初中数学专题 三角形全等的判定——“边角边”含答案

合集下载

专题1-4 边角边判定三角形全等-重难点题型(举一反三)(苏科版)(解析版)

专题1-4 边角边判定三角形全等-重难点题型(举一反三)(苏科版)(解析版)

专题1.4 边角边判定三角形全等-重难点题型【苏科版】【题型1 边角边判定三角形全等的条件】【例1】(2021春•锦江区校级期中)如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能用SAS判定△ABC≌△DEC,能添加的一组条件是()A.∠B=∠E,BC=EC B.∠B=∠E,AC=DCC.∠A=∠D,BC=EC D.BC=EC,AC=DC【分析】由AB=DE知,由全等三角形的判定定理SAS知,缺少的添加是:一组对应边相等及其对应夹角相等.【解答】解:A、若AB=DE,∠B=∠E,BC=EC,符合全等三角形的判定定理SAS,能推出△ABC≌△DEC,故符合题意.B、若AB=DE,AC=DC,∠B=∠E,由SSA不能判定△ABC≌△DEC,故不符合题意;C、若AB=DE,BC=EC,∠A=∠D,由SSA不能判定△ABC≌△DEC,故不符合题意;D、若AB=DE,BC=EC,AC=DC,由SSS不能判定△ABC≌△DEC,故不符合题意;故选:A.【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有:ASA,SAS,AAS,SSS,两直角三角形全等,还有HL.【变式1-1】(2020秋•喀什地区期末)如图,已知∠ABC=∠DCB,能直接用SAS证明△ABC≌△DCB的条件是()A.AB=DC B.∠A=∠D C.∠ACB=∠DBC D.AC=DB【分析】根据全等三角形的判定方法即可解决问题.【解答】解:∵AB=DC,∠ABC=∠DCB,BC=CB,∴△ABC≌△DCB(SAS),故选:A.【点评】本题考查全等三角形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.【变式1-2】(2020秋•通州区期中)根据下列条件能画出唯一△ABC的是()A.AB=1,BC=2,CA=3B.AB=7,BC=5,∠A=30°C.∠A=50°,∠B=60°,∠C=70°D.AC=3.5,BC=4.8,∠C=70°【分析】根据各个选项中的条件,可以判断是否可以画出唯一△ABC,从而可以解答本题.【解答】解:当AB=1,BC=2,CA=3时,1+2=3,则线段AB、BC、CA不能构成三角形,故选项A 不符合题意;当AB=7,BC=5,∠A=30°时,可以得到点B到AC的距离为3.5,可以画出两个三角形,如图1所示,故选项B不符合题意;当∠A=50°,∠B=60°,∠C=70°时,可以画出很多的三角形ABC,如图2所示,故选项C不符合题意;当AC=3.5,BC=4.8,∠C=70°时,可以画出唯一的三角形ABC,故选项D符合题意;故选:D.【点评】本题考查全等三角形的判定,解答本题的关键是明确题意,利用数形结合的思想解答.【变式1-3】(2020•奎文区一模)如图,点D、E分别在线段AB、AC上,且AD=AE,若由SAS判定△ABE≌△ACD,则需要添加的一个条件是.【分析】由题意可得∠A=∠A,AD=AE,则添加AB=AC,由SAS判定△ABE≌△ACD.【解答】解:添加AB=AC,∵AB=AC,∠A=∠A,AD=AE,∴△ABE≌△ACD(SAS)故答案为:AB=AC.【点评】本题考查了全等三角形的判定,灵活运用全等三角形的判定是本题的关键.【题型2 边角边判定三角形全等(求角的度数)】【例2】(2020秋•宽城区期末)如图,AB=AC,点D、E分别是AB、AC上一点,AD=AE,BE、CD相交于点M.若∠BAC=70°,∠C=30°,则∠BMD的大小为()A.50°B.65°C.70°D.80°【分析】根据SAS证明△ADC与△AEB全等,利用全等三角形的性质和三角形内角和解答即可.【解答】解:在△ADC与△AEB中,{AD =AE ∠A =∠A AC =AB,∴△ADC ≌△AEB (SAS ),∴∠B =∠C ,∠AEB =∠ADC ,∵∠BAC =70°,∠C =30°,∴∠AEB =∠ADC =180°﹣∠BAC ﹣∠C =180°﹣70°﹣30°=80°,∴∠BMC =∠DME =360°﹣∠AEB ﹣∠ADC ﹣∠BAC =360°﹣80°﹣80°﹣70°=130°,∴∠BMD =180°﹣130°=50°,故选:A .【点评】此题考查全等三角形的判定和性质,关键是根据全等三角形的判定和性质解答.【变式2-1】(2020秋•乐亭县期末)如图,在△ABC 中,∠B =40°,AB =CB ,AF =CD ,AE =CF ,则∠EFD =( )A .50°B .60°C .70°D .80°【分析】由等腰三角形的性质得出∠A =∠C =70°,证明△AEF ≌△CFD (SAS ),由全等三角形的性质得出∠AFE =∠CDF ,则可得出答案.【解答】解:∵∠B =40°,AB =CB ,∴∠A =∠C =12(180°﹣40°)=70°,在△AEF 和△CFD 中,{AE =CF ∠A =∠C AF =CD,∴△AEF ≌△CFD (SAS ),∴∠AFE =∠CDF ,∵∠AFE +∠EFD +∠CFD =180°,∠C +∠CDF +∠CFD =180°,∴∠EFD =∠C =70°.故选:C .【点评】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS ”、“SAS ”、“ASA ”、“AAS ”;全等三角形的对应边相等.也考查了等腰三角形的性质,三角形内角和定理.【变式2-2】(2020秋•长垣市月考)如图,在△ABC 中,∠B =∠C ,E 、D 、F 分别是AB 、BC 、AC 上的点,且BE =CD ,BD =CF ,若∠A =104°,则∠EDF 的度数为( )A .24°B .32°C .38°D .52°【分析】由等腰三角形的性质和三角形内角和定理可求∠B =∠C =38°,由“SAS ”可证△BDE ≌△CFD ,可得∠BED =∠CDF ,∠BDE =∠CFD ,由外角的性质可求解.【解答】解:∵AB =AC ,∠A =104°,∴∠B =∠C =38°,在△BDE 和△CFD 中,{BE =CD ∠B =∠C BD =CF,∴△BDE ≌△CFD (SAS ),∴∠BED =∠CDF ,∠BDE =∠CFD ,∴∠BED +∠BDE =∠CDF +∠CFD ,∵∠BED +∠B =∠CDE =∠EDF +∠CDF ,∴∠B =∠EDF =38°,故选:C .【点评】本题考查了全等三角形的判定及性质,等腰三角形的性质的运用,三角形内角和定理的运用,三角形外角的性质的运用,解答时证明三角形全等是关键.【变式2-3】(2021春•沙坪坝区校级月考)如图,△ABC 中,CD ⊥AB ,垂足为D .BE ⊥AC ,垂足为G ,AB =CF ,BE =AC .(1)求证:AE =AF ;(2)求∠EAF 的度数.【分析】(1)利用SAS 证明△AEB ≌△F AC 可证明结论;(2)由全等三角形的性质可得∠E =∠CAF ,由余角的定义可求得∠EAF 的度数.【解答】(1)证明:∵CD ⊥AB ,BE ⊥AC ,∴∠CAD +∠ACD =∠CAD +∠EBA =90°,∴∠ACD =∠EBA ,在△AEB 和△F AC 中,{AB =FC ∠EBA =∠ACF BE =CA,∴△AEB ≌△F AC (SAS ),∴AE =F A ;(2)解:∵△AEB ≌△F AC ,∴∠E =∠CAF ,∵∠E +∠EAG =90°,∴∠CAF +∠EAG =90°,即∠EAF =90°.【点评】本题主要考查全等三角形的判定与性质,证明△AEB ≌△F AC 是解题的关键.【题型3 边角边判定三角形全等(求线段的长度)】【例3】(2020秋•越秀区校级月考)如图,在△ABC 中,AD 平分∠BAC ,∠B =2∠ADB ,AB =5,CD =6,则AC 的长为( )A .3B .9C .11D .15【分析】在AC 上截取AE =AB ,连接DE ,证明△ABD ≌△AED ,得到∠B =∠AED ,再证明ED =EC ,进而代入数值解答即可.【解答】解:在AC 上截取AE =AB ,连接DE ,∵AD 平分∠BAC ,∴∠BAD =∠DAC ,在△ABD 和△AED 中,{AE =AB ∠BAD =∠DAC AD =AD,∴△ABD ≌△AED (SAS ),∴∠B =∠AED ,BD =DE ,∵∠B =2∠ADB ,∴∠AED =2∠ADB ,而∠AED =∠C +∠EDC =2∠ADB ,∴∠CED =∠EDC ,∴CD =CE ,∴AB +CD =AE +CE =AC =5+6=11.故选:C .【点评】本题考查了全等三角形的判定和性质;此题利用了全等三角形中常用辅助线﹣截长补短法构造全等三角形,然后利用全等三角形解题,这是解决线段和差问题最常用的方法,注意掌握.【变式3-1】(2020春•南岗区校级期中)如图,△ABC 中,AB =AC ,D 、E 分别在CA 、BA 的延长线上,连接BD 、CE ,且∠D +∠E =180°,若BD =6,则CE 的长为( )A .6B .5C .3D .4.5【分析】延长BE 使AF =AD ,连接CF ,由“SAS ”可证△ABD ≌△ACF ,可得∠F =∠D ,BD =CF =6,由平角的性质可得∠F =∠FEC =∠D ,即可求解.【解答】解:如图,延长BE 使AF =AD ,连接CF ,在△ABD 和△ACF 中,{AD =AF ∠DAB =∠FAC AB =AC,∴△ABD ≌△ACF (SAS ),∴∠F =∠D ,BD =CF =6,∵∠D +∠BEC =180°,∠BEC +∠FEC =180°,∴∠D =∠FEC ,∴∠F =∠FEC ,∴CF =CE =6,故选:A .【点评】本题考查了全等三角形的判定和性质,添加恰当辅助线构造全等三角形是本题的关键.【变式3-2】(2020秋•洪山区期末)如图,在△ABC 中,AB =6,BC =5,AC =4,AD 平分∠BAC 交BC 于点D ,在AB 上截取AE =AC ,则△BDE 的周长为( )A .8B .7C .6D .5【分析】利用已知条件证明△ADE ≌△ADC (SAS ),得到ED =CD ,从而BC =BD +CD =DE +BD =5,即可求得△BDE 的周长.【解答】解:∵AD 是∠BAC 的平分线,∴∠EAD =∠CAD在△ADE 和△ADC 中,{AE =AC ∠EAD =∠CAD AD =AD,∴△ADE ≌△ADC (SAS ),∴ED =CD ,∴BC =BD +CD =DE +BD =5,∴△BDE 的周长=BE +BD +ED =(6﹣4)+5=7.故选:B .【点评】本题考查了全等三角形的性质与判定,解决本题的关键是证明△ADE ≌△ADC .【变式3-3】(2020秋•广州校级月考)如图,在△ABC 中,AB =8,AC =5,AD 是△ABC 的中线,则AD 的取值范围是( )A .3<AD <13B .1.5<AD <6.5C .2.5<AD <7.5 D .10<AD <16【分析】延长AD 到E ,使AD =DE ,连接BE ,证明△ADC ≌△EDB ,推出EB =AC ,根据三角形的三边关系定理求出即可.【解答】解:延长AD 到E ,使AD =DE ,连接BE ,∵AD 是△ABC 的中线,∴BD =CD ,在△ADC 和△EDB 中,{CD =BD ∠ADC =∠BDE AD =DE,∴△ADC ≌△EDB (SAS ),∴EB =AC ,根据三角形的三边关系定理:8﹣5<AE <8+5,∴1.5<AD <6.5,故选:B .【点评】本题主要考查对全等三角形的性质和判定,三角形的三边关系定理,倍长中线等知识点的理解和掌握,能推出8﹣5<2AD <8+5是解此题的关键.【题型4 边角边判定三角形全等(实际应用)】【例4】(2020秋•浑源县期中)如图,A ,B 两点分别位于一个假山的两端,小明想用绳子测量A 、B 间的距离,首先在地面上取一个可以直接到达A 点和B 点的点C ,连接AC 并延长到点D ,使CD =AC ,连接BC 并延长到点E ,使CE =CB ,连接DE 并测量出它的长度为8m ,则AB 间的距离为 8m .【分析】根据全等三角形的判定和性质即可得到结论.【解答】解:在△CDE 和△CAB 中,{CD =CA ∠DCE =∠ACB CE =CB,∴△CDE ≌△CAB (SAS ),∴DE =AB =8m ,故答案为:8m .【点评】本题考查了全等三角形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键.【变式4-1】(2020秋•西湖区校级期中)如图1、2,小明为了测出塑料瓶直壁厚度,由于不便测出塑料瓶的内径,小明动手制作一个简单的工具(如图2,AC =BD ,O 为AC 、BD 的中点)解决了测瓶的内径问题,测得瓶的外径为a 、图2中的DC 长为b ,瓶直壁厚度x = (用含a ,b 的代数式表示).【分析】直接利用全等三角形的判定与性质得出△DOC ≌△BOA ,进而得出答案.【解答】解:∵AC =BD ,O 为AC 、BD 的中点,∴DO =OB .OA =CO ,在△DOC 和△BOA 中{DO =OB ∠DOC =∠BOA CO =AO,∴△DOC ≌△BOA (SAS ),∴AB =DC =b ,∴x +x +b =a ,解得:x =a−b 2. 故答案为:a−b 2.【点评】此题主要考查了全等三角形的应用,正确掌握全等三角形的判定方法是解题关键.【变式4-2】(2020秋•温岭市期中)某中学计划为新生配备如图1所示的折叠凳,图2是折叠凳撑开后的侧面示意图(木条等材料宽度忽略不计),其中凳腿AB 和CD 的长度相等,O 是它们的中点,为了使折叠凳坐着舒适,厂家将撑开后的折叠凳宽度AD 设计为35cm ,由以上信息能求出CB 的长度吗?如果能,请求出CB 的长度;如果不能,请说明理由.【分析】根据中点定义求出OA =OB ,OC =OD ,然后利用“边角边”证明△AOD 和△BOC 全等,根据全等三角形对应边相等即可证明.【解答】解:∵O 是AB 、CD 的中点,∴OA =OB ,OC =OD ,在△AOD 和△BOC 中,{OA =OB ∠AOD =∠BOC OC =OD,∴△AOD ≌△BOC (SAS ),∴CB =AD ,∵AD =35cm ,∴CB =35(cm ),答:CB 的长度为35cm .【点评】本题考查了全等三角形的应用,证明得到三角形全等是解题的关键.【变式4-3】(2020春•郏县期末)如图所示,A 、B 两点分别位于一个池塘的两端,小明想用绳子测量A 、B 间的距离,但绳子不够长,请你利用三角形全等的相关知识带他设计一种方案测量出A 、B 间的距离,写出具体的方案,并解释其中的道理.【分析】由题意知AC =DC ,BC =EC ,根据∠ACB =∠DCE 即可证明△ABC ≌△DEC ,即可得AB =DE ,即可解题.【解答】解:如图,先在地上取一个可以直接到达A 点和B 点的点C ,连接AC 并延长到D ,使CD =AC ;连接BC 并延长到E ,使CE =CB ,连接DE 并测量出它的长度,DE 的长度就是A 、B 间的距离. 证明:由题意知AC =DC ,BC =EC ,且∠ACB =∠DCE ,在△ABC 和△DEC 中,{AC =DC ∠ACB =∠DCE BC =EC,∴△ABC ≌△DEC (SAS ),∴DE =AB .∴量出DE 的长,就是A 、B 两点间的距离.【点评】本题考查了全等三角形在实际生活中的应用,考查了全等三角形对应边相等的性质,本题中求证△ABC ≌△DEC 是解题的关键.【题型5 边角边判定三角形全等(证明题)】【例5】(2020春•沙坪坝区校级期中)如图,在直角△ABC 中,∠ABC =90°,过B 点作BD ⊥AC 于D ,E 在CD 上,且DE =AB ,过点D 作DF ∥BC ,使得DF =BD ,连接EF .求证:(1)∠ABD =∠C ;(2)DF ⊥EF .【分析】(1)由直角三角形的性质可得出答案;(2)证明△ABD ≌△EDF (SAS ),由全等三角形的性质得出∠ADB =∠DFE =90°,则可得出结论.【解答】证明:(1)∵∠ABC =90°,∴∠A +∠C =90°,∵BD ⊥AC ,∴∠BDA =90°,∵∠ABD +∠A =90°,∴∠ABD =∠C ;(2)∵DF ∥BC ,∴∠FDE =∠C ,∵∠ABD =∠C ,∴∠ABD =∠FDE ,在△ABD 和△EDF 中,{AB =DE ∠ABD =∠FDE BD =DF,∴△ABD ≌△EDF (SAS ),∴∠ADB =∠DFE =90°,∴DF ⊥EF .【点评】本题考查了直角三角形的性质,平行线的性质,全等三角形的判定与性质,熟练掌握全等三角形的性质是解题的关键.【变式5-1】(2020秋•陆川县期中)如图,AD 是△ABC 的角平分线,且AB >AC ,E 为AD 上任意一点, 求证:AB ﹣AC >EB ﹣EC .【分析】在AB 上截取AF =AC ,连接EF ,证明△AEF ≌△AEC ,可得EF =EC ,根据三角形三边的关系即可证明结论.【解答】证明:如图,在AB 上截取AF =AC ,连接EF ,∵AD是△ABC的角平分线,∴∠F AE=∠CAE,在△AEF与△AEC中,∵{AF=AC∠FAE=∠CAE AE=AE,∴△AEF≌△AEC(SAS),∴EF=EC,在△BEF中,EB﹣EF<BF,而BF=AB﹣AF=AB﹣AC,∴EB﹣EC<AB﹣AC,即AB﹣AC>EB﹣EC.【点评】本题考查了全等三角形的判定与性质,三角形三边的关系,解决本题的关键是掌握全等三角形的判定与性质.【变式5-2】(2020秋•合江县月考)已知△ABC和△ADE均为等腰三角形,且∠BAC=∠DAE,AB=AC,AD=AE.(1)如图1,点E在BC上,求证:BC=BD+BE;(2)如图2,点E在CB的延长线上,求证:BC=BD﹣BE.【分析】(1)先证∠DAB=∠EAC,再证△DAB≌△EAC(SAS),得出BD=CE,则可得出结论;(2)证明△DAB≌△EAC(SAS),得出BD=CE,进而得出结论.【解答】(1)证明:∵∠BAC=∠DAE,∴∠BAC﹣∠BAE=∠DAE﹣∠BAE,即∠DAB=∠EAC,又∵AB=AC,AD=AE,∴△DAB≌△EAC(SAS),∴BD=CE,∴BC=BE+CE=BD+BE;(2)证明:∵∠BAC=∠DAE,∴∠BAC+∠EAB=∠DAE+∠EAB,即∠DAB=∠EAC,又∵AB=AC,AD=AE,∴△DAB≌△EAC(SAS),∴BD=CE,∴BC=CE﹣BE=BD﹣BE.【点评】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题的关键.【变式5-3】(2020秋•温岭市期中)(1)如图1,已知在△ABC中,AD为中线,求证AB+AC>2AD.(2)如图2,在△ABC中,D为BC的中点,DE⊥DF分别交AB,AC于点E,F.求证:BE+CF>EF.【分析】(1)根据SAS证明△ABD≌△CED,得出AB=EC,由三角形三边关系得出答案;(2)根据全等三角形的判定和性质解答即可.【解答】证明:(1)延长AD至点E,使DE=AD,连接CE,如图1.则AE =2AD ,在△ABD 与△ECD 中,{AD =ED ∠ADC =∠EDB DB =DC,∴△ABD ≌△ECD (SAS ),∴AB =EC ,在△ACE 中,有AC +CE >AE ,即AC +AB >2AD ;(2)延长ED 至点G ,使DG =DE ,连接CG ,FG ,如图2.∵FD 垂直平分EG ,∴EF =FG ,在△EDB 与△GDC 中,{BD =CD ∠BDE =∠CDG ED =GD,∴△EDB ≌△GDC (SAS ),∴BE =CG ,在△FCG 中,CF +CG >FG ,即CF +BE >EF .【点评】此题考查全等三角形的判定与性质.关键是根据全等三角形的判定和性质以及三角形三边关系解答.【题型6 边角边判定三角形全等(探究题)】【例6】(2020秋•怀宁县期末)如图,已知:AD =AB ,AE =AC ,AD ⊥AB ,AE ⊥AC .猜想线段CD 与BE 之间的数量关系与位置关系,并证明你的猜想.【分析】证明△ACD ≌△AEB ,根据全等三角形的性质得到CD =BE ,∠ADC =∠ABE ,根据三角形内角和定理得出∠BFD =∠BAD =90°,证明结论.【解答】解:猜想:CD =BE ,CD ⊥BE ,理由如下:∵AD ⊥AB ,AE ⊥AC ,∴∠DAB =∠EAC =90°.∴∠DAB +∠BAC =∠EAC +∠BAC ,即∠CAD =∠EAB ,在△ACD 和△AEB 中,{AD =AB ∠CAD =∠EAB AC =AE,∴△ACD ≌△AEB (SAS ),∴CD =BE ,∠ADC =∠ABE ,∵∠AGD =∠FGB ,∴∠BFD =∠BAD =90°,即CD ⊥BE .【点评】本题考查的是三角形全等的判定和性质、三角形内角和定理,掌握全等三角形的判定定理和性质定理是解题的关键.【变式6-1】(2020秋•唐山期中)如图,在△ABC 中,AD ,CE 分别是BC 、AB 边上的高,AD 与CE 交于点F ,连接BF ,延长AD 到点G ,使得AG =BC ,连接BG ,若CF =AB .(1)求证:△ABG ≌△CFB ;(2)在完成(1)的证明后,爱思考的琪琪想:BF 与BG 之间有怎样的数量关系呢?它们之间又有怎样的位置关系?请你帮琪琪解答这一问题,并说明理由.【分析】(1)根据SAS 证明△ABG ≌△CFB ,再利用全等三角形的性质证明即可;(2)根据全等三角形的性质得出∠G =∠FBD ,再证明即可.【解答】(1)证明:∵AD ,CE 是高,∴∠BAD +∠AFE =∠BCF +∠CFD =90°,∵∠AFE =∠CFD ,∴∠BAD =∠BCF ,在△ABG 与△CFB 中,{AG =BC ∠BAD =∠BCF CF =AB,∴△ABG ≌△CFB (SAS );(2)解:BF =BG ,BF ⊥BG ,理由如下:∵△ABG ≌△CFB ,∴BF =BG ,∠G =∠FBD ,∵AD ⊥BC ,∴∠BDG =90°∴∠G +∠DBG =90°,∴∠FBD +∠DBG =90°,∴∠FBG 的度数为90°,∴BF ⊥BG .【点评】此题考查全等三角形的判定和性质,关键是根据SAS 证明△ABG ≌△CFB .【变式6-2】(2021春•佛山月考)在△ABC 中,AB =AC ,点D 是射线CB 上的一动点(不与点B 、C 重合),以AD 为一边在AD 的右侧作△ADE ,使AD =AE ,∠DAE =∠BAC ,连接CE .(1)如图1,当点D 在线段CB 上,且∠BAC =90°时,那么∠DCE = 度;(2)设∠BAC =α,∠DCE =β.①如图2,当点D 在线段CB 上,∠BAC ≠90°时,请你探究α与β之间的数量关系,并证明你的结论;②如图3,当点D 在线段CB 的延长线上,∠BAC ≠90°时,请将图3补充完整,写出此时α与β之间的数量关系并证明.【分析】(1)易证∠BAD =∠CAE ,即可证明△BAD ≌△CAE ,可得∠ACE =∠B ,即可解题;(2)易证∠BAD =∠CAE ,即可证明△BAD ≌△CAE ,可得∠ACE =∠B ,根据∠B +∠ACB =180°﹣α即可解题;(3)易证∠BAD =∠CAE ,即可证明△BAD ≌△CAE ,可得∠ACE =∠B ,根据∠ADE +∠AED +α=180°,∠CDE +∠CED +β=180°即可解题.【解答】解:(1)∵∠BAD +∠DAC =90°,∠DAC +∠CAE =90°,∴∠BAD =∠CAE ,在△BAD 和△CAE 中,{AB =AC ∠BAD =∠CAE AD =AE,∴△BAD ≌△CAE (SAS ),∴∠ACE =∠B ,∵∠B +∠ACB =90°,∴∠DCE =∠ACE +∠ACB =90°;故答案为 90.(2)∵∠BAD +∠DAC =α,∠DAC +∠CAE =α,∴∠BAD =∠CAE ,在△BAD 和△CAE 中,{AB =AC ∠BAD =∠CAE AD =AE,∴△BAD ≌△CAE (SAS ),∴∠ACE =∠B ,∵∠B +∠ACB =180°﹣α,∴∠DCE =∠ACE +∠ACB =180°﹣α=β,∴α+β=180°;(3)作出图形,∵∠BAD +∠BAE =α,∠BAE +∠CAE =α,∴∠BAD =∠CAE ,在△BAD 和△CAE 中,{AB =AC ∠BAD =∠CAE AD =AE,∴△BAD ≌△CAE (SAS ),∴∠AEC =∠ADB ,∵∠ADE +∠AED +α=180°,∠CDE +∠CED +β=180°,∠CED =∠AEC +∠AED ,∴α=β.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△BAD ≌△CAE 是解题的关键.【变式6-3】(2020秋•集贤县期中)如图1,在△ABC 中,AE ⊥BC 于点E ,AE =BE ,D 是AE 上的一点,且DE =CE ,连接BD ,CD .(1)试判断BD 与AC 的位置关系和数量关系,并说明理由;(2)如图2,若将△DCE 绕点E 旋转一定的角度后,试判断BD 与AC 的位置关系和数量关系是否发生变化,并说明理由.【分析】(1)延长BD 交AC 于F ,求出∠AEB =∠AEC =90°,证出△BED ≌△AEC ,推出BD =AC ,∠DBE =∠CAE ,根据∠EBD +∠BDE =90°推出∠ADF +∠CAE =90°,求出∠AFD =90°即可;(2)求出∠BED =∠AEC ,证出△BED ≌△AEC ,推出BD =AC ,∠BDE =∠ACE ,根据∠ACE +∠EOC =90°求出∠BDE +∠DOF =90°,求出∠DFO =90°即可.【解答】解:(1)BD =AC ,BD ⊥AC ,理由:延长BD 交AC 于F .∵AE ⊥BC ,∴∠AEB =∠AEC =90°,在△BED 和△AEC 中,{BE =AE ∠BED =∠AEC ED =CE,∴△BED ≌△AEC (SAS ),∴BD =AC ,∠DBE =∠CAE ,∵∠BED =90°,∴∠EBD +∠BDE =90°,∵∠BDE =∠ADF ,∴∠ADF +∠CAE =90°,∴∠AFD =180°﹣90°=90°,∴BD ⊥AC ;(2)结论不发生变化,理由是:设AC 与DE 相交于点O ,∵∠BEA =∠DEC =90°,∴∠BEA +∠AED =∠DEC +∠AED ,∴∠BED =∠AEC ,在△BED 和△AEC 中,{BE =AE ∠BED =∠AEC ED =CE,∴△BED ≌△AEC (SAS ),∴BD =AC ,∠BDE =∠ACE ,∵∠DEC =90°,∴∠ACE +∠EOC =90°,∵∠EOC =∠DOF ,∴∠BDE +∠DOF =90°,∴∠DFO =180°﹣90°=90°,∴BD ⊥AC .【点评】本题考查了全等三角形的性质和判定的应用,等腰直角三角形的性质,熟练掌握全等三角形的判定与性质是解题的关键.。

