以,点B的坐标为(1,0);②△ABC的面积=×3×4=6.44.解:(1)∵四边形OABC是长方形,顶点坐标为A(6,0),B(6,4),C(0,4),O(0,0),线段AB,BC中点分别为M,N,∴M点坐标为:(6,2),N(3,4),可以发现M的横坐标与A,B横坐标相等,纵坐标是两点纵坐标和的一半;(2)由(1)可得出:AC的中点坐标横坐标为点A,O横坐标和的一半,纵坐标为C,O纵坐标和的一半,即AC中点C的坐标为:(3,2)45.解:(1)△ABC如图所示,在第二象限;(2)△ABC面积=4×4﹣×3×3﹣×1×4﹣×1×4,=16﹣4.5﹣2﹣2,=16﹣8.5,=7.5.46.解:(1)∵点P(﹣2m,m﹣6)在y轴上,∴﹣2m=0,∴m=0;(2)∵点P(﹣2m,m﹣6)在一、三象限的角平分线上,∴﹣2m=m﹣6,∴m=2;(3)∵点P(﹣2m,m﹣6)在第三象限,∴,由①得,m>0,由②得,m<6,所以,0<m<647.解:如图,∵OA与x轴的夹角为60°,四边形OABC 为正方形,∴∠COE=180°﹣60°﹣90°=30°,∴CE=CO•sin30°=1×=,OE=CO•cos30°=1×=,∵点C在第二象限,∴点C 的坐标为(﹣,);∵OA与x轴的夹角为60°,∴∠AOD=90°﹣60°=30°,∴OD=AO÷cos30°=1÷=,AD=AO×tan30°=1×=,∴BD=AB﹣AD=1﹣,在Rt△BDF中,∠DBF=∠AOD=30°,∴BF=BD•cos30°=(1﹣)×=﹣=,DF=BD•sin30°=(1﹣)×=﹣,∴OF=OD+DF=+﹣=,∵点B在第二象限,∴点B 的坐标为(,)48.解:(1)∵点M到y轴的距离为2,∴4a﹣8=2或4a﹣8=﹣2,解得a=或a=,当a=时,a+3=+3=,当a=时,a+3=+3=,所以,点M的坐标为(2,)或(﹣2,);(2)∵点N(3,﹣6),直线MN∥x轴,∴a+3=﹣6,解得a=﹣9,∴4a﹣8=4×(﹣9)﹣8=﹣36﹣8=﹣44,∴点M(﹣44,﹣6).49.解:(1)∵长方形ABCD中,AB=8,BC=4,∴CD=AB=8,∴B(8,4),C(8,0);故答案为:(8,4),(8,0);(2)设运动时间为t,则CP=2t,AQ=4﹣t,S四边形OPBQ=S矩形ABCD﹣S△ABQ﹣S△BPC,=4×8﹣×8(4﹣t )﹣×4t,=32﹣16+4t﹣4t,=16,所以,四边形OPBQ的面积不变,为1650.解:(1)∵原来点A的坐标为(1,1),B的坐标为(﹣1,﹣1),C的坐标为(4,﹣2),点P(a,b)经平移后对应点P1(a﹣2,b+3),∴A1(﹣1,4);B1(﹣3,2);C1(2,1);(2)将△ABC平移得到△A1B1C1,平移的方向是由A到A1的方向,平移的距离为线段AA1的长度,AA1==,即平移的距离为个单位长度51.解:观察图的结构,发现所有奇数的平方数都在第四象限的角平分线上.452=2025,由2n+1=45得n=22,所以2025的坐标为(22,﹣22).2004=2025﹣21,22﹣21=1,所以2004的坐标是(1,﹣22)52.解:设粒子从原点到达A n、B n、C n时所用的时间分别为a n、b n、c n,则有:a1=3,a2=a1+1,a3=a1+12=a1+3×4,a4=a3+1,a5=a3+20=a3+5×4,a6=a5+1,a2n﹣1=a2n﹣3+(2n﹣1)×4,a2n=a2n﹣1+1,∴a2n﹣1=a1+4[3+5+…+(2n﹣1)]=4n2﹣1,a2n=a2n﹣1+1=4n2,∴b2n﹣1=a2n﹣1﹣2(2n﹣1)=4n2﹣4n+1,b2n=a2n+2×2n=4n2+4n,c2n﹣1=b2n﹣1+(2n﹣1)=4n2﹣2n,c2n=a2n+2n=4n2+2n=(2n)2+2n,∴c n=n2+n,∴粒子到达(16,44)所需时间是到达点c44时所用的时间,再加上44﹣16=28(s),所以t=442+447+28=2008(s)53.解:(1)∵直线MN∥y轴,∴2a﹣5=1,解得a=3,∴a﹣1=3﹣1=2,∴点M的坐标为(1,2);(2)∵横坐标和纵坐标互为相反数,∴2a﹣5+a﹣1=0,解得a=2,∴2a﹣5=2×2﹣5=﹣1,a﹣1=2﹣1=1,∴点M的坐标为(﹣1,1)54.解:由题意得,a+b=m﹣i+n﹣j=10,m+n=10+(i+j),∵m、n、i、j表示行数与列式,∴当i=j=1时,m+n取最小值,此时,n=12﹣m,m•n=m(12﹣m)=﹣(m﹣6)2+36,∴当m=6时,m•n有最大值3655.解:(1)粒子所在位置与运动的时间的情况如下:位置:(1,1)运动了2=1×2分钟,方向向左,位置:(2,2)运动了6=2×3分钟,方向向下,位置:(3,3)运动了12=3×4分钟,方向向左,位置:(4,4)运动了20=4×5分钟,方向向下;(2)到(44,44)处,粒子运动了44×45=1980分钟,方向向下,故到2004分钟,须由(44,44)再向下运动2004﹣1980=24分钟,到达(44,20)56.解:设P点坐标为(a,0),a<0,如图,作AC⊥x轴于C,BD⊥x轴于D,∵S△APC+S梯形ACDB=S△PAB+S△PBD,∴(1﹣a)×2+×(1+2)×2=3+(3﹣a)×1,解得a=﹣1,∴P点坐标为(﹣1,0)57.解:当点P在x轴上时,设P(x,0),∵S△PAO=4,A(1,4)∴|x|×4=4,解得x=±2,∴P(﹣2,0)或(2,0);当点P在y轴上时,设P(0,y),∵S△PAO=4,A(1,4)∴|y|×1=4,解得x=±8,∴P(﹣8,0)或(8,0).综上所述,P点坐标为(﹣2,0)或(2,0)或(﹣8,0)或(8,0)58.解:建立平面直角坐标系如图所示,A(1,1),D(﹣1,1),E(0,2);F(2,2),G(3,1);P(0,﹣2),H(2,﹣2);正方形ABDF的面积=×2×2=2,正方形ACGF的面积=×2×2=2,正方形BPHC的面积=2×2=459.解:由图可知,前6排共有:1+2+3+4+5+6=21个,∵(7,2)表示第7排从左到右第2个数,∴(7,2)表示表示23.故答案为:2360.解:∵第四次走后的坐标为(﹣2,﹣2),第八次走的坐标为(﹣4,﹣4),2008÷4=502,∴第2008次走后的坐标为((﹣2×502,﹣2×502),∴第2009次走后的坐标为(﹣2×502+2009,﹣2×502),即(1005,﹣1004)。
坐标变化练习题
坐标变化练习题今天我们来进行一些关于坐标变化的练习题。
通过这些题目,我们可以巩固和拓展我们对坐标变化的理解,提高解决问题的能力。
让我们开始吧!1. 坐标平移题在笛卡尔坐标系中,平移是指将图形沿着x轴或y轴的方向移动一定的距离。
请你计算以下图形在平移后的新坐标:a) 苹果坐标:(3, 5);平移向量:(2, -3)b) 椅子坐标:(-2, 4);平移向量:(-1, 2)2. 坐标旋转题旋转是指将图形按照某个中心点旋转一定的角度。
请你计算以下图形在旋转后的新坐标:a) 家的坐标:(1, 2),旋转角度:90°b) 车的坐标:(-3, 4),旋转角度:180°3. 坐标缩放题缩放是指将图形按照一定的比例进行放大或缩小。
请你计算以下图形在缩放后的新坐标:a) 钢琴的坐标:(4, 3),缩放比例:2b) 小狗的坐标:(-2, 1),缩放比例:0.54. 坐标反射题反射是指将图形按照某个直线进行镜像翻转。
请你计算以下图形在反射后的新坐标:a) 鸟的坐标:(1, 2),关于y轴反射b) 汽车的坐标:(-3, 4),关于x轴反射5. 坐标变换题结合平移、旋转、缩放和反射,通过一系列坐标变换,请你计算以下图形在变换后的新坐标:a) 星星的坐标:(2, 3),平移向量:(1, -2),旋转角度:60°,缩放比例:0.5,关于x轴反射b) 人的坐标:(-4, 5),平移向量:(-2, 3),旋转角度:120°,缩放比例:2,关于y轴反射通过以上练习题,我们加深了对坐标变化的理解,并提高了解决问题的能力。
坐标变化是数学中的重要内容,在几何学、物理学、计算机图形学等领域都有广泛的应用。
通过不断的练习和实践,我们能够更加熟练地处理各种坐标变化问题,为日后的学习和工作打下坚实的基础。
本文仅为坐标变化练习题的示例,提供了一种格式来呈现题目和解答。
在实际写作时,可以根据需要调整和适应不同的题目和内容,以求更好地表达和传达信息。
中考数学《二次函数图像与坐标轴的交点问题》专项练习题及答案
中考数学《二次函数图像与坐标轴的交点问题》专项练习题及答案一、单选题1.如图,将二次函数y=31x2-999x+892的图形画在坐标平面上,判断方程31x2-999x+892=0的两根,下列叙述何者正确()A.两根相异,且均为正根B.两根相异,且只有一个正根C.两根相同,且为正根D.两根相同,且为负根2.已知抛物线y=ax2+bx+c(a<0)过A(-3,0)、O(1,0)、B(-5,y1)、C(5,y2)四点,则y1与y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能确定3.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论正确的是()A.c<0B.a+b+c<0C.2a﹣b=0D.b2﹣4ac=04.已知函数y=(k-1)x2-4x+4的图象与x轴只有一个交点,则k的取值范围是() A.k≤2且k≠1B.k<2且k≠1C.k=2D.k=2或15.函数y=ax+1与抛物线y=ax2+bx+1(b≠0)的图象可能是().A.B.C.D.6.若关于x的一元二次方程(x-2)(x-3)=m有实数根x1、x2,且x1≠x2,有下列结论:①x1=2,x2=3;②m>;③二次函数y=(x-x1)(x-x2)+m的图象与x轴交点的坐标为(2,0)和(3,0).其中,正确结论的个数是()A.0B.1C.2D.37.对于每个非零自然数n,抛物线y=x2-2n+1n(n+1)x+1n(n+1)与x轴交于A n,B n两点,以A n B n表示这两点间的距离,则A1B1+A2B2+…+A2009B2009()A.20092008B.20082009C.20102009D.200920108.