2020年温州市重点中学自主招生模拟数学试题有答案

合集下载

学年浙江省一级重点中学自主招生考试数学仿真试卷(十)

学年浙江省一级重点中学自主招生考试数学仿真试卷(十)

2020学年浙江省一级重点中学自主招生考试数学仿真试卷(十)一、选择题(共8题,每题5分,共40分)1.(5分)一个多边形的内角和与它的一个外角的和为570°,那么这个多边形的边数为()A.5B.6C.7D.82.(5分)某个样本的频数分布直方图中一共有4组,从左到右的组中值依次为5,8,11,14,频数依次为5,4,6,5,则频率为0.2的一组为()A.6.5﹣9.5B.9.5﹣12.5C.8﹣11D.5﹣83.(5分)已知a<0,那么=()A.a B.﹣a C.3a D.﹣3a4.(5分)观察表一,寻找规律.表二、表三分别是从表一中选取的一部分,则x+y的值为()表一0123…1357…25811…371115……………表二1519x表三152317yA.45B.46C.48D.495.(5分)在平行四边形ABCD中,AB=6,AD=8,∠B是锐角,将△ACD沿对角线AC折叠,点D落在△ABC所在平面内的点E处.如果AE过BC的中点,则平行四边形ABCD 的面积等于()A.48B.10C.12D.246.(5分)如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D,E分别在AC,BC边上运动,且保持AD=CE.连接DE,DF,EF.在此运动变化的过程中,下列结论:①△DFE是等腰直角三角形;②四边形CDFE不可能为正方形,③DE长度的最小值为4;④四边形CDFE的面积保持不变;⑤△CDE面积的最大值为8.其中正确的结论是()A.①②③B.①④⑤C.①③④D.③④⑤7.(5分)如图,在Rt△ABC内有边长分别为a,b,c的三个正方形,则a,b,c满足的关系式是()A.b=a+c B.b=ac C.b2=a2+c2D.b=2a=2c8.(5分)如图(1),A,B,C,D为圆O的四等分点,动点P从圆心O出发,沿O﹣C ﹣E﹣D﹣O路线作匀速运动,设运动时间为x(秒),∠APB=y(度),图(2)表示y与x之间的函数关系图,则点M的横坐标应为()A.2B.πC.π+1D.π+2二、填空题(共8题,每题3分,共24分)9.(3分)如果关于x的二次三项式x2+mx+m是一个完全平方式,则m=.10.(3分)一个几何体,是由许多规格相同的小正方体堆积而成的,其主视图,左视图如图所示要摆成这样的图形,至少需用块小正方体.11.(3分)如图,O为矩形ABCD的对角线交点,DF平分∠ADC交AC于点E,交BC于点F,∠BDF=15°,则∠COF=°.12.(3分)若,则=.13.(3分)m是方程x2﹣2010x+1=0的一个解,则值是.14.(3分)将红、白、黄三种小球,装入红、白、黄三个盒子中,每个盒子中装有相同颜色的小球.已知:(1)黄盒中的小球比黄球多;(2)红盒中的小球与白球不一样多;(3)白球比白盒中的球少.则红、白、黄三个盒子中装有小球的颜色依次是.15.(3分)如图,点O(0,0),B(0,1)是正方形OBB1C的两个顶点,以对角线OB1为一边作正方形OB1B2C1,再以正方形OB1B2C1的对角线OB2为一边作正方形OB2B3C2,依次下去,则点B7的坐标是.16.(3分)如图,在等腰梯形ABCD中,AD∥BC,BC=10,AD=2,∠B=45°.直角三角板含45°角的顶点E在边BC上移动,一直角边始终经过点A,斜边与CD交于点F.若△ABE为等腰三角形,则CF的长等于.三、解答题(共4题,共56分)17.(14分)在一平直河岸l同侧有A,B两个村庄,A,B到l的距离分别是3km和2km,AB=akm(a>1).现计划在河岸l上建一抽水站P,用输水管向两个村庄供水.方案设计:某班数学兴趣小组设计了两种铺设管道方案:图1是方案一的示意图,设该方案中管道长度为d1,且d1=PB+BA(km)(其中BP⊥l于点p);图2是方案二的示意图,设该方案中管道长度为d2,且d2=PA+PB(km)(其中点A'与点A关于I对称,A′B与l交于点P.观察计算:(1)在方案一中,d1=km(用含a的式子表示);(2)在方案二中,组长小宇为了计算d2的长,作了如图3所示的辅助线,请你按小宇同学的思路计算,d2=km(用含a的式子表示).探索归纳(1)①当a=4时,比较大小:d1()d2(填“>”、“=”或“<”);②当a=6时,比较大小:d1()d2(填“>”、“=”或“<”);(2)请你参考右边方框中的方法指导,就a(当a>1时)的所有取值情况进行分析,要使铺设的管道长度较短,应选择方案一还是方案二?18.(14分)如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O交AC边于点D,E是边BC的中点,连接DE.(1)求证:直线DE是⊙O的切线;(2)连接OC交DE于点F,若OF=CF,求tan∠ACO的值.19.(14分)为支持四川抗震救灾,重庆市A、B、C三地现在分别有赈灾物资100吨、100吨、80吨,需要全部运往四川重灾地区的D、E两县.根据灾区的情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20吨.(1)求这批赈灾物资运往D、E两县的数量各是多少?(2)若要求C地运往D县的赈灾物资为60吨,A地运往D的赈灾物资为x吨(x为整数),B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍.其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25吨.则A、B两地的赈灾物资运往D、E两县的方案有几种?请你写出具体的运送方案;(3)已知A、B、C三地的赈灾物资运往D、E两县的费用如下表:A地B地C地运往D县的费用(元/吨)220200200运往E县的费用(元/吨)250220210为及时将这批赈灾物资运往D、E两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?20.(14分)在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,且点A(0,2),点C(﹣1,0),如图所示:抛物线y=ax2+ax﹣2经过点B.(1)求点B的坐标;(2)求抛物线的解析式;(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(共8题,每题5分,共40分)1.(5分)一个多边形的内角和与它的一个外角的和为570°,那么这个多边形的边数为()A.5B.6C.7D.8【考点】多边形内角与外角.【分析】本题考查多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征,还需要懂得挖掘此题隐含着边数为正整数这个条件.本题既可用整式方程求解,也可用不等式确定范围后求解.【解答】解法1:设边数为n,这个外角为x度,则0<x<180°根据题意,得(n﹣2)•180°+x=570°解之,得n=.∵n为正整数,∴930﹣x必为180的倍数,又∵0<x<180,∴n=5.解法2:∵0<x<180.∴570﹣180<570﹣x<570,即390<570﹣x<570.又∵(n﹣2)•180°=570﹣x,∴390<(n﹣2)•180°<570,解之得4.2<n<5.2.∵边数n为正整数,∴n=5.故选A.【点评】此题较难,考查比较新颖,涉及到整式方程,不等式的应用.2.(5分)某个样本的频数分布直方图中一共有4组,从左到右的组中值依次为5,8,11,14,频数依次为5,4,6,5,则频率为0.2的一组为()A.6.5﹣9.5B.9.5﹣12.5C.8﹣11D.5﹣8【考点】频数(率)分布直方图.【分析】首先根据各组的频数即可确定频率是0.2的是哪一组,然后根据组中值的大小即可确定组距,则频率为0.2的一组的范围即可确定.【解答】解:各组的频数是5,4,6,5则第一组的频率是:=0.25,则第四组的频率也是0.25,第二组的频率是:=0.2,则频率为0.2的一组为第二组;组距是8﹣5=3,第二组的组中值是8,则第二组的范围是:6.5﹣9.5.故选A.【点评】本题考查了频数分布图,正确理解组中值的含义是关键.3.(5分)已知a<0,那么=()A.a B.﹣a C.3a D.﹣3a【考点】二次根式的性质与化简;绝对值.【分析】根据绝对值,开平方的性质,=|a|进行计算.【解答】解:∵a<0,∴﹣a>0,原式===|3a|=﹣3a.故选D.【点评】本题考查了二次根式的化简,注意算术平方根的结果为非负数.4.(5分)观察表一,寻找规律.表二、表三分别是从表一中选取的一部分,则x+y的值为()表一0123…1357…25811…371115……………表二1519x表三152317yA.45B.46C.48D.49【考点】规律型:数字的变化类.【分析】观察表一可得,第一列上面的一个数比下面的一个数小1,第二列上面的一个数比下面的一个数小2,第三列上面的一个数比下面的一个数小3,依此类推,则表二是第4列,表三是第二和第三列,由规律写出x即可.【解答】解:∵表二的上面的一个数比下面的一个数小4,∴表二是第4列,∴x=19+4=23,∵表三的上面的一个数比下面的一个数小2,∴表二是第2列,∴y=23+3=26,∴x+y=23+26=49,故选D.【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.规律是:第一列上面的一个数比下面的一个数小1,第二列上面的一个数比下面的一个数小2,第三列上面的一个数比下面的一个数小3,依此类推.5.(5分)在平行四边形ABCD中,AB=6,AD=8,∠B是锐角,将△ACD沿对角线AC 折叠,点D落在△ABC所在平面内的点E处.如果AE过BC的中点,则平行四边形ABCD 的面积等于()A.48B.10C.12D.24【考点】翻折变换(折叠问题);平行四边形的性质.【分析】利用折叠知识,得到全等三角形,即△ABO≌△CEO,再进一步证得∠ACD是直角,然后利用勾股定理得到平行四边形的底边及底边上的高,进而求得面积.【解答】解:设AE与BC交于O点,O点是BC的中点.∵四边形ABCD是平行四边形,∴∠B=∠D.AB∥CD,又由折叠的性质推知∠D=∠E,CE=CD∴∠B=∠E.CE=AB∴△ABO和△ECO中,,所以△ABO≌△CEO(AAS),所以AO=CO=4,OE=OB=4.∴AE=AD=8.∴△AED为等腰三角形,又C为底边中点,故三线合一可知∠ACE=90°,从而由勾股定理求得AC=.平行四边形ABCD的面积=AC×CD=12.故选C.【点评】本题主要考查了平行四边形的性质和面积的计算,平行四边形的面积等于平行四边形的边长与该边上的高的积.即S=a•h.其中a可以是平行四边形的任何一边,h必须是a 边与其对边的距离,即对应的高.6.(5分)如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D,E分别在AC,BC边上运动,且保持AD=CE.连接DE,DF,EF.在此运动变化的过程中,下列结论:①△DFE是等腰直角三角形;②四边形CDFE不可能为正方形,③DE长度的最小值为4;④四边形CDFE的面积保持不变;⑤△CDE面积的最大值为8.其中正确的结论是()A .①②③B .①④⑤C .①③④D .③④⑤【考点】正方形的判定;全等三角形的判定与性质;等腰直角三角形.【分析】解此题的关键在于判断△DEF 是否为等腰直角三角形,作常规辅助线连接CF ,由SAS 定理可证△CFE 和△ADF 全等,从而可证∠DFE=90°,DF=EF .所以△DEF 是等腰直角三角形.可证①正确,②错误,再由割补法可知④是正确的;判断③,⑤比较麻烦,因为△DEF 是等腰直角三角形DE=DF ,当DF 与BC 垂直,即DF 最小时,DE 取最小值4,故③错误,△CDE 最大的面积等于四边形CDEF 的面积减去△DEF 的最小面积,由③可知⑤是正确的.故只有①④⑤正确.【解答】解:连接CF ;∵△ABC 是等腰直角三角形,∴∠FCB=∠A=45°,CF=AF=FB ;∵AD=CE ,∴△ADF ≌△CEF (SAS );∴EF=DF ,∠CFE=∠AFD ;∵∠AFD +∠CFD=90°,∴∠CFE +∠CFD=∠EFD=90°,∴△EDF 是等腰直角三角形(故①正确).当D 、E 分别为AC 、BC 中点时,四边形CDFE 是正方形(故②错误).∵△ADF ≌△CEF ,∴S △CEF =S △ADF ∴S 四边形CEFD =S △AFC ,(故④正确).由于△DEF 是等腰直角三角形,因此当DE 最小时,DF 也最小;即当DF ⊥AC 时,DE 最小,此时DF=BC=4.∴DE=DF=4(故③错误).当△CDE 面积最大时,由④知,此时△DEF 的面积最小.此时S △CDE =S 四边形CEFD ﹣S △DEF =S △AFC ﹣S △DEF =16﹣8=8(故⑤正确).故选:B .【点评】此题考查的知识点有等腰直角三角形,全等三角形的判定与性质等知识点,考查知识点较多,综合性强,能力要求全面,难度较大.但作为选择题可采用排除法等特有方法,使此题难度稍稍降低一些.7.(5分)如图,在Rt △ABC 内有边长分别为a ,b ,c 的三个正方形,则a ,b ,c 满足的关系式是()A.b=a+c B.b=ac C.b2=a2+c2D.b=2a=2c【考点】相似三角形的判定与性质;正方形的性质.【分析】因为Rt△ABC内有边长分别为a、b、c的三个正方形,所以图中三角形都相似,且与a、b、c关系密切的是△DHE和△GQF,只要它们相似即可得出所求的结论.【解答】解:∵DH∥AB∥QF∴∠EDH=∠A,∠GFQ=∠B;又∵∠A+∠B=90°,∠EDH+∠DEH=90°,∠GFQ+∠FGQ=90°;∴∠EDH=∠FGQ,∠DEH=∠GFQ;∴△DHE∽△GQF,∴=∴=∴ac=(b﹣c)(b﹣a)∴b2=ab+bc=b(a+c),∴b=a+c.故选A.【点评】此题考查了相似三角形的判定,同时还考查观察能力和分辨能力.8.(5分)如图(1),A,B,C,D为圆O的四等分点,动点P从圆心O出发,沿O﹣C ﹣E﹣D﹣O路线作匀速运动,设运动时间为x(秒),∠APB=y(度),图(2)表示y与x之间的函数关系图,则点M的横坐标应为()A.2B.πC.π+1D.π+2【考点】动点问题的函数图象.【分析】根据速度=路程÷时间求出点P在CD弧上运动的时间,再根据图(2),加上2即可得解.【解答】解:设点P在弧CD上运动的时间为t,∵A,B,C,D为圆O的四等分点,点P作匀速运动,∴÷t=OC÷2,解得t=π,∴点P在半径OC与弧CD运动的时间之和是π+2,∴点M的横坐标为π+2.故选D.【点评】本题考查了动点问题的函数图象,根据速度、路程、时间的关系求出点P在CD弧上运动的时间是解题的关键.二、填空题(共8题,每题3分,共24分)9.(3分)如果关于x的二次三项式x2+mx+m是一个完全平方式,则m=4.【考点】完全平方式.【分析】根据已知求出第一个数是x,第二个数是±,根据已知式子中的第三项得出(±)2=m,求出m=0或m=4,最后看看是否符合题意即可.【解答】解:∵关于x的二次三项式x2+mx+m是一个完全平方式,∴第一个数是x,∵±2•x•=mx,∴第二个数是±,即(±)2=m,m=0或m=4,∵x2+mx+m是二次三项式,∴m=0舍去,故答案为:4.【点评】本题考查了对完全平方公式的理解和运用,注意:a2+2ab+b2和a2﹣2ab+b2都是完全平方公式.10.(3分)一个几何体,是由许多规格相同的小正方体堆积而成的,其主视图,左视图如图所示要摆成这样的图形,至少需用5块小正方体.【考点】由三视图判断几何体.【分析】主视图、左视图是分别从物体正面、左面看,所得到的图形;从正面看到的是3列,左边一列是2个正方形,中间一列是1个正方形,右边一列是2个正方形;要使小正方体最少,则把中间的一个正方体向后移动一行,把右边的一列2个正方体向后移动2行;由此即可解答.【解答】解:根据题干分析可得,摆出如图所示的图形,至少要2+1+2=5个小正方体.故答案为:5.【点评】本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.11.(3分)如图,O为矩形ABCD的对角线交点,DF平分∠ADC交AC于点E,交BC于点F,∠BDF=15°,则∠COF=75°.【考点】矩形的性质.【分析】根据DF平分∠ADC与∠BDF=15°可以计算出∠CDO=60°,再根据矩形的对角线相等且互相平分可得OD=OC,从而得到△OCD是等边三角形,再证明△COF是等腰三角形,然后根据三角形内角和定理解答即可.【解答】解:∵DF平分∠ADC,∴∠CDF=45°,∴△CDF是等腰直角三角形,∴CD=CF,∵∠BDF=15°,∴∠CDO=∠CDF+∠BDF=45°+15°=60°,在矩形ABCD中,OD=OC,∴△OCD是等边三角形,∴OC=CD,∠OCD=60°,∴OC=CF,∠OCF=90°﹣∠OCD=90°﹣60°=30°,在△COF中,∠COF=(180°﹣30°)=75°.故答案为:75.【点评】本题考查了矩形的性质,等边三角形的判定与性质,等腰三角形的性质,角平分线的定义,熟记各性质并判断出△OCD是等边三角形是解决本题的关键.12.(3分)若,则=﹣.【考点】二次根式的化简求值;完全平方公式.【分析】将已知等式左右两边平方,利用二次根式的化简公式化简,整理后求出x+的值,将所求式子平方并利用完全平方公式化简,把x+的值代入,开方即可求出值.【解答】解:将已知的等式左右两边平方得:x+2+=6,即x+=4,∴(﹣)2=x﹣2+=4﹣2=2,∵0<x<1,∴<,即﹣<0,则﹣=﹣.故答案为:﹣【点评】此题考查了二次根式的化简求值,以及完全平方公式的运用,熟练掌握完全平方公式是解本题的关键.13.(3分)m是方程x2﹣2010x+1=0的一个解,则值是2009.【考点】一元二次方程的解;代数式求值.【分析】把m代入方程有m2﹣2010m+1=0,得m2+1=2010m,m2=2010m﹣1,=2010代入代数式可以求出结果.【解答】解:∵m是方程的一个根,∴有:m2﹣2010m+1=0,得:m2=2010m﹣1,①=,②∴代数式m2﹣2009m+=2010m﹣1﹣2009m+=m+﹣1=﹣1=2010﹣1=2009.故答案为:2009.【点评】本题考查的是一元二次方程的解,把方程的解代入方程,得到关于m的式子,代入代数式化简求值.14.(3分)将红、白、黄三种小球,装入红、白、黄三个盒子中,每个盒子中装有相同颜色的小球.已知:(1)黄盒中的小球比黄球多;(2)红盒中的小球与白球不一样多;(3)白球比白盒中的球少.则红、白、黄三个盒子中装有小球的颜色依次是黄,红,白.【考点】容斥原理.【分析】由(2)可以判断出,红盒不装白球,由(3)判断出,白盒不装白球,从而推得黄盒装白球;假设白盒装黄球,由(3)知白球比黄球少,而(1)中,白球比黄球多,矛盾,从而得出白盒装红球,红盒装黄球.【解答】解:由条件(2)知红盒不装白球,由条件(3)知白盒不装白球,故黄盒装白球.假设白盒装黄球,由条件(3)知白球比黄球少,这与条件(1)矛盾,故白盒装红球,红盒装黄球.故答案为:黄、红、白.【点评】本题考查了容斥原理,根据(2)(3)推出其中一个结论,又利用反证法进行证明.15.(3分)如图,点O(0,0),B(0,1)是正方形OBB1C的两个顶点,以对角线OB1为一边作正方形OB1B2C1,再以正方形OB1B2C1的对角线OB2为一边作正方形OB2B3C2,依次下去,则点B7的坐标是(﹣8,8).【考点】正方形的性质;坐标与图形性质.【分析】根据题意和图形可看出每经过一次变化,都顺时针旋转45°,边长都乘以,所以可求出从B到B7的后变化的坐标.【解答】解:根据题意和图形可看出每经过一次变化,都顺时针旋转45°,边长都乘以,∵从B到B7经过了7次变化,∵45°×7=315°,1×()7=8.∴点B7所在的正方形的边长为8,点B7位置在第二象限.∴点B7的坐标是(﹣8,8).故答案为:(﹣8,8).【点评】本题考查正方形的性质,正方形的四边相等,四个角都是直角,对角线平分每一组对角,解答本题的关键是总结规律,难度一般.16.(3分)如图,在等腰梯形ABCD中,AD∥BC,BC=10,AD=2,∠B=45°.直角三角板含45°角的顶点E在边BC上移动,一直角边始终经过点A,斜边与CD交于点F.若△ABE为等腰三角形,则CF的长等于3或2或10﹣4.【考点】等腰梯形的性质;三角形内角和定理;等腰三角形的判定与性质;勾股定理;平行四边形的判定与性质.【分析】过D作DH⊥BC于H,①当AE=BE时,根据等腰梯形的性质求出BE和CH,由勾股定理求出AB,进一步求出CE,根据等腰三角形的判定和三角形的内角和定理求出CF=EF,根据勾股定理求出即可;②当AB=AE=4时,由勾股定理求出BE,进一步求出CE,根据等腰三角形的判定和三角形的内角和定理求出EF=CE,由勾股定理求出CF即可;根据三角形的内角和定理求出∠AEB、∠FEC,进一步求出∠CFE=∠FEC,求出CF=CE即可.【解答】解:过D作DH⊥BC于H,有三种情况:如图所示:①当AE=BE时,∵四边形ABCD是等腰梯形,∴BE=CH=(BC﹣AD)=4,由勾股定理得:AB=4,∴CE=BC﹣BE=6,∵∠B=∠BAE=45°,∴∠AEB=90°,∴∠FEC=180°﹣90°﹣45°=45°=∠C,∴∠EFC=180°﹣45°﹣45°=90°,∴由勾股定理得:CF=EF=3,②当AB=AE=4时,由勾股定理求得:BE=8,∴CE=BC﹣BE=2,同法可求出∠FEC=90°,∠EFC=45°=∠C,由勾股定理得:CF==2,③如图当AB=BE=4时,∠AEB=∠BAE=(180°﹣∠B )=67.5°,∴∠FEC=180°﹣67.5°﹣45°=67.5°,∵∠C=45°,∴∠CFE=180°﹣∠C ﹣∠FEC=67.5°=∠FEC ,∴CF=CE=BC ﹣BE=10﹣4,故答案为:3或2或10﹣4.【点评】本题主要考查对等腰三角形的性质和判定,等腰梯形的性质,勾股定理,三角形的内角和定理,平行四边形的性质和判定等知识点的理解和掌握,能求出CE 的长是解此题的关键.三、解答题(共4题,共56分)17.(14分)在一平直河岸l 同侧有A ,B 两个村庄,A ,B 到l 的距离分别是3km 和2km ,AB=akm (a >1).现计划在河岸l 上建一抽水站P ,用输水管向两个村庄供水.方案设计:某班数学兴趣小组设计了两种铺设管道方案:图1是方案一的示意图,设该方案中管道长度为d 1,且d 1=PB +BA (km )(其中BP ⊥l 于点p );图2是方案二的示意图,设该方案中管道长度为d 2,且d 2=PA +PB (km )(其中点A'与点A 关于I 对称,A ′B 与l 交于点P .观察计算:(1)在方案一中,d 1=a +2km (用含a 的式子表示);(2)在方案二中,组长小宇为了计算d 2的长,作了如图3所示的辅助线,请你按小宇同学的思路计算,d 2=km (用含a 的式子表示).探索归纳(1)①当a=4时,比较大小:d 1()d 2(填“>”、“=”或“<”);②当a=6时,比较大小:d 1()d 2(填“>”、“=”或“<”);(2)请你参考右边方框中的方法指导,就a (当a >1时)的所有取值情况进行分析,要使铺设的管道长度较短,应选择方案一还是方案二?【考点】作图—应用与设计作图.【分析】运用勾股定理和轴对称求出d2,根据方法指导,先求d12﹣d22,再根据差进行分类讨论选取合理方案.【解答】解:(1)∵A和A'关于直线l对称,∴PA=PA',d1=PB+BA=PB+PA'=a+2;故答案为:a+2;(2)因为BK2=a2﹣1,A'B2=BK2+A'K2=a2﹣1+52=a2+24所以d2=.探索归纳:(1)①当a=4时,d1=6,d2=,d1<d2;②当a=6时,d1=8,d2=,d1>d2;(2)=4a﹣20.①当4a﹣20>0,即a>5时,d12﹣d22>0,∴d1﹣d2>0,∴d1>d2;②当4a﹣20=0,即a=5时,d12﹣d22=0,∴d1﹣d2=0,∴d1=d2③当4a﹣20<0,即a<5时,d12﹣d22<0,∴d1﹣d2<0,∴d1<d2综上可知:当a>5时,选方案二;当a=5时,选方案一或方案二;当1<a<5(缺a>1不扣分)时,选方案一.【点评】本题为方案设计题,综合考查了学生的作图能力,运用数学知识解决实际问题的能力,以及观察探究和分类讨论的数学思想方法.18.(14分)如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O交AC边于点D,E是边BC的中点,连接DE.(1)求证:直线DE是⊙O的切线;(2)连接OC交DE于点F,若OF=CF,求tan∠ACO的值.【考点】切线的判定;全等三角形的判定与性质.【分析】(1)要证明直线DE是⊙O的切线,只要证明∠ODE=90°即可.(2)作OH⊥AC于点H,由tan∠ACO=OH:HC,分别求得OH,HC的值可找出其关系即可得到tan∠ACO的值.【解答】(1)证明:连接OD、OE、BD,∵AB是⊙O的直径,∴∠CDB=∠ADB=90°,∵E点是BC的中点,∴DE=CE=BE.∵OD=OB,OE=OE,∴△ODE≌△OBE(SSS),∴∠ODE=∠OBE=90°,∵OD是圆的半径,∴直线DE是⊙O的切线.(2)解:作OH⊥AC于点H,∵OA=OB,∴OE∥AC,且OE=AC,∴∠CDF=∠OEF,∠DCF=∠EOF;∵CF=OF,∴△DCF≌△EOF(AAS),∴DC=OE=AD,∴四边形CEOD为平行四边形,∴CE=OD=OA=AB,∴BA=BC,∴∠A=45°;∵OH⊥AD,∴OH=AH=DH,∴CH=3OH,∴tan∠ACO=.【点评】此题考查了学生对全等三角形的判定方法及切线的判定等知识的掌握情况.19.(14分)为支持四川抗震救灾,重庆市A、B、C三地现在分别有赈灾物资100吨、100吨、80吨,需要全部运往四川重灾地区的D、E两县.根据灾区的情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20吨.(1)求这批赈灾物资运往D、E两县的数量各是多少?(2)若要求C地运往D县的赈灾物资为60吨,A地运往D的赈灾物资为x吨(x为整数),B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍.其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25吨.则A、B两地的赈灾物资运往D、E两县的方案有几种?请你写出具体的运送方案;(3)已知A、B、C三地的赈灾物资运往D、E两县的费用如下表:A地B地C地运往D县的费用(元/吨)220200200运往E县的费用(元/吨)250220210为及时将这批赈灾物资运往D、E两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?【考点】一元一次不等式组的应用;一次函数的应用.【分析】(1)设这批赈灾物资运往D县的数量为a吨,运往E县的数量为b吨,得到一个二元一次方程组,求解即可.(2)根据题意得到一元二次不等式,再找符合条件的整数值即可.(3)求出总费用的函数表达式,利用函数性质可求出最多的总费用.【解答】解:(1)设这批赈灾物资运往D县的数量为a吨,运往E县的数量为b吨.(1分)由题意,得(2分)解得(3分)答:这批赈灾物资运往D县的数量为180吨,运往E县的数量为100吨.(4分)(2)由题意,得(5分)解得即40<x≤45.∵x为整数,∴x的取值为41,42,43,44,45.(6分)则这批赈灾物资的运送方案有五种.具体的运送方案是:方案一:A地的赈灾物资运往D县41吨,运往E县59吨;B地的赈灾物资运往D县79吨,运往E县21吨.方案二:A地的赈灾物资运往D县42吨,运往E县58吨;B地的赈灾物资运往D县78吨,运往E县22吨.方案三:A地的赈灾物资运往D县43吨,运往E县57吨;B地的赈灾物资运往D县77吨,运往E县23吨.方案四:A地的赈灾物资运往D县44吨,运往E县56吨;B地的赈灾物资运往D县76吨,运往E县24吨.方案五:A地的赈灾物资运往D县45吨,运往E县55吨;B地的赈灾物资运往D县75吨,运往E县25吨.(7分)(3)设运送这批赈灾物资的总费用为w元.由题意,得w=220x+250(100﹣x)+200(120﹣x)+220(x﹣20)+200×60+210×20=﹣10x+60800.(9分)因为w随x的增大而减小,且40<x≤45,x为整数.所以,当x=41时,w有最大值.则该公司承担运送这批赈灾物资的总费用最多为:w=60390(元).(10分)【点评】解应用题的一般步骤是:审、设、列、解、验、答.正确找出题中的等量或不等关系是解题的关键.本题利用一次函数的增减性确定了总费用的最大值.20.(14分)在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,且点A(0,2),点C(﹣1,0),如图所示:抛物线y=ax2+ax﹣2经过点B.(1)求点B的坐标;(2)求抛物线的解析式;(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)根据题意,过点B作BD⊥x轴,垂足为D;根据角的互余的关系,易得B到x、y轴的距离,即B的坐标;(2)根据抛物线过B点的坐标,可得a的值,进而可得其解析式;(3)首先假设存在,分A、C是直角顶点两种情况讨论,根据全等三角形的性质,可得答案.【解答】解:(1)过点B作BD⊥x轴,垂足为D,∵∠BCD+∠ACO=90°,∠ACO+∠CAO=90°,∴∠BCD=∠CAO,(1分)又∵∠BDC=∠COA=90°,CB=AC,∴△BCD≌△CAO,(2分)∴BD=OC=1,CD=OA=2,(3分)∴点B的坐标为(﹣3,1);(4分)(2)抛物线y=ax2+ax﹣2经过点B(﹣3,1),则得到1=9a﹣3a﹣2,(5分)解得a=,所以抛物线的解析式为y=x2+x﹣2;(7分)(3)假设存在点P,使得△ACP仍然是以AC为直角边的等腰直角三角形:①若以点C为直角顶点;则延长BC至点P1,使得P1C=BC,得到等腰直角三角形△ACP1,(8分)过点P1作P1M⊥x轴,∵CP1=BC,∠MCP1=∠BCD,∠P1MC=∠BDC=90°,∴△MP1C≌△DBC.(10分)∴CM=CD=2,P1M=BD=1,可求得点P1(1,﹣1);(11分)②若以点A为直角顶点;则过点A作AP2⊥CA,且使得AP2=AC,得到等腰直角三角形△ACP2,(12分)过点P2作P2N⊥y轴,同理可证△AP2N≌△CAO,(13分)∴NP2=OA=2,AN=OC=1,可求得点P2(2,1),(14分)③以A为直角顶点的等腰Rt△ACP的顶点P有两种情况.即过点A作直线L⊥AC,在直线L上截取AP=AC时,点P可能在y轴右侧,即现在解答情况②的点P2;点P也可能在y轴左侧,即还有第③种情况的点P3.因此,然后过P3作P3G⊥y轴于G,同理:△AGP3≌△CAO,∴GP3=OA=2,AG=OC=1,∴P3为(﹣2,3);经检验,点P1(1,﹣1)与点P2(2,1)都在抛物线y=x2+x﹣2上,点P3(﹣2,3)分)不在抛物线上.(16【点评】本题考查学生将二次函数的图象与解析式相结合处理问题、解决问题的能力,综合性强,能力要求极高.考查学生分类讨论,数形结合的数学思想方法.第21页(共21页)。