12.2三角形全等的判定第2课时“边角边”精选练习含答案

12.2三角形全等的判定第2课时“边角边”精选练习含答案

12一、选择题1. 如图,AB=AC ,AD=AE ,欲证△ABD ≌△ACE ,可补充条件( )A.∠1=∠2B.∠B=∠CC.∠D=∠ED.∠BAE=∠CAD2. 能判定△ABC ≌△A ′B ′C ′的条件是( )A .AB=A ′B ′,AC=A ′C ′,∠C=∠C ′B. AB=A ′B ′, ∠A=∠A ′,BC=B ′C ′C. AC=A ′C ′, ∠A=∠A ′,BC=B ′CD. AC=A ′C ′, ∠C=∠C ′,BC=B ′C3. 如图,AD=BC ,要得到△ABD 和△CDB 全等,能够添加的条件是( )A. AB ∥CDB. AD ∥BCC. ∠A=∠CD. ∠ABC=∠CDA4.如图,ABC 和△DEC 中,已知AB=DE ,还需添加两个条件才能使△ABC ≌△DEC ,不能添加的一组条件是( ) A .BC=EC ,∠B=∠E B .BC=EC ,AC=DCC .BC=DC ,∠A=∠D D .AC=DC ,∠A=∠D5.如图,在四边形ABCD 中,AB=AD ,CB=CD ,若连接AC 、BD 相交于点O ,则图中全等三角形共有( )A .1对B .2对C .3对D .4对 6.在△ABC 和C B A '''∆中,∠C =C '∠,b-a=a b '-',b+a=a b '+',则这两个三角形( )A. 不一定全等B.不全等C. 全等,按照“ASA ”D. 全等,按照“SAS ”第1题 第3题图第4题图 第5题图7.如图,已知AD 是△ABC 的BC 边上的高,下列能使△ABD ≌△AC D 的条件是( )A .AB=ACB .∠BAC=90°C .BD=ACD .∠B=45°8.如图,梯形ABCD 中,AD ∥BC ,点M 是AD 的中点,且MB=MC ,若AD=4,AB=6,BC=8,则梯形ABCD 的周长为( )A .22B .24C .26D .28二、填空题9. 如图,已知BD=CD ,要按照“SAS ”判定△ABD ≌△ACD ,则还需添加的条件是 . 10. 如图,AC 与BD 相交于点O ,若AO=BO ,AC =BD ,∠DBA=30°,∠DAB=50°,则∠CBO=度.第9题图第7题图 第8题图 第10题图第11题图11.西如图,点B 、F 、C 、E 在同一条直线上,点A 、D 在直线BE 的两侧,AB ∥DE ,BF=CE ,请添加一个适当的条件: ,使得AC=DF. 12.如图,已知AD AB =,DAC BAE ∠=∠,要使 ABC △≌ADE △,可补充的条件是 (写出一个即可).13.(2005•天津)如图,OA=OB ,OC=OD ,∠O=60°,∠C=25°,则 ∠BED= 度.14. 如图,若AO=DO ,只需补充 就能够按照SAS 判定△AOB ≌△DOC.15. 如图,已知△ABC ,BA=BC ,BD 平分∠ABC ,若∠C=40°,则∠ABE 为度.16.在Rt △ABC 中,∠ACB=90°,BC=2cm ,CD ⊥AB ,在AC 上取一点E ,使EC=BC ,过点E 作EF ⊥AC 交CD 的延长线于点F ,若EF=5cm ,则AE= cm . 40︒D C B A E17. 已知:如图,DC=EA ,EC=BA ,DC ⊥AC , BA ⊥AC ,垂足分不是C 、A ,则BE 与DE 的位置关系是 . AC E B0 CE DB A 第13题图第14题图第12题图第15题图第16题图第17题图D18. △ABC中,AB=6,AC=2,AD是BC边上的中线,则AD的取值范畴是.三、解答题19. 如图,点A、F、C、D在同一直线上,点B和点E分不在直线A D的两侧,且AB=DE,∠A=∠D,AF=DC.求证:BC∥EF.20.已知:如图,点A、B、C、D在同一条直线上,EA⊥AD,FD ⊥AD,AE=DF,AB=DC.求证:∠ACE=∠DBF.21.如图CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.22. 如图,AB=AC,点E、F分不是AB、AC的中点,求证:△AFB ≌△AEC.23.如图,一个含45°的三角板HBE的两条直角边与正方形ABCD的两邻边重合,过E点作EF⊥AE交∠DCE的角平分线于F点,试探究线段AE与EF的数量关系,并讲明理由。

专题02三角形全等的判定综合题(原卷版)

专题02三角形全等的判定综合题(原卷版)

专题02 三角形全等的判定(综合题)知识点1:全等三角形判定1——“边边边”全等三角形判定1——“边边边”两个三角形全等.(可以简写成“ ”或“ ”).细节剖析:如图,如果''A B =AB ,''A C =AC ,''B C =BC ,则△ABC ≌△'''A B C .知识互联网 易错点拨知识点2:全等三角形判定2——“边角边”1. 全等三角形判定2——“边角边”的两个三角形全等(可以简写成“ ”或“ ”).细节剖析:如图,如果AB = ''A B ,∠A =∠'A ,AC = ''A C ,则△ABC ≌△'''A B C . 注意:这里的角,指的是两组对应边的夹角.2. ,两个三角形不一定全等.如图,△ABC 与△ABD 中,AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD 不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.知识点3:全等三角形判定3——“角边角”全等三角形判定3——“角边角”两个三角形全等(可以简写成“角边角”或“ASA”).细节剖析:如图,如果∠A =∠,AB =,∠B =∠,则△ABC ≌△.'A ''A B 'B '''A B C知识点4:全等三角形判定4——“角角边”1.全等三角形判定4——“角角边”的两个三角形全等(可以简写成“ ”或“AAS”)细节剖析:由三角形的内角和等于可得两个三角形的相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC和△ADE中,如果DE∥BC,那么∠ADE=∠B,∠AED=∠C,又∠A=∠A,但△ABC 和△ADE不全等.这说明,三个角对应相等的两个三角形不一定全等.知识点5:判定方法的选择1.选择哪种判定方法,要根据具体的已知条件而定,见下表:2.如何选择三角形证全等(1)可以从求证出发,看求证的(用后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;(2)可以从已知出发,看已知条件确定证;(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;(4)如果以上方法都行不通,就添加知识点6:判定直角三角形全等的一般方法由三角形全等的条件可知,对于两个直角三角形,满足相等,或对应相等,这两个直角三角形就全等了.这里用到的是“ ”,“ ”或“ ”判定定理.知识点7:判定直角三角形全等的特殊方法——斜边,直角边定理在两个直角三角形中,有的两个直角三角形全等(可以简写成“ ”或“ ”).这个判定方法是所独有的,一般三角形不具备.细节剖析:(1)“HL”从顺序上讲是“边边角”对应相等,由于其中含有直角这个特殊条件,所以三角形的形状和大小就确定了.(2)判定两个直角三角形全等的方法共有5种:.证明两个直角三角形全等,首先考虑用定理,再考虑用的证明方法.(3)应用“ ”判定两个直角三角形全等的过程中要突出直角三角形这个条件,书写时必须在两个三角形前加上“ ”.一.选择题1.(2022•雨花区校级开学)如图,已知△ABC的三条边和三个角,则甲、乙、丙三个三角形中和△ABC全等的是()A.甲和乙B.甲和丙C.乙和丙D.只有甲2.(2022春•辽阳期末)在△ABC中,D,E分别是AC、BC上的点,过点D作DF⊥AB,DG⊥BC,垂足分别是点F,G,连接DE,若DF=DG,BE=DE,则下面三个结论:①BF=BG;②DE∥BF;易错题专训③△ADF≌△CDG.其中正确的是()A.①③B.②③C.①②D.①②③3.(2022春•保定期末)如图,抗日战争期间,为了炸毁敌人的碉堡,需要测出我军阵地与敌人碉堡的距离,我军战士想到一个办法.他先面向碉堡的方向站好,然后调整帽子,使视线通过帽檐正好落在碉堡的底部点B;然后转过身,保持刚才的姿势,这时视线落在了我军阵地的点E上;最后,他用步测的办法量出自己与E点的距离,从而推算出我军阵地与敌人碉堡的距离,这里判定△ABC≌△DEF的理由是()A.SSS B.SAS C.ASA D.AAA4.(2022•播州区二模)如图,在△ABC中,BC<AC,∠A+∠C=60°,点D在BC上,点E在AC上,连接DE,∠ABC=∠DEC,过点B作BF⊥AC于点F.若DB=AB,则的值为()A.1B.2C.D.5.(2021秋•荔湾区期末)如图,△ABC≌△AED,点E在线段BC上,∠1=40°,则∠AED的度数是()A.70°B.68°C.65°D.60°6.(2021春•丹东期中)如图:在△ABC中,∠ABC=45°,AD,BE分别为BC、AC边上的高,AD、BE相交于点F.下列结论:①∠FCD=45°;②AE=EC;③S△ABF:S△AFC=AD:FD;④若BF=2EC,则BC =AB.正确结论的序号是()A.①③④B.①②④C.②③④D.①②7.(2022春•沙坪坝区校级期末)如图,在△ABC中,AB>AC,AD是△ABC的角平分线,点E在AC上,过点E作EF⊥BC于点F,延长CB至点G,使BG=2FC,连接EG交AB于点H,EP平分∠GEC,交AD的延长线于点P,连接PH,PB,PG,若∠C=∠EGC+∠BAC,则下列结论:①∠APE=∠AHE;②PE=HE;③AB=GE;④S△P AB=S△PGE.其中正确的有()A.①②③B.①②③④C.①②D.①③④二.填空题8.(2022秋•洪泽区校级月考)如图,若∠1=∠2,若根据AAS,加上条件,则有△AOC≌△BOC.9.(2022春•泰兴市期末)如图,△ABC的顶点A、B、C都在小正方形的顶点上,我们把这样的三角形叫做格点三角形.则图中与△ABC有唯一公共顶点C且与△ABC全等的格点三角形共有个(不包括△ABC).10.(2022春•永州期末)如图,AB⊥CF,垂足为B,AB∥DE,点E在CF上,CE=FB,AB=DE,依据以上条件可以判定△ABC≌△DEF,这种判定三角形全等的方法,可以简写为.11.(2022春•静安区校级期中)如图,线段AB两点的坐标分别为A(﹣4,0)、B(﹣2,﹣4),在x轴的下方存在点C,使以点A,B,C为顶点的三角形与△ABO全等,则点C的坐标为.12.(2021秋•江油市期末)如图,△ABC的三边AB、BC、CA长分别为30,40,50.其三条角平分线交于点O,则S△ABO:S△BCO:S△CAO=.13.(2021春•武侯区校级月考)如图,在Rt△ABC中,∠ACB=90°,BD是∠ABC的平分线,DE⊥AB,垂足为E,若△ABC和△ADE的周长分别为30和6,则BC的长为.14.(2021春•罗湖区校级期末)如图,OP平分∠MON,P A⊥ON,垂足为A,Q是射线OM上的一个动点,若P、Q两点距离最小为8,则P A=.15.(2022春•沙坪坝区校级期中)如图,在△ABC中,AC=BC,∠ABC=54°,CE平分∠ACB,AD平分∠CAB,CE与AD交于点F,G为△ABC外一点,∠ACD=∠FCG,∠CBG=∠CAF,连接DG.下列结论:①△ACF≌△BCG;②∠BGC=117°;③S△ACE=S△CFD+S△BCG;④AD=DG+BG.其中结论正确的是(只需要填写序号).三.解答题16.(2022•益阳)如图,在Rt△ABC中,∠B=90°,CD∥AB,DE⊥AC于点E,且CE=AB.求证:△CED ≌△ABC.17.(2022春•宁德期末)如图,已知∠MON,点A,B在边ON上,OA=3,AB=5,点C是射线OM上一个动点(不与点O重合),过点B作BD⊥AC,交直线AC于点D,延长BD至点E,使得DE=BD,连接BC,EC,AE,OE.(1)说明△ACE≌△ACB的理由;(2)直接写出OE的取值范围.18.(2022春•通川区期末)如图,在四边形ABCD中,AB=AC,BE平分∠CBA,连接AE,若AD=AE,∠DAE=∠CAB.(1)求证:△ADC≌△AEB;(2)若∠CAB=36°,求证:CD∥AB.19.(2022春•秦都区期末)△ABC和△ADE如图所示,其中∠ABC=∠ACB,∠ADE=∠AED,∠BAC=∠DAE.(1)如图①,连接BE、CD,求证:BE=CD;(2)如图②,连接BE、CD、BD,若∠BAC=∠DAE=60°,CD⊥AE,AD=3,CD=5,求BD的长.20.(2020秋•立山区期中)如图,已知△ABC中,AB=AC=9cm,BC=6cm,点D为AB的中点.(1)如果点P在边BC上以1.5cm/s的速度由点B向点C运动,同时,点Q在边CA上由点C向点A运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,经过t秒后,△BPD与△CQP全等,求此时点Q的运动速度与运动时间t.(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC 三边运动,则经过秒后,点P与点Q第一次在△ABC的边上相遇?(在横线上直接写出答案,不必书写解题过程)。

初二数学下册,全等三角形判定专题

初二数学下册,全等三角形判定专题

全等三角形判定专题1.边边边(SSS)(1)基本事实:三边分别相等的两个三角形全等,简写成“__________”或“SSS”.(2)这个基本事实告诉我们:当三角形的三边确定后,其形状、大小也随之确定.这也是三角形具有稳定性的原因.2.边角边(SAS)(1)基本事实:两边和它们的夹角分别相等的两个三角形全等,简写成“边角边”或“__________”.(2)此方法包含“边”和“角”两种元素,必须是两边夹一角才行,而不是两边及一边对角分别相等,一定要注意元素的“对应”关系.【注意】(1)此方法是证明两个三角形全等最常用的方法之一,应用时,可以从图形上直接观察到三个对应元素必须符合“两边夹角”,即“SAS”,不要误认为有两边一角就能判定两个三角形全等.(2)在书写时也要按照“边→角→边”的顺序排列条件,必须牢记“边边角”不能作为判定两个三角形全等的条件.3.角边角(ASA)(1)基本事实:两角和它们的夹边分别相等的两个三角形全等,简写成“角边角”或“__________”.(2)用“ASA”来判定两个三角形全等,一定要证明这两个三角形有两个角以及这两个角的夹边分别相等,证明时要加强对夹边的认识.4.判定两个三角形全等的基本事实:角角边(AAS)(1)基本事实:两角和其中一个角的对边分别相等的两个三角形全等,简写成“角角边”或“__________”.(2)这一结论很容易由“ASA”推得,将这一结论与“ASA”结合起来,即可得出:两个三角形如果具备两角和一条边对应相等,就可判定其全等.5.直角三角形全等的判定方法:斜边、直角边(HL)(1)基本事实:斜边和一条直角边分别相等的两个直角三角形全等,简写成“斜边、直角边”或“________”.(2)“HL”定理是直角三角形所独有的,对于一般三角形不成立.【归纳】判定两个三角形全等常用的思路方法如下:HL SASSSS AAS SAS ASA AAS ASA AAS ⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎧⎪⎪⎪⎧⎪⎨⎨⎪⎨⎪⎪⎪⎪⎪⎩⎩⎪⎪⎧⎪⎨⎪⎩⎪⎩一直角边一斜边—已知两边找夹角—找另一边—边为角的对边—找任一角—找夹角的另一边—已知一边一角边为角的邻边找夹边的另一角—找边的对角—找夹边—已知两角找任一角的对边— 题型归纳一、用边边边(SSS )证明三角形全等明确要证明全等的两个三角形,在书写两个三角形全等时,“≌”左边三角形的三边与“≌”右边三角形的三边的前后顺序要保持一致.【例1】如图,ABC △中,AB AC =,EB EC =,则由“SSS ”可判定A .ABD △≌ACD △B .ABE △≌ACE △C .BDE △≌CDE △D .以上答案都不对二、用边角边(SAS )证明三角形全等此方法包含“边”和“角”两种元素,必须是两边夹一角才行,而不是两边及一边对角分别相等,一定要注意元素的“对应”关系.【例2】如图,AB =AC ,添加下列条件,能用SAS 判断△ABE ≌△ACD 的是A .∠B =∠CB .∠AEB =∠ADCC .AE =ADD .BE =DC三、用角边角、角角边(ASA、AAS)证明三角形全等1.不能说“有两角和一边分别相等的两个三角形全等”,这是因为:假设这条边是两角的夹边,则根据角边角可知正确;假设一个三角形的一边是两角的夹边,而与另一个三角形相等的边是其中一等角的对边,则两个三角形不一定全等.2.有三个角对应相等的两个三角形不一定全等.【例3】如图,要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,可以证明△EDC≌△ABC,得ED=AB,因此,测得ED的长,就得出AB的长,判定△EDC≌△ABC的理由是A.SSS B.SASC.SAA D.ASA【例4】如图,已知点B、C、F、E在同一直线上,∠A=∠D,BF=EC,AB∥DE,若∠1=80°,求∠BFD 的度数.四、用斜边、直角边(HL)证明直角三角形全等1.当证明两个直角三角形全等时,若不适合应用“HL”,也可考虑用“SAS”“ASA”或“AAS”来证明.2.在用一般方法证明时,因为两个直角三角形中已具备一对直角相等的条件,故只需找另外两个条件即可,在实际证明中可根据条件灵活选用不同的方法.【例5】如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌△Rt△DCF,则还需要添加一个条件是A.AE=DF B.∠A=∠D C.∠B=∠C D.AB=DC五、全等三角形的判定和性质的综合寻找解决问题的思路方法可以从求证的结论出发,结合已知条件,逐步寻求解决问题所需要的条件.同时要注意对图形本身隐含条件的挖掘,如对顶角、公共角、公共边等.【例6】如图,AB与CD交于点O,OA=OC,OD=OB,∠A=50°,∠B=30°,则∠D的度数为A.50°B.30°C.80°D.100°【例7】如图,已知∠CAB=∠DBA,∠CBD=∠DAC.求证:BC=AD.基础练习题1.如图,PB ⊥AB 于B ,PC ⊥AC 于C ,且PB =PC ,则△APB ≌△APC 的理由是A .SASB .ASAC .HLD .AAS2.如图,若∠ABC =∠DCB ,当添加下列条件时,仍不能判断△ABC ≌△DCB 的是A .∠A =∠DB .AB =DC C .∠ACB =∠DBCD .AC =BD3.如图,点C 在AOB 的OB 边上,用尺规作出了CN OA ∥,作图痕迹中,FG 是A .以点C 为圆心,OD 为半径的弧B .以点C 为圆心,DM 为半径的弧 C .以点E 为圆心,OD 为半径的弧D .以点E 为圆心,DM 为半径的弧4.下列条件中,能判定两个直角三角形全等的是 A .一锐角对应相等 B .两锐角对应相等 C .一条边对应相等D .两条直角边对应相等5.如图,小明设计了一种测零件内径AB 的卡钳,问:在卡钳的设计中,要使DC =AB ,则AO 、BO 、CO 、DO 应满足下列的条件是A .AO =COB .AO =CO 且BO =DOC .AC =BD D .BO =DO6.如图,△ABC是不等边三角形,DE=BC,以D、E为两个顶点作位置不同的三角形,使所作三角形与△ABC 全等,这样的三角形最多可以画出A.2个B.4个C.6个D.8个7.如图,点F、G在正五边形ABCDE的边上,BF、CG交于点H,若CF=DG,则∠BHG=__________°.8.如图,D为△ABC内一点,且AD=BD,若∠ACD=∠DAB=45°,AC=5,则S△ABC=__________.9.如图,△ABC、△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,点E在AB上,试说明:△CDA≌△CEB.10.我们把两组邻边相等的四边形叫做“筝形”.如图所示四边形ABCD是一个筝形,其中AB=CB,AD=CD,对角线AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F.求证:OE=OF.11.如图,∠BAC=∠DAE,∠ABD=∠ACE,AB=AC.求证:BD=CE.12.如图,已知∠A=∠D=90°,E、F在线段BC上,DE与AF交于点O,且AB=CD,BE=CF.求证:Rt△ABF ≌Rt△DCE.13.如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:ΔABC≌ΔDEF;(2)若∠A=55°,∠B=88°,求∠F的度数.能力提升14.如图,D 、E 、F 分别为△ABC 边AC 、AB 、BC 上的点,∠A =∠1=∠C ,DE =DF .下面的结论一定成立的是A .AE =FCB .AE =DEC .AE +FC =ACD .AD +FC =AB15.如图:已知点E 在△ABC 的外部,点D 在BC 边上,DE 交AC 于F ,若∠1=∠2=∠3,AC =AE ,则有A .△ABD ≌△AFDB .△AFE ≌△ADC .△AEF ≌△DFCD .△ABC ≌△ADE16.如图,在四边形ABCD 中,AB CD =,AD CB =,OA OC =,OB OD =,则图中的全等三角形有A .2对B .3对C .4对D .5对17.如图,在ABC △和BDE △中,点C 在BD 边上,AC 边交BE 边于点F .若AC BD AB ED ==,,BC BE =,则ACB ∠等于A .EDB ∠B .BED ∠C .12AFB ∠D .2ABF ∠18.如图,在△ABC中,AC=3,中线AD=5,则边AB的取值范围是__________.19.如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE,垂足分别为E,D,AD=25,DE=17,则BE=__________.20.如图,在△ABC中,AD是BC边上的中线,点E是AD的中点,过点A作AF∥BC交BE的延长线于F.(1)求证:△AEF≌△DEB;(2)若∠BAC=90°,AF=6,求AD的长.21.(2018•安顺)如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACDA.∠B=∠C B.AD=AE C.BD=CE D.BE=CD22.(2018•黔南州)下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是A.甲和乙B.乙和丙C.甲和丙D.只有丙23.(2018•南京)如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,则AD的长为A.a+c B.b+c C.a-b+c D.a+b-c24.(2018•临沂)如图,∠ACB=90°,AC=BC.AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE=1,则DE的长是A.32B.2 C.22D.1025.(2018•衢州)如图,在△ABC和△DEF中,点B,F,C,E在同一直线上,BF=CE,AB∥DE,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是__________(只需写一个,不添加辅助线).26.(2018•泸州)如图,EF=BC,DF=AC,DA=EB.求证:∠F=∠C.27.(2018•衡阳)如图,已知线段AC,BD相交于点E,AE=DE,BE=CE.(1)求证:△ABE≌△DCE;(2)当AB=5时,求CD的长.参考答案1.C2.D3.D4.D5.B6.B7.108°8.2529.∵△ABC 、△CDE 均为等腰直角三角形,∠ACB =∠DCE =90°, ∴CE =CD ,BC =AC ,∴∠ACB -∠ACE =∠DCE -∠ACE ,∴∠ECB =∠DCA , 学科@网在△CDA 与△CEB 中,BC AC ECB DCA EC DC =⎧⎪∠=∠⎨⎪=⎩,∴△CDA ≌△CEB .10.∵在△ABD 和△CBD 中,AB =CB ,AD =CD ,BD =BD , ∴△ABD ≌△CBD (SSS ),∴∠ABD =∠CBD ,∴BD 平分∠ABC .又∵OE ⊥AB ,OF ⊥CB ,∴OE =OF .11.∵∠BAC =∠DAE ,∴∠BAD =∠CAE .∵在△ABD 与△ACE 中,==BAD CAE AB AC ABD ACE ⎧⎪=⎨⎪⎩∠∠∠∠,∴△ABD≌△ACE(ASA)∴BD=CE.∴∠ACB=180°-(∠A+∠B)=180°-(55°+88°)=37°,∴∠F=∠ACB=37°.14.C15.D16.C17.C19.820.621.D22.B23.D24.B25.AB=ED26.∵DA=BE,∴DE=AB,在△ABC 和△DEF 中,AB DE AC DF BC EF =⎧⎪=⎨⎪=⎩,∴△ABC ≌△DEF (SSS ), ∴∠C =∠F .27.(1)在△AEB 和△DEC 中,=AE DE AEB DEC BE EC =⎧⎪⎨⎪=⎩∠∠,∴△AEB ≌△DEC (SAS ).(2)∵△AEB ≌△DEC ,∴AB =CD , ∵AB =5,∴CD =5.。

青岛版 八下 全等三角形的判定---边角边定理

青岛版 八下 全等三角形的判定---边角边定理

链接生活
小明不小心打翻了墨水, 小明不小心打翻了墨水,将自 己所画的三角形涂黑了, 己所画的三角形涂黑了,你能帮 小明想想办法, 小明想想办法,画一个与原来完 全一样的三角形吗? 全一样的三角形吗?
A A
C B B
C
链接生活
如图, 如图,A,B两点分别位于一个池塘的两 小明想用绳子测量A 间的距离, 端,小明想用绳子测量A,B间的距离,但 两点不能直接到达, A、B两点不能直接到达,你能帮小明设 计一个方案,解决此问题吗? 计一个方案,解决此问题吗? 说出你的设计方案。 1、说出你的设计方案。 请说明设计方案的理由? 2、请说明设计方案的理由?
总结提高
寻找对应元素的规律
有公共边的,公共边是对应边 是对应边; (1)有公共边的,公共边是对应边; 有公共角的,公共角是对应角 是对应角; (2)有公共角的,公共角是对应角; 有对顶角的,对顶角是对应角 是对应角; (3)有对顶角的,对顶角是对应角; 两个全等三角形最大的边是对应边, 最大的边是对应边 (4)两个全等三角形最大的边是对应边, 最小的边是对应边; 最小的边是对应边; 是对应边 两个全等三角形最大的角是对应角, 最大的角是对应角 (5)两个全等三角形最大的角是对应角, 最小的角是对应角; 最小的角是对应角; 是对应角
山东省临朐县九山镇初级中学
李兴国
思 考:
如果两个三角形有三组元素 边或角) 如果两个三角形有三组元素( 边或角 ) 三组 元素( 对应相等的那么会有哪几种可能的情况? 对应相等的那么会有哪几种可能的情况 ? 这时,这两个三角形一定会全等吗? 这时,这两个三角形一定会全等吗? 温馨 有以下的四种情况: 有以下的四种情况: 提示 两边一角、两角一边、 两边一角、两角一边、 三角、三边. 三角、三边.