二次函数y=kx2-6x+3的图象与x轴有交点,则k的取值范围是()A.k<3B.k<3,且k≠0C.k≤3D.k≤3,且k≠010.如图,抛物线y=ax2+bx+c与x轴交于点(-1,0),对称轴为x=1,则下列结论中正确的是()A.a>0B.当x>1时,y随x的增大而增大C.c<0D.x=3是一元二次方程ax2+bx+c=0的一个根11.已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c+2=0无实数根;③a﹣b+c≥0;3.④a+b+cb−a的最小值为其中,正确结论的个数为()A.1个B.2个C.3个D.4个12.已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②4a+b+c=0;③a﹣b+c<0;④抛物线的顶点坐标为(2,b);⑤当x<2时,y随x增大而增大.其中结论正确的是()A.①②③B.③④⑤C.①②④D.①④⑤二、填空题13.已知函数y=ax2−2x+1的图象与x轴只有一个公共点,则a的值是.14.经过A(4,0),B(﹣2,0),C(0,3)三点的抛物线解析式是.15.如图,P是抛物线y=2(x﹣2)2对称轴上的一个动点,直线x=t平行y轴,分别与y=x、抛物线交于点A、B.若△ABP是以点A或点B为直角顶点的等腰直角三角形,求满足条件的t的值,则t=.16.抛物线y=x2﹣4x+c与x轴交于A、B两点,已知点A的坐标为(1,0),则线段AB的长度为.17.抛物线y= 49(x-3)2与x轴的交点为A,与y轴的交点为B,则△AOB的面积为18.已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+m=0的解为.三、综合题19.如图,二次函数y=- 12x2+bx+c的图象经过A(2,0)、B(0,-4)两点(1)求二次函数的解析式;(2)设该二次函数的对称轴与x轴交于点C,连接BA、BC,求△ABC的面积.20.已知二次函数y=ax2+bx+8,经过点(1,9)和(6,−16).(1)求此二次函数解析式;(2)若此二次函数与x轴的交点为点A、点B,与y轴的交点为点C,求△ABC的面积. 21.在平面直角坐标系xOy中,抛物线y=﹣x2+mx+n与x轴交于点A,B(A在B的左侧).(1)若抛物线的对称轴为直线x=﹣3,AB=4.求抛物线的表达式;(2)平移(1)中的抛物线,使平移后的抛物线经过点O,且与x正半轴交于点C,记平移后的抛物线顶点为P,若△OCP是等腰直角三角形,求点P的坐标;22.已知二次函数y=(x-1)(x-m).(1)若二次函数的对称轴是直线x=3,求m的值.(2)当m>2,0≤x≤3时,二次函数的最大值是7,求函数表达式.23.已知抛物线y=ax2-2ax-3+2a2 (a<0).(1)求这条抛物线的对称轴;(2)若该抛物线的顶点在x轴上,求抛物线的函数解析式;24.已知抛物线顶点坐标为(1,3),且过点A(2,1).(1)求抛物线解析式;(2)若抛物线与x轴两交点分别为点B、C,求线段BC的长度.参考答案1.【答案】A2.【答案】A3.【答案】C4.【答案】D5.【答案】C6.【答案】C7.【答案】D8.【答案】D9.【答案】C10.【答案】D11.【答案】D12.【答案】C13.【答案】0或114.【答案】y=﹣38x2+ 34x+315.【答案】5±√52或1或316.【答案】217.【答案】618.【答案】x1=4,x2=﹣219.【答案】(1)解:分别把点A(2,0)、B(0,-4)代入y=−12x2+bx+c得{−12×22+2x+c=0c=−4解得:{b=3c=−4∴这个二次函数的解析式为:y=−12x2+3x−4(2)解:由(1)中抛物线对称轴为直线∴点C的坐标为:(3,0)∴AC=3−2=1∴△ABC的面积为:12⋅OB⋅AC=12×4×1=220.【答案】(1)解:把点(1,9)和(6,−16)代入函数解析式得{9=a+b+8−16=36a+6b+8解得a=-1, b=2. 所以二次函数的解析式为y=−x2+2x+8(2)解: 令y=0,得-x 2+2x+8=0, 解得x=-4或x=2 得A 、B 的坐标为(-4,0),(2,0) 则AB=6令x=0, 得y=8 ∴C 点坐标为(0,8),则OC=8 ∴S △ABC =12AB ×OC =12×6×8=24 .21.【答案】(1)解:∵抛物线的对称轴为直线x =﹣3,AB =4∴A 、B 两点到对称轴的距离相等,且为2 ∴A 点坐标为(-5,0),B 点坐标为(-1,0)把A 、B 两点的坐标分别代入函数解析式中,得: {−25−5m +n =0−1−m +n =0解得: {m =−6n =−5∴y =−x 2−6x −5(2)解:∵y =−x 2−6x −5 平移后过原点∴设平移后过原点的抛物线为 y =−x 2+bx 令 y =−x 2+bx =0 ,解得:x=0 ∴C (b ,0)且b>0∵y =−x 2+bx =−(x −b 2)2+b 24∴顶点P 的坐标为 (b 2,b 24) ∵△OCP 是等腰直角三角形 ∴b 2=b 24解得:b=2∴顶点P 的坐标为 (1,1)22.【答案】(1)解: 令y =0,即0=(x −1)(x −m) ,得x 1=1,x 2=m也即抛物线与x轴的交点坐标为(1,0),(m,0)∵(1,0),(m,0)关于抛物线对称轴对称,且对称轴是直线x=3∴1+m2=3,解得m=5(2)解:由(1)可知,抛物线的对称轴为直线x=1+m 2∵m>2,∴x=1+m 2>32∵a=1>0,且0≤x≤3时,二次函数的最大值是7∴当x=0时y max=7∴把(0,7)带入抛物线表达式得7=(0−1)(0−m)∴m=723.【答案】(1)解:∵抛物线y=ax2−2ax−3+2a2=a(x−1)2+2a2−a−3∴抛物线的对称轴为直线x=1;(2)解:由(1)可得y=a(x−1)2+2a2−a−3∵抛物线的顶点在x轴上∴2a2−a−3=0解得a1=32,a2=-1∵a<0∴a=-1∴抛物线的解析式为y=−x2+2x−1.24.【答案】(1)解:设抛物线解析式为y=a(x﹣1)2+3把A(2,1)代入得a•(2﹣1)2+3=1,解得a=﹣2所以抛物线解析式为y=﹣2(x﹣1)2+3(2)解:y=0时,﹣2(x﹣1)2+3=0解得x1=1+ √62,x2=1﹣√62所以BC=1+ √62﹣(1﹣√62)= √6。
位置与坐标经典题目及练习
位置与坐标经典题目及练习例1:已知点M(m24m11,n5),则点M在平面直角坐标系中的什么位置例2:已知:A(4,3),B(1,1),C(3,),求三角形ABC的面积.例3:已知:A(12a,4a5),且点A到两坐标轴的距离相等,求A点坐标.例4:已知:A(4,3),B(1,1),C(3,),求三角形ABC的面积.例5:如图,在平面直角坐标系xOy中,多边形OABCDE的顶点坐标分别是O(,),A(。
6),B(4,6),C(4,4),D(6,4),E (6,).若直线l经过点M(2,3),且将多边形OABCDE分割成面积相等的两部分,则直线l的函数表达式是________例6:点A(-1,2)关于y轴的对称点坐标是;点A关于原点的对称点的坐标是。
点A关于x轴对称的点的坐标为例7:在平面直角坐标系中,已知:A(1,2),使得AC BCB(4,4),在x轴上确定点C。
最小.例8:点A(m5,1),点B(4,m1),且直线AB//y轴,则m的值为几何例9:在平面直角坐标系中,点P(x,y)横、纵坐标相称,在平面直角坐标系中透露表现出点P的位置.例10:在平面直角坐标系中,点P(x,y)横、纵坐标互为相反数,在平面直角坐标系中表示出点P的位置.例11:在平面直角坐标系中,点P(x,y)横、纵坐标满意y|x1|,在平面直角坐标系中透露表现出点P的位置.例题12:将点P(-3,2)向下平移3个单位,向左平移2个单位后得到点Q(x,y),则xy=___________典型练题目一.认真选一选:1.下列各点中,在第二象限的点是()A.(2,3)B.(2,-3)C.(-2,-3)D.(-2,3)2.将点A (-4,2)向上平移3个单元长度获得的点B的坐标是()A.(-1,2)B.(-1,5)C.(-4,-1)D.(-4,5)3.假如点M (a-1,a+1)在x轴上,则a的值为()A。
a=1.B。
a=-1.C。
a>0.D。
图形坐标练习题
图形坐标练习题在平面直角坐标系中,图形的位置常常由坐标表示。
通过练习图形坐标可以加深我们对坐标系的理解,并提升解决几何问题的能力。
下面是一些图形坐标的练习题。
题目一:点的坐标在一个平面直角坐标系中,点A的坐标为(2, 3),点B的坐标为(-4, 5)。
求点C坐标,使得△ABC是一个等腰三角形。
解析:由等腰三角形的性质可知,AB与BC的长度相等。
设点C的坐标为(x, y),根据点的坐标与距离的关系,可以列出以下方程:AB的长度 = BC的长度√[(x-2)²+(y-3)²] = √[(x+4)²+(y-5)²]通过求解方程,可以得到点C的坐标。
题目二:矩形的坐标在一个平面直角坐标系中,矩形ABCD的顶点坐标分别为A(2, 4),B(7, 4),C(7, -2)和D(2, -2)。
求矩形的面积。
解析:矩形的面积可以通过计算矩形两条边的长度来求解。
设矩形的边长为a和b,则矩形的面积为:面积 = a * b。
根据坐标的差值可以计算出矩形的边长,进而求得面积。
题目三:圆的坐标在一个平面直角坐标系中,圆心坐标为(3, -1),半径为5。
求圆上一点的坐标,使得该点与圆心之间的距离等于3。
解析:圆上的点满足圆心到该点的距离等于半径。
设该点的坐标为(x, y),根据点的坐标与距离的关系,可以列出以下方程:√[(x-3)²+(y+1)²] = 3通过求解方程,可以得到圆上一点的坐标。
题目四:直线的坐标在一个平面直角坐标系中,直线L过点A(1, 5)且与x轴的夹角为30°,求直线L的方程。