【精选3份合集】浙江省温州市2020年中考一模数学试卷有答案含解析

【精选3份合集】浙江省温州市2020年中考一模数学试卷有答案含解析

中考数学模拟试卷(解析版)注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题1.如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为1.若AA'=1,则A'D等于()A.2 B.3 C.23D.32解析:A【解析】分析:由S△ABC=9、S△A′EF=1且AD为BC边的中线知S△A′DE=12S△A′EF=2,S△ABD=12S△ABC=92,根据△DA′E∽△DAB知2A DEABDSA DAD S''=VV(),据此求解可得.详解:如图,∵S△ABC=9、S△A′EF=1,且AD为BC边的中线,∴S△A′DE=12S△A′EF=2,S△ABD=12S△ABC=92,∵将△ABC沿BC边上的中线AD平移得到△A'B'C',∴A′E∥AB,∴△DA′E∽△DAB,则2A DEABDSA DAD S''=VV(),即22912A DA D'='+(),解得A′D=2或A′D=-25(舍),故选A.点睛:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.2.如图,四边形ABCD是菱形,对角线AC,BD交于点O,AC8=,BD6=,DH AB⊥于点H,且DH 与AC交于G,则OG长度为()A.92B.94C35D35解析:B【解析】试题解析:在菱形ABCD中,6AC=,8BD=,所以4OA=,3OD=,在Rt AOD△中,5AD=,因为11641222ABDS BD OA=⋅⋅=⨯⨯=V,所以1122ABDS AB DH=⋅⋅=V,则245DH=,在Rt BHDV中,由勾股定理得,22222418655BH BD DH⎛⎫=-=-=⎪⎝⎭,由DOG DHBV V∽可得,OG ODBH DH=,即3182455OG=,所以94OG=.故选B.3.已知A、B两地之间铁路长为450千米,动车比火车每小时多行驶50千米,从A市到B市乘动车比乘火车少用40分钟,设动车速度为每小时x千米,则可列方程为()A.4504504050x x-=-B.4504504050x x-=-C.4504502503x x-=+D.4504502503x x-=-解析:D 【解析】解:设动车速度为每小时x千米,则可列方程为:45050x-﹣450x=23.故选D.4.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.5B.2 C.52D.25解析:C【解析】【分析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=5,应用两次勾股定理分别求BE和a.【详解】过点D作DE⊥BC于点E.由图象可知,点F 由点A 到点D 用时为as ,△FBC 的面积为acm 1..∴AD=a. ∴12DE•AD=a. ∴DE=1. 当点F 从D 到B 时,用5s.∴BD=5.Rt△DBE 中,BE=()2222=521BD DE --=,∵四边形ABCD 是菱形,∴EC=a -1,DC=a ,Rt△DEC 中,a 1=11+(a-1)1.解得a=52. 故选C .【点睛】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.5.欧几里得的《原本》记载,形如22x ax b +=的方程的图解法是:画Rt ABC ∆,使90ACB ∠=o ,2a BC =,AC b =,再在斜边AB 上截取2a BD =.则该方程的一个正根是( )A .AC 的长B .AD 的长C .BC 的长D .CD 的长解析:B【解析】 【分析】可以利用求根公式求出方程的根,根据勾股定理求出AB 的长,进而求得AD 的长,即可发现结论.【解答】用求根公式求得:22221244b a a b a a x x -+-+-== ∵90,2a C BC ACb ∠=︒==,,∴224a AB b=+,∴22224.42a ab a a AD b+-=+-=AD的长就是方程的正根.故选B.【点评】考查解一元二次方程已经勾股定理等,熟练掌握公式法解一元二次方程是解题的关键.6.如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b解析:A【解析】【分析】根据这块矩形较长的边长=边长为3a的正方形的边长-边长为2b的小正方形的边长+边长为2b的小正方形的边长的2倍代入数据即可.【详解】依题意有:3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.故这块矩形较长的边长为3a+2b.故选A.【点睛】本题主要考查矩形、正方形和整式的运算,熟读题目,理解题意,清楚题中的等量关系是解答本题的关键.7.如图,若a<0,b>0,c<0,则抛物线y=ax2+bx+c的大致图象为()A.B.C.D.解析:B【解析】【分析】。

2020年浙江省温州市中考数学仿真试卷(5月份) (解析版)

2020年浙江省温州市中考数学仿真试卷(5月份) (解析版)

