发动机原理发动机特性
高职发动机课件ppt项目二---发动机原理
柴油机
高职技术专业类学校
汽车发动机检修 Automobile engine maintenance
课程问题
1.试述汽车发动机(四冲程发动机)的工作原理? 2.汽车用四冲程发动机有什么特点? 3.四冲程汽油发动机和四冲程柴油发动机有什么不同?
高职技术专业类学校
汽车发动机检修 Automobile engine maintenance
将受热零件吸收的部分热量及时散发出去,保证发动机在最适宜的温度状态下工作。水冷发动机的冷 却系通常由冷却水套、水泵、风扇、水箱、节温器等组成。 5.润滑系
向作相对运动的零件表面输送定量的清洁润滑油,以实现液体摩擦,减小摩擦阻力,减轻机件的磨损。 通常由润滑油道、机油泵、机油滤清器和一些阀门等组成。
高职技术专业类学校
主要由起动机及其附属装置等组成。
高职技术专业类学校
汽车发动机检修 Automobile engine maintenance
二、 发动机的分类
1.按所用燃料分:汽油机和柴油机等。 2.按工作循环分:四冲程式和二冲程式。 3.按冷却方式分:水冷式和风冷式。 4.按气缸数目分:单缸和多缸式。 5.按气缸布置方式分:直列式、V形、水平对置、W型等。 6.按点火方式分:点燃式和压燃式。 7.按活塞运动方式不同分:往复活塞式旋转活塞式 还有按进气方式分:自然吸气和增压式 按混合气形成方式分:缸内和缸外形成 等等
高职技术专业类学校
汽车发动机检修 Automobile engine maintenance
大众柴油机SDI和TDI的含义
S--SUCTION:吸气式 D--DIRECT:直接 I--INJECTION:喷射
T--TURBO:涡轮增压 D--DIRECT:直接 I --INJECTION:喷射
发动机是什么原理
发动机是什么原理
发动机是一种将燃料转化为能量的装置,用于驱动机械设备或产生动力。
发动机的原理是通过燃烧燃料和空气的混合物来释放能量,并将这些能量转化为机械功。
主要有内燃机和外燃机两种类型。
内燃机是最常见的发动机类型之一。
它通过在密闭的燃烧室中爆发燃料混合物来释放能量,并将产生的气压驱动活塞运动。
内燃机又分为汽油发动机和柴油发动机。
汽油发动机使用点火器将燃料混合物引爆,柴油发动机则通过压力引爆高压喷射的柴油燃料。
外燃机则将燃料在燃烧室之外燃烧,通过燃烧产生的热能驱动活塞或涡轮运动。
外燃机的典型代表是蒸汽机,燃料在锅炉中燃烧,产生蒸汽,在活塞或涡轮上产生驱动力。
发动机的基本工作原理是通过燃料的燃烧产生的高压气体推动活塞或涡轮运动,进而驱动所需的机械运动。
这种能量转化的过程需要一系列的机械装置和配件,如曲轴、连杆、活塞环等。
同时,发动机还需要冷却系统来控制温度,润滑系统来减少摩擦,以及进排气系统来供给清洁空气和排放废气。
总结来说,发动机的原理是通过燃烧燃料产生高压气体,利用这种高压气体的推动力来产生机械功。
不同类型的发动机有不同的工作原理和实现方式,但其基本原理都是将燃料的化学能转化为机械能。
发动机的工作原理是什么
发动机的工作原理是什么发动机是一种将化学能转化为机械能的热机。
它通过可燃物混合气体的燃烧来产生高温高压气体,然后利用气体的压力和能量释放来推动活塞或转动曲柄轴,实现工作过程。
发动机的工作原理可以分为四个基本步骤:进气、压缩、爆燃和排气。
首先,进气过程。
发动机在进气冲程时,活塞下行,汽缸内形成一个低压区域。
此时,进气阀打开,外部空气被抽入气缸,与香车一燃油形成可燃气体混合物。
然后,压缩过程。
进气阀关闭,活塞向上运动,压缩燃气混合物。
这个过程中,汽缸内可燃气体被压缩,同时增加了密度和温度。
压缩过程会将气体的化学能转化为更高的热能和机械能。
接下来,爆燃过程。
在活塞上行到达最高点时,燃油点火系统点燃混合气体。
点火产生高能火花,引发可燃气体的爆燃。
爆燃产生的高温高压气体使活塞受到很大的推力,向下运动。
最后,排气过程。
随着活塞的下行,废气门打开,排气门闭合。
废气被压缩在活塞上方,由于重力或涡轮增压系统的作用,废气从排气道中被排放到大气中。
活塞走到最低点时,废气门关闭,进气门再次打开,进入下一个循环。
以上四个过程循环进行不断重复,使发动机保持正常运转。
同时,发动机的工作原理还受到多个参数的影响,如气缸数、气缸排列方式、压缩比、点火时机、燃油喷射方式等。