解析:直线的方程可以通过点斜式、截距式等形式表示。
在该题中,直线L通过点A(1, 5)且与x轴的夹角为30°。
根据直角三角形的关系,可以求得直线的斜率。
根据斜率和直线经过的点,可以得到直线的方程。
通过以上练习题,我们可以巩固对坐标系中图形位置的理解。
不仅提升了解决几何问题的能力,还可以为日后的数学学习打下坚实的基础。
2021年八上数学同步练习-函数_平面直角坐标系_坐标与图形性质-综合题专训及答案
2021年八上数学同步练习-函数_平面直角坐标系_坐标与图形性质-综合题专训及答案2021八上数学同步练习-函数_平面直角坐标系_坐标与图形性质-综合题-专训1、(2020苍南.八上期末) 如图,直角坐标系中,点C 是直线y= x 上第一象限内的点点A(1,0),以AC 为边作等腰Rt△AC B ,AC=BC 点B 在x 轴上,且位于点A 的右边,直线BC 交y 轴于点D 。
(1) 求点B ,C 的坐标;(2) 点A 向上平移m 个单位落在△OCD 的内部(不包括边界),求m 的取值范围。
2、(2019嘉荫.八上期末) 如图,在平面直角坐标系中,四边形ABCD 是边长为5的正方形,顶点A 在y 轴正半轴上,顶点B 在x 轴正半轴上,OA , OB 的长满足|OA ﹣4|+(OB ﹣3)=0.(1) 求OA ,OB 的长;(2) 求点D 的坐标;(3) 在y 轴上是否存在点P ,使△PAB 是以AB为腰的等腰三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.3、(2019道里.八上期末) 如图,在平面直角坐标系中,O 是坐标原点,点分别在轴的正半轴和x 轴的正半轴上,的面积为,过点 作直线轴.(1) 求点的坐标;(2) 点是第一象限直线上一动点,连接 .过点 作,交轴于点D ,设点 的纵坐标为,点 的横坐标为,求与 的关系式;(3)在(2)的条件下,过点 作直线,交轴于点,交直线 于点 ,当时,求点 的坐标.4、(2019昆山.八上期末) 已知:如图,一次函数y= x+3的图象分别与x 轴、y 轴相交于点A 、B ,且与经过点C(2,0)的一次函数y=kx+b 的图象相交于点D ,点D 的横坐标为4,直线CD 与y 轴相交于点E.2(1) 直线CD 的函数表达式为;(直接写出结果)(2) 在x 轴上求一点P 使△PAD 为等腰三角形,直接写出所有满足条件的点P 的坐标.(3) 若点Q 为线段DE 上的一个动点,连接BQ.点Q 是否存在某个位置,将△BQD 沿着直线BQ 翻折,使得点D 恰好落在直线AB 下方的y 轴上?若存在,求点Q 的坐标;若不存在,请说明理由.5、(2017东台.八上期末) 如图,在平面直角坐标系xOy 中,已知点A (﹣1,0),点B (0,2),点C (3,0),直线a 为过点D (0,﹣1)且平行于x 轴的直线.(1) 直接写出点B 关于直线a 对称的点E 的坐标;(2) 若P 为直线a 上一动点,请求出△PBA 周长的最小值和此时P 点坐标;(3) 若M 为直线a 上一动点,且S =S ,请求出M 点坐标.6、(2017萍乡.八上期末) 如图1,在平面直角坐标系中,A (0,1),B (4,1),C 为x 轴正半轴上一点,且AC 平分∠OA B .(1) 求证:∠OAC=∠OCA ;(2) 如图2,若分别作∠AOC 的三等分线及∠OCA 的外角的三等分线交于点P,即满足∠POC= ∠AOC ,∠PCE= ∠ACE ,求∠P 的大小;(3) 如图3,在(2)中,若射线OP 、OC 满足∠POC= ∠AOC ,∠PCE= ∠ACE ,猜想∠OPC 的大小,并证明你的结论(用含n 的式子表示)7、(2019深圳.八上期中) 如图,在平面直角坐标系中,已知A (0,a ),B (b ,0),其中a ,b 满足|a ﹣2|+(b ﹣3)=0.(1) a=,b=;(2) 如果在第二象限内有一点M (m ,1),请用含m 的式子表示四边形ABOM 的面积;△A BC △M A B 2(3)在(2)条件下,当m=﹣时,在坐标轴的负半轴上求点N(的坐标),使得△ABN的面积与四边形ABOM的面积相等.(直接写出答案)8、(2019下陆.八上期末) 在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)在如图所示的网格平面内作出平面直角坐标系;(2)作出△ABC关于y轴对称的△A′B′C′,并写出点B′的坐标;(3) P是x轴上的动点,在图中找出使△A′BP周长最短时的点P,直接写出点P的坐标.9、(2019福田.八上期末) 如图1,在平面直角坐标系中将向下平移3个单位长度得到直线,直线与x轴交于点C;直线:与x轴、y轴交于A、B两点,且与直线交于点D.(1)填空:点A的坐标为,点B的坐标为;(2)直线的表达式为;(3)在直线上是否存在点E,使?若存在,则求出点E的坐标;若不存在,请说明理由.(4)如图2,点P为线段AD上一点不含端点,连接CP,一动点H从C出发,沿线段CP以每秒1个单位的速度运动到点P,再沿线段PD以每秒个单位的速度运动到点D后停止,求点H在整个运动过程中所用时间最少时点P的坐标.10、(2019兰州.八上期末) 如图,,,点在轴上,且 .(1)求点的坐标,并画出 ;(2)求的面积;(3)在轴上是否存在点,使以三点为顶点的三角形的面积为10?若存在,请直接写出点的坐标;若不存在,请说明理由.11、(2019江岸.八上期中) 在平面直角坐标系中,,点在第二象限的角平分线上,、的垂直平分线交于点.(1)求证:;(2)设交轴于点,若,求点的坐标;(3)作交轴于点,若,求点的坐标.12、(2019滨海.八上期末) 如图,在平面直角坐标系中,直线:与直线:交于点,与y轴交于点,与x轴交于点C.(1)求直线的函数表达式;(2)求的面积;(3)在平面直角坐标系中有一点,使得,请求出点P的坐标;(4)点M为直线上的动点,过点M作y轴的平行线,交于点N,点Q为y轴上一动点,且为等腰直角三角形,请直接写出满足条件的点M的坐标.13、(2019句容.八上期末) 如图(1)【模型建立】如图1,等腰直角三角形中,,,直线经过点,过作于点,过作于点 .求证:;(2)【模型应用】已知直线:与坐标轴交于点、,将直线绕点逆时针旋转至直线,如图2,求直线的函数表达式;(3)如图3,长方形,为坐标原点,点的坐标为,点、分别在坐标轴上,点是线段上的动点,点是直线上的动点且在第四象限.若是以点为直角顶点的等腰直角三角形,请直接写出点的坐标.14、(2020徐州.八上期末) 如图,在平面直角坐标系中,已知A(10,0),B(10,6),BC⊥y轴,垂足为C,点D在线段BC上,且AD=AO.(1)试说明:DO平分∠CDA;(2)求点D的坐标.15、(2020岑溪.八上期末) 如图,一次函数图象经过点,与轴交于点,且与正比例函数的图象交于点,点的横坐标是 .(1)请直接写出点的坐标(,);(2)求该一次函数的解析式;(3)求的面积.2021八上数学同步练习-函数_平面直角坐标系_坐标与图形性质-综合题-答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:。
八年级数学上第四章《图形与坐标》
第 12 讲 《图形与坐标》(叶胤均)一、知识要点: 1.平面内表示点的位置有两种方法:一是有序实数对,二是距离加方向,这两种方法都需要两个量. 2.平面直角坐标系由两条有公共原点、且互相垂直的数轴构成.点的坐标表示为(x,y) 3.各个象限的符号:(+,+);(-,+);(-,-);(+,-).坐标轴上的点不在象限内. 4.点(x,y)到 x 轴的距离:∣y∣,到 y 轴的距离:∣x∣点 M(x,y)到原点的距离:OM= x2 y2x 轴上 M(x1,0),N(x2,0)之间的距离:MN=∣x1-x2∣平面内任意两点 A(x1,y1)、B(x2,y2)之间的距离:AB= x1 x2 2 y1 y2 25.如果 M(x1,a),N(x2,a),则 MN∥x 轴;反之成立.6.点 M(x,y)①关于 x 轴的对称点的坐标为(x,-y);②关于 y 轴的对称点的坐标为(-x,y);③关于原点的对称点的坐标为(-x,-y);7、①一、三象限的角平分线上的点的坐标为(a,a);②二、四象限的角平分线上的点的坐标为(a,-a)8、坐标平面内点的平移:方向加距离.9、坐标平面内的点与有序实数对一一对应.10、关于一、三象限的角平分线,二、四象限的角平分线对称的点的坐标.二、例题精选:例 1、在如图所示的正方形网格(小正方形的边长为 1) A 中,△ABC 的顶点 A,C 的坐标分别为(-4,5),(-1,3).(1)画出相应的直角坐标系;C(2)作出△ABC 关于 y 轴对称的△A′B′C′;(3)写出点 B′的坐标. B例 2、根据给出的已知点的坐标求四边形 ABCO 的面积.yA(-2,8) B(-11,6)1/7C(-14,0) 例 2Ox例 3、平面直角坐标系中有两点 M(a,b),N(c,d),规定(a,b)⊕(c,d)=(a+c,b+d), 则称点 Q(a+c,b+d)为 M,N 的“和点”,若以坐标原点 O 与任意两点及它们的和点为顶点能组 成四边形,则称这个四边形为和点四边形.现在点 A(2,5),B(-1,3),若以 O,A,B,C 四点为 顶点的四边形是“和点四边形”,求点 C 的坐标.例 4.(1)已知 A(2,4),B(-3,-8),求 A,B 两点间的距离. (2)已知△ABC 各顶点坐标为 A(0,6),B(-3,2),C(3,2),你能判定此三角形的形状吗? 说明理由.例 5、平面直角坐标系中,点 A 的坐标是(3a-5,a+1) (1)若点 A 在 y 轴上,求点 A 的坐标; (2)若点 A 到 x 轴的距离与到 y 轴的距离相等,求点 A 的坐标.