2020年温州市中考(5月份)数学仿真试卷一、选择题(共10小题).1.﹣的相反数是()A.﹣B.﹣C.D.2.如图,该几何体的左视图是()A.B.C.D.3.介于下列哪两个整数之间()A.0与1B.1与2C.2与3D.3与44.一个布袋里装有2个红球、3个黄球和5个白球,除颜色外其它都相同.搅匀后任意摸出一个球,是黄球的概率为()A.B.C.D.5.若一组数据为3,5,4,5,6,则这组数据的众数是()A.3B.4C.5D.66.已知点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0D.y2<0<y17.如图,在山坡上种树,坡度i=1:2,AB=5m,则相邻两树的水平距离AC为()A.5m B.m C.2m D.10m8.若关于x的方程(k﹣1)x2+4x+1=0有实数解,则k的取值范围是()A.k≥5B.k≥5且k≠1C.k≤5且k≠1D.k≤59.如图,点A的反比例函数y=(x>0)的图象上,点B在反比例函数y=(x>0)的图象上,AB∥x轴,BC⊥x轴,垂足为C,连接AC,若△ABC的面积是6,则k的值为()A.10B.12C.14D.1610.如图所示,在平面直角坐标系中,半径均为1个单位的半圆O1,O2,O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2018秒时,点P的坐标是点()A.(2017,1)B.(2018,0)C.(2017,﹣1)D.(2019,0)二.填空题(共6小题,满分30分,每小题5分)11.2019年12月12日,国务院新闻办公室发布,南水北调工程全面通水5周年来,直接受益人口超过1.2亿人,其中1.2亿用科学记数法表示为.12.因式分解:5x2﹣2x=.13.已知扇形的面积为4π,半径为6,则此扇形的圆心角为度.14.如图,PA,PB分别切⊙O于点A,B.若∠P=100°,则∠ACB的大小为(度).15.如图,直线y=x+8与x轴、y轴分别交于A,B两点,C是OB的中点,D是AB 上点,四边形OEDC是菱形,则△OAE的面积为.16.刘徵是我国古代最杰出的数学家之一,他在《九算术圆田术)中用“割圆术”证明了圆面积的精确公式,并给出了计算圆周率的科学方法(注:圆周率=圆的周长与该圆直径的比值)“割圆术”就是以“圆内接正多边形的面积”,来无限逼近“圆面积”,刘徽形容他的“割圆术”说:割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣.刘徽计算圆周率是从正六边形开始的,易知圆的内接正六边形可分为六个全等的正三角形,每个三角形的边长均为圆的半径R.此时圆内接正六边形的周长为6R,如果将圆内接正六边形的周长等同于圆的周长,可得圆周率为3.当正十二边形内接于圆时,如果按照上述方法计算,可得圆周率为.(参考数据:sin l5°=0.26)三.解答题(共8小题,共80分,解答需写出必要的文字说明、演算步骤或证明过程)17.(1)计算:(﹣3)2﹣+(1﹣)0;(2)化简:(m+2)(m﹣2)﹣m(m﹣3).18.如图,点A、C、D、B在同一条直线上,且AC=BD,∠A=∠B,∠E=∠F.(1)求证:△ADE≌△BCF;(2)若∠BCF=65°,求∠DMF的度数.19.为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门).(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图.根据该统计图,请估计该校七年级480名学生选“数学故事”的人数.(2)学校将选“数学故事”的学生分成人数相等的A,B,C三个班,小聪、小慧都选择了“数学故事”,已知小聪不在A班,求他和小慧被分到同一个班的概率.(要求列表或画树状图)20.在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A(2,3),B(4,4),请在所给网格区域(含边界)上按要求画整点三角形.(1)在图1中画一个△PAB,使点P的横、纵坐标之和等于点A的横坐标;(2)在图2中画一个△PAB,使点P,B横坐标的平方和等于它们纵坐标和的4倍.21.如图,D是△ABC的BC边上一点,连接AD,作△ABD的外接圆,将△ADC沿直线AD折叠,点C的对应点E落在⊙O上.(1)求证:AE=AB.(2)若∠CAB=90°,cos∠ADB=,BE=2,求BC的长.22.如图,直线y=﹣3x+3与x轴、y轴分别交于A,B两点,抛物线y=﹣x2+bx+c与直线y=c分别交y轴的正半轴于点C和第一象限的点P,连接PB,得△PCB≌△BOA(O为坐标原点).若抛物线与x轴正半轴交点为点F,设M是点C,F间抛物线上的一点(包括端点),其横坐标为m.(1)直接写出点P的坐标和抛物线的解析式;(2)当m为何值时,△MAB面积S取得最小值和最大值?请说明理由;(3)求满足∠MPO=∠POA的点M的坐标.23.某超市用1200元购进一批甲玩具,用800元购进一批乙玩具,所购甲玩具件数是乙玩具件数的,已知甲玩具的进货单价比乙玩具的进货单价多1元.(1)求:甲、乙玩具的进货单价各是多少元?(2)玩具售完后,超市决定再次购进甲、乙玩具(甲、乙玩具的进货单价不变),购进乙玩具的件数比甲玩具件数的2倍多60件,求:该超市用不超过2100元最多可以采购甲玩具多少件?24.如图,在平面直角坐标系中,直线y=kx+b与x轴交于点A(5,0),与y轴交于点B;直线y═x+6过点B和点C,且AC⊥x轴.点M从点B出发以每秒2个单位长度的速度沿y轴向点O运动,同时点N从点A出发以每秒3个单位长度的速度沿射线AC向点C运动,当点M到达点O时,点M、N同时停止运动,设点M运动的时间为t(秒),连接MN.(1)求直线y=kx+b的函数表达式及点C的坐标;(2)当MN∥x轴时,求t的值;(3)MN与AB交于点D,连接CD,在点M、N运动过程中,线段CD的长度是否变化?如果变化,请直接写出线段CD长度变化的范围;如果不变化,请直接写出线段CD 的长度.参考答案一.选择题(共10小题,满分40分,每小题4分)1.﹣的相反数是()A.﹣B.﹣C.D.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.解:﹣的相反数是,故选:D.2.如图,该几何体的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.解:从左边看是三个相连接的同长不同宽的矩形,其中上下两个矩形的宽相同且比较小,故选项B符合题意.故选:B.3.介于下列哪两个整数之间()A.0与1B.1与2C.2与3D.3与4【分析】依据被开放数越大对应的算术平方根越大求解即可.解:∵4<5<9,∴2<<3.故选:C.4.一个布袋里装有2个红球、3个黄球和5个白球,除颜色外其它都相同.搅匀后任意摸出一个球,是黄球的概率为()A.B.C.D.【分析】用黄色小球的个数除以总个数可得.解:搅匀后任意摸出一个球,是黄球的概率为=,故选:B.5.若一组数据为3,5,4,5,6,则这组数据的众数是()A.3B.4C.5D.6【分析】众数的求法:一组数据中出现次数最多的那个数;据此解答.解:因为这组数据中出现次数最多的数是5,所以5是这组数据的众数;故选:C.6.已知点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0D.y2<0<y1【分析】根据点的横坐标利用一次函数图象上点的坐标特征,即可求出y1、y2的值,将其与0比较大小后即可得出结论.解:∵点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,∴y1=﹣5,y2=10,∵10>0>﹣5,∴y1<0<y2.故选:B.7.如图,在山坡上种树,坡度i=1:2,AB=5m,则相邻两树的水平距离AC为()A.5m B.m C.2m D.10m【分析】直接利用坡角的定义设BC=x,则AC=2x,进而利用勾股定理得出答案.解:∵在山坡上种树,坡度i=1:2,∴设BC=x,则AC=2x,∴x2+(2x)2=52,解得:x=(负值舍去),故AC=2(m).故选:C.8.若关于x的方程(k﹣1)x2+4x+1=0有实数解,则k的取值范围是()A.k≥5B.k≥5且k≠1C.k≤5且k≠1D.k≤5【分析】分类讨论:该方程是一元二次方程和一元一次方程.一元二次方程的二次项系数不等于零且根的判别式大于零.解:①当该方程是关于x的一元一次方程时,k﹣1=0即k=1,此时x=﹣,符合题意;②当该方程是关于x的一元二次方程时,k﹣1≠0即k≠1,此时△=16﹣4(k﹣1)≥0.解得k≤5;综上所述,k的取值范围是k≤5.故选:D.9.如图,点A的反比例函数y=(x>0)的图象上,点B在反比例函数y=(x>0)的图象上,AB∥x轴,BC⊥x轴,垂足为C,连接AC,若△ABC的面积是6,则k的值为()A.10B.12C.14D.16【分析】延长BA,交y轴于M,作AN⊥x轴于N,根据反比例函数系数k的几何意义得出S四边形ANCB=S四边形OMBC﹣S四边形OMAN=k﹣4=2S△ABC,由已知条件得出k﹣4=2×6,解得k=16.解:延长BA,交y轴于M,作AN⊥x轴于N,∵点A的反比例函数y=(x>0)的图象上,AB∥x轴,BC⊥x轴,∴S四边形OMAN=4,∵点B在反比例函数y=(x>0)的图象上,∴S四边形OMBC=k,∵S四边形ANCB=S四边形OMBC﹣S四边形OMAN=k﹣4=2S△ABC,∴k﹣4=2×6,解得k=16,故选:D.10.如图所示,在平面直角坐标系中,半径均为1个单位的半圆O1,O2,O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2018秒时,点P的坐标是点()A.(2017,1)B.(2018,0)C.(2017,﹣1)D.(2019,0)【分析】以时间为点P的下标,根据半圆的半径以及部分点P的坐标可找出规律“P4n (n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,﹣1)”,依此规律即可得出第2018秒时,点P的坐标.解:∵圆的半径都为1,∴半圆的周长=π,以时间为点P的下标.观察发现规律:P0(0,0),P1(1,1),P2(2,0),P3(3,﹣1),P4(4,0),P5(5,1),…,∴P4n(n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,﹣1).∵2018=504×4+2,∴第2018秒时,点P的坐标为(2018,0),故选:B.二.填空题(共6小题,满分30分,每小题5分)11.2019年12月12日,国务院新闻办公室发布,南水北调工程全面通水5周年来,直接受益人口超过1.2亿人,其中1.2亿用科学记数法表示为 1.2×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:1.2亿=120000000=1.2×108.故答案为:1.2×108.12.因式分解:5x2﹣2x=x(5x﹣2).【分析】提取公因式x即可得.解:5x2﹣2x=x(5x﹣2),故答案为:x(5x﹣2).13.已知扇形的面积为4π,半径为6,则此扇形的圆心角为40度.【分析】利用扇形面积计算公式:设圆心角是n°,圆的半径为R的扇形面积为S,则S=,由此构建方程即可解决问题.扇形解:设该扇形的圆心角度数为n°,∵扇形的面积为4π,半径为6,∴4π=,解得:n=40.∴该扇形的圆心角度数为:40°.故答案为:40.14.如图,PA,PB分别切⊙O于点A,B.若∠P=100°,则∠ACB的大小为40(度).【分析】首先连接OA,OB,由PA、PB分别切⊙O于点A、B,根据切线的性质可得:OA⊥PA,OB⊥PB,然后由四边形的内角和等于360°,求得∠AOB的度数,又由圆周角定理,即可求得答案.解:连接OA,OB,∵PA、PB分别切⊙O于点A、B,∴OA⊥PA,OB⊥PB,即∠PAO=∠PBO=90°,∴∠AOB=360°﹣∠PAO﹣∠P﹣∠PBO=360°﹣90°﹣100°﹣90°=80°,∴∠C=∠AOB=40°.故答案为:40.15.如图,直线y=x+8与x轴、y轴分别交于A,B两点,C是OB的中点,D是AB 上点,四边形OEDC是菱形,则△OAE的面积为8.【分析】利用一次函数图象上点的坐标特征得出点A,B的坐标,根据中点坐标公式求出点C的坐标,得到菱形的边长为4,则DE=4=DC,设点D(m,﹣m+8),则点E(m,﹣m+4),利用两点间的距离公式由CD=4列出方程,即可求解.解:∵直线y=x+8与x轴、y轴分别交于A,B两点,∴当x=0时,y=8;当y=0时,x=8,∴点A、B的坐标分别为:(8,0)、(0,8),∵C是OB的中点,∴点C(0,4),∴菱形的边长为4,则DE=4=DC,设点D(m,﹣m+8),则点E(m,﹣m+4),则CD2=m2+(﹣m+8﹣4)2=16,解得:m=2,故点E(2,2),S△OAE=×OA×y E=×8×2=8,故答案为8.16.刘徵是我国古代最杰出的数学家之一,他在《九算术圆田术)中用“割圆术”证明了圆面积的精确公式,并给出了计算圆周率的科学方法(注:圆周率=圆的周长与该圆直径的比值)“割圆术”就是以“圆内接正多边形的面积”,来无限逼近“圆面积”,刘徽形容他的“割圆术”说:割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣.刘徽计算圆周率是从正六边形开始的,易知圆的内接正六边形可分为六个全等的正三角形,每个三角形的边长均为圆的半径R.此时圆内接正六边形的周长为6R,如果将圆内接正六边形的周长等同于圆的周长,可得圆周率为3.当正十二边形内接于圆时,如果按照上述方法计算,可得圆周率为 3.12.(参考数据:sin l5°=0.26)【分析】连接OA1、OA2,根据正十二边形的性质得到∠A1OA2=30°,△A1OA2是等腰三角形,作OM⊥A1A2于M,根据等腰三角形三线合一的性质得出∠A1OM=15°,A1A2=2A1M.设圆的半径R,解直角△A1OM,求出A1M,进而得到正十二边形的周长L,那么圆周率π≈.解:如图,设半径为R的圆内接正十二边形的周长为L.连接OA1、OA2,∵十二边形A1A2…A12是正十二边形,∴∠A1OA2=30°.作OM⊥A1A2于M,又OA1=OA2,∴∠A1OM=15°,A1A2=2A1M.在直角△A1OM中,A1M=OA1•sin∠A1OM=0.26R,∴A1A2=2A1M=0.52R,∴L=12A1A2=6.24R,∴圆周率π≈==3.12.故答案为3.12.三.解答题(共8小题,共80分,解答需写出必要的文字说明、演算步骤或证明过程)17.(1)计算:(﹣3)2﹣+(1﹣)0;(2)化简:(m+2)(m﹣2)﹣m(m﹣3).【分析】(1)根据幂的乘方、二次根式的性质以及任何非0数的0次幂等于1化简计算即可;(2)分别根据平方差公式与单项式乘多项式的法则化简计算即可.解:(1)原式=9﹣+1=10﹣;(2)原式=m2﹣4﹣m2+3m=3m﹣4.18.如图,点A、C、D、B在同一条直线上,且AC=BD,∠A=∠B,∠E=∠F.(1)求证:△ADE≌△BCF;(2)若∠BCF=65°,求∠DMF的度数.【分析】(1)由线段的和差求出AD=BC,由角边角证明△AED≌△BFC;(2)由全等三角形的性质,三角形的一个外角等于不相邻的两个内角的和求出∠DMF 的度数为130°.【解答】证明:如图所示:(1)∵AD=AC+CD,BC=BD+CD,AC=BD,∴AD=BC,在△AED和△BFC中,,∴△AED≌△BFC(AAS),(2)∵△AED≌△BFC,∴∠ADE=∠BCF,又∵∠BCF=65°,∴∠ADE=65°,又∵∠ADE+∠BCF=∠DMF∴∠DMF=65°×2=130°.19.为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门).(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图.根据该统计图,请估计该校七年级480名学生选“数学故事”的人数.(2)学校将选“数学故事”的学生分成人数相等的A,B,C三个班,小聪、小慧都选择了“数学故事”,已知小聪不在A班,求他和小慧被分到同一个班的概率.(要求列表或画树状图)【分析】(1)利用样本估计总体,用480乘以样本中选“数学故事”的人数所占的百分比即可估计该校七年级480名学生选“数学故事”的人数;(2)画树状图展示所有6种等可能的结果数,再找出他和小慧被分到同一个班的结果数,然后根据概率公式求解.解:(1)480×=90,估计该校七年级480名学生选“数学故事”的人数为90人;(2)画树状图为:共有6种等可能的结果数,其中他和小慧被分到同一个班的结果数为2,所以他和小慧被分到同一个班的概率==.20.在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A(2,3),B(4,4),请在所给网格区域(含边界)上按要求画整点三角形.(1)在图1中画一个△PAB,使点P的横、纵坐标之和等于点A的横坐标;(2)在图2中画一个△PAB,使点P,B横坐标的平方和等于它们纵坐标和的4倍.【分析】(1)设P(x,y),由题意x+y=2,求出整数解即可解决问题;(2)设P(x,y),由题意x2+42=4(4+y),求出整数解即可解决问题;解:(1)设P(x,y),由题意x+y=2,∴P(2,0)或(1,1)或(0,2)不合题意舍弃,△PAB如图所示.(2)设P(x,y),由题意x2+42=4(4+y),整数解为(2,1)或(0,0)或(4,4)(舍去)等,△PAB如图所示.21.如图,D是△ABC的BC边上一点,连接AD,作△ABD的外接圆,将△ADC沿直线AD折叠,点C的对应点E落在⊙O上.(1)求证:AE=AB.(2)若∠CAB=90°,cos∠ADB=,BE=2,求BC的长.【分析】(1)由折叠得出∠AED=∠ACD、AE=AC,结合∠ABD=∠AED知∠ABD =∠ACD,从而得出AB=AC,据此得证;(2)作AH⊥BE,由AB=AE且BE=2知BH=EH=1,根据∠ABE=∠AEB=∠ADB 知cos∠ABE=cos∠ADB==,据此得AC=AB=3,利用勾股定理可得答案.解:(1)由折叠的性质可知,△ADE≌△ADC,∴∠AED=∠ACD,AE=AC,∵∠ABD=∠AED,∴∠ABD=∠ACD,∴AB=AC,∴AE=AB;(2)如图,过A作AH⊥BE于点H,∵AB=AE,BE=2,∴BH=EH=1,∵∠ABE=∠AEB=∠ADB,cos∠ADB=,∴cos∠ABE=cos∠ADB=,∴=.∴AC=AB=3,∵∠BAC=90°,AC=AB,∴BC=3.22.如图,直线y=﹣3x+3与x轴、y轴分别交于A,B两点,抛物线y=﹣x2+bx+c与直线y=c分别交y轴的正半轴于点C和第一象限的点P,连接PB,得△PCB≌△BOA(O为坐标原点).若抛物线与x轴正半轴交点为点F,设M是点C,F间抛物线上的一点(包括端点),其横坐标为m.(1)直接写出点P的坐标和抛物线的解析式;(2)当m为何值时,△MAB面积S取得最小值和最大值?请说明理由;(3)求满足∠MPO=∠POA的点M的坐标.【分析】(1)代入y=c可求出点C、P的坐标,利用一次函数图象上点的坐标特征可求出点A、B的坐标,再由△PCB≌△BOA即可得出b、c的值,进而可得出点P的坐标及抛物线的解析式;(2)利用二次函数图象上点的坐标特征求出点F的坐标,过点M作ME∥y轴,交直线AB于点E,由点M的横坐标可得出点M、E的坐标,进而可得出ME的长度,再利用三角形的面积公式可找出S=﹣(m﹣3)2+5,由m的取值范围结合二次函数的性质即可求出S的最大值及最小值;(3)分两种情况考虑:①当点M在线段OP上方时,由CP∥x轴利用平行线的性质可得出:当点C、M重合时,∠MPO=∠POA,由此可找出点M的坐标;②当点M在线段OP下方时,在x正半轴取点D,连接DP,使得DO=DP,此时∠DPO=∠POA,设点D的坐标为(n,0),则DO=n,DP=,由DO=DP可求出n 的值,进而可得出点D的坐标,由点P、D的坐标利用待定系数法即可求出直线PD的解析式,再联立直线PD及抛物线的解析式成方程组,通过解方程组求出点M的坐标.综上此题得解.解:(1)当y=c时,有c=﹣x2+bx+c,解得:x1=0,x2=b,∴点C的坐标为(0,c),点P的坐标为(b,c).∵直线y=﹣3x+3与x轴、y轴分别交于A、B两点,∴点A的坐标为(1,0),点B的坐标为(0,3),∴OB=3,OA=1,BC=c﹣3,CP=b.∵△PCB≌△BOA,∴BC=OA,CP=OB,∴b=3,c=4,∴点P的坐标为(3,4),抛物线的解析式为y=﹣x2+3x+4.(2)当y=0时,有﹣x2+3x+4=0,解得:x1=﹣1,x2=4,∴点F的坐标为(4,0).过点M作ME∥y轴,交直线AB于点E,如图1所示.∵点M的横坐标为m(0≤m≤4),∴点M的坐标为(m,﹣m2+3m+4),点E的坐标为(m,﹣3m+3),∴ME=﹣m2+3m+4﹣(﹣3m+3)=﹣m2+6m+1,∴S=S梯形OEMB﹣S△OEB﹣S△AEM=OA•ME=﹣m2+3m+=﹣(m﹣3)2+5.∵﹣<0,0≤m≤4,∴当m=0时,S取最小值,最小值为;当m=3时,S取最大值,最大值为5.(3)①当点M在线段OP上方时,∵CP∥x轴,∴当点C、M重合时,∠MPO=∠POA,∴点M的坐标为(0,4);②当点M在线段OP下方时,在x正半轴取点D,连接DP,使得DO=DP,此时∠DPO =∠POA.设点D的坐标为(n,0),则DO=n,DP=,∴n2=(n﹣3)2+16,解得:n=,∴点D的坐标为(,0).设直线PD的解析式为y=kx+a(k≠0),将P(3,4)、D(,0)代入y=kx+a,,解得:,∴直线PD的解析式为y=﹣x+.联立直线PD及抛物线的解析式成方程组,得:,解得:,.∴点M的坐标为(,).综上所述:满足∠MPO=∠POA的点M的坐标为(0,4)或(,).23.某超市用1200元购进一批甲玩具,用800元购进一批乙玩具,所购甲玩具件数是乙玩具件数的,已知甲玩具的进货单价比乙玩具的进货单价多1元.(1)求:甲、乙玩具的进货单价各是多少元?(2)玩具售完后,超市决定再次购进甲、乙玩具(甲、乙玩具的进货单价不变),购进乙玩具的件数比甲玩具件数的2倍多60件,求:该超市用不超过2100元最多可以采购甲玩具多少件?【分析】(1)设甲种玩具的进货单价为x元,则乙种玩具的进价为(x﹣1)元,根据数量=总价÷单价结合“用1200元购进一批甲玩具,用800元购进一批乙玩具,所购甲玩具件数是乙玩具件数的”,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购进甲种玩具y件,则购进乙种玩具(2y+60)件,根据进货的总资金不超过2100元,即可得出关于y的一元一次不等式,解之取其中的整数,即可得出结论.解:(1)设甲种玩具的进货单价为x元,则乙种玩具的进价为(x﹣1)元,根据题意得:=×,解得:x=6,经检验,x=6是原方程的解,∴x﹣1=5.答:甲种玩具的进货单价6元,则乙种玩具的进价为5元.(2)设购进甲种玩具y件,则购进乙种玩具(2y+60)件,根据题意得:6y+5(2y+60)≤2100,解得:y≤112,∵y为整数,∴y最大值=112答:该超市用不超过2100元最多可以采购甲玩具112件.24.如图,在平面直角坐标系中,直线y=kx+b与x轴交于点A(5,0),与y轴交于点B;直线y═x+6过点B和点C,且AC⊥x轴.点M从点B出发以每秒2个单位长度的速度沿y轴向点O运动,同时点N从点A出发以每秒3个单位长度的速度沿射线AC向点C运动,当点M到达点O时,点M、N同时停止运动,设点M运动的时间为t(秒),连接MN.(1)求直线y=kx+b的函数表达式及点C的坐标;(2)当MN∥x轴时,求t的值;(3)MN与AB交于点D,连接CD,在点M、N运动过程中,线段CD的长度是否变化?如果变化,请直接写出线段CD长度变化的范围;如果不变化,请直接写出线段CD 的长度.【分析】(1)根据AC⊥x轴,求出点C的横坐标为5,代入解析式求出纵坐标,得到点C的坐标,利用待定系数法求出k、b,得到直线y=kx+b的函数表达式;(2)根据题意用t表示出BM、AN,根据平行四边形的性质列出方程,解方程得到答案;(3)过点D作EF∥x轴,交OB于E,交AC于F,证明△BDM∽△ADN,根据相似三角形的性质得到DE=2,DF=3,证明△BDE∽△ADF,求出FA,得到CF的长,根据勾股定理计算,得到答案.解:(1)∵AC⊥x轴,点A(5,0),∴点C的横坐标为5,对于y═x+6,当x=5时,y=×5+6=10,对于x=0,y=6,∴点C的坐标为(5,10),点B的坐标为(0,6),直线y=kx+b与x轴交于点A(5,0),与y轴交于点B(0,6),则,解得,,∴直线y=kx+b的函数表达式为y=﹣x+6,综上所述,直线y=kx+b的函数表达式为y=﹣x+6,点C的坐标为(5,10);(2)由题意得,BM=2t,AN=3t,∴OM=6﹣2t,∵OM∥AN,MN∥x轴,∴四边形MOAN为平行四边形,∴OM=AN,∴6﹣2t=3t,解得,t=,∴当MN∥x轴时,t=;(3)线段CD的长度不变化,理由如下:过点D作EF∥x轴,交OB于E,交AC于F,∵EF∥x轴,BM∥AN,∠AOE=90°,∴四边形EOAF为矩形,∴EF=OA=5,EO=FA,∵BM∥AN,∴△BDM∽△ADN,∴==,∵EF=5,∴DE=2,DF=3,∵BM∥AN,∴△BDE∽△ADF,∴==,∴=,∵OB=6,∴EO=FA=,∴CF=AC﹣FA=,∴CD==.。