2024年中考数学《全等三角形》专题练习附带答案

2024年中考数学《全等三角形》专题练习附带答案

2024年中考数学《全等三角形》专题练习附带答案学校:___________班级:___________姓名:___________考号:___________知识重点1、全等三角形的概念:(1)能够完全重合的两个三角形叫做全等三角形。

(2)把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。

2、全等三角形的性质:全等三角形的对应边相等;全等三角形的对应角相等。

3、三角形全等的判定:(1)边边边(SSS):三边分别相等的两个三角形全等。

(2)边角边(SAS):两边和它们的夹角分别相等的两个三角形全等。

(3)角边角(ASA):两角和它们的夹边分别相等的两个三角形全等。

(4)角角边(AAS):两角和其中一个角的对边分别相等的两个三角形全等。

(5)斜边、直角边(HL):斜边和一条直角边分别相等的两个直角三角形全等。

一、选择题1.下列各选项中的两个图形属于全等形的是()A.B.C.D.2.如图,△ABC≌△EDC,AC=3cm,DC=5cm,则BE=()A.1cm B.2cm C.3cm D.4cm3.如图,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40°B.30°C.35°D.25°4.小亮设计了如下测量一池塘两端AB的距离的方案:先取一个可直接到达点A,B的点O,连接AO,BO,延长AO至点P,延长BO至点Q,使得OP=AO,OQ=BO再测出PQ的长度,即可知道A,B之间的距离.他设计方案的理由是()A.SAS B.AAS C.ASA D.SSS5.如图,点F,E在AC上AD=CB,∠D=∠B添加一个条件,不一定能证明△ADE≌△CBF的是()A.AD∥BC B.DE∥FB C.DE=BF D.AE=CF6.如图所示∠E=∠D,CD⊥AC于点C,BE⊥AB于点B,AE交BC于点F,且BE=CD,则下列结论不一定正确的是()A.AB=AC B.BF=EF C.AE=AD D.∠BAE=∠CAD 7.如图,OD平分∠AOB,DE⊥AO于点E,DE=5 F是射线OB上的任意一点,则DF的长度不可能是()A.4 B.5 C.5.5 D.68.如图,AD是△BAC的平分线,DE⊥AB于点E,S△ABC=32,DE=4,AB=9,则AC的长是()A.5 B.6 C.7 D.8二、填空题9.如图,有两个长度相同的滑梯靠在一面墙上.已知左边滑梯的高度AC与右边滑梯的水平长度DF 相等,那么判定△ABC与△DEF全等的依据是.10.若△ABC≌△DEF,A与D,B与E分别是对应顶点∠A=50°,∠B=60°则∠F=. 11.如图,△ABC的面积为25cm2,BP平分∠ABC,过点A作AP⊥BP于点P,则△PBC的面积为;12.如图,在△ABC中,CD是AB边上的高,BE平分∠ABC,交CD于点E,已知BC=8,DE=2则△BCE 的面积等于.13.如图,在Rt△ABC中,∠BAC=90°,AB=AC,分别过点B,C作过点A的直线的垂线BD,CE,若BD=7cm,CE=5cm,则DE= cm.三、解答题14.如图,点B,C,E,F在同一直线上,AB=DF,AC=DE,BE=CF.求证:AB∥DF.15.如图,在Rt△ABC中∠B=90°,CD∥AB,DE⊥AC于点E,且CE=AB.求证:△CED≅△ABC.16.如图,在四边形ABCD中,∠B=∠C=90°,E是BC的中点,AE平分∠DAB.求证:CD+AB=AD.17.已知:如图,CD⊥AB于点D,BE⊥AC于点E,BE,CD交于点O,且AO平分∠BAC,求证:(1)OD=OE;(2)OB=OC.18.如图,在△ABC中AC>AB,射线AD平分∠BAC,交BC于点E,点F在边AB的延长线上AF=AC,连接EF.(1)求证:△AEC≌△AEF.(2)若∠AEB=50°,求∠BEF的度数.19.如图,在Rt△ABC中,∠BAC=90°,∠ABC=60°,AD,CE分别平分∠BAC,∠ACB.(1)求∠AOE得度数;(2)求证:AC=AE+CD.参考答案1.A2.B3.C4.A5.D6.B7.A8.C9.HL10.70°11.12.5cm212.813.1214.解:∵ BE=CF∴BE−CE=CF−CE∴BC=FE∵ AB=DF,AC=DE∴△ABC≌△DFE(SSS)∴∠B=∠F∴AB∥DF.15.证明:∵DE⊥AC,∠DEC=90°又∵∠B=90°∴∠DEC=∠B=90°∵CD∥AB,∴∠A=∠DCE在△CED和△ABC中{∠DCE=∠A CE=AB∠DEC=∠B∴△CED≅△ABC(ASA).16.证明:如图,过点E作EF⊥AD于F∵∠B=90°,AE平分∠DAB∴BE=EF在Rt△EFA和Rt△EBA中{EF=EBAE=AE∴Rt△EFA和≌Rt△EBA(HL).∴AF=AB∵E是BC的中点∴BE=CE=EF在Rt△EFD和Rt△ECD中{EF=ECDE=DE∴Rt△EFD和≌Rt△ECD(HL).∴DF=CD∴CD+AB=DF+AF=AD∴CD+AB=AD.17.(1)证明:∵AO平分∠BAC,CD⊥AB,BE⊥AC ∴OD=OE(2)证明:∵CD⊥AB,BE⊥AC∴∠BDO=∠CEO=90°在△BDO和△CEO中{∠BDO=∠CEO DO=CO∠BOD=∠COE∴△BDO≌△CEO(ASA)∴OB=OC18.(1)证明:射线AD平分∠BAC∴∠CAE=∠FAE 在△AEC和△AEF中{AC=AF∠CAE=∠FAE AE=AE∴△AEC≌△AEF(SAS);(2)解:∵△AEC≌△AEF(SAS)∴∠AEC=∠AEF∵∠AEB=50°∴∠AEC=180°−∠AEB=180°−50°=130°∴∠AEF=∠AEC=130°∴∠BEF=∠AEF−∠AEB=80°∴∠BEF为80°.19.18.(1)解:∵∠BAC=90°,∠ABC=60°∴∠ACB=30°∵AD平分∠BAC,CE平分∠BAC∴∠CAD=12∠BAC=45°,∠ACE=12∠ACB=15°∵∠AOE是△AOC的外角∴∠AOE=∠CAD+∠ACE=60°;(2)证明:在AC上截取CF=CD,连接OF∵CE平分∠ACB∴∠DCO=∠FCO在△DCO和△FCO中{CD=CF∠DCO=∠FCOOC=OC∴△DCO≌△FCO(SAS)∴∠COD=∠COF∵∠AOE=60°∴∠COD=∠COF=60°∴∠AOF=180°−∠AOE−∠COF==60°∴∠AOE=∠AOF∵AD平分∠BAC∴∠EAO=∠FAO在△EAO和△FAO中{∠EAO=∠FAO AO=AO∠AOE=∠AOF∴△EAO≌△FAO(ASA)∴AE=AF∵AC=AF+CF∴AC=AE+CD.。

(版)初中数学全等三角形证明题含答案

(版)初中数学全等三角形证明题含答案

:AB=4,AC=2,D是BC中点,AD是整数,求ADAB CD解:延长AD到E,使AD=DE∵D是BC中点∴BD=DC在△ACD和△BDE中AD=DEBDE=∠ADCBD=DC∴△ACD≌△BDEAC=BE=2∵在△ABE中AB-BE<AE<AB+BEAB=4即4-2<2AD<4+21<AD<3AD=22. :D是AB中点,∠ACB=90°,求证:CD 1AB2ADC B∴延长CD与P,使D为CP中点。

连接AP,BP∴DP=DC,DA=DB∴∴ACBP为平行四边形∴又∠ACB=90∴∴平行四边形ACBP为矩形∴AB=CP=1/2AB3. :BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2A12B EC F D证明:连接BF和EFBC=ED,CF=DF,∠BCF=∠EDF∴三角形BCF全等于三角形EDF(边角边) BF=EF,∠CBF=∠DEF连接BE在三角形BEF中,BF=EF∴∠EBF=∠BEF。

∵∠ABC=∠AED。

∴∠ABE=∠AEB。

AB=AE。

在三角形ABF和三角形AEF中AB=AE,BF=EF,ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴三角形ABF和三角形AEF全等。

∴∠BAF=∠EAF(∠1=∠2)。

:∠1=∠2,CD=DE,EF//AB,求证:EF=ACA2FCDEB过C作CG∥EF交AD的延长线于点GCG∥EF,可得,∠EFD=CGD DE=DCFDE=∠GDC〔对顶角〕∴△EFD≌△CGDEF=CG∠CGD=∠EFD又,EF∥AB∴,∠EFD=∠11=∠2∴∠CGD=∠2∴△AGC为等腰三角形,AC=CG又EF=CGEF=AC:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠CA证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∴∠EAD=∠CAD∵AE=AC,AD=AD∴△AED≌△ACD〔SAS〕∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C6. :AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE上取F,使EF=EB,连接CF∵CE⊥AB∴∠CEB=∠CEF=90°∵EB=EF,CE=CE,∴△CEB≌△CEF∴∠B=∠CFE∵∠B+∠D=180°,∠CFE+∠CFA=180°∴∠D=∠CFA∵AC平分∠BAD∴∠DAC=∠FAC∵AC=AC∴△ADC≌△AFC〔SAS〕∴AD=AF∴AE=AF+FE=AD+BE:AB=4,AC=2,D是BC中点,AD是整数,求ADAB CD解:延长AD到E,使AD=DE∵D是BC中点∴BD=DC在△ACD和△BDE中AD=DE∠BDE=∠ADCBD=DC∴△ACD≌△BDEAC=BE=2∵在△ABE中AB-BE<AE<AB+BEAB=4即4-2<2AD<4+21<AD<3AD=218. :D是AB中点,∠ACB=90°,求证:CD AB2ADC B∴解:延长AD到E,使AD=DE∴∵D是BC中点∴∴BD=DC∴在△ACD和△BDE中∴AD=DE∴BDE=∠ADC∴BD=DC∴∴△ACD≌△BDE∴AC=BE=2∴∵在△ABE中∴AB-BE<AE<AB+BE∴AB=4∴即4-2<2AD<4+21<AD<3∴A D=29. :BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠22A1B EC F D证明:连接BF和EF。

人教部编版初中数学中考考点专题复习利用“角边角”“角角边”判定三角形全等练习及答案

人教部编版初中数学中考考点专题复习利用“角边角”“角角边”判定三角形全等练习及答案

利用“角边角”“角角边”判定三角形全等1.在△ABC和△A'B'C'中,①AB=A'B',②BC=B'C',③AC=A'C',④∠A=∠A',⑤∠B=∠B',⑥∠C=∠C',则下列条件中不能保证△ABC≌△A'B'C'的是().A.①②③B.①②⑤C.①⑤⑥D.①②④2.如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是().A.AB=ACB.BD=CDC.∠B=∠CD.∠BDA=∠CDA3.如图,小聪房子上的一块玻璃碎成了三块,他手头没有测量的工具,于是他想带着玻璃去配一块.同学们想一想,小聪需要带着第块玻璃.4.如图,分别过点C,B作△ABC的BC边上的中线AD及其延长线的垂线,垂足分别为点E,F.求证:BF=CE.5.小刚同学在一次智能大赛中,分别画了三个三角形,不料都被墨迹污染了(如图),他想分别画三个与原来一样的三角形,你认为是否可以,说明你的理由.6.如图,已知△ABC≌△A'B'C',AD,A'D'分别是△ABC和△A'B'C'的高.求证:AD=A'D',并用一句话说明你的结论.7.如图,在△ABC与△DBC中,∠ACB=∠DBC=90°,E为BC的中点,EF⊥AB于点F,且AB=DE.(1)求证:△BCD是等腰直角三角形;(2)若BD=8 cm,求AC的长.★8.如图,∠BCA=∠α,CA=CB,C,E,F分别是直线CD上的三点,且∠BEC=∠CFA=∠α,请提出对EF,BE,AF三条线段数量关系的合理猜想,并证明.★9.如图,A,B,C,D,E,F,M,N是某公园里的八个景点,D,E,B三个景点间的距离相等,A,B,C三个景点间的距离相等.其中D,B,C三个景点在同一直线上,E,F,N,C在同一直线上,D,M,F,A在同一直线上,游客甲从E点出发,沿E→F→N→C→A→B→M游览,游客乙从D点出发,沿D→M→F→A→C→B→N游览.若两人的速度相同,且在各景点游览的时间相同,甲、乙两人谁先游览完?说明理由.参考答案能力提升1.D用①②④时,属于“边边角”,而“边边角”是不能用来判定两个三角形全等的.2.B3.③4.证明:∵CE⊥AF,FB⊥AF,∴∠DEC=∠DFB=90°.∵AD为BC边上的中线,∴BD=CD.又∵∠EDC=∠FDB(对顶角相等),∴△BFD≌△CED(AAS),∴BF=CE.5.解:在三角形(1)中保留了完整的两角与它们的夹边,可以根据“ASA”画出与(1)全等的三角形;在三角形(3)中保留了完整的两边及它们的夹角,可以根据“SAS”画出与(3)全等的三角形;在三角形(2)中只保留了一个角,因此不能画出与(2)全等的三角形.6.证明:∵△ABC≌△A'B'C',∴AB=A'B',∠B=∠B'.∵AD,A'D'分别是△ABC,△A'B'C'的高,∴∠ADB=∠A'D'B'=90°.在△ABD和△A'B'D'中,∴△ABD≌△A'B'D'(AAS).∴AD=A'D'.结论:全等三角形对应边上的高相等.7.(1)证明:∵DE⊥AB,∠CBD=90°,∴∠EDB+∠DBF=∠ABC+∠DBF=90°.∴∠EDB=∠ABC.在△ACB和△EBD中,°∴△ACB≌△EBD(AAS).∴CB=BD,即△BCD是等腰直角三角形.(2)解:由△ACB≌△EBD,有AC=BE,而E为BC的中点,则EB=BC=BD=4(cm).故AC=4 cm.8.解:猜想:EF=BE+AF.证明:∵∠BCE+∠CBE+∠BEC=180°,∠BCE+∠FCA+∠BCA=180°,∠BCA=∠α=∠BEC, ∴∠CBE=∠FCA.∵∠BEC=∠CFA=∠α,CB=CA,∴△BEC≌△CFA(AAS),∴BE=CF,EC=FA,∴EF=EC+CF=BE+FA.创新应用9.解:甲与乙同时游览完.理由如下:由题意,得△EBD和△ABC都为等边三角形,所以DB=EB,BC=BA,∠CBN=∠DBM=60°,∠EBC=∠DBA=120°.在△EBC和△DBA中,所以△EBC≌△DBA,所以EC=DA,∠CEB=∠ADB.在△DBM和△EBN中,所以△DBM≌△EBN,所以BM=BN.所以EC+AC+AB+BM=DA+AC+BC+BN.所以两人所走的路程相等,故同时游览完.。

专题1-5 角边角判定三角形全等-重难点题型(举一反三)(苏科版)(解析版)

专题1-5 角边角判定三角形全等-重难点题型(举一反三)(苏科版)(解析版)