例 6、平面直角坐标系中,等腰△ABC 的两个顶点的坐标 分别为 A(1,0),B(4,4),如果第三个顶点在坐标轴 上,那么点 C 可能的不同位置有多少个(画图说明)?2/7例 7、已知点 A(2a-b,5+a),B(2b-1,-a+b). (1)若点 A,B 关于 x 轴对称,求 a,b 的值; (2)若点 A,B 关于 y 轴对称,求(4a+b)2017 的值例 8、如图,平面直角坐标系中,一颗棋子从点 P 处开始 依次关于点 A,B,C 作循环对称跳动,即第一次跳到点 P 关于点 A 的对称点 M 处,接着跳到点 M 关于点 B 的对 称点 N 处,第三次再跳到点 N 关于点 C 的对称点处...... 如此下去. (1)在图中画出点 M,N,并写出点 M,N 的坐标; (2)求经过第 2017 次跳动后,棋子的落点与点 P 的距离.yB• C•OxA••P例 9.平面直角坐标系中,点 M 的坐标是(a,-2a).将点 M 向左平移 2 个单位,再向上平移 1 个 单位后得到点 N.若点 N 在第三象限,求 a 的取值范围.例 10、如图①,将射线 Ox 按逆时针方向旋转β,得到射线 Oy,如果 P为射线 Oy 上一点,且 OP=a,那么我们规定用(a,β)表示点 P 在平面内的位置,并记为(a,β).例如,图②中,如果 OM=8,∠xOM=110°,那么点 M 在平面内的位置记为 M(8,110°),根据图形,解答下列问题:(1)如图,如果点 N 在平面内的位置记为(6,30°),那么 ON=,∠xON=.(2)如果点 A,B 在平面内的位置分别记为 A(5,30°),B(12,120°),求 A,B 两点之间的距离.yaPβ O 图① xM(8,110°) •110° O 图② xN(6•,30°)3/7O 图③x三、学生练习:(一)选择题(每小题 3 分,共 30 分)1. 若点 P(a,-b)在第三象限,则 M(ab,-a)应在( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. 在 x 轴上到点 A(3,0)的距离为 4 的点是( ).A. (7,0) B. (-1,0) C. (7,0)或(-1,0) D. 以上都不对3. 点 M 到 x 轴的距离为 3,到 y 的距离为 4,则点 A 的坐标为( ).A. (3,4)B. (4,3)C. (4,3),(-4,3)D. (4,3),(-4,3)(-4,-3),(4,-3)4. 如果点 P(m+3,2m+4)在 y 轴上,那么点 P 的坐标为( ).A. (-2,0) B. (0,-2) C. (1,0)D. (0,1)5. 点 M 在 x 轴的上方,距离 x 轴 5 个单位长度,距离 y 轴 3 个单位长度,则 M 点的坐标为( ).A. (5,3) B. (-5,3)或(5,3) C. (3,5) D. (-3,5)或(3,5)6. 平面直角坐标系中,一个四边形各顶点坐标分别为 A(1, 2) ,B((4, 2) ,C(4,3) ,D((1,3) ,则四边形 ABCD 的形状是( ).A. 梯形B. 平行四边形C. 正方形D. 无法确定7. 设点 A(m,n)在 x 轴上,位于原点的左侧,则下列结论正确的是( ).A. m=0,n 为一切数B. m=O,n<0C. m 为一切数,n=0D. m<0,n=08. 在坐标轴上与点 M(3,-4)距离等于 5 的点共有( ).A. 4 个B. 3 个C. 2 个D. 1 个9. 直角坐标系中,一个图案上各个点的横坐标和纵坐标分别乘以正数 a(a>1),那么所得的图案与原来图案相比( ).A. 形状不变,大小扩大到原来的 a2 倍B. 图案向右平移了 a 个单位C. 图案向上平移了 a 个单位D. 图案沿纵向拉长为 a 倍10. 若 y 0 ,则点 P(x,y)的位置是( ). xA. 在横轴上B. 在去掉原点的横轴上C. 在纵轴上D. 在去掉原点的纵轴上(二)填空题(每小题 3 分,共 30 分)11. 如果将电影票上“6 排 3 号”简记为(6,3),(7,1)表示的含义是.12. 点(-4,0)在轴上,距坐标原点个单位长度.13. 点 P 在 y 轴上且距原点 1 个单位长度,则点 P 的坐标是.14. 已知点 M(a,3-a)是第二象限的点,则 a 的取值范围是.15. 点 A、点 B 同在平行于 x 轴的一条直线上,则点 A 与点 B 的坐标相等.16. 点 M(-3,4)与点 N(-3,-4)关于对称.17. 点 A(3,b)与点 B(a,-2)关于原点对称则 a=,b=.18. 若点 P(x,y)在第二象限角平分线上,则 x 与 y 的关系是.4/719. 已知点 P(-3,2),则点 P 到 x 轴的距离为,到 y 轴的距离为20. 已知点 A(x,4)到原点的距离为 5,则点 A 的坐标为.(三)解答题(计 60 分)21.等腰梯形 ABCD 的上底 AD=2,下底 BC=4,底角 B=45°,A建立适当的直角坐标系,求各顶点的坐标.B.D C22.正方形的边长为 2,建立适当的直角坐标系,使它的一个顶点的坐标为( 2 ,0),并写出另外三个顶点的坐标.23. 四边形 ABCD 在直角坐标中的位置如图 1 所示,按下列步骤操作并画出变化后的图形:(1)将四边形 ABCD 各点的横纵坐标都乘以12 ,把得到的四边形 A1B1C1D1 画在图 2 的坐标系中; (2)将四边形 A1B1C1D1 各点的横坐标都乘以-1,纵坐标都乘以-1 后再加上 1,把得到的四边形 A2B2C2D2 画在图 3 的坐标系中.(图中每个方格的边长均为 1)yADyyoxoBCxox(图 1)(图 2)24.如图所示,OA=8,OB=6,∠XOA=45°,∠XOB=120°, 求 A、B 的坐标.(图 3)5/725. 根据指令[S,A](S≥0,0°<A<180°,机器人在平面上能完成下列动作:先原地逆时针旋转角度 A,再朝其面对的方向沿直线行走距离 S,现机器人在直角坐标系坐标原点,且面对 x 轴正方向.(1)若给机器人下了一个指令[4,60],则机器人应移动到点;(2)请你给机器人下一个指令,使其移到点(-5,5).26. 观察图形由(1)→(2)→(3)→(4)的变化过程,写出每一步图形是如何变化的,图形中各顶点的坐标是如何变化的.y A(1,2)y A(2,2)yOxO B(2,0) OB(4,0)x(1)(2)B(4,0) xA(2,- 2) (3)yO (0,-1)x B(4,-1)(4) A(2,-5)4)27、如图,在平面直角坐标系中,长方形 OABC 的顶点 A, C 的坐标分别为(10,0),(0,4),D 为 OA 的中点,P 为 BC 边上一点.若△POD 为等腰三角形,求所有满足条件的 点 P 的坐标.yC •P•ODB Ax6/7八年级上四章《图形与坐标》第 12 讲答案例 1、(1)(2)略;(3)坐标是(2,1)例 2、作 BD⊥x 轴,AE⊥x 轴,面积为 80例 3、(1,8)或(-3,-2)或(3,2)例 4、(1)AB=13;(2)AB=AC=5,BC=6 等腰三角形例 5、(1)(0, 8 );(2)a=3,(4,4)或 a=1,(-2,2) 3例 6、如图,9 个点 例 7、(1)a=-8,b=-5;(2)-1•• • • C1 • OAB C•2 C• 5 C7例 8、(1)M(-2,0),N(4,4) (2)PM=2 2例 9、 1 a 2 2例 10.(2)画出图形,得∠AOB=90°,∴AB=13 学生练习:•例6BCDB DCDB AB 11、7 排 1 号; 12、x 的负半轴, 4; 13、(0,1),(0,-1); 14、a<0; 15 纵; 16、y 轴; 17、a=-3,b=2; 18、x+y=0; 19、2,3; 20、(3,4)或(-3,4)21、略; 22、(0, 2 ),(- 2 ,0),(0,- 2 );23、(1,2),(1,0),(2,0),(3,2)(2)(-2,-4),(-2,0),(-4,0),(-6,-4)24、A(4 2 ,4 2 ),B(-3,3 3 ); 25、(1)(2,2 3 );(2)[5 2 ,135]横×2纵×(-1)纵-126、(1)(2)(3)(4)27(1)当 PO=PD 时,P(2.5,4); y (2)当 OP=OD=5 时,P(3,4); C(3)当 DP=OD=5 时,分两种情况:如图 P(2,4)或 P(8,4)O•P•D图(1)B AxyC •P•OD图(2)B AxyC •P45•OD图(3)①B AxyCP• B54•ODAx图(3)②7/7。
平面直角坐标系中的面积问题-专题练习
y
4 3
B2 (0,2) 2
1
A(2,1)
1 2 图(4) 3 4
O
x
SOAB2 2 2 2
1 2
Y
4 3 2 1
B3 (2,3)
A(2,1)
1 2 3 4
O
X
图(5)
SOAB3 2 2 2
1 2
y
4
B4 (4,4)
3
2 1
A(2,1)
1 2 3 图(6) 4
1 1 1 1 1 3 2 2 2
y
4 3 2 1
B4 (4,4)
方 法 3
E(4,1)
A(2,1)
F(4,0) 1 2 3 图(9) 4
O
x
SOAB4 SOFB4 S梯形AEOF SAEB4
1 1 1 4 4 ( 2 4) 1 2 3 2 2 2 2
y
4 G(0,4) 3 2 1
B4 (4,4)
方 法 4
E(4,1)
A(2,1)
F(4,0) 1 2 3 图(10) 4
x
O
SOAB4 S正方形OFB4G SOB4G S四边形OFB4 A
1 4 4 4 4 6 2 2
y
4 3 2 1
B4 (4,4)
方 法 5
例5
在图(3)中,以OA为边的△OAB的面积为2,试找 出符合条件的且顶点是格点的点C,你能找到几 个这样的点?(在图中现有的网格中找)
y
4 3 2 1
A(2,1)
1 2 图(3) 3 4
O
x
y
4
3 2 1
第3章图形与坐标+专题练习:点的坐标变化规律探究习题课件+2023-2024学年湘教版数学八年级下册
返回
13.[中考·潍坊]在平面直角坐标系中,点A1从原点出发, 沿如图所示的方向运动,到达位置的坐标依次为A2(1, 0),A3(1,1),A4(-1,1),A5(-1,-1),A6(2,-1), A7(2,2),…,若到达终点An(506,-505),则n的值为 ___2_0_2_2__.