温州中学自主招生模拟试题数学

温州中学自主招生模拟试题数学

温州中学自主招生模拟试题数学试卷(120分) 一试一. 选择题:本大题共8小题,每小题4分,满分32分。

1. 设0a b >>, 那么21()a b a b +-的最小值是( )A.2B.3C.4D.52. 已知一组正数12345,,,,x x x x x 的方差为:222222123451(20)5Sx x x x x =++++-,则关于数据123452,2,2,2,2x x x x x + + + + +的说法:①方差为S2;②平均数为2;③平均数为4;④方差为4S2。

其中正确的说法是( )A .①②B .①③C . ②④ D.③④3. 已知实数b a ≠,且满足)1(33)1(2+-=+a a ,2)1(3)1(3+-=+b b .则ba aab b+的值为( )A.23B.23-C.2-D.13- 4. 如果x 和y 是非零实数,使得3=+y x 和3=+x y x ,那么x+y 等于( )A.3B.13C.2131-D.134-5. 如果对于不小于8的自然数n ,当3n+1是一个完全平方数是,n+1都能表示成个k 完全 平方数的和,那么k 的最小值为( ) A.1 B.2 C.3 D.46. 已知24b ac -是一元二次方程20ax bx c ++= (a ≠0)的一个实数根,则ab 的取值范围为( )A.18ab ≥B.18ab ≤C.14ab ≥D.14ab ≤7. 在四边形ABCD 中,边AB=x ,BC=CD=4, DA=5,它的对角线AC=y ,其中x,y 都是整数,∠BAC=∠DAC,那么,x=( )A.4B.5C.4或5D.非以上答案8. 设二次函数()20y ax bx c a =++≠满足:当01x ≤≤时,1y ≤.则a b c ++的最大值是( ).A.3;B.7;C.12;D.17. 二.填空题:本大题共6小题,每小题5分,满分30分。

9. 在边长为2的正方形A B C D 的四边上分别取点E 、F 、G 、H .四边形E F G H 四边的平方和2222EF FG GH HE +++最小时其面积为_____.10. 已知点A ,B 的坐标分别为(1,0),(2,0). 若二次函数()233y x a x =+-+的图象与线段AB 恰有一个交点,则a 的取值范围是 .11. △ABC 中,AB =7,BC =8,CA =9,过△ABC 的内切圆圆心I 作DE ∥BC ,分别与AB ,AC 相交于点D ,E ,则DE 的长为 .12. 关于x ,y 的方程22208()x y x y +=-的所有正整数解为 . 13. n 个正整数12na a a ,,,满足如下条件:1212009n a a a =<<<= ;且12na a a ,,,中任意n -1个不同的数的算术平均数都是正整数.则 n 的最大值为___________.14. 如图,射线AM ,BN 都垂直于线段AB ,点E 为AM 上一点,过点A 作BE 的垂线AC 分别交BE ,BN 于点F ,C ,过点C 作AM 的垂线CD ,垂足为D .若CD =CF ,A EA D= .温州中学自主招生模拟试题数学答题卷(120分) 一试一.选择题:本大题共8小题,每小题4分,满分32分。

最新浙江省温州市2019-2020年最新重点中学自主招生模拟数学试题(含答案)(已纠错)

最新浙江省温州市2019-2020年最新重点中学自主招生模拟数学试题(含答案)(已纠错)

2019届温州市重点中学自主招生模拟试题数学试卷(考试时间120分钟,满分150分)一.选择题(每题5分,共50分) 1.下列数中不属于有理数的是( )A.1B.21C.22D.0.11132.如图,在矩形中截取两个相同的圆作为圆柱的上.下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱.设矩形的长和宽分别为y 和x ,则y 与x 的函数图象大致是( )A. B. C. D.3.如果把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9、16 … 这样的数称为“正 方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( ) A 、13 = 3+10 B 、25 = 9+16 C 、49 = 18+31 D 、36 = 15+214.a 、b 、c 均不为0,若0<=-=-=-abc cxz b z y a y x ,则),(bc ab p 不可能在( ) A 、第一象限B 、第二象限C 、第三象限D 、第四象限5.如图,在平面直角坐标系中,⊙P 的圆心是(2,a )(a >2),半径为2,函数y=x 的图象被⊙P 截得的弦AB 的长为, 则a 的值是( )A 、B 、2+C 、错误!未找到引用源。

6.如图,在Rt△ABC 中,∠ACB=90º,∠A=30º,BC=2,将△ABC 绕 点C 按顺时针方向旋转n 度后,得到△EDC,此时,点D 在AB 边 上,斜边DE 交AC 边于点F ,则n 的大小和图中阴影部分的面积 分别为( )A 、30,2B 、60,2C 、60、60,3 7.如图一个长为m 、宽为n 的长方形(m >n )沿虚线剪开, 拼接成图2,成为在一角去掉一个小正方形后的一个大 正方形,则去掉的小正方形的边长为( ) A 、2m n - B 、m -n C 、2mD 、2n8.抛物线2x y =上有三点P 1、P 2、P 3,其横坐标分别为t ,t +1,t +3,则△P 1P 2P 3的面积为( ). A.1 B. 2 C. 3 D.4 9.已知直线483y x =-+与x 轴、y 轴分别交于点A 和点B ,M 是OB上的一点,若将△ABM 沿AM 折叠,点B 恰好落在x 轴上的点B '处,则直线AM 的函数解析式是( )A.821+-=x yB.831+-=x y C.321+-=x y D.331+-=x y10.正五边形广场ABCDE 的边长为80米,甲、乙两个同学做游戏,分别从A 、C 两点处同时出发,沿A-B-C-D-E-A 的方向绕广场行走,甲的速度为50米/分,乙的速度为46米/分,则两人第一次刚走到同一条边上时( ). A.甲在顶点A 处 B.甲在顶点B 处 C.甲在顶点C 处 D.甲在顶点D 处二.填空题(每题6分,共36分)11.分解因式:22242y xy x ++=________________. 12.如图,在平面直角坐标系中,反比例函数)0,0(>>=k x xky的图象经过点A (1, 2),B (m ,n )(m >1),过点B 作 y 轴的垂线,垂足为C.若△ABC 面积为2,则点B 的坐标 为________.13.如右图,是一回形图,其回形通道的宽和OB 的长均 为1,回形线与射线OA 交于A 1,A 2,A 3,….若从O 点到A 1点的回形线为第1圈(长为7),从A 1点到A 2 点的回形线为第2圈,…,依次类推.则第11圈的长 为 .14.今有一副三角板(如图1),中间各有一个直径为4cm 的圆洞,现将三角板a 的30º角的那一头插入三角板b的圆洞内(如图2),则三角板a 通过三角板b 的圆洞的那一部分的最大面积为 cm 2(不计三角板的厚度,精确到0.1cm 2).15.如图,等腰梯形MNPQ 的上底长为2,腰长为3,一个底角为60°.正方形ABCD 的边长为1,它的一边AD 在MN 上,且顶点A 与M 重合.现将正方形ABCD 在梯 形的外面沿边MN 、NP 、PQ 进行翻滚,翻滚到有一个顶 点与Q 重合时,点A 所经过的路线与梯形MNPQ 的三边 MN 、NP 、PQ 所围成图形的面积是________.16.如图,在矩形ABCD 中,AB=2,BC=4,⊙D 的半径为1.现将一个直角三角板的直角顶点与矩形的对称中心O图1ba切于点H ,此时两直角边与AD 交于E ,F 两点,则tan EFO ∠的值为 . 三.解答题(共6小题,分别为8,10,10,10,12,14分,共64分) 17.设数列 ,1,,12,1,,13,22,31,12,21,11kk k -,问:(1)这个数列第2010项的值是多少?(2)在这个数列中,第2010个值为1的项的序号是多少?18.如图,在梯形ABCD 中,AB ∥CD ,⊙O 为内切圆,E 为切点, (Ⅰ)求AOD ∠的度数;(Ⅱ)若8=AO cm ,6=DO cm ,求OE 的长. .19.请设计三种方案:把一个正方形剪两刀,使剪得的三块图形能够拼成一个三角形,并且使拼成的三角形既不是直角三角形也不是等腰三角形,画出必要的示意图,并附以简要的文字说明.20.某商场在促销期间规定:商场所有商品按标价的80%出售,同时,当顾客在该商场内消费满一定金额后,可按如下方案获得相应金额的奖券:根据上述促销方法,顾客在该商场购物可以获得双重优惠。

2019-2020学年浙江省温州中学自主招生九年级数学模拟试卷有标准答案

2019-2020学年浙江省温州中学自主招生九年级数学模拟试卷有标准答案

浙江省温州中学自主招生九年级数学模拟试卷(本卷满分:150分 考试时间:90分钟)一、单项选择题(本大题分5小题,每题4分,共20分)1. 气象台预报:“本市明天降水概率是80%”,但据经验,气象台预报的准确率仅为80%,则在此经验下,本市明天降水的概率为················( ) A 、84% B 、80% C 、68% D 、64%2. 如图,已知A ∠的平分线分别与边BC 、ABC ∆的外接圆交于点D 、M ,过D 任作一条与直线BC不重合的直线l ,直线l 分别与直线MB 、MC 交于点P 、Q ,下列判断不正确的是···········································( ) A .无论直线l 的位置如何,总有直线PM 与ABD ∆的外接圆相切B .无论直线l 的位置如何,总有BAC PAQ ∠>∠ C .直线l 选取适当的位置,可使A 、P 、M 、Q 四点共圆D .直线l 选取适当的位置,可使APQ S ∆<ABC S ∆3. 欲将正六边形的各边和各条对角线都染为n 种颜色之一,使得以正六边形的任何3个顶点作为顶点的三角形有3种不同颜色的边,并且不同的三角形使用不同的3色组合,则n 的最小值为·········( )A .6B .7C .8D .9 4. 将一个正11边形用对角线划分为9个三角形,这些对角线在正11边形内两两不相交,则··················································( ) A .存在某种分法,所分出的三角形都不是锐角三角形 B .存在某种分法,所分出的三角形恰有两个锐角三角形 C .存在某种分法,所分出的三角形至少有3个锐角三角形 D .任何一种分法所分出的三角形都恰有1个锐角三角形5. 已知实系数二次函数()x f 与()x g ,()()x g x f =和()()03=+x g x f 有两重根,()x f 有两相异实根,则()x g ···································( )A .有两相异实根B .有两相同实根C .没有实根D .没有有理根 二、填空题(本大题分10小题,每题6分,共60分)第2题6. 设正数x 、y 、z 满足方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=+=++.1693253222222x zx z z y y xy x ,,则xy +2yz +3zx 的值为 .7. 已知ABCD 是一个正方形,点M (异于点B 、C )在边BC 上,线段AM 的垂直平分线l 分别交AB 、CD于点E 、F .若AB =1,则DF BE -的取值范围为 .8. 已知实数a ,b ,c ,d 满足2a 2+3c 2=2b 2+3d 2=(ad-bc )2=6,则(a 2+b 2)(c 2+d 2)的值为 . 9. 由两个不大于100的正整数m ,n 组成的整数对(m ,n )中,满足:2121+<<+m n m 的有 对.10. 甲、乙两人在一个5×5的方格纸上玩填数游戏:甲先填且两人轮流在空格中填数,甲每次选择一个空格写上数字1,乙每次选择一个空格写上数字0,填完后计算每个3×3正方形内9个数之和,并将这些和数中的最大数记为A ,甲尽量使A 增大,乙尽量使A 减小,则甲可使A 获得的最大值是 .11. 一个锐角ABC ∆,︒=∠60BAC ,三点H 、O 、I 分别是ABC ∆的垂心、外心和内心,若BH=OI ,则ACB ∠= .12. 设ΔABC 的内切圆⊙O 与边CA 上的中线BM交于点G 、H ,并且点G 在点B 和点H 之间.已知BG =HM ,AB =2.则GH 的最大值为 .13. 设a 、b 为实数,函数()b ax x f +=满足:对任意x ∈[0,1],有()1≤x f ,则()()11++=b a S 的取值范围为 .14. 已知抛物线y 2=6x 上的两个动点A (x 1,y 1)和B (x 2,y 2),其中x 1≠x 2且x 1+x 2=4.线段AB 的垂直平分线与x 轴交于点C ,则ABC S ∆的最大值为 .15. 将一个3×3的正方形的四个角上各去掉一个单位正方形所得到的图形称为“十字形”.在一个10×11的棋盘上,最多可以放置 个互不重叠的“十字形”.(每个“十字形”恰好盖住棋盘上的5个小方格)三、解答题(本大题分5小题,16题10分,17~20题每题15分,共70分)16. 三角形的三边之长是某个系数为有理数的三次方程的根.证明:该三角形的高是某个系数为有理数的六次方程的根.第12题17. 已知ΔABC 内有n 个点(无三点共线),连同A 、B 、C 共n +3个点.以这些点为顶点把ΔABC 分成若干个互不重叠的小三角形.现把A ,B ,C 分别染成红色、蓝色、黄色,而其余n 个点,每个点任意染上红、蓝、黄三色之一.求证:三顶点都不同色的小三角形的总数必是奇数.18. 设奇数a ,b ,c ,d 满足0<a <b <c <d ,ad =bc ,若k d a 2=+,m c b 2=+,其中k ,m 是整数,试证:a =1.19.如图,在锐角ABC∆的外接圆⊙O的切线BD、CE,∆中,∠BAC≠60°,过点B、C分别作ABC且满足BD=CE=BC.直线DE与AB、AC的延长线分别交于点F、G.设CF与BD交于点M,CE与BG 交于点N,证明:AM=AN.第19题20.如图,在ABC中,AB>AC,内切圆⊙I与边BC切于点D,AD与⊙I的另一个交点为E,⊙I的切线EP与BC的延长线交于点P,CF∥PE且与AD交于点F,直线BF与⊙I交于点M、N,M在线段BF上,线段PM与⊙I交于另一点Q.证明:∠ENP=∠ENQ.第20题温州中学自主招生数学模拟试卷参考答案及评分建议一、单项选择题(本大题分5小题,每题4分,共20分)[ 1~5 ] C C B D C二、简答题(本大题分10小题,每空6分,共60分)[本大题评分建议:若数字书写不清晰,不给分]6、 3247、 ⎥⎦⎤⎝⎛410, 8、 6 9、 17110、 6 11、 40° 12、 213、 [-2,49] 14、 7314 15、 15三、分析解答题(本大题分5小题,16题10分,17~20题每题15分,共70分) 16、(10分)(可能有多种解法)(3分)(7分)故得证! (10分)[证明]17、(15分)(可能有多种解法)[证明]把这些小三角形的边进行赋值:边的端点同色的,赋值0;边的端点不同色的,赋值1.于是每个小三角形的三边之和有如下三种情形:(3分) (1)三顶点都不同色的,和为3; (2)恰有两顶点同色的,和为2; (3)三顶点都同色的,和为0.(6分)设所有小三角形的边赋值之和为S ,上述三种情形的三类小三角形的个数分别为a ,b ,c ,于是S =3a +2b +0c =3a +2b .(9分)而注意到所有小三角形的边的赋值之和中,除了AB ,BC ,CA 边外,其余的边都被算了两次,所以它们赋值之和为偶数,再加上AB ,BC ,CA 三边赋值之和为3,所以S 是奇数.(14分)因此a 是奇数.即三顶点都不同色的小三角形总数为奇数.(15分)18、(15分)(可能有多种解法)[解]22)(4)(a d ad d a -+=+22)()(4)(4c b b c bc a d bc +=-+>-+=222)()(4)(4c b b c bc a d bc +=-+>-+=. ∴m k 22>.∴k >m .(2分)把b c a d m k -=-=2,2,代入ad =bc ,有 )2()2(b b a a m k -=-(1), 由(1)可得2222a b a b k m -=•-•.(4分)即2222a b a b k m -=-,))(()2(2a b a b a b m k m -+=-- (2)(5分)已知a ,b 都是奇数,所以a +b ,a -b 都是偶数,又a b a b a 2)()(=-++是奇数的2倍,故b +a ,b -a 中必有一个不是4的倍数.(7分)由(2)必有⎩⎨⎧=-=+-f a b e a b m 221或⎩⎨⎧=+=--fa b ea b m 221.其中,e ,f 为正整数,且m k a b ef -⋅-=2是奇数.[ef b a b a m 2)()(=-++,与(2)比较可得](9分)由于k >m ,故a b a b ef 22=-<-≤f a b a b ef22=-<-≤.从而e =1,m k a b f -⋅-=2. 考虑前一情况,有⎩⎨⎧⋅-==-=+--)2(2221mk m a b f a b a b (11分) 由第二式可得 a a b m k -+=+12,故 a m k m -+-=1122,所以奇数a =1.(13分)对于后一情况,可作类似的讨论.(15分)19、(15分)(解法可能有多种,给分分为4档:0分、5分、10分、15分,注:学生可能用“易证”、“可证”等词骗取分数,此题需慢改)(5分)(10分)(15分)20、(15分)(解法可能有多种,给分分为4档:0分、5分、10分、15分,注:学生可能用“易证”、“可证”等词骗取分数,此题需慢改)(5分)(10分)(15分)第20题[证明](10分)...(5分)(15分)(5分)略(15分)...。