专题1.5 角边角判定三角形全等-重难点题型【苏科版】【题型1 角边角判定三角形全等的条件】【例1】(2020秋•宜兴市期中)如图,已知AB=AD,∠1=∠2,要根据“ASA”使△ABC≌△ADE,还需添加的条件是.【分析】利用ASA定理添加条件即可.【解答】解:还需添加的条件是∠B=∠D,∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC,即∠BAC=∠DAE,在△ABC和△ADE中{∠BAC=∠DAE AB=AD∠B=∠D,∴△ABC≌△ADE(ASA),故答案为:∠B=∠D.【点评】此题主要考查了全等三角形的判定,关键是掌握ASA﹣﹣两角及其夹边分别对应相等的两个三角形全等.【变式1-1】(2020秋•覃塘区期中)如图,点B ,F ,C ,E 在同一直线上,AC =DF ,∠1=∠2,如果根据“ASA ”判断△ABC ≌△DEF ,那么需要补充的条件是( )A .AB =DE B .∠A =∠DC .BF =CED .∠B =∠D【分析】利用全等三角形的判定方法,“ASA ”即角边角对应相等,只需找出一对对应角相等即可,进而得出答案.【解答】解:需要补充的条件是∠A =∠D ,在△ABC 和△DEF 中,{∠A =∠D AC =DF ∠2=∠1,∴△ABC ≌△DEF (ASA ).故选:B .【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .添加时注意:AAA 、SSA 不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.【变式1-2】(2020秋•浦东新区期末)根据下列已知条件,能作出唯一△ABC 的是( )A .AB =3,BC =4,CA =8B .AB =4,BC =3,∠A =60° C .∠A =60°,∠B =45°,AB =4D .∠C =90°,∠B =30°,∠A =60°【分析】根据全等三角形的判定方法对各选项进行判断.【解答】解:A .∵AB =3,BC =4,CA =8,AB +BC <CA ,∴不能画出三角形,故本选项不合题意;B .AB =4,BC =3,∠A =60°,不能画出唯一三角形,故本选项不合题意;C .当∠A =60°,∠B =45°,AB =4时,根据“ASA ”可判断△ABC 的唯一性;D .已知三个角,不能画出唯一三角形,故本选项不符合题意;故选:C .【点评】此题主要考查了全等三角形的判定,正确把握全等三角形的判定方法是解题关键.【变式1-3】(2020•路南区校级月考)如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是()A.B.C.D.【分析】根据全等三角形的判定定理进行判断.【解答】解:A、由全等三角形的判定定理SAS证得图中两个小三角形全等,故本选项不符合题意;B、由全等三角形的判定定理SAS证得图中两个小三角形全等,故本选项不符合题意;C、如图1,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,所以其对应边应该是BE和CF,而已知给的是BD=FC=3,所以不能判定两个小三角形全等,故本选项符合题意;D、如图2,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,∵BD=EC=2,∠B=∠C,∴△BDE≌△CEF,所以能判定两个小三角形全等,故本选项不符合题意;由于本题选择可能得不到全等三角形纸片的图形,故选:C.【点评】本题考查了全等三角形的判定,注意三角形边和角的对应关系是关键.【题型2 角边角判定三角形全等(求角的度数)】【例2】(2020秋•简阳市期中)如图,∠A=∠D,OA=OD,∠DOC=50°,∠DBC的度数为()A.50°B.30°C.45°D.25°【分析】由题中条件易证得△AOB≌△DOC,可得∠ACB=∠DBC,由三角形外角的性质可得∠DOC=∠ACB+∠DBC,即可得∠DBC的度数.【解答】解:∵∠A=∠D,OA=OD,∠AOB=∠DOC,∴△AOB≌△DOC(ASA),∴∠ACB=∠DBC,∵∠DOC=∠ACB+∠DBC,∴∠DBC=12∠DOC=25°.故选:D.【点评】本题考查了全等三角形的判定及性质,三角形外角的性质等知识点,找到相应等量关系的角是解题的关键.【变式2-1】(2019秋•天心区校级月考)AD,BE是△ABC的高,这两条高所在的直线相交于点O,若BO=AC,则∠ABC=.【分析】由AD、BE是锐角△ABC的高,可得∠DBA=∠DAC,又BO=AC,∠BDO=∠ADC=90°,根据全等三角形的性质即可得到结论.【解答】解:如图1,∵AD、BE是锐角△ABC的高,∴∠AEO=∠BDO=90°,∵∠AOE=∠BOD,∴∠DBO=∠DAC,∵BO=AC,∠BDO=∠ADC=90°∴△BDO≌△ADC(ASA),∴BD=AD,∴∠ABC=∠BAD=45°,如图2,同理证得△BDO≌△ADC(ASA),∴BD=AD,∴∠ABD=∠BAD=45°,∴∠ABC=135°,故答案为:45°或135°.【点评】本题考查了全等三角形的判定和性质;结合已知条件发现并利用△BDO≌△ADC是正确解答本题的关键.【变式2-2】(2021•苍南县一模)如图,在四边形ABCD 中,AD ∥BC ,点E 为对角线BD 上一点,∠A =∠BEC ,且AD =BE .(1)求证:△ABD ≌△ECB .(2)若∠BDC =70°.求∠ADB 的度数.【分析】(1)由“ASA ”可证△ABD ≌△ECB ;(2)由全等三角形的性质可得BD =BC ,由等腰三角形的性质可求解.【解答】证明:(1)∵AD ∥BC ,∴∠ADB =∠CBE ,在△ABD 和△ECB 中,{∠A =∠BEC AD =BE ∠ADB =∠CBE,∴△ABD ≌△ECB (ASA );(2)∵△ABD ≌△ECB ,∴BD =BC ,∴∠BDC =∠BCD =70°,∴∠DBC =40°,∴∠ADB =∠CBD =40°.【点评】本题考查了全等三角形的判定和性质,平行线的性质,还考查学生运用定理进行推理的能力,题目比较典型,难度适中.【变式2-3】(2020秋•丛台区期末)如图,在△ABC 中,AB =AC ,点E ,F 在边BC 上,连接AE ,AF ,∠BAF =∠CAE ,延长AF 至点D ,使AD =AC ,连接CD .(1)求证:△ABE ≌△ACF ;(2)若∠ACF =30°,∠AEB =130°,求∠ADC 的度数.【分析】(1)要证明△ABE≌△ACF,由题意可得AB=AC,∠B=∠ACF,∠AEF=∠AFE,从而可以证明结论成立;(2)根据(1)中的结论和等腰三角形的性质可以求得∠ADC的度数.【解答】证明:(1)∵AB=AC,∴∠B=∠ACF,∵∠BAF=∠CAE,∴∠BAF﹣∠EAF=∠CAE﹣∠EAF,∴∠BAE=∠CAF,在△ABE和△ACF中,{∠B=∠ACFAB=AC∠BAE=∠CAF,∴△ABE≌△ACF(ASA);(2)解:∵∠B=∠ACF=30°,∠AEB=130°,∴∠BAE=180°﹣130°﹣30°=20°,∵△ABE≌△ACF,∴∠CAF=∠BAE=20°,∵AD=AC,∴∠ADC=∠ACD,∴∠ADC=180°−20°2=80°.答:∠ADC的度数为80°.【点评】本题考查全等三角形的判定与性质及三角形内角和定理,解答本题的关键是明确题意,找出所求问题需要的条件.【题型3 角边角判定三角形全等(求线段的长度)】【例3】(2021春•德城区校级月考)如图,在△MPN中,H是高MQ和NR的交点,且MQ=NQ,已知PQ=5,NQ=9,则MH长为()A .3B .4C .5D .6【分析】证明△MQP ≌△NQH ,由全等三角形的性质可得PQ =QH =5,根据MQ =NQ =9,即可解决问题.【解答】解:∵MQ ⊥PN ,NR ⊥PM ,∴∠NQH =∠NRP =∠HRM =90°,∵∠RHM =∠QHN ,∴∠PMH =∠HNQ ,在△MQP 和△NQH 中,{∠PMQ =∠QNHMQ =NQ ∠MQP =∠NQH =90°,∴△MQP ≌△NQH (ASA ),∴PQ =QH =5,∵NQ =MQ =9,∴MH =MQ ﹣HQ =9﹣5=4,故选:B .【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题.【变式3-1】(2020春•万州区期末)如图,在△ABC 中,D 、E 分别为AB 、AC 上一点,延长ED 至F ,使得DF =DE ,若BF ∥AC ,AC =4,BF =3,则CE 的长为( )A .0.5B .1C .1.5D .2【分析】证明△BDF ≌△ADE (ASA ),由全等三角形的性质得出BF =AE =3,则可得出答案.【解答】解:∵BF ∥AC ,∴∠F =∠AED ,在△BDF 和△ADE 中,{∠F =∠AED DF =DE ∠BDF =∠ADE,∴△BDF ≌△ADE (ASA ),∴BF =AE =3,∵AC =4,∴CE =AC ﹣AE =4﹣3=1.故选:B .【点评】本题考查了平行线的性质,全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.【变式3-2】(2020春•铁西区期末)如图,点D 是△ABC 的边AB 上一点,FC ∥AB ,连接DF 交AC 于点E ,若CE =AE ,AB =7,CF =4,则BD 的长是 .【分析】先由全等三角形的判定定理ASA 证明△AED ≌△CEF ,然后根据全等三角形的对应边相等知AD =CF ,从而求得BD 的长度.【解答】解:∵FC ∥AB ,∴∠A =∠ECF ,在△AED 和△CEF 中,{∠A =∠ECF AE =CE ∠AED =∠CEF,∴△AED ≌△CEF (ASA ),∴AD =CF (全等三角形的对应边相等),又∵AB =7,CF =4,AB =AD +BD ,∴BD =3.故答案为:3. 【点评】本题考查了全等三角形的判定与性质,平行线的性质,熟练掌握全等三角形的判定与性质是解题的关键.【变式3-3】(2020秋•香洲区校级期中)如图,△ABC 中,∠ABC =60°,AD 、CE 分别平分∠BAC 、∠ACB ,AD 、CE 相交于点P .(1)求∠APC 的度数;(2)若AE =4,CD =4,求线段AC 的长.【分析】(1)利用∠ABC =60°,AD 、CE 分别平分∠BAC ,∠ACB ,即可得出答案;(2)由题中条件可得△APE ≌△APF ,进而得出∠APE =∠APF ,通过角之间的转化可得出△CPF ≌△CPD ,进而可得出线段之间的关系,即可得出结论.【解答】解:(1)∵∠ABC =60°,AD 、CE 分别平分∠BAC ,∠ACB ,∴∠BAC +∠BCA =120°,∠P AC +∠PCA =12(∠BAC +∠BCA )=60°,∴∠APC =120°.(2)如图,在AC 上截取AF =AE ,连接PF .∵AD 平分∠BAC ,∴∠BAD =∠CAD ,在△APE 和△APF 中,{AE =AF ∠EAP =∠FAP AP =AP,∴△APE ≌△APF (SAS ),∴∠APE =∠APF ,∵∠APC =120°,∴∠APE =60°,∴∠APF =∠CPD =60°=∠CPF ,在△CPF 和△CPD 中,{∠FPC =∠DPC CP =CP ∠FCP =∠DCP,∴△CPF ≌△CPD (ASA )∴CF =CD ,∴AC =AF +CF =AE +CD =4+4=8.【点评】本题主要考查了全等三角形的判定及性质,根据在AC 上截取AF =AE 得出△APE ≌△APF 是解题关键.【题型4 角边角判定三角形全等(实际应用)】【例4】(2020秋•伊通县期末)如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么,最省事的方法是( )A .带①去B .带②去C .带③去D .带①去和带②去【分析】已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.【解答】解:第①块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA 来配一块一样的玻璃.故选:A .【点评】此题主要考查了全等三角形的判定方法的开放性的题,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.【变式4-1】(2020秋•丰南区期中)如图,小明书上的三角形被墨水污染了,他根据所学知识画出了完全一样的一个三角形,他的依据是 .【分析】根据图形,未污染的部分两角与这两角的夹边可以测量,然后根据全等三角形的判定方法解答即可.【解答】解:小明书上的三角形被墨水污染了,他根据所学知识画出了完全一样的一个三角形,他根据的定理是:两角及其夹边分别相等的两个三角形全等(ASA).故答案为:ASA.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.【变式4-2】(2020秋•齐河县期末)沛沛沿一段笔直的人行道行走,边走边欣赏风景,在由C走到D的过程中,通过隔离带的空隙P,刚好浏览完对面人行道宣传墙上的一条标语.具体信息如下:如图,AB∥PM∥CD,相邻两平行线间的距离相等.AC,BD相交于P,PD⊥CD垂足为D.已知CD=16米.请根据上述信息求标语AB的长度.【分析】由AB∥CD,利用平行线的性质可得∠ABP=∠CDP,利用ASA定理可得,△ABP≌△CDP,由全等三角形的性质可得结果.【解答】解:∵AB∥CD,∴∠ABP=∠CDP,∵PD⊥CD,∴∠CDP=90°,∴∠ABP=90°,即PB⊥AB,∵相邻两平行线间的距离相等,∴PD =PB ,在△ABP 与△CDP 中,{∠ABP =∠CDP PB =PD ∠APB =∠CPD,∴△ABP ≌△CDP (ASA ),∴CD =AB =16米.【点评】本题主要考查了平行线的性质和全等三角形的判定及性质定理,综合运用各定理是解答此题的关键.【变式4-3】(2020秋•孝义市期中)一位经历过战争的老战士讲述了这样一个故事:在一次战役中,我军阵地与敌军碉堡隔河相望.为了炸掉这个碉堡,需要知道碉堡与我军阵地的距离,在不能过河测量又没有任何测量工具的情况下,一个战士想出来这样的办法:他面向碉堡的方向站好,然后调整帽子,使视线通过帽檐正好落在碉堡的底部;然后,他转过一个角度,保持刚才的姿态,这时视线落在了自己所在岸的某一点上,接着,他用步测的方法量出自己与那个点的距离,这个距离就是他与碉堡间的距离. 将这位战士看成一条线段,碉堡看成一点,示意图如下,你能根据示意图解释其中的道理吗下面是彤彤同学写出的不完整的已知和求证,请你补全已知和求证,并完成证明.已知:如图,AB ⊥CD , .求证: .证明:【分析】根据垂直的定义和全等三角形的判定和性质定理即可得到结论.【解答】解:已知:如图,AB ⊥CD ,∠ABC =∠ABD .求证:AD =AC .证明:∵AB ⊥CD ,∴∠BAD =∠BAC ,在△ABD 与△ABC 中,{∠ABD =∠ABC AB =AB ∠BAC =∠BAD,∴△ABD ≌△ABC (ASA ),∴AD =AC ,故答案为:∠ABC =∠ABD ,AD =AC .【点评】本题考查了全等三角形的应用,熟练掌握全等三角形的判定和性质定理是解题的关键.【题型5 角边角判定三角形全等(证明题)】【例5】(2020秋•涟源市期末)如图,在△ABC 中,∠BAC =90°,E 为边BC 上的任意点,D 为线段BE 的中点,AB =AE ,EF ⊥AE ,AF ∥BC .(1)求证:∠DAE =∠C ;(2)求证:AF =BC .【分析】(1)由等腰三角形的性质可得AD ⊥BC ,由余角的性质可得∠C =∠BAD ,再证明∠BAD =∠DAE 即可解决问题.(2)由“ASA ”可证△ABC ≌△EAF ,可得AC =EF .【解答】证明:(1)∵AB =AE ,D 为线段BE 的中点,∴AD ⊥BC ,(三线合一没有学习到,可以用全等证明)∴∠C +∠DAC =90°,∵∠BAC =90°∴∠BAD +∠DAC =90°∴∠C =∠BAD ,∵AB =AE ,AD ⊥BE ,∴∠BAD =∠DAE ,∴∠DAE =∠C(2)∵AF∥BC∴∠F AE=∠AEB∵AB=AE∴∠B=∠AEB∴∠B=∠F AE,且∠AEF=∠BAC=90°,AB=AE∴△ABC≌△EAF(ASA)∴AC=EF【点评】本题考查了全等三角形的判定和性质,等腰三角形的性质,熟练运用全等三角形的判定是本题的关键.【变式5-1】(2020秋•汝南县期末)如图,△ABC的两条高AD,BE相交于H,且AD=BD.试说明下列结论成立的理由.(1)∠DBH=∠DAC;(2)△BDH≌△ADC.【分析】(1)因为∠BHD=∠AHE,∠BDH=∠AEH=90°,所以∠DBH+∠BHD=∠HAE+∠AHE=90°,故∠DBH=∠DAC;(2)因为AD⊥BC,所以∠ADB=∠ADC,又因为AD=BD,∠DBH=∠DAC,故可根据ASA判定两三角形全等.【解答】解:(1)∵∠BHD=∠AHE,∠BDH=∠AEH=90°∴∠DBH+∠BHD=∠HAE+∠AHE=90°∴∠DBH=∠HAE∵∠HAE=∠DAC∴∠DBH=∠DAC;(2)∵AD⊥BC∴∠ADB=∠ADC在△BDH 与△ADC 中,{∠ADB =∠ADC AD =BD ∠DBH =∠DAC∴△BDH ≌△ADC .【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.【变式5-2】(2020秋•郯城县期中)如图,在△ABC 中,D 是BC 的中点,过D 点的直线EG 交AB 于点E ,交AB 的平行线CG 于点G ,DF ⊥EG ,交AC 于点F .(1)求证:BE =CG ;(2)判断BE +CF 与EF 的大小关系,并证明你的结论.【分析】(1)先利用ASA 判定△BED ≌△CGD ,从而得出BE =CG ;(2)先连接FG ,再利用全等的性质可得DE =DG ,再根据DF ⊥GE ,从而得出FG =EF ,依据三角形两边之和大于第三边得出BE +CF >EF .【解答】解:(1)∵D 是BC 的中点,∴BD =CD ,∵AB ∥CG ,∴∠B =∠DCG ,在△BDE 和△CDG 中,∵∠BDE =∠CDG ,BD =CD ,∠DBE =∠DCG ,∴△BDE ≌△CDG (ASA ),∴BE =CG ;(2)BE+CF>EF.理由:如图,连接FG,∵△BDE≌△CDG,∴DE=DG,又∵FD⊥EG,∴FD垂直平分EG,∴EF=GF,又∵△CFG中,CG+CF>GF,∴BE+CF>EF.【点评】本题考查了全等三角形的判定与性质,线段垂直平分线的性质以及三角形三边关系的运用,本题中求证△BDE≌△CDG,得出BE=CG是解题的关键.【变式5-3】(2020秋•岫岩县月考)如图,在△ABC中,BD⊥AC于点D,CE⊥AB于点E,BD、CE相交于点G,BD=DC,DF∥BC交AB于点F,连接FG.求证:(1)△DAB≌△DGC;(2)CG=FB+FG.【分析】(1)由“ASA”可证△DAB≌△DGC;(2)由全等三角形的性质可得AB=CG,DA=DG,由“SAS”可证△DF A≌△DFG,可得F A=FG,可得结论.【解答】证明:(1)∵BD⊥AC,CE⊥AB,∴∠ABD +∠A =90°,∠ACE +∠A =90°,∴∠ABD =∠ACE ,在△DAB 和△DGC 中,{∠ABD =∠ACE BD =CD ∠ADB =∠BDC =90°,∴△DAB ≌△DGC (ASA );(2)∵△DAB ≌△DGC ,∴AB =CG ,DA =DG ,∵BD =CD .∠BDC =90°,∴∠DBC =∠DCB =45°,∵DF ∥BC ,∴∠FDA =∠FDG =45°,在△DF A 和△DFG 中,{AD =DG ∠FDA =∠FDG DF =DF,∴△DF A ≌△DFG (SAS ),∴F A =FG .∴CG =AB =FB +F A =FB +FG .【点评】本题考查了全等三角形的判定和性质,直角三角形的性质,找到正确的全等三角形是本题的关键.【题型6 角边角判定三角形全等(探究题)】【例6】(2020春•崂山区期末)如图,在Rt △ABC 中,∠ABC =90°点D 在BC 的延长线上,且BD =AB .过点B 作BE ⊥AC ,与BD 的垂线DE 交于点E .(1)求证:△ABC ≌△BDE ;(2)请找出线段AB 、DE 、CD 之间的数量关系,并说明理由.【分析】(1)利用已知得出∠A=∠DBE,进而利用ASA得出△ABC≌△BDE即可;(2)根据全等三角形的性质即可得到结论.【解答】(1)证明:∵BE⊥AC,∴∠A+∠ABE=90°,∵∠ABC=90°,∴∠DBE+∠ABE=90°,∴∠A=∠DBE,在△ABC和△BDE中,{∠A=∠DBEBD=AB∠ABC=∠BDE=90°,∴△ABC≌△BDE(ASA);(2)解:AB=DE+CD,理由:由(1)证得,△ABC≌△BDE,∴AB=BD,BC=DE,∵BD=CD+BC,∴AB=CD+DE.【点评】本题主要考查了全等三角形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键.【变式6-1】(2021春•黄浦区期末)如图在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠1=∠2.(1)说明△ADE≌△BFE的理由;(2)联结EG,那么EG与DF的位置关系是,请说明理由.【分析】(1)由AD ∥BC ,得出∠1=∠F ,因为E 是AB 的中点,得AE =BE ,即可证明△ADE ≌△BFE ;【解答】解:(1)∵AD ∥BC ,∴∠1=∠F ,∵E 是AB 的中点,∴AE =BE ,在△ADE 和△BFE 中,{∠1=∠F ∠AED =∠BEF AE =BE,∴△ADE ≌△BFE (ASA ),(2)如图,EG ⊥DF ,∵∠1=∠F ,∠1=∠2,∴∠2=∠F ,∴DG =FG ,由(1)知:△ADE ≌△BFE ,∴DE =EF ,∴EG ⊥DF .【点评】本题主要考查了全等三角形的判定与性质,以及等腰三角形的三线合一等知识,找出全等所需的条件是解题的关键.【变式6-2】(2020春•文圣区期末)已知:如图,BD 、CE 是△ABC 的高,BD 、CE 交于点F ,BD =CD ,CE 平分∠ACB .(1)如图1,试说明BE =12CF .(2)如图2,若点M 在边BC 上(不与点B 重合),MN ⊥AB 于点N ,交BD 于点G ,请直接写出BN 与MG 的数量关系,并画出能够说明该结论成立的辅助线,不必书写过程.【分析】(1)由“ASA ”可证△ABD ≌△FCD ,可得AB =CF ,由“ASA ”可证△ACE ≌△BCE ,可得AE =BE ,可得结论;(2)如图,过点M 作MH ∥AC ,交AB 于H ,交BD 于P ,由“ASA ”可证BPH ≌△MPG ,可得GM =BH ,由“ASA ”可证△BMN ≌△HMN ,可得BN =NH ,可得结论.【解答】解:(1)∵BD ⊥AC ,CE ⊥AB ,∴∠ADB =∠BDC =∠AEC =90°,∴∠A +∠ABD =90°,∠A +∠ACE =90°,∴∠ABD =∠ACE ,在△ABD 和△FCD 中,{∠ADB =∠FDC BD =CD ∠ABD =∠FCD,∴△ABD ≌△FCD (ASA ),∴AB =CF ,∵CE 平分∠ACB ,∴∠ACE =∠BCE =22.5°,在△ACE 和△BCE 中,{∠ACE =∠BCE CE =CE ∠AEC =∠BEC,∴△ACE ≌△BCE (ASA ),∴AE =BE ,∴BE =12AB =12CF ;理由如下:如图,过点M 作MH ∥AC ,交AB 于H ,交BD 于P ,∵BD =CD ,BD ⊥CD ,∴∠DBC =∠DCB =45°,∵MH ∥AC ,∴∠PMB =∠DCB =∠PBM =45°,∠BPM =∠BDC =90°,∴BP =PM ,∵∠BHP +∠HBP =90°,∠BHP +∠HMN =90°,∴∠HBP =∠HMN ,在△BHP 和△MGP 中,{∠HBP =∠GMP BP =PM ∠BPH =∠GPM =90°,∴△BPH ≌△MPG (ASA ),∴GM =BH ,∵MN ⊥AB ,CE ⊥AB ,∴MN ∥CE ,∴∠BMN =∠BCE =12∠ACB =22.5°,∴∠BMN =∠HMN =22.5°,在△BMN 和△HMN 中,{∠BMN =∠HMN MN =MN ∠BNM =∠HNM,∴△BMN ≌△HMN (ASA )∴BN =NH ,【点评】本题考查了全等三角形的判定和性质,添加恰当辅助线构造全等三角形是本题的关键.【变式6-3】(2020春•揭阳期末)已知△ABC,点D、F分别为线段AC、AB上两点,连接BD、CF交于点E.(1)若BD⊥AC,CF⊥AB,如图1所示,试说明∠BAC+∠BEC=180°;(2)若BD平分∠ABC,CF平分∠ACB,如图2所示,试说明此时∠BAC与∠BEC的数量关系;(3)在(2)的条件下,若∠BAC=60°,试说明:EF=ED.【分析】(1)根据余角的性质得到∠DEC=∠BAC,由于∠DEC+∠BEC=180°,即可得到结论;(2)根据角平分线的定义得到∠EBC=12∠ABC,∠ECB=12∠ACB,于是得到结论;(3)作∠BEC的平分线EM交BC于M,由∠BAC=60°,得到∠BEC=90°+12∠BAC=120°,求得∠FEB=∠DEC=60°,根据角平分线的性质得到∠BEM=60°,推出△FBE≌△EBM,根据全等三角形的性质得到EF=EM,同理DE=EM,即可得到结论.【解答】解:(1)∵BD⊥AC,CF⊥AB,∴∠DCE+∠DEC=∠DCE+∠F AC=90°,∴∠DEC=∠BAC,∠DEC+∠BEC=180°,∴∠BAC+∠BEC=180°;(2)∵BD平分∠ABC,CF平分∠ACB,∴∠EBC=12∠ABC,∠ECB=12∠ACB,∠BEC=180°﹣(∠EBC+∠ECB)=180°−12(∠ABC+∠ACB)=180°−12(180°﹣∠BAC)=90°+12∠BAC;(3)作∠BEC的平分线EM交BC于M,∵∠BAC =60°,∴∠BEC =90°+12∠BAC =120°,∴∠FEB =∠DEC =60°,∵EM 平分∠BEC ,∴∠BEM =60°,在△FBE 与△EBM 中,{∠FBE =∠EBM BE =BE ∠FEB =∠MEB,∴△FBE ≌△EBM (ASA ),∴EF =EM ,同理DE =EM ,∴EF =DE .【点评】本题考查了全等三角形的判定和性质,角平分线的定义,垂直的定义,正确的作出辅助线构造全等三角形是解题的关键.。

11.2 三角形全等的判定(ASA,AAS)(含答案)

11.2 三角形全等的判定(ASA,AAS)(含答案)

11.2 三角形全等的判定(ASA,AAS)◆课堂测控测试点 ASA,AAS1.三角形对应相等的两个三角形______全等,•即两个三角形全等的条件中至少有_______相等.2.已知在△ABC与△A′B′C′中,∠A=∠A′,∠B=∠B′,•则在下列条件中不能确定△ABC与△A′B′C′全等的是()A.AB=A′B′ B.BC=B′C′ C.AC=A′C′ D.∠C=∠C′3.如图,已知AB=A′B′,∠A=∠A′,若△ABC≌△A′B′C′,还需要()A.∠B=∠B′ B.∠C=∠C′ C.AC=A′C′ D.以上都对4.如图,已知△ABC的六个元素,则下面甲,乙,丙三个三角形中和△ABC全等的图形是()A.甲和乙 B.乙和丙 C.只有乙 D.只有丙5.如图,某同学把一块三角形的玻璃打碎成了三块,•现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去 B.带②去 C.带③去 D.带①和②去◆课后测控6.如图,在△ABC中,D是BC上一点,AB=AD,∠1=•∠2,•∠B=•∠ADE,•根据______可判定△ABC≌△ADE.7.如图,AD=AB,∠C=∠E,∠ADC=125°,则∠ABE=_____.8.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,交BC于D,•且DC=15,则点D到AB的距离DE长为_______.EDC BA(第6题) (第7题) (第8题)9.如图,∠E=∠F=90°,∠B=∠C ,AE=AF ,给出下列结论:①∠1=∠2;②BE=CF ;③△ACN ≌△ABM ,其中正确的结论是_______.(注:将你认为正确的结论都填上)(第9题) (第11题)10.在△ABC 与△A ′B ′C ′中,∠A=44°,∠B=67°,∠C ′=69°,∠B ′=44°,且AC=B ′C ′.那么这两个三角形(提醒:画出草图)( )A .一定不全等B .一定全等C .不一定全等D .以上都不对11.如图,在△ABC 与△DEF 中,已有条件AB=DE ,•还需添加两个条件才能使△ABC ≌△DEF ,不能添加的一组条件是( )A .∠B=∠E ,BC=EFB .BC=EF ,AC=DFC .∠A=∠D ,∠B=∠E D .∠A=∠D ,BC=EF12.如图,AB=AC ,CD ⊥AB 于D ,BE ⊥AC 于E ,求证:AD=AE .13.如图,AC和BD相交于点E,AB∥CD,AB=CD,求证:E为BD的中点.14.已知:如图,B,C,E三点在同一条直线上,AC∥DE,AC=CE,∠ACD=∠B.求证:△ABC≌△CDE.◆拓展测控15.(教材变式探究题)如图(1),在△ACB中,∠ACB=90°,AC=BC,直线L经过点C,AD ⊥L于D,BE⊥L于E.(1)求证:①△ADC≌△CEB;②DE=AD+BE.(2)当直线L绕点C旋转到图(2)的位置时,DE,AD,BE具有怎样的等量关系?说出你的猜想,并证明你的猜想.答案:1.不一定一对对应边2.D (点拨:没有一对对应边相等)3.D (点拨:根据ASA可选A,根据AAS可选B,根据SAS可选C)4.B (点拨:根据SAS可知乙,根据AAS可知丙)5.C (点拨:依据ASA)[总结反思]证明三角形全等的方法增加了ASA和AAS.6.ASA (点拨:由∠1=∠2可得∠BAC=∠DAE)7.125°(点拨:易知△ADC≌△ABE)8.15 (点拨:易证△ACD≌△AED,DE=CD)9.①②③(点拨:根据已知条件易证△ABE≌△ACF,△ABM≌△ACN)10.B (点拨:画出草图后,确定对应边和角)11.D (点拨:三角形全等条件中边边角不成立)12.证明:∵CD⊥AB,BE⊥AC,∴∠ADC=∠AEB=90°.在△ADC和△AEB中,,,,A AAD C AEB AC AB∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADC≌△AEB,∴AD=AE.[解题规律]有两角及其一角对边相等的两个三角形全等.13.证明:∵AB∥CD,∴∠A=∠C,∠B=∠D.在△ABE和△CDE中,,,,A C ABC DB E ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABE≌△CDE(ASA).∴BE=DE,即E为BD的中点.[解题规律]有两角及其夹边对应相等的两个三角形全等.14.证明:∵AC∥DE,∴∠ACD=∠D,∠ACB=∠E.又∵∠ACD=∠B,∴B=∠D.在△ABC和△CDE中,,,,B DAC B E AC C E∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC≌△CDE(AAS).[解题技巧]充分利用AC∥DE得到∠ACB=∠E和∠ACD=∠D,即一线二用.15.(1)证明:∵AD⊥L,BE⊥L,∴∠ADC=∠CEB=90°.∵∠ACB=90°,∴∠ACD+∠ECB=90°.又∠1+∠ACD=90°,∴∠1=∠ECB.在△ADC和△CEB中,, 1,,AD C C EBEC BAC BC∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADC≌△CEB(AAS),∴AD=CE,DC=BE.∴DE=CE+DC=AD+BE.(2)结论:DE=AD-BE.证明:同(1)可证△ADC≌△CEB.∴AD=CE,DC=BE,∴DE=CE-CD=AD-BE.[解题方法]解决问题(2)的关键是弄清图(2)中哪些量发生了变化,•哪些没有发生变化,本题在证明过程中要发现∠ACD=90°的用法,即由∠ACB=90°可得∠ACD+∠BCE=90°.。

《全等三角形判定一》(ASA,SAS) 配套知识讲解2022人教七年级下册专练

《全等三角形判定一》(ASA,SAS) 配套知识讲解2022人教七年级下册专练

全等三角形判定一(ASA ,SAS )(提高)【学习目标】1.理解和掌握全等三角形判定方法1——“角边角”,和判定方法2——“边角边”;2.能把证明角相等或线段相等的问题,转化为证明它们所在的两个三角形全等.【要点梳理】要点一、全等三角形判定1——“角边角”全等三角形判定1——“角边角”两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”). 要点诠释:如图,如果∠A =∠'A ,AB =''A B ,∠B =∠'B ,则△ABC ≌△'''A B C .要点二、全等三角形判定2——“边角边”1. 全等三角形判定2——“边角边” 两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”).要点诠释:如图,如果AB = ''A B ,∠A =∠'A ,AC = ''A C ,则△ABC ≌△'''A B C . 注意:这里的角,指的是两组对应边的夹角.2. 有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,△ABC 与△ABD 中,AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD 不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.【典型例题】类型一、全等三角形的判定1——“角边角”1、如图,G 是线段AB 上一点,AC 和DG 相交于点E.请先作出∠ABC 的平分线BF ,交AC 于点F ;然后证明:当AD∥BC,AD =BC ,∠ABC=2∠ADG 时,DE =BF.【思路点拨】通过已知条件证明∠DAC=∠C,∠CBF=∠ADG,则可证△DAE≌△BCF【答案与解析】证明: ∵AD∥BC,∴∠DAC=∠C∵BF 平分∠ABC∴∠ABC=2∠CBF∵∠ABC=2∠ADG∴∠CBF=∠ADG在△DAE 与△BCF 中⎪⎩⎪⎨⎧∠=∠=∠=∠C DAC BCAD CBF ADG ∴△DAE≌△BCF(ASA )∴DE=BF【总结升华】利用全等三角形证明线段(角)相等的一般方法和步骤如下:(1)找到以待证角(线段)为内角(边)的两个三角形;(2)证明这两个三角形全等;(3)由全等三角形的性质得出所要证的角(线段)相等.举一反三:【变式】已知:如图,在△MPN 中,H 是高MQ 和NR 的交点,且MQ =NQ .求证:HN =PM.【答案】证明:∵MQ 和NR 是△MPN 的高,∴∠MQN =∠MRN =90°,又∵∠1+∠3=∠2+∠4=90°,∠3=∠4∴∠1=∠2在△MPQ 和△NHQ 中,12MQ NQ MQP NQH ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△MPQ ≌△NHQ (ASA )∴PM =HN类型二、全等三角形的判定2——“边角边”2、如图,AD 是△ABC 的中线,求证:AB +AC >2AD .【思路点拨】延长AD 到点E ,使AD =DE ,连接CE .通过证全等将AB 转化到△CEA 中,同时也构造出了2AD .利用三角形两边之和大于第三边解决问题.【答案与解析】证明:如图,延长AD 到点E ,使AD =DE ,连接CE .在△ABD 和△ECD 中,AD =DE ,∠ADB =∠EDC ,BD =CD .∴△ABD ≌△ECD .∴AB =CE .∵AC +CE >AE ,∴AC +AB >AE =2AD .即AC +AB >2AD .【总结升华】证明边的大小关系主要有两个思路:(1)两点之间线段最短;(2)三角形的两边之和大于第三边.要证明AB +AC >2AD ,如果归到一个三角形中,边的大小关系就是显然的,因此需要转移线段,构造全等三角形是转化线段的重要手段.可利用旋转变换,把△ABD 绕点D 逆时针旋转180°得到△CED ,也就把AB 转化到△CEA 中,同时也构造出了2AD .若题目中有中线,倍长中线,利用旋转变换构造全等三角形是一种重要方法.3、(2020•吉林)如图,△ABC 和△DAE 中,∠BAC=∠DAE ,AB=AE ,AC=AD ,连接BD ,CE ,求证:△ABD ≌△AEC .【思路点拨】根据∠BAC=∠DAE,可得∠BAD=∠CAE,再根据全等的条件可得出结论.【答案与解析】证明:∵∠BAC=∠DAE,∴∠BAC﹣∠BAE=∠DAE﹣∠BAE,即∠BAD=∠CAE,在△ABD和△AEC中,,∴△ABD≌△AEC(SAS).【总结升华】本题考查利用“边角边”定理来证明三角形全等,注意等角减等角,差相等. 举一反三:【变式】(2020•启东市模拟)如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A.1组B.2组C.3组D.4组【答案】C.解:第①组满足SSS,能证明△ABC≌△DEF.第②组满足SAS,能证明△ABC≌△DEF.第③组满足ASA,能证明△ABC≌△DEF.第④组只是SSA,不能证明△ABC≌△DEF.所以有3组能证明△ABC≌△DEF.故符合条件的有3组.故选:C.类型三、全等三角形判定的实际应用4、如图,公园里有一条“Z字形道路ABCD,其中AB∥CD,在AB,BC,CD三段路旁各有一个小石凳E,M,F,且BE=CF,M在BC的中点.试判断三个石凳E,M,F是否恰好在一条直线上?为什么?【答案与解析】三个小石凳在一条直线上证明:∵AB 平行CD (已知)∴∠B =∠C (两直线平行,内错角相等)∵M 在BC 的中点(已知)∴BM =CM (中点定义)在△BME 和△CMF 中BE CF B C BM CM =⎧⎪∠=∠⎨⎪=⎩∴△BME ≌△CMF (SAS )∴∠EMB =∠FMC (全等三角形的对应角相等)∴∠EMF =∠EMB +∠BMF =∠FMC +∠BMF =∠BMC =180°(等式的性质)∴E ,M ,F 在同一直线上【总结升华】对于实际应用问题,首先要能将它化成数学模型,再根据数学知识去解决. 由已知易证△BME ≌△CMF ,可得∠EMB =∠FMC ,再由∠EMF =∠EMB +∠BMF =∠FMC +∠BMF =∠BMC =180°得到E ,M ,F 在同一直线上.第二课时【学习目标】1. 了解因式分解的意义,以及它与整式乘法的关系;2. 能确定多项式各项的公因式,会用提公因式法将多项式分解因式.【要点梳理】要点一、因式分解把一个多项式化成几个整式积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.要点诠释:(1)因式分解只针对多项式,而不是针对单项式,是对这个多项式的整体,而不是部分,因式分解的结果只能是整式的积的形式.(2)要把一个多项式分解到每一个因式不能再分解为止.(3)因式分解和整式乘法是互逆的运算,二者不能混淆.因式分解是一种恒等变形,而整式乘法是一种运算.要点二、公因式多项式的各项中都含有相同的因式,那么这个相同的因式就叫做公因式.要点诠释:(1)公因式必须是每一项中都含有的因式.(2)公因式可以是一个数,也可以是一个字母,还可以是一个多项式.(3)公因式的确定分为数字系数和字母两部分:①公因式的系数是各项系数的最大公约数.②字母是各项中相同的字母,指数取各字母指数最低的. 要点三、提公因式法 把多项式分解成两个因式的乘积的形式,其中一个因式是各项的公因式m ,另一个因式是,即,而正好是除以m 所得的商,这种因式分解的方法叫提公因式法.要点诠释:(1)提公因式法分解因式实际上是逆用乘法分配律,即 .(2)用提公因式法分解因式的关键是准确找出多项式各项的公因式.(3)当多项式第一项的系数是负数时,通常先提出“—”号,使括号内的第一项的系数变为正数,同时多项式的各项都要变号.(4)用提公因式法分解因式时,若多项式的某项与公因式相等或它们的和为零,则提取公因式后,该项变为:“+1”或“-1”,不要把该项漏掉,或认为是0而出现错误.【典型例题】类型一、因式分解的概念1、下列由左到右的变形,哪些是因式分解?哪些不是?请说明理由.(1)()a x y ax ay +=+;(2)2221(2)(1)(1)x xy y x x y y y ++-=+++-;(3)24(2)(2)ax a a x x -=+-;(4)221122ab a b =; (5)222112a a a a ⎛⎫++=+ ⎪⎝⎭. 【思路点拨】根据因式分解的定义是将多项式形式变成几个整式的积的形式,从对象和结果两方面去判断.【答案与解析】解:因为(1)(2)的右边都不是积的形式,所以它们都不是因式分解;(4)的左边不是多项式而是一个单项式,(5)中的21a 、1a都不是整式,所以(4)(5)也不是因式分解, 只有(3)的左边是多项式,右边是整式的积的形式,所以只有(3)是因式分解.【总结升华】因式分解是将多项式变成积的形式,所以等式的左边必须是多项式,将单项式拆成几个单项式乘积的形式不能称为因式分解.等式的右边必须是整式因式积的形式. 举一反三:【变式】下列变形是因式分解的是 ( )A.243(2)(2)3a a a a a -+=-++B.2244(2)x x x ++=+C. 11(1)x x x +=+D.2(1)(1)1x x x +-=-【答案】B ;类型二、提公因式法分解因式2、下列因式分解变形中,正确的是( )A .()()()()1ab a b a b a a b a b ---=--+B .()()()()262231m n m n m n m n +-+=+++C .()()()()232332y x x y y x y x -+-=--+D .()()()()2232x x y x y x y x y +-+=++ 【答案】A ;【解析】解:A.()()()()1ab a b a b a a b a b ---=--+,正确;B.()()()()2622331m n m n m n m n +-+=++-,故本选项错误;C.()()()()232332y x x y y x y x -+-=---,故本选项错误;D.()()()()223331x x y x y x y x xy +-+=++-,故本选项错误. 【总结升华】解题的关键是正确找出公因式,提取公因式后注意符号的变化.找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.举一反三:【变式】(2020春•濉溪县期末)下列分解因式结果正确的是( )A.a 2b+7ab ﹣b=b (a 2+7a )B.3x 2y ﹣3xy+6y=3y (x 2﹣x ﹣2)C.8xyz ﹣6x 2y 2=2xyz (4﹣3xy )D.﹣2a 2+4ab ﹣6ac=﹣2a (a ﹣2b+3c )【答案】D.解:A 、原式=b (a 2+7a+1),错误;B 、原式=3y (x 2﹣x+2),错误;C 、原式=2xy (4z ﹣3xy ),错误;D 、原式=﹣2a (a ﹣2b+3c ),正确.故选D .类型三、提公因式法分解因式的应用3、若a 、b 、c 为ABC ∆的三边长,且()()()()a b b a b a a c a b a c -+-=-+-,则ABC ∆按边分类,应是什么三角形?【答案与解析】解:∵()()()()a b b a b a a c a b a c -+-=-+-∴()()()()a b b a a b a c a b c a ---=---()()()()a b b a c a a b --=--当a b =时,等式成立,当a b ≠时,原式变为a b a c -=-,得出b c =,∴a b b c ==或 ∴ABC ∆是等腰三角形.【总结升华】将原式分解因式,就可以得出三边之间的关系,从而判定三角形的类型.4、对任意自然数n (n >0),422n n +-是30的倍数,请你判定一下这个说法的正确性,并说说理由.【答案与解析】解:()44422222221152n n n n n n +-=⨯-=-=⨯∵n 为大于0的自然数,∴2n 为偶数,15×2n 为30的倍数,即422n n +-是30的倍数.【总结升华】判断422n n +-是否为30的倍数,只需要把422n n +-分解因式,看分解后有没有能够整除30的因式.举一反三:【变式】说明200199198343103-⨯+⨯能被7整除. 【答案】解:200199198343103-⨯+⨯()198219833431073=-⨯+=⨯ 所以200199198343103-⨯+⨯能被7整除.5、(2020春•湘潭县期末)已知xy=﹣3,满足x+y=2,求代数式x 2y+xy 2的值.【思路点拨】将原式提取公因式xy,进而将已知代入求出结果即可.【答案与解析】解:∵xy=—3,x+y=2,∴x2y+xy2=xy(x+y)=﹣3×2=﹣6.【总结升华】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.。