返回
5.在平面直角坐标系xOy中,对于点P(x,y),我们把点
P(-y+1,x+1)叫作点P的伴随点.已知点A1的伴随 点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…, 这样依次得到点A2,A3,…,An.例如:点A1的坐标为 (3,1),则点A2的坐标为(0,4),….若点A1的坐标为(a, b),则点A2 023的坐标为( B ) A.(-b+1,a+1) B.(-a,-b+2)
返回
8.如图,在平面直角坐标系内,点A,B,C的坐标分别为(1,0),(0,
1),(-1,0).电动跳蚤从坐标原点O出发,第一次跳跃到点P1, 使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点 P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点 P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于 点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成 中心对称;…依次重复,则点P2 023的坐标为( C ) A.(2,0) B.(-2,2)
第三章 图形与坐标 专题练习:点的坐标变化规律探究
习题课件
1.已知点 A1(0,0),A2(1,1),A3(2, 2),A4(3, 3),A5(4, 2),A6(5, 5),…,这些点的坐标具有一定的规律,按照 它们的规律,写出 A2 023 的坐标为( A ) A.(2 022, 2 022) B.(2 023, 2 023) C.(2 024,2 506) D.(2 025,45)
辽宁省雅礼学校二O二0年〖湘教版〗八年级数学下册期末复习试卷3.2简单图形的坐标表示练习
辽宁省雅礼学校二O二0年【湘教版】八年级数学下册期末试卷复习3.2简单图形的坐标表示练习一、选择题型(本大题共7小题)1. 等腰三角形ABC在直角坐标系中,底边的两端点坐标是(-2,0),(6,0),则其顶点的坐标,能确定的是( )A.横坐标B.纵坐标C.横坐标及纵坐标D.横坐标或纵坐标2. 如图,AB∥CD,AD∥BC∥x轴,下列说法正确的是( )A.A与D的横坐标相同B.A与B的横坐标相同C.B与C的纵坐标相同D.C与D的纵坐标相同3.如图,在平面直角坐标系中,正方形OACB的顶点O,C的坐标分别是(0,0),(2,0),则顶点B的坐标是( )A.(1,1)B.(-1,-1)C.(1,-1)D.(-1,1)4. 如图是株洲市的行政区域平面地图,下列关于方位的说法明显错误的是()A.炎陵位于株洲市区南偏东约35°的方向上B.醴陵位于攸县的北偏东约16°的方向上C.株洲县位于茶陵的南偏东约40°的方向上D.株洲市区位于攸县的北偏西约21°的方向上5. 如图,将平面直角坐标系中“鱼”的每个“顶点”的纵坐标保持不变,横坐标分别变为原来的,那么点A的对应点A′的坐标是().A. (2,3)B. (-2,3)C. (2,-3)D. (-2,-3)6. 如图,在平面直角坐标系中,四边形ABCD的顶点A,B,C,D的坐标分别是(0,0),(5,0),(7,4),(2,4),则这个四边形的面积是( )A.6B.8C.20D.127. 在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是( ) A.(66,34) B.(67,33) C.(100,33) D.(99,34)二、填空题型(本大题共6小题)8.如果点B与点C的横坐标相同,纵坐标不同,则直线BC与x轴的关系为 .9. 已知点P(x+1,3)在第一、三象限的角平分线上,则x=;若Q(﹣2,1+y)在第二、四象限的角平分线上,则y=.10. 如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A(﹣2,1)和B(﹣2,﹣3),那么第一架轰炸机C的平面坐标是.11. 在平面直角坐标系中,已知线段AB=3,且AB∥x轴,且点A 的坐标是(1,2),则点B的坐标是.12. 等腰梯形ABCD的上底AD=2,下底BC=4,底角B=45°,建立适当的直角坐标系,则各顶点A、B、C、D的坐标分别是、、、.13. 下面四种说法:①如果一个点的横、纵坐标都为零,则这个点是原点;②若一个点在x轴上,那它一定不属于任何象限;③纵轴上的点的横坐标均相等,且都等于零;④纵坐标相同的点,分布在平行于y轴的某条直线上.其中你认为正确的有.(填序号)三、计算题(本大题共4小题)14. 在平面直角坐标系中,点A(﹣2,4),B(3,4),连接AB,若点C为直线AB上的任何一点.(1)点C的纵坐标有什么特点?(2)如果一些点在平行于y轴的直线上,那么这些点的横坐标有什么特点?15. 如图是某市市区几个旅游景点的平面示意图(比例尺为1∶20 000,图中每个小方格的长度为1 cm).(1)选取某一个景点为坐标原点,建立平面直角坐标系;(2)根据所建立的平面直角坐标系,写出其他各景点的坐标.16.先阅读下列一段文字,再回答后面的问题.已知在平面内两点P1(x1,y1),P2(x2,y2),这两点间的距离P1P2=,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知A(2,4),B(﹣3,﹣8),试求A,B两点间的距离;(2)已知A,B在平行于y轴的直线上,点A的纵坐标为5,点B 的纵坐标为﹣1,试求A,B两点间的距离.17. 已知正方形ABCD的边长为4,它在坐标系内的位置如图所示,请分别求出下列情况下四个顶点的坐标.18. 如图,OABC是一张放在平面直角坐标系中的矩形纸片.O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8.在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D,E两点的坐标.19. 如图的直角坐标系中,四边形ABCD各顶点的坐标分别是A(0,0),B(9,0),C(7,5),D(2,7),试确定这个四边形的面积.参考答案:一、选择题型(本大题共7小题)1. A分析:利用等腰三角形的性质解答即可。
五年级上册坐标练习题
五年级上册坐标练习题五年级的同学们,今天我们来进行一些坐标系的练习题,以帮助你们更好地理解坐标系的概念和应用。
以下是一些练习题,希望你们能够认真完成。
1. 坐标点的确定:- 在平面直角坐标系中,点A的坐标是(3,2),点B的坐标是(-2,-1),请找出点C的坐标,使得点A、B、C构成一个直角三角形。
2. 坐标的变换:- 给定点P(2,3),如果将点P向右平移5个单位,再向上平移2个单位,求出平移后的坐标。
3. 坐标与图形:- 在坐标系中,已知一个正方形的四个顶点坐标分别为A(1,1),B(5,1),C(5,5),D(1,5)。
请找出这个正方形的中心点坐标。
4. 坐标的对称性:- 点M(4,-3)关于x轴的对称点是什么?关于y轴的对称点又是什么?5. 坐标的相对位置:- 如果点N的坐标是(-1,4),点O的坐标是(3,-2),请判断点N和点O是在第一象限、第二象限、第三象限还是第四象限。
6. 坐标与距离:- 已知点A(2,5)和点B(-1,3),求这两点之间的距离。
7. 坐标与面积:- 在坐标系中,三角形ABC的顶点坐标分别为A(0,0),B(4,0),C(0,3),请计算这个三角形的面积。
8. 坐标与图形变换:- 给定一个矩形,其顶点坐标为A(0,0),B(0,5),C(3,5),D(3,0)。
如果将这个矩形绕点A顺时针旋转90度,求旋转后各顶点的新坐标。
9. 坐标系中的图形识别:- 根据给定的点集{(1,2), (2,3), (3,2), (2,1)},请判断这些点是否能构成一个平行四边形。
10. 坐标系中的图形平移:- 已知一个三角形的顶点坐标为A(1,1),B(4,1),C(2,4)。
如果将这个三角形向下平移3个单位,求出平移后各顶点的新坐标。
请同学们认真思考并解答上述问题,这将有助于你们加深对坐标系的理解。
如果有任何疑问,可以在课堂上提出,老师会给予解答。
祝你们练习愉快!。
七年级数学下册 坐标及其性质的综合应用专项练习
【人教版七年级下册期末复习】坐标及其性质的综合应用专项练习『经典题例』例1:如图,在平面直角坐标系xOy中,对正方形ABCD及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一种实数a,将得到的点先向右平移m个单位,再向上平移n 个单位,得到正方形及其内部的点,其中点A、B 的对应点分别为,已知正方形ABCD内部的一个点F经过上述操作后得到的对应点与点F重合,则点F 的坐标是A .B .C .D .例2:已知四边形AOCD是放置在平面直角坐标系内的梯形,其中O是坐标原点,点A,C,D的坐标分别为(0,8),(5,0),(3,8).若点P在梯形内,且△PAD的面积等于△POC的面积,△PAO的面积等于△PCD 的面积.求点P的坐标.『专项测试』一.选择题1.如下图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,1),(3,O),(3,-l),…,根据技个规律探索可得,第100个点的坐标为()A.(14,0)B.(14,-1)C.(14,1)D.(14,2)2.如图所示,一只电子跳蚤在第一象限及轴、轴上跳动,在第一秒钟,它从原点跳到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→>(0,1)→(1,1)→>(1,0)→…]且每秒跳动一个单位,那么第45秒时跳蚤所在位置的坐标是()A.(5,6) B.(6,0) C.(6,3) D.(3,6)3.如图,在直角坐标系中,四边形ABCD各个顶点的坐标分别是A(2,3)、B(5,2)、C(2,4)、D(2,2),求这个四边形的面积。
A.32 B.32.5 C.33 D.33.54.已知:点A、B在平面直角坐标系中的位置如图所示,求△AOB的面积.A.2 B.3 C.4 D..55.如图,在平面直角坐标系中,已知点,,,,把一根长为2019个单位长度且没有弹性的细线线的粗细忽略不计的一端固定在A处,并按的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是A.B.C.D.6.在平面直角坐标系中,我们把横、纵坐标都为整数的点叫做整点,且规定,正方形的内部不包含边界上的点,观察如图所示的中心在原点、一边平行于x轴的正方形:边长为1的正方形内部有1个整点,边长为3的正方形内部有9个整点,,则边长为8的正方形内部整点个数为.A.64 B.49 C.36 D.257.如图,在平面直角坐标系中,轴,轴,点D、C、P、H在x轴上,,,,,,把一条长为2018个单位长度且没有弹性的细线线粗细忽略不计的一端固定在点A处,并按的规律紧绕在图形“凸”的边上,则细线另一端所在位置的点的坐标是A.B.C.D.8.如图,在平面直角坐标系上有点,点A第一次跳动至点,第二次向右跳动3个单位至点,第三次跳动至点,第四次向右跳动5个单位至点,,以此规律跳动下去,点A第2020次跳动至点的坐标是A. B. C.D.9.如图所示,在平面直角坐标系中,已知,,三点,且a,b满足关系式。
坐标系与平面形测验题及答案
坐标系与平面形测验题及答案【练习题】一、选择题在下列选项中,选择正确答案,并将其标号填入括号内。