最新浙江省温州市2019-2020年最新重点中学自主招生模拟数学试题(含答案)(已审阅)

最新浙江省温州市2019-2020年最新重点中学自主招生模拟数学试题(含答案)(已审阅)

2019届温州市重点中学自主招生模拟试题数学试卷(考试时间120分钟,满分150分)一.选择题(每题5分,共50分) 1.下列数中不属于有理数的是( )A.1B.21C.22D.0.11132.如图,在矩形中截取两个相同的圆作为圆柱的上.下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱.设矩形的长和宽分别为y 和x ,则y 与x 的函数图象大致是( )A. B. C. D.3.如果把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9、16 … 这样的数称为“正 方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( ) A 、13 = 3+10 B 、25 = 9+16 C 、49 = 18+31 D 、36 = 15+214.a 、b 、c 均不为0,若0<=-=-=-abc cxz b z y a y x ,则),(bc ab p 不可能在( ) A 、第一象限B 、第二象限C 、第三象限D 、第四象限5.如图,在平面直角坐标系中,⊙P 的圆心是(2,a )(a >2),半径为2,函数y=x 的图象被⊙P 截得的弦AB 的长为, 则a 的值是( )A 、B 、2+C 、错误!未找到引用源。

6.如图,在Rt△ABC 中,∠ACB=90º,∠A=30º,BC=2,将△ABC 绕 点C 按顺时针方向旋转n 度后,得到△EDC,此时,点D 在AB 边 上,斜边DE 交AC 边于点F ,则n 的大小和图中阴影部分的面积 分别为( )A 、30,2B 、60,2C 、60、60,3 7.如图一个长为m 、宽为n 的长方形(m >n )沿虚线剪开, 拼接成图2,成为在一角去掉一个小正方形后的一个大 正方形,则去掉的小正方形的边长为( ) A 、2m n - B 、m -n C 、2mD 、2n8.抛物线2x y =上有三点P 1、P 2、P 3,其横坐标分别为t ,t +1,t +3,则△P 1P 2P 3的面积为( ). A.1 B. 2 C. 3 D.4 9.已知直线483y x =-+与x 轴、y 轴分别交于点A 和点B ,M 是OB上的一点,若将△ABM 沿AM 折叠,点B 恰好落在x 轴上的点B '处,则直线AM 的函数解析式是( )A.821+-=x yB.831+-=x y C.321+-=x y D.331+-=x y10.正五边形广场ABCDE 的边长为80米,甲、乙两个同学做游戏,分别从A 、C 两点处同时出发,沿A-B-C-D-E-A 的方向绕广场行走,甲的速度为50米/分,乙的速度为46米/分,则两人第一次刚走到同一条边上时( ). A.甲在顶点A 处 B.甲在顶点B 处 C.甲在顶点C 处 D.甲在顶点D 处二.填空题(每题6分,共36分)11.分解因式:22242y xy x ++=________________. 12.如图,在平面直角坐标系中,反比例函数)0,0(>>=k x xky的图象经过点A (1, 2),B (m ,n )(m >1),过点B 作 y 轴的垂线,垂足为C.若△ABC 面积为2,则点B 的坐标 为________.13.如右图,是一回形图,其回形通道的宽和OB 的长均 为1,回形线与射线OA 交于A 1,A 2,A 3,….若从O 点到A 1点的回形线为第1圈(长为7),从A 1点到A 2 点的回形线为第2圈,…,依次类推.则第11圈的长 为 .14.今有一副三角板(如图1),中间各有一个直径为4cm 的圆洞,现将三角板a 的30º角的那一头插入三角板b的圆洞内(如图2),则三角板a 通过三角板b 的圆洞的那一部分的最大面积为 cm 2(不计三角板的厚度,精确到0.1cm 2).15.如图,等腰梯形MNPQ 的上底长为2,腰长为3,一个底角为60°.正方形ABCD 的边长为1,它的一边AD 在MN 上,且顶点A 与M 重合.现将正方形ABCD 在梯 形的外面沿边MN 、NP 、PQ 进行翻滚,翻滚到有一个顶 点与Q 重合时,点A 所经过的路线与梯形MNPQ 的三边 MN 、NP 、PQ 所围成图形的面积是________.16.如图,在矩形ABCD 中,AB=2,BC=4,⊙D 的半径为1.现将一个直角三角板的直角顶点与矩形的对称中心O图1ba切于点H ,此时两直角边与AD 交于E ,F 两点,则tan EFO ∠的值为 . 三.解答题(共6小题,分别为8,10,10,10,12,14分,共64分) 17.设数列 ,1,,12,1,,13,22,31,12,21,11kk k -,问:(1)这个数列第2010项的值是多少?(2)在这个数列中,第2010个值为1的项的序号是多少?18.如图,在梯形ABCD 中,AB ∥CD ,⊙O 为内切圆,E 为切点, (Ⅰ)求AOD ∠的度数;(Ⅱ)若8=AO cm ,6=DO cm ,求OE 的长. .19.请设计三种方案:把一个正方形剪两刀,使剪得的三块图形能够拼成一个三角形,并且使拼成的三角形既不是直角三角形也不是等腰三角形,画出必要的示意图,并附以简要的文字说明.20.某商场在促销期间规定:商场所有商品按标价的80%出售,同时,当顾客在该商场内消费满一定金额后,可按如下方案获得相应金额的奖券:根据上述促销方法,顾客在该商场购物可以获得双重优惠。

2020年浙江省温州市中考数学一模试卷(解析版)

2020年浙江省温州市中考数学一模试卷(解析版)

2020年浙江省温州市中考数学一模试卷一.选择题(共10小题)1.我国是较早认识负数的国家,南宋数学家李冶在算筹的个位数上用斜画一杠表示负数,如“﹣32”写成“”,下列算筹表示负数的是()A.B.C.D.2.“浮云游子意,明月故乡情”,4月疫情期间温州支援意大利口罩达2700000只,其中2700000用科学记数法表示为()A.2.7×106B.27×105C.2.7×105D.0.27×1073.小明家购买了一款新型吹风机.如图所示,吹风机的主体是由一个空心圆柱体构成,手柄可近似看作一个圆柱体,这个几何体的主视图为()A.B.C.D.4.计算x3+x3的结果是()A.x6B.x9 C.2x6 D.2x35.甲、乙、丙、丁四名射击运动员参加射击预选赛,他们射击成绩的平均数及方差如表所示,要选一个成绩较好且稳定的运动员去参赛,应选运动员()甲乙丙丁(环)8998 S2(环2)1 1.21 1.2 A.甲B.乙C.丙D.丁6.不等式﹣2x≤﹣x+2的解在数轴上的表示正确的是()A.B.C.D.7.一款便携式音箱以锂电池作为电源,该电池的电压为定值,工作时电流I(单位:A)与电阻R(单位:Ω)之间的函数关系如图所示,则当电阻R为4Ω时,电流I为()A.6A B.A C.1A D.A8.为美化校园,学校计划购买甲、乙两种花木,其中甲种花木每棵100元,乙种花木每棵80元,若甲种花木的数量是乙种花木的3倍,且两种花木共花费19000元.设购买甲种花木x棵,乙种花木y棵,根据题意,可列方程组()A.B.C.D.9.在△ABC中,BC=5,AC=12,∠C=90°,以点B为圆心,BC为半径作圆弧,与AB 交于D,再分别以A,D为圆心,大于AD的长为半径作圆弧交于点M,N,作直线MN,交AC于E,则AE的长度为()A.4B.4C.D.510.已知函数y1=ax2﹣2ax+c(a>0),y2=﹣ax2+2ax+c,当0≤x≤2时,2≤y1≤3,则当0≤x≤2时,y2的最大值是()A.﹣3B.2C.3D.4二.填空题(共6小题)11.因式分解:m2﹣25=.12.在不透明的袋子里装入3个红球和2个白球(除颜色不同外其余均相同),从中随机摸出一个球为白球的概率是.13.如图,四边形ABCD内接于⊙O,若∠AOC=∠B,则∠D的度数为°.14.如图,在矩形ABCD中,BC=8,E为BC中点,将△ABE沿AE翻折后,得到△AEF,再将CE折向FE,使点C与点F重合,折痕为EG.若CG=3,则AG=.15.如图,已知点A(5,0),在直线y=x+上取点B,过点B作x轴的平行线,交直线y=﹣x+b于点C.若四边形OACB为菱形,则b=.16.将折叠书架画出侧面示意图,AB为面板架,CD为支撑架,EF为锁定杆,F可在CD 上移动或固定.已知BC=CE=8cm.如图甲,将面板AB竖直固定时(AB⊥BD),点F 恰为CD的中点.如图乙,当CF=17cm时,EF⊥AB,则支撑架CD的长度为cm.三.解答题(共8小题)17.(1)计算:2sin30°+(﹣1)0+;(2)解方程:(x﹣1)2=2x+1.18.如图,在△ABC中,AB=AC,点D在BC边上,点E在AC边上,连结AD,DE.已知∠1=∠2,AD=DE.(1)求证:△ABD≌△DCE.(2)若BD=2,CD=5,求AE的长.19.某学校为了解疫情期间学生在家体育锻炼情况,从全体学生中随机抽取若干学生进行调查,以下是根据调查数据绘制的统计图表的一部分,根据信息回答下列问题,(1)本次调查共抽取名学生.(2)抽查结果中,B组有人.(3)在抽查得到的数据中,中位数位于组(填组别).(4)若这所学校共有学生1200人,则估计平均每日锻炼超过20分钟有多少人?组别平均每日体育锻炼时间(分)人数A0≤x≤1018B10<x≤20C20<x≤3042D x>302420.如图,在5×5的方格纸中,点A,B均在格点上,请按要求画图.(1)在图1中画个面积为2的格点△ABC.(2)在图2中画一个格点Rt△ADE,使AB是△ADE的中线.21.在平面直角坐标系中,抛物线的表达式为y=ax2+2bx+2b﹣a(a≠0).(1)当x=﹣1时,求y的值.(2)将抛物线向左平移2个单位后,恰经过点(﹣1,0),求b的值.22.如图,四边形ABCD中,∠B=90°,以AD为直径的⊙O交AB于点E,与BC相切于点C,连结CE.(1)求证:CD=CE.(2)若AE=3,tan∠D=,求⊙O的半径.23.某商店准备采购甲、乙两种消毒水进行售卖,每瓶的进价与利润如表:甲乙每瓶进价(元)a a+20每瓶利润(元)2030已知进货成本1500元采购甲种消毒水的数量和2500元买乙种消毒水的数量相等.(1)求a的值.(2)若该商店准备拿出12000元全部用来进货,由于仓库存放限制,总数量不多于300瓶,问如何进货能使消毒水全部售出后利润最大,最大利润是多少元?(3)在(2)获得最大利润的进货方案下,该商店预留了甲、乙两种消毒水各若干瓶供店内消毒使用,剩余的消毒水被抢购一空,共获得利润7350元,求商店共预留了多少瓶?24.如图,在正方形ABCD中,E,F分别是AD,CD上的点,且AE=CF,M,N分别是EF,EB的中点,延长AN交BF于点K.(1)①小明通过画图探究得到以下数据,根据题意,将表格补充完整.∠FBC10°20°40°∠EBF70°∠BNK20°②写出∠EBF与∠BNK的数量关系,并给出证明.(2)当四边形MNKF中有一条边是NK的2倍时,求cos∠EBF的值.(3)直线MN分别交AB,CD于点P,Q,延长EF交射线BC于点G,当点G关于直线BF的对称点落在直线MN上时,直接写出的值.参考答案与试题解析一.选择题(共10小题)1.我国是较早认识负数的国家,南宋数学家李冶在算筹的个位数上用斜画一杠表示负数,如“﹣32”写成“”,下列算筹表示负数的是()A.B.C.D.【分析】根据正数和负数表示相反意义的量,可得答案.【解答】解:在算筹的个位数上用斜画一杠表示负数,如“﹣32”写成“”,算筹表示负数的是选项B:故选:B.2.“浮云游子意,明月故乡情”,4月疫情期间温州支援意大利口罩达2700000只,其中2700000用科学记数法表示为()A.2.7×106B.27×105C.2.7×105D.0.27×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:2700000=2.7×106.故选:A.3.小明家购买了一款新型吹风机.如图所示,吹风机的主体是由一个空心圆柱体构成,手柄可近似看作一个圆柱体,这个几何体的主视图为()A.B.C.D.【分析】根据主视图是从物体正面看所得到的图形即可解答.【解答】解:根据主视图的概念可知,从物体的正面看得到的视图是选项C.故选:C.4.计算x3+x3的结果是()A.x6B.x9 C.2x6 D.2x3【分析】根据合并同类项法则计算即可得出正确选项.【解答】解:x3+x3=2x3.故选:D.5.甲、乙、丙、丁四名射击运动员参加射击预选赛,他们射击成绩的平均数及方差如表所示,要选一个成绩较好且稳定的运动员去参赛,应选运动员()甲乙丙丁(环)8998 S2(环2)1 1.21 1.2 A.甲B.乙C.丙D.丁【分析】先比较平均数,乙丙的平均成绩好且相等,再比较方差即可解答.【解答】解:由图可知,乙、丙的平均成绩好,由于S2乙>S2丙,故乙的方差大,波动大.故选:C.6.不等式﹣2x≤﹣x+2的解在数轴上的表示正确的是()A.B.C.D.【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【解答】解:∵﹣2x≤﹣x+2,∴﹣2x+x≤2,则﹣x≤2,∴x≥﹣2,将不等式解集表示在数轴上如下:故选:B.7.一款便携式音箱以锂电池作为电源,该电池的电压为定值,工作时电流I(单位:A)与电阻R(单位:Ω)之间的函数关系如图所示,则当电阻R为4Ω时,电流I为()A.6A B.A C.1A D.A【分析】根据函数图象可用电阻R表示电流I的函数解析式为I=,再把(2,3)代入可得k的值,进而可得函数解析式,然后代入R=4Ω求得电流I即可.【解答】解:设用电阻R表示电流I的函数解析式为I=,∵反比例函数图象过(2,3),∴k=3×2=6,∴I=,当R=4Ω时,I==,故选:B.8.为美化校园,学校计划购买甲、乙两种花木,其中甲种花木每棵100元,乙种花木每棵80元,若甲种花木的数量是乙种花木的3倍,且两种花木共花费19000元.设购买甲种花木x棵,乙种花木y棵,根据题意,可列方程组()A.B.C.D.【分析】根据题意,可以列出相应的二元一次方程组,从而可以解答本题.【解答】解:由题意可得,,故选:A.9.在△ABC中,BC=5,AC=12,∠C=90°,以点B为圆心,BC为半径作圆弧,与AB交于D,再分别以A,D为圆心,大于AD的长为半径作圆弧交于点M,N,作直线MN,交AC于E,则AE的长度为()A.4B.4C.D.5【分析】由作图可得,BD=BC=5,AD=13﹣5=8,MN垂直平分AD,依据勾股定理即可得到AB的长,再根据相似三角形的性质,即可得到AE的长.【解答】解:由作图可得,BD=BC=5,AD=13﹣5=8,MN垂直平分AD,∴AF=AD=4,∵BC=5,AC=12,∠C=90°,∴AB=13,∵∠AFE=∠ACB=90°,∠A=∠A,∴△AFE∽△ACB,∴=,即=,解得AE=,故选:C.10.已知函数y1=ax2﹣2ax+c(a>0),y2=﹣ax2+2ax+c,当0≤x≤2时,2≤y1≤3,则当0≤x≤2时,y2的最大值是()A.﹣3B.2C.3D.4【分析】由0≤x≤2时,2≤y1≤3,求出a、c的值,即可求解.【解答】解:由题意得:当0≤x≤2时,函数y1在对称轴x=1时取得最小值,即y1=a ﹣2a+c=2①,函数y1在x=2时,取得最大值,即y1=4a﹣4a+c=3②,联立①②并解得:,故y2=﹣ax2+2ax+c=﹣x2+2x+3,当0≤x≤2时,y2在对称轴处取得最大值,∴当x=1时,y=4,故最大值是4,故选:D.二.填空题(共6小题)11.因式分解:m2﹣25=(m+5)(m﹣5).【分析】原式利用平方差公式分解即可.【解答】解:原式=(m+5)(m﹣5),故答案为:(m+5)(m﹣5)12.在不透明的袋子里装入3个红球和2个白球(除颜色不同外其余均相同),从中随机摸出一个球为白球的概率是.【分析】用白球的个数除以球的总个数即可得.【解答】解:从中随机摸出一个球共有5种等可能结果,其中摸出一个球为白球的有2种结果,所以摸出一个球为白球的概率为,故答案为:.13.如图,四边形ABCD内接于⊙O,若∠AOC=∠B,则∠D的度数为60°.【分析】根据圆周角定理得到∠AOC=2∠D,根据题意得到∠B=2∠D,根据圆内接四边形的对角互补列式计算,得到答案.【解答】解:由圆周角定理得,∠AOC=2∠D,∵∠AOC=∠B,∴∠B=2∠D,∵四边形ABCD内接于⊙O,∴∠D+∠B=180°,∴∠D+2∠D=180°,解得,∠D=60°,故答案为:60.14.如图,在矩形ABCD中,BC=8,E为BC中点,将△ABE沿AE翻折后,得到△AEF,再将CE折向FE,使点C与点F重合,折痕为EG.若CG=3,则AG=.【分析】由折叠的性质可得AB=AF,∠B=∠AFE=90°,FG=CG=3,∠C=∠EFG =90°,可证点A,点F,点G三点共线,由勾股定理可求AB的长,即可求解.【解答】解:∵将△ABE沿AE翻折后,得到△AEF,再将CE折向FE,使点C与点F 重合,∴AB=AF,∠B=∠AFE=90°,FG=CG=3,∠C=∠EFG=90°,∴∠AFE+∠GFE=180°,∴点A,点F,点G三点共线,∵AD2+DG2=AG2,∴64+(AB﹣3)2=(AB+3)2,∴AB=,∴AG=AF+FG=,故答案为:.15.如图,已知点A(5,0),在直线y=x+上取点B,过点B作x轴的平行线,交直线y=﹣x+b于点C.若四边形OACB为菱形,则b=12.【分析】由题意设B(a,a+),根据勾股定理得出a2+(a+)2=52,解方程求得a=3,即可求得C的坐标,根据图象上点的坐标特征,代入y=﹣x+b中,即可求得b的值.【解答】解:∵点A(5,0),∴OA=5,∵四边形OACB为菱形,∴OB=OA=5,根据题意设B(a,a+),∴a2+(a+)2=52,整理得a2+2a﹣15=0,解得a=3或a=﹣5(不合题意,舍去),∴B(3,4),∴C(8,4),∵直线y=﹣x+b经过点C,∴4=﹣8+b,解得b=12,故答案为12.16.将折叠书架画出侧面示意图,AB为面板架,CD为支撑架,EF为锁定杆,F可在CD 上移动或固定.已知BC=CE=8cm.如图甲,将面板AB竖直固定时(AB⊥BD),点F 恰为CD的中点.如图乙,当CF=17cm时,EF⊥AB,则支撑架CD的长度为2cm.【分析】根据勾股定理得出EF的长,进而利用勾股定理得出CF,进而得出CD的长即可.【解答】解:∵EF⊥AB,CF=17cm,BC=CE=8cm,∴EF=cm,过F作FG⊥AB,∵AB⊥BD,∴FG∥BD,∵点F恰为CD的中点,∴CG=BC=4cm,∴EG=8+4=12cm,∵EF=15cm,∴CG=cm,∴BD=2CG=18cm,∴CD=,故答案为:2.三.解答题(共8小题)17.(1)计算:2sin30°+(﹣1)0+;(2)解方程:(x﹣1)2=2x+1.【分析】(1)根据零指数幂和特殊角的三角函数值计算;(2)先把方程变形为一般式,然后利用因式分解法解方程.【解答】解:(1)原式=2×+1+3=1+1+3=5;(2)x2﹣4x=0,x(x﹣4)=0,x=0或x﹣4=0,所以x1=0,x2=4.18.如图,在△ABC中,AB=AC,点D在BC边上,点E在AC边上,连结AD,DE.已知∠1=∠2,AD=DE.(1)求证:△ABD≌△DCE.(2)若BD=2,CD=5,求AE的长.【分析】(1)根据AAS可证明△ABD≌△DCE;(2)得出AB=DC=5,CE=BD=2,求出AC=5,则AE可求出.【解答】(1)证明:∵AB=AC,∴∠B=∠C,又∠1=∠2,AD=DE,∴△ABD≌△DCE(AAS);(2)解:∵△ABD≌△DCE,∴AB=DC=5,CE=BD=2,∵AC=AB,∴AC=5,∴AE=AB﹣EC=5﹣2=3.19.某学校为了解疫情期间学生在家体育锻炼情况,从全体学生中随机抽取若干学生进行调查,以下是根据调查数据绘制的统计图表的一部分,根据信息回答下列问题,(1)本次调查共抽取120名学生.(2)抽查结果中,B组有36人.(3)在抽查得到的数据中,中位数位于C组(填组别).(4)若这所学校共有学生1200人,则估计平均每日锻炼超过20分钟有多少人?组别平均每日体育锻炼时间(分)人数A0≤x≤1018B10<x≤2036C20<x≤3042D x>3024【分析】(1)用D组的人数除以其所占百分比可得;(2)总人数减去其他类别人数即可求得B组的人数;(3)根据中位数的多余即可求解;(4)用总人数乘样本中平均每日锻炼超过20分钟的人数所占比例即可求解.【解答】解:(1)24÷20=120(名).故本次调查共抽取120名学生.(2)120﹣18﹣42﹣24=36(人).故B组有36人.(3)在抽查得到的数据中,第60个和第61个数据都在C组,故中位数位于C组.(4)1200×=660(人).答:这所学校平均每日锻炼超过20分钟大约有660人.故答案为:120;36;C;36.20.如图,在5×5的方格纸中,点A,B均在格点上,请按要求画图.(1)在图1中画个面积为2的格点△ABC.(2)在图2中画一个格点Rt△ADE,使AB是△ADE的中线.【分析】(1)利用数形结合的思想解决问题即可.(2)根据三角形的中线的定义画出图形即可.【解答】解:(1)如图1中,△ABC即为所求(答案不唯一).(2)如图2中,△ADE即为所求(答案不唯一).21.在平面直角坐标系中,抛物线的表达式为y=ax2+2bx+2b﹣a(a≠0).(1)当x=﹣1时,求y的值.(2)将抛物线向左平移2个单位后,恰经过点(﹣1,0),求b的值.【分析】(1)把x=﹣1代入y=ax2+2bx+2b﹣a,即可求得;(2)根据题意原抛物线经过(1,0),代入解析式解方程即可求得.【解答】解:(1)当x=﹣1时,y=a﹣2b+2b﹣a=0;(2)∵将抛物线向左平移2个单位后,恰经过点(﹣1,0)∴原抛物线经过(1,0),把(1,0)代入解析式可得:0=a+2b+2b﹣a,∴b=0.22.如图,四边形ABCD中,∠B=90°,以AD为直径的⊙O交AB于点E,与BC相切于点C,连结CE.(1)求证:CD=CE.(2)若AE=3,tan∠D=,求⊙O的半径.【分析】(1)如图,连结DE,OC交于点F,若证明CD=CE,则可转化为证明=即可;(2)连结AC,设BE=3x,则BC=4x,CE=5x,由圆周角定理和圆的内接四边形定理可得tan∠ACB=tan∠CBE=tan∠ADC,再利用勾股定理可求出AD的长,进而可求出⊙O 的半径.【解答】解:(1)证明:如图,连结DE,OC交于点F.∵BC切⊙O于点C,∴∠OCB=90°,∵∠B=90°,∴OC∥AB,∵AD是圆的直径,∴∠DEA=∠FEB=90°,∴OC⊥DE,∴=,∴CD=CE;(2)如图,连结AC,∵四边形ABCD内接于圆,∴∠CEB=∠ADC,∵=,∴∠DAC=∠CAB,∴∠ADC=∠ACB∴tan∠ACB=tan∠CBE=tan∠ADC,设BE=3x,则BC=4x,CE=5x,∴=,解得:x=,∴CD=,∴AD==,∴OA=.23.某商店准备采购甲、乙两种消毒水进行售卖,每瓶的进价与利润如表:甲乙每瓶进价(元)a a+20每瓶利润(元)2030已知进货成本1500元采购甲种消毒水的数量和2500元买乙种消毒水的数量相等.(1)求a的值.(2)若该商店准备拿出12000元全部用来进货,由于仓库存放限制,总数量不多于300瓶,问如何进货能使消毒水全部售出后利润最大,最大利润是多少元?(3)在(2)获得最大利润的进货方案下,该商店预留了甲、乙两种消毒水各若干瓶供店内消毒使用,剩余的消毒水被抢购一空,共获得利润7350元,求商店共预留了多少瓶?【分析】(1)根据表格提供的有效信息和题干中的条件:进货成本1500元采购甲种消毒水的数量和2500元买乙种消毒水的数量相等,可建立关于a的分式方程,解方程求出a 的值即可;(2)设甲种买了x瓶,则乙种买了瓶,由题意可求出x的取值范围,再设设利润为y,可得y与x的一次函数关系式,利用一次函数的增减性即可求出最大利润;(3)设甲种保留了a瓶,乙种保留了b瓶,则20a+30b=150,求出二元一次方程的所有正整数解即可得到该商店共预留了多少瓶.【解答】解:(1)由题可得:=,解得a=30,经检验a=30是方程的解,所以a的值为30;(2)设甲种买了x瓶,则乙种买了瓶,由题意可得:x+≤300,解得x≤150,设利润为y,可得y=20x+30×,即y=2x+7200,∵k=2>0,∴y随x增大而增大.当x=150 y有最大值为7500,答:最大利润为7500元;(3)7500﹣7350=150(元)设甲种保留了a瓶,乙种保留了b瓶,20a+30b=150,该方程的正整数解为或,答:商家共预留了6瓶或7瓶.24.如图,在正方形ABCD中,E,F分别是AD,CD上的点,且AE=CF,M,N分别是EF,EB的中点,延长AN交BF于点K.(1)①小明通过画图探究得到以下数据,根据题意,将表格补充完整.∠FBC10°20°40°∠EBF70°50°10°∠BNK20°40°80°②写出∠EBF与∠BNK的数量关系,并给出证明.(2)当四边形MNKF中有一条边是NK的2倍时,求cos∠EBF的值.(3)直线MN分别交AB,CD于点P,Q,延长EF交射线BC于点G,当点G关于直线BF的对称点落在直线MN上时,直接写出的值.【分析】(1)①利用直角三角形斜边中线的性质,全等三角形的性质解决问题即可.②证明△ABE≌△BCF(SAS)可得结论.(2)分三种情形:①当MN=2NK时.②当KF=2NK时.③当MF=2NK时,分别求解即可解决问题.(3)如图2中,连接BG′,GG′,延长GE交BA的延长线于H,过点E作EJ∥PQ 交AB于J.利用三角形的中位线定理证明EJ=2PN,再利用全等三角形的性质证明EJ =MQ即可解决问题.【解答】解:(1)①根据∠CBF=∠ABE,直角三角形斜边中线的性质可知:当∠FBC =20°时,∠EBF=50°,∠BNK=40°,当∠FBC=40°时,∠EBF=10°,∠BNK=80°,故答案为50°,10°,40°,80°.②结论:∠EBF+∠BNK=90°.理由:在正方形ABCD中,AB=BC,∠BAD=∠C=90°,∵AE=CF,∴△ABE≌△BCF(SAS),∴∠CBF=∠ABE,BE=BF,∴∠EBF=90°﹣2∠ABN,∵N是BE的中点,∴AN=BN,∴∠BNK=2∠ABN,(2)①当MN=2NK时,∵MN=BF=BE=BN,∴BN=2NK,∴∠EBF=30°,∴cos∠EBF=.②当KF=2NK时,∵BN=BE=(BK+KF),NK=KF,∵BN2=BK2+NK2,∴3BK=2KF=4NK,设BK=4m,则NK=3m,BN=5m,∴cos∠EBF==.③当MF=2NK时,过点M作MG⊥BF于点G(如图1中).∵MN∥BF,∴∠MGK=∠GMN=∠NKG=90°,∴四边形MNKG是矩形,∴MG=NK,∴MF=2MG,∴∠MFB=∠BEF=30°,∴此情况不存在.(3)如图2中,连接BG′,GG′,延长GE交BA的延长线于H,过点E作EJ∥PQ 交AB于J.∵BN=NE,PN∥EJ,∴BP=PJ,∴EJ=2PN,∵G,G′关于BP对称,∴BF垂直平分线段GG′,∵BF∥PG′,∴FG=FM,∵BE=BF,∴∠BEF=∠BFE,∴∠BEH=∠BFG,∵BE=BF,∠HBE=∠GBF,∴△HBE≌△GBF(AAS),∴EH=FG,BH=BG,∴EH=FM,∵∠H=∠G=45°,∵∠FCG=90°,∴∠CFG=∠MFQ=45°,∵EJ∥PM,∴∠EEJ=∠HMP=∠FMQ,∴△HEJ≌△FMQ(ASA),∴EJ=MQ,∵EJ=2PN,∴MQ=2PN.。