这些参数的优化设计可以提高发动机的功率、燃油经济性和排放性能。
此外,不同类型的发动机还有一些特殊的工作原理。
例如,柴油发动机利用高压喷射器将燃油喷入压缩空气中,通过自燃完成爆燃过程。
而氢燃料电池发动机则利用氢气与氧气的反应产生电能,通过电能驱动电动机工作。
综上所述,发动机的工作原理是通过燃烧可燃气体产生高温高压气体,通过活塞或曲轴的工作来转化热能为机械能,推动车辆或机器的运动。
发动机的工作原理是现代工业和交通领域的关键技术,对于推动社会的发展和进步起着重要的作用。
发动机工作原理
第一章发动机工作原理发动机是将其他形式的能量转变为机械能的一种机械装置。
内燃机是燃料在发动机内部燃烧,内燃机每实现一次热功转换,都要经历一系列连续的工作过程,构成一个工作循环,否则,就不能实现热功的转换。
第一节发动机总体结构及基本原理现代汽车发动机根据所用燃料的不同可分为:1.汽油发动机(简称汽油机)1). 化油器式汽油机: 汽油和空气在化油器内混合成可燃混合气,在输入气缸加以压缩,然后用电火花点火使之燃烧而发热作功。
2). 汽油喷射式发动机: 将汽油直接喷人进气管或气缸内,与空气混合形成可燃混合气,再用电火花点燃。
2.柴油发动机(简称柴油机):汽车用柴油机使用的燃料一般是轻柴油,它是通过喷油泵和喷油器将柴油直接喷人气缸,与气缸内经过压缩的空气混合,使之在高温下自燃作功。
一.发动机总体构造发动机基本由以下机构和系统组成:曲柄连杆机构、配气机构、供给系、润滑系、冷却系、点火系和起动系。
1.曲柄连杆机构:它的功用是将燃料燃烧时产生的热量转变为活塞往复运动的机械能,再通过连杆将活塞的往复运动变为曲轴的旋转运动而对外输出动力。
2.配气机构:它的功用是使可燃混合气及时充人气缸并及时从气缸排出废气。
3.供给系:它的功用是把汽油和空气混合成合适的可燃混合气供人气缸,以供燃烧,并将燃烧生成的废气排出发动机。
4.润滑系:它的功用是将润滑油供给作相对运动的零件以减少它们之间的摩擦阻力,减轻机件的磨损,并部分地冷却摩擦零件5.冷却系:它的功用是把受热机件的热量散到大气中去,以保证发动机正常工作。
6.点火系:它的功用是保证按规定时刻及时点燃气缸中被压缩的混合气。
7.起动系:它的功用是用以使静止的发动机起动并转入自行运转。
汽油机一般都由上述两个机构和五个系统组成。
对于汽车用柴油机,由于其混合气是自行着火燃烧的,所以柴油机没有点火系。
因此柴油机由两个机构和四个系统组成。
二.四冲程发动机工作原理(一)汽车发动机的基本名词术语1.活塞行程与止点上止点:活塞顶距离曲轴旋转中心最远的位置称为上止点。
发动机分类与基本原理
迄今为止, 马自达已经 生产了将近 两百万辆以 转子发动机 为动力的汽 车,其中一 辆曾在1991 年的法国创 造了历史。
发动机的分类和基本原理
1.2 发动机的基本术语
• 1、工作循环:由进气、压缩、作功、排气四
个工作过程组成封闭过程,
• 2、上止点:活塞顶离曲轴回转中心最远处
下止点:活塞顶离曲轴回转中心最近处
燃料在发动机外部燃烧的热力发动机叫做
外燃机: 活塞式蒸汽机
蒸汽轮机;
燃料在发动机内部燃烧的热力发动机叫做
内燃机: 活塞式内燃机
燃气轮机
喷气式发动机
内燃机特点:结构紧凑,体积小,质量轻,容易
起
动,应用广泛。
外燃机特点:热效率低,体积大,笨重 。现
代汽车上
发动机的分类和基本原理
很少应用。
• 二 、 活塞式内燃机的分类
三 往复活塞式内燃机的工作原 理
一) 四冲程汽油机工作原理
在四个活塞行程内完成进气、压缩、作功、排气等四个过程。
进气
压缩
作功
排气
活塞位置 上止--下止 下止--上止 上止--下止 下止--上止
排气门 进气门 气缸容积 压强Mpa
关 开 增大 0.08-0.09
320-380 温度K
发动机的分类和基本原理
• 内燃机的名称和型号必须符合国家标准GB/725-1991
• 1.内燃机名称均按所采用的燃料命名:柴油机、汽油机、煤气机等 等。
• 2.内燃机型号由阿拉伯数字、汉语拼音、气缸布置形式符号组成。
• 3.型号组成:
首部
中部
后部
尾部
系列代号
缸数符号
换代符号
气缸布置形式符号
发动机的原理是什么
发动机的原理是什么
发动机的原理是将燃烧产生的能量转化为机械能的过程。
具体来说,发动机利用燃料和氧气的化学反应产生高温高压的燃烧气体,然后利用这些气体的膨胀作用来驱动活塞或涡轮,最终将热能转化为机械能。