1. 下列哪个图形是一个矩形?A. ▲ABCB. □DEFGC. ◆HIJKD. ☆LMNO2. 坐标系中,点A的坐标是(3, 2),点B的坐标是(1, 4),则AB的斜率为:A. 1B. 2C. -2D. -13. 一个四边形有四个内角,其中两个内角的度数是60°和120°,另外两个内角的度数为:A. 30°、30°B. 90°、90°C. 60°、60°D. 120°、120°4. 坐标系中,点C的坐标是(5, 6),点D的坐标是(8, 3),则CD的斜率为:A. -1/3B. 1/3C. 3D. -35. 若一个图形的顶点坐标分别为(1, 2),(4, 2),(4, 5),(1, 5),则该图形是一个:A. 正方形B. 长方形C. 三角形D. 平行四边形二、填空题根据题意,在横线上填入适当的词或数字。
6. 前进方向为正的坐标系称为________坐标系。
7. 坐标系中,点A的坐标为(3, 5),则x轴上点A的坐标为________。
8. 一个矩形的长度是6 cm,宽度是4 cm,它的周长是______ cm。
9. 一个四边形有一个内角是90°,另外三个内角度数的和是______°。
10. 平面形的面积计算公式为________。
三、解答题根据题目要求,写出答案。
11. 画出坐标系,标出点A(2, 3),然后将点A沿x轴方向向左平移3个单位,得到新坐标点的位置为________。
12. 画出坐标系,标出点B(1, 5),然后将点B沿y轴方向向上平移2个单位,得到新坐标点的位置为________。
13. 根据题意,计算长方形的面积,其中长是5 cm,宽是3 cm,面积等于________。
中考数学练习《坐标与图形的变换》(含答案解析)
坐标与图形的变换一、选择题1.下列说法中正确的是()A.是一个无理数B.函数的自变量x的取值范围是x>1C.8的立方根是±2D.若点P(﹣2,a)和点Q(b,﹣3)关于x轴对称,则a+b的值为52.如图,将三角形向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标是()A.(1,7),(﹣2,2),(3,4)B.(1,7),(﹣2,2),(4,3)C.(1,7),(2,2),(3,4)D.(1,7),(2,﹣2),(3,3)3.如图,已知△ABC的顶点B的坐标是(2,1),将△ABC向左平移两个单位后,点B平移到B1,则B1的坐标是()A.(4,1)B.(0,1)C.(﹣1,1) D.(1,0)4.如图,把矩形OABC放在直角坐标系中,OC在x轴上,OA在y轴上,且OC=2,OA=4,把矩形OABC绕着原点顺时针旋转90°得到矩形OA′B′C′,则点B′的坐标为()A.(2,3)B.(﹣2,4) C.(4,2)D.(2,﹣4)5.在平面直角坐标系中,将点A(1,2)的横坐标乘以﹣1,纵坐标不变,得到点A′,则点A和点A′的关系是()A.关于x轴对称B.关于y轴对称C.关于原点对称D.将点A向x轴负方向平移一个单位得点A′6.已知△ABC在平面直角坐标系的位置如图所示,将△ABC向右平移6个单位,则平移后A点的坐标是()A.(﹣2,1) B.(2,1)C.(2,﹣1) D.(﹣2,﹣1)7.如图,把图1中的△ABC经过一定的变换得到图2中的△A′B′C′,如果图1中△ABC上点P的坐标为(a,b),那么这个点在图2中的对应点P′的坐标为()A.(a﹣2,b﹣3)B.(a﹣3,b﹣2)C.(a+3,b+2)D.(a+2,b+3)8.正方形ABCD在坐标系中的位置如图所示,将正方形ABCD绕D点顺时针方向旋转90°后,B点到达的位置坐标为()A.(﹣2,2) B.(4,1)C.(3,1)D.(4,0)二、填空题9.点P(﹣2,3)关于x轴的对称点的坐标是.10.要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短?小聪根据实际情况,以街道旁为x轴,建立了如图所示的平面直角坐标系,测得A点的坐标为(0,3),B点的坐标为(6,5),则从A、B两点到奶站距离之和的最小值是.11.将点A(,0)绕着原点顺时针方向旋转45°角得到点B,则点B的坐标是.12.如图,Rt△OAB的直角边OA在y轴上,点B在第一象限内,OA=2,AB=1,若将△OAB绕点O按顺时针方向旋转90°,则点B的对应点B′的坐标是.13.已知点M(3,﹣2),将它先向左平移4个单位,再向上平移3个单位后得到点N,则点N的坐标是.14.在平面直角坐标系中,Rt△OAB的顶点A的坐标为,若将△OAB绕O点,逆时针旋转60°后,B点到达B′点,则点B′的坐标是.15.在方格纸上建立如图所示的平面直角坐标系,将△ABO绕点O按顺时针方向旋转90°,得△A′B′O,则点A的对应点A′的坐标为.三、解答题16.如图,图形中每一小格正方形的边长为1,已知△ABC.(1)AC的长等于;(2)先将△ABC向右平移2个单位得到△A′B′C′,则A点的对应点A′的坐标是;(3)再将△ABC绕点C按逆时针方向旋转90°后得到△A1B1C1,则A点对应点A1的坐标是.17.如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求出△ABC的面积.(2)在图中作出△ABC关于y轴的对称图形△A1B1C1.(3)写出点A1,B1,C1的坐标.18.如图,在平面直角坐标系中,一颗棋子从点P处开始依次关于点A、B、C 作循环对称跳动,即第一次跳到点P关于点A的对称点M处,接着跳到点M关于点B的对称点N处,第三次再跳到点N关于C的对称点处,…如此下去.(1)在图中画出点M、N,并写出点M、N的坐标:;(2)求经过第2008次跳动之后,棋子落点与点P的距离.坐标与图形的变换参考答案与试题解析一、选择题1.下列说法中正确的是()A.是一个无理数B.函数的自变量x的取值范围是x>1C.8的立方根是±2D.若点P(﹣2,a)和点Q(b,﹣3)关于x轴对称,则a+b的值为5【考点】立方根;无理数;二次根式有意义的条件;函数自变量的取值范围;关于x轴、y轴对称的点的坐标.【专题】计算题.【分析】对每个选项分别求出正确结论,然后就可以进行验证.【解答】解:A、=2,是一个有理数,故A错误;C、正数有一个正的立方根,故C错误;D、两点若共于x轴对称,则横坐标相等,纵坐标互为相反数,得a=3,b=﹣2,则a+b=1,故D错误;B、根据二次根式和分式有意义的条件得x>1,故B正确;故选B.【点评】判断一个数是否是无理数,应先化简后判断;二次根式有意义的条件是被开方数大于或等于0,分式有意义的条件是分母不等于0;掌握立方根的性质和关于x轴对称的两点的坐标之间的关系.2.如图,将三角形向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标是()A.(1,7),(﹣2,2),(3,4)B.(1,7),(﹣2,2),(4,3)C.(1,7),(2,2),(3,4)D.(1,7),(2,﹣2),(3,3)【考点】坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.【解答】解:由题意可在此题平移规律是(x+2,y+3),照此规律计算可知原三个顶点(﹣1,4),(﹣4,﹣1),(1,1)平移后三个顶点的坐标是(1,7),(﹣2,2),(3,4).故选A.【点评】本题考查图形的平移变换,关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变,平移变换是中考的常考点.3.如图,已知△ABC的顶点B的坐标是(2,1),将△ABC向左平移两个单位后,点B平移到B1,则B1的坐标是()A.(4,1)B.(0,1)C.(﹣1,1) D.(1,0)【考点】坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.【解答】解:从B到B1,点的移动规律是(x﹣2,y),如此规律计算可知B1的坐标为(0,1).故选B.【点评】本题考查图形的平移变换.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.4.如图,把矩形OABC放在直角坐标系中,OC在x轴上,OA在y轴上,且OC=2,OA=4,把矩形OABC绕着原点顺时针旋转90°得到矩形OA′B′C′,则点B′的坐标为()A.(2,3)B.(﹣2,4) C.(4,2)D.(2,﹣4)【考点】坐标与图形变化﹣旋转.【专题】压轴题.【分析】根据矩形的特点和旋转的性质来解决.【解答】解:矩形的对边相等,B′C′=OA=4,A′B′=OC=2,∴点B′的坐标为(4,2)故选C.【点评】需注意旋转前后线段的长度不变,第一象限内点的符号为(+,+).5.在平面直角坐标系中,将点A(1,2)的横坐标乘以﹣1,纵坐标不变,得到点A′,则点A和点A′的关系是()A.关于x轴对称B.关于y轴对称C.关于原点对称D.将点A向x轴负方向平移一个单位得点A′【考点】关于x轴、y轴对称的点的坐标.【分析】已知平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(﹣x,y),从而求解.【解答】解:根据轴对称的性质,可知横坐标都乘以﹣1,即是横坐标变成相反数,则实际是作出了这个图形关于y轴的对称图形.故选:B.【点评】考查平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点.6.已知△ABC在平面直角坐标系的位置如图所示,将△ABC向右平移6个单位,则平移后A点的坐标是()A.(﹣2,1) B.(2,1)C.(2,﹣1) D.(﹣2,﹣1)【考点】坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.【解答】解:原三角形中点A的坐标是(﹣4,1),将△ABC向右平移6个单位后,平移后点的横坐标变为﹣4+6=2,而纵坐标不变,所以点A的坐标变为(2,1).故选B.【点评】本题考查图形的平移变换,关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变,平移变换是中考的常考点.7.如图,把图1中的△ABC经过一定的变换得到图2中的△A′B′C′,如果图1中△ABC上点P的坐标为(a,b),那么这个点在图2中的对应点P′的坐标为()A.(a﹣2,b﹣3)B.(a﹣3,b﹣2)C.(a+3,b+2)D.(a+2,b+3)【考点】坐标与图形变化﹣平移.【专题】压轴题;网格型.【分析】直接利用平移中点的变化规律求解即可.【解答】解:根据题意:A点坐标为(﹣3,﹣2),平移后,A'的坐标为(0,0);故①中△ABC上点P的坐标为(a,b),那么这个点在图②中的对应点P'的坐标为(a+3,b+2).故选C.【点评】本题考查点坐标的平移变换,关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变,平移变换是中考的常考点.8.正方形ABCD在坐标系中的位置如图所示,将正方形ABCD绕D点顺时针方向旋转90°后,B点到达的位置坐标为()A.(﹣2,2) B.(4,1)C.(3,1)D.(4,0)【考点】坐标与图形变化﹣旋转.【专题】压轴题;数形结合.【分析】利用网格结构找出点B绕点D顺时针旋转90°后的位置,然后根据平面直角坐标系写出点的坐标即可.【解答】解:如图,点B绕点D顺时针旋转90°到达点B′,点B′的坐标为(4,0).故选:D.【点评】本题考查了旋转与坐标与图形的变化,根据网格结构找出点B旋转后的位置是解题的关键.二、填空题9.点P(﹣2,3)关于x轴的对称点的坐标是(﹣2,﹣3).【考点】关于x轴、y轴对称的点的坐标.【分析】两点关于x轴对称,那么横坐标不变,纵坐标互为相反数.【解答】解:点P(﹣2,3)关于x轴的对称,即横坐标不变,纵坐标互为相反数,∴对称点的坐标是(﹣2,﹣3).