2020届浙江省温州中学自主招生九年级数学模拟试卷有答案

2020届浙江省温州中学自主招生九年级数学模拟试卷有答案

浙江省温州中学自主招生九年级数学模拟试卷(本卷满分:150分 考试时间:90分钟)一、单项选择题(本大题分5小题,每题4分,共20分) 1. 气象台预报:“本市明天降水概率是80%”,但据经验,气象台预报的准确率仅为80%,则在此经验下,本市明天降水的概率为················( ) A 、84% B 、80% C 、68% D 、64%2. 如图,已知A ∠的平分线分别与边BC 、ABC ∆的外接圆交于点D 、M ,过D 任作一条与直线BC 不重合的直线l ,直线l 分别与直线MB 、MC 交于点P 、Q ,下列判断不正确的是···········································( ) A .无论直线l 的位置如何,总有直线PM 与ABD ∆的外接圆相切B .无论直线l 的位置如何,总有BAC PAQ ∠>∠ C .直线l 选取适当的位置,可使A 、P 、M 、Q 四点共圆D .直线l 选取适当的位置,可使APQ S ∆<ABC S ∆ 3. 欲将正六边形的各边和各条对角线都染为n 种颜色之一,使得以正六边形的任何3个顶点作为顶点的三角形有3种不同颜色的边,并且不同的三角形使用不同的3色组合,则n 的最小值为·········( ) A .6 B .7 C .8 D .94. 将一个正11边形用对角线划分为9个三角形,这些对角线在正11边形内两两不相交,则··················································( ) A .存在某种分法,所分出的三角形都不是锐角三角形 B .存在某种分法,所分出的三角形恰有两个锐角三角形 C .存在某种分法,所分出的三角形至少有3个锐角三角形 D .任何一种分法所分出的三角形都恰有1个锐角三角形5. 已知实系数二次函数()x f 与()x g ,()()x g x f =和()()03=+x g x f 有两重根,()x f 有两相异实根,则()x g ···································( )A .有两相异实根B .有两相同实根C .没有实根D .没有有理根 二、填空题(本大题分10小题,每题6分,共60分)6. 设正数x 、y 、z 满足方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=+=++.1693253222222x zx z z y y xy x ,,则xy +2yz +3zx 的值为 .7. 已知ABCD 是一个正方形,点M (异于点B 、C )在边BC 上,线段AM 的垂直平分线l 分别交AB 、CD 于点E 、F .若AB =1,则DF BE -的取值范围为 . 8. 已知实数a ,b ,c ,d 满足2a 2+3c 2=2b 2+3d 2=(ad-bc )2=6,则(a 2+b 2)(c 2+d 2)的值为 . 9. 由两个不大于100的正整数m ,n 组成的整数对(m ,n )中,满足:2121+<<+m n m 的有 对. 10. 甲、乙两人在一个5×5的方格纸上玩填数游戏:甲先填且两人轮流在空格中填数,甲每次选择一个空格写上数字1,乙每次选择一个空格写上数字0,填完后计算每个3×3正方形内9个数之和,并将这些和数中的最大数记为A ,甲尽量使A 增大,乙尽量使A 减小,则甲可使A 获得的最大值是 .第2题11. 一个锐角ABC ∆,︒=∠60BAC ,三点H 、O 、I 分别是ABC ∆的垂心、外心和内心,若BH=OI ,则ACB ∠= .12. 设ΔABC 的内切圆⊙O 与边CA 上的中线BM 交于点G 、H ,并且点G 在点B 和点H 之间.已知BG =HM ,AB =2.则GH 的最大值为 .13. 设a 、b 为实数,函数()b ax x f +=满足:对任意x ∈[0,1],有()1≤x f ,则()()11++=b a S 的取值范围为 .14. 已知抛物线y 2=6x 上的两个动点A (x 1,y 1)和B (x 2,y 2),其中x 1≠x 2且x 1+x 2=4.线段AB 的垂直平分线与x 轴交于点C ,则ABC S ∆的最大值为 . 15. 将一个3×3的正方形的四个角上各去掉一个单位正方形所得到的图形称为“十字形”.在一个10×11的棋盘上,最多可以放置 个互不重叠的“十字形”.(每个“十字形”恰好盖住棋盘上的5个小方格)三、解答题(本大题分5小题,16题10分,17~20题每题15分,共70分)16. 三角形的三边之长是某个系数为有理数的三次方程的根.证明:该三角形的高是某个系数为有理数的六次方程的根.17. 已知ΔABC 内有n 个点(无三点共线),连同A 、B 、C 共n +3个点.以这些点为顶点把ΔABC 分成若干个互不重叠的小三角形.现把A ,B ,C 分别染成红色、蓝色、黄色,而其余n 个点,每个点任意染上红、蓝、黄三色之一.求证:三顶点都不同色的小三角形的总数必是奇数.18. 设奇数a ,b ,c ,d 满足0<a <b <c <d ,ad =bc ,若k d a 2=+,m c b 2=+,其中k ,m 是整数,试证:a =1.第12题19.如图,在锐角ABC∆的外接圆⊙O的切线BD、CE,∆中,∠BAC≠60°,过点B、C分别作ABC且满足BD=CE=BC.直线DE与AB、AC的延长线分别交于点F、G.设CF与BD交于点M,CE与BG交于点N,证明:AM=AN.第19题20.如图,在ABC∆中,AB>AC,内切圆⊙I与边BC切于点D,AD与⊙I的另一个交点为E,⊙I 的切线EP与BC的延长线交于点P,CF∥PE且与AD交于点F,直线BF与⊙I交于点M、N,M在线段BF上,线段PM与⊙I交于另一点Q.证明:∠ENP=∠ENQ.第20题温州中学自主招生 数学模拟试卷 参 考 答 案 及 评 分 建 议一、单项选择题(本大题分5小题,每题4分,共20分)[ 1~5 ] C C B D C二、简答题(本大题分10小题,每空6分,共60分)[本大题评分建议:若数字书写不清晰,不给分]6、 7、 ⎥⎦⎤⎝⎛410, 8、 6 9、 17110、 6 11、 40° 1213、 [-2,49] 14 15、 15三、分析解答题(本大题分5小题,16题10分,17~20题每题15分,共70分) 16、(10分)(可能有多种解法)17、(15分)(可能有多种解法)[证明]把这些小三角形的边进行赋值:边的端点同色的,赋值0;边的端点不同色的,赋值1.于是每个小三角形的三边之和有如下三种情形:(3分) (1)三顶点都不同色的,和为3; (2)恰有两顶点同色的,和为2; (3)三顶点都同色的,和为0.(6分) 设所有小三角形的边赋值之和为S ,上述三种情形的三类小三角形的个数分别为a ,b ,c ,于是S =3a +2b +0c =3a +2b .(9分)而注意到所有小三角形的边的赋值之和中,除了AB ,BC ,CA 边外,其余的边都被算了两次,所以它们赋值之和为偶数,再加上AB ,BC ,CA 三边赋值之和为3,所以S 是奇数.(14分)因此a 是奇数.即三顶点都不同色的小三角形总数为奇数.(15分)18、(15分)(可能有多种解法)[解]22)(4)(a d ad d a -+=+22)()(4)(4c b b c bc a d bc +=-+>-+=222)()(4)(4c b b c bc a d bc +=-+>-+=. ∴m k 22>.∴k >m .(2分)把b c a d m k -=-=2,2,代入ad =bc ,有 )2()2(b b a a m k -=-(1),由(1)可得2222a b a b k m -=•-•.(4分)即2222a b a b k m -=-,))(()2(2a b a b a b m k m -+=-- (2)(5分)已知a ,b 都是奇数,所以a +b ,a -b 都是偶数,又a b a b a 2)()(=-++是奇数的2倍,故(3分)(7分)故得证! (10分)[证明]b +a ,b -a 中必有一个不是4的倍数.(7分)由(2)必有⎩⎨⎧=-=+-f a b e a b m 221或⎩⎨⎧=+=--fa b ea b m 221.其中,e ,f 为正整数,且m k a b ef -⋅-=2是奇数.[ef b a b a m 2)()(=-++,与(2)比较可得](9分)由于k >m ,故a b a b ef 22=-<-≤f a b ab ef 22=-<-≤.从而e =1,m k a b f -⋅-=2. 考虑前一情况,有⎩⎨⎧⋅-==-=+--)2(2221mk m a b f a b a b (11分) 由第二式可得 a a b m k -+=+12,故 a m k m -+-=1122,所以奇数a =1.(13分)对于后一情况,可作类似的讨论.(15分)19、(15分)(解法可能有多种,给分分为4档:0分、5分、10分、15分,注:学生可能用“易证”、“可证”等词骗取分数,此题需慢改)(5分)(10分)(15分)(5分)第20题(10分)(15分)20、(15分)(解法可能有多种,给分分为4档:0分、5分、10分、15分,注:学生可能用“易证”、“可证”等词骗取分数,此题需慢改) [证明](10分)(5分)(15分)(5分)略(15分)。