在内燃机中,燃料通过喷射系统进入气缸,与空气混合后被点火着火,产生爆炸燃烧。
这个爆炸推动活塞运动,将热能转化为机械能。
在四冲程发动机中,活塞的上下运动完成四个阶段:进气、压缩、爆发和排出废气。
在外燃机中,燃烧过程发生在内燃机以外的燃烧室内。
燃料和氧气混合燃烧后产生高温高压的气体,通过喷射口喷出,并冲击涡轮叶片。
涡轮转动后将机械能传递给推进装置。
无论是内燃机还是外燃机,发动机的工作都需要燃料、氧气、点火系统和排气系统等基本组成部分。
通过连续反复进行燃烧、膨胀和排气等过程,发动机就能够持续地产生机械能,推动车辆或机械设备的工作。
不同类型的发动机(如汽油发动机、柴油发动机、火箭发动机等)在燃烧方式、工作原理和效率等方面存在差异,但基本的能量转换原理是相似的。
发动机原理(第三章2节)
• 发动机特性
发动机性能参数(F, 随飞行条件(Ma,H)以及发动机 发动机性能参数 ,SFC)随飞行条件 随飞行条件 , 以及发动机 油门位置的变化关系。 油门位置的变化关系。
• 重要意义
飞机的飞行性能与发动机特性密切相关。 飞机的飞行性能与发动机特性密切相关。
• 特性包括
– 油门特性:给定飞行条件和调节规律,性能随油门位置 油门特性:给定飞行条件和调节规律, 的变化; 的变化; – 速度特性:给定油门、调节规律和飞行高度,性能随飞 速度特性:给定油门、调节规律和飞行高度, 行马赫数的变化; 行马赫数的变化; – 高度特性:给定油门、调节规律和飞行速度,性能随飞 高度特性:给定油门、调节规律和飞行速度, 行高度的变化; 行高度的变化; – 过渡状态特性:启动、加速、减速等过程性能变化。 过渡状态特性:启动、加速、减速等过程性能变化。
2. 可变几何面积 的转速特性
• 尾喷管临界截面 积A8可调 调大A 调大 8共同工作 线下移 ∆SM↑ ↑ 增压比 ↓ 涡轮前温度 ↓ 排气速度 ↓ 推力 ↓
2. 可变几何面积 的转速特性
• 压气机之间级放气
放气使 • ∆SM↑ ↑ 被放掉的气体: 被放掉的气体 • 消耗了压缩功 消耗了压缩功; • 不参与涡轮作功 单位涡 不参与涡轮作功,单位涡 轮功↑ 涡轮前温度↑ 轮功↑, 涡轮前温度↑ • 增压比 ↓ • 排气燃气流量↓ 排气燃气流量↓
1.加速过程 加速过程
• 加速过程
– 慢车状态 → 最大状态 – 巡航状态 → 最大状态
转速迅速增加的过程 2π n • 加速性 ω = 60 推力迅速增加的能力 用完成加速过程所需时间 J d (ω ) = ( P η − P ) / ω t m k dt 表示加速性
发动机的主要性能指标和特性
Aspiration Twin Turbocharged Twin Turbocharged
Valvetrain DOHC 4valves per cylinder DOHC 4valves per cylinder
Power 600 PS (440 kW; 590 hp)@7000 rpm 499.84 PS (367.63 kW; 493.00 hp)
பைடு நூலகம்
B 3 be 10 (g / kW h) Pe
B—发动机在单位时间内的耗油量 Pe—发动机的有效功率 四行程汽油机一般为270~325 g/(kW· h) 四行程柴油机一般为190~238 g/(kW· h)
Ford Focus 1.0 EcoBoost Turbo Displacement: 999cc Number of cylinders: Three Power Output: 123bhp Bore x stroke: 71.9mm x 82mm Compression ratio: 10:1
国权威汽车评鉴杂志《沃德汽车世界》(Ward’s AutoWorld)
1. 动力性指标
有效功率:发动机在单位时间对外输出的有效功 称为有效功率,符号:Pe ,单位:kW
Te n 2 n 3 Pe Te 10 (kW ) 60 9550
有效功率Pe :发动机通过飞轮(曲轴)对外输出的功率。 单位为kW。 有效转矩Te :发动机通过飞轮(曲轴)对外输出的转矩。单 位为 N· m。 发动机转速:发动机曲轴每分钟的回转数称为发动机转速, 表示符号:n, 单位:r/min 标定转速:发动机产品标牌上的有效功率及其相应的转速 分别称为标定功率和标定转速
Torque 600 N· m (443 ft· lbf) -
航发原理-第十一章发动机特性
2.