故答案为:(﹣2,﹣3).【点评】本题考查关于x轴对称的点的坐标的特点,可记住要点或画图得到.10.要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短?小聪根据实际情况,以街道旁为x轴,建立了如图所示的平面直角坐标系,测得A点的坐标为(0,3),B点的坐标为(6,5),则从A、B两点到奶站距离之和的最小值是10 .【考点】轴对称﹣最短路线问题.【专题】压轴题.【分析】本题首先要明确奶站应建在何处,点A关于x轴的对称点A的坐标是1B与x轴的交点就是奶站应建的位置.从A、B两点到奶(0,﹣3),则线段A1B的长.通过点B向y轴作垂线与C,根据勾股定站距离之和最小时就是线段A1理就可求出.的坐标是(0,﹣3),过点B向x轴作【解答】解:点A关于x轴的对称点A1和x轴平行的直线交于C,垂线与过A1C=6,BC=8,则A1B==10∴A1∴从A、B两点到奶站距离之和的最小值是10.故填10.【点评】本题考查了轴对称的应用;正确确定奶站的位置是解题的关键,确定奶站的位置这一题在课本中有原题,因此加强课本题目的训练至关重要.11.将点A(,0)绕着原点顺时针方向旋转45°角得到点B,则点B的坐标是(4,﹣4).【考点】坐标与图形变化﹣旋转.【分析】根据旋转的性质,旋转不改变图形的大小和形状.【解答】解:旋转后已知OB=OA=4,做BC⊥x轴于点C,那么△OBC是等腰直角三角形,∴OC=BC=4,∵在第四象限,∴点B的坐标是(4,﹣4).【点评】解答此题要注意旋转前后线段的长度不变,构造直角三角形求解即可.12.如图,Rt△OAB的直角边OA在y轴上,点B在第一象限内,OA=2,AB=1,若将△OAB绕点O按顺时针方向旋转90°,则点B的对应点B′的坐标是(2,﹣1).【考点】坐标与图形变化﹣旋转.【专题】压轴题.【分析】根据旋转的性质,旋转不改变图形的大小和形状,准确把握旋转的方向和度数.【解答】解:把Rt△OAB的绕点O按顺时针方向旋转90°,就是把它上面的各个点按顺时针方向旋转90度.点A在y轴上,且OA=2,正好旋转到x轴正半轴.则旋转后A′点的坐标是(2,0);又旋转过程中图形不变,OA=2,AB=1,故点B′坐标为(2,﹣1).【点评】本题将一个图形的旋转放在坐标系中来考查,是一道考查数与形结合的好试题,也为高中后续学习做了良好的铺垫.从考试情况看,还有非常多考生没完全理解旋转的三大要素即中心、方向、角度,故失分的较多.本题综合考查学生旋转和坐标知识.13.已知点M(3,﹣2),将它先向左平移4个单位,再向上平移3个单位后得到点N,则点N的坐标是(﹣1,1).【考点】坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:原来点的横坐标是3,纵坐标是﹣2,向左平移4个单位,再向上平移3个单位得到新点的横坐标是3﹣4=﹣1,纵坐标为﹣2+3=1.则点N的坐标是(﹣1,1).故答案填:(﹣1,1).【点评】解题关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变,平移变换是中考的常考点,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.14.在平面直角坐标系中,Rt△OAB的顶点A的坐标为,若将△OAB绕O点,逆时针旋转60°后,B点到达B′点,则点B′的坐标是().【考点】坐标与图形变化﹣旋转.【专题】压轴题.【分析】根据A点坐标可知∠AOB=30°,因此旋转后OA在y轴上.如图所示.作B′C′⊥y轴于C′点,运用三角函数求出B′C′、OC′的长度即可确定B′的坐标.【解答】解:将△OAB绕O点,逆时针旋转60°后,位置如图所示,作B′C′⊥y轴于C′点,∵A的坐标为,∴OB=,AB=1,∠AOB=30°,∴OB′=,∠B′OC′=30°,∴B′C′=,OC′=,∴B′(,).【点评】本题涉及图形旋转,体现了新课标的精神,抓住旋转的三要素:旋转中心O,旋转方向逆时针,旋转角度60°,通过画图计算得B′坐标.15.在方格纸上建立如图所示的平面直角坐标系,将△ABO绕点O按顺时针方向旋转90°,得△A′B′O,则点A的对应点A′的坐标为(2,3).【考点】坐标与图形变化﹣旋转.【专题】压轴题;网格型.【分析】正确作出A旋转以后的点,即可确定坐标.【解答】解:由图知A点的坐标为(﹣3,2),根据旋转中心O,旋转方向顺时针,旋转角度90°,画图,从而得A′点坐标为(2,3).【点评】本题涉及图形的旋转,体现了新课标的精神,抓住旋转的三要素:旋转中心O,旋转方向顺时针,旋转角度90°,通过画图得A′.三、解答题16.如图,图形中每一小格正方形的边长为1,已知△ABC.(1)AC的长等于;(2)先将△ABC向右平移2个单位得到△A′B′C′,则A点的对应点A′的坐标是(1,2);(3)再将△ABC绕点C按逆时针方向旋转90°后得到△A1B1C1,则A点对应点A1的坐标是(﹣3,﹣2).【考点】坐标与图形变化﹣旋转;坐标与图形变化﹣平移.【专题】网格型.【分析】(1)根据图形,可得出AC的坐标,可得纵横坐标的关系,进而可求出AC的长;(2)根据图形,可得出ABC的坐标,向右平移2个单位可得A'的坐标;(3)根据旋转的规律,把△OAB的绕点O按逆时针方向旋转90°,就是把它上面的各个点按逆时针方向旋转90°,可得A1的坐标.【解答】解:(1)根据图形,可得出A的坐标为(﹣1,2),C的坐标为(0,﹣1),故AC的长等于=;(2)根据图形,可得出A的坐标为(﹣1,2),B的坐标为(3,1),C的坐标为(0,﹣1),将△ABC向右平移2个单位得到△A'B'C',则A点的对应点A'的坐标是(1,2);(3)根据旋转的规律,把△OAB的绕点O按逆时针方向旋转90°,就是把它上面的各个点按逆时针方向旋转90°,可得A1的坐标为(﹣3,﹣2).【点评】此题主要考查图形的平移及平移特征﹣﹣﹣在平面直角坐标系中,图形的平移与图形上某点的平移规律相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.17.如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求出△ABC的面积.(2)在图中作出△ABC关于y轴的对称图形△A1B1C1.(3)写出点A1,B1,C1的坐标.【考点】作图﹣轴对称变换.【专题】综合题.【分析】(1)根据网格可以看出三角形的底AB是5,高是C到AB的距离,是3,利用面积公式计算.(2)从三角形的各顶点向y轴引垂线并延长相同长度,找对应点.顺次连接即可.(3)从图中读出新三角形三点的坐标.【解答】解:(1)S△ABC=×5×3=(或7.5)(平方单位).(2)如图.(3)A1(1,5),B1(1,0),C1(4,3).【点评】本题综合考查了三角形的面积,网格,轴对称图形,及直角坐标系,学生对所学的知识要会灵活运用.18.如图,在平面直角坐标系中,一颗棋子从点P处开始依次关于点A、B、C 作循环对称跳动,即第一次跳到点P关于点A的对称点M处,接着跳到点M关于点B的对称点N处,第三次再跳到点N关于C的对称点处,…如此下去.(1)在图中画出点M、N,并写出点M、N的坐标:(﹣2,0),(4,4);(2)求经过第2008次跳动之后,棋子落点与点P的距离.【考点】作图﹣轴对称变换.【专题】压轴题;规律型.【分析】(1)点P关于点A的对称点M,即是连接PA延长到M使PA=AM,所以M的坐标是M(﹣2,0),点M关于点B的对称点N处,即是连接MB延长到N 使MB=BN,所以N的坐标是N(4,4);(2)棋子跳动3次后又回点P处,所以经过第2008次跳动后,棋子落在点M 处,根据勾股定理可知PM的值.【解答】解:(1)M(﹣2,0),N(4,4);故答案为:M(﹣2,0),N(4,4);(2)棋子跳动3次后又回点P处,且2008÷3=669…1,所以经过第2008次跳动后,棋子落在点M处,∴PM=.答:经过第2008次跳动后,棋子落点与P点的距离为.【点评】考查学生对点对称意义的理解及学生在新的知识环境下运用所学知识的能力.本题着重考查学生探索规律和计算能力.。
位置与坐标经典题目及练习
位置与坐标经典题目及练习例题精讲:例1:已知点)5,114(2-+-n m m M ,则点M 在平面直角坐标系中的什么位置例2:已知:)3,4(A ,)1,1(B ,)0,3(C ,求三角形ABC 的面积.例3:已知:)54,21(-+a a A ,且点A 到两坐标轴的距离相等,求A 点坐标.例4:已知:)3,4(A ,)1,1(B ,)0,3(C ,求三角形ABC 的面积.例5:如图,在平面直角坐标系xOy 中,多边形OABCDE 的顶点坐标分别是O (0,0),A (0,6),B (4,6),C (4,4),D (6,4),E (6,0).若直线l 经过点M (2,3),且将多边形OABCDE 分割成面积相等的两部分,则直线l 的函数表达式是 ________例6:点A (-1,2)关于y 轴的对称点坐标是 ;点A 关于原点的对称点的坐标是 。
点A 关于x 轴对称的点的坐标为例7:在平面直角坐标系中,已知:)2,1(A ,)4,4(B ,在x 轴上确定点C ,使得BC AC +最小.例8:已知点)1,5(-m A ,点)1,4(+m B ,且直线y AB //轴,则m 的值为多少例9:在平面直角坐标系中,已知点),(y x P 横、纵坐标相等,在平面直角坐标系中表示出点P 的位置.例10:在平面直角坐标系中,已知点),(y x P 横、纵坐标互为相反数,在平面直角坐标系中表示出点P 的位置.例11:在平面直角坐标系中,已知点),(y x P 横、纵坐标满足|1|-=x y ,在平面直角坐标系中表示出点P 的位置.例题12:将点P (-3,2)向下平移3个单位,向左平移2个单位后得到点Q (x ,y ),则xy =___________典型练习题目一.认真选一选:1. 下列各点中,在第二象限的点是()A. (2,3)B. (2,-3)C. (-2,-3)D. (-2,3)2. 将点A(-4,2)向上平移3个单位长度得到的点B的坐标是()A. (-1,2)B. (-1,5)C. (-4,-1)D. (-4,5)3. 如果点M(a-1,a+1)在x轴上,则a的值为()A. a=1B. a=-1C. a>0D. a的值不能确定4. 点P的横坐标是-3,且到x轴的距离为5,则P点的坐标是()5. 若点P(a,b)在第四象限,则点M(b-a,a-b)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限6. 点M(a,a-1)不可能在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 在平面直角坐标系中,若一图形各点的横坐标不变,纵坐标分别减3,那么图形与原图形相比()A. 向右平移了3个单位长度B. 向左平移了3个单位长度C. 向上平移了3个单位长度D. 向下平移了3个单位长度8. 到x轴的距离等于2的点组成的图形是()A. 过点(0,2)且与x轴平行的直线B. 过点(2,0)且与y轴平行的直线9.平面直角坐标系中,将正方形向上平移3个单位后,得到的正方形各顶点与原正方形各顶点坐标相比().A.横坐标不变,纵坐标加3B.纵坐标不变,横坐标加3C.横坐标不变,纵坐标乘以3D.纵坐标不变,横坐标乘以310.小明家的坐标为(1,2),小丽家的坐标为(-2,-1),则小明家在小丽家的().A.东南方向B.东北方向C.西南方向D.西北方向11.在直角坐标系中,A(1,2)点的横坐标乘以-1,纵坐标不变,得到A′点,则A与A′的关系是( ).A.关于x 轴对称B.