专题12.2 三角形全等的判定(解析版)

专题12.2  三角形全等的判定(解析版)

专题12.2 三角形全等的判定全等三角形的判定定理(1)边边边(SSS):三边对应相等的两个三角形全等.(2)边角边(SAS):两边和它们的夹角对应相等的两个三角形全等.(3)角边角(ASA):两角和它们的夹边对应相等的两个三角形全等.(4)角角边(AAS):两角和其中一个角的对边对应相等的两个三角形全等.(5)斜边、直角边(HL):斜边和一条直角边对应相等的两个直角三角形全等. (只适用两个直角三角形)【例题1】如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD【答案】D.【解析】欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.∵AB=AC,∠A为公共角,A.如添加∠B=∠C,利用ASA即可证明△ABE≌△ACD;B.如添AD=AE,利用SAS即可证明△ABE≌△ACD;C.如添BD=CE,等量关系可得AD=AE,利用SAS即可证明△ABE≌△ACD;D.如添BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加的条件.【点拨】欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.【例题2】如图,点E、F分别是矩形ABCD的边AB、CD上的一点,且DF=BE.求证:AF=CE.【答案】见解析。

【解析】证明:∵四边形ABCD是矩形,∴∠D=∠B=90°,AD=BC,在△ADF和△BCE中,,∴△ADF≌△BCE(SAS),∴AF=CE.【点拨】由SAS证明△ADF≌△BCE,即可得出AF=CE.【例题3】如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F.求证:BD=2CE.【答案】见解析。

1322全等三角形的判定-边角边

1322全等三角形的判定-边角边

C
步骤:1.画一线段AC,使它等于
4cm ; 2.画∠ CAM= 45°; 3.以C为圆
心, 3cm长为半径画弧,交AM于点B
4.连和结B’CB;
、CB’。
A 45°
B
B’ M
△ ABC与△ AB’C 就是 所求做的三角形。
显然: △ ABC与△ AB’C不全等
结论:两边及其一边所对的角相等,两个三 角形不一定全等。
线解段:,PG并=Q说N明理由。
∵∠PMN=∠QMG
∴∠PMG=∠QMN
M
在△ PMG和△ QMN中: MP=MQ (已知)
∠PMG=∠QMN (已知) N
G
MG=MN(公共边)
∴△EDH≌△FDH (S.A.SP.)
Q
∴PG=QN
练 一 练
1、已知:如图,AB=AC,AD=AE,不用量 角器量,能得出∠B=∠C吗?请说明理由。
说一说 今天你学到了什么
1、今天我们学习了哪种方法判定两三角 形全等?
边角边(S.A.S.)
通过证明两个三角形的两条边及其夹角 对应相等,这两个三角形全等。 2、“边边角”能不能判定两个三角形全等“?
不能
作业:练习册相应习题
边角边的运用
例3:小兰做了一个如图所示的风筝,其中
∠EDH=∠FDH, ED=FD ,将上述条件标注在图
结论: 在两个三角形中,如果
有两条边及它们的夹角对 应相等,那么这两个三角 形全等。(简记为S.A.S)。
温馨提示:
S.A.S的证明:
如图在△ABC和△A′B′C′中,已知AB=A′B′, ∠B=∠B′, BC=B′C′.
A
A’
B
C
B’

人教版八年级数学上册全等三角形的判定角边角判定三角形全等专项小练习(附答案)

人教版八年级数学上册全等三角形的判定角边角判定三角形全等专项小练习(附答案)

人教版八年级数学上册全等三角形的判定角边角判定三角形全等专项小练习(附答案)1.如图,已知∠CAB=∠DAB,则下列:①∠C=∠D;②AC=AD;③∠CBA=∠DBA;④BC=BD条件中,不能判定△ABC≌△ABD的是()A.①B.②C.③D.④2.如图,AB=AC,E,F分别是AB,AC的中点,BF,CE交于点D,连接AD.则此图中全等三角形有( )A.2对B.3对C.4对D.5对3.如图,已知在△ABD和△ABC中,∠DAB=∠CAB,点A,B,E在同一条直线上,若使△ABD≌△ABC,则还需添加的一个条件是.(只填一个即可)4.如图,已知∠ABC=∠DCB,增加下列条件:①AB=CD;②AC=DB;③∠A=∠D;④∠ABO=∠DCO.能判定△ABC≌△DCB的是.(填正确答案的序号)5.(易错警示题)如图,在平面直角坐标系xOy中,点A的坐标是(2,0),点B 的坐标是(0,4),点C在x轴上运动(不与点A重合),点D在y轴上运动(不与点B重合),当点C的坐标为时,以点C,O,D为顶点的三角形与△AOB 全等.6.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.(1)求证:AB=CD;(2)若AB=CF,∠B=40°,求∠D的度数.7.(素养提升题)如图所示,已知DE=AE,点E在BC上,AE⊥DE,AB⊥BC,DC ⊥BC,请问,线段AB,DC和线段BC有何大小关系.并说明理由解题模型 发散思维模型 利用“ASA”或“AAS”证明三角形全等的书写模式如图:点A ,B ,C ,D 在一条直线上,AB =CD ,AE ∥BF ,CE ∥DF .求证:△AEC ≌△BFD .【证明】∵AB =CD ,∴AB +BC =CD +BC ,即AC =BD ,∵AE ∥BF ,CE ∥DF ,∴∠A =∠FBC ,∠D =∠ECA .在△AEC 和△BFD 中,A FBC AC BD ECA D ∠=∠⎧⎪=⎨⎪∠=∠⎩,,,∴△AEC ≌△BFD (ASA ).1.角边角(ASA )书写模式:如图,在△ABC 与△'''A B C 中,''''A A AB A B B B ∠=∠⎧⎪=⎨⎪∠=∠⎩,,,∴△ABC ≌△A'B'C'(ASA ).2.角角边(AAS )书写模式:如图,在△ABC 与△'''A B C 中,'''A A B B BC B C ∠=∠⎧⎪∠=∠⎨⎪='⎩,,,∴△ABC ≌△A'B'C'(AAS )参考答案1.答案:D2.答案:C3.答案:AD=AC(∠D=∠C或∠ABD=∠ABC等)4.答案:①③④5.答案:(-4,0),(-2,0),(4,0)6.答案:见解析解析:(1)∵AB∥CD,∴∠B=∠C,在△ABE和△DCF中,A DB C AE DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,,,∴△ABE≌△DCF(AAS),∴AB=CD;(2)∵△ABE≌△DCF∴AB=CD,BE=CF,∠B=∠C,∵∠B=40°,∴∠C=40°,∵AB=CF,∴CF=CD,∴∠D=∠CFD=1(18040)70 2︒︒︒⨯-=.7.答案:见解析解析:线段AB,DC和线段BC的关系是:BC=AB+DC.理由如下:∵AB⊥BC,DC⊥BC,∴∠ABE=∠ECD=90°,∵AE⊥DE,∴∠AED=90°,在△ABE中,∠BAE+∠AEB=90°,在△DCE中,∠EDC+∠DEC=90°. ∵∠BEA+∠DEC=90°,∴∠BEA=∠EDC,在△ABE和△ECD中,BEA CDEABE ECD DE AE∠=∠⎧⎪∠=∠⎨⎪=⎩,,,∴△ABE≌△ECD(AAS),∴AB=EC,BE=CD,∴BC=BE+EC=DC+AB.。

11.2.2全等三角形的判定(二)—边角边

11.2.2全等三角形的判定(二)—边角边

A
B
作业
3.已知:如图,AB=CD,BC=DA。 求证:AB ∥ CD。 B C
A
D
例3、已知∠BAC(如图),用直尺和圆规 作∠BAC的平分线AD,并说出该作法正 确的理由。 C
A
B
如图,AB=AC,AE=AD,BD=CE, A 求证:△AEB ≌ △ ADC。
B E D C
思 考
已知AC=FE,BC=DE,点A、D、 B、 F在一条直线上,AD=FB. 要用“边边边”证明 △ABC ≌△ FDE,除了已知中的AC=FE,BC=DE以 外,还应该有什么条件?怎样才能得到这个条件? 解:要证明△ABC ≌△ FDE, A 还应该有AB=DF这个条件 ∵AD=FB ∴ AD+DB=FB+DB 即 AB=FD
B
【证明】在△BAD和△BAC中,
BA=BA
∠BAD=∠BAC
D A C
AD=AC
∴△BAD≌△BAC (SAS) ∴BD=BC
补充练习:
已知:如图AB=AC,AD=AE,∠BAC=∠DAE 求证: △ABD≌△ACE
证明:∵∠BAC=∠DAE(已知) ∠ BAC+ ∠ CAD= ∠DAE+ ∠ CAD ∴∠BAD=∠CAE 在△ABD与△ACE AB=AC(已知) B ∠BAD= ∠CAE (已证) AD=AE(已知) C ∴△ABD≌△ACE(SAS) A
A B'
A'


C'
引入新课
上节课我们讨论过这样一个问题
思考
如果两个三角形有三组对应相等的元素 (边或角),那么会有哪几种可能的情况? 这时,这两个三角形一定会全等吗?
有以下的四种情况: 两边一角、两角一边、

人教版八年级数学上册三角形边角边判定三角形全等专项小练习(附答案)

人教版八年级数学上册三角形边角边判定三角形全等专项小练习(附答案)

《12.2 三角形全等的判定课时2》基础练易错诊断(打“√”或“×”)1.两边和任一角分别相等的两个三角形全等.()2.有两边及其一边的对角分别相等的两个三角形全等.()3.在△ABC和△DEF中,若AB=DE,∠B=∠E,BC=EF,则△ABC≌△DEF.()对点达标知识点一用“SAS”证明三角形全等1.(2021·昆明质检)如图,AB平分∠DAC,要用SAS条件确定△ABC≌△ABD,还需要有条件()A.DB=CBB.AB=ABC.AD=ACD.∠D=∠C2.根据如图所给信息,可得x的长是()A.16B.18C.20D.16或183.(2021·宿州质检)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加一个条件是()A.∠A=∠CB.∠D=∠BC.AD∥BCD.DF∥BE4.(2020·柳州中考)如图,已知OC平分∠MON,点A,B分别在射线OM,ON上,且OA=OB.求证:△AOC≌△BOC.5.(2020·兰州中考)如图,在△ABC中,AB=AC,点D,E分别是AC和AB的中点求证:BD=CE.知识点二“SAS”的实际应用6.(2021·武汉期中)如图,将两根钢条AA',BB的中点O连在一起,使AA',BB'可以绕着点O自由旋转,就做成了一个测量工件,则A'B′的长等于内槽宽AB,那么判定△OAB≌△OA'B′的理由是.7.如图,一块三角形玻璃碎成了Ⅰ,Ⅱ两块,现需购买同样大小的一块三角形玻璃,为方便起见,只需带上第块玻璃碎片.8.(2021·济南期中)如图,AD,BC表示两根长度相同的木条,若O是AD,BC的中点,经测量AB=9cm,则容器的内径CD为cm.参考答案易错诊断1.×2.×3.√对点达标1.C2.C3.B4.答案:见解析解析:∵OC平分∠MON,∴∠AOC=∠BOC,在△AOC和△BOC中,OA OBAOC BOC OC OC=⎧⎪∠=∠⎨⎪=⎩,,,∴△AOC≌△BOC(SAS).5. 答案:见解析解析:∵AB=AC,D,E分别为AC,AB的中点,∴AD=AE,在△ABD和△ACE中,AB ACA A AD AE=⎧⎪∠=∠⎨⎪=⎩,,,∴△ABD≌△ACE(SAS),∴BD=CE.6.SAS7.I8.9。

三角形全等的判定第2课时“边角边”精选练习含答案

三角形全等的判定第2课时“边角边”精选练习含答案

三角形全等的判定第2课时“边角边”精选练习含答案一、选择题1. 如图,AB=AC,AD=AE,欲证△ABD≌△ACE,可补充条件( )A.∠1=∠2B.∠B=∠CC.∠D=∠ED.∠BAE=∠CAD2. 能判定△ABC≌△A′B′C′的条件是()A.AB=A′B′,AC=A′C′,∠C=∠C′B. AB=A′B′,∠A=∠A′,BC=B′C′C. AC=A′C′,∠A=∠A′,BC=B′CD. AC=A′C′,∠C=∠C′,BC=B′C3. 如图,AD=BC,要得到△ABD和△CDB全等,能够添加的条件是( )A. AB∥CDB. AD∥BCC. ∠A=∠CD. ∠ABC=∠CDA4.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.AC=DC,∠A=∠D5.如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有()A.1对 B.2对 C.3对 D.4对6.在△ABC和CBA'''∆中,∠C=C'∠,b-a=ab'-',b+a=ab'+',则这两个三角形()A. 不一定全等B.不全等C. 全等,依照“ASA”D. 全等,依照“SAS”第1题第3题图第4题图第5题图7.如图,已知AD 是△ABC 的BC 边上的高,下列能使△ABD ≌△ACD 的条件是( )A .AB=ACB .∠BAC=90°C .BD=ACD .∠B=45°8.如图,梯形ABCD 中,AD ∥BC ,点M 是AD 的中点,且MB=MC ,若AD=4,AB=6,BC=8,则梯形ABCD 的周长为( )A .22B .24C .26D .28 二、填空题9. 如图,已知BD=CD ,要依照“SAS ”判定△ABD ≌△ACD ,则还需添加的条件是.10. 如图,AC 与BD 相交于点O ,若AO=BO ,AC =BD ,∠DBA=30°,∠DAB=50°, 则∠CBO= 度.11.西如图,点B 、F 、C 、E 在同一条直线上,点A 、D 在直线BE 的两侧,AB ∥DE ,BF =CE ,请添加一个适当的条件: , 使得AC =DF .12.如图,已知AD AB =,DAC BAE ∠=∠,要使 ABC △≌ADE △,可补充的第9题图第7题图第8题图第10题图第11题图条件是 (写出一个即可).13.(2005•天津)如图,OA=OB ,OC=OD ,∠O=60°,∠C=25°,则 ∠BED= 度.14. 如图,若AO=DO ,只需补充 就能够依照SAS 判定△AOB ≌△DOC.15. 如图,已知△ABC ,BA=BC ,BD 平分∠ABC ,若∠C=40°,则∠ABE 为度.16.在Rt △ABC 中,∠ACB=90°,BC=2cm ,CD ⊥AB ,在AC 上取一点E ,使EC=BC ,过点E 作EF ⊥AC 交CD 的延长线于点F ,若EF=5cm ,则 AE= cm .40D CBAE17. 已知:如图,DC=EA ,EC=BA ,DC ⊥AC , BA ⊥AC ,垂足分别是C 、A ,则BE 与DE 的位置关系是 .18. △ABC 中,AB=6,AC=2,AD 是BC 边上的中线,则AD 的取值范畴是 .ACE B 0CEDB A第13题图第14题图第12题图第15题图第16题图第17题图D三、解答题19. 如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:BC∥EF.20.已知:如图,点A、B、C、D在同一条直线上,EA⊥AD,FD⊥AD,AE=DF,AB=DC.求证:∠ACE=∠DBF.21.如图CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.22. 如图,AB=AC,点E、F分别是AB、AC的中点,求证:△AFB≌△AEC.23.如图,一个含45°的三角板HBE的两条直角边与正方形ABCD的两邻边重合,过E点作EF⊥AE交∠DCE的角平分线于F点,试探究线段AE与EF的数量关系,并说明理由。

三角形全等的判定“角边角与角角边”(6种题型)-2023年新八年级数学题型(人教版)(解析版)

三角形全等的判定“角边角与角角边”(6种题型)-2023年新八年级数学题型(人教版)(解析版)