推力F变化原因;
F = Wa ⋅ Fs
Wa = KA 2 Pt 2 Tt 2 q ( λ2 )
① 随着H ↑,当H<11km时,T0 ↓, P0 ↓; 当H≥11km 时, T0 →, P0 ↓; ② 当H<11km时, T0 ↓ ,Tt0 ↓, Tt2 ↓ ,Wa ↑; P0 ↓ ,Pt0 ↓, Pt2 ↓, Wa ↓ 。 Pt2 ↓比Tt2 ↓对流量的影 响更大,因此 Wa ↓ ; ③ 当H≥11km时, T0 →, Wa → ;P0 ↓, Wa ↓ ,因 此Wa ↓ ↓; ④ 推力F=Wa与Fs的乘积; 由于Wa ↓比Fs ↑的变化快, F 因此F ↓ ;当H≥11km时, Wa ↓ ↓, Fs → , ↓↓。
5. 燃油流量相似参数
6. 耗油率相似参数
( sfc )cor
288.15
=
( sfc )m
Tt 0
发动机转速特性及其相似换算
11.2 单轴涡喷发动机特性
一、 速度特性 (调节规律Tt4=Tt4max=const.,气流在尾喷管中完全膨胀)
a) Ma0 ↑, Fs ↓,当Ma0增大至某一数值时, Fs =0; b) Ma0 ↑, Wa ↑ ; c) Ma0 ↑,开始 F ↓或↑慢,随后 F ↑ ↑ 到最大值而后↓ ↓ 直至F=0 ; d) Ma0 ↑,sfc ↑直至到一定Ma0 后sfc ↑ ↑。
nD2 = const Tt 2
n = const Tt 2
几何相似的WP/WS发动机工作状态相似的充分必要条件是:
Ma0 = const
n = const Tt 2
Ma0 = const
n = const Tt 2
发动机在工作状态相似时的重要性质:
涡轮发动机基础知识—发动机推力原理
F m(
a c5 c)
空气流量
进排气速度差值
高压 、高温
二 推力原理
讨论
超高速飞行器上会使用喷气发动机吗
高速飞行器(M>3)会采用涡轮喷气发动机吗
A
会采用
B
不会采用
提交
小 结
航空发动机推力产生原理
发动机特性
一、发动机工作状态
飞行中不同的飞行阶段对发动机的推力(功率)有不同要求,因而发
速一致。
2)流量连续:
对于压气机设有放气装置的发动机来说,流过涡轮的燃气流量等于流
过压气机的空气流量与在燃烧室内加入的燃料流量之和,再扣除由压气机
引往其他部分(如对涡轮进行冷却)的空气量。一般认为加入的燃料流量
与扣除的空气流量近似相等。所以,可以认为流过涡轮的燃气流量与流过
4.巡航状态:飞机作巡航飞行时所使用的发动机状态。连续使用时间不受
限制,发动机转速为最大转速的85%。
巡航状态用于飞机巡航飞行,连续使用时间不受限制。
5.慢车状态:发动机稳定、连续工作的最小转速工作状态。连续使用时间
不受限制。发动机推力约为最大推力的5%,转速为最大转速的20~35%。这
一状态下涡轮前总温较高,连续工作时间限制在30~60min。
由热能转换成气体动能增量过程中的能量损失大小,评定涡轮喷气发动机作为
热机的经济性。目前燃气涡轮发动机的热效率为25%~40%。
燃料的理论放热量,不可能全部转换成气体动能增量,其中损失的能量有:
(1)高温燃气自喷管喷出时所带走的热量;
(2)发动机表面的散热损失和滑油所带走的热量;
(3)燃烧室中不完全燃烧和燃烧产物的离解损失,因未释放出热能的燃料及
➢ 推力相等的发动机,可以用燃油消耗量来比较经济性;
汽车发动机原理第六章 发动机的特性
三、有效功率的测量 有效功率是发动机最重要的性能参数之一,在发动机 试验参数中大都需要测量有效功率。发动机有效功率的测 定属于间接测量,即测定发动机的输出转矩和转速后,由
公式Pe=Ttpn/9550求出功率。
发动机在台架试验中通常用测功器来测量发动机输出 的转矩。测功器是用来吸收试验发动机发出的功,改变其 负荷及转速,模拟实际使用的各种工况。常用测功器有水 力测功器、直流电力测功器和电涡流测功器三种。
示
OA——最大功率线。表示不同转速、满水层时能
吸收的功率,它是转速的三次方曲线。水力测功器轴上 的转矩与转速的平方成正比。显然,在OA线上以A点 工作时转子承受的转矩最大,A点表示了转矩已达到转 子转矩强度所允许的限值转矩。 AB———最大转矩线。表示在极限转矩下,增加 转速来增加吸收的功率。此时需要相应减少测功器的水
此功率、转速应该与发动机所带动的工作机械要求
的功率、转速相适应。发动机在一定转速下按一定 功率稳定工作的条件是发动机发出的转矩与工作机 械消耗的转矩相等。
如图6-1所示,TR曲线
为工作机械所消耗转矩随
转速的变化,Ttp曲线是发 动机油量控制机构一定时, 转矩随转速的变化,此时 发动机只能在Ttp 、 TR曲 线相交的A点,即转矩 TtpA = TRA、转速为nA的工
Vs——工作容积,m3;