【新】2019-2020浙江温州中学初升高自主招生数学【4套】模拟试卷【含解析】

【新】2019-2020浙江温州中学初升高自主招生数学【4套】模拟试卷【含解析】

第一套:满分120分2020-2021年浙江温州中学初升高自主招生数学模拟卷一.选择题(共6小题,满分42分)1. (7分)货车和小汽车同时从甲地出发,以各自的速度匀速向乙地行驶,小汽车到达乙地后,立即以相同的速度沿原路返回甲地,已知甲、乙两地相距180千米,货车的速度为60千米/小时,小汽车的速度为90千米/小时,则下图中能分别反映出货车、小汽车离乙地的距离y (千米)与各自行驶时间t (小时)之间的函数图象是【 】A. B. C. D.2. (7分)在平面直角坐标系中,任意两点规定运算:①;②;③当x 1= x 2且y 1=y 2时,A =B.有下列四个命题:(1)若A (1,2),B (2,–1),则,; (2)若,则A =C ; (3)若,则A =C ;()()1122,,,A x y B x y ()1212,⊕=++A B x x y y 1212=⊗+A B x x y y (),31⊕= A B 0=⊗A B ⊕=⊕A B B C =⊗⊗A B B C(4)对任意点A 、B 、C ,均有成立. 其中正确命题的个数为( )A. 1个B. 2个C. 3个D. 4个 3.(7分)如图,AB 是半圆直径,半径OC ⊥AB 于点O ,AD 平分∠CAB 交弧BC 于点D ,连结CD 、OD ,给出以下四个结论:①AC ∥OD ;②CE=OE ;③△ODE ∽△ADO ;④2CD 2=CE •AB .正确结论序号是( )A .①②B .③④C .①③D .①④ 4. (7分)如图,在△ABC 中,∠ACB =90º,AC =BC =1,E 、F 为线段AB 上两动点,且∠ECF =45°,过点E 、F 分别作BC 、AC 的垂线相交于点M ,垂足分别为H 、G .现有以下结论:①;②当点E 与点B 重合时,;③;④MG •MH =,其中正确结论为( )A. ①②③B. ①③④C. ①②④D. ①②③④ 5.(7分)在数学活动课上,同学们利用如图的程序进行计算,发现无论x 取任何正整数,结果都会进入循环,下面选项一定不是该循环的是( )A. 4,2,1B. 2,1,4C. 1,4,2D. 2,4,1 6. (7分)如图,在矩形ABCD 中,AB =4,AD =5,AD 、AB 、BC 分别与⊙O 相切于E 、F 、G 三点,过点D()()⊕⊕=⊕⊕A B C A B C 2AB =12MH =AF BE EF +=12作⊙O 的切线交BC 于点M ,则DM 的长为( )A.B. C. D.二.填空题(每小题6分,满分30分)7.(6分)将边长分别为1、2、3、4……19、20的正方形置于直角坐标系第一象限,如图中方式叠放,则按图示规律排列的所有阴影部分的面积之和为 . 8.(6分)如图,三个半圆依次相外切,它们的圆心都在x 轴上,并与直线3y x =相切.设三个半圆的半径依次为r 1、r 2、r 3,则当r 1=1时,r 3= .9.(6分)如图,将一块直角三角板OAB 放在平面直角坐标系中,B (2,0),∠AOB=60°,点A 在第一象限,过点A 的双曲线为k y x=.在x 轴上取一点P ,过点P 作直线OA 的垂线l ,以直线l 为对称轴,线段OB 经轴对称变换后的像是O ´B ´.(1)当点O ´与点A 重合时,点P 的坐标是 ;(2)设P (t ,0),当O ´B ´与双曲线有交点时,t 的取值范围是 .1339241332510.(6分)如图,正方形A 1B 1P 1P 2的顶点P 1、P 2在反 比例函数2(0)y x x=>的图象上,顶点A 1、B 1分别在x 轴、y 轴的正半轴上,再在其右侧作正方形P 2P 3A 2B 2,顶点P 3在反比例函数2(0)y x x=>的图象上,顶点A 2在x 轴的正半轴上,则点P 3的坐标为 .11.(6分)如图,在⊙O 中,直径AB ⊥CD ,垂足为E ,点M 在OC 上,AM 的延长线交⊙O 于点G ,交过C 的直线于F ,∠1=∠2,连结CB 与DG 交于点N .若点M 是CO 的中点,⊙O 的半径为4,cos ∠BOC=41,则BN= .三.解答题(每小题12分,满分48分)12.(12分)先化简,再求值:, 其中.13.(12分)如图,点A (m ,m +1),B (m +3,m -1)都在反比例函数的图象上.(1)求m ,k 的值;32221052422x x x x x x x x --÷++--+-2022(tan 45cos30)21x =-+︒-︒-xky =xO yAB (2)如果M 为x 轴上一点,N 为y 轴上一点, 以点A ,B ,M ,N 为顶点的四边形是平行四边形,试求直线MN 的函数表达式. (3)将线段AB 沿直线进行对折得到线段,且点始终在直线OA 上,当线段与轴有交点时,则b 的取值范围为 (直接写出答案)14.(12分)如图,在Rt △ABC 中,∠ABC=90°,以AB 为直径作⊙O 交AC 于点D ,DE 是⊙O 的切线,连接DE .(1)连接OC 交DE 于点F ,若OF=CF ,证明:四边形OECD 是平行四边形; (2)若=n ,求tan ∠ACO 的值b kx y +=11B A 1A 11B A x OFCF15.(12分)如图1,抛物线y =ax 2+bx +c (a ≠0)的顶点为C (1,4),交x 轴于A 、B 两点,交y 轴于点D ,其中点B 的坐标为(3,0)。

浙江省温州市2019-2020年最新重点中学自主招生模拟数学试题(含答案)

浙江省温州市2019-2020年最新重点中学自主招生模拟数学试题(含答案)

2019-2020温州市重点中学自主招生模拟试题数学试卷(考试时间120分钟,满分150分)一.选择题(每题5分,共50分) 1.下列数中不属于有理数的是( )A.1B.21C.22D.0.11132.如图,在矩形中截取两个相同的圆作为圆柱的上.下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱.设矩形的长和宽分别为y 和x ,则y 与x 的函数图象大致是( )A. B. C. D.3.如果把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9、16 … 这样的数称为“正 方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中, 符合这一规律的是( ) A 、13 = 3+10 B 、25 = 9+16 C 、49 = 18+31 D 、36 = 15+214.a 、b 、c 均不为0,若0<=-=-=-abc cxz b z y a y x ,则),(bc ab p 不可能在( ) A 、第一象限B 、第二象限C 、第三象限D 、第四象限5.如图,在平面直角坐标系中,⊙P 的圆心是(2,a )(a >2),半径为2,函数y=x 的图象被⊙P 截得的弦AB 的长为23, 则a 的值是( )A 、22B 、22+C 、23+2D 、23+6.如图,在Rt△ABC 中,∠ACB=90º,∠A=30º,BC=2,将△ABC 绕点C 按顺时针方向旋转n 度后,得到△EDC,此时,点D 在AB 边 上,斜边DE 交AC 边于点F ,则n 的大小和图中阴影部分的面积 分别为( )A 、30,2B 、60,2C 、60,32D 、60,3 7.如图一个长为m 、宽为n 的长方形(m >n )沿虚线剪开, 拼接成图2,成为在一角去掉一个小正方形后的一个大 正方形,则去掉的小正方形的边长为( ) A 、2m n - B 、m -n C 、2m D 、2n8.抛物线2x y =上有三点P 1、P 2、P 3,其横坐标分别为t ,t +1,t +3,则△P 1P 2P 3的面积为( ). A.1 B. 2 C. 3 D.4 9.已知直线483y x =-+与x 轴、y 轴分别交于点A 和点B ,M 是OB上的一点,若将△ABM 沿AM 折叠,点B 恰好落在x 轴上的点B '处,则直线AM 的函数解析式是( )A.821+-=x yB.831+-=x yC.321+-=x yD.331+-=x y10.正五边形广场ABCDE 的边长为80米,甲、乙两个同学做游戏,分别从A 、C 两点处同时出发,沿A-B-C-D-E-A 的方向绕广场行走,甲的速度为50米/分,乙的速度为46米/分,则两人第一次刚走到同一条边上时( ). A.甲在顶点A 处 B.甲在顶点B 处 C.甲在顶点C 处 D.甲在顶点D 处二.填空题(每题6分,共36分)11.分解因式:22242y xy x ++=________________. 12.如图,在平面直角坐标系中,反比例函数)0,0(>>=k x xky的图象经过点A (1, 2),B (m ,n )(m >1),过点B 作B /y xMOBAy 轴的垂线,垂足为C.若△ABC 面积为2,则点B 的坐标 为________.13.如右图,是一回形图,其回形通道的宽和OB 的长均 为1,回形线与射线OA 交于A 1,A 2,A 3,….若从O 点到A 1点的回形线为第1圈(长为7),从A 1点到A 2 点的回形线为第2圈,…,依次类推.则第11圈的长 为 .14.今有一副三角板(如图1),中间各有一个直径为4cm 的圆洞,现将三角板a 的30º角的那一头插入三角板b的圆洞内(如图2),则三角板a 通过三角板b 的圆洞的那一部分的最大面积为 cm 2(不计三角板的厚度,精确到0.1cm 2).15.如图,等腰梯形MNPQ 的上底长为2,腰长为3,一个底角为60°.正方形ABCD 的边长为1,它的一边AD 在MN 上,且顶点A 与M 重合.现将正方形ABCD 在梯 形的外面沿边MN 、NP 、PQ 进行翻滚,翻滚到有一个顶 点与Q 重合时,点A 所经过的路线与梯形MNPQ 的三边 MN 、NP 、PQ 所围成图形的面积是________.16.如图,在矩形ABCD 中,AB=2,BC=4,⊙D 的半径为1.现将一个直角三角板的直角顶点与矩形的对称中心O 重合,绕着O 点转动三角板,使它的一条直角边与⊙D切于点H ,此时两直角边与AD 交于E ,F 两点,则tan EFO 的值为 . 三.解答题(共6小题,分别为8,10,10,10,12,14分,共64分)A 3A 2A 1BAO图1ba17.设数列ΛΛΛ,1,,12,1,,13,22,31,12,21,11kk k -,问:(1)这个数列第2010项的值是多少?(2)在这个数列中,第2010个值为1的项的序号是多少?18.如图,在梯形ABCD 中,AB ∥CD ,⊙O 为内切圆,E 为切点, (Ⅰ)求AOD ∠的度数;(Ⅱ)若8=AO cm ,6=DO cm ,求OE 的长. .19.请设计三种方案:把一个正方形剪两刀,使剪得的三块图形能够拼成一个三角形,并且使拼成的三角形既不是直角三角形也不是等腰三角形,画出必要的示意图,并附以简要的文字说明.20.某商场在促销期间规定:商场所有商品按标价的80%出售,同时,当顾客在该商场内消费满一定金额后,可按如下方案获得相应金额的奖券:根据上述促销方法,顾客在该商场购物可以获得双重优惠。

2020年浙江省温州市中考数学模拟试题(含解析)

2020年浙江省温州市中考数学模拟试题(含解析)

2020年浙江省温州市中考数学模拟试卷一、选择题(本题有10小题,每小题4分,共40分,每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.下列运算中,结果最大的是( ).A.2+(-3)B.2x(-3)C.2-(-3)D.-322.某市文化活动中心在正月十五矩形元宵节灯谜大会中,共有13200人参加,数据13200用科学记数法表示正确的是()A.0.132×105B.1.32×104C.13.2×103D.1.32×1053.如图所示的零件的俯视图是()A. B. C. D.4.某中学篮球队12名队员的年龄情况如下表,则这个队队员年龄的众数和中位数分别()A.15,16B.15,15C.15,15.5D.16,155.如图,AB//CD,∠1=50°,∠2=45°,则∠CAD的大小是()A.75°B.80°C.85°D.90°6.如图,一个函数的图像由射线BA,线段BC,射线CD,其中点A(-1,2),B(1,3),C(2,1),D (6,5),则此函数()A.当x<1,y随x的增大而增大B.当x<1,y随x的增大而减C.当x>1,y随x的增大而增大D.当x>1,y随x的增大而减小7.如图,已知AB是⊙O的直径,CD是弦,且CD⊥AB,BC=3,AC=4,则sin∠ABD的值是()A.43B.34C.35D.458.如图,将边长为√3的正方形绕点B逆时针旋转30°,那么图中阴影部分的面积为()A.3B.√3C.3﹣√3D.3﹣√329.已知点(﹣3,y1),(5,y2)在二次函数y=ax2+bx+c(a≠0)的图象上,点(x0, y0)是函数图象的顶点.则()A. 当y1>y2≥y0时,x0的取值范围是1<x0<5B. 当y1>y2≥y0时,x0的取值范围是x0>5C. 当y0≥y1>y2时,x0的取值范围是x0<﹣3D. 当y0≥y1>y2时,x0的取值范围是x0<110.如图,在△ABC中,D为AB边上一点,E为CD中点,AC= 2 ,∠ABC=30°,∠A=∠BED=45°,则BD 的长为()A.12B.3+1-5C.3-12D.5-1二、填空题(本题有6小题,每小题5分,共30分)11.分解因式 a 3−9a = ________.12.若关于 x ,y 的二元一次方程组 {mx +y =2n +13x +ny =m −10的解是 {x =3y =4 ,则代数式 m +n 的值是________.13.有五张分别印有等边三角形、正方形、正五边形、矩形、正六边形图案的卡片(这些卡片除图案不同外,其余均相同).现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到卡片的图案既是中心对称图形,又是轴对称图形的概率为________.14.如图,公园内有一个半径为20米的圆形草坪,A ,B 是圆上的点,O 为圆心,∠AOB=120°,从A 到B 只有路弧AB ,一部分市民走“捷径”,踩坏了花草,走出了一条小路AB 。

2020年浙江省温州中学自主招生数学试卷

2020年浙江省温州中学自主招生数学试卷

一、选择题(本大四共10小题,每小题4分,共40分。

在每小给出的四个选项中只有一个是符合题目要求的,请将你认为正确的答案填在卷的相应位置。

)1.(4分)已知a>b,则的化简结果是()A.B.﹣C.D.﹣2.(4分)有以下关于x,y的等式:①x+2y=0;②x2+y2=2;③x=|y|;④xy=1,其中y是x的函数的有()A.1个B.2个C.3个D.4个3.(4分)已知tanα=2,则=()A.B.C.4D.24.(4分)如图,一枚棋子在正方体ABCD﹣MNPQ的棱上移动,从每一个顶点出发都等可能地移到和它相邻的三个顶点中的任何一个,若棋子的初始位置为点A,则移动三次后到达点P的概率为()A.B.C.D.5.(4分)直线y=﹣x+b与x轴交于点A,与函数y=在第一象限的图象交于B,C两点,若AB•AC=4,则k=()A.1B.C.2D.46.(4分)已知函数f(x)=ax3+bx2+cx+d,满足f(1)=2,f(2)=4,f(3)=6,则f(0)+f(4)=()A.0B.2C.4D.87.(4分)如图,在△ABC中,AB=3,AC=4,D为AB的中点,E为AC靠近点C的三等分点,BE与CD交于点M,过M作∠A内角平分线的平行线交AC于点N,则AN=()A.B.C.D.8.(4分)已知a,b为实数,设M=max{|a+b|,|a﹣b|,|a﹣2019|,|b﹣2019|},则M的最小值是()(注max{a,b,c,d}表示a,b,c,d中的最大值)A.B.673C.1346D.20199.(4分)如图,三棱锥A﹣BCD的各棱长均为1,点P,Q,R分别在棱CA,AD,DC上,则BP+PQ+QR+RB 的最小值是()A.B.C.2D.310.(4分)在1,2,3,…,2019中,可以表示为[x•[x]]形式的数有()(注:[x]表示不超过实数x 的最大整数)A.980个B.988个C.990个D.998个二、填空题(本题共6小题,每小题5分,共30分,请将答案填在答题卷相应的位置.)11.(5分)不等式(x﹣1)|x﹣1|>1的解是.12.(5分)已知关于x的方程x2+(m+2)x+3=0的两个根x1,x2满足x1<1<x2,则实数m的取值范围是.13.(5分)甲、乙、丙、丁、戊五位同学排成一排,甲不能站在排头和排尾,乙和丙至少有一人与甲相邻,则满足条件的排法数为.14.(5分)当0≤x≤2时,不等式|x2+a|≥2x﹣x2恒成立,则实数a的取值范围是.15.(5分)已知P为△ABC内一点,满足∠BAP=20°,∠CAP=28°,∠ACP=48°,AP=BC,则∠BCP=.16.(5分)已知a,b,c为整数,满足a+b+c=10,S=(10a+bc)(10b+ac)(10c+ab)≥2019,则S的最小值是.三、解答题(本大题共5小题,共80分,解答应写出文字说明,证明过程或演算步骤)17.(10分)解方程组:.18.(15分)如图,在△ABC中,AB⊥AC,AH⊥BC于点H,M为HC的中点,过H作HD⊥AM交直线AB于点D.求证:AB=BD.19.(15分)如图,已知A(x1,y1)B(x2,y2),C(x3,y3),D(x4,y4)是抛物线y=x2上的四个不同的点.(1)试用x1,x2表示直线AB的解析式;(2)已知AB过点E(0,1),BD过点F(0,2),CD过点G(0,4).(ⅰ)证明:A,F,C三点共线;(ⅱ)若点A在第一象限,且S△ADF=4S△BCF,求直线AB的解析式.20.(20分)小明将n枚硬币任意摆放在图中的点上(每个点的硬币数不限,可以0).(1)对于图1定义一次“操作”:从一个至少有2枚硬币的点取走2枚硬币,并分别在与此点相邻的点上各放置1枚硬币,对小明的每种摆法,若点E处无硬币,则总能经过若干次该“操作”,使点E处有硬币,求n的最小值;(2)对于图2定义一次“操作”:从一个至少有2枚硬币的点取走2枚硬币,若该点有两个相邻点,就分别在每个相邻的点各放置1枚硬币;若该点只有一个相邻点,就只在该相邻点处放置1枚硬币.对小明的每种摆法,若点D处无硬币,则总能经过若干次该“操作”,使点D处有硬币,求n的最小值.21.(20分)如图,P为四边形ABCD内一点,满足∠APB=∠ADC,∠BAP=∠CAD,E为线段BD上的一点,过E作EF∥CD交AD于点F,△APF的外接圆交AB于点G.求证:GE∥BC.。

2020年浙江省温州市中考数学模拟试卷(三)(含答案解析)

2020年浙江省温州市中考数学模拟试卷(三)(含答案解析)

2020年浙江省温州市中考数学模拟试卷(三)一、选择题(本大题共10小题,共40.0分)1.下列交通标志中,是轴对称图形但不是中心对称图形的是()A. B. C. D.2.关于x的一元二次方程x2+(2m+1)x+m2−1=0有两个不相等的实数根,则m的取值范围是()A. m≥−54B. m≤−54C. m<−54D. m>−543.下列运算正确的是()A. 3a+4b=12aB. (ab3)2=ab6C. (5a2−ab)−(4a2+2ab)=a2−3abD. x12÷x6=x24.某学校在开展“节约每一滴水”的活动中,从九年级的500名同学中任选出10名同学汇报了各自家庭一个月的节水情况,将有关数据整理如下表所示节水量(单位:t)0.51 1.52同学数(人)2341请你估计这500名同学的家庭一个月节约的水总量大约是()A. 400tB. 500tC. 600tD. 700t5.如图,MB=ND,∠MBA=∠D,下列添加条件中,不能判定△ABM≌△CDN的是().A. ∠M=∠NB. AB=CDC. AM=CND. AM//CN6.当x=2时,函数y=−4x+1的值是()A. −3B. −5C. −7D. −97.若反比例函数y=8x的图象经过点(−2,m),则m的值是()A. 14B. −14C. −4D. 48.下列各图形经过折叠不能围成一个正方体的是()A. B.C. D.9.在一块长16m,宽12m的长方形荒地上,要建造一个花园,要求花园所占面积为荒地的一半,下图是小明的设计方案.花园四周小路的宽度相等,设小路宽为x m,则可列方程()A. (16−x)(12−x)=16×12B. (16−x)(12−x)=12×16×12C. (16−2x)(12−2x)=16×12D. (16−2x)(12−2x)=12×16×1210.某班的同学想测量一教楼AB的高度,如图,大楼前有一段斜坡BC,已知BC的长为16米,它的坡度i=1:√3,在离C点45米的D处,测得以教楼顶端A的仰角为37°,则一教楼AB的高度约为()米.(结果精确到0.1米)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,√3≈1.73)A. 44.1B. 39.8C. 36.1D. 25.9二、填空题(本大题共6小题,共30.0分)11.在平面直角坐标系中,点A(1,2)关于y轴对称的点为B(a,2),则a=______12.把抛物线y=3x2沿y轴向下平移2个单位后,所得新抛物线的函数表达式是______.13.下图是甲、乙两名射击运动员的10次射击训练成绩(环数)的折线统计图,观察图形可知甲、乙这10次射击成绩中甲的方差________乙的方差.(填“>”“=”或“<”)14.下列图形都是由同样大小的五角星按一定的规律组成,其中第1个图形一共有2个五角星,第2个图形一共有8个五角星,第3个图形一共有18个五角星,…,则第n个图形中五角星的个数为_______(x<0)的图象上,过点P作PM⊥x轴15.如图,若点P在反比例函数y=−3x于点M,PN⊥y轴于点N,则矩形PMON的面积为______.16.如图,四边形ABCD是⊙O的内接四边形,AD与BC的延长线交于点E,BA与CD的延长线交于点F,∠DCE=80∘,∠F=25∘,则∠E的度数为.三、解答题(本大题共8小题,共80.0分)3−|√3−3|;17.计算:√9−2−1+√818.如图,AB//CD,EF=EH,EH平分∠AEG,且∠GEH=30°,求∠CFH的度数.19.已知:如图,在△AOB中,A(3,2),B(5,0),E(4,m),求:(1)m的值.(2)△AOE的面积。