三角形全等的判定“角边角与角角边”(6种题型)【知识梳理】一、全等三角形判定——“角边角”两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”).要点诠释:如图,如果∠A =∠'A ,AB =''A B ,∠B =∠'B ,则△ABC ≌△'''A B C .二、全等三角形判定——“角角边” 1.全等三角形判定——“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”)要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC 和△ADE 中,如果DE BC ,那么∠ADE =∠B ,∠AED =∠C ,又∠A =∠A ,但△ABC 和△ADE 不全等.这说明,三个角对应相等的两个三角形不一定全等.【考点剖析】题型一:用“角边角”直接证明三角形全等例1.如图,∠A =∠B ,AE =BE ,点D 在 AC 边上,∠1=∠2,AE 和BD 相交于点O .求证:△AEC ≌△BED ;【详解】∵AE 和BD 相交于点O ,∴∠AOD=∠BOE .在△AOD 和△BOE 中,∠A=∠B ,∴∠BEO=∠2.又∵∠1=∠2,∴∠1=∠BEO ,∴∠AEC=∠BED .在△AEC 和△BED 中,A B AE BEAEC BED ∠∠⎧⎪⎨⎪∠∠⎩===∴△AEC ≌△BED (ASA ).【变式1】如图,AB =AD ,∠1,DA 平分∠BDE .求证:△ABC ≌△ADE .【解答】证明:∵∠1=∠2,∴∠1+∠DAC =∠2+∠DAC ,∴∠BAC =∠DAE ,∵AB =AD ,∴∠ADB =∠B ,∵DA 平分∠BDE .∴∠ADE =∠ADB ,∴∠ADE =∠B ,在△ABC和△ADE中,{∠ADE=∠B AB=AD∠BAC=∠DAE,∴△ABC≌△ADE(ASA).【变式2】如图,已知∠1=∠2,∠3=∠4,要证BC=CD,证明中判定两个三角形全等的依据是()A.角角角B.角边角C.边角边D.角角边【分析】已知两角对应相等,且有一公共边,利用全等三角形的判定定理进行推理即可.【解答】解:在△ABC与△ADC中,{∠1=∠2 AC=AC∠3=∠4,则△ABC≌△ADC(ASA).∴BC=CD.故选:B.【变式3】(2022•长安区一模)已知:点B、E、C、F在一条直线上,AB∥DE,AC∥DF,BE=CF.求证:△ABC≌△DEF.【解答】证明:∵AB∥DE,∴∠B=∠DEF,∵AC∥DF,∴∠ACB=∠F,∵BE=CF,∴BE+EC=CF+EC,即BC =EF ,在△ABC 和△DEF 中,{∠B =∠DEFBC =EF ∠ACB =∠F,∴△ABC ≌△DEF (ASA ). 题型二:用“角边角”间接证明三角形全等例2.如图,已知AB ∥CD ,AB =CD ,∠A =∠D .求证:AF =DE .【详解】证明:∵AB //CD ,∴∠B =∠C ,在△ABF 和△DCE 中,A D AB CD BC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABF ≌△DCE (ASA ),∴AF =DE .【变式1】已知:如图,E ,F 在AC 上,AD ∥CB 且AD =CB ,∠D =∠B .求证:AE =CF .【答案与解析】证明:∵AD ∥CB∴∠A =∠C在△ADF 与△CBE 中A C AD CB D B ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADF ≌△CBE (ASA )∴AF =CE ,AF +EF =CE +EF故得:AE =CF【变式2】如图,AB =AC ,AB ⊥AC ,AD ⊥AE ,且∠ABD =∠ACE .求证:BD =CE .【详解】∵AB ⊥AC ,AD ⊥AE ,∴∠BAE +∠CAE =90°,∠BAE +∠BAD =90°,∴∠CAE =∠BAD .又AB =AC ,∠ABD =∠ACE ,∴△ABD ≌△ACE (ASA ).∴BD =CE .【变式3】如图,要测量河两岸相对两点A 、B 间的距离,在河岸BM 上截取BC =CD ,作ED ⊥BD 交AC 的延长线于点E ,垂足为点D .(DE ≠CD )(1)线段 的长度就是A 、B 两点间的距离(2)请说明(1)成立的理由.【解答】解:(1)线段DE 的长度就是A 、B 两点间的距离;故答案为:DE ;(2)∵AB ⊥BC ,DE ⊥BD∴∠ABC =∠EDC =90°又∵∠ACB =∠DCE ,BC =CD∴△ABC ≌△CDE (ASA )∴AB =DE .【变式4】如图,G 是线段AB 上一点,AC 和DG 相交于点E.请先作出∠ABC 的平分线BF ,交AC 于点F ;然后证明:当AD∥BC,AD =BC ,∠ABC=2∠ADG 时,DE =BF.【答案与解析】证明: ∵AD∥BC,∴∠DAC=∠C∵BF 平分∠ABC∴∠ABC=2∠CBF∵∠ABC=2∠ADG∴∠CBF=∠ADG在△DAE 与△BCF 中 ⎪⎩⎪⎨⎧∠=∠=∠=∠C DAC BCAD CBF ADG ∴△DAE≌△BCF(ASA )∴DE=BF【变式5】已知:如图,在△MPN 中,H 是高MQ 和NR 的交点,且MQ =NQ .求证:HN =PM.【答案】证明:∵MQ 和NR 是△MPN 的高,∴∠MQN =∠MRN =90°,又∵∠1+∠3=∠2+∠4=90°,∠3=∠4∴∠1=∠2在△MPQ 和△NHQ 中,12MQ NQ MQP NQH ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△MPQ ≌△NHQ (ASA )∴PM =HN【变式6】如图,已知224m ABC S =△,AD 平分BAC ∠,且AD BD ⊥于点D ,则ADC S =△________2m .【答案】12【详解】解:如图,延长BD 交AC 于点E ,∵AD 平分BAC ∠,AD BD ⊥,∴BAD EAD ∠=∠,90ADB ADE ∠=∠=︒.∵AD AD =,∴()ADB ADE ASA ≌.∴BD DE =.∴ABD AED S S =△△,BCD ECD S S =. ∴12ABD BCD AED ECD ABC S S S S S =++=△△△△△.即12ADC ABC S S =.∵224m ABC S =△,∴212m ADC S =△.故答案为:12.【变式7】(2022秋•苏州期中)如图,△ABC 中,AD 是BC 边上的中线,E ,F 为直线AD 上的点,连接BE ,CF ,且BE ∥CF .(1)求证:△BDE ≌△CDF ;(2)若AE =13,AF =7,试求DE 的长.【解答】(1)证明:∵AD 是BC 边上的中线,∴BD =CD ,∵BE ∥CF ,∴∠DBE =∠DCF ,在△BDE 和△CDF 中,,∴△BDE ≌△CDF (ASA );(2)解:∵AE =13,AF =7,∴EF =AE ﹣AF =13﹣7=6,∵△BDE ≌△CDF ,∴DE =DF ,∵DE +DF =EF =6,∴DE =3.题型三:用“角角边”直接证明三角形全等例3.如图,在四边形ABCD中,E是对角线AC上一点,AD∥BC,∠ADC=∠ACD,∠CED+∠B=180°.求证:△ADE≌△CAB.【解答】证明:∵∠ADC=∠ACD,∴AD=AC,∵AD∥BC,∴∠DAE=∠ACB,∵∠CED+∠B=180°,∠CED+∠AED=180°,∴∠AED=∠B,在△ADE与△CAB中,{∠DAE=∠ACB ∠AED=∠BAD=AC,∴△ADE≌△CAB(AAS).【变式】(202210块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B 分别与木墙的顶端重合.(1)求证:△ADC≌△CEB;(2)求两堵木墙之间的距离.【解答】(1)证明:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC在△ADC 和△CEB 中,∴△ADC ≌△CEB (AAS ); (2)解:由题意得:AD =2×3=6(cm ),BE =7×2=14(cm ),∵△ADC ≌△CEB ,∴EC =AD =6cm ,DC =BE =14cm ,∴DE =DC +CE =20(cm ),答:两堵木墙之间的距离为20cm .题型四:用“角角边”间接证明三角形全等例4、已知:如图,AB ⊥AE ,AD ⊥AC ,∠E =∠B ,DE =CB .求证:AD =AC .【答案与解析】证明:∵AB ⊥AE ,AD ⊥AC ,∴∠CAD =∠BAE =90°∴∠CAD +∠DAB =∠BAE +∠DAB ,即∠BAC =∠EAD在△BAC 和△EAD 中BAC EAD B E CB=DE ∠=∠⎧⎪∠=∠⎨⎪⎩∴△BAC ≌△EAD (AAS )∴AC =AD【变式】已知:如图,90ACB ∠=︒,AC BC =,CD 是经过点C 的一条直线,过点A 、B 分别作AE CD ⊥、 BF CD ⊥,垂足为E 、F ,求证:CE BF =.【答案与解析】证明:∵ CD AE ⊥,CD BF ⊥∴︒=∠=∠90BFC AEC∴︒=∠+∠90B BCF∵,90︒=∠ACB∴︒=∠+∠90ACF BCF∴B ACF ∠=∠在BCF ∆和CAE ∆中⎪⎩⎪⎨⎧=∠=∠∠=∠BC AC B ACE BFC AEC∴BCF ∆≌CAE ∆(AAS )∴BF CE =【总结升华】要证BF CE =,只需证含有这两个线段的BCF ∆≌CAE ∆.同角的余角相等是找角等的好方法.题型五:“边角边”与“角角边”综合应用例5.如图,120CAB ABD ∠+∠=AD 、BC 分别平分CAB ∠、ABD ∠,AD 与BC 交于点O .(1)求AOB ∠的度数;(2)说明AB AC BD =+的理由.【答案】(1)120°;(2)见解析【详解】解:(1)∵AD ,BC 分别平分∠CAB 和∠ABD ,∠CAB +∠ABD =120°,∴∠OAB +∠OBA =60°,∴∠AOB =180°-60°=120°;(2)在AB 上截取AE =AC ,∵∠CAO=∠EAO,AO=AO,∴△AOC≌△AOE(SAS),∴∠C=∠AEO,∵∠C+∠D=(180°-∠CAB-∠ABC)+(180°-∠ABD-∠BAD)=180°,∴∠AEO+∠D=180°,∵∠AEO+∠BEO=180°,∴∠BEO=∠D,又∠EBO=∠DBO,BO=BO,∴△OBE≌△OBD(AAS),∴BD=BE,又AC=AE,∴AC+BD=AE+BE=A B.【变式】如图(1)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于点D,BE⊥MN于点E.(1)求证:①△ADC≌△CEB;②DE=AD+BE.(2)当直线MN绕点C旋转到图(2)的位置时,DE、AD、BE又怎样的关系?并加以证明.【答案】(1)①证明见解析;②证明见解析;(2)DE=AD-BE,证明见解析.【详解】解:(1)①证明:∵AD⊥DE,BE⊥DE,∴∠ADC=∠BEC=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∠DAC+∠ACD=90°,∴∠DAC=∠BCE,在△ADC 和△CEB 中,CDA BEC DAC ECB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△CEB (AAS ).②证明:由(1)知:△ADC ≌△CEB ,∴AD =CE ,CD =BE ,∵DC +CE =DE ,∴AD +BE =DE .(2)成立.证明:∵BE ⊥EC ,AD ⊥CE ,∴∠ADC =∠BEC =90°,∴∠EBC +∠ECB =90°,∵∠ACB =90°,∴∠ECB +∠ACE =90°,∴∠ACD =∠EBC ,在△ADC 和△CEB 中,ACD CBE ADC BEC AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△CEB (AAS ),∴AD =CE ,CD =BE ,∴DE =EC -CD =AD -BE .题型六:尺规作图——利用角边角或角角边做三角形例6、已知三角形的两角及其夹边,求作这个三角形已知:∠α,∠β和线段c ,如图4-4-21所示.图4-4-21求作:△ABC ,使∠A =∠α,∠B =∠β,AB =c .作法:(1)作∠DAF =∠α;图4-4-224-4-23(2)在射线AF 上截取线段AB =c ;图4-4-24(3)以B 为顶点,以BA 为一边,在AB 的同侧作∠ABE =∠β,BE 交AD 于点C .△ABC 就是所求作的三角形.[点析] 我们这样作出的三角形是唯一的,依据是两角及其夹边分别相等的两个三角形全等. 例7.已知:角α,β和线段a ,如图4-4-29所示,求作:△ABC ,使∠A =∠α,∠B =∠β,BC =a .图4-4-29[解析] 本题所给条件是两角及其中一角的对边,可利用三角形内角和定理求出∠C ,再利用两角夹边作图. 解: 如图4-4-30所示:(1)作∠γ=180°-∠α-∠β;(2)作线段BC =a ;(3)分别以B ,C 为顶点,以BC 为一边作∠CBM =∠β,∠BCN =∠γ;(4)射线BM ,CN 交于点A .△ABC 就是所求作的三角形.图4-4-30【变式】(2022春·陕西·七年级陕西师大附中校考期中)尺规作图已知:α∠,∠β和线段a ,求作ABC ,使A α∠=∠,2B β∠=∠,AB a =.要求:不写作法,保留作图痕迹,标明字母.【详解】解:如图,△ABC即为所求..【过关检测】一、单选题A.带①去B.带②去C.带③去D.①②③都带去【答案】A【分析】根据全等三角形的判定可进行求解【详解】解:第①块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.故选:A.【点睛】此题主要考查了全等三角形的判定方法的开放性的题,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.≌过程中,先作2.(2023春·广东佛山·七年级校考期中)如图,在用尺规作图得到DBC ABCDBC ABC ∠=∠,再作DCB ACB ∠=∠,从而得到DBC ABC ≌,其中运用的三角形全等的判定方法是( )A .SASB .ASAC .AASD .SSS【答案】B 【分析】根据题意分析可得DBC ABC ∠=∠,DCB ACB ∠=∠,再加上公共边BC BC =,根据AAS ,即可判断DBC ABC ≌.【详解】解:∵得DBC ABC ∠=∠, BC BC =,DCB ACB ∠=∠,∴DBC ABC≌()ASA , 故选:B .【点睛】本题考查了作一个角等于已知角,全等三角形的判定,熟练掌握全等三角形的判定定理是解题的关键.3.(2023春·重庆沙坪坝·七年级重庆一中校考期末)如图,OC 平分AOB ∠,点P 是射线OC 上一点,PM OB ⊥于点M ,点N 是射线OA 上的一个动点,连接PN ,若6PM =,则PN 的长度不可能是( )【答案】D 【分析】如图所示,过点P 作PH OA ⊥于H ,证明POH POM △≌△得到6PH PM ==,由垂线段最短可知PN PH ≥,由此即可得到答案.【详解】解:如图所示,过点P 作PH OA ⊥于H ,∵PM OB ⊥,∴90PHO PMO ==︒∠∠,∵OC 平分AOB ∠,∴POH POM ∠=∠,又∵OP OP =,∴()AAS POH POM △≌△,∴6PH PM ==,由垂线段最短可知PN PH ≥,∵(264036=>,∴6,∴四个选项中,只有D 选项符合题意,故选:D .【点睛】本题主要考查了全等三角形的性质与判定,垂线段最短,实数比较大小,正确作出辅助线构造全等三角形是解题的关键. 4.(2023春·陕西咸阳·七年级统考期末)如图,AD BC ∥,ABC ∠的平分线BP 与BAD ∠的平分线AP 相交于点P ,作PE AB ⊥于点E ,若4PE =,则点P 到AD 与BC 的距离之和为( )A .4B .6C .8D .10【答案】C【分析】如图所示,过点P 作FG AD ⊥与F ,延长FP 交BC 于G ,先证明AD FG ⊥,由角平分线的定义得到EBP GBP =∠∠,进而证明EBP GBP △≌△得到4PG PE ==,同理可得4PF PE ==,则8FG PF PG =+=,由此即可得到答案.【详解】解:如图所示,过点P 作FG AD ⊥与F ,延长FP 交BC 于G ,∵AD BC ∥,∴AD FG ⊥,∵PE AB ⊥,∴90PFA PEA PEB PGB ====︒∠∠∠∠,∵BP 平分ABC ∠,∴EBP GBP =∠∠,又∵BP BP =,∴()AAS EBP GBP △≌△,∴4PG PE ==,同理可得4PF PE ==,∴8FG PF PG =+=,∴点P 到AD 与BC 的距离之和为8,故选C .【点睛】本题主要考查了平行线的性质,全等三角形的性质与判定,角平分线的定义,平行线间的距离等等,正确作出辅助线构造全等三角形是解题的关键. 5.(2023春·福建福州·七年级福建省福州第十六中学校考期末)如图,90C ∠=︒,点M 是BC 的中点,DM 平分ADC ∠,且8CB =,则点M 到线段AD 的最小距离为( )A .2B .3C .4D .5【答案】C 【分析】如图所示,过点M 作ME AD ⊥于E ,证明MDE MDC △≌△,得到ME MC =,再根据线段中点的定义得到142ME MC BC ===,根据垂线段最短可知点M 到线段AD 的最小距离为4.【详解】解:如图所示,过点M 作ME AD ⊥于E ,∴90MED C ==︒∠∠,∵DM 平分ADC ∠,∴MDE MDC =∠∠,又∵MD MD =,∴()AAS MDE MDC △≌△,∴ME MC =,∵点M 是BC 的中点,8CB =,∴142ME MC BC ===,∴点M 到线段AD 的最小距离为4,故选:C .【点睛】本题主要考查了全等三角形的性质与判定,角平分线的定义,垂线段最短等等,正确作出辅助线构造全等三角形是解题的关键.6.(2023·全国·八年级假期作业)如图,点E 在ABC 外部,点D 在ABC 的BC 边上,DE 交AC 于F ,若123∠=∠=∠,AE AC =,则( ).A .ABD AFE △≌△B .AFE ADC ≌△△ C .AFE DFC ≌△△D .ABC ADE △≌△ 【答案】D 【分析】首先根据题意得到BAC DAE ∠=∠,E C ∠=∠,然后根据ASA 证明ABC ADE △≌△.【详解】解:∵12∠=∠,∴12DAC DAC ∠+∠=∠+∠,∴BAC DAE ∠=∠,∵23∠∠=,AFE DFC ∠=∠,∴E C ∠=∠,∴在ABC 和ADE V 中,BAC DAE AC AEC E ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()ASA ABC ADE ≌△△, 故选:D .【点睛】此题主要考查全等三角形的判定,解题的关键是熟知全等三角形的判定定理.7.(2023·浙江·八年级假期作业)小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块)你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带( )A .带①去B .带②去C .带③去D .①②③都带去【答案】B 【分析】本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.【详解】解:①、③、④块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去, 只有第②块有完整的两角及夹边,符合ASA ,满足题目要求的条件,是符合题意的.故选:B .【点睛】本题主要考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS . 8.(2023春·浙江宁波·七年级校考期末)如图,ABC 的两条高AD 和BF 相交于点E ,8AD BD ==,10AC =,2AE =,则BF 的长为( )A .11.2B .11.5C .12.5D .13【答案】A 【分析】先证明BDE ADC △≌△,可得 6DE DC ==,14BC =,而10AC =,再由等面积法可得答案.【详解】解:∵ABC 的两条高AD 和BF 相交于点E ,∴90ADB ADC BFA ∠=∠=︒=∠,∵AEF BED ∠=∠,∴DBE DAC ∠=∠,∵8AD BD ==,2AE =,∴BDE ADC △≌△,6DE =,∴6DE DC ==,∴14BC =,而10AC =,由等面积法可得:111481022BF ⨯⨯=⨯⨯,解得:11.2BF =;故选A【点睛】本题考查的是三角形的内角和定理的应用,全等三角形的判定与性质,等面积法的应用,证明BDE ADC △≌△是解本题的关键. 9.(2023春·辽宁沈阳·七年级沈阳市第一二六中学校考阶段练习)如图,抗日战争期间,为了炸毁敌人的碉堡,需要测出我军阵地与敌人碉堡的距离.我军战士想到一个办法,他先面向碉堡的方向站好,然后调整帽子,使视线通过帽檐正好落在碉堡的底部点B ;然后转过身保持刚才的姿势,这时视线落在了我军阵地的点E 上;最后,他用步测的办法量出自己与E 点的距离,从而推算出我军阵地与敌人碉堡的距离,这里判定ABC DEF ≌△△的理由可以是( )A . SSSB . SASC . ASAD . AAA【答案】C 【分析】根据垂直的定义和全等三角形的判定定理即可得到结论.【详解】解:∵士兵的视线通过帽檐正好落在碉堡的底部点B ,然后转过身保持刚才的姿势,这时视线落在了我军阵地的点E 上,∴A D ∠=∠,∵AC BC ⊥,DF EF ^,∴90ACB DFE ∠=∠=︒,∵AC DF =,∴判定ABC DEF ≌△△的理由是ASA . 故选C .【点睛】本题主要考查了全等三角形的应用,分析题意找到相等的角和边判定三角形的全等是解题的关键.10.(2023春·四川达州·八年级统考期末)如图,已知BP 是ABC ∠的平分线,AP BP ⊥,若212cm BPC S =△,则ABC 的面积( )A .224cmB .230cmC .236cmD .不能确定【答案】A【分析】延长AP 交BC 于点C ,根据题意,易证()ASA ABP DBP ≌,因为APC △和DPC △同高等底,所以面积相等,根据等量代换便可得出2224cm ABC BPC S S ==.【详解】如图所示,延长AP ,交BC 于点D ,,∵AP BP ⊥,∴90APB DPB ∠=∠=︒,∵BP 是ABC ∠的角平分线,∴ABP DBP ∠=∠,在ABP 和DBP 中,ABP DBP BP BP APB DPB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()ASA ABP DBP ≌,∴AP DP =,∴ABP DBP S S =△△,∵APC △和DPC △同底等高,∴APC DPC S S =△,∴PBC DPB DPC ABP APC S S S S S =+=+△△△△,∴2224ABC BPC S S cm ==,故选:C .【点睛】本题考查了三角形的角平分线和全等三角形的判定,解题的关键是熟练运用三角形的角平分线和全等三角形的判定.二、填空题 11.(2023·浙江·八年级假期作业)如图,D 在AB 上,E 在AC 上,且B C ∠=∠,补充一个条件______后,可用“AAS ”判断ABE ACD ≌.【答案】BE CD =或AE AD =【分析】由于两个三角形已经具备B C ∠=∠,A A ∠=∠,故要找边的条件,只要不是这两对角的夹边即可.【详解】解:∵B C ∠=∠,A A ∠=∠,∴若用“AAS ”判断ABE ACD ≌,可补充的条件是BE CD =或AE AD =;故答案为:BE CD =或AE AD =.【点睛】本题考查了全等三角形的判定,熟知掌握判定三角形全等的条件是解题的关键.七年级期末)如图,在ABC 中, 【答案】ASA【分析】由AD BC ⊥、AD 平分BAC ∠、AD AD =可得出两个三角形对应的两个角及其夹边相等,于是可以利用ASA 判定这两个三角形全等.【详解】∵AD BC ⊥,∴90BDA CDA ︒=∠=∠.∵AD 平分BAC ∠,∴BAD ∠CAD =∠.在ABD △与ACD 中,BDA CDA AD AD BAD CAD ∠=∠⎧⎪=⎨⎪∠=∠⎩ ∴()ASA ABD ACD ≌.故答案为:ASA【点睛】本题考查了三角形全等的判定条件,解题的关键是找到两个三角形对应的边角相等. 13.(2023春·陕西榆林·七年级统考期末)如图,AB CD ⊥,且AB CD =,连接AD ,CE AD ⊥于点E ,BF AD ⊥于点F .若8CE =,5BF =,4EF =,则AD 的长为________.【答案】9【分析】只要证明(AAS)ABF CDE ≌,可得8AF CE ==,5BF DE ==,推出AD AF DF =+即可得出答案.【详解】解:∵AB CD ⊥,CE AD ⊥,BF AD ⊥,∴90AFB CED ∠=∠=︒,90A D ∠+∠=︒,90C D ∠=∠=︒,∴A C ∠=∠,∵AB CD =,∴(AAS)ABF CDE ≌,∴8AF CE ==,5BF DE ==,∵4EF =,∴()8549AD AF DF =+=+−=,故答案为:9.【点睛】本题考查全等三角形的判定与性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型. 14.(2023春·山东枣庄·七年级统考期末)如图,A ,B 两个建筑物分别位于河的两岸,为了测量它们之间的距离,可以沿河岸作射线BF ,且使BF AB ⊥,在BF 上截取BC CD =,过D 点作DE BF ⊥,使E C A ,,在一条直线上,测得16DE =米,则A ,B 之间的距离为______米.【答案】16【分析】根据已知条件可得ABC EDC △≌△,从而得到DE AB =,从而得解.【详解】∵BF AB DE BF ⊥⊥,,∴90B EDC ∠=∠=°,∵90B EDC ∠=∠=,BC CD BCA DCE =∠=∠,,∴()ASA ABC EDC ≌△△,∴DE AB =.又∵16DE =米,∴16AB =米,即A B ,之间的距离为16米.【点睛】此题主要考查全等三角形的应用,解题的关键是熟知全等三角形的判定方法.15.(2023·广东茂名·统考一模)如图,点A 、D 、C 、F 在同一直线上,AB DE ∥,AD CF =,添加一个条件,使ABC DEF ≌△△,这个条件可以是______.(只需写一种情况)【答案】BC EF ∥或B E ∠=∠或BCA EFD ∠=∠或AB DE =(答案不唯一)【分析】先证明A EDF ∠=∠及AC DF =,然后利用全等三角形的判定定理分析即可得解.【详解】解∶BC EF ∥或B E ∠=∠或BCA EFD ∠=∠或AB DE =,理由是∶∵AB DE ∥,∴A EDF ∠=∠,∵AD CF =,∴AD CD CF CD +=+即AC DF =,当BC EF ∥时,有BCA EFD ∠=∠,则() ASA ABC DEF ≌, 当BCA EFD ∠=∠时,则() ASA ABC DEF ≌, 当B E ∠=∠时,则() AAS ABC DEF ≌, 当AB DE =时,则() SAS ABC DEF ≌,故答案为∶BC EF ∥或B E ∠=∠或BCA EFD ∠=∠或AB DE =.【点睛】本题考查了对全等三角形的判定定理的应用,掌握全等三角形的判定定理有SAS , ASA , AAS , SSS 是解题的关键. 16.(2023春·上海虹口·七年级上外附中校考期末)如图,有一种简易的测距工具,为了测量地面上的点M 与点O 的距离(两点之间有障碍无法直接测量),在点O 处立竖杆PO ,并将顶端的活动杆PQ 对准点M ,固定活动杆与竖杆的角度后,转动工具至空旷处,标记活动杆的延长线与地面的交点N ,测量点N 与点O 的距离,该距离即为点M 与点O 的距离.此种工具用到了全等三角形的判定,其判定理由是______.【答案】两个角及其夹边对应相等的两个三角形全等【分析】根据全等三角形的判定方法进行分析,即可得到答案.【详解】解:在POM 和PON △中,90OP OPPOM PON ⎪=⎨⎪∠=∠=︒⎩, ()ASA POM PON ∴≌,∴判定理由是两个角及其夹边对应相等的两个三角形全等,故答案为:两个角及其夹边对应相等的两个三角形全等.【点睛】本题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解题关键.【答案】 = 180BCA α∠+∠=︒【分析】①求出90BEC AFC ∠=∠=︒,CBE ACF ∠=∠,根据AAS 证BCE CAF ≌△△,推出BE CF =,CE AF =即可得出结果;②求出CBE ACF ∠=∠,由AAS 证BCE CAF ≌△△,推出BE CF =,CE AF =即可得出结果.【详解】解:①90BCA ∠=︒,90α∠=︒,90BCE CBE ∴∠+∠=︒,90BCE ACF ∠+∠=︒,CBE ACF ∴∠=∠,在BCE 和CAF V 中,BEC CFACB CA ⎪∠=∠⎨⎪=⎩,(AAS)BCE CAF ∴△≌△,BE CF ∴=,CE AF =,||||EF CF CE BE AF ∴=−=−,②α∠与BCA ∠应满足180BCA α∠+∠=︒,在BCE 中,180180CBE BCE BEC α∠+∠=︒−∠=︒−∠,180BCA α∠=︒−∠,BCA CBE BCE ∴∠=∠+∠,ACF BCE BCA ∠+∠=∠,CBE ACF ∴∠=∠,在BCE 和CAF V 中,CBE ACF BEC CFACB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)BCE CAF ∴△≌△, BE CF ∴=,CE AF =,||||EF CF CE BE AF ∴=−=−,故答案为:=,180BCA α∠+∠=︒.【点睛】本题是三角形综合题,主要考查了全等三角形的判定与性质、三角形的面积计算、三角形的外角性质等知识;解题的关键是判断出BCE CAF ≌△△. ABC 的角平分线,过点【答案】4【分析】延长CE 与BA 的延长线相交于点F ,利用ASA 证明ABD △和ACF △全等,进而利用全等三角形的性质解答即可.【详解】解:如图,延长CE 与BA 的延长线相交于点F ,90EBF F ∠+∠=︒,90ACF F ∠+∠=︒,EBF ACF ∴∠=∠,在ABD △和ACF △中,EBF ACF AB ACBAC CAF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ASA ABD ACF ∴≌, BD CF ∴=,BD Q 是ABC ∠的平分线,EBC EBF ∴∠=∠.在BCE 和BFE △中,BE BECEB FEB ⎪=⎨⎪∠=∠⎩,()ASA BCE BFE ∴≌, CE EF ∴=,2CF CE ∴=,24BD CF CE ∴===.故答案为:4.【点睛】本题主要考查了全等三角形的性质和判定,理解题意、灵活运用全等三角形的判定与性质是解题的关键.三、解答题【答案】(1)见解析(2)5【分析】(1)首先根据垂直判定AB EF ∥,得到ABC F ∠=∠,再利用AAS 证明即可;(2)根据全等三角形的性质可得9AB CF ==,4BC EF ==,再利用线段的和差计算即可.【详解】(1)解:∵CD AB ⊥,EF CE ⊥,∴AB EF ∥,∴ABC F ∠=∠,在ABC 和CFE 中,ACB EAC CE ⎪∠=∠⎨⎪=⎩, ∴()AAS ABC CFE △△≌; (2)∵ABC CFE △△≌, ∴9AB CF ==,4BC EF ==,∴5BF CF BC =−=.【点睛】本题考查了全等三角形的判定和性质,平行线的判定和性质,解题的关键是找准条件,证明三角形全等. 20.(2023春·陕西西安·七年级西安市铁一中学校考期末)如图,A ,C ,D 三点共线,ABC 和CDE 落在AD 的同侧,AB CE ∥,BC DE =,B D ∠=∠.求证:AB CE AD +=.【答案】见解析【分析】证明()AAS ABC CDE ≌,得出AB CD =,BC CE =,即可证明结论.【详解】解:∵AB CE ∥,∴A DCE ∠=∠,∵B D ∠=∠,BC DE =,∴()AAS ABC CDE ≌,∴AB CD =,BC CE =,∴AB CE CD AC AD +=+=.【点睛】本题主要考查了平行线的性质,三角形全等的判定和性质,解题的关键是熟练掌握三角形全等的判定方法证明ABC CDE △≌△.21.(2022秋·八年级课时练习)已知αβ∠∠,和线段a (下图),用直尺和圆规作ABC ,使A B AB a αβ∠=∠∠=∠=,,.【答案】见解析 【分析】先作出线段AB a =,再根据作与已知角相等的角的尺规作图方法作DAB EBA αβ∠=∠∠=∠,即可得到答案.【详解】解:作法如下图.1.作一条线段AB a =.2.分别以A ,B 为顶点,在AB 的同侧作DAB EBA αβ∠=∠∠=∠,,DA 与EB 相交于点C .ABC 就是所求作的三角形.【点睛】本题主要考查了三角形的尺规作图,熟知相关作图方法是解题的关键.22.(2023春·全国·七年级专题练习)如图,已知ABC ,请根据“ASA”作出DEF ,使DEF ABC ≌.【答案】见解析【分析】先作MEN B ∠=∠,再在EM 上截取ED BA =,在EN 上截取EF BC =,从而得到DEF ABC ≌.【详解】解:如图,DEF 为所作.【点睛】本题考查了作图-复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了全等三角形的判定. 23.(2023春·山西太原·七年级校考阶段练习)如图,点B 、F 、C 、E 在同一条直线上,已知FB CE =,AB DE ∥,ACB DFE ∠=∠,试说明:AC DF =.【答案】见解析【分析】利用ASA 定理证明三角形全等,然后利用全等三角形的性质分析求解.【详解】解:∵FB CE =,∴FB FC CE FC +=+,即BC EF =,∵AB DE ∥,∴B E ∠=∠,在ABC 和DEF 中B E BC EF ACB DFE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ABC DEF ≌△△, ∴AC DF =.【点睛】此题主要考查了全等三角形的判定,关键是掌握判定两个三角形全等的一般方法:SSS 、SAS 、ASA 、AAS 、HL .三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.24.(2020秋·广东广州·八年级海珠外国语实验中学校考阶段练习)如图,已知:EC AC =,BCE DCA ∠=∠,A E ∠=∠.求证:AB ED =.【答案】见解析【分析】先求出ACB ECD ∠=∠,再利用“角边角”证明ABC 和EDC △全等,然后根据全等三角形对应边相等证明即可.【详解】证明:∵BCE DCA ∠=∠,∴BCE ACE DCA ACE ∠+∠=∠+∠,即ACB ECD ∠=∠.在ABC 和EDC △中,∵ACB ECD AC ECA E ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA ABC EDC ≌△△.∴AB ED =.【点睛】本题考查了全等三角形的判定和性质,熟练掌握全等三角形的判定定理是解题的关键.25.(2023春·福建宁德·七年级校考阶段练习)如图,点B ,F ,C ,E 在直线l 上(F ,C 之间不能直接测量),点A ,D 在l 异侧,测得AB DE =,AB DE ∥,A D ∠=∠.(1)求证:ABC DEF ≌△△; (2)若10BE =,3BF =,求FC 的长度.【答案】(1)见解析(2)4【分析】(1)由AB DE ∥,得ABC DEF ∠=∠,而AB DE =,A D ∠=∠,即可根据全等三角形的判定定理“ASA ”证明ABC DEF ≌△△; (2)根据全等三角形的性质得BC EF =,则3BF CE ==,即可求得FC 的长度.【详解】(1)解:证明:∵AB DE ∥,∴ABC DEF ∠=∠,在ABC 和DEF 中,A D AB DE ABC DEF ∠=∠⎧⎪=⎨⎪∠=∠⎩ ∴()ASA ABC DEF ≌△△; (2)解:由(1)知()ASA ABC DEF ≌△△,∴BC EF =, ∴BF FC CE FC +=+,∴3BF CE ==,∵10BE =,∴10334FC BE BF CE =−−=−−=,∴FC 的长度是4.【点睛】此题重点考查全等三角形的判定与性质、平行线的性质等知识,根据平行线的性质证明ABC DEF ∠=∠是解题的关键. 26.(2023·浙江·八年级假期作业)如图,ABC 中,BD CD =,连接BE ,CF ,且BE CF ∥.(1)求证:BDE CDF ≌;(2)若15AE =,8AF =,试求DE 的长.【答案】(1)证明见解析(2)72【分析】(1)根据平行线的性质可得BED CFD Ð=Ð,根据全等三角形的判定即可证明;(2)根据全等三角形的性质可得DE DF =,即可求得.【详解】(1)证明:∵BE CF ∥,∴BED CFD Ð=Ð,∵BDE CDF ∠=∠,BD CD =,∴()AAS BDE CDF ≌;(2)由(1)结论可得DE DF =,∵1587EF AE AF =−=−=,∴72DE =.【点睛】全等三角形的判定和性质,熟练掌握平行线的性质,全等三角形的判定和性质是解题的关键. 27.(2023春·江西鹰潭·七年级校考阶段练习)将两个三角形纸板ABC 和DBE 按如图所示的方式摆放,连接DC .已知DBA CBE ∠=∠,BDE BAC ∠=∠,AC DE DC ==.(1)试说明ABC DBE ≌△△.(2)若72ACD ∠=︒,求BED ∠的度数.【答案】(1)见解析(2)36BED ∠=︒【分析】(1)利用AAS 证明三角形全等即可;(2)全等三角形的性质,得到BED BCA ∠=∠,证明()SSS DBC ABC ≌,得到1362BCD BCA ACD ∠=∠=∠=︒,即可得解.【详解】(1)解:因为DBA CBE ∠=∠,所以DBA ABE CBE ABE ∠+∠=∠+∠,即DBE ABC ∠=∠.在ABC 和DBE 中,ABC DBE BAC BDEAC DE ∠=∠⎧⎪∠=∠⎨⎪=⎩, 所以()AAS ABC DBE ≌. (2)因为ABC DBE ≌△△, 所以BD BA =,BCA BED ∠=∠.在DBC △和ABC 中,DC AC CB CBBD BA =⎧⎪=⎨⎪=⎩, 所以()SSS DBC ABC ≌, 所以1362BCD BCA ACD ∠=∠=∠=︒,所以36BED BCA ∠=∠=︒.【点睛】本题考查全等三角形的判定和性质.解题的关键是证明三角形全等. 28.(2023春·河南驻马店·七年级统考期末)如图,线段AD 是ABC 的中线,分别过点B 、C 作AD 所在直线的垂线,垂足分别为E 、F .(1)请问BDE 与CDF 全等吗?说明理由;(2)若ACF △的面积为10,CDF 的面积为6,求ABE 的面积.【答案】(1)BDE CDF ≌△△,见解析 (2)22【分析】(1)利用AAS 证明三角形全等即可.(2)根据中线性质,得到,ABD ACD ACF CDF CDF ==+=△△△△△BDE △S S S S S S ,结合ABEABD BDE S S S =+△△△计算即可. 【详解】(1)BDE CDF ≌△△,理由如下: ∵AD 是ABC 的中线,∴BD CD =,∵BE AE ⊥,CF AE ⊥,∴90BED CFD ∠=∠=︒,在BDE 和CDF 中,BED CFD BDE CDFBD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS BDE CDF ≌.(2)∵10ACF S =△,6CDF S =△,BDE CDF ≌,∴10616ACD ACF CDF S S S =+=+=△△△,6BDE CDF S S ==,∵BD CD =∴ABD △和ACD 是等底同高的三角形∴16ABD ACD S S ==△△∴16622ABE ABD BDE S S S =+=+=△△△.【点睛】本题考查了三角形全等的判定和性质,中线的性质,三角形面积的计算,熟练掌握三角形全等的判定和性质,中线的性质是解题的关键. 29.(2019·七年级单元测试)(1)求证:等边三角形内的任意一点到两腰的距离之和等于定长.(提示:添加辅助线证明)(2)如图所示,在三角形ABC 中,点D 是三角形内一点,连接DA 、DB 、DC ,若,=∠=∠AB AC ADB ADC ,求证:AD 平分BAC ∠.【答案】(1)详见解析;(2)详见解析.【分析】(1)已知点P 是等边三角形ABC 内的任意一点,过点P 分别作三边的垂线,分别交三边于点D 、点E 、点F .求证PD PE PF ++为定长,即可完成证明;(2)(面积法)过点A 作AE BD ⊥交BD 延长线于点E ,再过点A 作AF CD ⊥交CD 延长线于点F.因为ADB ADC ∠=∠,所以ADE ADF ∠=∠,因此(AAS)ADF ADE ≅,得到AF AE =.进而AFC AEB ≅,得到ABD ACD ∠=∠,因此BAD CAD ∠=∠,即AD 平分BAC ∠.【详解】(1) 已知:等边如图三角形ABC ,P 为三角形ABC 内任意一点,PD ⊥AB, PF ⊥AC, PE ⊥BC, 求证:PD+PE+PF 为定值.证明:如图:过点A 作AG BC ⊥,垂足为点G ,分别连接AP 、BP 、CP .∵ABC ABP BCP CAP S S S S =++, ∴11112222BC AG BC PE AC PF AB PD =++又∵BC=AB=AC∴AG=PE+PF+PD,即PD PE PF AG ++=定长.∴等边三角形内的任意一点到两腰的距离之和等于定长.(2)过点A 作AE BD ⊥交BD 延长线于点E ,再过点A 作AF CD ⊥交CD 延长线于点F.∵ADB ADC ∠=∠,∴ADE ADF ∠=∠,又∵AD=AD∴(AAS)ADF ADE ≅,∴AF AE =∴AFC AEB ≅,∴ABD ACD ∠=∠,∴BAD CAD ∠=∠,即AD 平分BAC ∠.【点睛】本题考查了等边三角形的性质和全等三角形的性质和判定,其中做出辅助线是解答本题的关键.。