ϕa——过量空气系数; Hu——燃料低热值,kJ/kg; L0——理论空气量,kg/kg。
根据平均有效压力pme(kPa)定义:
式中:We——每循环有效功,kJ; ηet——有效热效率。
式中:ηit——指示热效率; ηm——机械效率。
根据式(1-22)、式(1-24)和式(1-26)可写成:
功率则随发电机负荷大小,可由零
发动机的工作原理和总体构造
三角活塞转子发动机
转子发动机又称为米勒循环发动机,采用三角转子旋转 运动来控制压缩和排放,由德国人菲加士·汪克尔发明。
60年初在德国生产出第一辆装配了转子发动机的小跑 车。
1964年,日内瓦的德法合资企业COMOBIL公司,首次 把转子发动机装在轿车上成为正式产品。
1967年,马自达公司投巨资从汪克尔公司买下了这项 技术。将转子发动机装在马自达轿车上开始成批生产。
进关 排关 活塞 上→下 压缩终了时 点火 压力 ↗ ↗ 3~5MPa 温度 ↗ ↗ 2200~2800K 体积 ↗ ↗ 曲轴 360°~540° 做功终了
压力↘ ↘ 0.3~0.5MPa
温度 ↘ 1300~1600K
进关 排开 活塞 下→上 压力 0.105~0.115MPa 温度 900~1200K 曲轴 540°~720° 残余废气:因燃烧室容 积,废气不能排尽。
第一节 发动机的分类
一、发动机的定义、分类及特点
发动机-将某种能量直接转换为机械能并拖动 某些机械进行工作的机器。
将热能转变为机械能的发动机,称为热力发动 机(热机)。
燃料和空气混合后在机器内部燃烧而产生热能, 然后再转变为机械能的,称为内燃机。
内燃机与外燃机相比,具有热效率高、体积小、 便于移动和起动性能好等优点。
第五节 发动机主要性能指标与特性
发动机的性能指标是用来衡量发动机性能好坏的标准
动力性能指标:有效转矩、有效功率、转速 经济性能指标:燃油消耗率 运转性能指标:排气品质、噪声、起动性能
一、动力性能指标
a. 有效转矩:指发动机通过曲轴或飞轮对外输出的扭矩,通常用Ttq表示, 单位为N·m。有效转矩是作用在活塞顶部的气体压力通过连杆、传给曲 轴产生的扭矩,并克服了摩擦,驱动附件等损失之后从曲轴对外输出的 净转矩。 b. 有效功率:指发动机通过曲轴或飞轮对外输出的功率,通常用Pe表示 ,单位为kW。有效功率同样是曲轴对外输出的净功率。它等于有效扭矩 和曲轴转速的乘积。发动机的有效功率可以在专用的试验台上用测功器 测定,测出有效扭矩和曲轴转速,然后计算出有效功率。
发动机原理-发动机特性
发动机的运行情况。以功率Pe和转速n来表示。 常见的发动机工况:面工况、点工况、线工况等。
(2)发动机特性: 发动机性能指标随调整情况及运转工况而变化的关系。
其中随调整情况而变化的关系称为调整特性 如:柴油机供油提前角调整特性
汽油机点火提前角调整特性 随运转情况而变化的关系称性能特性(或使用特性) 发动机主要特性包括:负荷特性、速度特性、调速特性、万有特性、烟度特性、排放特性等。
第二节 速度特性
本节的主要内容: 1. 汽油机的速度特性-外特性曲线 2. 柴油机的速度特性-外特性曲线 3. 外特性的意义-后备功率、扭矩储备系数、
和转速储备系数
一、概述
1、速度特性定义 发动机的燃油供给调节机构位置一定时,发动机的性能指标(Ttq、Pe、be)随转速而变化的关系。
2、全负荷速度特性(或称外特性) 节气门开度最大或喷油泵齿条位置处于标定功率循环供油量位置时发动机的速度特性。
2、调速特性
第四节 万有特性
1、为了能在一张图上全面表示内燃机性能,经常应用多参数特性,即万有特性。 2、应用最广的万有特性里以速度做横坐标,平均有效压力(或扭矩)做纵坐标。在坐标内做出若干条等耗油率曲
线和等功率曲线,组成曲线族。 3、做法:柴油机通常通过负荷特性法做出万有特性图,而汽油机通常用速度特性法做出万有特性图。
么不同?分别解决什么问题? 7、在车用发动机万有特性图上,对其经济性有何
要求?
汇报结束
谢谢大家! 请各位批评指正
B主要取决于节气门开度(混合气量)和Фa (变化不大0.8~1.2)。
二、柴油机的负荷特性 (一)定义与性能指标 当柴油机转速不变,改变每循环供油量b(改变喷油泵齿条或拉杆位置)时,be和B随负荷而变化的关系。
发动机原理第四章 发动机工况及特性
发动机低温起动之后,因为可燃混合气在温度较 低的情况下雾化的程度差,燃料附着在进气管上从而 使燃料混合气浓度降低,致使发动机运行不良或者发 动机灭火,因此起动之后一小段间隔里,要加大燃料
供给量,从而提高实际参与燃烧的燃料混合气浓度升
高,使发动机运行稳定不会因此而灭火。
起动时发动机的温度决定 了增加燃油量比例的高低,而 且起动后随着时间的推移,增
因此,为了能让发动机起动顺利,传统化油器式的 燃料供给系统要求供给特浓的混合气,其φa值为0.3 ~0.