关于y 轴对称C.关于原点对称D.将A 点向x 轴负方向平移一个单位12. 一只小虫子在一个小方格的线路上爬行,它起始的位置是A (2,2),先爬到B (2,4),再爬到C (5,4),最后爬到D (5,5),则小虫一共爬行了( )个单位.A. 7B. 6C. 5D. 413. 已知点M 1(-1,0)、M 2(0,-1)、M 3(-2,-1)、M 4(5,0)、 M 5(0,5)、M 6(-3,2),其中在x 轴上的点的个数是( ).A. 1 个B. 2 个C. 3个D. 4个14. 点P (22+a ,-5)位于( )A. 第一象限B. 第二象限C. 第三象限D.第四象限15. 已知点P (2x-4,x+2)位于y 轴上,则x 的值等于( )A. 2B. -2C. 2或-2D. 上述答案都不对16. 在下列各点中,与点A (-3,-2)的连线平行于y 轴的是( )(-3,2) (3,-2) (-2,3) (-2,-3)A. (5,-3)或(-5,-3)B. (-3,5)或(-3,-5)C. (-3,5)D. (-3,-5)17、下列说法中正确的有( )○1点(1,-a )一定在第四象限 ○2坐标轴上的点不属于任一象限 ○3横坐标为零的点在纵轴上,纵坐标为零的点在横轴上 ○4直角坐标系中到原点距离为5的点的坐标是(0, 5) A. 1个 B. 2个 C. 3个 D. 4个18、已知点A 的坐标是(a ,b ),若a+b<0,ab>0则它在( )A. 第一象限B. 第二象限C. 第三象限D.第四象限19、下列说法中正确的有( )○1若x 表示有理数,则点P (12+x ,4--x )一定在第四象限 ○2若x 表示有理数,则点P (2x -,4--x )一定在第三象限 ○3若ab>0,则点P(a , b)一定在第一象限 ○4若ab=0,则点P(a , b)表示原点 A. 1个 B. 2个 C. 3个 D. 4个20、已知三角形AOB 的顶点坐标为A (4,0)、B (6,4),O 为坐标原点,则它的面积为( )A. 1221、已知点A (1,b)在第一象限,则点B (1 – b ,1)在( )A 、第一象限B 、第二象限C 、第三象限D .第四象限22、点M (x ,y )在第二象限,且| x | – 2 = 0,y 2 – 4 = 0,则点M 的坐标是( ) A (– 2 ,2) B .( 2 ,– 2 ) C .(—2, 2 ) D 、(2,– 2 )23、若0<a <1,则点M (a – 1,a )在( )A 、第一象限B 、第二象限C 、第三象限D .第四象限24、已知点P (3k – 2,2k – 3 )在第四象限.那么k 的取值范围是( )A 、23 <k < 32B 、k <23C 、k >32D 、都不对 25、点M (a ,b – 2 )关于x 轴对称的点N 坐标是 ( )A .(– a .2 – b )B .(– a ,b – 2 )C .(a ,2 – b )D .(a ,b – 2 )26、已知点P 的坐标为(2 – a ,3a + 6),且点P 到两坐标轴的距离相等,则点P 坐标是( )A (3,3)B .(3,—3)C .(6,一6)D .(3,3)或(6,一6)27、如图⑴,在直角坐标系中,点A ,B 的坐标分别是(3,0),(0,4),Rt △ABO 的内心的坐标是( )A 、(72 ,72 )B 、(32 ,2)C 、(1,1)D 、(32,1)28、若点P (– 1 – 2 a ,2a – 4)关于原点对称的点在第一象限,则a 的整数解有( )A 、1个B 、2个C 、3个D 、4个29、如图⑵,已知边长为2的正方形OABC 在平面直角坐标系中位于x 轴上方,OA 与x 轴的正半轴的夹角为60°,则B 点的坐标为( )A 、( 3 – 2, 3 + 1)B 、( 3 + 1, 3 – 2)C 、(1 - 3 ,1 + 3 )D 、(1 + 3 ,1 - 3 )30、在平面直角坐标系中,点()一定在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限31、若点P ()在第二象限,则点Q ()在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限32、 若点A ()在第二象限,则点B ()在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 33、若点P (m ,2)与点Q (3,n )关于原点对称,则的值分别是( )A.B. C. D. 34、点P ()不可能在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限35、点M ()在第二象限,且,,则点M 的坐标是( ) A. B. C. D. 图⑵4 3 y O x O y x CB A图⑴。
小学六年级坐标练习题
小学六年级坐标练习题坐标练习题是小学六年级数学学习中的重要内容,通过这种练习可以帮助学生更好地理解和运用坐标系,提高他们的逻辑思维和问题解决能力。
本文将为大家提供一些小学六年级的坐标练习题,希望能对你的学习有所帮助。
1. 基本坐标练习(1) 在坐标系上标出点A(3, 4),请问它位于哪个象限?解答:点A位于第一象限。
因为横坐标是正数3,纵坐标是正数4,所以点A的坐标满足第一象限的条件。
(2) 在坐标系上标出点B(-2, 5),请问它位于哪个象限?解答:点B位于第二象限。
因为横坐标是负数-2,纵坐标是正数5,所以点B的坐标满足第二象限的条件。
2. 坐标系运用练习(1) 在坐标系上标出点C(0, -3),然后向上平移2个单位,再向右平移3个单位,得到新的点C',请问C'的坐标是多少?解答:点C经过向上平移2个单位和向右平移3个单位后,得到新的点C',其坐标为(3, -1)。
(2) 在坐标系上标出点D(5, -2),然后将坐标轴进行旋转90度,得到新的坐标轴系,求点D在新坐标轴系下的坐标D'。
解答:将坐标轴逆时针旋转90度后,新的坐标系上的点D'的坐标为(-2, 5)。
3. 四象限综合练习(1) 在第一象限内随机选取一个点P,使得横坐标和纵坐标均大于3,请问这个点P的象限是哪一个?解答:由于点P的横坐标和纵坐标均大于3,所以点P位于第一象限。
(2) 在第一象限内随机选取一个点Q,使得横坐标小于0,纵坐标大于0,请问这个点Q的象限是哪一个?解答:由于点Q的横坐标小于0,纵坐标大于0,所以点Q位于第二象限。
4. 图形坐标练习(1) 平面直角坐标系上有一正方形ABCD,其中A(-2, -2),C(2, 2),请问BC边的中点坐标是多少?解答:BC边的中点坐标为(2, 0)。
(2) 平面直角坐标系上有一矩形EFGH,其中E(1, 3),F(4, 3),G(4, 1),请问矩形EFGH的面积是多少?解答:矩形EFGH的面积为6个单位的平方。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图形与坐标练习题
一、选择题
1、下列各点中,在第二象限的点是( ) A 、(2,4) B 、(-2,4) C 、(2,-4) D 、(-2,-4)
2、若x+y >0,xy >0,则点(x ,y )在( )
A 、第一象限
B 、第二象限
C 、第三象限
D 、第四象限 3、若点P (a ,b )的坐标满足ab=0,则点P 在( )
A 、原点
B 、x 轴上
C 、y 轴上
D 、x 轴或y 轴上
4、在直角坐标系中,点(3,-4)向左平移2个单位长度后的坐标为( ) A 、(5,-4) B 、(1,-4) C 、(3,-6) D 、(3,-2) 5. 若有点A 和点B ,坐标分别为A(3,2),B(2,3),则( ) A 、A ,B 为同一个点 B 、A ,B 为重合的两点 C 、A ,B 为不重合的两点 D 、无法确定
6. 如果点Q(m +2,m -1)在直角坐标系的x 轴上,则点Q 的坐标为( ) A 、(0,3) B 、(1,0) C 、(0,1) D 、(3,0)
7. 若x 轴上的点P 到y 轴的距离为3,则点P 的坐标为( )
A 、(3,0)
B 、(3,0)或(-3,0)
C 、(0,3)
D 、 (0,3)或(0,-3) 8. 经过点(-2,3)且平行于x 轴的直线上的所有点( )
A 、横坐标都是-2
B 、纵坐标是3
C 、横坐标是3
D 、纵坐标是-2 9. 一个长方形在平面直角坐标系中三个顶点的坐标为(-1,-1)、(-1,2)、(3,-1),则第四个顶点的坐标为( ).
A 、(2,2)
B 、 (3,2)
C 、(3,3)
D 、(2,3)
二、填空题
1、教室里的座位整齐摆放,若四排六号用(4,65,3)的含义
是 。
2、如图在直角坐标系中,矩形ABOC 的边长AB 为3, AC 为2,则图中点A 、点B 、点C 的坐标分别
为 、 、 。
3、点P (5,-2)距离x 轴为 个单位长度,距离y
长度。
4、若点F 的坐标为(a ,0),则点F 一定在 轴上(填“x ”或“y ”)
5、点M (-3,2)在第 象限,它关于x 轴的对称点M 1的坐标是 , 关于y 轴的对称点M 2的坐标是 。
630°方向,距离A 地20km 2处,则A 地在B 的
B 地 km 2处。
8m -1,n -2),且点Q 在第四象限,则m 的取值范围是 ,n 的取值范围是 。
9. 已知点M(a ,b)在第四象限内,则a_____0,b_____0.(填“>”“<” 10. 点B 在y 轴上,位于原点上方,距离坐标原点4个单位长度,则此点的坐标为_____。
11. 点P (-2,4)关于x 轴对称的点的坐标是 。
12. 已知点P 在第四象限内,它的横坐标与纵坐标的和为-1,则点P 的坐标可以是______________(写出一组即可)
13. 如图,围棋盘放在某个平面直角坐标系内,白棋②的坐标为(-7,-4),白棋④的坐标为(-6,-8),那么黑棋①的坐标应该是_____。
14. 由原点0(0,0)、A(-2,0)、B(-2,3)三点围成的三角形的面积为_____ 15. 在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点,观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第10个正方形(实线)四条边上的整点个数共有 个.
(第13题图) (第15题图)
三、解答题
1、(10分)在如图所示的坐标系中,
⑴描出下列各组点,并将各组内的点用线段依次连结成封闭的图形 ①(-1,-1),(3,2),(1,-1),(2,-2),(-1,-1) ②(3,0),(3,-2),(1,-1),(3
⑵观察你刚才所画的图形, 联系生活实际,写出一句 贴切的解说词。
2. 如图8所示的直角坐标系中,四边形ABCD 各顶点的坐标分别为A(0,0)、B (9,0)、C (7,5)、D (2,7).求四边形ABCD 的面积.
3. 阅读材料:
如图(一),在已建立直角坐标系的方格纸中,图形①的顶点为A 、B 、C ,要将它变换到图④(变换过程中图形的顶点必须在格点上,且不能超出方格纸的边界)。
例如:将图形①作如下变换(如图二)。
第一步:平移,使点C (6,6)移至点(4,3),得图②; 第二步:旋转,绕着点(4,3)旋转180°,得图③; 第三步:平移,使点(4,3)移至点O (0,0),得图④。
则图形①被变换到了图④。
解决问题:
(1)在上述变化过程中A 点的坐标依次为:
(4,6)→( , )→( , )→( , ) (2)如图(三),仿照例题格式,在直角坐标系的方格纸中将△DEF 经过平移、旋转、翻折等变换得到△OPQ 。
(写出变换步骤,并画出相应的图形)
(三)。