三角形全等的判定“边角边”(7种题型)-2023年新八年级数学常见题型(人教版)(解析版)

三角形全等的判定“边角边”(7种题型)-2023年新八年级数学常见题型(人教版)(解析版)

三角形全等的判定“边角边”(7种题型)【知识梳理】全等三角形判定——“边角边”1. 全等三角形判定——“边角边”两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”).要点诠释:如图,如果AB = ''A B ,∠A =∠'A ,AC = ''A C ,则△ABC ≌△'''A B C . 注意:这里的角,指的是两组对应边的夹角.2. 有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,△ABC 与△ABD 中,AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD 不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.【考点剖析】题型一:用“边角边”直接证明三角形全等例1.已知:如图,点C 为AB 中点,CD=BE ,CD ∥BE.求证:△ACD ≌△CBE.【解析】证明:∵CD ∥BE ,∴∠ACD=∠B..∵点C 为AB 中点,∴AC=CB.又∵CD=BE ,∴△ACD ≌△CBE (SAS )【变式1】如图,AC DF =,12∠=∠,如果根据“SAS ”判定ABC DEF △≌△,那么需要补充的条件是( )A .A D ∠=∠B .AB DE =C .B E ∠=∠D .BF CE =【答案】D 【详解】解:需要补充的条件是BF=CE ,∴BF+FC=CE+CF ,即BC=EF ,在△ABC 和△DEF 中,12AC DF BC EF =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DEF (SAS ).故选:D .【变式1】如图,点B ,E ,C ,F 在同一条直线上,AB =DE ,BE =CF ,∠B =∠DEF .求证:△ABC ≌△DEF .【解答】证明:∵BE =CF ,∴BE+CE =CF+EC .∴BC =EF .在△ABC 和△DEF 中,{AB =DE∠B =∠DEF BC =EF,∴△ABC≌△DEF(SAS).【变式3】如图,CA=CD,∠BCE=∠ACD,BC=EC.求证:△ABC≌△DEC.【解答】证明:∵∠BCE=∠ACD,∴∠BCE+∠ACE=∠ACD+∠ACE,∴∠ACB=∠DCE,在△ABC和△DEC中,{AC=DC∠ACB=∠DCE BC=EC,∴△ABC≌△DEC(SAS).【变式4】如图,D、C、F、B四点在一条直线上,AC=EF,AC⊥BD,EF⊥BD,垂足分别为点C、点F,BF=CD.试说明:△ABC≌△EDF.【解答】解:∵AC⊥BD,EF⊥BD,∴∠ACB=∠EFD=90°,∵BF=CD,∴BF+CF=CD+CF,即BC=DF,在△ABC和△EDF中,{BC=DF∠ACB=∠EFD AC=EF,∴△ABC≌△EDF(SAS).【变式5】如图,△ABC 中,AB=AC ,点E ,F 在边BC 上,BE=CF ,点D 在AF 的延长线上,AD=AC ,(1)求证:△ABE ≌△ACF ;(2)若∠BAE=30°,则∠ADC= °.【答案】(1)证明见解析;(2)75.【详解】(1)∵AB=AC ,∴∠B=∠ACF ,在△ABE 和△ACF 中,AB AC B ACFBE CF =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACF (SAS );(2)∵△ABE ≌△ACF ,∠BAE=30°,∴∠CAF=∠BAE=30°,∵AD=AC ,∴∠ADC=∠ACD ,∴∠ADC=280013︒−︒=75°,故答案为75. 【变式6】(2023春·江苏·七年级统考期末)如图,在ABC 和ADE V 中,AB AC =,AD AE =,90BAC DAE ∠=∠=︒,连接BD CE 、.(1)求证:ABD ACE ≌△△. (2)图中BD 和CE 有怎样的关系?试证明你的结论.【详解】(1)解:90BAC DAE ∠=∠=︒∴BAC CAD DAE CAD ∠+∠=∠+∠∴BAD EAC ∠=∠AB AC =,AD AE =∴ABD ACE ≌△△. (2)解:如图,设BD 和CE 交点为FABD ACE ≌△△∴ACE ABD ∠=∠90BAC ∠=︒∴90ABD DBC ACB ∠+∠+∠=︒∴90ACE DBC ACB ∠+∠+∠=︒即90ECB DBC ∠+∠=︒∴()18090BFC ECB DBC ∠=︒−∠+∠=︒∴BD CE ⊥.题型二:用“边角边”间接证明三角形全等例2、已知:如图,AB =AD ,AC =AE ,∠1=∠2.求证:BC =DE .【答案与解析】证明: ∵∠1=∠2∴∠1+∠CAD =∠2+∠CAD ,即∠BAC =∠DAE在△ABC 和△ADE 中AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△ADE (SAS )∴BC =DE (全等三角形对应边相等)【变式1】如图所示,点O 为AC 的中点,也是BD 的中点,那么AB 与CD 的关系是________.【答案】平行且相等【详解】解:∵点O 为AC 的中点,也是BD 的中点,∴AO=OC ,BO=OD ,又∵∠AOB=∠DOC ,∴△AOB ≌△COD (SAS )∴AB=CD ,∠A=∠C ,∴AB//CD,即AB 与CD 的关系是平行且相等,故答案为:平行且相等.【变式2】如图,已知AB ∥CD ,AB =CD ,∠A =∠D .求证:AF =DE .【详解】证明:∵AB//CD ,∴∠B =∠C ,在△ABF 和△DCE 中,A D AB CDB C ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABF ≌△DCE (ASA ),∴AF =DE .【变式3】如图,点E 、F 分别是矩形ABCD 的边 AB 、CD 上的一点,且DF =BE .求证:AF=CE .【分析】由SAS 证明△ADF ≌△CBE ,即可得出AF =CE .【详解】证明:∵四边形ABCD 是矩形,∴∠D =∠B =90°,AD =BC ,在△ADF 和△CBE 中,AD BC D B DF BE ⎧⎪∠∠⎨⎪⎩===,∴△ADF ≌△CBE (SAS ),∴AF =CE .【变式4】已知ABN 和ACM △位置如图所示,AB AC =,AD AE =,12∠=∠.(1)试说明:BD CE =;(2)试说明:M N ∠=∠.【详解】解:(1)在△ADB 和△AEC 中,12AB AC AD AE =⎧⎪∠=∠⎨⎪=⎩∴△ADB ≌△AEC (SAS ),∴BD=CE ;(2)∵12∠=∠,∴BAN CAM ∠=∠,∵△ADB ≌△AEC ,∴B C ∠=∠,∴180180B BAN C CAM ︒−∠−∠=︒−∠−∠,即M N ∠=∠.【变式5】如图,将两个一大、一小的等腰直角三角尺拼接 (A 、B 、D 三点共线,AB =CB ,EB =DB ,∠ABC =∠EBD =90°),连接AE 、CD ,试确定AE 与CD 的位置与数量关系,并证明你的结论.【答案】AE =CD ,并且AE ⊥CD证明:延长AE 交CD 于F ,∵△ABC 和△DBE 是等腰直角三角形∴AB =BC ,BD =BE在△ABE 和△CBD 中90AB BC ABE CBD BE BD =⎧⎪∠=∠=︒⎨⎪=⎩∴△ABE ≌△CBD (SAS )∴AE =CD ,∠1=∠2又∵∠1+∠3=90°,∠3=∠4(对顶角相等)∴∠2+∠4=90°,即∠AFC =90°∴AE ⊥CD题型三:边角边与倍长中线例3、如图,AD 是△ABC 的中线,求证:AB +AC >2AD .【答案与解析】 证明:如图,延长AD 到点E ,使AD =DE ,连接CE .在△ABD 和△ECD 中,∴△ABD ≌△ECD (SAS ).∴AB =CE .∵AC +CE >AE ,∴AC +AB >AE =2AD .即AC +AB >2AD .14.如图所示,AD 是△ABC 中BC 边上的中线,若AB =2,AC =6,则AD 的取值范围是__________AD DE ADB EDC BD CD ⎧⎪∠∠⎨⎪⎩===.【答案】2<AD <4【分析】此题要倍长中线,再连接,构造全等三角形.根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【详解】解:延长AD 到E ,使AD =DE ,连接BE ,∵AD 是△ABC 的中线,∴BD =CD ,在△ADC 与△EDB 中,BD CD ADC BDE AD DE =⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△EDB (SAS ),∴EB =AC ,根据三角形的三边关系定理:6-2<6+2,∴2<AD <4,故AD 的取值范围为2<AD <4.【点睛】本题主要考查对全等三角形的性质和判定,三角形的三边关系定理等知识点的理解和掌握,能推出6-2<AE <6+2是解此题的关键.题型四:边角边与截长补短例4、已知,如图:在△ABC 中,∠B =2∠C ,AD ⊥BC ,求证:AB =CD -BD .【答案与解析】 证明:在DC 上取一点E ,使BD =DE∵ AD ⊥BC ,∴∠ADB =∠ADE在△ABD 和△AED 中,∴△ABD ≌△AED (SAS ). ∴AB =AE ,∠B=∠AED .又∵∠B =2∠C =∠AED =∠C +∠EAC .∴∠C =∠EAC .∴AE =EC .∴AB =AE =EC =CD —DE =CD —BD .【变式】已知,如图,在四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB 于E ,并且AE =(AB +AD ), 求证:∠B +∠D =180°.【答案】证明:在线段AE 上,截取EF =EB ,连接FC ,BD DE ADB=ADE AD AD ⎧⎪⎨⎪⎩=∠∠=12A EDC B∵CE ⊥AB ,∴∠CEB =∠CEF =90°在△CBE 和△CFE 中,∴△CBE 和△CFE (SAS )∴∠B =∠CFE∵AE =(AB +AD ),∴2AE = AB +AD∴AD =2AE -AB∵AE =AF +EF ,∴AD =2(AF +EF )-AB =2AF +2EF -AB =AF +AF +EF +EB -AB =AF +AB -AB ,即AD =AF在△AFC 和△ADC 中∴△AFC ≌△ADC (SAS )∴∠AFC =∠D∵∠AFC +∠CFE =180°,∠B =∠CFE.∴∠AFC +∠B =180°,∠B +∠D =180°.题型五:边边角不能判定两个三角形全等例5.如图,已知AC =BD ,添加下列一个条件后,仍无法判定△ABC ≌△BAD 的是()A .∠ABC =∠BADB .∠C =∠D =90° C .∠CAB =∠DBA D .CB =DA【答案】A CEB CEFEC =EC EB EF=⎧⎪∠=∠⎨⎪⎩12(AF ADFAC DAC AC AC =⎧⎪∠=∠⎨⎪=⎩角平分线定义)【分析】根据全等三角形的判定方法即可一一判断;【详解】在△ABC 与△BAD 中,AC =BD ,AB =BA ,A 、SSA 无法判断三角形全等,故本选项符合题意;B 、根据HL 即可判断三角形全等,故本选项不符合题意;C 、根据SAS 即可判断三角形全等,故本选项不符合题意;D 、根据SSS 即可判断三角形全等,故本选项不符合题意;故选:A . 题型六:尺规作图——利用边角边做三角形例6.(2023春·广东揭阳·七年级统考期末)已知:线段a ,c ,α∠.求作:ABC .使BC a =,AB c =,ABC α∠=∠.(要求:尺规作图,不写作法,保留作图痕迹)【详解】解:如图所示:【变式1】(2023春·陕西宝鸡·七年级校考阶段练习)尺规作图:已知:线段m ,n ,∠β.求作:ABC ,使AB m =,BC n =,ABC β∠=∠(保留作图痕迹,不写作法).【详解】解:如图所示:ABC ∴即为所作.题型七:边边边与边角边综合 八年级假期作业)如图,在ABC 中,(1)图中有___________对全等三角形;(2)请选一对加以证明.【详解】(1)图中有3对全等三角形:ABD ACD ≌△△,ABE ACE ≌△△,BDE CDE ≌V V . 故答案为3;(2)∵D 是BC 的中点,∴BD CD =.在ABD △和ACD 中,AB AC BD CDAD AD =⎧⎪=⎨⎪=⎩, ∴()SSS ABD ACD ≌V V ;∴BAE CAE ∠=∠.在ABE 和ACE △中,AB AC BAE CAEAE AE =⎧⎪∠=∠⎨⎪=⎩, ∴()SAS ABE ACE △△≌; ∴BE CE =.在BDE △和CDE 中,BE CE BD CDDE DE =⎧⎪=⎨⎪=⎩, ∴()SSS BDE CDE ≌V V . 【过关检测】一、单选题A .SSSB .SASC .ASAD .AAS【答案】B 【分析】由题意可知根据“边角边”可证OAB OCD VV ≌即可选择.【详解】解:∵在OAB 和OCD 中,OC OA COD AOB OD OB =⎧⎪∠=∠⎨⎪=⎩, ∴()OAB OCD SAS ≌△△.故判定这两个三角形全等的依据是“SAS ”.故选B .【点睛】本题考查三角形全等的判定.熟练掌握判定三角形全等的条件是解题关键. 2.(2023春·江西景德镇·七年级统考期末)如图,AB AC =,点D 、E 分别在AC 和AB 边上,且AD AE =,则可得到ABD ACE △△≌,判定依据是( )A .ASAB .AASC .SASD .SSS【答案】C 【分析】根据SAS 证明ABD ACE △△≌,即可求解. 【详解】解:在ABD △与ACE △中,AB AC BAD CAEAD AE =⎧⎪∠=∠⎨⎪=⎩∴ABD ACE △△≌()SAS ,故选:C . 【点睛】本题考查了全等三角形的判定,熟练掌握全等三角形的判定定理是解题的关键.3.(2023春·四川成都·七年级统考期末)如图,在ABF △和DCE △中,点E 、F 在BC 上,AF DE =,AFB DEC ∠=∠,添加下列一个条件后能用“SAS ”判定ABF DCE ≌△△的是( )A .BE CF =B .BC ∠=∠ C .AD ∠=∠ D .AB DC =【答案】A 【分析】先根据BE CF =得到BF CE =,再根据全等三角形的判定定理进行分析即可.【详解】解:∵BE CF =,∴BE EF CF EF +=+,即BF CE =,A 选项,因为BE CF =,AFB DEC ∠=∠,BF CE =,满足“SAS ”判定ABF DCE ≌△△,符合题意; B 选项,因为B C ∠=∠,AFB DEC ∠=∠,BF CE =,是用“AAS ”判定ABF DCE ≌△△,不符合题意; C 选项,因为A D ∠=∠,AF DE =,AFB DEC ∠=∠,是用“ASA ”判定ABF DCE ≌△△,不符合题意; D 选项,因为AB DC =,AF DE =,AFB DEC ∠=∠,不能判定ABF DCE ≌△△,不符合题意; 故选:A .【点睛】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键.4.(2023春·四川达州·七年级统考期末)如图,在2×3的正方形方格中,每个正方形方格的边长都为1,则1∠和2∠的关系是( )A .221∠=∠B .2190∠−∠=︒C .1290∠+∠=︒D .12180∠+∠=︒【答案】C 【分析】先证明ABC CDE △△≌,再利用全等三角形的性质和等量代换求解即可. 【详解】解:如图,在ABC 和CDE 中,2901AC CE ACB CED BC DE ==⎧⎪∠=∠=︒⎨⎪==⎩,∴ABC CDE △△≌()SAS ,∴1DCE ∠=∠, ∵290DCE ∠+∠=︒,∴1290∠+∠=︒,故选:C .【点睛】本题考查了全等三角形的判定与性质,利用网格证明三角形全等是解题的关键.A .20cmB .45cmC .25cmD .65cm【答案】D 【分析】根据题意可得:OF OG =,OC OD =,利用已知条件判断出OFC OGD ≌,得到CF DG =,即可求出答案.【详解】解:如图:∵O 是FG 和CD 的中点,∴OF OG =,OC OD =,在OFC △和OGD 中,OF OG FOC GODOC OD =⎧⎪∠=∠⎨⎪=⎩,∴()SAS OFC OGD ≌,∴CF DG =,又20cm DG =,∴20cm CF DG ==,∴小明离地面的高度=支点到地面的高度452065cm CF +=+=,故D 正确.故选:D .【点睛】本题主要考查了三角形全等知识的应用,用数学方法解决生活中有关的实际问题,把实际问题转换成数学问题,用数学方法加以论证,最后进行求解,是一种十分重要的方法. 七年级统考期末)如图,已知在ABC 和BAD 中,直接判定ABC BAD ≌的依据是( A .SSSB .AASC .ASAD .SAS【答案】D 【分析】找出两个三角形中已知相等的对应边和对应角,然后根据判定方法即可判断.【详解】解:在ABC 和ABD △中,BC AD ABC BAD AB BA =⎧⎪∠=∠⎨⎪=⎩, ∴()ABC BAD SAS ≌.故选:D .【点睛】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角. 7.(2023春·上海浦东新·七年级校考阶段练习)如图,AD 平分BAC ∠,AB AC =,连接BD 、CD ,并延长交AC 、AB 于F 、E 点,则图中全等的三角形有( )对.A .3对B .4对C .5对D .6对【答案】B 【分析】认真观察图形,确定已知条件在图形上的位置,结合全等三角形的判定方法,仔细寻找.【详解】解:AD 平分BAC ∠,BAD CAD ∴∠=∠,在ABD 与ACD 中,AB AC BAD CADAD AD ⎧⎪∠∠⎨⎪⎩===,()SAS ABD ACD ∴≌,BD CD ∴=,B C ∠=∠,ADB ADC ∠=∠,又EDB FDC ∠=∠,ADE ADF ∴∠=∠,AED AFD ∴≌,BDE CDF ≌,ABF ACE ≌.AED AFD ∴≌,ABD ACD ≌,BDE CDF ≌,ABF ACE ≌,共4对.故选:B .【点睛】本题考查三角形全等的判定方法和全等三角形的性质.注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.(2023春·河北保定·七年级校考阶段练习)如图,在AOB 和COD △中,OA OB =,OC OD =,AOB COD ∠=∠,AC ,BD 交于点M ,关于结论Ⅰ,Ⅱ,下列判断正确的是( )结论Ⅰ:AC BD =;结论Ⅱ:CMD COD ∠>∠A .Ⅰ对,Ⅱ错B .Ⅰ错,Ⅱ对C .Ⅰ,Ⅱ都对D .Ⅰ,Ⅱ都错【答案】A 【分析】根据已知条件可知三角形的全等,根据全等三角形的性质可知边相等,再根据三角形的内角和即可求出角的大小.【详解】AOB COD ∠=∠,AOB AOD COD AOD ∴∠+∠=∠+∠,AOC BOD ∴∠=∠,∴在AOC 和BOD 中,∴OA OB AOC BODOC OD =⎧⎪∠=∠⎨⎪=⎩,()AOC BOD SAS ∴≌, AC BD ∴=,故Ⅰ正确;AOC BOD ≌,OCA BDO ∴∠=∠,MDC MDO ODC ∴∠=∠+∠,OCD OCA MCD ∴∠=∠+∠,180()COD OCD ODC ∠=︒−∠+∠,180()CMD MDC MCD ∠=︒−∠+∠,180()CMD MDO ODC MCD ∴∠=︒−∠+∠+∠,180()COD OCA MCD ODC ∠=︒−∠+∠+∠,CMD COD ∴∠=∠,故Ⅱ错误;故选:A .【点睛】本题考查了全等三角形的性质,熟记对应性质和判定定理是解题的关键. 9.(2023春·江苏·七年级统考期末)如图,在四边形ABCD 中,对角线AC 平分BAD ∠,AD AB >,下列结论正确的是( )A .AD AB CD BC −=−B .AD AB CD BC −>− C .AD AB CD BC −<−D .AD AB −与CD BC −的大小关系无法确定【答案】B 【分析】在AD 上截取AE AB =,BAC EAC ≌,由DE CD CE >−即可求解.【详解】解:如图,在AD 上截取AE AB =,AC 平分BAD ∠,BAC EAC ∴∠=∠,在BAC 和EAC 中AB AE BAC EACAC AC =⎧⎪∠=∠⎨⎪=⎩,∴BAC EAC ≌(SAS ),BC EC ∴=,在CDE 中:DE CD CE >−,AD AB AD AE CD BC −=−>−.故选:B .【点睛】本题考查了三角形中三边的关系,三角形全等的判定及性质,掌握性质,并根据题意作出辅助线是解题的关键. 10.(2022秋·云南昭通·八年级统考期末)如图,AD 是ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且CE BF ,连接BF CE ,,下列说法: ①DE DF =;②ABD 和ACD 面积相等;③CE BF =;④BDF CDE ≌;⑤CEF F ∠∠=. 其中正确的有( )【答案】B 【分析】根据三角形中线的定义可得BD CD =,然后利用“边角边”证明BDF 和CDE 全等,根据全等三角形对应边相等可得CE BF =,全等三角形对应角相等可得F CED ∠∠=,再根据内错角相等,两直线平行可得BF CE ,最后根据等底等高的三角形的面积相等判断出②正确.【详解】解:∵AD 是ABC 的中线,∴BD CD =,在BDF 和CDE 中,BD CD BDF CDEDF DE =⎧⎪∠=∠⎨⎪=⎩,∴()SAS BDF CDE ≌,故④正确∴CE BF F CED ∠∠==,,故①正确,∵CEF CED ∠∠=,∴CEF F ∠∠=,故⑤正确,∴BF CE ,故③正确,∵BD CD =,点A 到BD CD 、的距离相等,∴ABD 和ACD 面积相等,故②正确,综上所述,正确的有5个,故选:B .【点睛】本题考查全等三角形的判定与性质,熟练掌握全等三角形的判定方法并准确识图是解题的关键.二、填空题【答案】120°【分析】先证明,DAG BAC ≌得到GDA CBA ∠=∠,再利用60BAD ∠=︒以及三角形的内角和定理、邻补角的性质可得答案.【详解】解:60,DAE GAC ∠=∠=︒,DAG BAC ∴∠=∠,,AD AB AC AG ==在DAG 与BAC 中,,AD AB DAG BACAG AC =⎧⎪∠=∠⎨⎪=⎩,DAG BAC ∴≌,GDA CBA ∴∠=∠,BEO AED ∠=∠,BOE BAD ∴∠=∠60,BAD ∴∠=︒60,BOE ∴∠=︒120.DOC ∴∠=︒故答案为:120.︒【点睛】本题考查的是三角形全等的判定与性质,等边三角形的判定与性质,邻补角的性质,三角形的内角和定理,掌握以上知识是解题的关键. 七年级统考期末)如图,在锐角ABC 中,24ABC S = 【分析】先根据三角形全等的判定定理与性质可得ME MN =,再根据两点之间线段最短可得BM MN +的最小值为BE ,然后根据垂线段最短可得当BE AC ⊥时,BE 取得最小值,最后利用三角形的面积公式即可得.【详解】如图,在AC 上取一点E ,使AE AN =,连接ME ,AD 是BAC ∠的平分线,EAM NAM ∴∠=∠,在AEM △和ANM 中,AE AN EAM NAMAM AM =⎧⎪∠=∠⎨⎪=⎩,()SAS AEM ANM ∴≌, ME MN ∴=,BM MN BM ME ∴+=+,由两点之间线段最短得:当点,,B M E 共线时,BM ME +取最小值,最小值为BE ,又由垂线段最短得:当BE AC ⊥时,BE 取得最小值,248,ABC S AC ==,1182422AC BE BE ∴⋅=⨯⋅=,解得6BE =,即BM MN +的最小值为6,故答案为:6.【点睛】本题考查了角平分线的定义、三角形全等的判定定理与性质、两点之间线段最短、垂线段最短等知识点,正确找出BM MN +取得最小值时BE 的位置是解题关键. 13.(2023春·广东云浮·八年级校考期中)如图,小明与小红玩跷跷板游戏,已知跷跷板的支点O (即跷跷板的中点)至地面的距离是48cm ,当小红从水平位置CD 下降28cm 时,这时小明离地面的高度是___________cm .【答案】76【分析】根据题意可得:OF OG =,OC OD =,利用已知条件判断出OFC OGD ≌V V ,得到CF DG =,即可【详解】解:如图:∵O 是FG 和CD 的中点,∴OF OG =,OC OD =,在OFC △和OGD 中,OF OG FOC GODOC OD =⎧⎪∠=∠⎨⎪=⎩,∴(SAS)OFC OGD ≌V V ,∴CF DG =,又28cm DG =,∴28cm CF DG ==,∴小明离地面的高度=支点到地面的高度482876cm CF +=+=,故答案为:76.【点睛】本题主要考查了三角形全等知识的应用,用数学方法解决生活中有关的实际问题,把实际问题转换成数学问题,用数学方法加以论证,最后进行求解,是一种十分重要的方法. 14.(2023春·广东佛山·七年级校考期中)在测量一个小口圆形容器的壁厚(厚度均匀)时,小明用“X 型转动钳”按如图方法进行测量,其中OA OD =,OB OC =,测得3cm AB =,5cm EF =,圆形容器的壁厚是______cm .【分析】由题证明AOB DOC ≌,由全等三角形的性质可得,AB CD =,即可解决问题.【详解】在AOB 和DOC △中,OA OD AOB DOCBO OC =⎧⎪∠=∠⎨⎪=⎩,(SAS)AOB DOC ∴≌,3cm AB CD ∴==,cm 5EF =Q ,∴圆柱形容器的壁厚是1(53)1(cm)2⨯−=,故答案为:1.【点睛】本题考查了全等三角形的应用,解题的关键是利用全等三角形的性质解决实际问题.【答案】25米/25m【分析】根据SAS 可证明ACB DCE ≌△△,再根据全等三角形的性质可得AB DE =,进而得到答案. 【详解】解:∵点C 是AD 的中点,也是BE 的中点,∴AC DC =,BC EC =,∵在ACB △和DCE △中,AC DC ACB DCEBC EC =⎧⎪∠=∠⎨⎪=⎩, ∴()SAS ACB DCE ≌,∵25DE =米,∴25AB =米,故答案为:25米.【点睛】此题考查了全等三角形的应用,关键掌握全等三角形的判定定理和性质定理. 16.(2022秋·陕西宝鸡·八年级统考期末)如图,E 是ABC ∆外一点,D 是AE 上一点,AC BC BE ==,DA DB =,EBD CBD ∠=∠,70C ∠=︒,则BED ∠的度数为___________.【答案】35︒/35度【分析】连接DC ,则DC 垂直平分AB ,可得35ADC DCB ∠=∠=︒,再证明BED BCD ∆≅∆,即可得到35BED DCB ∠=∠=︒.【详解】连接DC ,DA DB =,CA CB =,DC ∴是AB 的垂直平分线,1352DCB ACB ∴∠=∠=︒,在BED 和BCD △中BD BD EBD CBDBE BC =⎧⎪∠=∠⎨⎪=⎩(SAS)BED BCD ∴≌,35BED DCB ∴∠=∠=︒,故答案为:35︒.【点睛】本题主要考查等腰三角形的性质,由条件得到DC 是AB 的垂直平分线再想到证明BED BCD △≌△是解题的关键. 17.(2023·全国·八年级假期作业)如图,AB 与CD 相交于点O ,且O 是AB CD ,的中点,则AOC 与BOD 全等的理由是________.【答案】SAS /边角边【分析】根据全等三角形的判定定理求解即可.【详解】解:∵O 是AB CD ,的中点,∴,,OA OB OC OD ==在AOC 和DOB 中,OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩ ∴()SAS AOC DOB ≌, 故答案为:SAS .【点睛】此题考查了全等三角形的判定,熟记全等三角形的判定定理是解题的关键.18.(2022秋·山东聊城·八年级统考期末)如图,在ABC ∆中,已知 AB AC =,BD CF = ,BE CD =.若40A ∠=︒,则EDF ∠的度数为__________.【答案】70°【分析】(1)证△BED ≌△CDF ;(2)利用AB=AC 得到∠B 与∠C(3)利用整体法求得∠EDF【详解】∵AB=AC ,∴∠B=∠C∵BD=CF ,BE=CD∴△BED ≌△CDF ,∴∠FDC=∠BED∵∠A=40°∴∠B=∠C=70°∴在△BED 中,∠BED+∠BDE=110°∴∠EDB+∠FDC=110°∴∠EDF=70°【点睛】求角度,常见的方法有:(1)方程思想;(2)整体思想;(3)转化思想本题就是利用全等,结合整体思想求解的角度三、解答题 19.(2023秋·广东广州·八年级统考期末)已知:如图,12BC DC =∠=∠,,求证:ABC ≌ADC △.【答案】见解析【分析】先证明ACB ACD ∠=∠,再结合AC AC =,BC DC =,即可得到结论.【详解】.证明:12∠=∠,ACB ACD ∴∠=∠,AC AC BC DC ==,,ABC ∴≌ADC △.【点睛】本题考查的是全等三角形的判定,掌握“利用SAS 证明两个三角形全等”是解本题的关键. 20.(2021秋·广东广州·八年级广州市第八十九中学校考期中)如图,点E 、F 在BC 上,BF EC =,AB DC =,B C ∠=∠.求证:A D ∠=∠.【答案】证明见解析【分析】证明()SAS ABF DCE ≌△△,然后根据全等三角形的性质即可得出结论.【详解】证明:在ABF △和DCE △中,AB DC B CBF CE =⎧⎪∠=∠⎨⎪=⎩, ∴()SAS ABF DCE ≌△△, ∵A D ∠=∠.【点睛】本题考查全等三角形的判定和性质.掌握全等三角形的判定是解题的关键.21.(2023春·陕西西安·七年级校考阶段练习)已知:如右图ABCD ,AB CD =.求证:ADC CBA ≌.【答案】见解析【分析】由AB CD ,得ACD CAB ∠=∠,再利用SAS 即可证得结论.【详解】证明:∵ABCD ,∴ACD CAB ∠=∠,在ADC △与CBA △中:AB CD ACD CAB AC CA =⎧⎪∠=∠⎨⎪=⎩, ∴()SAS ADC CBA ≌.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL . 22.(2023春·陕西咸阳·七年级统考期末)如图,点D 在线段BE 上,AB CD ,AB DE =,BD CD =.ABD △和EDC △全等吗?为什么?【答案】ADB ECD △≌△,理由见解析【分析】先根据平行线的性质得到ABD EDC =∠∠,再利用SAS 证明ADB ECD △≌△即可得到结论.【详解】解:ADB ECD △≌△,理由如下:∵AB CD ,∴ABD EDC =∠∠,∵AB ED =,BD DC =,∴()SAS ADB ECD △≌△.【点睛】本题主要考查了全等三角形的判定,平行线的性质,熟知边角边证明三角形全等是解题的关键.(1)求证:AEC DFB △△≌; (2)若6AEC S ∆=,求三角形BEC 的面积.【答案】(1)见解析(2)92BEC S =△【分析】(1)根据AE DF ∥得A D ∠=∠,根据AB CD =得AB BC CD BC +=+,即AC DB =,根据ASA 即可证明AEC DFB △△≌; (2)在AEC △中,以AC 为底作EH 为高,则12AEC S EH AC ∆=⋅,12BCE S EH BC ∆=⋅,根据13AB CD BC ==得43AC BC =,6AEC S ∆=,即可得.【详解】(1)证明:∵AE DF ∥,A D ∴∠=∠, ∵AB CD =,AB BC CD BC ∴+=+AC DB ∴=,在AEC △和DFB △中,AE DF A DAC DB =⎧⎪∠=∠⎨⎪=⎩,SAS AEC DFB ∴≌()△△;(2)解:如图所示,在AEC △中,以AC 为底作EH 为高,12AEC S EH AC ∆∴=⋅,12BCE S EH BC ∆=⋅,∵13AB CD BC ==,43AC BC ∴=,6AEC S ∆=, ΔΔ3 4.54BEC AEC S S ∴==.【点睛】本题考查了三角形的判定与性质,三角形的面积,解题的关键是理解题意,掌握这些知识点. 24.(2023春·福建福州·七年级福州华伦中学校考期末)已知:如图,点,F C 在线段BE 上,AB DE =,B E ∠=∠,BF EC =.求证:A D ∠=∠.【答案】见解析【分析】先根据线段的和差得出BC EF =,进而证明ABC DEF ≌△△,根据全等三角形的性质即可得证. 【详解】证明:∵BF EC =,∴BF FC FC CE +=+,即BC EF =,在,ABC DEF 中,AB DE B EBC EF =⎧⎪∠=∠⎨⎪=⎩,∴ABC DEF ≌△△, ∴A D ∠=∠.【点睛】本题考查了全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.25.(2023·全国·八年级假期作业)如图,在△ABC 中,已知AB AC =,2BAC DAE ∠=∠,且DAE FAE ∆≅∆.求证:ABD ACF ∆≅∆.【答案】见解析【分析】先根据全等三角形的性质以及已知2BAC DAE ∠=∠得出BAD CAF ∠=∠,再利用SAS 即可证出ABD ACF ∆≅∆.【详解】证明:∵DAE FAE ∆≅∆,∴,AD AF DAE FAE =∠=∠.∵2BAC DAE ∠=∠,∴BAD EAC DAE FAE ∠+∠=∠=∠,∵FAC EAC FAE ∠+∠=∠∴BAD CAF ∠=∠.在ABD ∆和ACF ∆中,AB AC BAD CAFAD AF =⎧⎪∠=∠⎨⎪=⎩∴ABD ACF ∆≅∆.【点睛】本题考查了全等三角形的判定和性质,灵活运用这些性质解决问题是本题的关键. 八年级假期作业)如图,在ABC 和V(1)求证:ABD ACE △△≌(2)若35BDA ∠=︒,则【答案】(1)见解析(2)70【分析】(1)根据等式的性质,可得=BAD CAE ∠∠,根据SAS 可得两个三角形全等;(2)根据全等三角形的性质,可得对应角相等,根据等腰三角形的性质,可得ADC AEC ∠∠=,根据等量代换,可得证明结论.【详解】(1)证明:=BAC DAE ∠∠,BAC DAC DAE DAC ∴∠−∠=∠−∠,即=BAD CAE ∠∠.在ABD △和ACE △中,AB AC BAD EACAD AE =⎧⎪∠=∠⎨⎪=⎩,SAS ABD ACE ∴≌();(2)证明:ABD ACE ≌△△, ADB AEC ∴∠=∠,AD AE =ADC AEC ∴∠=∠35BDA ADC ∴∠=∠=︒∴223570BDC BDA ∠∠==⨯︒=︒.故答案为:70.【点睛】本题考查了全等三角形的判定与性质,利用SAS 证明三角形全等,利用全等三角形的性质,证明对应角相等,再利用等量代换得出证明结论. 27.(2023春·全国·七年级专题练习)如图,已知点B ,E ,C ,F 在一条直线上,AB DE =,BF CE =,B E ∠=∠.求证:ABC DEF ≌△△【答案】见解析【分析】用边角边定理进行证明即可.【详解】解:∵BF CE =∴BF FC CE FC +=+即:BC EF =在ABC 和DEF 中AB DE B EBC EF =⎧⎪∠=∠⎨⎪=⎩∴()SAS ABC DEF ≌. 【点睛】本题考查边角边定理证明三角形全等,根据题意找到相应的条件是解题关键. 求证:DE BF =.证明:AD BC (已知)∴∠_______=∠_______(两直线平行,内错角相等)AF CE =∴ADE CBF ∴≌( 【答案】A ;C ;AF EF CE EF −=−;AD BC =;A C ∠=∠;AE CF =;SAS ;全等三角形对应边相等.【分析】根据平行线的性质得到∠A =∠C ,根据等式的性质得到AE CF =,然后证明ADE CBF V V ≌即可得到结论.【详解】证明:AD BC (已知)∴∠A =∠C (两直线平行,内错角相等)AF CE =(已知)∴AF EF CE EF −=−(等式的基本性质)即AE CF =在ADE V 和CBF V 中AD BC A CAE CF =⎧⎪∠=∠⎨⎪=⎩,ADE CBF ∴≌(SAS )DE BF ∴=(全等三角形对应边相等)故答案为:A ;C ;AF EF CE EF −=−;AD BC =;A C ∠=∠;AE CF =;SAS ;全等三角形对应边相等.【点睛】本题考查全等三角形的判定和性质,掌握全等三角形的判定定理是解题的关键.【答案】见解析【分析】根据BE CF =可得BC EF =,根据AC DF ∥可得ACB DFE ∠=∠,即可根据SAS 进行求证.【详解】证明:∵BE CF =,∴BE CE CF CE −=−,即BC EF =,∵AC DF ∥,∴ACB DFE ∠=∠,在ABC 和DEF 中,AC DF ACB DFEBC EF =⎧⎪∠=∠⎨⎪=⎩, ∴()SAS ABC DEF △△≌. 【点睛】本题主要考查了全等三角形的判定,解题的关键是根据题目所给条件,得出相应的边和角度相等,熟练掌握三角形全等的判定定理. 求证:(1)AE CF =;(2)AE CF ∥;(3)∠=∠AFE CEF .【答案】(1)见解析(2)见解析(3)见解析【分析】(1)根据“边角边”证明ABE CDF △≌△,即可证得结论;(2)根据全等三角形的性质可得AEB CFD ∠=∠,进而可得结论;(3)由全等三角形的性质可得AE CF =,根据“边角边”证明AEF CFE △≌△,即可证得结论.【详解】(1)证明:在ABE 和CDF 中,∵AB CD =, B D ∠=∠,BE DF =,∴ABE CDF△≌△()SAS ,∴AE CF =; (2)证明:∵ABE CDF △≌△,∴AEB CFD ∠=∠,∴AE CF ∥;(3)证明:∵ABE CDF △≌△,∴AE CF =,又∵AEB CFD ∠=∠,EF FE =,∴AEF CFE △≌△,∴∠=∠AFE CEF .【点睛】本题考查了全等三角形的判定和性质以及平行线的判定,熟练掌握全等三角形的判定和性质是解题的关键. 求作:ABC ,使 【答案】见解析【分析】先作CAB α∠=∠,再在角的两边上分别截取AC b =,AB c =,从而可得答案.【详解】解:ABC 即为所求.【点睛】本题考查的是作三角形,掌握作一个角等于已知角是解本题的关键. 32.(2023·全国·八年级假期作业)“倍长中线法”是解决几何问题的重要方法.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,具体做法是:如图,AD 是ABC 的中线,延长AD 到E ,使DE AD =,连接BE ,构造出BED 和CAD .求证:BED CAD △≌△.【答案】见解析【分析】由AD 是ABC 的中线,可得DE AD =,再由EDB ADC ∠=∠,DB DC =,即可证明BED CAD △≌△.【详解】证明:如图所示:,AD 是ABC 的中线,DB DC ∴=,在BED 和CAD 中,ED AD EDB ADCDB DC =⎧⎪∠=∠⎨⎪=⎩,(SAS)BED CAD ∴≌.【点睛】本题主要考查了三角形全等的判定,倍长中线,熟练掌握三角形全等的判定,添加适当的辅助线是解题的关键. 33.(2023春·全国·七年级期末)如图,在ABC 中,D 是BC 延长线上一点,满足CD BA =,过点C 作CE AB ∥,且CE BC =,连接DE 并延长,分别交AC ,AB 于点F ,G .(1)求证:ABC DCE ≅;(2)若12BD =,2AB CE =,求BC 的长度.【答案】(1)见解析(2)4【分析】(1)根据SAS 证明≌ABC DCE 即可;(2)根据全等三角形的性质解答即可.【详解】(1)∵CE AB ∥,∴B ECD ∠=∠,在ABC 与DCE △中,AB CD B ECDBC CE =⎧⎪∠=∠⎨⎪=⎩, ∴()SAS ABC DCE ≌;(2)∵≌ABC DCE ,∴,AB CD BC CE ==,∵2AB CE =,∴2CD BC =,∵12BD =,∴312BD CD BC BC =+==∴4BC =.【点睛】此题考查全等三角形的判定和性质,关键是掌握全等三角形的判定和性质.。