6,实际以气态参与反应的混合气浓度φa值在0.8~1.2,
其他燃料来不及参与燃烧,直接随同废气排入大气,这是 汽油机起动碳氢排放高的主要原因。 电控喷射汽油机虽然由于喷射,雾化好于化油器发动 机,但仍然不能完全蒸发。因此,起动过程仍然需要加浓 喷射,过量空气系数 φa值一般在0.5~0.8。
汽油机起动时,由于转速非常低,空气流动速度慢, 从而导致燃料的雾化程度差,使得进入汽缸的混合气中的 大部分燃料以液态形式存在, 以气态形式存在的燃料少,
实际参与燃烧的混合气变稀, 特别在低温起动时。汽油
蒸发速度下降,在混合气形成的时间内,实际蒸发量减少, 当蒸发形成的实际混合气的浓度降至着火下极限φa>1.44 时,汽油机将因为混合气太稀不能着火做功。
第一类工况:转速不变,而功率改变。例如, 发电用发动机正常起动后,为使其工作稳定,要 求发动机转速基本恒定, 功率随电机负荷大小, 从零直接变到最大,没有固定的规律性,但要使
发动机转速不变,才能确保输送的频率稳定,那
么在工况图上会出现一条垂直线(图4-1 中的 曲线1),称为线工况。
第二类工况:功率与转速的关系类似于三次幂函数, Pe=Kn3,K为比例常数,船用机就是这类发动机, 因为它是带动螺旋桨工作,故称螺旋桨工况或推进工况,
汽车发动机工作原理及总体构造
表面点火:由于ε过大
P、T过高,在电火花之前可燃混合气就被燃
烧室炽热的表面点燃的另一种不正常燃烧。表面点火发生时,伴有沉闷的
敲缸声,产生的高压使发动机负荷↑,寿命↓。
*
① 现代汽油机的压缩比一般为ε= 6—9(个别轿车可达9—11)。 ② 柴油机靠压缩自燃,所以压缩比设计等较高ε=16—22。具有较好的
二、经济性指标:
1、 燃油消耗率be:发动机每发出1KW有效功率,在1h内所消耗的燃油量。 be= B x1000 (g / kwh ) ; B—发动机每小时的耗油量(kg/h)——可测定 Pe
三、发动机的运转性能指标:
1、 排气品质:有害气体成分的限制标准。P41 2、 噪声:车外噪声标准 美日欧韩:74---80 dB(A) 中国:82---89dB(A)
P0
P0
“柴” 1.25
1.05---
四:四冲程汽油机和柴油机的优缺点比较 汽油机:(优点)ε较小,体积小,重量轻,转速较高,动力性好。
制造维修成本低,噪声小,起动容易。主要用于轿车、微型 车(客车、货车)、军用越野车。
(缺点)燃料经济差,排污大(HC、N0x、CO)
柴油机:(优点) ε较大,燃料燃烧完全,经济性好。
(缺点)由于ε较大 P、T较高,所以体积大、重量大,转速 较低,制造维修成本高(喷油泵、喷油器加工精度要求高)。 常用于中、重型货车。(对经济性要求高,动力性要求较低)。
同排量的单缸与多缸发动机优缺点比较:
单缸:结构简单、重量轻。运转不平稳、冲击振动大。
多缸:与单缸相反。发火间隔角
=720 º/ i ( i—— 缸数)。
1、进气行程:
进入气缸的是
柴油机:新鲜空气。
汽油机:汽油与空气的混合物。
发动机的工作原理及特性
发动机的工作原理及特性发动机是汽车的心脏,它的功效直接影响着汽车性能的好坏。
因此,了解发动机的工作原理及特性对于开车人来说非常重要。
一、发动机的工作原理发动机是通过燃油燃烧产生能量,驱动活塞运动,从而带动汽车轮胎转动的一种装置。
发动机的工作原理可以分为四个步骤:进气、压缩、爆炸和排气。
进气过程:发动机进气过程是通过进气道将空气和燃油混合物输入发动机内部的气缸中。
压缩过程:气缸内的活塞会将进气过来的空气和燃油混合物压缩到一个极高的压力,这样做是为了准备燃油的点火。
爆炸过程:点火系统会在适当时机点燃混合物,这将引起爆炸,推动活塞向下或向上运动,并为下一次循环提供能量。
排气过程:作为这一段过程的一部分,气缸内的废气被强制排出汽车进气系统,这将允许发动机准备下一次能量循环。
二、发动机的特性1. 动力性发动机的功率直接决定汽车的动力性能。
发动机的动力性能与它的构造设计、气门关闭时间、燃油喷射方式和火花塞点火时机等因素有关。
2. 燃油效率汽车的燃油效率与发动机的性能和效率有直接关系。
高效的发动机能够更有效地利用燃料,从而为汽车提供更好的燃油效率。
3. 发动机噪音发动机噪音是汽车运行时最明显的声音。
发动机的噪音水平与发动机设计、气门关闭时间和间隙等因素有关。
4. 处理能力处理能力是指发动机在不同负载和转速下的表现。
发动机的转速和负载可以影响汽车的性能和燃油效率。
总之,了解发动机的工作原理及特性有助于我们更好地理解汽车的机械结构、工作原理和构造,从而能够更好地照顾汽车并正确地维护和使用它们。
发动机的万有特性
绘制曲线
将处理后的数据用图形的方式绘 制在同一张图上,通常采用极坐 标或直角坐标系,以便更好地展
示发动机的性能变化趋势。
应用场景
发动机设计
匹配应用
万有特性曲线可用于发动机设计阶段, 帮助设计人员了解不同工况下的发动机 性能表现,为设计优化提供依据。
万有特性曲线可用于发动机与车辆或设 备的匹配,根据实际需求选择合适的发 动机型号,以确保整体性能的优化。
发动机的工作原理
内燃机工作原理
内燃机通过燃烧燃料,将化学能 转换为热能,再通过热能推动活 塞运动,最终将热能转换为机械 能。
外燃机工作原理
外燃机通过燃烧燃料,将化学能 转换为热能,再通过热能推动蒸 汽机的活塞运动,最终将热能转 换为机械能。
发动机的性能指标