2020年温州市温州中学自主招生数学模拟试卷及答案解析

2020年温州市温州中学自主招生数学模拟试卷及答案解析

第1页(共16页)2020年温州市温州中学自主招生数学模拟试卷一.选择题(共8小题,满分40分,每小题5分)1.(5分)设x =√5−32,则代数式x (x +1)(x +2)(x +3)的值为( ) A .0 B .1 C .﹣1 D .22.(5分)方程x 2+2xy +3y 2=34的整数解(x ,y )的组数为( )A .3B .4C .5D .6 3.(5分)已知A ,B 是两个锐角,且满足sin 2A +cos 2B =54t ,cos 2A +sin 2B =34t 2,则实数t 所有可能值的和为( )A .−83B .−53C .1D .1134.(5分)已知整数a 1、a 2、a 3、a 4、……满足下列条件:a 1=0,a 2=﹣|a 1+1|,a 3=﹣|a 2+2|,a 4=﹣|a 3+3|,……,a n +1=﹣|a n +n |(n 为正整数)依此类推,则a 2019的值为( )A .﹣1007B .﹣1008C .﹣1009D .﹣10105.(5分)方程组{xy +yz =63xz +yz =23的正整数解的组数是( ) A .1 B .2 C .3 D .46.(5分)如图,已知在正方形ABCD 中,点O 是对角线AC 的中点,过O 点的射线OM 、ON 分别交AB 、BC 于点E 、F ,且∠EOF =90°,BO 、EF 交于点P ,下列结论:①图形中全等的三角形只有三对; ②△EOF 是等腰直角三角形;③正方形ABCD 的面积等于四边形OEBF 面积的4倍;④BE +BF =OA ;⑤AE 2+BE 2=2OP •OB .其中正确的个数有( )个.A .4B .3C .2D .17.(5分)已知实数a ,b 满足a 2+b 2=1,则a 4+ab +b 4的最小值为( )A .−18B .0C .1D .98 8.(5分)已知2x 2﹣x ﹣1=0的两根为x 1、x 2,则x 1+x 2为( )。

2020年浙江省温州市模拟试卷附解析

2020年浙江省温州市模拟试卷附解析

2020年浙江省温州市模拟试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.二次函数2y ax bx c =++的图像如图所示,则点c Q a b ⎛⎫ ⎪⎝⎭,在( )A .第一象限B .第二象限C .第三象限D .第四象限 2. 一个二次函数,当x=0时,y=-5;当x=-1时,y=-4;当x=-2时,y=5,则这个二 次函数的关系式是( )A .y=4x 2-3x-5B .y=4x 2+3x+5C .y=4x 2-3x+5D .y=4x 2+3x-5 3.口ABCD 的周长为36 cm ,AB=BC=2cm ,则AD ,CD 的长度分别为( ) A .12 cm ,6 cmB .8 cm ,10 cmC .6 cm ,12 cmD .10 cm ,8 cm 4.代数式34x +的值不小于 0,则据此可列不等式为( )A .340x +<B .340x +>C .340x +≤D .340x +≥ 5.如图,桌面上放着一个圆锥和一个长方体,其中俯视图是( )6.如图,1l ∥2l ,△ABC 为等边三角形,∠ABD=25°,则∠ACE 的度数是( )A .45°B .35°C .25°D .15°7.如图△ABC 中,AB 的中垂线交AC 于D ,AB =10,AC =8,△DBC 的周长是a ,则BC 等于 ( )A . a -6B .a -8C .a -10D .10-a8.下列各组量中具有相反意义的量是( )A .向东行 4km 与向南行4 kmB .队伍前进与队伍后退C .6 个小人与 5 个大人D .增长3%与减少2%二、填空题9.太阳光线可以看成是 ,像这样的光线所形成的投影称为 . 10.小华、小明、小张三人站成一排照相,小张站在中间的概率是 . 11.两个相似三角形的面积比为4:9,那么它们周长的比为___________.12.如图,分别以n 边形的顶点为圆心,以单位1为半径画圆,则图中阴影部分的面积之和为 个平方单位.13.扇形的圆心角是60°,半径是3cm ,则扇形的周长是 cm ,扇形的面积是 cm 2.14.已知扇形面积为 12π㎝,半径为 8 cm ,则扇形的弧长是 .15.已知三角形三边长分别为5,12,13,则此三角形的面积为 .16.当x 时,代数式3214x --的值是非负数. 17.如图,正方形A 的面积是 .18.在ABC △中,BC 边不动,点A 竖直向上运动,A ∠越来越小,BC ∠∠,越来越大.若A ∠减少α度,B ∠增加β度,C ∠增加γ度,则αβγ,,三者之间的等量关系是 .19.如图,∠ACB=∠DFE ,BC=EF ,请你再补充一个条件: ,使得△ABC 与△DEF 全等.20.把公式12s lr =变形为已知S ,l ,求r 的公式,则r= .21.如图是某中学就“月球上有水吗”这一问题调查结果的扇形统计图,则该统计图中, “不知道”部分的圆心角的度数为 ,已知认为“无水”的同学共有100位,那么参加这次调查的人数是 .22.填空:A B CD FE (1)温度由 t ℃下降2℃后是 ;(2)今年李华 m 岁,去年李华 岁;5年后李华 岁;(3)a 的15%减去 70 可以表示为 ;(4)某商店上月收入为 a 元,本月的收入比上月的 2 倍还多 10 元,本月的收入是元;(5)明明用 t(s)走了s(m),那么他的速度是 m/s.三、解答题23.画出图中几何体的三种视图.24.已知:如图,E ,F 分别是□ABCD 的边AD ,BC 的中点,求证:DE =DF.25. 为了解某中学男生的身高x (cm )情况,随机抽取若干名男生进行身高测量,将所得到的数据整理后分成155160x <≤,160165x <≤,165170x <≤,170175x <≤,175180x <≤五组,画出频数分布直方图(如图),图中从左到右依次为第1,2,3,4,5组.(1)求抽取了多少名男生测量身高.(2)身高在哪个范围内的男生人数最多?(答出是第几小组即可)(3)若该中学有300名男生,请估计身高为170cm 及170cm 以上的人数.26.如图,在△ABC中,D为BC延长线上一点,且DA⊥BA于A,AC=12 BD.求证:∠ACB=2∠B.27.如图是一组用正多边形拼成的平面图形.(1)它们分别是由何种正多边形拼成的?(2)围绕图中某一点的所有角的和是多少? 由此你想到了什么?28.某服装商店出售一种优惠购物卡,花 200 元买这种卡后,凭卡可以在这家商店按 8 折购物,什么情况下买卡购物合算?29.2006 年世界杯足球赛德国组委会公布的四分之一决赛门票价格为:一等席 300 美元,二等席 200 美元,三等席 125 美元. 当时某服装公司在促销活动中,组织获得特等奖,一等奖的36 名乘客到德国观看 2006 年世界杯足球赛四分之一决赛. 除去其他费用后,计划买两种门票,用完 5025 美元,你能设计出最多几种购票方案. 供该服装公司选择?并说明理由.30.如图,O是线段AC,BD的交点,并且AC=BD,AB=CD,小刚认为图中的两个三角形全等,他的思考过程是:在△AB0和△DC0中,AC=BD,∠AOB=∠DOC,AB=CD =>△AB0≌△DC0.你认为小刚的思考过程正确吗?如果正确,指出他用的是哪种三角形全等识别法;如果不正确,请你增加一个条件,并说明你的思考过程.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.D3.B4.D5.A6.B7.B8.D二、填空题9.平行光线,平行投影10.111.32:312.π 13.(6)π+,32π 14.3π15.3016.≤12- 17.62518.αβγ=+19.略20.2S l21. 72°,400人22.(1) (t-2) (2)m-1,m+5 (3)15%a- 70 (4)2a+10 (5)s t三、解答题23.如图:24.提示:四边形BEDF 是平行四边形.25.⑴抽取了50名男生测量身高.⑵第3小组.估计身高为170cm 及170cm 以上的人数为108人.26.作BD边上的中线AE交BD于E27.(1)①正方形,②正三角形和正方形,③正方形、正六边形和正十二边形;(2)和是360°.在同一顶点和为360°的正多边形能密铺.28.超过1000元29.共有两种方案供服装公司选择:方案一:购一等席门票 3 张,三等席门票 33 张;方案二:购二等席门票 7张,三等席门票 29 张30.不正确,增加一个∠A=∠D(或∠B=∠C)的条件即可通过“AAS”证明,或增加一个A0=0D(或BO=OC)的条件即可通过“SAS”证明三角形全等.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年温州市重点中学自主招生模拟试题数学试卷(考试时间120分钟,满分150分)一.选择题(每题5分,共50分) 1.下列数中不属于有理数的是( )A.1B.21C.22D.0.11132.如图,在矩形中截取两个相同的圆作为圆柱的上.下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱.设矩形的长和宽分别为y 和x ,则y 与x 的函数图象大致是( )A. B. C. D.3.如果把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9、16 … 这样的数称为“正 方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中, 符合这一规律的是( ) A 、13 = 3+10 B 、25 = 9+16 C 、49 = 18+31 D 、36 = 15+214.a 、b 、c 均不为0,若0<=-=-=-abc cxz b z y a y x ,则),(bc ab p 不可能在( ) A 、第一象限B 、第二象限C 、第三象限D 、第四象限5.如图,在平面直角坐标系中,⊙P 的圆心是(2,a )(a >2),半径为2,函数y=x 的图象被⊙P 截得的弦AB 的长为 则a 的值是( )A 、、2+、 D 、2+6.如图,在Rt△ABC 中,∠ACB=90º,∠A=30º,BC=2,将△ABC 绕点C 按顺时针方向旋转n 度后,得到△EDC,此时,点D 在AB 边 上,斜边DE 交AC 边于点F ,则n 的大小和图中阴影部分的面积 分别为( )A 、30,2B 、60,2C 、60,2D 、60,3 7.如图一个长为m 、宽为n 的长方形(m >n )沿虚线剪开, 拼接成图2,成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( ) A 、2m n - B 、m -n C 、2m D 、2n8.抛物线2x y =上有三点P 1、P 2、P 3,其横坐标分别为t ,t +1,t +3,则△P 1P 2P 3的面积为( ). A.1 B. 2 C. 3 D.4 9.已知直线483y x =-+与x 轴、y 轴分别交于点A 和点B ,M 是OB 上的一点,若将△ABM 沿AM 折叠,点B 恰好落在x 轴上的点B '处,则直线AM 的函数解析式是( )A.821+-=x yB.831+-=x y C.321+-=x y D.331+-=x y10.正五边形广场ABCDE 的边长为80米,甲、乙两个同学做游戏,分别从A 、C 两点处同时出发,沿A-B-C-D-E-A 的方向绕广场行走,甲的速度为50米/分,乙的速度为46米/分,则两人第一次刚走到同一条边上时( ). A.甲在顶点A 处 B.甲在顶点B 处 C.甲在顶点C 处 D.甲在顶点D 处二.填空题(每题6分,共36分)11.分解因式:22242y xy x ++=________________.12.如图,在平面直角坐标系中,反比例函数)0,0(>>=k x xky的图象经过点A (1, 2),B (m ,n )(m >1),过点B 作 y 轴的垂线,垂足为C.若△ABC 面积为2,则点B 的坐标 为________.13.如右图,是一回形图,其回形通道的宽和OB 的长均 为1,回形线与射线OA 交于A 1,A 2,A 3,….若从O 点到A 1点的回形线为第1圈(长为7),从A 1点到A 2 点的回形线为第2圈,…,依次类推.则第11圈的长 为 .14.今有一副三角板(如图1),中间各有一个直径为4cm 的圆洞,现将三角板a 的30º角的那一头插入三角板b 的圆洞内(如图2),则三角板a 通过三角板b 的圆洞的那一部分的最大面积为 cm 2(不计三角板的厚度,精确到0.1cm 2).15.如图,等腰梯形MNPQ 的上底长为2,腰长为3,一个 底角为60°.正方形ABCD 的边长为1,它的一边AD 在MN 上,且顶点A 与M 重合.现将正方形ABCD 在梯 形的外面沿边MN 、NP 、PQ 进行翻滚,翻滚到有一个顶 点与Q 重合时,点A 所经过的路线与梯形MNPQ 的三边 MN 、NP 、PQ 所围成图形的面积是________.16.如图,在矩形ABCD 中,AB=2,BC=4,⊙D 的半径为1.现将一个直角三角板的直角顶点与矩形的对称中心O 重合,绕着O 点转动三角板,使它的一条直角边与⊙D切于点H ,此时两直角边与AD 交于E ,F 两点,则tan EFO ∠的值为 . 三.解答题(共6小题,分别为8,10,10,10,12,14分,共64分) 17.设数列ΛΛΛ,1,,12,1,,13,22,31,12,21,11kk k -,问:(1)这个数列第2010项的值是多少?(2)在这个数列中,第2010个值为1的项的序号是多少? 18.如图,在梯形ABCD 中,AB ∥CD ,⊙O 为内切圆,E 为切点,(Ⅰ)求AOD ∠的度数;(Ⅱ)若8=AO cm ,6=DO cm ,求OE 的长. .19.请设计三种方案:把一个正方形剪两刀,使剪得的三块图形能够拼成一个三角形,并且使拼成的三角形既不是直角三角形也不是等腰三角形,画出必要的示意图,并附以简要的文字说明.20.某商场在促销期间规定:商场所有商品按标价的80%出售,同时,当顾客在该商场内消费满一定金额后,可按如下方案获得相应金额的奖券:消费金额w (元)的范围 200≤w <400 400≤w <500 500≤w <700 700≤w <900 … 获得奖券的金额(元)3060100130…图1baA BDCEO根据上述促销方法,顾客在该商场购物可以获得双重优惠。

例如,购买价为400元的商品,则消费金额为320元,获得的优惠为:400×0.2+30 = 110(元)。

(1)购买一件标价为1000元的商品,顾客得到的优惠率是多少?(2)对于标价在500≤w <800(元)的商品,顾客购买标价为多少元商品,可得到不小于31的优惠率。

21.已知:以原点O 为圆心、5为半径的半圆与y 轴交于A 、G 两点,AB 与半圆相切于点A ,点B 的坐标为(3,y B )(如图1);过半圆上的点C (x C ,y C )作y 轴的垂线,垂足为D ;Rt △DOC 的面积等于382C x . (1)求点C 的坐标;(2)①命题“如图2,以y 轴为对称轴的等腰梯形MNPQ 与M 1N 1P 1Q 1的上底和下底都分别在同一条直线上,NP ∥MQ ,PQ ∥P 1Q 1 ,且NP >MQ .设抛物线y =a 0x 2+h 0过点P 、Q ,抛物线y =a 1x 2+h 1过点P 1、Q 1,则h 0>h 1”是真命题.请你以Q (3,5)、P (4,3)和Q 1(p ,5)、P 1(p +1,3)为例进行验证;②当图1中的线段BC 在第一象限时,作线段BC 关于y 轴对称的线段FE ,连接BF 、CE ,点T 是线段BF 上的动点(如图3);设K 是过T 、B 、C 三点的抛物线y =ax 2+bx +c 的顶点,求K 的纵坐标y K 的取值范围.22.已知:二次函数2y ax bx c =++的图象与x 轴交于A 、B 两点,与y 轴交于点C ,其中点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,线段OB 、OC 的长(OB <OC )是方程x 2-10x +16=0的两个根,且A 点坐标为(-6,0). (1)求此二次函数的表达式;(2)若点E 是线段AB 上的一个动点(与点A 、点B 不重合),过点E 作EF∥AC 交BC 于点F ,连接CE ,设AE 的长为m ,△CEF 的面积为S ,求S 与m 之间的函数关系式,并写出自变量m 的取值范围;(3)在(2)的基础上试说明S 是否存在最大值,若存在,请求出S 的最大值,并求出此时点E 的坐标,判断此时△BCE 的形状;若不存在,请说明理由.试问商品的标价购买商品获得的优惠额率设购买商品得到的优惠.= 图1 图2 图3BOx y Ox y TFEGy xAOCBP 1Q 1M 1N 1N MQP参考答案二.填空题(每题6分,共36分)11.____2)(2y x +______ 12._____(3,)32______ 13.______87_______14.____14.9____________ 15.723π+ ______ 16.________34_________ 三.解答题(共6小题,共64分) 17.(1)将数列分组:ΛΛΛ),1,,12,1(,),13,22,31(),12,21(),11(kk k - 因为1+2+3+…+62=1953;1+2+3+…+63=2016, 所以数列的第2010项属于第63组倒数第7个数,即为577。

(2)由以上分组可以知道,每个奇数组中出现一个1,所以第2010个1出现在第4019组,而第4019组中的1位于该组第2010位, 所以第2010个值为1的项的序号为(1+2+3+…+4018)+2010=809428。

18.解(Ⅰ)∵AB ∥CD , ∴︒=∠+∠180ADC BAD . ∵⊙O 内切于梯形ABCD ,∴AO 平分BAD ∠,有BAD DAO ∠=∠21,DO 平分ADC ∠,有ADC ADO ∠=∠21. ∴︒=∠+∠=∠+∠90)(21ADC BAD ADO DAO . ∴︒=∠+∠-︒=∠90)(180ADO DAO AOD . (Ⅱ)∵在Rt △AOD 中,8=AO cm ,6=DO cm , ∴由勾股定理,得1022=+=DO AO AD cm . ∵E 为切点,∴AD OE ⊥.有︒=∠90AEO . ∴AOD AEO ∠=∠.又OAD ∠为公共角,∴△AEO ∽△AOD . ∴AD AO OD OE =,∴8.4=⋅=ADODAO OE cm .19.如图,在AD 边上任取一点N ,使点N 不是边AD 的中点.分别作出线段AN 、DN 的中点O 1、O 2,只要把正方形ABCD 沿BO 2O 1NMDABO 1、CO 2剪两刀,则得到的三块图形就可以如图所示地拼成一个符合题意的三角形. 答案不唯一:20.解(1)%3310001302.01000=+⨯(2)商品的标价为x 元,则800500≤≤x ,消费额:6408.0400≤≤x ,由已知得⎪⎩⎪⎨⎧<≤≥+5008.040031602.0)(x x x Ⅰ 或⎪⎩⎪⎨⎧<≤≥+6408.0500311002.0)(x x x Ⅱ 不等式(Ⅰ)无解,不等式(Ⅱ)的解为750625≤≤x因此,当顾客购买标价在750625≤≤x 元内的商品时,可得到不小于31的优惠率。

相关文档
最新文档