人教版八年级上册12.2全等三角形判定同步练习(包含答案)

人教版八年级上册12.2全等三角形判定同步练习(包含答案)

12.2全等三角形判定知识要点:三角形全等的判定(1)边边边(SSS):三边分别相等的两个三角形全等。

(2)边角边(SAS):两边和它们的夹角分别相等的两个三角形全等。

(3)角边角(ASA):两角和它们的夹边分别相等的两个三角形全等。

(4)角角边(AAS):两角和其中一个角的对边分别相等的两个三角形全等。

(5)斜边、直角边(HL):斜边和一条直角边分别相等的两个直角三角形全等。

一、单选题1.如图,12∠=∠,下列条件中不能使...ABD ACD ∆≅∆的是( )A .AB AC = B .B C ∠=∠ C .ADB ADC ∠=∠D .DB DC = 2.如图所示,则下面图形中与图中△ABC 一定全等的三角形是( )A .B .C .D .3.如图,有两个长度相同的滑梯靠在一面墙上,已知左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则这两个滑梯与地面夹角∠ABC与∠DFE的度数和是( )A.90°B.120°C.135°D.150°4.有一个小口瓶(如图所示),想知道它的内径是多少,但是尺子不能伸到里边直接测,于是拿两根长度相同的细木条,把两根细木条的中点固定在一起,木条可以绕中点转动,这样只要量出AB的长,就可以知道玻璃瓶的内径是多少,那么△OAB≌△OCD理由是()A.边角边B.角边角C.边边边D.角角边5.如图,用尺规作出∠OBF=∠AOB,作图痕迹MN是A.以点B为圆心,OD为半径的弧B.以点B为圆心,DC为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DC为半径的弧6.如图,已知,,,则图中全等三角形的总对数是A.3 B.4 C.5 D.67.如图,FE=BC,DE=AB,∠B=∠E=40°,∠F=70°,则∠A=( )A.40°B.50°C.60°D.70°8.如图,已知AB∥CF,E为DF的中点,若AB=9cm,CF=5cm,则BD等于()A.2cm B.3cm C.4cm D.5cm9.如图,已知AC=DB,AO=DO,CD=100 m,则A,B两点间的距离( )A.大于100 m B.等于100 mC.小于100 m D.无法确定10.如图,AB⊥BC且AB=BC,DE⊥CD且DE=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是()A.36 B.48 C.72 D.108二、填空题11.如图,若AB=AD,加上一个条件_____,则有△ABC≌△ADC.12.如图,已知BD⊥AE于点B,DC⊥AF于点C,且DB=DC,∠BAC=40°,∠ADG=130°,则∠DGF=__________.13.如图,已知∠1=∠2=90°,AD=AE,那么图中有____对全等三角形.14.如图,Rt∆ABC 中,∠BAC = 90°,AB =AC ,分别过点B、C 作过点A 的直线的垂线BD、CE ,垂足分别为D、E ,若BD = 4,CE=2,则DE= (_________)15.如图,∠ACB =90°,AC =BC ,BE ⊥CE ,AD ⊥CE ,垂足分别为E ,D ,AD =25,DE =17,则BE =______.三、解答题16.如图,点E ,F 在CD 上,AD CB ,DE CF =,A B ∠=∠,试判断AF 与BE 有怎样的数量和位置关系,并说明理由.17.已知:如图,AB=AC ,PB=PC ,PD ⊥AB ,PE ⊥AC ,垂足分别为D 、E .证明:(1)PD=PE .(2)AD=AE .18.已知:如图,AE ∥CF ,AB=CD ,点B 、E 、F 、D 在同一直线上,∠A=∠C .求证:(1)AB∥CD;(2)BF=DE.19.如图,点M.N在线段AC上,AM=CN,AB∥CD,AB=CD.请说明△ABN≌△CDM的理由;答案1.D 2.B3.A4.A5.D6.D7.D8.C9.B10.C11.BC =DC12.150°13.314.615.816.解:AF 与BE 平行且相等,因为AD CB ,所以C D ∠=∠.因为DE CF =,所以CE DF =.又因为A B ∠=∠,所以AFD BEC ∆≅∆.所以AF BE =,AFD BEC ∠=∠.所以AF BE .17.解:证明:(1)连接AP .在△ABP 和△ACP 中,AB=AC PB=PC AP=AP ⎧⎪⎨⎪⎩,∴△ABP ≌△ACP (SSS ).∴∠BAP=∠CAP ,又∵PD ⊥AB ,PE ⊥AC ,垂足分别为D 、E ,∴PD=PE (角平分线上点到角的两边距离相等).(2)在△APD 和△APE 中,∵90PAD PAE ADP AEP AP AP ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△APD ≌△APE (AAS ),∴AD=AE ;18.解:(1)∵AB ∥CD ,∴∠B=∠D .在△ABE 和△CDF 中,A CAB CD B D∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABE ≌△CDF (ASA ),∴∠B=∠D ,∴AB ∥CD ;(2)∵△ABE ≌△CDF ,∴BE=DF .∴BE+EF=DF+EF ,∴BF=DE .19.∵AM=CN∴AM+MN=CN+MN即AN=CM∵AB ∥CD∴∠A=∠C在△ABN 和△CDM 中=AN CMA C AB CD=⎧⎪∠∠⎨⎪=⎩∴△ABN ≌△CDM (SAS )人教版八年级上册12.2全等三角形判定同步练习(包含答案)11 / 11。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B
D
C
三、课堂训练 1.已知:点D分别是AD,BC的中点, 求证:AB∥CD
A B
O
C D
2.已知:点A、F、E、C在同一条直线上, AF=CE,BE ∥DF,BE=DF. 求证:△ABE≌△CDF.
四、小结归纳 1.用“边角边”来判定两个三角形全等; 2.用三角形全等来证明线段的相等或角的相等。 五、作业设计 1.习题 11.2 第 3、4 题; 2.下面四个三角形中,全等的两个三角形是( )




“边角边”定理:
课题 11.2 三角形全等的判定——“边角边” 例题分析




A.①与② B.①与③ C.①与④ D.②与③
中考必练试题
3.已知:如图,AB∥DE,AB=DE,且 BE=CF,若∠B=35°, ∠A=75°,则∠F=( A.70° C.60° B.65° D.55° )
4.如图,已知,AB=AD,AC=AE,∠BAD=∠CAE, 求证:BC=DE 5.如图,AC、BD 交于点 O, 相平分, 则该图中共有几对全 角形?为什么? 且 互 等 三
中考必练试题
程,之后由同学互相 释疑解惑。 猜一猜:是不是两条边和一个角对应相等,这样的两 学生归纳本节内容, 个三角形一定全等吗? 归纳已学过的证明三 3.已知:如图,AB=CB,∠ABD=∠CBD,△ABD 和△CBD 全等 角形全等的方法有哪 些? 吗? 定全等。
A
式。 系统归纳本节知 识点,提高归纳 问题的能力。
中考必练试题
年级 教学媒体 知识 技能 过程 方法 情感 态度 教学重点 教学难点
八年级
课题
11.2 三角形全等的判定——“边角边” 多 媒 体课型新授教 学 目 标
1. 通过探究知道“边角边”条件的内容. 2. 会用“边角边”证明两个三角形全等. 3. 知道“边边角”不能判定三角形全等. 使学生经历探索三角形全等的过程,体验操作、归纳得出数学结论的过程. 通过探究三角形全等的条件,培养学生观察分析图形的能力及发现问题的能力. “边角边”条件. 指导学生分析问题,寻找判定三角形全等的条件. 教 学 过 程 设 计 教学程序及教学内容 师生行为 设计意图 明确四种情况和 本节课要探究的 问题。 进一步学习三角 形的画法,从实 践中体会三角形 的全等条件。 培养学生的由特 殊到一般的类 比、归纳能力。 使学生认识到 “边边角”不能 判定两个三角形 全等。 使学生明确只有 两边和它们的夹 角对应相等才能 判定两个三角形 全等。 培养学生的识图 能力,并规范证 明过程的书写。 强化学生的“边 角边”判定定理 的理解。 巩固证明三角形 全等的书写格
回忆两个三角形中满 足三个条件对应相等 从上节课我们知道,三边对应相等的两个三角形全等。的四种情况。 教师巡视。 由“两条边及其一个角对应相等”能判定两个三角形全等 学生作图, 剪三角形, 吗? 同桌比较。 确认所得结论。 二、探究新知 学生思考、判断、观 1.探究: 两边及其夹角分别对应相等的两个三角形全等吗? 察。 做一做: 画△ABC, 使 AB=4cm, ∠A= 60°AC=5cm。学生类比判断。 教师引导学生概括三 再换两条线段和一个角试一试: △ ABC 和△ DEF 中, AB=DE=3 ㎝,∠ B= ∠ E=45 °, 角形全等的又一个判 定方法。 BC=EF=4 ㎝。则它们完全重合吗?即△ABC≌△DEF? 学生作图、比较,教 动画演示,确认△ABC≌△DEF。 师巡视。 一、情境引入 学生发现所画三角形 推广:在△ABC 和△AˊBˊCˊ中,已知 AB=AˊBˊ, 有两种不现情况。 ∠B=∠Bˊ,BC=BˊCˊ,△ABC 与△AˊBˊCˊ全等吗? 学生根据前面的探究 作出判断。 概括“边角边”判定定理。 读题,看图,寻找可 2.探究“边边角”两个三角形是否全等? 以判定△ABD 和△CBD 做一做:以 3cm,4cm 为三角形的两边,长度为 3cm 的 全等的条件。 边所对的角为 45°,动手画一个三角形,把所画的三角形 教师引导学生读图, 与同桌同学画的三角形进行比较,那么所有的三角形都全 根据“边角边”判定 等吗? 定理寻找两个三角形 全等所需的条件。 动画演示两种情况的图形。 学生独自完成证明过 结论:两边及其一边所对的角相等,两个三角形不一
相关文档
最新文档