功率
表示发动机在单位时间 内所做的功,单位为马
万有特性曲线对于发动机设计、优化、匹配和性能评估等方 面具有重要意义,是发动机性能分析和优化的重要工具。
绘制方法
收集数据
通过实验或仿真等方法,获取发 动机在不同转速、转矩、功率等 工况下的性能参数,如转速、转
矩、功率、燃油消耗率等。
数据处理
对收集到的数据进行处理,包括 数据清洗、整理、转换等,以确
燃油消耗特性
燃油消耗率
发动机每千瓦或每马力小时所消 耗的燃油量,通常以克/千瓦小时
(g/kW·h)或克/马力小时 (g/hp·h)表示。
燃油消耗曲线
随着转速和负荷的增加,燃油消耗 率逐渐增大。
应用场景
在关注燃油经济性的场合,如城市 驾驶、长途旅行等,应尽量使发动 机工作在较低的燃油消耗区域。
排放特性
排放物种类
包括一氧化碳(CO)、碳 氢化合物(HC)、氮氧化 物(NOx)和颗粒物 (PM)等。
发动机课件
四、燃料供给系: 包括汽油箱、汽油泵、汽油滤清器、油管、 空气滤清器、化油器、进气歧管、排气 消声器等
五、点火系: 包括电源、分电器、点火开关、点火线圈、火花 塞等。 六、冷却系: 包括水泵、散热器、风扇、水温表、节温器等。 七、润滑系: 包括油底壳、机油集滤器、机油泵、限压阀、润 滑油道及油管、油温和油压传感器、油温和油压 表、油标尺等。 八、起动系: 包括起动机、冷起动加热器及其附属装置。
D——气缸直径mm
Va =V h + Vc
S——活塞行程mm
i ——气缸数
ε = Va / Vc=1+ Vh / Vc
二、四冲程汽油机的工作原理
单 缸 四 冲 程 汽 油 机 的 工 作 过 程
1、进气行程 2、压缩行程 3、作功行程 4、排气行程
温度370~440 K, 压力75~90 kPa
式中:GT - 每小时的燃油消耗量,kg/h; Pe - 有效功率,kW。
三、发动机速度特性: 发动机的速度特性指发 动机的功率、转矩和燃 油消耗率三者随发动机 转速n变化的规律,用 曲线表示,称为速度特 性曲线。
四、发动机的工况与负荷:
工况a:负荷为零 工况b:负荷=44.4% 工况c:负荷=71.7% 工况d:负荷=100%
• 四冲程发动机属于往复活塞式内燃机,根据所用燃料种类的不同 ,分为汽油机、柴油机和气体燃料发动机三类。以汽油或柴油为 燃料的活塞式内燃机分别称作汽油机或柴油机。使用天然气、液 化石油气和其他气体燃料的活塞式内燃机称作气体燃料发动机。 汽油和柴油都是石油制品,是汽车发动机的传统燃料。非石油燃 料称作代用燃料。燃用代用燃料的发动机称作代用燃料发动机, 如乙醇发动机、氢气发动机、甲醇发动机等。[2] • 四冲程汽油机经过进气、压缩、作功、排气四个行程完成一个工 作循环,在这个过程中,活塞上下往复运动四个行程,相应的曲 轴旋转两周。 • 四冲程柴油机的工作原理与四冲程汽油机相同,也是由进气、压 缩、做功、排气四个形成组成。不同的是柴油机进气行程进的是 纯空气,在压缩行程接近上止点时,由喷油器将柴油喷入燃烧室 ,由于这时汽缸内的温度已经远远超过柴油的自燃温度,喷入的 柴油经过短暂的着火延迟后,自行着火燃烧,对外做功
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根据内燃机产品的使用特点,在内燃机的铭 牌上一般应标明上述四种功率的一或两种功 率及其对应的转速。同时,内燃机的最大供 油量限定在标定功率的位置上。对于同一种 发动机,用于不同场合时,可以有不同的标 定功率值,其中,15min功率最高,持续功率 最低。
车用 — 常用15分钟, 1小时或12小时功率中的 两种作为铭牌功率。
Pe
inPmeVs
30
nTe 9550
实际上,发动机工况就是研究不同运转情况下,其功率、
转矩和转速三者间的变化关系。
1、发动机工况的分类
(1)第一类工况(负荷、转速基本不变)
(2)第二类工况(负荷变化但转速基本不变) (3)第三类工况(负荷、转速在宽广的范围内变化)
3
发动机运行工况(operating condition):负荷Ttq,pme(Pe) vs 转速n
最大油门位置时,不同转 速下发动机所能发出的最大功 率,是发动机功率的极限。
(2)右边界线b: 发动机所能承受的最高转速
极限。
(3)左边界线c: 发动机能稳定运转的最低转速。
11
(4)水平边界d 不同油门位置的怠速特性,
即发动机指示功率与机械损失 功率相等(Pe=0)。 (5)下边界e
发动机停机后倒拖特性(下 坡时的制动能力)。
16
(3)12h功率
这一功率为内燃机允许连续运转12h的最大有 效功率,适用于需要在12h内连续运转而又需 要充分发挥功率的拖拉机、移动式发电机组、 铁道牵引等用途的内燃机。
17
(4)持续功率
这一功率为内燃机允许长期连续运转的最大 有效功率,适用于需要长期连续运转的固定 动力、排灌、电站、船舶等用途的内燃机。
第七章 发动机的特性
第一节 发动机的特性概述 第二节 发动机的负荷特性 第三节 发动机的速度特性 第四节 发动机的转矩适应性 第五节 车用柴油机的调速特性 第六节 发动机的万有特性
1
第一节 发动机特性概述
研究发动机特性的目的: 评价发动机性能,为正确选用动力源提供依据; 为进一步改进发动机性能提供有效途径。
13
*思考:人为规定就会存在可高可低的情况,那么汽 车用发动机与工程机械用发动机标定时应如何考虑?
我国四个等级的发动机功率标定:
1、15分钟功率 2、1小时功率 3、12小时功率 4、持续功率
汽车、快艇等 工程机械、船舶等 机车、移动发电机组等 农用机械、固定发电机组等
需要注意的是:实际使用过程中,发动机功率超出标 定功率或标定功率下超出规定的时间,并不意味着发动机 就会损坏。
19
除持续功率外,其他几种功率均具有间歇 性工作的特点,故常被称为间歇功率。对 间歇功率而言,内燃机在实际按标定功率 运转时,超出上述限定的时间并不意味着 内燃机将被损坏,但无疑将使内燃机的寿 命与可靠性受到影响。
8
发动机的台架试验:测试发动机的主要性能指标
➢冷却系统
➢油耗仪: 测油耗
➢测功器: 测转矩
转速表
排放 分析仪
➢基础:振幅 ≯0.05~0.1mm
9
(3) 面工况:汽车;拖拉机 a — 最大功率限制线 b — 最高转速限制线 c — 最低稳定转速限制线 d — 怠速线 e — 倒拖线
10
2、车用发动机的工况范围 (1)上边界线a:
如 汽车:
点工况排灌 P e Pe Kn3阻力阻力和
道路情况 。
n
5
1.发动机的工况分类
第—类工况,其特点是发 动机的功率变化时,转速 几乎保持不变。该工况又 被称为固定式内燃机工况。 线工况。点工况
6
第二类工况,其特点是内燃 机的功率与转速接近于幂函 数关系,如图中的曲线2示的 三次幂函数( Pe n3)。当内燃 机作为船用主机驱动螺旋桨 时,内燃机所发出的功率必 须与螺旋桨吸收的功率相等, 而吸收功率又取决于螺旋桨 转速的高低,且与转速成幂 函数关系,这样,内燃机功 率就呈现一种十分有规律的 变化。该类工况常被称为螺 旋桨工况或推进工况,也属 于线工况。
二、发动机功率的标定
标定功制率造:厂根据发动机的使用要求(用途、寿命、 可靠性、使用条件等),人为规定的该发动机在标况下 允许输出的最大功率。
12
发动机功率标定
内燃机的功率标定,是指制造企业根据内燃 机的用途、寿命、可靠性、维修与使用条件 等要求,人为地规定该产品在标准大气条件 下所输出的有效功率以及所对应的转速,即 标定功率与标定转速。世界各国对标定方法 的规定有所不同。按照国家标准GBll05—— 87《内燃机台架性能试验方法》规定,我国 内燃机的功率可以分为四级:
14
(1)15min功率
这一功率为内燃机允许连续运转15min的 最大有效功率,适用于需要较大功率储备或 瞬时需要发出最大功率的轿车、中小型载货 汽车、军用车辆、快艇等用途的内燃机。
15
(2)1h功率
这一功率为内燃机允许连续运转1h的最大有 效功率,适用于需要一定功率储备以克服突 增负荷的工程机械、船舶主机、大型载货汽 车和机车等用途的内燃机。
(1) 点工况:抽水机 ① (2) 线工况:发电机组② ;船 舶发动机 ③ (3) 面工况:汽车;拖拉机
4
根据工作机械不同,发动机工况分类为三种:
1. 恒速工况:发动机转速始终保持不变;
功率随负荷变化。发电用发动机
2. 线工况:Pe=f(n)的工况,螺旋桨工况。
3. 面工况:Pe和n都相对独
立变化,无约束关系。
研究方法:性能指标随发动机工况变化特性来研究 一、发动机工况 ➢ 指发动机运行状态,常用转速n和负荷表示。 • 转速:表征发动机的工作频率挡位&车速; • 负荷:表征发动机对外做功能力加速踏板:Ttqpme ➢ 发动机输出功率:Pe Ttq n ➢功率相同,工况不同燃烧过程不同性能不同
2
定义:发动机的实际运转情况。
7
第三类工况,其特点是功率 与转速都在很大范围内变化, 它们之间没有特定的关系。 汽车及其他陆地运输用内燃 机,都居于这种工况。此时, 内燃机的转速决定于行驶速 度、可以从最低稳定转速一 直变到最高转速;负荷取决 于行驶阻力,在同一转速下, 可以从零变到全负荷。内燃 机可能的工作区域就是该种 类型内燃机的实际工作区域, 相应的上况区域称为面工况。